705 703 677 682 28 681 682 680 678 716 2 29 5 356 2 324 415 268 682 28 1 11 28 28 28 31 1 2 28 4849 4848 4849 4210 31 718 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/network.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/slab.h> /* Structure for holding inet domain socket's address. */ struct tomoyo_inet_addr_info { __be16 port; /* In network byte order. */ const __be32 *address; /* In network byte order. */ bool is_ipv6; }; /* Structure for holding unix domain socket's address. */ struct tomoyo_unix_addr_info { u8 *addr; /* This may not be '\0' terminated string. */ unsigned int addr_len; }; /* Structure for holding socket address. */ struct tomoyo_addr_info { u8 protocol; u8 operation; struct tomoyo_inet_addr_info inet; struct tomoyo_unix_addr_info unix0; }; /* String table for socket's protocols. */ const char * const tomoyo_proto_keyword[TOMOYO_SOCK_MAX] = { [SOCK_STREAM] = "stream", [SOCK_DGRAM] = "dgram", [SOCK_RAW] = "raw", [SOCK_SEQPACKET] = "seqpacket", [0] = " ", /* Dummy for avoiding NULL pointer dereference. */ [4] = " ", /* Dummy for avoiding NULL pointer dereference. */ }; /** * tomoyo_parse_ipaddr_union - Parse an IP address. * * @param: Pointer to "struct tomoyo_acl_param". * @ptr: Pointer to "struct tomoyo_ipaddr_union". * * Returns true on success, false otherwise. */ bool tomoyo_parse_ipaddr_union(struct tomoyo_acl_param *param, struct tomoyo_ipaddr_union *ptr) { u8 * const min = ptr->ip[0].in6_u.u6_addr8; u8 * const max = ptr->ip[1].in6_u.u6_addr8; char *address = tomoyo_read_token(param); const char *end; if (!strchr(address, ':') && in4_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = false; if (!*end) ptr->ip[1].s6_addr32[0] = ptr->ip[0].s6_addr32[0]; else if (*end++ != '-' || in4_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } if (in6_pton(address, -1, min, '-', &end) > 0) { ptr->is_ipv6 = true; if (!*end) memmove(max, min, sizeof(u16) * 8); else if (*end++ != '-' || in6_pton(end, -1, max, '\0', &end) <= 0 || *end) return false; return true; } return false; } /** * tomoyo_print_ipv4 - Print an IPv4 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to __be32. * @max_ip: Pointer to __be32. * * Returns nothing. */ static void tomoyo_print_ipv4(char *buffer, const unsigned int buffer_len, const __be32 *min_ip, const __be32 *max_ip) { snprintf(buffer, buffer_len, "%pI4%c%pI4", min_ip, *min_ip == *max_ip ? '\0' : '-', max_ip); } /** * tomoyo_print_ipv6 - Print an IPv6 address. * * @buffer: Buffer to write to. * @buffer_len: Size of @buffer. * @min_ip: Pointer to "struct in6_addr". * @max_ip: Pointer to "struct in6_addr". * * Returns nothing. */ static void tomoyo_print_ipv6(char *buffer, const unsigned int buffer_len, const struct in6_addr *min_ip, const struct in6_addr *max_ip) { snprintf(buffer, buffer_len, "%pI6c%c%pI6c", min_ip, !memcmp(min_ip, max_ip, 16) ? '\0' : '-', max_ip); } /** * tomoyo_print_ip - Print an IP address. * * @buf: Buffer to write to. * @size: Size of @buf. * @ptr: Pointer to "struct ipaddr_union". * * Returns nothing. */ void tomoyo_print_ip(char *buf, const unsigned int size, const struct tomoyo_ipaddr_union *ptr) { if (ptr->is_ipv6) tomoyo_print_ipv6(buf, size, &ptr->ip[0], &ptr->ip[1]); else tomoyo_print_ipv4(buf, size, &ptr->ip[0].s6_addr32[0], &ptr->ip[1].s6_addr32[0]); } /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for inet domain socket. */ static const u8 tomoyo_inet2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_INET_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_INET_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_DGRAM_SEND, }, [SOCK_RAW] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_INET_RAW_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_INET_RAW_SEND, }, }; /* * Mapping table from "enum tomoyo_network_acl_index" to * "enum tomoyo_mac_index" for unix domain socket. */ static const u8 tomoyo_unix2mac [TOMOYO_SOCK_MAX][TOMOYO_MAX_NETWORK_OPERATION] = { [SOCK_STREAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_STREAM_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_STREAM_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_STREAM_CONNECT, }, [SOCK_DGRAM] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_BIND, [TOMOYO_NETWORK_SEND] = TOMOYO_MAC_NETWORK_UNIX_DGRAM_SEND, }, [SOCK_SEQPACKET] = { [TOMOYO_NETWORK_BIND] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_BIND, [TOMOYO_NETWORK_LISTEN] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_LISTEN, [TOMOYO_NETWORK_CONNECT] = TOMOYO_MAC_NETWORK_UNIX_SEQPACKET_CONNECT, }, }; /** * tomoyo_same_inet_acl - Check for duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_inet_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_inet_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_inet_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_ipaddr_union(&p1->address, &p2->address) && tomoyo_same_number_union(&p1->port, &p2->port); } /** * tomoyo_same_unix_acl - Check for duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * * Returns true if @a == @b except permission bits, false otherwise. */ static bool tomoyo_same_unix_acl(const struct tomoyo_acl_info *a, const struct tomoyo_acl_info *b) { const struct tomoyo_unix_acl *p1 = container_of(a, typeof(*p1), head); const struct tomoyo_unix_acl *p2 = container_of(b, typeof(*p2), head); return p1->protocol == p2->protocol && tomoyo_same_name_union(&p1->name, &p2->name); } /** * tomoyo_merge_inet_acl - Merge duplicated "struct tomoyo_inet_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_inet_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_inet_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_inet_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_merge_unix_acl - Merge duplicated "struct tomoyo_unix_acl" entry. * * @a: Pointer to "struct tomoyo_acl_info". * @b: Pointer to "struct tomoyo_acl_info". * @is_delete: True for @a &= ~@b, false for @a |= @b. * * Returns true if @a is empty, false otherwise. */ static bool tomoyo_merge_unix_acl(struct tomoyo_acl_info *a, struct tomoyo_acl_info *b, const bool is_delete) { u8 * const a_perm = &container_of(a, struct tomoyo_unix_acl, head)->perm; u8 perm = READ_ONCE(*a_perm); const u8 b_perm = container_of(b, struct tomoyo_unix_acl, head)->perm; if (is_delete) perm &= ~b_perm; else perm |= b_perm; WRITE_ONCE(*a_perm, perm); return !perm; } /** * tomoyo_write_inet_network - Write "struct tomoyo_inet_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. * * Caller holds tomoyo_read_lock(). */ int tomoyo_write_inet_network(struct tomoyo_acl_param *param) { struct tomoyo_inet_acl e = { .head.type = TOMOYO_TYPE_INET_ACL }; int error = -EINVAL; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (param->data[0] == '@') { param->data++; e.address.group = tomoyo_get_group(param, TOMOYO_ADDRESS_GROUP); if (!e.address.group) return -ENOMEM; } else { if (!tomoyo_parse_ipaddr_union(param, &e.address)) goto out; } if (!tomoyo_parse_number_union(param, &e.port) || e.port.values[1] > 65535) goto out; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_inet_acl, tomoyo_merge_inet_acl); out: tomoyo_put_group(e.address.group); tomoyo_put_number_union(&e.port); return error; } /** * tomoyo_write_unix_network - Write "struct tomoyo_unix_acl" list. * * @param: Pointer to "struct tomoyo_acl_param". * * Returns 0 on success, negative value otherwise. */ int tomoyo_write_unix_network(struct tomoyo_acl_param *param) { struct tomoyo_unix_acl e = { .head.type = TOMOYO_TYPE_UNIX_ACL }; int error; u8 type; const char *protocol = tomoyo_read_token(param); const char *operation = tomoyo_read_token(param); for (e.protocol = 0; e.protocol < TOMOYO_SOCK_MAX; e.protocol++) if (!strcmp(protocol, tomoyo_proto_keyword[e.protocol])) break; for (type = 0; type < TOMOYO_MAX_NETWORK_OPERATION; type++) if (tomoyo_permstr(operation, tomoyo_socket_keyword[type])) e.perm |= 1 << type; if (e.protocol == TOMOYO_SOCK_MAX || !e.perm) return -EINVAL; if (!tomoyo_parse_name_union(param, &e.name)) return -EINVAL; error = tomoyo_update_domain(&e.head, sizeof(e), param, tomoyo_same_unix_acl, tomoyo_merge_unix_acl); tomoyo_put_name_union(&e.name); return error; } /** * tomoyo_audit_net_log - Audit network log. * * @r: Pointer to "struct tomoyo_request_info". * @family: Name of socket family ("inet" or "unix"). * @protocol: Name of protocol in @family. * @operation: Name of socket operation. * @address: Name of address. * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_net_log(struct tomoyo_request_info *r, const char *family, const u8 protocol, const u8 operation, const char *address) { return tomoyo_supervisor(r, "network %s %s %s %s\n", family, tomoyo_proto_keyword[protocol], tomoyo_socket_keyword[operation], address); } /** * tomoyo_audit_inet_log - Audit INET network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_inet_log(struct tomoyo_request_info *r) { char buf[128]; int len; const __be32 *address = r->param.inet_network.address; if (r->param.inet_network.is_ipv6) tomoyo_print_ipv6(buf, sizeof(buf), (const struct in6_addr *) address, (const struct in6_addr *) address); else tomoyo_print_ipv4(buf, sizeof(buf), address, address); len = strlen(buf); snprintf(buf + len, sizeof(buf) - len, " %u", r->param.inet_network.port); return tomoyo_audit_net_log(r, "inet", r->param.inet_network.protocol, r->param.inet_network.operation, buf); } /** * tomoyo_audit_unix_log - Audit UNIX network log. * * @r: Pointer to "struct tomoyo_request_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_audit_unix_log(struct tomoyo_request_info *r) { return tomoyo_audit_net_log(r, "unix", r->param.unix_network.protocol, r->param.unix_network.operation, r->param.unix_network.address->name); } /** * tomoyo_check_inet_acl - Check permission for inet domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_inet_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_inet_acl *acl = container_of(ptr, typeof(*acl), head); const u8 size = r->param.inet_network.is_ipv6 ? 16 : 4; if (!(acl->perm & (1 << r->param.inet_network.operation)) || !tomoyo_compare_number_union(r->param.inet_network.port, &acl->port)) return false; if (acl->address.group) return tomoyo_address_matches_group (r->param.inet_network.is_ipv6, r->param.inet_network.address, acl->address.group); return acl->address.is_ipv6 == r->param.inet_network.is_ipv6 && memcmp(&acl->address.ip[0], r->param.inet_network.address, size) <= 0 && memcmp(r->param.inet_network.address, &acl->address.ip[1], size) <= 0; } /** * tomoyo_check_unix_acl - Check permission for unix domain socket operation. * * @r: Pointer to "struct tomoyo_request_info". * @ptr: Pointer to "struct tomoyo_acl_info". * * Returns true if granted, false otherwise. */ static bool tomoyo_check_unix_acl(struct tomoyo_request_info *r, const struct tomoyo_acl_info *ptr) { const struct tomoyo_unix_acl *acl = container_of(ptr, typeof(*acl), head); return (acl->perm & (1 << r->param.unix_network.operation)) && tomoyo_compare_name_union(r->param.unix_network.address, &acl->name); } /** * tomoyo_inet_entry - Check permission for INET network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_inet_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_inet2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { r.param_type = TOMOYO_TYPE_INET_ACL; r.param.inet_network.protocol = address->protocol; r.param.inet_network.operation = address->operation; r.param.inet_network.is_ipv6 = address->inet.is_ipv6; r.param.inet_network.address = address->inet.address; r.param.inet_network.port = ntohs(address->inet.port); do { tomoyo_check_acl(&r, tomoyo_check_inet_acl); error = tomoyo_audit_inet_log(&r); } while (error == TOMOYO_RETRY_REQUEST); } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_inet_address - Check permission for inet domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @port: Port number. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_inet_address(const struct sockaddr *addr, const unsigned int addr_len, const u16 port, struct tomoyo_addr_info *address) { struct tomoyo_inet_addr_info *i = &address->inet; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; switch (addr->sa_family) { case AF_INET6: if (addr_len < SIN6_LEN_RFC2133) goto skip; i->is_ipv6 = true; i->address = (__be32 *) ((struct sockaddr_in6 *) addr)->sin6_addr.s6_addr; i->port = ((struct sockaddr_in6 *) addr)->sin6_port; break; case AF_INET: if (addr_len < sizeof(struct sockaddr_in)) goto skip; i->is_ipv6 = false; i->address = (__be32 *) &((struct sockaddr_in *) addr)->sin_addr; i->port = ((struct sockaddr_in *) addr)->sin_port; break; default: goto skip; } if (address->protocol == SOCK_RAW) i->port = htons(port); return tomoyo_inet_entry(address); skip: return 0; } /** * tomoyo_unix_entry - Check permission for UNIX network operation. * * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_unix_entry(const struct tomoyo_addr_info *address) { const int idx = tomoyo_read_lock(); struct tomoyo_request_info r; int error = 0; const u8 type = tomoyo_unix2mac[address->protocol][address->operation]; if (type && tomoyo_init_request_info(&r, NULL, type) != TOMOYO_CONFIG_DISABLED) { char *buf = address->unix0.addr; int len = address->unix0.addr_len - sizeof(sa_family_t); if (len <= 0) { buf = "anonymous"; len = 9; } else if (buf[0]) { len = strnlen(buf, len); } buf = tomoyo_encode2(buf, len); if (buf) { struct tomoyo_path_info addr; addr.name = buf; tomoyo_fill_path_info(&addr); r.param_type = TOMOYO_TYPE_UNIX_ACL; r.param.unix_network.protocol = address->protocol; r.param.unix_network.operation = address->operation; r.param.unix_network.address = &addr; do { tomoyo_check_acl(&r, tomoyo_check_unix_acl); error = tomoyo_audit_unix_log(&r); } while (error == TOMOYO_RETRY_REQUEST); kfree(buf); } else error = -ENOMEM; } tomoyo_read_unlock(idx); return error; } /** * tomoyo_check_unix_address - Check permission for unix domain socket's operation. * * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * @address: Pointer to "struct tomoyo_addr_info". * * Returns 0 on success, negative value otherwise. */ static int tomoyo_check_unix_address(struct sockaddr *addr, const unsigned int addr_len, struct tomoyo_addr_info *address) { struct tomoyo_unix_addr_info *u = &address->unix0; if (addr_len < offsetofend(struct sockaddr, sa_family)) return 0; if (addr->sa_family != AF_UNIX) return 0; u->addr = ((struct sockaddr_un *) addr)->sun_path; u->addr_len = addr_len; return tomoyo_unix_entry(address); } /** * tomoyo_kernel_service - Check whether I'm kernel service or not. * * Returns true if I'm kernel service, false otherwise. */ static bool tomoyo_kernel_service(void) { /* Nothing to do if I am a kernel service. */ return current->flags & PF_KTHREAD; } /** * tomoyo_sock_family - Get socket's family. * * @sk: Pointer to "struct sock". * * Returns one of PF_INET, PF_INET6, PF_UNIX or 0. */ static u8 tomoyo_sock_family(struct sock *sk) { u8 family; if (tomoyo_kernel_service()) return 0; family = sk->sk_family; switch (family) { case PF_INET: case PF_INET6: case PF_UNIX: return family; default: return 0; } } /** * tomoyo_socket_listen_permission - Check permission for listening a socket. * * @sock: Pointer to "struct socket". * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_listen_permission(struct socket *sock) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; struct sockaddr_storage addr; int addr_len; if (!family || (type != SOCK_STREAM && type != SOCK_SEQPACKET)) return 0; { const int error = sock->ops->getname(sock, (struct sockaddr *) &addr, 0); if (error < 0) return error; addr_len = error; } address.protocol = type; address.operation = TOMOYO_NETWORK_LISTEN; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) &addr, addr_len, &address); return tomoyo_check_inet_address((struct sockaddr *) &addr, addr_len, 0, &address); } /** * tomoyo_socket_connect_permission - Check permission for setting the remote address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_connect_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; address.protocol = type; switch (type) { case SOCK_DGRAM: case SOCK_RAW: address.operation = TOMOYO_NETWORK_SEND; break; case SOCK_STREAM: case SOCK_SEQPACKET: address.operation = TOMOYO_NETWORK_CONNECT; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_bind_permission - Check permission for setting the local address of a socket. * * @sock: Pointer to "struct socket". * @addr: Pointer to "struct sockaddr". * @addr_len: Size of @addr. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_bind_permission(struct socket *sock, struct sockaddr *addr, int addr_len) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!family) return 0; switch (type) { case SOCK_STREAM: case SOCK_DGRAM: case SOCK_RAW: case SOCK_SEQPACKET: address.protocol = type; address.operation = TOMOYO_NETWORK_BIND; break; default: return 0; } if (family == PF_UNIX) return tomoyo_check_unix_address(addr, addr_len, &address); return tomoyo_check_inet_address(addr, addr_len, sock->sk->sk_protocol, &address); } /** * tomoyo_socket_sendmsg_permission - Check permission for sending a datagram. * * @sock: Pointer to "struct socket". * @msg: Pointer to "struct msghdr". * @size: Unused. * * Returns 0 on success, negative value otherwise. */ int tomoyo_socket_sendmsg_permission(struct socket *sock, struct msghdr *msg, int size) { struct tomoyo_addr_info address; const u8 family = tomoyo_sock_family(sock->sk); const unsigned int type = sock->type; if (!msg->msg_name || !family || (type != SOCK_DGRAM && type != SOCK_RAW)) return 0; address.protocol = type; address.operation = TOMOYO_NETWORK_SEND; if (family == PF_UNIX) return tomoyo_check_unix_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, &address); return tomoyo_check_inet_address((struct sockaddr *) msg->msg_name, msg->msg_namelen, sock->sk->sk_protocol, &address); } |
74 60 14 74 74 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/errno.h> #include <linux/socket.h> #include <linux/udp.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/in6.h> #include <net/udp.h> #include <net/udp_tunnel.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/ip6_tunnel.h> #include <net/ip6_checksum.h> int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { struct sockaddr_in6 udp6_addr = {}; int err; struct socket *sock = NULL; err = sock_create_kern(net, AF_INET6, SOCK_DGRAM, 0, &sock); if (err < 0) goto error; if (cfg->ipv6_v6only) { err = ip6_sock_set_v6only(sock->sk); if (err < 0) goto error; } if (cfg->bind_ifindex) { err = sock_bindtoindex(sock->sk, cfg->bind_ifindex, true); if (err < 0) goto error; } udp6_addr.sin6_family = AF_INET6; memcpy(&udp6_addr.sin6_addr, &cfg->local_ip6, sizeof(udp6_addr.sin6_addr)); udp6_addr.sin6_port = cfg->local_udp_port; err = kernel_bind(sock, (struct sockaddr *)&udp6_addr, sizeof(udp6_addr)); if (err < 0) goto error; if (cfg->peer_udp_port) { memset(&udp6_addr, 0, sizeof(udp6_addr)); udp6_addr.sin6_family = AF_INET6; memcpy(&udp6_addr.sin6_addr, &cfg->peer_ip6, sizeof(udp6_addr.sin6_addr)); udp6_addr.sin6_port = cfg->peer_udp_port; err = kernel_connect(sock, (struct sockaddr *)&udp6_addr, sizeof(udp6_addr), 0); } if (err < 0) goto error; udp_set_no_check6_tx(sock->sk, !cfg->use_udp6_tx_checksums); udp_set_no_check6_rx(sock->sk, !cfg->use_udp6_rx_checksums); *sockp = sock; return 0; error: if (sock) { kernel_sock_shutdown(sock, SHUT_RDWR); sock_release(sock); } *sockp = NULL; return err; } EXPORT_SYMBOL_GPL(udp_sock_create6); int udp_tunnel6_xmit_skb(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, struct net_device *dev, struct in6_addr *saddr, struct in6_addr *daddr, __u8 prio, __u8 ttl, __be32 label, __be16 src_port, __be16 dst_port, bool nocheck) { struct udphdr *uh; struct ipv6hdr *ip6h; __skb_push(skb, sizeof(*uh)); skb_reset_transport_header(skb); uh = udp_hdr(skb); uh->dest = dst_port; uh->source = src_port; uh->len = htons(skb->len); skb_dst_set(skb, dst); udp6_set_csum(nocheck, skb, saddr, daddr, skb->len); __skb_push(skb, sizeof(*ip6h)); skb_reset_network_header(skb); ip6h = ipv6_hdr(skb); ip6_flow_hdr(ip6h, prio, label); ip6h->payload_len = htons(skb->len); ip6h->nexthdr = IPPROTO_UDP; ip6h->hop_limit = ttl; ip6h->daddr = *daddr; ip6h->saddr = *saddr; ip6tunnel_xmit(sk, skb, dev); return 0; } EXPORT_SYMBOL_GPL(udp_tunnel6_xmit_skb); MODULE_LICENSE("GPL"); |
45 871 8 434 41 115 39 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_DCACHE_H #define __LINUX_DCACHE_H #include <linux/atomic.h> #include <linux/list.h> #include <linux/math.h> #include <linux/rculist.h> #include <linux/rculist_bl.h> #include <linux/spinlock.h> #include <linux/seqlock.h> #include <linux/cache.h> #include <linux/rcupdate.h> #include <linux/lockref.h> #include <linux/stringhash.h> #include <linux/wait.h> struct path; struct vfsmount; /* * linux/include/linux/dcache.h * * Dirent cache data structures * * (C) Copyright 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ #define IS_ROOT(x) ((x) == (x)->d_parent) /* The hash is always the low bits of hash_len */ #ifdef __LITTLE_ENDIAN #define HASH_LEN_DECLARE u32 hash; u32 len #define bytemask_from_count(cnt) (~(~0ul << (cnt)*8)) #else #define HASH_LEN_DECLARE u32 len; u32 hash #define bytemask_from_count(cnt) (~(~0ul >> (cnt)*8)) #endif /* * "quick string" -- eases parameter passing, but more importantly * saves "metadata" about the string (ie length and the hash). * * hash comes first so it snuggles against d_parent in the * dentry. */ struct qstr { union { struct { HASH_LEN_DECLARE; }; u64 hash_len; }; const unsigned char *name; }; #define QSTR_INIT(n,l) { { { .len = l } }, .name = n } extern const struct qstr empty_name; extern const struct qstr slash_name; extern const struct qstr dotdot_name; struct dentry_stat_t { long nr_dentry; long nr_unused; long age_limit; /* age in seconds */ long want_pages; /* pages requested by system */ long nr_negative; /* # of unused negative dentries */ long dummy; /* Reserved for future use */ }; extern struct dentry_stat_t dentry_stat; /* * Try to keep struct dentry aligned on 64 byte cachelines (this will * give reasonable cacheline footprint with larger lines without the * large memory footprint increase). */ #ifdef CONFIG_64BIT # define DNAME_INLINE_LEN 32 /* 192 bytes */ #else # ifdef CONFIG_SMP # define DNAME_INLINE_LEN 36 /* 128 bytes */ # else # define DNAME_INLINE_LEN 40 /* 128 bytes */ # endif #endif #define d_lock d_lockref.lock struct dentry { /* RCU lookup touched fields */ unsigned int d_flags; /* protected by d_lock */ seqcount_spinlock_t d_seq; /* per dentry seqlock */ struct hlist_bl_node d_hash; /* lookup hash list */ struct dentry *d_parent; /* parent directory */ struct qstr d_name; struct inode *d_inode; /* Where the name belongs to - NULL is * negative */ unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */ /* Ref lookup also touches following */ struct lockref d_lockref; /* per-dentry lock and refcount */ const struct dentry_operations *d_op; struct super_block *d_sb; /* The root of the dentry tree */ unsigned long d_time; /* used by d_revalidate */ void *d_fsdata; /* fs-specific data */ union { struct list_head d_lru; /* LRU list */ wait_queue_head_t *d_wait; /* in-lookup ones only */ }; struct list_head d_child; /* child of parent list */ struct list_head d_subdirs; /* our children */ /* * d_alias and d_rcu can share memory */ union { struct hlist_node d_alias; /* inode alias list */ struct hlist_bl_node d_in_lookup_hash; /* only for in-lookup ones */ struct rcu_head d_rcu; } d_u; } __randomize_layout; /* * dentry->d_lock spinlock nesting subclasses: * * 0: normal * 1: nested */ enum dentry_d_lock_class { DENTRY_D_LOCK_NORMAL, /* implicitly used by plain spin_lock() APIs. */ DENTRY_D_LOCK_NESTED }; struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); int (*d_init)(struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char *(*d_dname)(struct dentry *, char *, int); struct vfsmount *(*d_automount)(struct path *); int (*d_manage)(const struct path *, bool); struct dentry *(*d_real)(struct dentry *, const struct inode *); } ____cacheline_aligned; /* * Locking rules for dentry_operations callbacks are to be found in * Documentation/filesystems/locking.rst. Keep it updated! * * FUrther descriptions are found in Documentation/filesystems/vfs.rst. * Keep it updated too! */ /* d_flags entries */ #define DCACHE_OP_HASH 0x00000001 #define DCACHE_OP_COMPARE 0x00000002 #define DCACHE_OP_REVALIDATE 0x00000004 #define DCACHE_OP_DELETE 0x00000008 #define DCACHE_OP_PRUNE 0x00000010 #define DCACHE_DISCONNECTED 0x00000020 /* This dentry is possibly not currently connected to the dcache tree, in * which case its parent will either be itself, or will have this flag as * well. nfsd will not use a dentry with this bit set, but will first * endeavour to clear the bit either by discovering that it is connected, * or by performing lookup operations. Any filesystem which supports * nfsd_operations MUST have a lookup function which, if it finds a * directory inode with a DCACHE_DISCONNECTED dentry, will d_move that * dentry into place and return that dentry rather than the passed one, * typically using d_splice_alias. */ #define DCACHE_REFERENCED 0x00000040 /* Recently used, don't discard. */ #define DCACHE_DONTCACHE 0x00000080 /* Purge from memory on final dput() */ #define DCACHE_CANT_MOUNT 0x00000100 #define DCACHE_GENOCIDE 0x00000200 #define DCACHE_SHRINK_LIST 0x00000400 #define DCACHE_OP_WEAK_REVALIDATE 0x00000800 #define DCACHE_NFSFS_RENAMED 0x00001000 /* this dentry has been "silly renamed" and has to be deleted on the last * dput() */ #define DCACHE_COOKIE 0x00002000 /* For use by dcookie subsystem */ #define DCACHE_FSNOTIFY_PARENT_WATCHED 0x00004000 /* Parent inode is watched by some fsnotify listener */ #define DCACHE_DENTRY_KILLED 0x00008000 #define DCACHE_MOUNTED 0x00010000 /* is a mountpoint */ #define DCACHE_NEED_AUTOMOUNT 0x00020000 /* handle automount on this dir */ #define DCACHE_MANAGE_TRANSIT 0x00040000 /* manage transit from this dirent */ #define DCACHE_MANAGED_DENTRY \ (DCACHE_MOUNTED|DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT) #define DCACHE_LRU_LIST 0x00080000 #define DCACHE_ENTRY_TYPE 0x00700000 #define DCACHE_MISS_TYPE 0x00000000 /* Negative dentry (maybe fallthru to nowhere) */ #define DCACHE_WHITEOUT_TYPE 0x00100000 /* Whiteout dentry (stop pathwalk) */ #define DCACHE_DIRECTORY_TYPE 0x00200000 /* Normal directory */ #define DCACHE_AUTODIR_TYPE 0x00300000 /* Lookupless directory (presumed automount) */ #define DCACHE_REGULAR_TYPE 0x00400000 /* Regular file type (or fallthru to such) */ #define DCACHE_SPECIAL_TYPE 0x00500000 /* Other file type (or fallthru to such) */ #define DCACHE_SYMLINK_TYPE 0x00600000 /* Symlink (or fallthru to such) */ #define DCACHE_MAY_FREE 0x00800000 #define DCACHE_FALLTHRU 0x01000000 /* Fall through to lower layer */ #define DCACHE_NOKEY_NAME 0x02000000 /* Encrypted name encoded without key */ #define DCACHE_OP_REAL 0x04000000 #define DCACHE_PAR_LOOKUP 0x10000000 /* being looked up (with parent locked shared) */ #define DCACHE_DENTRY_CURSOR 0x20000000 #define DCACHE_NORCU 0x40000000 /* No RCU delay for freeing */ extern seqlock_t rename_lock; /* * These are the low-level FS interfaces to the dcache.. */ extern void d_instantiate(struct dentry *, struct inode *); extern void d_instantiate_new(struct dentry *, struct inode *); extern struct dentry * d_instantiate_unique(struct dentry *, struct inode *); extern struct dentry * d_instantiate_anon(struct dentry *, struct inode *); extern void __d_drop(struct dentry *dentry); extern void d_drop(struct dentry *dentry); extern void d_delete(struct dentry *); extern void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op); /* allocate/de-allocate */ extern struct dentry * d_alloc(struct dentry *, const struct qstr *); extern struct dentry * d_alloc_anon(struct super_block *); extern struct dentry * d_alloc_parallel(struct dentry *, const struct qstr *, wait_queue_head_t *); extern struct dentry * d_splice_alias(struct inode *, struct dentry *); extern struct dentry * d_add_ci(struct dentry *, struct inode *, struct qstr *); extern struct dentry * d_exact_alias(struct dentry *, struct inode *); extern struct dentry *d_find_any_alias(struct inode *inode); extern struct dentry * d_obtain_alias(struct inode *); extern struct dentry * d_obtain_root(struct inode *); extern void shrink_dcache_sb(struct super_block *); extern void shrink_dcache_parent(struct dentry *); extern void shrink_dcache_for_umount(struct super_block *); extern void d_invalidate(struct dentry *); /* only used at mount-time */ extern struct dentry * d_make_root(struct inode *); /* <clickety>-<click> the ramfs-type tree */ extern void d_genocide(struct dentry *); extern void d_tmpfile(struct dentry *, struct inode *); extern struct dentry *d_find_alias(struct inode *); extern void d_prune_aliases(struct inode *); extern struct dentry *d_find_alias_rcu(struct inode *); /* test whether we have any submounts in a subdir tree */ extern int path_has_submounts(const struct path *); /* * This adds the entry to the hash queues. */ extern void d_rehash(struct dentry *); extern void d_add(struct dentry *, struct inode *); /* used for rename() and baskets */ extern void d_move(struct dentry *, struct dentry *); extern void d_exchange(struct dentry *, struct dentry *); extern struct dentry *d_ancestor(struct dentry *, struct dentry *); /* appendix may either be NULL or be used for transname suffixes */ extern struct dentry *d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *d_hash_and_lookup(struct dentry *, struct qstr *); extern struct dentry *__d_lookup(const struct dentry *, const struct qstr *); extern struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seq); static inline unsigned d_count(const struct dentry *dentry) { return dentry->d_lockref.count; } /* * helper function for dentry_operations.d_dname() members */ extern __printf(4, 5) char *dynamic_dname(struct dentry *, char *, int, const char *, ...); extern char *__d_path(const struct path *, const struct path *, char *, int); extern char *d_absolute_path(const struct path *, char *, int); extern char *d_path(const struct path *, char *, int); extern char *dentry_path_raw(const struct dentry *, char *, int); extern char *dentry_path(const struct dentry *, char *, int); /* Allocation counts.. */ /** * dget, dget_dlock - get a reference to a dentry * @dentry: dentry to get a reference to * * Given a dentry or %NULL pointer increment the reference count * if appropriate and return the dentry. A dentry will not be * destroyed when it has references. */ static inline struct dentry *dget_dlock(struct dentry *dentry) { if (dentry) dentry->d_lockref.count++; return dentry; } static inline struct dentry *dget(struct dentry *dentry) { if (dentry) lockref_get(&dentry->d_lockref); return dentry; } extern struct dentry *dget_parent(struct dentry *dentry); /** * d_unhashed - is dentry hashed * @dentry: entry to check * * Returns true if the dentry passed is not currently hashed. */ static inline int d_unhashed(const struct dentry *dentry) { return hlist_bl_unhashed(&dentry->d_hash); } static inline int d_unlinked(const struct dentry *dentry) { return d_unhashed(dentry) && !IS_ROOT(dentry); } static inline int cant_mount(const struct dentry *dentry) { return (dentry->d_flags & DCACHE_CANT_MOUNT); } static inline void dont_mount(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_CANT_MOUNT; spin_unlock(&dentry->d_lock); } extern void __d_lookup_done(struct dentry *); static inline int d_in_lookup(const struct dentry *dentry) { return dentry->d_flags & DCACHE_PAR_LOOKUP; } static inline void d_lookup_done(struct dentry *dentry) { if (unlikely(d_in_lookup(dentry))) { spin_lock(&dentry->d_lock); __d_lookup_done(dentry); spin_unlock(&dentry->d_lock); } } extern void dput(struct dentry *); static inline bool d_managed(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MANAGED_DENTRY; } static inline bool d_mountpoint(const struct dentry *dentry) { return dentry->d_flags & DCACHE_MOUNTED; } /* * Directory cache entry type accessor functions. */ static inline unsigned __d_entry_type(const struct dentry *dentry) { return dentry->d_flags & DCACHE_ENTRY_TYPE; } static inline bool d_is_miss(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_MISS_TYPE; } static inline bool d_is_whiteout(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_WHITEOUT_TYPE; } static inline bool d_can_lookup(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_DIRECTORY_TYPE; } static inline bool d_is_autodir(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_AUTODIR_TYPE; } static inline bool d_is_dir(const struct dentry *dentry) { return d_can_lookup(dentry) || d_is_autodir(dentry); } static inline bool d_is_symlink(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SYMLINK_TYPE; } static inline bool d_is_reg(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_REGULAR_TYPE; } static inline bool d_is_special(const struct dentry *dentry) { return __d_entry_type(dentry) == DCACHE_SPECIAL_TYPE; } static inline bool d_is_file(const struct dentry *dentry) { return d_is_reg(dentry) || d_is_special(dentry); } static inline bool d_is_negative(const struct dentry *dentry) { // TODO: check d_is_whiteout(dentry) also. return d_is_miss(dentry); } static inline bool d_flags_negative(unsigned flags) { return (flags & DCACHE_ENTRY_TYPE) == DCACHE_MISS_TYPE; } static inline bool d_is_positive(const struct dentry *dentry) { return !d_is_negative(dentry); } /** * d_really_is_negative - Determine if a dentry is really negative (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents either an absent name or a name that * doesn't map to an inode (ie. ->d_inode is NULL). The dentry could represent * a true miss, a whiteout that isn't represented by a 0,0 chardev or a * fallthrough marker in an opaque directory. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. (3) The dentry may have something attached to ->d_lower and the * type field of the flags may be set to something other than miss or whiteout. */ static inline bool d_really_is_negative(const struct dentry *dentry) { return dentry->d_inode == NULL; } /** * d_really_is_positive - Determine if a dentry is really positive (ignoring fallthroughs) * @dentry: The dentry in question * * Returns true if the dentry represents a name that maps to an inode * (ie. ->d_inode is not NULL). The dentry might still represent a whiteout if * that is represented on medium as a 0,0 chardev. * * Note! (1) This should be used *only* by a filesystem to examine its own * dentries. It should not be used to look at some other filesystem's * dentries. (2) It should also be used in combination with d_inode() to get * the inode. */ static inline bool d_really_is_positive(const struct dentry *dentry) { return dentry->d_inode != NULL; } static inline int simple_positive(const struct dentry *dentry) { return d_really_is_positive(dentry) && !d_unhashed(dentry); } extern void d_set_fallthru(struct dentry *dentry); static inline bool d_is_fallthru(const struct dentry *dentry) { return dentry->d_flags & DCACHE_FALLTHRU; } extern int sysctl_vfs_cache_pressure; static inline unsigned long vfs_pressure_ratio(unsigned long val) { return mult_frac(val, sysctl_vfs_cache_pressure, 100); } /** * d_inode - Get the actual inode of this dentry * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode(const struct dentry *dentry) { return dentry->d_inode; } /** * d_inode_rcu - Get the actual inode of this dentry with READ_ONCE() * @dentry: The dentry to query * * This is the helper normal filesystems should use to get at their own inodes * in their own dentries and ignore the layering superimposed upon them. */ static inline struct inode *d_inode_rcu(const struct dentry *dentry) { return READ_ONCE(dentry->d_inode); } /** * d_backing_inode - Get upper or lower inode we should be using * @upper: The upper layer * * This is the helper that should be used to get at the inode that will be used * if this dentry were to be opened as a file. The inode may be on the upper * dentry or it may be on a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own inodes. */ static inline struct inode *d_backing_inode(const struct dentry *upper) { struct inode *inode = upper->d_inode; return inode; } /** * d_backing_dentry - Get upper or lower dentry we should be using * @upper: The upper layer * * This is the helper that should be used to get the dentry of the inode that * will be used if this dentry were opened as a file. It may be the upper * dentry or it may be a lower dentry pinned by the upper. * * Normal filesystems should not use this to access their own dentries. */ static inline struct dentry *d_backing_dentry(struct dentry *upper) { return upper; } /** * d_real - Return the real dentry * @dentry: the dentry to query * @inode: inode to select the dentry from multiple layers (can be NULL) * * If dentry is on a union/overlay, then return the underlying, real dentry. * Otherwise return the dentry itself. * * See also: Documentation/filesystems/vfs.rst */ static inline struct dentry *d_real(struct dentry *dentry, const struct inode *inode) { if (unlikely(dentry->d_flags & DCACHE_OP_REAL)) return dentry->d_op->d_real(dentry, inode); else return dentry; } /** * d_real_inode - Return the real inode * @dentry: The dentry to query * * If dentry is on a union/overlay, then return the underlying, real inode. * Otherwise return d_inode(). */ static inline struct inode *d_real_inode(const struct dentry *dentry) { /* This usage of d_real() results in const dentry */ return d_backing_inode(d_real((struct dentry *) dentry, NULL)); } struct name_snapshot { struct qstr name; unsigned char inline_name[DNAME_INLINE_LEN]; }; void take_dentry_name_snapshot(struct name_snapshot *, struct dentry *); void release_dentry_name_snapshot(struct name_snapshot *); #endif /* __LINUX_DCACHE_H */ |
4 4 4 4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/block_validity.c * * Copyright (C) 2009 * Theodore Ts'o (tytso@mit.edu) * * Track which blocks in the filesystem are metadata blocks that * should never be used as data blocks by files or directories. */ #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/blkdev.h> #include <linux/slab.h> #include "ext4.h" struct ext4_system_zone { struct rb_node node; ext4_fsblk_t start_blk; unsigned int count; u32 ino; }; static struct kmem_cache *ext4_system_zone_cachep; int __init ext4_init_system_zone(void) { ext4_system_zone_cachep = KMEM_CACHE(ext4_system_zone, 0); if (ext4_system_zone_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_system_zone(void) { rcu_barrier(); kmem_cache_destroy(ext4_system_zone_cachep); } static inline int can_merge(struct ext4_system_zone *entry1, struct ext4_system_zone *entry2) { if ((entry1->start_blk + entry1->count) == entry2->start_blk && entry1->ino == entry2->ino) return 1; return 0; } static void release_system_zone(struct ext4_system_blocks *system_blks) { struct ext4_system_zone *entry, *n; rbtree_postorder_for_each_entry_safe(entry, n, &system_blks->root, node) kmem_cache_free(ext4_system_zone_cachep, entry); } /* * Mark a range of blocks as belonging to the "system zone" --- that * is, filesystem metadata blocks which should never be used by * inodes. */ static int add_system_zone(struct ext4_system_blocks *system_blks, ext4_fsblk_t start_blk, unsigned int count, u32 ino) { struct ext4_system_zone *new_entry, *entry; struct rb_node **n = &system_blks->root.rb_node, *node; struct rb_node *parent = NULL, *new_node = NULL; while (*n) { parent = *n; entry = rb_entry(parent, struct ext4_system_zone, node); if (start_blk < entry->start_blk) n = &(*n)->rb_left; else if (start_blk >= (entry->start_blk + entry->count)) n = &(*n)->rb_right; else /* Unexpected overlap of system zones. */ return -EFSCORRUPTED; } new_entry = kmem_cache_alloc(ext4_system_zone_cachep, GFP_KERNEL); if (!new_entry) return -ENOMEM; new_entry->start_blk = start_blk; new_entry->count = count; new_entry->ino = ino; new_node = &new_entry->node; rb_link_node(new_node, parent, n); rb_insert_color(new_node, &system_blks->root); /* Can we merge to the left? */ node = rb_prev(new_node); if (node) { entry = rb_entry(node, struct ext4_system_zone, node); if (can_merge(entry, new_entry)) { new_entry->start_blk = entry->start_blk; new_entry->count += entry->count; rb_erase(node, &system_blks->root); kmem_cache_free(ext4_system_zone_cachep, entry); } } /* Can we merge to the right? */ node = rb_next(new_node); if (node) { entry = rb_entry(node, struct ext4_system_zone, node); if (can_merge(new_entry, entry)) { new_entry->count += entry->count; rb_erase(node, &system_blks->root); kmem_cache_free(ext4_system_zone_cachep, entry); } } return 0; } static void debug_print_tree(struct ext4_sb_info *sbi) { struct rb_node *node; struct ext4_system_zone *entry; struct ext4_system_blocks *system_blks; int first = 1; printk(KERN_INFO "System zones: "); rcu_read_lock(); system_blks = rcu_dereference(sbi->s_system_blks); node = rb_first(&system_blks->root); while (node) { entry = rb_entry(node, struct ext4_system_zone, node); printk(KERN_CONT "%s%llu-%llu", first ? "" : ", ", entry->start_blk, entry->start_blk + entry->count - 1); first = 0; node = rb_next(node); } rcu_read_unlock(); printk(KERN_CONT "\n"); } static int ext4_protect_reserved_inode(struct super_block *sb, struct ext4_system_blocks *system_blks, u32 ino) { struct inode *inode; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_map_blocks map; u32 i = 0, num; int err = 0, n; if ((ino < EXT4_ROOT_INO) || (ino > le32_to_cpu(sbi->s_es->s_inodes_count))) return -EINVAL; inode = ext4_iget(sb, ino, EXT4_IGET_SPECIAL); if (IS_ERR(inode)) return PTR_ERR(inode); num = (inode->i_size + sb->s_blocksize - 1) >> sb->s_blocksize_bits; while (i < num) { cond_resched(); map.m_lblk = i; map.m_len = num - i; n = ext4_map_blocks(NULL, inode, &map, 0); if (n < 0) { err = n; break; } if (n == 0) { i++; } else { err = add_system_zone(system_blks, map.m_pblk, n, ino); if (err < 0) { if (err == -EFSCORRUPTED) { EXT4_ERROR_INODE_ERR(inode, -err, "blocks %llu-%llu from inode overlap system zone", map.m_pblk, map.m_pblk + map.m_len - 1); } break; } i += n; } } iput(inode); return err; } static void ext4_destroy_system_zone(struct rcu_head *rcu) { struct ext4_system_blocks *system_blks; system_blks = container_of(rcu, struct ext4_system_blocks, rcu); release_system_zone(system_blks); kfree(system_blks); } /* * Build system zone rbtree which is used for block validity checking. * * The update of system_blks pointer in this function is protected by * sb->s_umount semaphore. However we have to be careful as we can be * racing with ext4_inode_block_valid() calls reading system_blks rbtree * protected only by RCU. That's why we first build the rbtree and then * swap it in place. */ int ext4_setup_system_zone(struct super_block *sb) { ext4_group_t ngroups = ext4_get_groups_count(sb); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_system_blocks *system_blks; struct ext4_group_desc *gdp; ext4_group_t i; int ret; system_blks = kzalloc(sizeof(*system_blks), GFP_KERNEL); if (!system_blks) return -ENOMEM; for (i=0; i < ngroups; i++) { unsigned int meta_blks = ext4_num_base_meta_blocks(sb, i); cond_resched(); if (meta_blks != 0) { ret = add_system_zone(system_blks, ext4_group_first_block_no(sb, i), meta_blks, 0); if (ret) goto err; } gdp = ext4_get_group_desc(sb, i, NULL); ret = add_system_zone(system_blks, ext4_block_bitmap(sb, gdp), 1, 0); if (ret) goto err; ret = add_system_zone(system_blks, ext4_inode_bitmap(sb, gdp), 1, 0); if (ret) goto err; ret = add_system_zone(system_blks, ext4_inode_table(sb, gdp), sbi->s_itb_per_group, 0); if (ret) goto err; } if (ext4_has_feature_journal(sb) && sbi->s_es->s_journal_inum) { ret = ext4_protect_reserved_inode(sb, system_blks, le32_to_cpu(sbi->s_es->s_journal_inum)); if (ret) goto err; } /* * System blks rbtree complete, announce it once to prevent racing * with ext4_inode_block_valid() accessing the rbtree at the same * time. */ rcu_assign_pointer(sbi->s_system_blks, system_blks); if (test_opt(sb, DEBUG)) debug_print_tree(sbi); return 0; err: release_system_zone(system_blks); kfree(system_blks); return ret; } /* * Called when the filesystem is unmounted or when remounting it with * noblock_validity specified. * * The update of system_blks pointer in this function is protected by * sb->s_umount semaphore. However we have to be careful as we can be * racing with ext4_inode_block_valid() calls reading system_blks rbtree * protected only by RCU. So we first clear the system_blks pointer and * then free the rbtree only after RCU grace period expires. */ void ext4_release_system_zone(struct super_block *sb) { struct ext4_system_blocks *system_blks; system_blks = rcu_dereference_protected(EXT4_SB(sb)->s_system_blks, lockdep_is_held(&sb->s_umount)); rcu_assign_pointer(EXT4_SB(sb)->s_system_blks, NULL); if (system_blks) call_rcu(&system_blks->rcu, ext4_destroy_system_zone); } int ext4_sb_block_valid(struct super_block *sb, struct inode *inode, ext4_fsblk_t start_blk, unsigned int count) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_system_blocks *system_blks; struct ext4_system_zone *entry; struct rb_node *n; int ret = 1; if ((start_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || (start_blk + count < start_blk) || (start_blk + count > ext4_blocks_count(sbi->s_es))) return 0; /* * Lock the system zone to prevent it being released concurrently * when doing a remount which inverse current "[no]block_validity" * mount option. */ rcu_read_lock(); system_blks = rcu_dereference(sbi->s_system_blks); if (system_blks == NULL) goto out_rcu; n = system_blks->root.rb_node; while (n) { entry = rb_entry(n, struct ext4_system_zone, node); if (start_blk + count - 1 < entry->start_blk) n = n->rb_left; else if (start_blk >= (entry->start_blk + entry->count)) n = n->rb_right; else { ret = 0; if (inode) ret = (entry->ino == inode->i_ino); break; } } out_rcu: rcu_read_unlock(); return ret; } /* * Returns 1 if the passed-in block region (start_blk, * start_blk+count) is valid; 0 if some part of the block region * overlaps with some other filesystem metadata blocks. */ int ext4_inode_block_valid(struct inode *inode, ext4_fsblk_t start_blk, unsigned int count) { return ext4_sb_block_valid(inode->i_sb, inode, start_blk, count); } int ext4_check_blockref(const char *function, unsigned int line, struct inode *inode, __le32 *p, unsigned int max) { __le32 *bref = p; unsigned int blk; if (ext4_has_feature_journal(inode->i_sb) && (inode->i_ino == le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) return 0; while (bref < p+max) { blk = le32_to_cpu(*bref++); if (blk && unlikely(!ext4_inode_block_valid(inode, blk, 1))) { ext4_error_inode(inode, function, line, blk, "invalid block"); return -EFSCORRUPTED; } } return 0; } |
568 65 64 13 63 64 64 64 382 451 2 429 86 86 86 86 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 offload; u8 trap; u8 offload_failed; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, unused:4; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->fn_sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = READ_ONCE(fn->fn_sernum); /* pairs with smp_wmb() in __fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); void fib6_nh_release_dsts(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, bool offload, bool trap, bool offload_failed); #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; memset(flkeys, 0, sizeof(*flkeys)); __skb_flow_dissect(net, skb, &flow_keys_dissector, flkeys, NULL, 0, 0, 0, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SPINLOCK_H #define __LINUX_SPINLOCK_H /* * include/linux/spinlock.h - generic spinlock/rwlock declarations * * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the * initializers * * linux/spinlock_types_raw: * The raw types and initializers * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types_raw: * The raw RT types and initializers * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the arch_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ #include <linux/typecheck.h> #include <linux/preempt.h> #include <linux/linkage.h> #include <linux/compiler.h> #include <linux/irqflags.h> #include <linux/thread_info.h> #include <linux/kernel.h> #include <linux/stringify.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/barrier.h> #include <asm/mmiowb.h> /* * Must define these before including other files, inline functions need them */ #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME #define LOCK_SECTION_START(extra) \ ".subsection 1\n\t" \ extra \ ".ifndef " LOCK_SECTION_NAME "\n\t" \ LOCK_SECTION_NAME ":\n\t" \ ".endif\n" #define LOCK_SECTION_END \ ".previous\n\t" #define __lockfunc __section(".spinlock.text") /* * Pull the arch_spinlock_t and arch_rwlock_t definitions: */ #include <linux/spinlock_types.h> /* * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them): */ #ifdef CONFIG_SMP # include <asm/spinlock.h> #else # include <linux/spinlock_up.h> #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, struct lock_class_key *key, short inner); # define raw_spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \ } while (0) #else # define raw_spin_lock_init(lock) \ do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0) #endif #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) #ifdef arch_spin_is_contended #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) #else #define raw_spin_is_contended(lock) (((void)(lock), 0)) #endif /*arch_spin_is_contended*/ /* * smp_mb__after_spinlock() provides the equivalent of a full memory barrier * between program-order earlier lock acquisitions and program-order later * memory accesses. * * This guarantees that the following two properties hold: * * 1) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 * * WRITE_ONCE(X, 1); WRITE_ONCE(Y, 1); * spin_lock(S); smp_mb(); * smp_mb__after_spinlock(); r1 = READ_ONCE(X); * r0 = READ_ONCE(Y); * spin_unlock(S); * * it is forbidden that CPU0 does not observe CPU1's store to Y (r0 = 0) * and CPU1 does not observe CPU0's store to X (r1 = 0); see the comments * preceding the call to smp_mb__after_spinlock() in __schedule() and in * try_to_wake_up(). * * 2) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 CPU2 * * spin_lock(S); spin_lock(S); r1 = READ_ONCE(Y); * WRITE_ONCE(X, 1); smp_mb__after_spinlock(); smp_rmb(); * spin_unlock(S); r0 = READ_ONCE(X); r2 = READ_ONCE(X); * WRITE_ONCE(Y, 1); * spin_unlock(S); * * it is forbidden that CPU0's critical section executes before CPU1's * critical section (r0 = 1), CPU2 observes CPU1's store to Y (r1 = 1) * and CPU2 does not observe CPU0's store to X (r2 = 0); see the comments * preceding the calls to smp_rmb() in try_to_wake_up() for similar * snippets but "projected" onto two CPUs. * * Property (2) upgrades the lock to an RCsc lock. * * Since most load-store architectures implement ACQUIRE with an smp_mb() after * the LL/SC loop, they need no further barriers. Similarly all our TSO * architectures imply an smp_mb() for each atomic instruction and equally don't * need more. * * Architectures that can implement ACQUIRE better need to take care. */ #ifndef smp_mb__after_spinlock #define smp_mb__after_spinlock() do { } while (0) #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock); #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock) extern int do_raw_spin_trylock(raw_spinlock_t *lock); extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock); #else static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock) { __acquire(lock); arch_spin_lock(&lock->raw_lock); mmiowb_spin_lock(); } #ifndef arch_spin_lock_flags #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) #endif static inline void do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock) { __acquire(lock); arch_spin_lock_flags(&lock->raw_lock, *flags); mmiowb_spin_lock(); } static inline int do_raw_spin_trylock(raw_spinlock_t *lock) { int ret = arch_spin_trylock(&(lock)->raw_lock); if (ret) mmiowb_spin_lock(); return ret; } static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) { mmiowb_spin_unlock(); arch_spin_unlock(&lock->raw_lock); __release(lock); } #endif /* * Define the various spin_lock methods. Note we define these * regardless of whether CONFIG_SMP or CONFIG_PREEMPTION are set. The * various methods are defined as nops in the case they are not * required. */ #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock)) #define raw_spin_lock(lock) _raw_spin_lock(lock) #ifdef CONFIG_DEBUG_LOCK_ALLOC # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock_nested(lock, subclass) # define raw_spin_lock_nest_lock(lock, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\ _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \ } while (0) #else /* * Always evaluate the 'subclass' argument to avoid that the compiler * warns about set-but-not-used variables when building with * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1. */ # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock(((void)(subclass), (lock))) # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock) #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #ifdef CONFIG_DEBUG_LOCK_ALLOC #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave_nested(lock, subclass); \ } while (0) #else #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #endif #else #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_lock_irqsave(lock, flags); \ } while (0) #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ raw_spin_lock_irqsave(lock, flags) #endif #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock) #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock) #define raw_spin_unlock(lock) _raw_spin_unlock(lock) #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock) #define raw_spin_unlock_irqrestore(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_unlock_irqrestore(lock, flags); \ } while (0) #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock) #define raw_spin_trylock_bh(lock) \ __cond_lock(lock, _raw_spin_trylock_bh(lock)) #define raw_spin_trylock_irq(lock) \ ({ \ local_irq_disable(); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_enable(); 0; }); \ }) #define raw_spin_trylock_irqsave(lock, flags) \ ({ \ local_irq_save(flags); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_restore(flags); 0; }); \ }) #ifndef CONFIG_PREEMPT_RT /* Include rwlock functions for !RT */ #include <linux/rwlock.h> #endif /* * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) # include <linux/spinlock_api_smp.h> #else # include <linux/spinlock_api_up.h> #endif /* Non PREEMPT_RT kernel, map to raw spinlocks: */ #ifndef CONFIG_PREEMPT_RT /* * Map the spin_lock functions to the raw variants for PREEMPT_RT=n */ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock) { return &lock->rlock; } #ifdef CONFIG_DEBUG_SPINLOCK # define spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init(spinlock_check(lock), \ #lock, &__key, LD_WAIT_CONFIG); \ } while (0) #else # define spin_lock_init(_lock) \ do { \ spinlock_check(_lock); \ *(_lock) = __SPIN_LOCK_UNLOCKED(_lock); \ } while (0) #endif static __always_inline void spin_lock(spinlock_t *lock) { raw_spin_lock(&lock->rlock); } static __always_inline void spin_lock_bh(spinlock_t *lock) { raw_spin_lock_bh(&lock->rlock); } static __always_inline int spin_trylock(spinlock_t *lock) { return raw_spin_trylock(&lock->rlock); } #define spin_lock_nested(lock, subclass) \ do { \ raw_spin_lock_nested(spinlock_check(lock), subclass); \ } while (0) #define spin_lock_nest_lock(lock, nest_lock) \ do { \ raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \ } while (0) static __always_inline void spin_lock_irq(spinlock_t *lock) { raw_spin_lock_irq(&lock->rlock); } #define spin_lock_irqsave(lock, flags) \ do { \ raw_spin_lock_irqsave(spinlock_check(lock), flags); \ } while (0) #define spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \ } while (0) static __always_inline void spin_unlock(spinlock_t *lock) { raw_spin_unlock(&lock->rlock); } static __always_inline void spin_unlock_bh(spinlock_t *lock) { raw_spin_unlock_bh(&lock->rlock); } static __always_inline void spin_unlock_irq(spinlock_t *lock) { raw_spin_unlock_irq(&lock->rlock); } static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) { raw_spin_unlock_irqrestore(&lock->rlock, flags); } static __always_inline int spin_trylock_bh(spinlock_t *lock) { return raw_spin_trylock_bh(&lock->rlock); } static __always_inline int spin_trylock_irq(spinlock_t *lock) { return raw_spin_trylock_irq(&lock->rlock); } #define spin_trylock_irqsave(lock, flags) \ ({ \ raw_spin_trylock_irqsave(spinlock_check(lock), flags); \ }) /** * spin_is_locked() - Check whether a spinlock is locked. * @lock: Pointer to the spinlock. * * This function is NOT required to provide any memory ordering * guarantees; it could be used for debugging purposes or, when * additional synchronization is needed, accompanied with other * constructs (memory barriers) enforcing the synchronization. * * Returns: 1 if @lock is locked, 0 otherwise. * * Note that the function only tells you that the spinlock is * seen to be locked, not that it is locked on your CPU. * * Further, on CONFIG_SMP=n builds with CONFIG_DEBUG_SPINLOCK=n, * the return value is always 0 (see include/linux/spinlock_up.h). * Therefore you should not rely heavily on the return value. */ static __always_inline int spin_is_locked(spinlock_t *lock) { return raw_spin_is_locked(&lock->rlock); } static __always_inline int spin_is_contended(spinlock_t *lock) { return raw_spin_is_contended(&lock->rlock); } #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) #else /* !CONFIG_PREEMPT_RT */ # include <linux/spinlock_rt.h> #endif /* CONFIG_PREEMPT_RT */ /* * Pull the atomic_t declaration: * (asm-mips/atomic.h needs above definitions) */ #include <linux/atomic.h> /** * atomic_dec_and_lock - lock on reaching reference count zero * @atomic: the atomic counter * @lock: the spinlock in question * * Decrements @atomic by 1. If the result is 0, returns true and locks * @lock. Returns false for all other cases. */ extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock); #define atomic_dec_and_lock(atomic, lock) \ __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) extern int _atomic_dec_and_lock_irqsave(atomic_t *atomic, spinlock_t *lock, unsigned long *flags); #define atomic_dec_and_lock_irqsave(atomic, lock, flags) \ __cond_lock(lock, _atomic_dec_and_lock_irqsave(atomic, lock, &(flags))) int __alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, size_t max_size, unsigned int cpu_mult, gfp_t gfp, const char *name, struct lock_class_key *key); #define alloc_bucket_spinlocks(locks, lock_mask, max_size, cpu_mult, gfp) \ ({ \ static struct lock_class_key key; \ int ret; \ \ ret = __alloc_bucket_spinlocks(locks, lock_mask, max_size, \ cpu_mult, gfp, #locks, &key); \ ret; \ }) void free_bucket_spinlocks(spinlock_t *locks); #endif /* __LINUX_SPINLOCK_H */ |
3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | /* * af_llc.c - LLC User Interface SAPs * Description: * Functions in this module are implementation of socket based llc * communications for the Linux operating system. Support of llc class * one and class two is provided via SOCK_DGRAM and SOCK_STREAM * respectively. * * An llc2 connection is (mac + sap), only one llc2 sap connection * is allowed per mac. Though one sap may have multiple mac + sap * connections. * * Copyright (c) 2001 by Jay Schulist <jschlst@samba.org> * 2002-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <net/llc.h> #include <net/llc_sap.h> #include <net/llc_pdu.h> #include <net/llc_conn.h> #include <net/tcp_states.h> /* remember: uninitialized global data is zeroed because its in .bss */ static u16 llc_ui_sap_last_autoport = LLC_SAP_DYN_START; static u16 llc_ui_sap_link_no_max[256]; static struct sockaddr_llc llc_ui_addrnull; static const struct proto_ops llc_ui_ops; static bool llc_ui_wait_for_conn(struct sock *sk, long timeout); static int llc_ui_wait_for_disc(struct sock *sk, long timeout); static int llc_ui_wait_for_busy_core(struct sock *sk, long timeout); #if 0 #define dprintk(args...) printk(KERN_DEBUG args) #else #define dprintk(args...) do {} while (0) #endif /* Maybe we'll add some more in the future. */ #define LLC_CMSG_PKTINFO 1 /** * llc_ui_next_link_no - return the next unused link number for a sap * @sap: Address of sap to get link number from. * * Return the next unused link number for a given sap. */ static inline u16 llc_ui_next_link_no(int sap) { return llc_ui_sap_link_no_max[sap]++; } /** * llc_proto_type - return eth protocol for ARP header type * @arphrd: ARP header type. * * Given an ARP header type return the corresponding ethernet protocol. */ static inline __be16 llc_proto_type(u16 arphrd) { return htons(ETH_P_802_2); } /** * llc_ui_addr_null - determines if a address structure is null * @addr: Address to test if null. */ static inline u8 llc_ui_addr_null(struct sockaddr_llc *addr) { return !memcmp(addr, &llc_ui_addrnull, sizeof(*addr)); } /** * llc_ui_header_len - return length of llc header based on operation * @sk: Socket which contains a valid llc socket type. * @addr: Complete sockaddr_llc structure received from the user. * * Provide the length of the llc header depending on what kind of * operation the user would like to perform and the type of socket. * Returns the correct llc header length. */ static inline u8 llc_ui_header_len(struct sock *sk, struct sockaddr_llc *addr) { u8 rc = LLC_PDU_LEN_U; if (addr->sllc_test) rc = LLC_PDU_LEN_U; else if (addr->sllc_xid) /* We need to expand header to sizeof(struct llc_xid_info) * since llc_pdu_init_as_xid_cmd() sets 4,5,6 bytes of LLC header * as XID PDU. In llc_ui_sendmsg() we reserved header size and then * filled all other space with user data. If we won't reserve this * bytes, llc_pdu_init_as_xid_cmd() will overwrite user data */ rc = LLC_PDU_LEN_U_XID; else if (sk->sk_type == SOCK_STREAM) rc = LLC_PDU_LEN_I; return rc; } /** * llc_ui_send_data - send data via reliable llc2 connection * @sk: Connection the socket is using. * @skb: Data the user wishes to send. * @noblock: can we block waiting for data? * * Send data via reliable llc2 connection. * Returns 0 upon success, non-zero if action did not succeed. * * This function always consumes a reference to the skb. */ static int llc_ui_send_data(struct sock* sk, struct sk_buff *skb, int noblock) { struct llc_sock* llc = llc_sk(sk); if (unlikely(llc_data_accept_state(llc->state) || llc->remote_busy_flag || llc->p_flag)) { long timeout = sock_sndtimeo(sk, noblock); int rc; rc = llc_ui_wait_for_busy_core(sk, timeout); if (rc) { kfree_skb(skb); return rc; } } return llc_build_and_send_pkt(sk, skb); } static void llc_ui_sk_init(struct socket *sock, struct sock *sk) { sock_graft(sk, sock); sk->sk_type = sock->type; sock->ops = &llc_ui_ops; } static struct proto llc_proto = { .name = "LLC", .owner = THIS_MODULE, .obj_size = sizeof(struct llc_sock), .slab_flags = SLAB_TYPESAFE_BY_RCU, }; /** * llc_ui_create - alloc and init a new llc_ui socket * @net: network namespace (must be default network) * @sock: Socket to initialize and attach allocated sk to. * @protocol: Unused. * @kern: on behalf of kernel or userspace * * Allocate and initialize a new llc_ui socket, validate the user wants a * socket type we have available. * Returns 0 upon success, negative upon failure. */ static int llc_ui_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; int rc = -ESOCKTNOSUPPORT; if (!ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; if (!net_eq(net, &init_net)) return -EAFNOSUPPORT; if (likely(sock->type == SOCK_DGRAM || sock->type == SOCK_STREAM)) { rc = -ENOMEM; sk = llc_sk_alloc(net, PF_LLC, GFP_KERNEL, &llc_proto, kern); if (sk) { rc = 0; llc_ui_sk_init(sock, sk); } } return rc; } /** * llc_ui_release - shutdown socket * @sock: Socket to release. * * Shutdown and deallocate an existing socket. */ static int llc_ui_release(struct socket *sock) { struct sock *sk = sock->sk; struct llc_sock *llc; if (unlikely(sk == NULL)) goto out; sock_hold(sk); lock_sock(sk); llc = llc_sk(sk); dprintk("%s: closing local(%02X) remote(%02X)\n", __func__, llc->laddr.lsap, llc->daddr.lsap); if (!llc_send_disc(sk)) llc_ui_wait_for_disc(sk, sk->sk_rcvtimeo); if (!sock_flag(sk, SOCK_ZAPPED)) { struct llc_sap *sap = llc->sap; /* Hold this for release_sock(), so that llc_backlog_rcv() * could still use it. */ llc_sap_hold(sap); llc_sap_remove_socket(llc->sap, sk); release_sock(sk); llc_sap_put(sap); } else { release_sock(sk); } dev_put(llc->dev); sock_put(sk); sock_orphan(sk); sock->sk = NULL; llc_sk_free(sk); out: return 0; } /** * llc_ui_autoport - provide dynamically allocate SAP number * * Provide the caller with a dynamically allocated SAP number according * to the rules that are set in this function. Returns: 0, upon failure, * SAP number otherwise. */ static int llc_ui_autoport(void) { struct llc_sap *sap; int i, tries = 0; while (tries < LLC_SAP_DYN_TRIES) { for (i = llc_ui_sap_last_autoport; i < LLC_SAP_DYN_STOP; i += 2) { sap = llc_sap_find(i); if (!sap) { llc_ui_sap_last_autoport = i + 2; goto out; } llc_sap_put(sap); } llc_ui_sap_last_autoport = LLC_SAP_DYN_START; tries++; } i = 0; out: return i; } /** * llc_ui_autobind - automatically bind a socket to a sap * @sock: socket to bind * @addr: address to connect to * * Used by llc_ui_connect and llc_ui_sendmsg when the user hasn't * specifically used llc_ui_bind to bind to an specific address/sap * * Returns: 0 upon success, negative otherwise. */ static int llc_ui_autobind(struct socket *sock, struct sockaddr_llc *addr) { struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); struct net_device *dev = NULL; struct llc_sap *sap; int rc = -EINVAL; if (!sock_flag(sk, SOCK_ZAPPED)) goto out; if (!addr->sllc_arphrd) addr->sllc_arphrd = ARPHRD_ETHER; if (addr->sllc_arphrd != ARPHRD_ETHER) goto out; rc = -ENODEV; if (sk->sk_bound_dev_if) { dev = dev_get_by_index(&init_net, sk->sk_bound_dev_if); if (dev && addr->sllc_arphrd != dev->type) { dev_put(dev); dev = NULL; } } else dev = dev_getfirstbyhwtype(&init_net, addr->sllc_arphrd); if (!dev) goto out; rc = -EUSERS; llc->laddr.lsap = llc_ui_autoport(); if (!llc->laddr.lsap) goto out; rc = -EBUSY; /* some other network layer is using the sap */ sap = llc_sap_open(llc->laddr.lsap, NULL); if (!sap) goto out; /* Note: We do not expect errors from this point. */ llc->dev = dev; dev = NULL; memcpy(llc->laddr.mac, llc->dev->dev_addr, IFHWADDRLEN); memcpy(&llc->addr, addr, sizeof(llc->addr)); /* assign new connection to its SAP */ llc_sap_add_socket(sap, sk); sock_reset_flag(sk, SOCK_ZAPPED); rc = 0; out: dev_put(dev); return rc; } /** * llc_ui_bind - bind a socket to a specific address. * @sock: Socket to bind an address to. * @uaddr: Address the user wants the socket bound to. * @addrlen: Length of the uaddr structure. * * Bind a socket to a specific address. For llc a user is able to bind to * a specific sap only or mac + sap. * If the user desires to bind to a specific mac + sap, it is possible to * have multiple sap connections via multiple macs. * Bind and autobind for that matter must enforce the correct sap usage * otherwise all hell will break loose. * Returns: 0 upon success, negative otherwise. */ static int llc_ui_bind(struct socket *sock, struct sockaddr *uaddr, int addrlen) { struct sockaddr_llc *addr = (struct sockaddr_llc *)uaddr; struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); struct net_device *dev = NULL; struct llc_sap *sap; int rc = -EINVAL; lock_sock(sk); if (unlikely(!sock_flag(sk, SOCK_ZAPPED) || addrlen != sizeof(*addr))) goto out; rc = -EAFNOSUPPORT; if (!addr->sllc_arphrd) addr->sllc_arphrd = ARPHRD_ETHER; if (unlikely(addr->sllc_family != AF_LLC || addr->sllc_arphrd != ARPHRD_ETHER)) goto out; dprintk("%s: binding %02X\n", __func__, addr->sllc_sap); rc = -ENODEV; rcu_read_lock(); if (sk->sk_bound_dev_if) { dev = dev_get_by_index_rcu(&init_net, sk->sk_bound_dev_if); if (dev) { if (is_zero_ether_addr(addr->sllc_mac)) memcpy(addr->sllc_mac, dev->dev_addr, IFHWADDRLEN); if (addr->sllc_arphrd != dev->type || !ether_addr_equal(addr->sllc_mac, dev->dev_addr)) { rc = -EINVAL; dev = NULL; } } } else { dev = dev_getbyhwaddr_rcu(&init_net, addr->sllc_arphrd, addr->sllc_mac); } dev_hold(dev); rcu_read_unlock(); if (!dev) goto out; if (!addr->sllc_sap) { rc = -EUSERS; addr->sllc_sap = llc_ui_autoport(); if (!addr->sllc_sap) goto out; } sap = llc_sap_find(addr->sllc_sap); if (!sap) { sap = llc_sap_open(addr->sllc_sap, NULL); rc = -EBUSY; /* some other network layer is using the sap */ if (!sap) goto out; } else { struct llc_addr laddr, daddr; struct sock *ask; memset(&laddr, 0, sizeof(laddr)); memset(&daddr, 0, sizeof(daddr)); /* * FIXME: check if the address is multicast, * only SOCK_DGRAM can do this. */ memcpy(laddr.mac, addr->sllc_mac, IFHWADDRLEN); laddr.lsap = addr->sllc_sap; rc = -EADDRINUSE; /* mac + sap clash. */ ask = llc_lookup_established(sap, &daddr, &laddr); if (ask) { sock_put(ask); goto out_put; } } /* Note: We do not expect errors from this point. */ llc->dev = dev; dev = NULL; llc->laddr.lsap = addr->sllc_sap; memcpy(llc->laddr.mac, addr->sllc_mac, IFHWADDRLEN); memcpy(&llc->addr, addr, sizeof(llc->addr)); /* assign new connection to its SAP */ llc_sap_add_socket(sap, sk); sock_reset_flag(sk, SOCK_ZAPPED); rc = 0; out_put: llc_sap_put(sap); out: dev_put(dev); release_sock(sk); return rc; } /** * llc_ui_shutdown - shutdown a connect llc2 socket. * @sock: Socket to shutdown. * @how: What part of the socket to shutdown. * * Shutdown a connected llc2 socket. Currently this function only supports * shutting down both sends and receives (2), we could probably make this * function such that a user can shutdown only half the connection but not * right now. * Returns: 0 upon success, negative otherwise. */ static int llc_ui_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; int rc = -ENOTCONN; lock_sock(sk); if (unlikely(sk->sk_state != TCP_ESTABLISHED)) goto out; rc = -EINVAL; if (how != 2) goto out; rc = llc_send_disc(sk); if (!rc) rc = llc_ui_wait_for_disc(sk, sk->sk_rcvtimeo); /* Wake up anyone sleeping in poll */ sk->sk_state_change(sk); out: release_sock(sk); return rc; } /** * llc_ui_connect - Connect to a remote llc2 mac + sap. * @sock: Socket which will be connected to the remote destination. * @uaddr: Remote and possibly the local address of the new connection. * @addrlen: Size of uaddr structure. * @flags: Operational flags specified by the user. * * Connect to a remote llc2 mac + sap. The caller must specify the * destination mac and address to connect to. If the user hasn't previously * called bind(2) with a smac the address of the first interface of the * specified arp type will be used. * This function will autobind if user did not previously call bind. * Returns: 0 upon success, negative otherwise. */ static int llc_ui_connect(struct socket *sock, struct sockaddr *uaddr, int addrlen, int flags) { struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); struct sockaddr_llc *addr = (struct sockaddr_llc *)uaddr; int rc = -EINVAL; lock_sock(sk); if (unlikely(addrlen != sizeof(*addr))) goto out; rc = -EAFNOSUPPORT; if (unlikely(addr->sllc_family != AF_LLC)) goto out; if (unlikely(sk->sk_type != SOCK_STREAM)) goto out; rc = -EALREADY; if (unlikely(sock->state == SS_CONNECTING)) goto out; /* bind connection to sap if user hasn't done it. */ if (sock_flag(sk, SOCK_ZAPPED)) { /* bind to sap with null dev, exclusive */ rc = llc_ui_autobind(sock, addr); if (rc) goto out; } llc->daddr.lsap = addr->sllc_sap; memcpy(llc->daddr.mac, addr->sllc_mac, IFHWADDRLEN); sock->state = SS_CONNECTING; sk->sk_state = TCP_SYN_SENT; llc->link = llc_ui_next_link_no(llc->sap->laddr.lsap); rc = llc_establish_connection(sk, llc->dev->dev_addr, addr->sllc_mac, addr->sllc_sap); if (rc) { dprintk("%s: llc_ui_send_conn failed :-(\n", __func__); sock->state = SS_UNCONNECTED; sk->sk_state = TCP_CLOSE; goto out; } if (sk->sk_state == TCP_SYN_SENT) { const long timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); if (!timeo || !llc_ui_wait_for_conn(sk, timeo)) goto out; rc = sock_intr_errno(timeo); if (signal_pending(current)) goto out; } if (sk->sk_state == TCP_CLOSE) goto sock_error; sock->state = SS_CONNECTED; rc = 0; out: release_sock(sk); return rc; sock_error: rc = sock_error(sk) ? : -ECONNABORTED; sock->state = SS_UNCONNECTED; goto out; } /** * llc_ui_listen - allow a normal socket to accept incoming connections * @sock: Socket to allow incoming connections on. * @backlog: Number of connections to queue. * * Allow a normal socket to accept incoming connections. * Returns 0 upon success, negative otherwise. */ static int llc_ui_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int rc = -EINVAL; lock_sock(sk); if (unlikely(sock->state != SS_UNCONNECTED)) goto out; rc = -EOPNOTSUPP; if (unlikely(sk->sk_type != SOCK_STREAM)) goto out; rc = -EAGAIN; if (sock_flag(sk, SOCK_ZAPPED)) goto out; rc = 0; if (!(unsigned int)backlog) /* BSDism */ backlog = 1; sk->sk_max_ack_backlog = backlog; if (sk->sk_state != TCP_LISTEN) { sk->sk_ack_backlog = 0; sk->sk_state = TCP_LISTEN; } sk->sk_socket->flags |= __SO_ACCEPTCON; out: release_sock(sk); return rc; } static int llc_ui_wait_for_disc(struct sock *sk, long timeout) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int rc = 0; add_wait_queue(sk_sleep(sk), &wait); while (1) { if (sk_wait_event(sk, &timeout, READ_ONCE(sk->sk_state) == TCP_CLOSE, &wait)) break; rc = -ERESTARTSYS; if (signal_pending(current)) break; rc = -EAGAIN; if (!timeout) break; rc = 0; } remove_wait_queue(sk_sleep(sk), &wait); return rc; } static bool llc_ui_wait_for_conn(struct sock *sk, long timeout) { DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); while (1) { if (sk_wait_event(sk, &timeout, READ_ONCE(sk->sk_state) != TCP_SYN_SENT, &wait)) break; if (signal_pending(current) || !timeout) break; } remove_wait_queue(sk_sleep(sk), &wait); return timeout; } static int llc_ui_wait_for_busy_core(struct sock *sk, long timeout) { DEFINE_WAIT_FUNC(wait, woken_wake_function); struct llc_sock *llc = llc_sk(sk); int rc; add_wait_queue(sk_sleep(sk), &wait); while (1) { rc = 0; if (sk_wait_event(sk, &timeout, (READ_ONCE(sk->sk_shutdown) & RCV_SHUTDOWN) || (!llc_data_accept_state(llc->state) && !llc->remote_busy_flag && !llc->p_flag), &wait)) break; rc = -ERESTARTSYS; if (signal_pending(current)) break; rc = -EAGAIN; if (!timeout) break; } remove_wait_queue(sk_sleep(sk), &wait); return rc; } static int llc_wait_data(struct sock *sk, long timeo) { int rc; while (1) { /* * POSIX 1003.1g mandates this order. */ rc = sock_error(sk); if (rc) break; rc = 0; if (sk->sk_shutdown & RCV_SHUTDOWN) break; rc = -EAGAIN; if (!timeo) break; rc = sock_intr_errno(timeo); if (signal_pending(current)) break; rc = 0; if (sk_wait_data(sk, &timeo, NULL)) break; } return rc; } static void llc_cmsg_rcv(struct msghdr *msg, struct sk_buff *skb) { struct llc_sock *llc = llc_sk(skb->sk); if (llc->cmsg_flags & LLC_CMSG_PKTINFO) { struct llc_pktinfo info; memset(&info, 0, sizeof(info)); info.lpi_ifindex = llc_sk(skb->sk)->dev->ifindex; llc_pdu_decode_dsap(skb, &info.lpi_sap); llc_pdu_decode_da(skb, info.lpi_mac); put_cmsg(msg, SOL_LLC, LLC_OPT_PKTINFO, sizeof(info), &info); } } /** * llc_ui_accept - accept a new incoming connection. * @sock: Socket which connections arrive on. * @newsock: Socket to move incoming connection to. * @flags: User specified operational flags. * @kern: If the socket is kernel internal * * Accept a new incoming connection. * Returns 0 upon success, negative otherwise. */ static int llc_ui_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { struct sock *sk = sock->sk, *newsk; struct llc_sock *llc, *newllc; struct sk_buff *skb; int rc = -EOPNOTSUPP; dprintk("%s: accepting on %02X\n", __func__, llc_sk(sk)->laddr.lsap); lock_sock(sk); if (unlikely(sk->sk_type != SOCK_STREAM)) goto out; rc = -EINVAL; if (unlikely(sock->state != SS_UNCONNECTED || sk->sk_state != TCP_LISTEN)) goto out; /* wait for a connection to arrive. */ if (skb_queue_empty(&sk->sk_receive_queue)) { rc = llc_wait_data(sk, sk->sk_rcvtimeo); if (rc) goto out; } dprintk("%s: got a new connection on %02X\n", __func__, llc_sk(sk)->laddr.lsap); skb = skb_dequeue(&sk->sk_receive_queue); rc = -EINVAL; if (!skb->sk) goto frees; rc = 0; newsk = skb->sk; /* attach connection to a new socket. */ llc_ui_sk_init(newsock, newsk); sock_reset_flag(newsk, SOCK_ZAPPED); newsk->sk_state = TCP_ESTABLISHED; newsock->state = SS_CONNECTED; llc = llc_sk(sk); newllc = llc_sk(newsk); memcpy(&newllc->addr, &llc->addr, sizeof(newllc->addr)); newllc->link = llc_ui_next_link_no(newllc->laddr.lsap); /* put original socket back into a clean listen state. */ sk->sk_state = TCP_LISTEN; sk_acceptq_removed(sk); dprintk("%s: ok success on %02X, client on %02X\n", __func__, llc_sk(sk)->addr.sllc_sap, newllc->daddr.lsap); frees: kfree_skb(skb); out: release_sock(sk); return rc; } /** * llc_ui_recvmsg - copy received data to the socket user. * @sock: Socket to copy data from. * @msg: Various user space related information. * @len: Size of user buffer. * @flags: User specified flags. * * Copy received data to the socket user. * Returns non-negative upon success, negative otherwise. */ static int llc_ui_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { DECLARE_SOCKADDR(struct sockaddr_llc *, uaddr, msg->msg_name); const int nonblock = flags & MSG_DONTWAIT; struct sk_buff *skb = NULL; struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); size_t copied = 0; u32 peek_seq = 0; u32 *seq, skb_len; unsigned long used; int target; /* Read at least this many bytes */ long timeo; lock_sock(sk); copied = -ENOTCONN; if (unlikely(sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_LISTEN)) goto out; timeo = sock_rcvtimeo(sk, nonblock); seq = &llc->copied_seq; if (flags & MSG_PEEK) { peek_seq = llc->copied_seq; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); copied = 0; do { u32 offset; /* * We need to check signals first, to get correct SIGURG * handling. FIXME: Need to check this doesn't impact 1003.1g * and move it down to the bottom of the loop */ if (signal_pending(current)) { if (copied) break; copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } /* Next get a buffer. */ skb = skb_peek(&sk->sk_receive_queue); if (skb) { offset = *seq; goto found_ok_skb; } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) break; if (copied) { if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo || (flags & MSG_PEEK)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_CLOSE) { if (!sock_flag(sk, SOCK_DONE)) { /* * This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } break; } if (!timeo) { copied = -EAGAIN; break; } } if (copied >= target) { /* Do not sleep, just process backlog. */ release_sock(sk); lock_sock(sk); } else sk_wait_data(sk, &timeo, NULL); if ((flags & MSG_PEEK) && peek_seq != llc->copied_seq) { net_dbg_ratelimited("LLC(%s:%d): Application bug, race in MSG_PEEK\n", current->comm, task_pid_nr(current)); peek_seq = llc->copied_seq; } continue; found_ok_skb: skb_len = skb->len; /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; if (!(flags & MSG_TRUNC)) { int rc = skb_copy_datagram_msg(skb, offset, msg, used); if (rc) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } *seq += used; copied += used; len -= used; /* For non stream protcols we get one packet per recvmsg call */ if (sk->sk_type != SOCK_STREAM) goto copy_uaddr; if (!(flags & MSG_PEEK)) { skb_unlink(skb, &sk->sk_receive_queue); kfree_skb(skb); *seq = 0; } /* Partial read */ if (used + offset < skb_len) continue; } while (len > 0); out: release_sock(sk); return copied; copy_uaddr: if (uaddr != NULL && skb != NULL) { memcpy(uaddr, llc_ui_skb_cb(skb), sizeof(*uaddr)); msg->msg_namelen = sizeof(*uaddr); } if (llc_sk(sk)->cmsg_flags) llc_cmsg_rcv(msg, skb); if (!(flags & MSG_PEEK)) { skb_unlink(skb, &sk->sk_receive_queue); kfree_skb(skb); *seq = 0; } goto out; } /** * llc_ui_sendmsg - Transmit data provided by the socket user. * @sock: Socket to transmit data from. * @msg: Various user related information. * @len: Length of data to transmit. * * Transmit data provided by the socket user. * Returns non-negative upon success, negative otherwise. */ static int llc_ui_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { DECLARE_SOCKADDR(struct sockaddr_llc *, addr, msg->msg_name); struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); int flags = msg->msg_flags; int noblock = flags & MSG_DONTWAIT; int rc = -EINVAL, copied = 0, hdrlen, hh_len; struct sk_buff *skb = NULL; struct net_device *dev; size_t size = 0; dprintk("%s: sending from %02X to %02X\n", __func__, llc->laddr.lsap, llc->daddr.lsap); lock_sock(sk); if (addr) { if (msg->msg_namelen < sizeof(*addr)) goto out; } else { if (llc_ui_addr_null(&llc->addr)) goto out; addr = &llc->addr; } /* must bind connection to sap if user hasn't done it. */ if (sock_flag(sk, SOCK_ZAPPED)) { /* bind to sap with null dev, exclusive. */ rc = llc_ui_autobind(sock, addr); if (rc) goto out; } dev = llc->dev; hh_len = LL_RESERVED_SPACE(dev); hdrlen = llc_ui_header_len(sk, addr); size = hdrlen + len; size = min_t(size_t, size, READ_ONCE(dev->mtu)); copied = size - hdrlen; rc = -EINVAL; if (copied < 0) goto out; release_sock(sk); skb = sock_alloc_send_skb(sk, hh_len + size, noblock, &rc); lock_sock(sk); if (!skb) goto out; if (sock_flag(sk, SOCK_ZAPPED) || llc->dev != dev || hdrlen != llc_ui_header_len(sk, addr) || hh_len != LL_RESERVED_SPACE(dev) || size > READ_ONCE(dev->mtu)) goto out; skb->dev = dev; skb->protocol = llc_proto_type(addr->sllc_arphrd); skb_reserve(skb, hh_len + hdrlen); rc = memcpy_from_msg(skb_put(skb, copied), msg, copied); if (rc) goto out; if (sk->sk_type == SOCK_DGRAM || addr->sllc_ua) { llc_build_and_send_ui_pkt(llc->sap, skb, addr->sllc_mac, addr->sllc_sap); skb = NULL; goto out; } if (addr->sllc_test) { llc_build_and_send_test_pkt(llc->sap, skb, addr->sllc_mac, addr->sllc_sap); skb = NULL; goto out; } if (addr->sllc_xid) { llc_build_and_send_xid_pkt(llc->sap, skb, addr->sllc_mac, addr->sllc_sap); skb = NULL; goto out; } rc = -ENOPROTOOPT; if (!(sk->sk_type == SOCK_STREAM && !addr->sllc_ua)) goto out; rc = llc_ui_send_data(sk, skb, noblock); skb = NULL; out: kfree_skb(skb); if (rc) dprintk("%s: failed sending from %02X to %02X: %d\n", __func__, llc->laddr.lsap, llc->daddr.lsap, rc); release_sock(sk); return rc ? : copied; } /** * llc_ui_getname - return the address info of a socket * @sock: Socket to get address of. * @uaddr: Address structure to return information. * @peer: Does user want local or remote address information. * * Return the address information of a socket. */ static int llc_ui_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_llc sllc; struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); int rc = -EBADF; memset(&sllc, 0, sizeof(sllc)); lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) goto out; if (peer) { rc = -ENOTCONN; if (sk->sk_state != TCP_ESTABLISHED) goto out; if(llc->dev) sllc.sllc_arphrd = llc->dev->type; sllc.sllc_sap = llc->daddr.lsap; memcpy(&sllc.sllc_mac, &llc->daddr.mac, IFHWADDRLEN); } else { rc = -EINVAL; if (!llc->sap) goto out; sllc.sllc_sap = llc->sap->laddr.lsap; if (llc->dev) { sllc.sllc_arphrd = llc->dev->type; memcpy(&sllc.sllc_mac, llc->dev->dev_addr, IFHWADDRLEN); } } sllc.sllc_family = AF_LLC; memcpy(uaddr, &sllc, sizeof(sllc)); rc = sizeof(sllc); out: release_sock(sk); return rc; } /** * llc_ui_ioctl - io controls for PF_LLC * @sock: Socket to get/set info * @cmd: command * @arg: optional argument for cmd * * get/set info on llc sockets */ static int llc_ui_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } /** * llc_ui_setsockopt - set various connection specific parameters. * @sock: Socket to set options on. * @level: Socket level user is requesting operations on. * @optname: Operation name. * @optval: User provided operation data. * @optlen: Length of optval. * * Set various connection specific parameters. */ static int llc_ui_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); unsigned int opt; int rc = -EINVAL; lock_sock(sk); if (unlikely(level != SOL_LLC || optlen != sizeof(int))) goto out; rc = copy_from_sockptr(&opt, optval, sizeof(opt)); if (rc) goto out; rc = -EINVAL; switch (optname) { case LLC_OPT_RETRY: if (opt > LLC_OPT_MAX_RETRY) goto out; llc->n2 = opt; break; case LLC_OPT_SIZE: if (opt > LLC_OPT_MAX_SIZE) goto out; llc->n1 = opt; break; case LLC_OPT_ACK_TMR_EXP: if (opt > LLC_OPT_MAX_ACK_TMR_EXP) goto out; llc->ack_timer.expire = opt * HZ; break; case LLC_OPT_P_TMR_EXP: if (opt > LLC_OPT_MAX_P_TMR_EXP) goto out; llc->pf_cycle_timer.expire = opt * HZ; break; case LLC_OPT_REJ_TMR_EXP: if (opt > LLC_OPT_MAX_REJ_TMR_EXP) goto out; llc->rej_sent_timer.expire = opt * HZ; break; case LLC_OPT_BUSY_TMR_EXP: if (opt > LLC_OPT_MAX_BUSY_TMR_EXP) goto out; llc->busy_state_timer.expire = opt * HZ; break; case LLC_OPT_TX_WIN: if (opt > LLC_OPT_MAX_WIN) goto out; llc->k = opt; break; case LLC_OPT_RX_WIN: if (opt > LLC_OPT_MAX_WIN) goto out; llc->rw = opt; break; case LLC_OPT_PKTINFO: if (opt) llc->cmsg_flags |= LLC_CMSG_PKTINFO; else llc->cmsg_flags &= ~LLC_CMSG_PKTINFO; break; default: rc = -ENOPROTOOPT; goto out; } rc = 0; out: release_sock(sk); return rc; } /** * llc_ui_getsockopt - get connection specific socket info * @sock: Socket to get information from. * @level: Socket level user is requesting operations on. * @optname: Operation name. * @optval: Variable to return operation data in. * @optlen: Length of optval. * * Get connection specific socket information. */ static int llc_ui_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); int val = 0, len = 0, rc = -EINVAL; lock_sock(sk); if (unlikely(level != SOL_LLC)) goto out; rc = get_user(len, optlen); if (rc) goto out; rc = -EINVAL; if (len != sizeof(int)) goto out; switch (optname) { case LLC_OPT_RETRY: val = llc->n2; break; case LLC_OPT_SIZE: val = llc->n1; break; case LLC_OPT_ACK_TMR_EXP: val = llc->ack_timer.expire / HZ; break; case LLC_OPT_P_TMR_EXP: val = llc->pf_cycle_timer.expire / HZ; break; case LLC_OPT_REJ_TMR_EXP: val = llc->rej_sent_timer.expire / HZ; break; case LLC_OPT_BUSY_TMR_EXP: val = llc->busy_state_timer.expire / HZ; break; case LLC_OPT_TX_WIN: val = llc->k; break; case LLC_OPT_RX_WIN: val = llc->rw; break; case LLC_OPT_PKTINFO: val = (llc->cmsg_flags & LLC_CMSG_PKTINFO) != 0; break; default: rc = -ENOPROTOOPT; goto out; } rc = 0; if (put_user(len, optlen) || copy_to_user(optval, &val, len)) rc = -EFAULT; out: release_sock(sk); return rc; } static const struct net_proto_family llc_ui_family_ops = { .family = PF_LLC, .create = llc_ui_create, .owner = THIS_MODULE, }; static const struct proto_ops llc_ui_ops = { .family = PF_LLC, .owner = THIS_MODULE, .release = llc_ui_release, .bind = llc_ui_bind, .connect = llc_ui_connect, .socketpair = sock_no_socketpair, .accept = llc_ui_accept, .getname = llc_ui_getname, .poll = datagram_poll, .ioctl = llc_ui_ioctl, .listen = llc_ui_listen, .shutdown = llc_ui_shutdown, .setsockopt = llc_ui_setsockopt, .getsockopt = llc_ui_getsockopt, .sendmsg = llc_ui_sendmsg, .recvmsg = llc_ui_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const char llc_proc_err_msg[] __initconst = KERN_CRIT "LLC: Unable to register the proc_fs entries\n"; static const char llc_sysctl_err_msg[] __initconst = KERN_CRIT "LLC: Unable to register the sysctl entries\n"; static const char llc_sock_err_msg[] __initconst = KERN_CRIT "LLC: Unable to register the network family\n"; static int __init llc2_init(void) { int rc = proto_register(&llc_proto, 0); if (rc != 0) goto out; llc_build_offset_table(); llc_station_init(); llc_ui_sap_last_autoport = LLC_SAP_DYN_START; rc = llc_proc_init(); if (rc != 0) { printk(llc_proc_err_msg); goto out_station; } rc = llc_sysctl_init(); if (rc) { printk(llc_sysctl_err_msg); goto out_proc; } rc = sock_register(&llc_ui_family_ops); if (rc) { printk(llc_sock_err_msg); goto out_sysctl; } llc_add_pack(LLC_DEST_SAP, llc_sap_handler); llc_add_pack(LLC_DEST_CONN, llc_conn_handler); out: return rc; out_sysctl: llc_sysctl_exit(); out_proc: llc_proc_exit(); out_station: llc_station_exit(); proto_unregister(&llc_proto); goto out; } static void __exit llc2_exit(void) { llc_station_exit(); llc_remove_pack(LLC_DEST_SAP); llc_remove_pack(LLC_DEST_CONN); sock_unregister(PF_LLC); llc_proc_exit(); llc_sysctl_exit(); proto_unregister(&llc_proto); } module_init(llc2_init); module_exit(llc2_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Procom 1997, Jay Schullist 2001, Arnaldo C. Melo 2001-2003"); MODULE_DESCRIPTION("IEEE 802.2 PF_LLC support"); MODULE_ALIAS_NETPROTO(PF_LLC); |
30 30 30 29 30 29 1 1 1 1 1 48 1 58 43 43 43 43 43 43 43 43 43 120 1 53 69 111 86 19 105 112 43 43 17 2 1 2 2 2 1 2 1 1 1 1 2 69 69 2 66 18 18 18 18 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 | // SPDX-License-Identifier: GPL-2.0-or-later /* AF_RXRPC implementation * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/random.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/key-type.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/af_rxrpc.h> #define CREATE_TRACE_POINTS #include "ar-internal.h" MODULE_DESCRIPTION("RxRPC network protocol"); MODULE_AUTHOR("Red Hat, Inc."); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_RXRPC); unsigned int rxrpc_debug; // = RXRPC_DEBUG_KPROTO; module_param_named(debug, rxrpc_debug, uint, 0644); MODULE_PARM_DESC(debug, "RxRPC debugging mask"); static struct proto rxrpc_proto; static const struct proto_ops rxrpc_rpc_ops; /* current debugging ID */ atomic_t rxrpc_debug_id; EXPORT_SYMBOL(rxrpc_debug_id); /* count of skbs currently in use */ atomic_t rxrpc_n_tx_skbs, rxrpc_n_rx_skbs; struct workqueue_struct *rxrpc_workqueue; static void rxrpc_sock_destructor(struct sock *); /* * see if an RxRPC socket is currently writable */ static inline int rxrpc_writable(struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (size_t) sk->sk_sndbuf; } /* * wait for write bufferage to become available */ static void rxrpc_write_space(struct sock *sk) { _enter("%p", sk); rcu_read_lock(); if (rxrpc_writable(sk)) { struct socket_wq *wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible(&wq->wait); sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } /* * validate an RxRPC address */ static int rxrpc_validate_address(struct rxrpc_sock *rx, struct sockaddr_rxrpc *srx, int len) { unsigned int tail; if (len < sizeof(struct sockaddr_rxrpc)) return -EINVAL; if (srx->srx_family != AF_RXRPC) return -EAFNOSUPPORT; if (srx->transport_type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; len -= offsetof(struct sockaddr_rxrpc, transport); if (srx->transport_len < sizeof(sa_family_t) || srx->transport_len > len) return -EINVAL; if (srx->transport.family != rx->family && srx->transport.family == AF_INET && rx->family != AF_INET6) return -EAFNOSUPPORT; switch (srx->transport.family) { case AF_INET: if (srx->transport_len < sizeof(struct sockaddr_in)) return -EINVAL; tail = offsetof(struct sockaddr_rxrpc, transport.sin.__pad); break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: if (srx->transport_len < sizeof(struct sockaddr_in6)) return -EINVAL; tail = offsetof(struct sockaddr_rxrpc, transport) + sizeof(struct sockaddr_in6); break; #endif default: return -EAFNOSUPPORT; } if (tail < len) memset((void *)srx + tail, 0, len - tail); _debug("INET: %pISp", &srx->transport); return 0; } /* * bind a local address to an RxRPC socket */ static int rxrpc_bind(struct socket *sock, struct sockaddr *saddr, int len) { struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)saddr; struct rxrpc_local *local; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); u16 service_id; int ret; _enter("%p,%p,%d", rx, saddr, len); ret = rxrpc_validate_address(rx, srx, len); if (ret < 0) goto error; service_id = srx->srx_service; lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: rx->srx = *srx; local = rxrpc_lookup_local(sock_net(&rx->sk), &rx->srx); if (IS_ERR(local)) { ret = PTR_ERR(local); goto error_unlock; } if (service_id) { write_lock(&local->services_lock); if (rcu_access_pointer(local->service)) goto service_in_use; rx->local = local; rcu_assign_pointer(local->service, rx); write_unlock(&local->services_lock); rx->sk.sk_state = RXRPC_SERVER_BOUND; } else { rx->local = local; rx->sk.sk_state = RXRPC_CLIENT_BOUND; } break; case RXRPC_SERVER_BOUND: ret = -EINVAL; if (service_id == 0) goto error_unlock; ret = -EADDRINUSE; if (service_id == rx->srx.srx_service) goto error_unlock; ret = -EINVAL; srx->srx_service = rx->srx.srx_service; if (memcmp(srx, &rx->srx, sizeof(*srx)) != 0) goto error_unlock; rx->second_service = service_id; rx->sk.sk_state = RXRPC_SERVER_BOUND2; break; default: ret = -EINVAL; goto error_unlock; } release_sock(&rx->sk); _leave(" = 0"); return 0; service_in_use: write_unlock(&local->services_lock); rxrpc_unuse_local(local); rxrpc_put_local(local); ret = -EADDRINUSE; error_unlock: release_sock(&rx->sk); error: _leave(" = %d", ret); return ret; } /* * set the number of pending calls permitted on a listening socket */ static int rxrpc_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); unsigned int max, old; int ret; _enter("%p,%d", rx, backlog); lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: ret = -EADDRNOTAVAIL; break; case RXRPC_SERVER_BOUND: case RXRPC_SERVER_BOUND2: ASSERT(rx->local != NULL); max = READ_ONCE(rxrpc_max_backlog); ret = -EINVAL; if (backlog == INT_MAX) backlog = max; else if (backlog < 0 || backlog > max) break; old = sk->sk_max_ack_backlog; sk->sk_max_ack_backlog = backlog; ret = rxrpc_service_prealloc(rx, GFP_KERNEL); if (ret == 0) rx->sk.sk_state = RXRPC_SERVER_LISTENING; else sk->sk_max_ack_backlog = old; break; case RXRPC_SERVER_LISTENING: if (backlog == 0) { rx->sk.sk_state = RXRPC_SERVER_LISTEN_DISABLED; sk->sk_max_ack_backlog = 0; rxrpc_discard_prealloc(rx); ret = 0; break; } fallthrough; default: ret = -EBUSY; break; } release_sock(&rx->sk); _leave(" = %d", ret); return ret; } /** * rxrpc_kernel_begin_call - Allow a kernel service to begin a call * @sock: The socket on which to make the call * @srx: The address of the peer to contact * @key: The security context to use (defaults to socket setting) * @user_call_ID: The ID to use * @tx_total_len: Total length of data to transmit during the call (or -1) * @gfp: The allocation constraints * @notify_rx: Where to send notifications instead of socket queue * @upgrade: Request service upgrade for call * @interruptibility: The call is interruptible, or can be canceled. * @debug_id: The debug ID for tracing to be assigned to the call * * Allow a kernel service to begin a call on the nominated socket. This just * sets up all the internal tracking structures and allocates connection and * call IDs as appropriate. The call to be used is returned. * * The default socket destination address and security may be overridden by * supplying @srx and @key. */ struct rxrpc_call *rxrpc_kernel_begin_call(struct socket *sock, struct sockaddr_rxrpc *srx, struct key *key, unsigned long user_call_ID, s64 tx_total_len, gfp_t gfp, rxrpc_notify_rx_t notify_rx, bool upgrade, enum rxrpc_interruptibility interruptibility, unsigned int debug_id) { struct rxrpc_conn_parameters cp; struct rxrpc_call_params p; struct rxrpc_call *call; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; _enter(",,%x,%lx", key_serial(key), user_call_ID); ret = rxrpc_validate_address(rx, srx, sizeof(*srx)); if (ret < 0) return ERR_PTR(ret); lock_sock(&rx->sk); if (!key) key = rx->key; if (key && !key->payload.data[0]) key = NULL; /* a no-security key */ memset(&p, 0, sizeof(p)); p.user_call_ID = user_call_ID; p.tx_total_len = tx_total_len; p.interruptibility = interruptibility; p.kernel = true; memset(&cp, 0, sizeof(cp)); cp.local = rx->local; cp.key = key; cp.security_level = rx->min_sec_level; cp.exclusive = false; cp.upgrade = upgrade; cp.service_id = srx->srx_service; call = rxrpc_new_client_call(rx, &cp, srx, &p, gfp, debug_id); /* The socket has been unlocked. */ if (!IS_ERR(call)) { call->notify_rx = notify_rx; mutex_unlock(&call->user_mutex); } rxrpc_put_peer(cp.peer); _leave(" = %p", call); return call; } EXPORT_SYMBOL(rxrpc_kernel_begin_call); /* * Dummy function used to stop the notifier talking to recvmsg(). */ static void rxrpc_dummy_notify_rx(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { } /** * rxrpc_kernel_end_call - Allow a kernel service to end a call it was using * @sock: The socket the call is on * @call: The call to end * * Allow a kernel service to end a call it was using. The call must be * complete before this is called (the call should be aborted if necessary). */ void rxrpc_kernel_end_call(struct socket *sock, struct rxrpc_call *call) { _enter("%d{%d}", call->debug_id, refcount_read(&call->ref)); mutex_lock(&call->user_mutex); rxrpc_release_call(rxrpc_sk(sock->sk), call); /* Make sure we're not going to call back into a kernel service */ if (call->notify_rx) { spin_lock_bh(&call->notify_lock); call->notify_rx = rxrpc_dummy_notify_rx; spin_unlock_bh(&call->notify_lock); } mutex_unlock(&call->user_mutex); rxrpc_put_call(call, rxrpc_call_put_kernel); } EXPORT_SYMBOL(rxrpc_kernel_end_call); /** * rxrpc_kernel_check_life - Check to see whether a call is still alive * @sock: The socket the call is on * @call: The call to check * * Allow a kernel service to find out whether a call is still alive - * ie. whether it has completed. */ bool rxrpc_kernel_check_life(const struct socket *sock, const struct rxrpc_call *call) { return call->state != RXRPC_CALL_COMPLETE; } EXPORT_SYMBOL(rxrpc_kernel_check_life); /** * rxrpc_kernel_get_epoch - Retrieve the epoch value from a call. * @sock: The socket the call is on * @call: The call to query * * Allow a kernel service to retrieve the epoch value from a service call to * see if the client at the other end rebooted. */ u32 rxrpc_kernel_get_epoch(struct socket *sock, struct rxrpc_call *call) { return call->conn->proto.epoch; } EXPORT_SYMBOL(rxrpc_kernel_get_epoch); /** * rxrpc_kernel_new_call_notification - Get notifications of new calls * @sock: The socket to intercept received messages on * @notify_new_call: Function to be called when new calls appear * @discard_new_call: Function to discard preallocated calls * * Allow a kernel service to be given notifications about new calls. */ void rxrpc_kernel_new_call_notification( struct socket *sock, rxrpc_notify_new_call_t notify_new_call, rxrpc_discard_new_call_t discard_new_call) { struct rxrpc_sock *rx = rxrpc_sk(sock->sk); rx->notify_new_call = notify_new_call; rx->discard_new_call = discard_new_call; } EXPORT_SYMBOL(rxrpc_kernel_new_call_notification); /** * rxrpc_kernel_set_max_life - Set maximum lifespan on a call * @sock: The socket the call is on * @call: The call to configure * @hard_timeout: The maximum lifespan of the call in jiffies * * Set the maximum lifespan of a call. The call will end with ETIME or * ETIMEDOUT if it takes longer than this. */ void rxrpc_kernel_set_max_life(struct socket *sock, struct rxrpc_call *call, unsigned long hard_timeout) { unsigned long now; mutex_lock(&call->user_mutex); now = jiffies; hard_timeout += now; WRITE_ONCE(call->expect_term_by, hard_timeout); rxrpc_reduce_call_timer(call, hard_timeout, now, rxrpc_timer_set_for_hard); mutex_unlock(&call->user_mutex); } EXPORT_SYMBOL(rxrpc_kernel_set_max_life); /* * connect an RxRPC socket * - this just targets it at a specific destination; no actual connection * negotiation takes place */ static int rxrpc_connect(struct socket *sock, struct sockaddr *addr, int addr_len, int flags) { struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)addr; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; _enter("%p,%p,%d,%d", rx, addr, addr_len, flags); ret = rxrpc_validate_address(rx, srx, addr_len); if (ret < 0) { _leave(" = %d [bad addr]", ret); return ret; } lock_sock(&rx->sk); ret = -EISCONN; if (test_bit(RXRPC_SOCK_CONNECTED, &rx->flags)) goto error; switch (rx->sk.sk_state) { case RXRPC_UNBOUND: rx->sk.sk_state = RXRPC_CLIENT_UNBOUND; break; case RXRPC_CLIENT_UNBOUND: case RXRPC_CLIENT_BOUND: break; default: ret = -EBUSY; goto error; } rx->connect_srx = *srx; set_bit(RXRPC_SOCK_CONNECTED, &rx->flags); ret = 0; error: release_sock(&rx->sk); return ret; } /* * send a message through an RxRPC socket * - in a client this does a number of things: * - finds/sets up a connection for the security specified (if any) * - initiates a call (ID in control data) * - ends the request phase of a call (if MSG_MORE is not set) * - sends a call data packet * - may send an abort (abort code in control data) */ static int rxrpc_sendmsg(struct socket *sock, struct msghdr *m, size_t len) { struct rxrpc_local *local; struct rxrpc_sock *rx = rxrpc_sk(sock->sk); int ret; _enter(",{%d},,%zu", rx->sk.sk_state, len); if (m->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (m->msg_name) { ret = rxrpc_validate_address(rx, m->msg_name, m->msg_namelen); if (ret < 0) { _leave(" = %d [bad addr]", ret); return ret; } } lock_sock(&rx->sk); switch (rx->sk.sk_state) { case RXRPC_UNBOUND: case RXRPC_CLIENT_UNBOUND: rx->srx.srx_family = AF_RXRPC; rx->srx.srx_service = 0; rx->srx.transport_type = SOCK_DGRAM; rx->srx.transport.family = rx->family; switch (rx->family) { case AF_INET: rx->srx.transport_len = sizeof(struct sockaddr_in); break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: rx->srx.transport_len = sizeof(struct sockaddr_in6); break; #endif default: ret = -EAFNOSUPPORT; goto error_unlock; } local = rxrpc_lookup_local(sock_net(sock->sk), &rx->srx); if (IS_ERR(local)) { ret = PTR_ERR(local); goto error_unlock; } rx->local = local; rx->sk.sk_state = RXRPC_CLIENT_BOUND; fallthrough; case RXRPC_CLIENT_BOUND: if (!m->msg_name && test_bit(RXRPC_SOCK_CONNECTED, &rx->flags)) { m->msg_name = &rx->connect_srx; m->msg_namelen = sizeof(rx->connect_srx); } fallthrough; case RXRPC_SERVER_BOUND: case RXRPC_SERVER_LISTENING: ret = rxrpc_do_sendmsg(rx, m, len); /* The socket has been unlocked */ goto out; default: ret = -EINVAL; goto error_unlock; } error_unlock: release_sock(&rx->sk); out: _leave(" = %d", ret); return ret; } int rxrpc_sock_set_min_security_level(struct sock *sk, unsigned int val) { if (sk->sk_state != RXRPC_UNBOUND) return -EISCONN; if (val > RXRPC_SECURITY_MAX) return -EINVAL; lock_sock(sk); rxrpc_sk(sk)->min_sec_level = val; release_sock(sk); return 0; } EXPORT_SYMBOL(rxrpc_sock_set_min_security_level); /* * set RxRPC socket options */ static int rxrpc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct rxrpc_sock *rx = rxrpc_sk(sock->sk); unsigned int min_sec_level; u16 service_upgrade[2]; int ret; _enter(",%d,%d,,%d", level, optname, optlen); lock_sock(&rx->sk); ret = -EOPNOTSUPP; if (level == SOL_RXRPC) { switch (optname) { case RXRPC_EXCLUSIVE_CONNECTION: ret = -EINVAL; if (optlen != 0) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; rx->exclusive = true; goto success; case RXRPC_SECURITY_KEY: ret = -EINVAL; if (rx->key) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = rxrpc_request_key(rx, optval, optlen); goto error; case RXRPC_SECURITY_KEYRING: ret = -EINVAL; if (rx->key) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = rxrpc_server_keyring(rx, optval, optlen); goto error; case RXRPC_MIN_SECURITY_LEVEL: ret = -EINVAL; if (optlen != sizeof(unsigned int)) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_UNBOUND) goto error; ret = copy_from_sockptr(&min_sec_level, optval, sizeof(unsigned int)); if (ret < 0) goto error; ret = -EINVAL; if (min_sec_level > RXRPC_SECURITY_MAX) goto error; rx->min_sec_level = min_sec_level; goto success; case RXRPC_UPGRADEABLE_SERVICE: ret = -EINVAL; if (optlen != sizeof(service_upgrade) || rx->service_upgrade.from != 0) goto error; ret = -EISCONN; if (rx->sk.sk_state != RXRPC_SERVER_BOUND2) goto error; ret = -EFAULT; if (copy_from_sockptr(service_upgrade, optval, sizeof(service_upgrade)) != 0) goto error; ret = -EINVAL; if ((service_upgrade[0] != rx->srx.srx_service || service_upgrade[1] != rx->second_service) && (service_upgrade[0] != rx->second_service || service_upgrade[1] != rx->srx.srx_service)) goto error; rx->service_upgrade.from = service_upgrade[0]; rx->service_upgrade.to = service_upgrade[1]; goto success; default: break; } } success: ret = 0; error: release_sock(&rx->sk); return ret; } /* * Get socket options. */ static int rxrpc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *_optlen) { int optlen; if (level != SOL_RXRPC) return -EOPNOTSUPP; if (get_user(optlen, _optlen)) return -EFAULT; switch (optname) { case RXRPC_SUPPORTED_CMSG: if (optlen < sizeof(int)) return -ETOOSMALL; if (put_user(RXRPC__SUPPORTED - 1, (int __user *)optval) || put_user(sizeof(int), _optlen)) return -EFAULT; return 0; default: return -EOPNOTSUPP; } } /* * permit an RxRPC socket to be polled */ static __poll_t rxrpc_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); __poll_t mask; sock_poll_wait(file, sock, wait); mask = 0; /* the socket is readable if there are any messages waiting on the Rx * queue */ if (!list_empty(&rx->recvmsg_q)) mask |= EPOLLIN | EPOLLRDNORM; /* the socket is writable if there is space to add new data to the * socket; there is no guarantee that any particular call in progress * on the socket may have space in the Tx ACK window */ if (rxrpc_writable(sk)) mask |= EPOLLOUT | EPOLLWRNORM; return mask; } /* * create an RxRPC socket */ static int rxrpc_create(struct net *net, struct socket *sock, int protocol, int kern) { struct rxrpc_net *rxnet; struct rxrpc_sock *rx; struct sock *sk; _enter("%p,%d", sock, protocol); /* we support transport protocol UDP/UDP6 only */ if (protocol != PF_INET && IS_ENABLED(CONFIG_AF_RXRPC_IPV6) && protocol != PF_INET6) return -EPROTONOSUPPORT; if (sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; sock->ops = &rxrpc_rpc_ops; sock->state = SS_UNCONNECTED; sk = sk_alloc(net, PF_RXRPC, GFP_KERNEL, &rxrpc_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock_set_flag(sk, SOCK_RCU_FREE); sk->sk_state = RXRPC_UNBOUND; sk->sk_write_space = rxrpc_write_space; sk->sk_max_ack_backlog = 0; sk->sk_destruct = rxrpc_sock_destructor; rx = rxrpc_sk(sk); rx->family = protocol; rx->calls = RB_ROOT; spin_lock_init(&rx->incoming_lock); INIT_LIST_HEAD(&rx->sock_calls); INIT_LIST_HEAD(&rx->to_be_accepted); INIT_LIST_HEAD(&rx->recvmsg_q); rwlock_init(&rx->recvmsg_lock); rwlock_init(&rx->call_lock); memset(&rx->srx, 0, sizeof(rx->srx)); rxnet = rxrpc_net(sock_net(&rx->sk)); timer_reduce(&rxnet->peer_keepalive_timer, jiffies + 1); _leave(" = 0 [%p]", rx); return 0; } /* * Kill all the calls on a socket and shut it down. */ static int rxrpc_shutdown(struct socket *sock, int flags) { struct sock *sk = sock->sk; struct rxrpc_sock *rx = rxrpc_sk(sk); int ret = 0; _enter("%p,%d", sk, flags); if (flags != SHUT_RDWR) return -EOPNOTSUPP; if (sk->sk_state == RXRPC_CLOSE) return -ESHUTDOWN; lock_sock(sk); spin_lock_bh(&sk->sk_receive_queue.lock); if (sk->sk_state < RXRPC_CLOSE) { sk->sk_state = RXRPC_CLOSE; sk->sk_shutdown = SHUTDOWN_MASK; } else { ret = -ESHUTDOWN; } spin_unlock_bh(&sk->sk_receive_queue.lock); rxrpc_discard_prealloc(rx); release_sock(sk); return ret; } /* * RxRPC socket destructor */ static void rxrpc_sock_destructor(struct sock *sk) { _enter("%p", sk); rxrpc_purge_queue(&sk->sk_receive_queue); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(!sk_unhashed(sk)); WARN_ON(sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { printk("Attempt to release alive rxrpc socket: %p\n", sk); return; } } /* * release an RxRPC socket */ static int rxrpc_release_sock(struct sock *sk) { struct rxrpc_sock *rx = rxrpc_sk(sk); _enter("%p{%d,%d}", sk, sk->sk_state, refcount_read(&sk->sk_refcnt)); /* declare the socket closed for business */ sock_orphan(sk); sk->sk_shutdown = SHUTDOWN_MASK; /* We want to kill off all connections from a service socket * as fast as possible because we can't share these; client * sockets, on the other hand, can share an endpoint. */ switch (sk->sk_state) { case RXRPC_SERVER_BOUND: case RXRPC_SERVER_BOUND2: case RXRPC_SERVER_LISTENING: case RXRPC_SERVER_LISTEN_DISABLED: rx->local->service_closed = true; break; } spin_lock_bh(&sk->sk_receive_queue.lock); sk->sk_state = RXRPC_CLOSE; spin_unlock_bh(&sk->sk_receive_queue.lock); if (rx->local && rcu_access_pointer(rx->local->service) == rx) { write_lock(&rx->local->services_lock); rcu_assign_pointer(rx->local->service, NULL); write_unlock(&rx->local->services_lock); } /* try to flush out this socket */ rxrpc_discard_prealloc(rx); rxrpc_release_calls_on_socket(rx); flush_workqueue(rxrpc_workqueue); rxrpc_purge_queue(&sk->sk_receive_queue); rxrpc_unuse_local(rx->local); rxrpc_put_local(rx->local); rx->local = NULL; key_put(rx->key); rx->key = NULL; key_put(rx->securities); rx->securities = NULL; sock_put(sk); _leave(" = 0"); return 0; } /* * release an RxRPC BSD socket on close() or equivalent */ static int rxrpc_release(struct socket *sock) { struct sock *sk = sock->sk; _enter("%p{%p}", sock, sk); if (!sk) return 0; sock->sk = NULL; return rxrpc_release_sock(sk); } /* * RxRPC network protocol */ static const struct proto_ops rxrpc_rpc_ops = { .family = PF_RXRPC, .owner = THIS_MODULE, .release = rxrpc_release, .bind = rxrpc_bind, .connect = rxrpc_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = rxrpc_poll, .ioctl = sock_no_ioctl, .listen = rxrpc_listen, .shutdown = rxrpc_shutdown, .setsockopt = rxrpc_setsockopt, .getsockopt = rxrpc_getsockopt, .sendmsg = rxrpc_sendmsg, .recvmsg = rxrpc_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto rxrpc_proto = { .name = "RXRPC", .owner = THIS_MODULE, .obj_size = sizeof(struct rxrpc_sock), .max_header = sizeof(struct rxrpc_wire_header), }; static const struct net_proto_family rxrpc_family_ops = { .family = PF_RXRPC, .create = rxrpc_create, .owner = THIS_MODULE, }; /* * initialise and register the RxRPC protocol */ static int __init af_rxrpc_init(void) { int ret = -1; unsigned int tmp; BUILD_BUG_ON(sizeof(struct rxrpc_skb_priv) > sizeof_field(struct sk_buff, cb)); get_random_bytes(&tmp, sizeof(tmp)); tmp &= 0x3fffffff; if (tmp == 0) tmp = 1; idr_set_cursor(&rxrpc_client_conn_ids, tmp); ret = -ENOMEM; rxrpc_call_jar = kmem_cache_create( "rxrpc_call_jar", sizeof(struct rxrpc_call), 0, SLAB_HWCACHE_ALIGN, NULL); if (!rxrpc_call_jar) { pr_notice("Failed to allocate call jar\n"); goto error_call_jar; } rxrpc_workqueue = alloc_workqueue("krxrpcd", 0, 1); if (!rxrpc_workqueue) { pr_notice("Failed to allocate work queue\n"); goto error_work_queue; } ret = rxrpc_init_security(); if (ret < 0) { pr_crit("Cannot initialise security\n"); goto error_security; } ret = register_pernet_device(&rxrpc_net_ops); if (ret) goto error_pernet; ret = proto_register(&rxrpc_proto, 1); if (ret < 0) { pr_crit("Cannot register protocol\n"); goto error_proto; } ret = sock_register(&rxrpc_family_ops); if (ret < 0) { pr_crit("Cannot register socket family\n"); goto error_sock; } ret = register_key_type(&key_type_rxrpc); if (ret < 0) { pr_crit("Cannot register client key type\n"); goto error_key_type; } ret = register_key_type(&key_type_rxrpc_s); if (ret < 0) { pr_crit("Cannot register server key type\n"); goto error_key_type_s; } ret = rxrpc_sysctl_init(); if (ret < 0) { pr_crit("Cannot register sysctls\n"); goto error_sysctls; } return 0; error_sysctls: unregister_key_type(&key_type_rxrpc_s); error_key_type_s: unregister_key_type(&key_type_rxrpc); error_key_type: sock_unregister(PF_RXRPC); error_sock: proto_unregister(&rxrpc_proto); error_proto: unregister_pernet_device(&rxrpc_net_ops); error_pernet: rxrpc_exit_security(); error_security: destroy_workqueue(rxrpc_workqueue); error_work_queue: kmem_cache_destroy(rxrpc_call_jar); error_call_jar: return ret; } /* * unregister the RxRPC protocol */ static void __exit af_rxrpc_exit(void) { _enter(""); rxrpc_sysctl_exit(); unregister_key_type(&key_type_rxrpc_s); unregister_key_type(&key_type_rxrpc); sock_unregister(PF_RXRPC); proto_unregister(&rxrpc_proto); unregister_pernet_device(&rxrpc_net_ops); ASSERTCMP(atomic_read(&rxrpc_n_tx_skbs), ==, 0); ASSERTCMP(atomic_read(&rxrpc_n_rx_skbs), ==, 0); /* Make sure the local and peer records pinned by any dying connections * are released. */ rcu_barrier(); rxrpc_destroy_client_conn_ids(); destroy_workqueue(rxrpc_workqueue); rxrpc_exit_security(); kmem_cache_destroy(rxrpc_call_jar); _leave(""); } module_init(af_rxrpc_init); module_exit(af_rxrpc_exit); |
10442 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CPUFEATURE_H #define _ASM_X86_CPUFEATURE_H #include <asm/processor.h> #if defined(__KERNEL__) && !defined(__ASSEMBLY__) #include <asm/asm.h> #include <linux/bitops.h> #include <asm/alternative.h> enum cpuid_leafs { CPUID_1_EDX = 0, CPUID_8000_0001_EDX, CPUID_8086_0001_EDX, CPUID_LNX_1, CPUID_1_ECX, CPUID_C000_0001_EDX, CPUID_8000_0001_ECX, CPUID_LNX_2, CPUID_LNX_3, CPUID_7_0_EBX, CPUID_D_1_EAX, CPUID_LNX_4, CPUID_7_1_EAX, CPUID_8000_0008_EBX, CPUID_6_EAX, CPUID_8000_000A_EDX, CPUID_7_ECX, CPUID_8000_0007_EBX, CPUID_7_EDX, CPUID_8000_001F_EAX, CPUID_8000_0021_EAX, CPUID_LNX_5, NR_CPUID_WORDS, }; #ifdef CONFIG_X86_FEATURE_NAMES extern const char * const x86_cap_flags[NCAPINTS*32]; extern const char * const x86_power_flags[32]; #define X86_CAP_FMT "%s" #define x86_cap_flag(flag) x86_cap_flags[flag] #else #define X86_CAP_FMT "%d:%d" #define x86_cap_flag(flag) ((flag) >> 5), ((flag) & 31) #endif /* * In order to save room, we index into this array by doing * X86_BUG_<name> - NCAPINTS*32. */ extern const char * const x86_bug_flags[NBUGINTS*32]; #define test_cpu_cap(c, bit) \ arch_test_bit(bit, (unsigned long *)((c)->x86_capability)) /* * There are 32 bits/features in each mask word. The high bits * (selected with (bit>>5) give us the word number and the low 5 * bits give us the bit/feature number inside the word. * (1UL<<((bit)&31) gives us a mask for the feature_bit so we can * see if it is set in the mask word. */ #define CHECK_BIT_IN_MASK_WORD(maskname, word, bit) \ (((bit)>>5)==(word) && (1UL<<((bit)&31) & maskname##word )) /* * {REQUIRED,DISABLED}_MASK_CHECK below may seem duplicated with the * following BUILD_BUG_ON_ZERO() check but when NCAPINTS gets changed, all * header macros which use NCAPINTS need to be changed. The duplicated macro * use causes the compiler to issue errors for all headers so that all usage * sites can be corrected. */ #define REQUIRED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 18, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 19, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 20, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 21, feature_bit) || \ REQUIRED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 22)) #define DISABLED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 18, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 19, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 20, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 21, feature_bit) || \ DISABLED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 22)) #define cpu_has(c, bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ test_cpu_cap(c, bit)) #define this_cpu_has(bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ x86_this_cpu_test_bit(bit, \ (unsigned long __percpu *)&cpu_info.x86_capability)) /* * This macro is for detection of features which need kernel * infrastructure to be used. It may *not* directly test the CPU * itself. Use the cpu_has() family if you want true runtime * testing of CPU features, like in hypervisor code where you are * supporting a possible guest feature where host support for it * is not relevant. */ #define cpu_feature_enabled(bit) \ (__builtin_constant_p(bit) && DISABLED_MASK_BIT_SET(bit) ? 0 : static_cpu_has(bit)) #define boot_cpu_has(bit) cpu_has(&boot_cpu_data, bit) #define set_cpu_cap(c, bit) set_bit(bit, (unsigned long *)((c)->x86_capability)) extern void setup_clear_cpu_cap(unsigned int bit); extern void clear_cpu_cap(struct cpuinfo_x86 *c, unsigned int bit); #define setup_force_cpu_cap(bit) do { \ set_cpu_cap(&boot_cpu_data, bit); \ set_bit(bit, (unsigned long *)cpu_caps_set); \ } while (0) #define setup_force_cpu_bug(bit) setup_force_cpu_cap(bit) #if defined(__clang__) && !defined(CONFIG_CC_HAS_ASM_GOTO) /* * Workaround for the sake of BPF compilation which utilizes kernel * headers, but clang does not support ASM GOTO and fails the build. */ #ifndef __BPF_TRACING__ #warning "Compiler lacks ASM_GOTO support. Add -D __BPF_TRACING__ to your compiler arguments" #endif #define static_cpu_has(bit) boot_cpu_has(bit) #else /* * Static testing of CPU features. Used the same as boot_cpu_has(). It * statically patches the target code for additional performance. Use * static_cpu_has() only in fast paths, where every cycle counts. Which * means that the boot_cpu_has() variant is already fast enough for the * majority of cases and you should stick to using it as it is generally * only two instructions: a RIP-relative MOV and a TEST. */ static __always_inline bool _static_cpu_has(u16 bit) { asm_volatile_goto( ALTERNATIVE_TERNARY("jmp 6f", %P[feature], "", "jmp %l[t_no]") ".section .altinstr_aux,\"ax\"\n" "6:\n" " testb %[bitnum],%[cap_byte]\n" " jnz %l[t_yes]\n" " jmp %l[t_no]\n" ".previous\n" : : [feature] "i" (bit), [bitnum] "i" (1 << (bit & 7)), [cap_byte] "m" (((const char *)boot_cpu_data.x86_capability)[bit >> 3]) : : t_yes, t_no); t_yes: return true; t_no: return false; } #define static_cpu_has(bit) \ ( \ __builtin_constant_p(boot_cpu_has(bit)) ? \ boot_cpu_has(bit) : \ _static_cpu_has(bit) \ ) #endif #define cpu_has_bug(c, bit) cpu_has(c, (bit)) #define set_cpu_bug(c, bit) set_cpu_cap(c, (bit)) #define clear_cpu_bug(c, bit) clear_cpu_cap(c, (bit)) #define static_cpu_has_bug(bit) static_cpu_has((bit)) #define boot_cpu_has_bug(bit) cpu_has_bug(&boot_cpu_data, (bit)) #define boot_cpu_set_bug(bit) set_cpu_cap(&boot_cpu_data, (bit)) #define MAX_CPU_FEATURES (NCAPINTS * 32) #define cpu_have_feature boot_cpu_has #define CPU_FEATURE_TYPEFMT "x86,ven%04Xfam%04Xmod%04X" #define CPU_FEATURE_TYPEVAL boot_cpu_data.x86_vendor, boot_cpu_data.x86, \ boot_cpu_data.x86_model #endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */ #endif /* _ASM_X86_CPUFEATURE_H */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2020 Google LLC. */ #ifndef _LINUX_BPF_LSM_H #define _LINUX_BPF_LSM_H #include <linux/sched.h> #include <linux/bpf.h> #include <linux/lsm_hooks.h> #ifdef CONFIG_BPF_LSM #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ RET bpf_lsm_##NAME(__VA_ARGS__); #include <linux/lsm_hook_defs.h> #undef LSM_HOOK struct bpf_storage_blob { struct bpf_local_storage __rcu *storage; }; extern struct lsm_blob_sizes bpf_lsm_blob_sizes; int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog, const struct bpf_prog *prog); bool bpf_lsm_is_sleepable_hook(u32 btf_id); static inline struct bpf_storage_blob *bpf_inode( const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + bpf_lsm_blob_sizes.lbs_inode; } extern const struct bpf_func_proto bpf_inode_storage_get_proto; extern const struct bpf_func_proto bpf_inode_storage_delete_proto; void bpf_inode_storage_free(struct inode *inode); #else /* !CONFIG_BPF_LSM */ static inline bool bpf_lsm_is_sleepable_hook(u32 btf_id) { return false; } static inline int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog, const struct bpf_prog *prog) { return -EOPNOTSUPP; } static inline struct bpf_storage_blob *bpf_inode( const struct inode *inode) { return NULL; } static inline void bpf_inode_storage_free(struct inode *inode) { } #endif /* CONFIG_BPF_LSM */ #endif /* _LINUX_BPF_LSM_H */ |
2 19 4 3 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | /* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */ /* * linux/can/skb.h * * Definitions for the CAN network socket buffer * * Copyright (C) 2012 Oliver Hartkopp <socketcan@hartkopp.net> * */ #ifndef _CAN_SKB_H #define _CAN_SKB_H #include <linux/types.h> #include <linux/skbuff.h> #include <linux/can.h> #include <net/sock.h> void can_flush_echo_skb(struct net_device *dev); int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, unsigned int idx, unsigned int frame_len); struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr, unsigned int *frame_len_ptr); unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx, unsigned int *frame_len_ptr); void can_free_echo_skb(struct net_device *dev, unsigned int idx, unsigned int *frame_len_ptr); struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf); struct sk_buff *alloc_canfd_skb(struct net_device *dev, struct canfd_frame **cfd); struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf); /* * The struct can_skb_priv is used to transport additional information along * with the stored struct can(fd)_frame that can not be contained in existing * struct sk_buff elements. * N.B. that this information must not be modified in cloned CAN sk_buffs. * To modify the CAN frame content or the struct can_skb_priv content * skb_copy() needs to be used instead of skb_clone(). */ /** * struct can_skb_priv - private additional data inside CAN sk_buffs * @ifindex: ifindex of the first interface the CAN frame appeared on * @skbcnt: atomic counter to have an unique id together with skb pointer * @frame_len: length of CAN frame in data link layer * @cf: align to the following CAN frame at skb->data */ struct can_skb_priv { int ifindex; int skbcnt; unsigned int frame_len; struct can_frame cf[]; }; static inline struct can_skb_priv *can_skb_prv(struct sk_buff *skb) { return (struct can_skb_priv *)(skb->head); } static inline void can_skb_reserve(struct sk_buff *skb) { skb_reserve(skb, sizeof(struct can_skb_priv)); } static inline void can_skb_set_owner(struct sk_buff *skb, struct sock *sk) { /* If the socket has already been closed by user space, the * refcount may already be 0 (and the socket will be freed * after the last TX skb has been freed). So only increase * socket refcount if the refcount is > 0. */ if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { skb->destructor = sock_efree; skb->sk = sk; } } /* * returns an unshared skb owned by the original sock to be echo'ed back */ static inline struct sk_buff *can_create_echo_skb(struct sk_buff *skb) { struct sk_buff *nskb; nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) { kfree_skb(skb); return NULL; } can_skb_set_owner(nskb, skb->sk); consume_skb(skb); return nskb; } /* Check for outgoing skbs that have not been created by the CAN subsystem */ static inline bool can_skb_headroom_valid(struct net_device *dev, struct sk_buff *skb) { /* af_packet creates a headroom of HH_DATA_MOD bytes which is fine */ if (WARN_ON_ONCE(skb_headroom(skb) < sizeof(struct can_skb_priv))) return false; /* af_packet does not apply CAN skb specific settings */ if (skb->ip_summed == CHECKSUM_NONE) { /* init headroom */ can_skb_prv(skb)->ifindex = dev->ifindex; can_skb_prv(skb)->skbcnt = 0; skb->ip_summed = CHECKSUM_UNNECESSARY; /* perform proper loopback on capable devices */ if (dev->flags & IFF_ECHO) skb->pkt_type = PACKET_LOOPBACK; else skb->pkt_type = PACKET_HOST; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); } return true; } /* Drop a given socketbuffer if it does not contain a valid CAN frame. */ static inline bool can_dropped_invalid_skb(struct net_device *dev, struct sk_buff *skb) { const struct canfd_frame *cfd = (struct canfd_frame *)skb->data; if (skb->protocol == htons(ETH_P_CAN)) { if (unlikely(skb->len != CAN_MTU || cfd->len > CAN_MAX_DLEN)) goto inval_skb; } else if (skb->protocol == htons(ETH_P_CANFD)) { if (unlikely(skb->len != CANFD_MTU || cfd->len > CANFD_MAX_DLEN)) goto inval_skb; } else goto inval_skb; if (!can_skb_headroom_valid(dev, skb)) goto inval_skb; return false; inval_skb: kfree_skb(skb); dev->stats.tx_dropped++; return true; } static inline bool can_is_canfd_skb(const struct sk_buff *skb) { /* the CAN specific type of skb is identified by its data length */ return skb->len == CANFD_MTU; } #endif /* !_CAN_SKB_H */ |
388 4 62 62 39 8 8 1171 195 43 8 8 8 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; static inline bool mapping_empty(struct address_space *mapping) { return xa_empty(&mapping->i_pages); } /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * For file cache pages, return the address_space, otherwise return NULL */ static inline struct address_space *page_mapping_file(struct page *page) { if (unlikely(PageSwapCache(page))) return NULL; return page_mapping(page); } /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 #define FGP_ENTRY 0x00000100 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, pgoff_t end, struct pagevec *pvec, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { struct page *head; if (likely(!PageTransTail(page))) return page->index; head = compound_head(page); /* * We don't initialize ->index for tail pages: calculate based on * head page */ return head->index + page - head; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } int put_and_wait_on_page_locked(struct page *page, int state); void wait_on_page_writeback(struct page *page); int wait_on_page_writeback_killable(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void __set_page_dirty(struct page *, struct address_space *, int warn); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); void page_endio(struct page *page, bool is_write, int err); /** * set_page_private_2 - Set PG_private_2 on a page and take a ref * @page: The page. * * Set the PG_private_2 flag on a page and take the reference needed for the VM * to handle its lifetime correctly. This sets the flag and takes the * reference unconditionally, so care must be taken not to set the flag again * if it's already set. */ static inline void set_page_private_2(struct page *page) { page = compound_head(page); get_page(page); SetPagePrivate2(page); } void end_page_private_2(struct page *page); void wait_on_page_private_2(struct page *page); int wait_on_page_private_2_killable(struct page *page); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault in userspace address range. */ size_t fault_in_writeable(char __user *uaddr, size_t size); size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); size_t fault_in_readable(const char __user *uaddr, size_t size); int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); void replace_page_cache_page(struct page *old, struct page *new); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, int whence); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. * @ra: File readahead state. May be NULL. */ struct readahead_control { struct file *file; struct address_space *mapping; struct file_ra_state *ra; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(ractl, f, r, m, i) \ struct readahead_control ractl = { \ .file = f, \ .mapping = m, \ .ra = r, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct page *, unsigned long req_count); void readahead_expand(struct readahead_control *ractl, loff_t new_start, size_t new_len); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, ra, mapping, index); page_cache_sync_ra(&ractl, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, ra, mapping, index); page_cache_async_ra(&ractl, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline size_t readahead_length(struct readahead_control *rac) { return rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } /** * readahead_batch_length - The number of bytes in the current batch. * @rac: The readahead request. */ static inline size_t readahead_batch_length(struct readahead_control *rac) { return rac->_batch_count * PAGE_SIZE; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */ |
1202 1210 1207 1209 909 912 3721 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 | /* CPU control. * (C) 2001, 2002, 2003, 2004 Rusty Russell * * This code is licenced under the GPL. */ #include <linux/sched/mm.h> #include <linux/proc_fs.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/notifier.h> #include <linux/sched/signal.h> #include <linux/sched/hotplug.h> #include <linux/sched/isolation.h> #include <linux/sched/task.h> #include <linux/sched/smt.h> #include <linux/unistd.h> #include <linux/cpu.h> #include <linux/oom.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <linux/bug.h> #include <linux/kthread.h> #include <linux/stop_machine.h> #include <linux/mutex.h> #include <linux/gfp.h> #include <linux/suspend.h> #include <linux/lockdep.h> #include <linux/tick.h> #include <linux/irq.h> #include <linux/nmi.h> #include <linux/smpboot.h> #include <linux/relay.h> #include <linux/slab.h> #include <linux/scs.h> #include <linux/percpu-rwsem.h> #include <linux/cpuset.h> #include <linux/random.h> #include <trace/events/power.h> #define CREATE_TRACE_POINTS #include <trace/events/cpuhp.h> #include "smpboot.h" /** * struct cpuhp_cpu_state - Per cpu hotplug state storage * @state: The current cpu state * @target: The target state * @fail: Current CPU hotplug callback state * @thread: Pointer to the hotplug thread * @should_run: Thread should execute * @rollback: Perform a rollback * @single: Single callback invocation * @bringup: Single callback bringup or teardown selector * @cpu: CPU number * @node: Remote CPU node; for multi-instance, do a * single entry callback for install/remove * @last: For multi-instance rollback, remember how far we got * @cb_state: The state for a single callback (install/uninstall) * @result: Result of the operation * @done_up: Signal completion to the issuer of the task for cpu-up * @done_down: Signal completion to the issuer of the task for cpu-down */ struct cpuhp_cpu_state { enum cpuhp_state state; enum cpuhp_state target; enum cpuhp_state fail; #ifdef CONFIG_SMP struct task_struct *thread; bool should_run; bool rollback; bool single; bool bringup; struct hlist_node *node; struct hlist_node *last; enum cpuhp_state cb_state; int result; struct completion done_up; struct completion done_down; #endif }; static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { .fail = CPUHP_INVALID, }; #ifdef CONFIG_SMP cpumask_t cpus_booted_once_mask; #endif #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) static struct lockdep_map cpuhp_state_up_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); static struct lockdep_map cpuhp_state_down_map = STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); static inline void cpuhp_lock_acquire(bool bringup) { lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); } static inline void cpuhp_lock_release(bool bringup) { lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); } #else static inline void cpuhp_lock_acquire(bool bringup) { } static inline void cpuhp_lock_release(bool bringup) { } #endif /** * struct cpuhp_step - Hotplug state machine step * @name: Name of the step * @startup: Startup function of the step * @teardown: Teardown function of the step * @cant_stop: Bringup/teardown can't be stopped at this step * @multi_instance: State has multiple instances which get added afterwards */ struct cpuhp_step { const char *name; union { int (*single)(unsigned int cpu); int (*multi)(unsigned int cpu, struct hlist_node *node); } startup; union { int (*single)(unsigned int cpu); int (*multi)(unsigned int cpu, struct hlist_node *node); } teardown; /* private: */ struct hlist_head list; /* public: */ bool cant_stop; bool multi_instance; }; static DEFINE_MUTEX(cpuhp_state_mutex); static struct cpuhp_step cpuhp_hp_states[]; static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) { return cpuhp_hp_states + state; } static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) { return bringup ? !step->startup.single : !step->teardown.single; } /** * cpuhp_invoke_callback - Invoke the callbacks for a given state * @cpu: The cpu for which the callback should be invoked * @state: The state to do callbacks for * @bringup: True if the bringup callback should be invoked * @node: For multi-instance, do a single entry callback for install/remove * @lastp: For multi-instance rollback, remember how far we got * * Called from cpu hotplug and from the state register machinery. * * Return: %0 on success or a negative errno code */ static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node, struct hlist_node **lastp) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); struct cpuhp_step *step = cpuhp_get_step(state); int (*cbm)(unsigned int cpu, struct hlist_node *node); int (*cb)(unsigned int cpu); int ret, cnt; if (st->fail == state) { st->fail = CPUHP_INVALID; return -EAGAIN; } if (cpuhp_step_empty(bringup, step)) { WARN_ON_ONCE(1); return 0; } if (!step->multi_instance) { WARN_ON_ONCE(lastp && *lastp); cb = bringup ? step->startup.single : step->teardown.single; trace_cpuhp_enter(cpu, st->target, state, cb); ret = cb(cpu); trace_cpuhp_exit(cpu, st->state, state, ret); return ret; } cbm = bringup ? step->startup.multi : step->teardown.multi; /* Single invocation for instance add/remove */ if (node) { WARN_ON_ONCE(lastp && *lastp); trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); return ret; } /* State transition. Invoke on all instances */ cnt = 0; hlist_for_each(node, &step->list) { if (lastp && node == *lastp) break; trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); if (ret) { if (!lastp) goto err; *lastp = node; return ret; } cnt++; } if (lastp) *lastp = NULL; return 0; err: /* Rollback the instances if one failed */ cbm = !bringup ? step->startup.multi : step->teardown.multi; if (!cbm) return ret; hlist_for_each(node, &step->list) { if (!cnt--) break; trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); ret = cbm(cpu, node); trace_cpuhp_exit(cpu, st->state, state, ret); /* * Rollback must not fail, */ WARN_ON_ONCE(ret); } return ret; } #ifdef CONFIG_SMP static bool cpuhp_is_ap_state(enum cpuhp_state state) { /* * The extra check for CPUHP_TEARDOWN_CPU is only for documentation * purposes as that state is handled explicitly in cpu_down. */ return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; } static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) { struct completion *done = bringup ? &st->done_up : &st->done_down; wait_for_completion(done); } static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) { struct completion *done = bringup ? &st->done_up : &st->done_down; complete(done); } /* * The former STARTING/DYING states, ran with IRQs disabled and must not fail. */ static bool cpuhp_is_atomic_state(enum cpuhp_state state) { return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; } /* Serializes the updates to cpu_online_mask, cpu_present_mask */ static DEFINE_MUTEX(cpu_add_remove_lock); bool cpuhp_tasks_frozen; EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); /* * The following two APIs (cpu_maps_update_begin/done) must be used when * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. */ void cpu_maps_update_begin(void) { mutex_lock(&cpu_add_remove_lock); } void cpu_maps_update_done(void) { mutex_unlock(&cpu_add_remove_lock); } /* * If set, cpu_up and cpu_down will return -EBUSY and do nothing. * Should always be manipulated under cpu_add_remove_lock */ static int cpu_hotplug_disabled; #ifdef CONFIG_HOTPLUG_CPU DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); void cpus_read_lock(void) { percpu_down_read(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_lock); int cpus_read_trylock(void) { return percpu_down_read_trylock(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_trylock); void cpus_read_unlock(void) { percpu_up_read(&cpu_hotplug_lock); } EXPORT_SYMBOL_GPL(cpus_read_unlock); void cpus_write_lock(void) { percpu_down_write(&cpu_hotplug_lock); } void cpus_write_unlock(void) { percpu_up_write(&cpu_hotplug_lock); } void lockdep_assert_cpus_held(void) { /* * We can't have hotplug operations before userspace starts running, * and some init codepaths will knowingly not take the hotplug lock. * This is all valid, so mute lockdep until it makes sense to report * unheld locks. */ if (system_state < SYSTEM_RUNNING) return; percpu_rwsem_assert_held(&cpu_hotplug_lock); } #ifdef CONFIG_LOCKDEP int lockdep_is_cpus_held(void) { return percpu_rwsem_is_held(&cpu_hotplug_lock); } #endif static void lockdep_acquire_cpus_lock(void) { rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); } static void lockdep_release_cpus_lock(void) { rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); } /* * Wait for currently running CPU hotplug operations to complete (if any) and * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the * hotplug path before performing hotplug operations. So acquiring that lock * guarantees mutual exclusion from any currently running hotplug operations. */ void cpu_hotplug_disable(void) { cpu_maps_update_begin(); cpu_hotplug_disabled++; cpu_maps_update_done(); } EXPORT_SYMBOL_GPL(cpu_hotplug_disable); static void __cpu_hotplug_enable(void) { if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) return; cpu_hotplug_disabled--; } void cpu_hotplug_enable(void) { cpu_maps_update_begin(); __cpu_hotplug_enable(); cpu_maps_update_done(); } EXPORT_SYMBOL_GPL(cpu_hotplug_enable); #else static void lockdep_acquire_cpus_lock(void) { } static void lockdep_release_cpus_lock(void) { } #endif /* CONFIG_HOTPLUG_CPU */ /* * Architectures that need SMT-specific errata handling during SMT hotplug * should override this. */ void __weak arch_smt_update(void) { } #ifdef CONFIG_HOTPLUG_SMT enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; void __init cpu_smt_disable(bool force) { if (!cpu_smt_possible()) return; if (force) { pr_info("SMT: Force disabled\n"); cpu_smt_control = CPU_SMT_FORCE_DISABLED; } else { pr_info("SMT: disabled\n"); cpu_smt_control = CPU_SMT_DISABLED; } } /* * The decision whether SMT is supported can only be done after the full * CPU identification. Called from architecture code. */ void __init cpu_smt_check_topology(void) { if (!topology_smt_supported()) cpu_smt_control = CPU_SMT_NOT_SUPPORTED; } static int __init smt_cmdline_disable(char *str) { cpu_smt_disable(str && !strcmp(str, "force")); return 0; } early_param("nosmt", smt_cmdline_disable); static inline bool cpu_smt_allowed(unsigned int cpu) { if (cpu_smt_control == CPU_SMT_ENABLED) return true; if (topology_is_primary_thread(cpu)) return true; /* * On x86 it's required to boot all logical CPUs at least once so * that the init code can get a chance to set CR4.MCE on each * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any * core will shutdown the machine. */ return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); } /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ bool cpu_smt_possible(void) { return cpu_smt_control != CPU_SMT_FORCE_DISABLED && cpu_smt_control != CPU_SMT_NOT_SUPPORTED; } EXPORT_SYMBOL_GPL(cpu_smt_possible); #else static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } #endif static inline enum cpuhp_state cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; bool bringup = st->state < target; st->rollback = false; st->last = NULL; st->target = target; st->single = false; st->bringup = bringup; if (cpu_dying(cpu) != !bringup) set_cpu_dying(cpu, !bringup); return prev_state; } static inline void cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) { bool bringup = !st->bringup; st->target = prev_state; /* * Already rolling back. No need invert the bringup value or to change * the current state. */ if (st->rollback) return; st->rollback = true; /* * If we have st->last we need to undo partial multi_instance of this * state first. Otherwise start undo at the previous state. */ if (!st->last) { if (st->bringup) st->state--; else st->state++; } st->bringup = bringup; if (cpu_dying(cpu) != !bringup) set_cpu_dying(cpu, !bringup); } /* Regular hotplug invocation of the AP hotplug thread */ static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) { if (!st->single && st->state == st->target) return; st->result = 0; /* * Make sure the above stores are visible before should_run becomes * true. Paired with the mb() above in cpuhp_thread_fun() */ smp_mb(); st->should_run = true; wake_up_process(st->thread); wait_for_ap_thread(st, st->bringup); } static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state; int ret; prev_state = cpuhp_set_state(cpu, st, target); __cpuhp_kick_ap(st); if ((ret = st->result)) { cpuhp_reset_state(cpu, st, prev_state); __cpuhp_kick_ap(st); } return ret; } static int bringup_wait_for_ap(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ wait_for_ap_thread(st, true); if (WARN_ON_ONCE((!cpu_online(cpu)))) return -ECANCELED; /* Unpark the hotplug thread of the target cpu */ kthread_unpark(st->thread); /* * SMT soft disabling on X86 requires to bring the CPU out of the * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The * CPU marked itself as booted_once in notify_cpu_starting() so the * cpu_smt_allowed() check will now return false if this is not the * primary sibling. */ if (!cpu_smt_allowed(cpu)) return -ECANCELED; if (st->target <= CPUHP_AP_ONLINE_IDLE) return 0; return cpuhp_kick_ap(cpu, st, st->target); } static int bringup_cpu(unsigned int cpu) { struct task_struct *idle = idle_thread_get(cpu); int ret; /* * Reset stale stack state from the last time this CPU was online. */ scs_task_reset(idle); kasan_unpoison_task_stack(idle); /* * Some architectures have to walk the irq descriptors to * setup the vector space for the cpu which comes online. * Prevent irq alloc/free across the bringup. */ irq_lock_sparse(); /* Arch-specific enabling code. */ ret = __cpu_up(cpu, idle); irq_unlock_sparse(); if (ret) return ret; return bringup_wait_for_ap(cpu); } static int finish_cpu(unsigned int cpu) { struct task_struct *idle = idle_thread_get(cpu); struct mm_struct *mm = idle->active_mm; /* * idle_task_exit() will have switched to &init_mm, now * clean up any remaining active_mm state. */ if (mm != &init_mm) idle->active_mm = &init_mm; mmdrop(mm); return 0; } /* * Hotplug state machine related functions */ /* * Get the next state to run. Empty ones will be skipped. Returns true if a * state must be run. * * st->state will be modified ahead of time, to match state_to_run, as if it * has already ran. */ static bool cpuhp_next_state(bool bringup, enum cpuhp_state *state_to_run, struct cpuhp_cpu_state *st, enum cpuhp_state target) { do { if (bringup) { if (st->state >= target) return false; *state_to_run = ++st->state; } else { if (st->state <= target) return false; *state_to_run = st->state--; } if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) break; } while (true); return true; } static int __cpuhp_invoke_callback_range(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target, bool nofail) { enum cpuhp_state state; int ret = 0; while (cpuhp_next_state(bringup, &state, st, target)) { int err; err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); if (!err) continue; if (nofail) { pr_warn("CPU %u %s state %s (%d) failed (%d)\n", cpu, bringup ? "UP" : "DOWN", cpuhp_get_step(st->state)->name, st->state, err); ret = -1; } else { ret = err; break; } } return ret; } static inline int cpuhp_invoke_callback_range(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); } static inline void cpuhp_invoke_callback_range_nofail(bool bringup, unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); } static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) { if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) return true; /* * When CPU hotplug is disabled, then taking the CPU down is not * possible because takedown_cpu() and the architecture and * subsystem specific mechanisms are not available. So the CPU * which would be completely unplugged again needs to stay around * in the current state. */ return st->state <= CPUHP_BRINGUP_CPU; } static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; int ret = 0; ret = cpuhp_invoke_callback_range(true, cpu, st, target); if (ret) { pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", ret, cpu, cpuhp_get_step(st->state)->name, st->state); cpuhp_reset_state(cpu, st, prev_state); if (can_rollback_cpu(st)) WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, prev_state)); } return ret; } /* * The cpu hotplug threads manage the bringup and teardown of the cpus */ static void cpuhp_create(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); init_completion(&st->done_up); init_completion(&st->done_down); } static int cpuhp_should_run(unsigned int cpu) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); return st->should_run; } /* * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke * callbacks when a state gets [un]installed at runtime. * * Each invocation of this function by the smpboot thread does a single AP * state callback. * * It has 3 modes of operation: * - single: runs st->cb_state * - up: runs ++st->state, while st->state < st->target * - down: runs st->state--, while st->state > st->target * * When complete or on error, should_run is cleared and the completion is fired. */ static void cpuhp_thread_fun(unsigned int cpu) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); bool bringup = st->bringup; enum cpuhp_state state; if (WARN_ON_ONCE(!st->should_run)) return; /* * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures * that if we see ->should_run we also see the rest of the state. */ smp_mb(); /* * The BP holds the hotplug lock, but we're now running on the AP, * ensure that anybody asserting the lock is held, will actually find * it so. */ lockdep_acquire_cpus_lock(); cpuhp_lock_acquire(bringup); if (st->single) { state = st->cb_state; st->should_run = false; } else { st->should_run = cpuhp_next_state(bringup, &state, st, st->target); if (!st->should_run) goto end; } WARN_ON_ONCE(!cpuhp_is_ap_state(state)); if (cpuhp_is_atomic_state(state)) { local_irq_disable(); st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); local_irq_enable(); /* * STARTING/DYING must not fail! */ WARN_ON_ONCE(st->result); } else { st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); } if (st->result) { /* * If we fail on a rollback, we're up a creek without no * paddle, no way forward, no way back. We loose, thanks for * playing. */ WARN_ON_ONCE(st->rollback); st->should_run = false; } end: cpuhp_lock_release(bringup); lockdep_release_cpus_lock(); if (!st->should_run) complete_ap_thread(st, bringup); } /* Invoke a single callback on a remote cpu */ static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int ret; if (!cpu_online(cpu)) return 0; cpuhp_lock_acquire(false); cpuhp_lock_release(false); cpuhp_lock_acquire(true); cpuhp_lock_release(true); /* * If we are up and running, use the hotplug thread. For early calls * we invoke the thread function directly. */ if (!st->thread) return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); st->rollback = false; st->last = NULL; st->node = node; st->bringup = bringup; st->cb_state = state; st->single = true; __cpuhp_kick_ap(st); /* * If we failed and did a partial, do a rollback. */ if ((ret = st->result) && st->last) { st->rollback = true; st->bringup = !bringup; __cpuhp_kick_ap(st); } /* * Clean up the leftovers so the next hotplug operation wont use stale * data. */ st->node = st->last = NULL; return ret; } static int cpuhp_kick_ap_work(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); enum cpuhp_state prev_state = st->state; int ret; cpuhp_lock_acquire(false); cpuhp_lock_release(false); cpuhp_lock_acquire(true); cpuhp_lock_release(true); trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); ret = cpuhp_kick_ap(cpu, st, st->target); trace_cpuhp_exit(cpu, st->state, prev_state, ret); return ret; } static struct smp_hotplug_thread cpuhp_threads = { .store = &cpuhp_state.thread, .create = &cpuhp_create, .thread_should_run = cpuhp_should_run, .thread_fn = cpuhp_thread_fun, .thread_comm = "cpuhp/%u", .selfparking = true, }; void __init cpuhp_threads_init(void) { BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); kthread_unpark(this_cpu_read(cpuhp_state.thread)); } /* * * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock * protected region. * * The operation is still serialized against concurrent CPU hotplug via * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ * serialized against other hotplug related activity like adding or * removing of state callbacks and state instances, which invoke either the * startup or the teardown callback of the affected state. * * This is required for subsystems which are unfixable vs. CPU hotplug and * evade lock inversion problems by scheduling work which has to be * completed _before_ cpu_up()/_cpu_down() returns. * * Don't even think about adding anything to this for any new code or even * drivers. It's only purpose is to keep existing lock order trainwrecks * working. * * For cpu_down() there might be valid reasons to finish cleanups which are * not required to be done under cpu_hotplug_lock, but that's a different * story and would be not invoked via this. */ static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) { /* * cpusets delegate hotplug operations to a worker to "solve" the * lock order problems. Wait for the worker, but only if tasks are * _not_ frozen (suspend, hibernate) as that would wait forever. * * The wait is required because otherwise the hotplug operation * returns with inconsistent state, which could even be observed in * user space when a new CPU is brought up. The CPU plug uevent * would be delivered and user space reacting on it would fail to * move tasks to the newly plugged CPU up to the point where the * work has finished because up to that point the newly plugged CPU * is not assignable in cpusets/cgroups. On unplug that's not * necessarily a visible issue, but it is still inconsistent state, * which is the real problem which needs to be "fixed". This can't * prevent the transient state between scheduling the work and * returning from waiting for it. */ if (!tasks_frozen) cpuset_wait_for_hotplug(); } #ifdef CONFIG_HOTPLUG_CPU #ifndef arch_clear_mm_cpumask_cpu #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) #endif /** * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU * @cpu: a CPU id * * This function walks all processes, finds a valid mm struct for each one and * then clears a corresponding bit in mm's cpumask. While this all sounds * trivial, there are various non-obvious corner cases, which this function * tries to solve in a safe manner. * * Also note that the function uses a somewhat relaxed locking scheme, so it may * be called only for an already offlined CPU. */ void clear_tasks_mm_cpumask(int cpu) { struct task_struct *p; /* * This function is called after the cpu is taken down and marked * offline, so its not like new tasks will ever get this cpu set in * their mm mask. -- Peter Zijlstra * Thus, we may use rcu_read_lock() here, instead of grabbing * full-fledged tasklist_lock. */ WARN_ON(cpu_online(cpu)); rcu_read_lock(); for_each_process(p) { struct task_struct *t; /* * Main thread might exit, but other threads may still have * a valid mm. Find one. */ t = find_lock_task_mm(p); if (!t) continue; arch_clear_mm_cpumask_cpu(cpu, t->mm); task_unlock(t); } rcu_read_unlock(); } /* Take this CPU down. */ static int take_cpu_down(void *_param) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); int err, cpu = smp_processor_id(); /* Ensure this CPU doesn't handle any more interrupts. */ err = __cpu_disable(); if (err < 0) return err; /* * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going * down, that the current state is CPUHP_TEARDOWN_CPU - 1. */ WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); /* * Invoke the former CPU_DYING callbacks. DYING must not fail! */ cpuhp_invoke_callback_range_nofail(false, cpu, st, target); /* Give up timekeeping duties */ tick_handover_do_timer(); /* Remove CPU from timer broadcasting */ tick_offline_cpu(cpu); /* Park the stopper thread */ stop_machine_park(cpu); return 0; } static int takedown_cpu(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int err; /* Park the smpboot threads */ kthread_park(st->thread); /* * Prevent irq alloc/free while the dying cpu reorganizes the * interrupt affinities. */ irq_lock_sparse(); /* * So now all preempt/rcu users must observe !cpu_active(). */ err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); if (err) { /* CPU refused to die */ irq_unlock_sparse(); /* Unpark the hotplug thread so we can rollback there */ kthread_unpark(st->thread); return err; } BUG_ON(cpu_online(cpu)); /* * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed * all runnable tasks from the CPU, there's only the idle task left now * that the migration thread is done doing the stop_machine thing. * * Wait for the stop thread to go away. */ wait_for_ap_thread(st, false); BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); /* Interrupts are moved away from the dying cpu, reenable alloc/free */ irq_unlock_sparse(); hotplug_cpu__broadcast_tick_pull(cpu); /* This actually kills the CPU. */ __cpu_die(cpu); tick_cleanup_dead_cpu(cpu); rcutree_migrate_callbacks(cpu); return 0; } static void cpuhp_complete_idle_dead(void *arg) { struct cpuhp_cpu_state *st = arg; complete_ap_thread(st, false); } void cpuhp_report_idle_dead(void) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); BUG_ON(st->state != CPUHP_AP_OFFLINE); rcu_report_dead(smp_processor_id()); st->state = CPUHP_AP_IDLE_DEAD; /* * We cannot call complete after rcu_report_dead() so we delegate it * to an online cpu. */ smp_call_function_single(cpumask_first(cpu_online_mask), cpuhp_complete_idle_dead, st, 0); } static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) { enum cpuhp_state prev_state = st->state; int ret = 0; ret = cpuhp_invoke_callback_range(false, cpu, st, target); if (ret) { pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", ret, cpu, cpuhp_get_step(st->state)->name, st->state); cpuhp_reset_state(cpu, st, prev_state); if (st->state < prev_state) WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, prev_state)); } return ret; } /* Requires cpu_add_remove_lock to be held */ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int prev_state, ret = 0; if (num_online_cpus() == 1) return -EBUSY; if (!cpu_present(cpu)) return -EINVAL; cpus_write_lock(); cpuhp_tasks_frozen = tasks_frozen; prev_state = cpuhp_set_state(cpu, st, target); /* * If the current CPU state is in the range of the AP hotplug thread, * then we need to kick the thread. */ if (st->state > CPUHP_TEARDOWN_CPU) { st->target = max((int)target, CPUHP_TEARDOWN_CPU); ret = cpuhp_kick_ap_work(cpu); /* * The AP side has done the error rollback already. Just * return the error code.. */ if (ret) goto out; /* * We might have stopped still in the range of the AP hotplug * thread. Nothing to do anymore. */ if (st->state > CPUHP_TEARDOWN_CPU) goto out; st->target = target; } /* * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need * to do the further cleanups. */ ret = cpuhp_down_callbacks(cpu, st, target); if (ret && st->state < prev_state) { if (st->state == CPUHP_TEARDOWN_CPU) { cpuhp_reset_state(cpu, st, prev_state); __cpuhp_kick_ap(st); } else { WARN(1, "DEAD callback error for CPU%d", cpu); } } out: cpus_write_unlock(); /* * Do post unplug cleanup. This is still protected against * concurrent CPU hotplug via cpu_add_remove_lock. */ lockup_detector_cleanup(); arch_smt_update(); cpu_up_down_serialize_trainwrecks(tasks_frozen); return ret; } static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) { if (cpu_hotplug_disabled) return -EBUSY; return _cpu_down(cpu, 0, target); } static int cpu_down(unsigned int cpu, enum cpuhp_state target) { int err; cpu_maps_update_begin(); err = cpu_down_maps_locked(cpu, target); cpu_maps_update_done(); return err; } /** * cpu_device_down - Bring down a cpu device * @dev: Pointer to the cpu device to offline * * This function is meant to be used by device core cpu subsystem only. * * Other subsystems should use remove_cpu() instead. * * Return: %0 on success or a negative errno code */ int cpu_device_down(struct device *dev) { return cpu_down(dev->id, CPUHP_OFFLINE); } int remove_cpu(unsigned int cpu) { int ret; lock_device_hotplug(); ret = device_offline(get_cpu_device(cpu)); unlock_device_hotplug(); return ret; } EXPORT_SYMBOL_GPL(remove_cpu); void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { unsigned int cpu; int error; cpu_maps_update_begin(); /* * Make certain the cpu I'm about to reboot on is online. * * This is inline to what migrate_to_reboot_cpu() already do. */ if (!cpu_online(primary_cpu)) primary_cpu = cpumask_first(cpu_online_mask); for_each_online_cpu(cpu) { if (cpu == primary_cpu) continue; error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); if (error) { pr_err("Failed to offline CPU%d - error=%d", cpu, error); break; } } /* * Ensure all but the reboot CPU are offline. */ BUG_ON(num_online_cpus() > 1); /* * Make sure the CPUs won't be enabled by someone else after this * point. Kexec will reboot to a new kernel shortly resetting * everything along the way. */ cpu_hotplug_disabled++; cpu_maps_update_done(); } #else #define takedown_cpu NULL #endif /*CONFIG_HOTPLUG_CPU*/ /** * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU * @cpu: cpu that just started * * It must be called by the arch code on the new cpu, before the new cpu * enables interrupts and before the "boot" cpu returns from __cpu_up(). */ void notify_cpu_starting(unsigned int cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ cpumask_set_cpu(cpu, &cpus_booted_once_mask); /* * STARTING must not fail! */ cpuhp_invoke_callback_range_nofail(true, cpu, st, target); } /* * Called from the idle task. Wake up the controlling task which brings the * hotplug thread of the upcoming CPU up and then delegates the rest of the * online bringup to the hotplug thread. */ void cpuhp_online_idle(enum cpuhp_state state) { struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); /* Happens for the boot cpu */ if (state != CPUHP_AP_ONLINE_IDLE) return; /* * Unpart the stopper thread before we start the idle loop (and start * scheduling); this ensures the stopper task is always available. */ stop_machine_unpark(smp_processor_id()); st->state = CPUHP_AP_ONLINE_IDLE; complete_ap_thread(st, true); } /* Requires cpu_add_remove_lock to be held */ static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); struct task_struct *idle; int ret = 0; cpus_write_lock(); if (!cpu_present(cpu)) { ret = -EINVAL; goto out; } /* * The caller of cpu_up() might have raced with another * caller. Nothing to do. */ if (st->state >= target) goto out; if (st->state == CPUHP_OFFLINE) { /* Let it fail before we try to bring the cpu up */ idle = idle_thread_get(cpu); if (IS_ERR(idle)) { ret = PTR_ERR(idle); goto out; } } cpuhp_tasks_frozen = tasks_frozen; cpuhp_set_state(cpu, st, target); /* * If the current CPU state is in the range of the AP hotplug thread, * then we need to kick the thread once more. */ if (st->state > CPUHP_BRINGUP_CPU) { ret = cpuhp_kick_ap_work(cpu); /* * The AP side has done the error rollback already. Just * return the error code.. */ if (ret) goto out; } /* * Try to reach the target state. We max out on the BP at * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is * responsible for bringing it up to the target state. */ target = min((int)target, CPUHP_BRINGUP_CPU); ret = cpuhp_up_callbacks(cpu, st, target); out: cpus_write_unlock(); arch_smt_update(); cpu_up_down_serialize_trainwrecks(tasks_frozen); return ret; } static int cpu_up(unsigned int cpu, enum cpuhp_state target) { int err = 0; if (!cpu_possible(cpu)) { pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", cpu); #if defined(CONFIG_IA64) pr_err("please check additional_cpus= boot parameter\n"); #endif return -EINVAL; } err = try_online_node(cpu_to_node(cpu)); if (err) return err; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } if (!cpu_smt_allowed(cpu)) { err = -EPERM; goto out; } err = _cpu_up(cpu, 0, target); out: cpu_maps_update_done(); return err; } /** * cpu_device_up - Bring up a cpu device * @dev: Pointer to the cpu device to online * * This function is meant to be used by device core cpu subsystem only. * * Other subsystems should use add_cpu() instead. * * Return: %0 on success or a negative errno code */ int cpu_device_up(struct device *dev) { return cpu_up(dev->id, CPUHP_ONLINE); } int add_cpu(unsigned int cpu) { int ret; lock_device_hotplug(); ret = device_online(get_cpu_device(cpu)); unlock_device_hotplug(); return ret; } EXPORT_SYMBOL_GPL(add_cpu); /** * bringup_hibernate_cpu - Bring up the CPU that we hibernated on * @sleep_cpu: The cpu we hibernated on and should be brought up. * * On some architectures like arm64, we can hibernate on any CPU, but on * wake up the CPU we hibernated on might be offline as a side effect of * using maxcpus= for example. * * Return: %0 on success or a negative errno code */ int bringup_hibernate_cpu(unsigned int sleep_cpu) { int ret; if (!cpu_online(sleep_cpu)) { pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); ret = cpu_up(sleep_cpu, CPUHP_ONLINE); if (ret) { pr_err("Failed to bring hibernate-CPU up!\n"); return ret; } } return 0; } void bringup_nonboot_cpus(unsigned int setup_max_cpus) { unsigned int cpu; for_each_present_cpu(cpu) { if (num_online_cpus() >= setup_max_cpus) break; if (!cpu_online(cpu)) cpu_up(cpu, CPUHP_ONLINE); } } #ifdef CONFIG_PM_SLEEP_SMP static cpumask_var_t frozen_cpus; int freeze_secondary_cpus(int primary) { int cpu, error = 0; cpu_maps_update_begin(); if (primary == -1) { primary = cpumask_first(cpu_online_mask); if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) primary = housekeeping_any_cpu(HK_FLAG_TIMER); } else { if (!cpu_online(primary)) primary = cpumask_first(cpu_online_mask); } /* * We take down all of the non-boot CPUs in one shot to avoid races * with the userspace trying to use the CPU hotplug at the same time */ cpumask_clear(frozen_cpus); pr_info("Disabling non-boot CPUs ...\n"); for_each_online_cpu(cpu) { if (cpu == primary) continue; if (pm_wakeup_pending()) { pr_info("Wakeup pending. Abort CPU freeze\n"); error = -EBUSY; break; } trace_suspend_resume(TPS("CPU_OFF"), cpu, true); error = _cpu_down(cpu, 1, CPUHP_OFFLINE); trace_suspend_resume(TPS("CPU_OFF"), cpu, false); if (!error) cpumask_set_cpu(cpu, frozen_cpus); else { pr_err("Error taking CPU%d down: %d\n", cpu, error); break; } } if (!error) BUG_ON(num_online_cpus() > 1); else pr_err("Non-boot CPUs are not disabled\n"); /* * Make sure the CPUs won't be enabled by someone else. We need to do * this even in case of failure as all freeze_secondary_cpus() users are * supposed to do thaw_secondary_cpus() on the failure path. */ cpu_hotplug_disabled++; cpu_maps_update_done(); return error; } void __weak arch_thaw_secondary_cpus_begin(void) { } void __weak arch_thaw_secondary_cpus_end(void) { } void thaw_secondary_cpus(void) { int cpu, error; /* Allow everyone to use the CPU hotplug again */ cpu_maps_update_begin(); __cpu_hotplug_enable(); if (cpumask_empty(frozen_cpus)) goto out; pr_info("Enabling non-boot CPUs ...\n"); arch_thaw_secondary_cpus_begin(); for_each_cpu(cpu, frozen_cpus) { trace_suspend_resume(TPS("CPU_ON"), cpu, true); error = _cpu_up(cpu, 1, CPUHP_ONLINE); trace_suspend_resume(TPS("CPU_ON"), cpu, false); if (!error) { pr_info("CPU%d is up\n", cpu); continue; } pr_warn("Error taking CPU%d up: %d\n", cpu, error); } arch_thaw_secondary_cpus_end(); cpumask_clear(frozen_cpus); out: cpu_maps_update_done(); } static int __init alloc_frozen_cpus(void) { if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) return -ENOMEM; return 0; } core_initcall(alloc_frozen_cpus); /* * When callbacks for CPU hotplug notifications are being executed, we must * ensure that the state of the system with respect to the tasks being frozen * or not, as reported by the notification, remains unchanged *throughout the * duration* of the execution of the callbacks. * Hence we need to prevent the freezer from racing with regular CPU hotplug. * * This synchronization is implemented by mutually excluding regular CPU * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ * Hibernate notifications. */ static int cpu_hotplug_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr) { switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: cpu_hotplug_disable(); break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: cpu_hotplug_enable(); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int __init cpu_hotplug_pm_sync_init(void) { /* * cpu_hotplug_pm_callback has higher priority than x86 * bsp_pm_callback which depends on cpu_hotplug_pm_callback * to disable cpu hotplug to avoid cpu hotplug race. */ pm_notifier(cpu_hotplug_pm_callback, 0); return 0; } core_initcall(cpu_hotplug_pm_sync_init); #endif /* CONFIG_PM_SLEEP_SMP */ int __boot_cpu_id; #endif /* CONFIG_SMP */ /* Boot processor state steps */ static struct cpuhp_step cpuhp_hp_states[] = { [CPUHP_OFFLINE] = { .name = "offline", .startup.single = NULL, .teardown.single = NULL, }, #ifdef CONFIG_SMP [CPUHP_CREATE_THREADS]= { .name = "threads:prepare", .startup.single = smpboot_create_threads, .teardown.single = NULL, .cant_stop = true, }, [CPUHP_PERF_PREPARE] = { .name = "perf:prepare", .startup.single = perf_event_init_cpu, .teardown.single = perf_event_exit_cpu, }, [CPUHP_RANDOM_PREPARE] = { .name = "random:prepare", .startup.single = random_prepare_cpu, .teardown.single = NULL, }, [CPUHP_WORKQUEUE_PREP] = { .name = "workqueue:prepare", .startup.single = workqueue_prepare_cpu, .teardown.single = NULL, }, [CPUHP_HRTIMERS_PREPARE] = { .name = "hrtimers:prepare", .startup.single = hrtimers_prepare_cpu, .teardown.single = NULL, }, [CPUHP_SMPCFD_PREPARE] = { .name = "smpcfd:prepare", .startup.single = smpcfd_prepare_cpu, .teardown.single = smpcfd_dead_cpu, }, [CPUHP_RELAY_PREPARE] = { .name = "relay:prepare", .startup.single = relay_prepare_cpu, .teardown.single = NULL, }, [CPUHP_SLAB_PREPARE] = { .name = "slab:prepare", .startup.single = slab_prepare_cpu, .teardown.single = slab_dead_cpu, }, [CPUHP_RCUTREE_PREP] = { .name = "RCU/tree:prepare", .startup.single = rcutree_prepare_cpu, .teardown.single = rcutree_dead_cpu, }, /* * On the tear-down path, timers_dead_cpu() must be invoked * before blk_mq_queue_reinit_notify() from notify_dead(), * otherwise a RCU stall occurs. */ [CPUHP_TIMERS_PREPARE] = { .name = "timers:prepare", .startup.single = timers_prepare_cpu, .teardown.single = timers_dead_cpu, }, /* Kicks the plugged cpu into life */ [CPUHP_BRINGUP_CPU] = { .name = "cpu:bringup", .startup.single = bringup_cpu, .teardown.single = finish_cpu, .cant_stop = true, }, /* Final state before CPU kills itself */ [CPUHP_AP_IDLE_DEAD] = { .name = "idle:dead", }, /* * Last state before CPU enters the idle loop to die. Transient state * for synchronization. */ [CPUHP_AP_OFFLINE] = { .name = "ap:offline", .cant_stop = true, }, /* First state is scheduler control. Interrupts are disabled */ [CPUHP_AP_SCHED_STARTING] = { .name = "sched:starting", .startup.single = sched_cpu_starting, .teardown.single = sched_cpu_dying, }, [CPUHP_AP_RCUTREE_DYING] = { .name = "RCU/tree:dying", .startup.single = NULL, .teardown.single = rcutree_dying_cpu, }, [CPUHP_AP_SMPCFD_DYING] = { .name = "smpcfd:dying", .startup.single = NULL, .teardown.single = smpcfd_dying_cpu, }, [CPUHP_AP_HRTIMERS_DYING] = { .name = "hrtimers:dying", .startup.single = hrtimers_cpu_starting, .teardown.single = hrtimers_cpu_dying, }, /* Entry state on starting. Interrupts enabled from here on. Transient * state for synchronsization */ [CPUHP_AP_ONLINE] = { .name = "ap:online", }, /* * Handled on control processor until the plugged processor manages * this itself. */ [CPUHP_TEARDOWN_CPU] = { .name = "cpu:teardown", .startup.single = NULL, .teardown.single = takedown_cpu, .cant_stop = true, }, [CPUHP_AP_SCHED_WAIT_EMPTY] = { .name = "sched:waitempty", .startup.single = NULL, .teardown.single = sched_cpu_wait_empty, }, /* Handle smpboot threads park/unpark */ [CPUHP_AP_SMPBOOT_THREADS] = { .name = "smpboot/threads:online", .startup.single = smpboot_unpark_threads, .teardown.single = smpboot_park_threads, }, [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { .name = "irq/affinity:online", .startup.single = irq_affinity_online_cpu, .teardown.single = NULL, }, [CPUHP_AP_PERF_ONLINE] = { .name = "perf:online", .startup.single = perf_event_init_cpu, .teardown.single = perf_event_exit_cpu, }, [CPUHP_AP_WATCHDOG_ONLINE] = { .name = "lockup_detector:online", .startup.single = lockup_detector_online_cpu, .teardown.single = lockup_detector_offline_cpu, }, [CPUHP_AP_WORKQUEUE_ONLINE] = { .name = "workqueue:online", .startup.single = workqueue_online_cpu, .teardown.single = workqueue_offline_cpu, }, [CPUHP_AP_RANDOM_ONLINE] = { .name = "random:online", .startup.single = random_online_cpu, .teardown.single = NULL, }, [CPUHP_AP_RCUTREE_ONLINE] = { .name = "RCU/tree:online", .startup.single = rcutree_online_cpu, .teardown.single = rcutree_offline_cpu, }, #endif /* * The dynamically registered state space is here */ #ifdef CONFIG_SMP /* Last state is scheduler control setting the cpu active */ [CPUHP_AP_ACTIVE] = { .name = "sched:active", .startup.single = sched_cpu_activate, .teardown.single = sched_cpu_deactivate, }, #endif /* CPU is fully up and running. */ [CPUHP_ONLINE] = { .name = "online", .startup.single = NULL, .teardown.single = NULL, }, }; /* Sanity check for callbacks */ static int cpuhp_cb_check(enum cpuhp_state state) { if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) return -EINVAL; return 0; } /* * Returns a free for dynamic slot assignment of the Online state. The states * are protected by the cpuhp_slot_states mutex and an empty slot is identified * by having no name assigned. */ static int cpuhp_reserve_state(enum cpuhp_state state) { enum cpuhp_state i, end; struct cpuhp_step *step; switch (state) { case CPUHP_AP_ONLINE_DYN: step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; end = CPUHP_AP_ONLINE_DYN_END; break; case CPUHP_BP_PREPARE_DYN: step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; end = CPUHP_BP_PREPARE_DYN_END; break; default: return -EINVAL; } for (i = state; i <= end; i++, step++) { if (!step->name) return i; } WARN(1, "No more dynamic states available for CPU hotplug\n"); return -ENOSPC; } static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { /* (Un)Install the callbacks for further cpu hotplug operations */ struct cpuhp_step *sp; int ret = 0; /* * If name is NULL, then the state gets removed. * * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on * the first allocation from these dynamic ranges, so the removal * would trigger a new allocation and clear the wrong (already * empty) state, leaving the callbacks of the to be cleared state * dangling, which causes wreckage on the next hotplug operation. */ if (name && (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN)) { ret = cpuhp_reserve_state(state); if (ret < 0) return ret; state = ret; } sp = cpuhp_get_step(state); if (name && sp->name) return -EBUSY; sp->startup.single = startup; sp->teardown.single = teardown; sp->name = name; sp->multi_instance = multi_instance; INIT_HLIST_HEAD(&sp->list); return ret; } static void *cpuhp_get_teardown_cb(enum cpuhp_state state) { return cpuhp_get_step(state)->teardown.single; } /* * Call the startup/teardown function for a step either on the AP or * on the current CPU. */ static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, struct hlist_node *node) { struct cpuhp_step *sp = cpuhp_get_step(state); int ret; /* * If there's nothing to do, we done. * Relies on the union for multi_instance. */ if (cpuhp_step_empty(bringup, sp)) return 0; /* * The non AP bound callbacks can fail on bringup. On teardown * e.g. module removal we crash for now. */ #ifdef CONFIG_SMP if (cpuhp_is_ap_state(state)) ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); else ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); #else ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); #endif BUG_ON(ret && !bringup); return ret; } /* * Called from __cpuhp_setup_state on a recoverable failure. * * Note: The teardown callbacks for rollback are not allowed to fail! */ static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, struct hlist_node *node) { int cpu; /* Roll back the already executed steps on the other cpus */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpu >= failedcpu) break; /* Did we invoke the startup call on that cpu ? */ if (cpustate >= state) cpuhp_issue_call(cpu, state, false, node); } } int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, struct hlist_node *node, bool invoke) { struct cpuhp_step *sp; int cpu; int ret; lockdep_assert_cpus_held(); sp = cpuhp_get_step(state); if (sp->multi_instance == false) return -EINVAL; mutex_lock(&cpuhp_state_mutex); if (!invoke || !sp->startup.multi) goto add_node; /* * Try to call the startup callback for each present cpu * depending on the hotplug state of the cpu. */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate < state) continue; ret = cpuhp_issue_call(cpu, state, true, node); if (ret) { if (sp->teardown.multi) cpuhp_rollback_install(cpu, state, node); goto unlock; } } add_node: ret = 0; hlist_add_head(node, &sp->list); unlock: mutex_unlock(&cpuhp_state_mutex); return ret; } int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke) { int ret; cpus_read_lock(); ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); cpus_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); /** * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state * @state: The state to setup * @name: Name of the step * @invoke: If true, the startup function is invoked for cpus where * cpu state >= @state * @startup: startup callback function * @teardown: teardown callback function * @multi_instance: State is set up for multiple instances which get * added afterwards. * * The caller needs to hold cpus read locked while calling this function. * Return: * On success: * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; * 0 for all other states * On failure: proper (negative) error code */ int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { int cpu, ret = 0; bool dynstate; lockdep_assert_cpus_held(); if (cpuhp_cb_check(state) || !name) return -EINVAL; mutex_lock(&cpuhp_state_mutex); ret = cpuhp_store_callbacks(state, name, startup, teardown, multi_instance); dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; if (ret > 0 && dynstate) { state = ret; ret = 0; } if (ret || !invoke || !startup) goto out; /* * Try to call the startup callback for each present cpu * depending on the hotplug state of the cpu. */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate < state) continue; ret = cpuhp_issue_call(cpu, state, true, NULL); if (ret) { if (teardown) cpuhp_rollback_install(cpu, state, NULL); cpuhp_store_callbacks(state, NULL, NULL, NULL, false); goto out; } } out: mutex_unlock(&cpuhp_state_mutex); /* * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, * return the dynamically allocated state in case of success. */ if (!ret && dynstate) return state; return ret; } EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); int __cpuhp_setup_state(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance) { int ret; cpus_read_lock(); ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, teardown, multi_instance); cpus_read_unlock(); return ret; } EXPORT_SYMBOL(__cpuhp_setup_state); int __cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke) { struct cpuhp_step *sp = cpuhp_get_step(state); int cpu; BUG_ON(cpuhp_cb_check(state)); if (!sp->multi_instance) return -EINVAL; cpus_read_lock(); mutex_lock(&cpuhp_state_mutex); if (!invoke || !cpuhp_get_teardown_cb(state)) goto remove; /* * Call the teardown callback for each present cpu depending * on the hotplug state of the cpu. This function is not * allowed to fail currently! */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate >= state) cpuhp_issue_call(cpu, state, false, node); } remove: hlist_del(node); mutex_unlock(&cpuhp_state_mutex); cpus_read_unlock(); return 0; } EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); /** * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state * @state: The state to remove * @invoke: If true, the teardown function is invoked for cpus where * cpu state >= @state * * The caller needs to hold cpus read locked while calling this function. * The teardown callback is currently not allowed to fail. Think * about module removal! */ void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) { struct cpuhp_step *sp = cpuhp_get_step(state); int cpu; BUG_ON(cpuhp_cb_check(state)); lockdep_assert_cpus_held(); mutex_lock(&cpuhp_state_mutex); if (sp->multi_instance) { WARN(!hlist_empty(&sp->list), "Error: Removing state %d which has instances left.\n", state); goto remove; } if (!invoke || !cpuhp_get_teardown_cb(state)) goto remove; /* * Call the teardown callback for each present cpu depending * on the hotplug state of the cpu. This function is not * allowed to fail currently! */ for_each_present_cpu(cpu) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); int cpustate = st->state; if (cpustate >= state) cpuhp_issue_call(cpu, state, false, NULL); } remove: cpuhp_store_callbacks(state, NULL, NULL, NULL, false); mutex_unlock(&cpuhp_state_mutex); } EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) { cpus_read_lock(); __cpuhp_remove_state_cpuslocked(state, invoke); cpus_read_unlock(); } EXPORT_SYMBOL(__cpuhp_remove_state); #ifdef CONFIG_HOTPLUG_SMT static void cpuhp_offline_cpu_device(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); dev->offline = true; /* Tell user space about the state change */ kobject_uevent(&dev->kobj, KOBJ_OFFLINE); } static void cpuhp_online_cpu_device(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); dev->offline = false; /* Tell user space about the state change */ kobject_uevent(&dev->kobj, KOBJ_ONLINE); } int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { int cpu, ret = 0; cpu_maps_update_begin(); for_each_online_cpu(cpu) { if (topology_is_primary_thread(cpu)) continue; ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); if (ret) break; /* * As this needs to hold the cpu maps lock it's impossible * to call device_offline() because that ends up calling * cpu_down() which takes cpu maps lock. cpu maps lock * needs to be held as this might race against in kernel * abusers of the hotplug machinery (thermal management). * * So nothing would update device:offline state. That would * leave the sysfs entry stale and prevent onlining after * smt control has been changed to 'off' again. This is * called under the sysfs hotplug lock, so it is properly * serialized against the regular offline usage. */ cpuhp_offline_cpu_device(cpu); } if (!ret) cpu_smt_control = ctrlval; cpu_maps_update_done(); return ret; } int cpuhp_smt_enable(void) { int cpu, ret = 0; cpu_maps_update_begin(); cpu_smt_control = CPU_SMT_ENABLED; for_each_present_cpu(cpu) { /* Skip online CPUs and CPUs on offline nodes */ if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) continue; ret = _cpu_up(cpu, 0, CPUHP_ONLINE); if (ret) break; /* See comment in cpuhp_smt_disable() */ cpuhp_online_cpu_device(cpu); } cpu_maps_update_done(); return ret; } #endif #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->state); } static DEVICE_ATTR_RO(state); static ssize_t target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); struct cpuhp_step *sp; int target, ret; ret = kstrtoint(buf, 10, &target); if (ret) return ret; #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) return -EINVAL; #else if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) return -EINVAL; #endif ret = lock_device_hotplug_sysfs(); if (ret) return ret; mutex_lock(&cpuhp_state_mutex); sp = cpuhp_get_step(target); ret = !sp->name || sp->cant_stop ? -EINVAL : 0; mutex_unlock(&cpuhp_state_mutex); if (ret) goto out; if (st->state < target) ret = cpu_up(dev->id, target); else if (st->state > target) ret = cpu_down(dev->id, target); else if (WARN_ON(st->target != target)) st->target = target; out: unlock_device_hotplug(); return ret ? ret : count; } static ssize_t target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->target); } static DEVICE_ATTR_RW(target); static ssize_t fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); struct cpuhp_step *sp; int fail, ret; ret = kstrtoint(buf, 10, &fail); if (ret) return ret; if (fail == CPUHP_INVALID) { st->fail = fail; return count; } if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) return -EINVAL; /* * Cannot fail STARTING/DYING callbacks. */ if (cpuhp_is_atomic_state(fail)) return -EINVAL; /* * DEAD callbacks cannot fail... * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter * triggering STARTING callbacks, a failure in this state would * hinder rollback. */ if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) return -EINVAL; /* * Cannot fail anything that doesn't have callbacks. */ mutex_lock(&cpuhp_state_mutex); sp = cpuhp_get_step(fail); if (!sp->startup.single && !sp->teardown.single) ret = -EINVAL; mutex_unlock(&cpuhp_state_mutex); if (ret) return ret; st->fail = fail; return count; } static ssize_t fail_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); return sprintf(buf, "%d\n", st->fail); } static DEVICE_ATTR_RW(fail); static struct attribute *cpuhp_cpu_attrs[] = { &dev_attr_state.attr, &dev_attr_target.attr, &dev_attr_fail.attr, NULL }; static const struct attribute_group cpuhp_cpu_attr_group = { .attrs = cpuhp_cpu_attrs, .name = "hotplug", NULL }; static ssize_t states_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t cur, res = 0; int i; mutex_lock(&cpuhp_state_mutex); for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { struct cpuhp_step *sp = cpuhp_get_step(i); if (sp->name) { cur = sprintf(buf, "%3d: %s\n", i, sp->name); buf += cur; res += cur; } } mutex_unlock(&cpuhp_state_mutex); return res; } static DEVICE_ATTR_RO(states); static struct attribute *cpuhp_cpu_root_attrs[] = { &dev_attr_states.attr, NULL }; static const struct attribute_group cpuhp_cpu_root_attr_group = { .attrs = cpuhp_cpu_root_attrs, .name = "hotplug", NULL }; #ifdef CONFIG_HOTPLUG_SMT static ssize_t __store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ctrlval, ret; if (sysfs_streq(buf, "on")) ctrlval = CPU_SMT_ENABLED; else if (sysfs_streq(buf, "off")) ctrlval = CPU_SMT_DISABLED; else if (sysfs_streq(buf, "forceoff")) ctrlval = CPU_SMT_FORCE_DISABLED; else return -EINVAL; if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) return -EPERM; if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) return -ENODEV; ret = lock_device_hotplug_sysfs(); if (ret) return ret; if (ctrlval != cpu_smt_control) { switch (ctrlval) { case CPU_SMT_ENABLED: ret = cpuhp_smt_enable(); break; case CPU_SMT_DISABLED: case CPU_SMT_FORCE_DISABLED: ret = cpuhp_smt_disable(ctrlval); break; } } unlock_device_hotplug(); return ret ? ret : count; } #else /* !CONFIG_HOTPLUG_SMT */ static ssize_t __store_smt_control(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return -ENODEV; } #endif /* CONFIG_HOTPLUG_SMT */ static const char *smt_states[] = { [CPU_SMT_ENABLED] = "on", [CPU_SMT_DISABLED] = "off", [CPU_SMT_FORCE_DISABLED] = "forceoff", [CPU_SMT_NOT_SUPPORTED] = "notsupported", [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", }; static ssize_t control_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *state = smt_states[cpu_smt_control]; return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); } static ssize_t control_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return __store_smt_control(dev, attr, buf, count); } static DEVICE_ATTR_RW(control); static ssize_t active_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); } static DEVICE_ATTR_RO(active); static struct attribute *cpuhp_smt_attrs[] = { &dev_attr_control.attr, &dev_attr_active.attr, NULL }; static const struct attribute_group cpuhp_smt_attr_group = { .attrs = cpuhp_smt_attrs, .name = "smt", NULL }; static int __init cpu_smt_sysfs_init(void) { return sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpuhp_smt_attr_group); } static int __init cpuhp_sysfs_init(void) { int cpu, ret; ret = cpu_smt_sysfs_init(); if (ret) return ret; ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpuhp_cpu_root_attr_group); if (ret) return ret; for_each_possible_cpu(cpu) { struct device *dev = get_cpu_device(cpu); if (!dev) continue; ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); if (ret) return ret; } return 0; } device_initcall(cpuhp_sysfs_init); #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ /* * cpu_bit_bitmap[] is a special, "compressed" data structure that * represents all NR_CPUS bits binary values of 1<<nr. * * It is used by cpumask_of() to get a constant address to a CPU * mask value that has a single bit set only. */ /* cpu_bit_bitmap[0] is empty - so we can back into it */ #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { MASK_DECLARE_8(0), MASK_DECLARE_8(8), MASK_DECLARE_8(16), MASK_DECLARE_8(24), #if BITS_PER_LONG > 32 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56), #endif }; EXPORT_SYMBOL_GPL(cpu_bit_bitmap); const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; EXPORT_SYMBOL(cpu_all_bits); #ifdef CONFIG_INIT_ALL_POSSIBLE struct cpumask __cpu_possible_mask __read_mostly = {CPU_BITS_ALL}; #else struct cpumask __cpu_possible_mask __read_mostly; #endif EXPORT_SYMBOL(__cpu_possible_mask); struct cpumask __cpu_online_mask __read_mostly; EXPORT_SYMBOL(__cpu_online_mask); struct cpumask __cpu_present_mask __read_mostly; EXPORT_SYMBOL(__cpu_present_mask); struct cpumask __cpu_active_mask __read_mostly; EXPORT_SYMBOL(__cpu_active_mask); struct cpumask __cpu_dying_mask __read_mostly; EXPORT_SYMBOL(__cpu_dying_mask); atomic_t __num_online_cpus __read_mostly; EXPORT_SYMBOL(__num_online_cpus); void init_cpu_present(const struct cpumask *src) { cpumask_copy(&__cpu_present_mask, src); } void init_cpu_possible(const struct cpumask *src) { cpumask_copy(&__cpu_possible_mask, src); } void init_cpu_online(const struct cpumask *src) { cpumask_copy(&__cpu_online_mask, src); } void set_cpu_online(unsigned int cpu, bool online) { /* * atomic_inc/dec() is required to handle the horrid abuse of this * function by the reboot and kexec code which invoke it from * IPI/NMI broadcasts when shutting down CPUs. Invocation from * regular CPU hotplug is properly serialized. * * Note, that the fact that __num_online_cpus is of type atomic_t * does not protect readers which are not serialized against * concurrent hotplug operations. */ if (online) { if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) atomic_inc(&__num_online_cpus); } else { if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) atomic_dec(&__num_online_cpus); } } /* * Activate the first processor. */ void __init boot_cpu_init(void) { int cpu = smp_processor_id(); /* Mark the boot cpu "present", "online" etc for SMP and UP case */ set_cpu_online(cpu, true); set_cpu_active(cpu, true); set_cpu_present(cpu, true); set_cpu_possible(cpu, true); #ifdef CONFIG_SMP __boot_cpu_id = cpu; #endif } /* * Must be called _AFTER_ setting up the per_cpu areas */ void __init boot_cpu_hotplug_init(void) { #ifdef CONFIG_SMP cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); #endif this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); } /* * These are used for a global "mitigations=" cmdline option for toggling * optional CPU mitigations. */ enum cpu_mitigations { CPU_MITIGATIONS_OFF, CPU_MITIGATIONS_AUTO, CPU_MITIGATIONS_AUTO_NOSMT, }; static enum cpu_mitigations cpu_mitigations __ro_after_init = IS_ENABLED(CONFIG_CPU_MITIGATIONS) ? CPU_MITIGATIONS_AUTO : CPU_MITIGATIONS_OFF; static int __init mitigations_parse_cmdline(char *arg) { if (!strcmp(arg, "off")) cpu_mitigations = CPU_MITIGATIONS_OFF; else if (!strcmp(arg, "auto")) cpu_mitigations = CPU_MITIGATIONS_AUTO; else if (!strcmp(arg, "auto,nosmt")) cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; else pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg); return 0; } early_param("mitigations", mitigations_parse_cmdline); /* mitigations=off */ bool cpu_mitigations_off(void) { return cpu_mitigations == CPU_MITIGATIONS_OFF; } EXPORT_SYMBOL_GPL(cpu_mitigations_off); /* mitigations=auto,nosmt */ bool cpu_mitigations_auto_nosmt(void) { return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; } EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); |
46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 | // SPDX-License-Identifier: GPL-2.0 /* * Shared application/kernel submission and completion ring pairs, for * supporting fast/efficient IO. * * A note on the read/write ordering memory barriers that are matched between * the application and kernel side. * * After the application reads the CQ ring tail, it must use an * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses * before writing the tail (using smp_load_acquire to read the tail will * do). It also needs a smp_mb() before updating CQ head (ordering the * entry load(s) with the head store), pairing with an implicit barrier * through a control-dependency in io_get_cqe (smp_store_release to * store head will do). Failure to do so could lead to reading invalid * CQ entries. * * Likewise, the application must use an appropriate smp_wmb() before * writing the SQ tail (ordering SQ entry stores with the tail store), * which pairs with smp_load_acquire in io_get_sqring (smp_store_release * to store the tail will do). And it needs a barrier ordering the SQ * head load before writing new SQ entries (smp_load_acquire to read * head will do). * * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* * updating the SQ tail; a full memory barrier smp_mb() is needed * between. * * Also see the examples in the liburing library: * * git://git.kernel.dk/liburing * * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens * from data shared between the kernel and application. This is done both * for ordering purposes, but also to ensure that once a value is loaded from * data that the application could potentially modify, it remains stable. * * Copyright (C) 2018-2019 Jens Axboe * Copyright (c) 2018-2019 Christoph Hellwig */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/syscalls.h> #include <linux/compat.h> #include <net/compat.h> #include <linux/refcount.h> #include <linux/uio.h> #include <linux/bits.h> #include <linux/sched/signal.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/percpu.h> #include <linux/cpuset.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/bvec.h> #include <linux/net.h> #include <net/sock.h> #include <net/af_unix.h> #include <linux/anon_inodes.h> #include <linux/sched/mm.h> #include <linux/uaccess.h> #include <linux/nospec.h> #include <linux/sizes.h> #include <linux/hugetlb.h> #include <linux/highmem.h> #include <linux/namei.h> #include <linux/fsnotify.h> #include <linux/fadvise.h> #include <linux/eventpoll.h> #include <linux/splice.h> #include <linux/task_work.h> #include <linux/pagemap.h> #include <linux/io_uring.h> #include <linux/tracehook.h> #define CREATE_TRACE_POINTS #include <trace/events/io_uring.h> #include <uapi/linux/io_uring.h> #include "../fs/internal.h" #include "io-wq.h" #define IORING_MAX_ENTRIES 32768 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8 /* only define max */ #define IORING_MAX_FIXED_FILES (1U << 15) #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \ IORING_REGISTER_LAST + IORING_OP_LAST) #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3) #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT) #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1) #define IORING_MAX_REG_BUFFERS (1U << 14) #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \ IOSQE_IO_HARDLINK | IOSQE_ASYNC | \ IOSQE_BUFFER_SELECT) #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS) #define IO_TCTX_REFS_CACHE_NR (1U << 10) struct io_uring { u32 head ____cacheline_aligned_in_smp; u32 tail ____cacheline_aligned_in_smp; }; /* * This data is shared with the application through the mmap at offsets * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING. * * The offsets to the member fields are published through struct * io_sqring_offsets when calling io_uring_setup. */ struct io_rings { /* * Head and tail offsets into the ring; the offsets need to be * masked to get valid indices. * * The kernel controls head of the sq ring and the tail of the cq ring, * and the application controls tail of the sq ring and the head of the * cq ring. */ struct io_uring sq, cq; /* * Bitmasks to apply to head and tail offsets (constant, equals * ring_entries - 1) */ u32 sq_ring_mask, cq_ring_mask; /* Ring sizes (constant, power of 2) */ u32 sq_ring_entries, cq_ring_entries; /* * Number of invalid entries dropped by the kernel due to * invalid index stored in array * * Written by the kernel, shouldn't be modified by the * application (i.e. get number of "new events" by comparing to * cached value). * * After a new SQ head value was read by the application this * counter includes all submissions that were dropped reaching * the new SQ head (and possibly more). */ u32 sq_dropped; /* * Runtime SQ flags * * Written by the kernel, shouldn't be modified by the * application. * * The application needs a full memory barrier before checking * for IORING_SQ_NEED_WAKEUP after updating the sq tail. */ u32 sq_flags; /* * Runtime CQ flags * * Written by the application, shouldn't be modified by the * kernel. */ u32 cq_flags; /* * Number of completion events lost because the queue was full; * this should be avoided by the application by making sure * there are not more requests pending than there is space in * the completion queue. * * Written by the kernel, shouldn't be modified by the * application (i.e. get number of "new events" by comparing to * cached value). * * As completion events come in out of order this counter is not * ordered with any other data. */ u32 cq_overflow; /* * Ring buffer of completion events. * * The kernel writes completion events fresh every time they are * produced, so the application is allowed to modify pending * entries. */ struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp; }; enum io_uring_cmd_flags { IO_URING_F_NONBLOCK = 1, IO_URING_F_COMPLETE_DEFER = 2, }; struct io_mapped_ubuf { u64 ubuf; u64 ubuf_end; unsigned int nr_bvecs; unsigned long acct_pages; struct bio_vec bvec[]; }; struct io_ring_ctx; struct io_overflow_cqe { struct io_uring_cqe cqe; struct list_head list; }; struct io_fixed_file { /* file * with additional FFS_* flags */ unsigned long file_ptr; }; struct io_rsrc_put { struct list_head list; u64 tag; union { void *rsrc; struct file *file; struct io_mapped_ubuf *buf; }; }; struct io_file_table { struct io_fixed_file *files; }; struct io_rsrc_node { struct percpu_ref refs; struct list_head node; struct list_head rsrc_list; struct io_rsrc_data *rsrc_data; struct llist_node llist; bool done; }; typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc); struct io_rsrc_data { struct io_ring_ctx *ctx; u64 **tags; unsigned int nr; rsrc_put_fn *do_put; atomic_t refs; struct completion done; bool quiesce; }; struct io_buffer { struct list_head list; __u64 addr; __u32 len; __u16 bid; }; struct io_restriction { DECLARE_BITMAP(register_op, IORING_REGISTER_LAST); DECLARE_BITMAP(sqe_op, IORING_OP_LAST); u8 sqe_flags_allowed; u8 sqe_flags_required; bool registered; }; enum { IO_SQ_THREAD_SHOULD_STOP = 0, IO_SQ_THREAD_SHOULD_PARK, }; struct io_sq_data { refcount_t refs; atomic_t park_pending; struct mutex lock; /* ctx's that are using this sqd */ struct list_head ctx_list; struct task_struct *thread; struct wait_queue_head wait; unsigned sq_thread_idle; int sq_cpu; pid_t task_pid; pid_t task_tgid; unsigned long state; struct completion exited; }; #define IO_COMPL_BATCH 32 #define IO_REQ_CACHE_SIZE 32 #define IO_REQ_ALLOC_BATCH 8 struct io_submit_link { struct io_kiocb *head; struct io_kiocb *last; }; struct io_submit_state { struct blk_plug plug; struct io_submit_link link; /* * io_kiocb alloc cache */ void *reqs[IO_REQ_CACHE_SIZE]; unsigned int free_reqs; bool plug_started; /* * Batch completion logic */ struct io_kiocb *compl_reqs[IO_COMPL_BATCH]; unsigned int compl_nr; /* inline/task_work completion list, under ->uring_lock */ struct list_head free_list; unsigned int ios_left; }; struct io_ring_ctx { /* const or read-mostly hot data */ struct { struct percpu_ref refs; struct io_rings *rings; unsigned int flags; unsigned int compat: 1; unsigned int drain_next: 1; unsigned int eventfd_async: 1; unsigned int restricted: 1; unsigned int off_timeout_used: 1; unsigned int drain_active: 1; } ____cacheline_aligned_in_smp; /* submission data */ struct { struct mutex uring_lock; /* * Ring buffer of indices into array of io_uring_sqe, which is * mmapped by the application using the IORING_OFF_SQES offset. * * This indirection could e.g. be used to assign fixed * io_uring_sqe entries to operations and only submit them to * the queue when needed. * * The kernel modifies neither the indices array nor the entries * array. */ u32 *sq_array; struct io_uring_sqe *sq_sqes; unsigned cached_sq_head; unsigned sq_entries; struct list_head defer_list; /* * Fixed resources fast path, should be accessed only under * uring_lock, and updated through io_uring_register(2) */ struct io_rsrc_node *rsrc_node; struct io_file_table file_table; unsigned nr_user_files; unsigned nr_user_bufs; struct io_mapped_ubuf **user_bufs; struct io_submit_state submit_state; struct list_head timeout_list; struct list_head ltimeout_list; struct list_head cq_overflow_list; struct xarray io_buffers; struct xarray personalities; u32 pers_next; unsigned sq_thread_idle; } ____cacheline_aligned_in_smp; /* IRQ completion list, under ->completion_lock */ struct list_head locked_free_list; unsigned int locked_free_nr; const struct cred *sq_creds; /* cred used for __io_sq_thread() */ struct io_sq_data *sq_data; /* if using sq thread polling */ struct wait_queue_head sqo_sq_wait; struct list_head sqd_list; unsigned long check_cq_overflow; struct { unsigned cached_cq_tail; unsigned cq_entries; struct eventfd_ctx *cq_ev_fd; struct wait_queue_head poll_wait; struct wait_queue_head cq_wait; unsigned cq_extra; atomic_t cq_timeouts; unsigned cq_last_tm_flush; } ____cacheline_aligned_in_smp; struct { spinlock_t completion_lock; spinlock_t timeout_lock; /* * ->iopoll_list is protected by the ctx->uring_lock for * io_uring instances that don't use IORING_SETUP_SQPOLL. * For SQPOLL, only the single threaded io_sq_thread() will * manipulate the list, hence no extra locking is needed there. */ struct list_head iopoll_list; struct hlist_head *cancel_hash; unsigned cancel_hash_bits; bool poll_multi_queue; } ____cacheline_aligned_in_smp; struct io_restriction restrictions; /* slow path rsrc auxilary data, used by update/register */ struct { struct io_rsrc_node *rsrc_backup_node; struct io_mapped_ubuf *dummy_ubuf; struct io_rsrc_data *file_data; struct io_rsrc_data *buf_data; struct delayed_work rsrc_put_work; struct llist_head rsrc_put_llist; struct list_head rsrc_ref_list; spinlock_t rsrc_ref_lock; }; /* Keep this last, we don't need it for the fast path */ struct { /* hashed buffered write serialization */ struct io_wq_hash *hash_map; /* Only used for accounting purposes */ struct user_struct *user; struct mm_struct *mm_account; /* ctx exit and cancelation */ struct llist_head fallback_llist; struct delayed_work fallback_work; struct work_struct exit_work; struct list_head tctx_list; struct completion ref_comp; u32 iowq_limits[2]; bool iowq_limits_set; }; }; struct io_uring_task { /* submission side */ int cached_refs; struct xarray xa; struct wait_queue_head wait; const struct io_ring_ctx *last; struct io_wq *io_wq; struct percpu_counter inflight; atomic_t inflight_tracked; atomic_t in_idle; spinlock_t task_lock; struct io_wq_work_list task_list; struct callback_head task_work; bool task_running; }; /* * First field must be the file pointer in all the * iocb unions! See also 'struct kiocb' in <linux/fs.h> */ struct io_poll_iocb { struct file *file; struct wait_queue_head *head; __poll_t events; int retries; struct wait_queue_entry wait; }; struct io_poll_update { struct file *file; u64 old_user_data; u64 new_user_data; __poll_t events; bool update_events; bool update_user_data; }; struct io_close { struct file *file; int fd; u32 file_slot; }; struct io_timeout_data { struct io_kiocb *req; struct hrtimer timer; struct timespec64 ts; enum hrtimer_mode mode; u32 flags; }; struct io_accept { struct file *file; struct sockaddr __user *addr; int __user *addr_len; int flags; u32 file_slot; unsigned long nofile; }; struct io_sync { struct file *file; loff_t len; loff_t off; int flags; int mode; }; struct io_cancel { struct file *file; u64 addr; }; struct io_timeout { struct file *file; u32 off; u32 target_seq; struct list_head list; /* head of the link, used by linked timeouts only */ struct io_kiocb *head; /* for linked completions */ struct io_kiocb *prev; }; struct io_timeout_rem { struct file *file; u64 addr; /* timeout update */ struct timespec64 ts; u32 flags; bool ltimeout; }; struct io_rw { /* NOTE: kiocb has the file as the first member, so don't do it here */ struct kiocb kiocb; u64 addr; u64 len; }; struct io_connect { struct file *file; struct sockaddr __user *addr; int addr_len; }; struct io_sr_msg { struct file *file; union { struct compat_msghdr __user *umsg_compat; struct user_msghdr __user *umsg; void __user *buf; }; int msg_flags; int bgid; size_t len; size_t done_io; struct io_buffer *kbuf; void __user *msg_control; }; struct io_open { struct file *file; int dfd; u32 file_slot; struct filename *filename; struct open_how how; unsigned long nofile; }; struct io_rsrc_update { struct file *file; u64 arg; u32 nr_args; u32 offset; }; struct io_fadvise { struct file *file; u64 offset; u32 len; u32 advice; }; struct io_madvise { struct file *file; u64 addr; u32 len; u32 advice; }; struct io_epoll { struct file *file; int epfd; int op; int fd; struct epoll_event event; }; struct io_splice { struct file *file_out; loff_t off_out; loff_t off_in; u64 len; int splice_fd_in; unsigned int flags; }; struct io_provide_buf { struct file *file; __u64 addr; __u32 len; __u32 bgid; __u16 nbufs; __u16 bid; }; struct io_statx { struct file *file; int dfd; unsigned int mask; unsigned int flags; const char __user *filename; struct statx __user *buffer; }; struct io_shutdown { struct file *file; int how; }; struct io_rename { struct file *file; int old_dfd; int new_dfd; struct filename *oldpath; struct filename *newpath; int flags; }; struct io_unlink { struct file *file; int dfd; int flags; struct filename *filename; }; struct io_mkdir { struct file *file; int dfd; umode_t mode; struct filename *filename; }; struct io_symlink { struct file *file; int new_dfd; struct filename *oldpath; struct filename *newpath; }; struct io_hardlink { struct file *file; int old_dfd; int new_dfd; struct filename *oldpath; struct filename *newpath; int flags; }; struct io_completion { struct file *file; u32 cflags; }; struct io_async_connect { struct sockaddr_storage address; }; struct io_async_msghdr { struct iovec fast_iov[UIO_FASTIOV]; /* points to an allocated iov, if NULL we use fast_iov instead */ struct iovec *free_iov; struct sockaddr __user *uaddr; struct msghdr msg; struct sockaddr_storage addr; }; struct io_async_rw { struct iovec fast_iov[UIO_FASTIOV]; const struct iovec *free_iovec; struct iov_iter iter; struct iov_iter_state iter_state; size_t bytes_done; struct wait_page_queue wpq; }; enum { REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT, REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT, REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT, REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT, REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT, REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT, /* first byte is taken by user flags, shift it to not overlap */ REQ_F_FAIL_BIT = 8, REQ_F_INFLIGHT_BIT, REQ_F_CUR_POS_BIT, REQ_F_NOWAIT_BIT, REQ_F_LINK_TIMEOUT_BIT, REQ_F_NEED_CLEANUP_BIT, REQ_F_POLLED_BIT, REQ_F_BUFFER_SELECTED_BIT, REQ_F_COMPLETE_INLINE_BIT, REQ_F_REISSUE_BIT, REQ_F_CREDS_BIT, REQ_F_REFCOUNT_BIT, REQ_F_ARM_LTIMEOUT_BIT, REQ_F_PARTIAL_IO_BIT, /* keep async read/write and isreg together and in order */ REQ_F_NOWAIT_READ_BIT, REQ_F_NOWAIT_WRITE_BIT, REQ_F_ISREG_BIT, /* not a real bit, just to check we're not overflowing the space */ __REQ_F_LAST_BIT, }; enum { /* ctx owns file */ REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT), /* drain existing IO first */ REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT), /* linked sqes */ REQ_F_LINK = BIT(REQ_F_LINK_BIT), /* doesn't sever on completion < 0 */ REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT), /* IOSQE_ASYNC */ REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT), /* IOSQE_BUFFER_SELECT */ REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT), /* fail rest of links */ REQ_F_FAIL = BIT(REQ_F_FAIL_BIT), /* on inflight list, should be cancelled and waited on exit reliably */ REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT), /* read/write uses file position */ REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT), /* must not punt to workers */ REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT), /* has or had linked timeout */ REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT), /* needs cleanup */ REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT), /* already went through poll handler */ REQ_F_POLLED = BIT(REQ_F_POLLED_BIT), /* buffer already selected */ REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT), /* completion is deferred through io_comp_state */ REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT), /* caller should reissue async */ REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT), /* supports async reads */ REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT), /* supports async writes */ REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT), /* regular file */ REQ_F_ISREG = BIT(REQ_F_ISREG_BIT), /* has creds assigned */ REQ_F_CREDS = BIT(REQ_F_CREDS_BIT), /* skip refcounting if not set */ REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT), /* there is a linked timeout that has to be armed */ REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT), /* request has already done partial IO */ REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT), }; struct async_poll { struct io_poll_iocb poll; struct io_poll_iocb *double_poll; }; typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked); struct io_task_work { union { struct io_wq_work_node node; struct llist_node fallback_node; }; io_req_tw_func_t func; }; enum { IORING_RSRC_FILE = 0, IORING_RSRC_BUFFER = 1, }; /* * NOTE! Each of the iocb union members has the file pointer * as the first entry in their struct definition. So you can * access the file pointer through any of the sub-structs, * or directly as just 'ki_filp' in this struct. */ struct io_kiocb { union { struct file *file; struct io_rw rw; struct io_poll_iocb poll; struct io_poll_update poll_update; struct io_accept accept; struct io_sync sync; struct io_cancel cancel; struct io_timeout timeout; struct io_timeout_rem timeout_rem; struct io_connect connect; struct io_sr_msg sr_msg; struct io_open open; struct io_close close; struct io_rsrc_update rsrc_update; struct io_fadvise fadvise; struct io_madvise madvise; struct io_epoll epoll; struct io_splice splice; struct io_provide_buf pbuf; struct io_statx statx; struct io_shutdown shutdown; struct io_rename rename; struct io_unlink unlink; struct io_mkdir mkdir; struct io_symlink symlink; struct io_hardlink hardlink; /* use only after cleaning per-op data, see io_clean_op() */ struct io_completion compl; }; /* opcode allocated if it needs to store data for async defer */ void *async_data; u8 opcode; /* polled IO has completed */ u8 iopoll_completed; u16 buf_index; u32 result; struct io_ring_ctx *ctx; unsigned int flags; atomic_t refs; struct task_struct *task; u64 user_data; struct io_kiocb *link; struct percpu_ref *fixed_rsrc_refs; /* used with ctx->iopoll_list with reads/writes */ struct list_head inflight_entry; struct io_task_work io_task_work; /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */ struct hlist_node hash_node; struct async_poll *apoll; struct io_wq_work work; const struct cred *creds; /* store used ubuf, so we can prevent reloading */ struct io_mapped_ubuf *imu; /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */ struct io_buffer *kbuf; atomic_t poll_refs; }; struct io_tctx_node { struct list_head ctx_node; struct task_struct *task; struct io_ring_ctx *ctx; }; struct io_defer_entry { struct list_head list; struct io_kiocb *req; u32 seq; }; struct io_op_def { /* needs req->file assigned */ unsigned needs_file : 1; /* hash wq insertion if file is a regular file */ unsigned hash_reg_file : 1; /* unbound wq insertion if file is a non-regular file */ unsigned unbound_nonreg_file : 1; /* opcode is not supported by this kernel */ unsigned not_supported : 1; /* set if opcode supports polled "wait" */ unsigned pollin : 1; unsigned pollout : 1; /* op supports buffer selection */ unsigned buffer_select : 1; /* do prep async if is going to be punted */ unsigned needs_async_setup : 1; /* should block plug */ unsigned plug : 1; /* size of async data needed, if any */ unsigned short async_size; }; static const struct io_op_def io_op_defs[] = { [IORING_OP_NOP] = {}, [IORING_OP_READV] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, .buffer_select = 1, .needs_async_setup = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_WRITEV] = { .needs_file = 1, .hash_reg_file = 1, .unbound_nonreg_file = 1, .pollout = 1, .needs_async_setup = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_FSYNC] = { .needs_file = 1, }, [IORING_OP_READ_FIXED] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_WRITE_FIXED] = { .needs_file = 1, .hash_reg_file = 1, .unbound_nonreg_file = 1, .pollout = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_POLL_ADD] = { .needs_file = 1, .unbound_nonreg_file = 1, }, [IORING_OP_POLL_REMOVE] = {}, [IORING_OP_SYNC_FILE_RANGE] = { .needs_file = 1, }, [IORING_OP_SENDMSG] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollout = 1, .needs_async_setup = 1, .async_size = sizeof(struct io_async_msghdr), }, [IORING_OP_RECVMSG] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, .buffer_select = 1, .needs_async_setup = 1, .async_size = sizeof(struct io_async_msghdr), }, [IORING_OP_TIMEOUT] = { .async_size = sizeof(struct io_timeout_data), }, [IORING_OP_TIMEOUT_REMOVE] = { /* used by timeout updates' prep() */ }, [IORING_OP_ACCEPT] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, }, [IORING_OP_ASYNC_CANCEL] = {}, [IORING_OP_LINK_TIMEOUT] = { .async_size = sizeof(struct io_timeout_data), }, [IORING_OP_CONNECT] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollout = 1, .needs_async_setup = 1, .async_size = sizeof(struct io_async_connect), }, [IORING_OP_FALLOCATE] = { .needs_file = 1, }, [IORING_OP_OPENAT] = {}, [IORING_OP_CLOSE] = {}, [IORING_OP_FILES_UPDATE] = {}, [IORING_OP_STATX] = {}, [IORING_OP_READ] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, .buffer_select = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_WRITE] = { .needs_file = 1, .hash_reg_file = 1, .unbound_nonreg_file = 1, .pollout = 1, .plug = 1, .async_size = sizeof(struct io_async_rw), }, [IORING_OP_FADVISE] = { .needs_file = 1, }, [IORING_OP_MADVISE] = {}, [IORING_OP_SEND] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollout = 1, }, [IORING_OP_RECV] = { .needs_file = 1, .unbound_nonreg_file = 1, .pollin = 1, .buffer_select = 1, }, [IORING_OP_OPENAT2] = { }, [IORING_OP_EPOLL_CTL] = { .unbound_nonreg_file = 1, }, [IORING_OP_SPLICE] = { .needs_file = 1, .hash_reg_file = 1, .unbound_nonreg_file = 1, }, [IORING_OP_PROVIDE_BUFFERS] = {}, [IORING_OP_REMOVE_BUFFERS] = {}, [IORING_OP_TEE] = { .needs_file = 1, .hash_reg_file = 1, .unbound_nonreg_file = 1, }, [IORING_OP_SHUTDOWN] = { .needs_file = 1, }, [IORING_OP_RENAMEAT] = {}, [IORING_OP_UNLINKAT] = {}, [IORING_OP_MKDIRAT] = {}, [IORING_OP_SYMLINKAT] = {}, [IORING_OP_LINKAT] = {}, }; /* requests with any of those set should undergo io_disarm_next() */ #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) static bool io_disarm_next(struct io_kiocb *req); static void io_uring_del_tctx_node(unsigned long index); static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all); static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags); static void io_put_req(struct io_kiocb *req); static void io_put_req_deferred(struct io_kiocb *req); static void io_dismantle_req(struct io_kiocb *req); static void io_queue_linked_timeout(struct io_kiocb *req); static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args); static void io_clean_op(struct io_kiocb *req); static struct file *io_file_get(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, bool fixed, unsigned int issue_flags); static void __io_queue_sqe(struct io_kiocb *req); static void io_rsrc_put_work(struct work_struct *work); static void io_req_task_queue(struct io_kiocb *req); static void io_submit_flush_completions(struct io_ring_ctx *ctx); static int io_req_prep_async(struct io_kiocb *req); static int io_install_fixed_file(struct io_kiocb *req, struct file *file, unsigned int issue_flags, u32 slot_index); static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags); static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer); static struct kmem_cache *req_cachep; static const struct file_operations io_uring_fops; static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked) { if (!*locked) { mutex_lock(&ctx->uring_lock); *locked = true; } } #define io_for_each_link(pos, head) \ for (pos = (head); pos; pos = pos->link) /* * Shamelessly stolen from the mm implementation of page reference checking, * see commit f958d7b528b1 for details. */ #define req_ref_zero_or_close_to_overflow(req) \ ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u) static inline bool req_ref_inc_not_zero(struct io_kiocb *req) { WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT)); return atomic_inc_not_zero(&req->refs); } static inline bool req_ref_put_and_test(struct io_kiocb *req) { if (likely(!(req->flags & REQ_F_REFCOUNT))) return true; WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); return atomic_dec_and_test(&req->refs); } static inline void req_ref_get(struct io_kiocb *req) { WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT)); WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); atomic_inc(&req->refs); } static inline void __io_req_set_refcount(struct io_kiocb *req, int nr) { if (!(req->flags & REQ_F_REFCOUNT)) { req->flags |= REQ_F_REFCOUNT; atomic_set(&req->refs, nr); } } static inline void io_req_set_refcount(struct io_kiocb *req) { __io_req_set_refcount(req, 1); } static inline void io_req_set_rsrc_node(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; if (!req->fixed_rsrc_refs) { req->fixed_rsrc_refs = &ctx->rsrc_node->refs; percpu_ref_get(req->fixed_rsrc_refs); } } static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl) { bool got = percpu_ref_tryget(ref); /* already at zero, wait for ->release() */ if (!got) wait_for_completion(compl); percpu_ref_resurrect(ref); if (got) percpu_ref_put(ref); } static bool io_match_task(struct io_kiocb *head, struct task_struct *task, bool cancel_all) __must_hold(&req->ctx->timeout_lock) { struct io_kiocb *req; if (task && head->task != task) return false; if (cancel_all) return true; io_for_each_link(req, head) { if (req->flags & REQ_F_INFLIGHT) return true; } return false; } static bool io_match_linked(struct io_kiocb *head) { struct io_kiocb *req; io_for_each_link(req, head) { if (req->flags & REQ_F_INFLIGHT) return true; } return false; } /* * As io_match_task() but protected against racing with linked timeouts. * User must not hold timeout_lock. */ static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task, bool cancel_all) { bool matched; if (task && head->task != task) return false; if (cancel_all) return true; if (head->flags & REQ_F_LINK_TIMEOUT) { struct io_ring_ctx *ctx = head->ctx; /* protect against races with linked timeouts */ spin_lock_irq(&ctx->timeout_lock); matched = io_match_linked(head); spin_unlock_irq(&ctx->timeout_lock); } else { matched = io_match_linked(head); } return matched; } static inline void req_set_fail(struct io_kiocb *req) { req->flags |= REQ_F_FAIL; } static inline void req_fail_link_node(struct io_kiocb *req, int res) { req_set_fail(req); req->result = res; } static void io_ring_ctx_ref_free(struct percpu_ref *ref) { struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); complete(&ctx->ref_comp); } static inline bool io_is_timeout_noseq(struct io_kiocb *req) { return !req->timeout.off; } static void io_fallback_req_func(struct work_struct *work) { struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, fallback_work.work); struct llist_node *node = llist_del_all(&ctx->fallback_llist); struct io_kiocb *req, *tmp; bool locked = false; percpu_ref_get(&ctx->refs); llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node) req->io_task_work.func(req, &locked); if (locked) { if (ctx->submit_state.compl_nr) io_submit_flush_completions(ctx); mutex_unlock(&ctx->uring_lock); } percpu_ref_put(&ctx->refs); } static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) { struct io_ring_ctx *ctx; int hash_bits; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; /* * Use 5 bits less than the max cq entries, that should give us around * 32 entries per hash list if totally full and uniformly spread. */ hash_bits = ilog2(p->cq_entries); hash_bits -= 5; if (hash_bits <= 0) hash_bits = 1; ctx->cancel_hash_bits = hash_bits; ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head), GFP_KERNEL); if (!ctx->cancel_hash) goto err; __hash_init(ctx->cancel_hash, 1U << hash_bits); ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL); if (!ctx->dummy_ubuf) goto err; /* set invalid range, so io_import_fixed() fails meeting it */ ctx->dummy_ubuf->ubuf = -1UL; if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) goto err; ctx->flags = p->flags; init_waitqueue_head(&ctx->sqo_sq_wait); INIT_LIST_HEAD(&ctx->sqd_list); init_waitqueue_head(&ctx->poll_wait); INIT_LIST_HEAD(&ctx->cq_overflow_list); init_completion(&ctx->ref_comp); xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1); xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); mutex_init(&ctx->uring_lock); init_waitqueue_head(&ctx->cq_wait); spin_lock_init(&ctx->completion_lock); spin_lock_init(&ctx->timeout_lock); INIT_LIST_HEAD(&ctx->iopoll_list); INIT_LIST_HEAD(&ctx->defer_list); INIT_LIST_HEAD(&ctx->timeout_list); INIT_LIST_HEAD(&ctx->ltimeout_list); spin_lock_init(&ctx->rsrc_ref_lock); INIT_LIST_HEAD(&ctx->rsrc_ref_list); INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work); init_llist_head(&ctx->rsrc_put_llist); INIT_LIST_HEAD(&ctx->tctx_list); INIT_LIST_HEAD(&ctx->submit_state.free_list); INIT_LIST_HEAD(&ctx->locked_free_list); INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); return ctx; err: kfree(ctx->dummy_ubuf); kfree(ctx->cancel_hash); kfree(ctx); return NULL; } static void io_account_cq_overflow(struct io_ring_ctx *ctx) { struct io_rings *r = ctx->rings; WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); ctx->cq_extra--; } static bool req_need_defer(struct io_kiocb *req, u32 seq) { if (unlikely(req->flags & REQ_F_IO_DRAIN)) { struct io_ring_ctx *ctx = req->ctx; return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; } return false; } #define FFS_ASYNC_READ 0x1UL #define FFS_ASYNC_WRITE 0x2UL #ifdef CONFIG_64BIT #define FFS_ISREG 0x4UL #else #define FFS_ISREG 0x0UL #endif #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG) static inline bool io_req_ffs_set(struct io_kiocb *req) { return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE); } static void io_req_track_inflight(struct io_kiocb *req) { if (!(req->flags & REQ_F_INFLIGHT)) { req->flags |= REQ_F_INFLIGHT; atomic_inc(&req->task->io_uring->inflight_tracked); } } static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) { if (WARN_ON_ONCE(!req->link)) return NULL; req->flags &= ~REQ_F_ARM_LTIMEOUT; req->flags |= REQ_F_LINK_TIMEOUT; /* linked timeouts should have two refs once prep'ed */ io_req_set_refcount(req); __io_req_set_refcount(req->link, 2); return req->link; } static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) { if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) return NULL; return __io_prep_linked_timeout(req); } static void io_prep_async_work(struct io_kiocb *req) { const struct io_op_def *def = &io_op_defs[req->opcode]; struct io_ring_ctx *ctx = req->ctx; if (!(req->flags & REQ_F_CREDS)) { req->flags |= REQ_F_CREDS; req->creds = get_current_cred(); } req->work.list.next = NULL; req->work.flags = 0; if (req->flags & REQ_F_FORCE_ASYNC) req->work.flags |= IO_WQ_WORK_CONCURRENT; if (req->flags & REQ_F_ISREG) { if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL)) io_wq_hash_work(&req->work, file_inode(req->file)); } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { if (def->unbound_nonreg_file) req->work.flags |= IO_WQ_WORK_UNBOUND; } } static void io_prep_async_link(struct io_kiocb *req) { struct io_kiocb *cur; if (req->flags & REQ_F_LINK_TIMEOUT) { struct io_ring_ctx *ctx = req->ctx; spin_lock_irq(&ctx->timeout_lock); io_for_each_link(cur, req) io_prep_async_work(cur); spin_unlock_irq(&ctx->timeout_lock); } else { io_for_each_link(cur, req) io_prep_async_work(cur); } } static void io_queue_async_work(struct io_kiocb *req, bool *locked) { struct io_ring_ctx *ctx = req->ctx; struct io_kiocb *link = io_prep_linked_timeout(req); struct io_uring_task *tctx = req->task->io_uring; /* must not take the lock, NULL it as a precaution */ locked = NULL; BUG_ON(!tctx); BUG_ON(!tctx->io_wq); /* init ->work of the whole link before punting */ io_prep_async_link(req); /* * Not expected to happen, but if we do have a bug where this _can_ * happen, catch it here and ensure the request is marked as * canceled. That will make io-wq go through the usual work cancel * procedure rather than attempt to run this request (or create a new * worker for it). */ if (WARN_ON_ONCE(!same_thread_group(req->task, current))) req->work.flags |= IO_WQ_WORK_CANCEL; trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req, &req->work, req->flags); io_wq_enqueue(tctx->io_wq, &req->work); if (link) io_queue_linked_timeout(link); } static void io_kill_timeout(struct io_kiocb *req, int status) __must_hold(&req->ctx->completion_lock) __must_hold(&req->ctx->timeout_lock) { struct io_timeout_data *io = req->async_data; if (hrtimer_try_to_cancel(&io->timer) != -1) { if (status) req_set_fail(req); atomic_set(&req->ctx->cq_timeouts, atomic_read(&req->ctx->cq_timeouts) + 1); list_del_init(&req->timeout.list); io_fill_cqe_req(req, status, 0); io_put_req_deferred(req); } } static void io_queue_deferred(struct io_ring_ctx *ctx) { lockdep_assert_held(&ctx->completion_lock); while (!list_empty(&ctx->defer_list)) { struct io_defer_entry *de = list_first_entry(&ctx->defer_list, struct io_defer_entry, list); if (req_need_defer(de->req, de->seq)) break; list_del_init(&de->list); io_req_task_queue(de->req); kfree(de); } } static void io_flush_timeouts(struct io_ring_ctx *ctx) __must_hold(&ctx->completion_lock) { u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts); struct io_kiocb *req, *tmp; spin_lock_irq(&ctx->timeout_lock); list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) { u32 events_needed, events_got; if (io_is_timeout_noseq(req)) break; /* * Since seq can easily wrap around over time, subtract * the last seq at which timeouts were flushed before comparing. * Assuming not more than 2^31-1 events have happened since, * these subtractions won't have wrapped, so we can check if * target is in [last_seq, current_seq] by comparing the two. */ events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush; events_got = seq - ctx->cq_last_tm_flush; if (events_got < events_needed) break; io_kill_timeout(req, 0); } ctx->cq_last_tm_flush = seq; spin_unlock_irq(&ctx->timeout_lock); } static void __io_commit_cqring_flush(struct io_ring_ctx *ctx) { if (ctx->off_timeout_used) io_flush_timeouts(ctx); if (ctx->drain_active) io_queue_deferred(ctx); } static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx) { return ctx->off_timeout_used || ctx->drain_active; } static inline void __io_commit_cqring(struct io_ring_ctx *ctx) { /* order cqe stores with ring update */ smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); } static inline void io_commit_cqring(struct io_ring_ctx *ctx) { if (unlikely(io_commit_needs_flush(ctx))) __io_commit_cqring_flush(ctx); __io_commit_cqring(ctx); } static inline bool io_sqring_full(struct io_ring_ctx *ctx) { struct io_rings *r = ctx->rings; /* * SQPOLL must use the actual sqring head, as using the cached_sq_head * is race prone if the SQPOLL thread has grabbed entries but not yet * committed them to the ring. For !SQPOLL, this doesn't matter, but * since this helper is just used for SQPOLL sqring waits (or POLLOUT), * just read the actual sqring head unconditionally. */ return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; } static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) { return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); } static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; unsigned tail, mask = ctx->cq_entries - 1; /* * writes to the cq entry need to come after reading head; the * control dependency is enough as we're using WRITE_ONCE to * fill the cq entry */ if (__io_cqring_events(ctx) == ctx->cq_entries) return NULL; tail = ctx->cached_cq_tail++; return &rings->cqes[tail & mask]; } static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx) { if (likely(!ctx->cq_ev_fd)) return false; if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED) return false; return !ctx->eventfd_async || io_wq_current_is_worker(); } /* * This should only get called when at least one event has been posted. * Some applications rely on the eventfd notification count only changing * IFF a new CQE has been added to the CQ ring. There's no depedency on * 1:1 relationship between how many times this function is called (and * hence the eventfd count) and number of CQEs posted to the CQ ring. */ static void io_cqring_ev_posted(struct io_ring_ctx *ctx) { /* * wake_up_all() may seem excessive, but io_wake_function() and * io_should_wake() handle the termination of the loop and only * wake as many waiters as we need to. */ if (wq_has_sleeper(&ctx->cq_wait)) __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait)) wake_up(&ctx->sq_data->wait); if (io_should_trigger_evfd(ctx)) eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE); if (waitqueue_active(&ctx->poll_wait)) __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); } static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx) { /* see waitqueue_active() comment */ smp_mb(); if (ctx->flags & IORING_SETUP_SQPOLL) { if (waitqueue_active(&ctx->cq_wait)) __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); } if (io_should_trigger_evfd(ctx)) eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE); if (waitqueue_active(&ctx->poll_wait)) __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0, poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); } /* Returns true if there are no backlogged entries after the flush */ static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force) { bool all_flushed, posted; if (!force && __io_cqring_events(ctx) == ctx->cq_entries) return false; posted = false; spin_lock(&ctx->completion_lock); while (!list_empty(&ctx->cq_overflow_list)) { struct io_uring_cqe *cqe = io_get_cqe(ctx); struct io_overflow_cqe *ocqe; if (!cqe && !force) break; ocqe = list_first_entry(&ctx->cq_overflow_list, struct io_overflow_cqe, list); if (cqe) memcpy(cqe, &ocqe->cqe, sizeof(*cqe)); else io_account_cq_overflow(ctx); posted = true; list_del(&ocqe->list); kfree(ocqe); } all_flushed = list_empty(&ctx->cq_overflow_list); if (all_flushed) { clear_bit(0, &ctx->check_cq_overflow); WRITE_ONCE(ctx->rings->sq_flags, ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW); } if (posted) io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); if (posted) io_cqring_ev_posted(ctx); return all_flushed; } static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx) { bool ret = true; if (test_bit(0, &ctx->check_cq_overflow)) { /* iopoll syncs against uring_lock, not completion_lock */ if (ctx->flags & IORING_SETUP_IOPOLL) mutex_lock(&ctx->uring_lock); ret = __io_cqring_overflow_flush(ctx, false); if (ctx->flags & IORING_SETUP_IOPOLL) mutex_unlock(&ctx->uring_lock); } return ret; } /* must to be called somewhat shortly after putting a request */ static inline void io_put_task(struct task_struct *task, int nr) { struct io_uring_task *tctx = task->io_uring; if (likely(task == current)) { tctx->cached_refs += nr; } else { percpu_counter_sub(&tctx->inflight, nr); if (unlikely(atomic_read(&tctx->in_idle))) wake_up(&tctx->wait); put_task_struct_many(task, nr); } } static void io_task_refs_refill(struct io_uring_task *tctx) { unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; percpu_counter_add(&tctx->inflight, refill); refcount_add(refill, ¤t->usage); tctx->cached_refs += refill; } static inline void io_get_task_refs(int nr) { struct io_uring_task *tctx = current->io_uring; tctx->cached_refs -= nr; if (unlikely(tctx->cached_refs < 0)) io_task_refs_refill(tctx); } static __cold void io_uring_drop_tctx_refs(struct task_struct *task) { struct io_uring_task *tctx = task->io_uring; unsigned int refs = tctx->cached_refs; if (refs) { tctx->cached_refs = 0; percpu_counter_sub(&tctx->inflight, refs); put_task_struct_many(task, refs); } } static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) { struct io_overflow_cqe *ocqe; ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT); if (!ocqe) { /* * If we're in ring overflow flush mode, or in task cancel mode, * or cannot allocate an overflow entry, then we need to drop it * on the floor. */ io_account_cq_overflow(ctx); return false; } if (list_empty(&ctx->cq_overflow_list)) { set_bit(0, &ctx->check_cq_overflow); WRITE_ONCE(ctx->rings->sq_flags, ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW); } ocqe->cqe.user_data = user_data; ocqe->cqe.res = res; ocqe->cqe.flags = cflags; list_add_tail(&ocqe->list, &ctx->cq_overflow_list); return true; } static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) { struct io_uring_cqe *cqe; trace_io_uring_complete(ctx, user_data, res, cflags); /* * If we can't get a cq entry, userspace overflowed the * submission (by quite a lot). Increment the overflow count in * the ring. */ cqe = io_get_cqe(ctx); if (likely(cqe)) { WRITE_ONCE(cqe->user_data, user_data); WRITE_ONCE(cqe->res, res); WRITE_ONCE(cqe->flags, cflags); return true; } return io_cqring_event_overflow(ctx, user_data, res, cflags); } static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags) { __io_fill_cqe(req->ctx, req->user_data, res, cflags); } static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) { ctx->cq_extra++; return __io_fill_cqe(ctx, user_data, res, cflags); } static void io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags) { struct io_ring_ctx *ctx = req->ctx; spin_lock(&ctx->completion_lock); __io_fill_cqe(ctx, req->user_data, res, cflags); /* * If we're the last reference to this request, add to our locked * free_list cache. */ if (req_ref_put_and_test(req)) { if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) { if (req->flags & IO_DISARM_MASK) io_disarm_next(req); if (req->link) { io_req_task_queue(req->link); req->link = NULL; } } io_dismantle_req(req); io_put_task(req->task, 1); list_add(&req->inflight_entry, &ctx->locked_free_list); ctx->locked_free_nr++; } else { if (!percpu_ref_tryget(&ctx->refs)) req = NULL; } io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); if (req) { io_cqring_ev_posted(ctx); percpu_ref_put(&ctx->refs); } } static inline bool io_req_needs_clean(struct io_kiocb *req) { return req->flags & IO_REQ_CLEAN_FLAGS; } static inline void io_req_complete_state(struct io_kiocb *req, s32 res, u32 cflags) { if (io_req_needs_clean(req)) io_clean_op(req); req->result = res; req->compl.cflags = cflags; req->flags |= REQ_F_COMPLETE_INLINE; } static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags, s32 res, u32 cflags) { if (issue_flags & IO_URING_F_COMPLETE_DEFER) io_req_complete_state(req, res, cflags); else io_req_complete_post(req, res, cflags); } static inline void io_req_complete(struct io_kiocb *req, s32 res) { __io_req_complete(req, 0, res, 0); } static void io_req_complete_failed(struct io_kiocb *req, s32 res) { req_set_fail(req); io_req_complete_post(req, res, 0); } static void io_req_complete_fail_submit(struct io_kiocb *req) { /* * We don't submit, fail them all, for that replace hardlinks with * normal links. Extra REQ_F_LINK is tolerated. */ req->flags &= ~REQ_F_HARDLINK; req->flags |= REQ_F_LINK; io_req_complete_failed(req, req->result); } /* * Don't initialise the fields below on every allocation, but do that in * advance and keep them valid across allocations. */ static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) { req->ctx = ctx; req->link = NULL; req->async_data = NULL; /* not necessary, but safer to zero */ req->result = 0; } static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, struct io_submit_state *state) { spin_lock(&ctx->completion_lock); list_splice_init(&ctx->locked_free_list, &state->free_list); ctx->locked_free_nr = 0; spin_unlock(&ctx->completion_lock); } /* Returns true IFF there are requests in the cache */ static bool io_flush_cached_reqs(struct io_ring_ctx *ctx) { struct io_submit_state *state = &ctx->submit_state; int nr; /* * If we have more than a batch's worth of requests in our IRQ side * locked cache, grab the lock and move them over to our submission * side cache. */ if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH) io_flush_cached_locked_reqs(ctx, state); nr = state->free_reqs; while (!list_empty(&state->free_list)) { struct io_kiocb *req = list_first_entry(&state->free_list, struct io_kiocb, inflight_entry); list_del(&req->inflight_entry); state->reqs[nr++] = req; if (nr == ARRAY_SIZE(state->reqs)) break; } state->free_reqs = nr; return nr != 0; } /* * A request might get retired back into the request caches even before opcode * handlers and io_issue_sqe() are done with it, e.g. inline completion path. * Because of that, io_alloc_req() should be called only under ->uring_lock * and with extra caution to not get a request that is still worked on. */ static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { struct io_submit_state *state = &ctx->submit_state; gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; int ret, i; BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH); if (likely(state->free_reqs || io_flush_cached_reqs(ctx))) goto got_req; ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH, state->reqs); /* * Bulk alloc is all-or-nothing. If we fail to get a batch, * retry single alloc to be on the safe side. */ if (unlikely(ret <= 0)) { state->reqs[0] = kmem_cache_alloc(req_cachep, gfp); if (!state->reqs[0]) return NULL; ret = 1; } for (i = 0; i < ret; i++) io_preinit_req(state->reqs[i], ctx); state->free_reqs = ret; got_req: state->free_reqs--; return state->reqs[state->free_reqs]; } static inline void io_put_file(struct file *file) { if (file) fput(file); } static void io_dismantle_req(struct io_kiocb *req) { unsigned int flags = req->flags; if (io_req_needs_clean(req)) io_clean_op(req); if (!(flags & REQ_F_FIXED_FILE)) io_put_file(req->file); if (req->fixed_rsrc_refs) percpu_ref_put(req->fixed_rsrc_refs); if (req->async_data) { kfree(req->async_data); req->async_data = NULL; } } static void __io_free_req(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; io_dismantle_req(req); io_put_task(req->task, 1); spin_lock(&ctx->completion_lock); list_add(&req->inflight_entry, &ctx->locked_free_list); ctx->locked_free_nr++; spin_unlock(&ctx->completion_lock); percpu_ref_put(&ctx->refs); } static inline void io_remove_next_linked(struct io_kiocb *req) { struct io_kiocb *nxt = req->link; req->link = nxt->link; nxt->link = NULL; } static bool io_kill_linked_timeout(struct io_kiocb *req) __must_hold(&req->ctx->completion_lock) __must_hold(&req->ctx->timeout_lock) { struct io_kiocb *link = req->link; if (link && link->opcode == IORING_OP_LINK_TIMEOUT) { struct io_timeout_data *io = link->async_data; io_remove_next_linked(req); link->timeout.head = NULL; if (hrtimer_try_to_cancel(&io->timer) != -1) { list_del(&link->timeout.list); io_fill_cqe_req(link, -ECANCELED, 0); io_put_req_deferred(link); return true; } } return false; } static void io_fail_links(struct io_kiocb *req) __must_hold(&req->ctx->completion_lock) { struct io_kiocb *nxt, *link = req->link; req->link = NULL; while (link) { long res = -ECANCELED; if (link->flags & REQ_F_FAIL) res = link->result; nxt = link->link; link->link = NULL; trace_io_uring_fail_link(req, link); io_fill_cqe_req(link, res, 0); io_put_req_deferred(link); link = nxt; } } static bool io_disarm_next(struct io_kiocb *req) __must_hold(&req->ctx->completion_lock) { bool posted = false; if (req->flags & REQ_F_ARM_LTIMEOUT) { struct io_kiocb *link = req->link; req->flags &= ~REQ_F_ARM_LTIMEOUT; if (link && link->opcode == IORING_OP_LINK_TIMEOUT) { io_remove_next_linked(req); io_fill_cqe_req(link, -ECANCELED, 0); io_put_req_deferred(link); posted = true; } } else if (req->flags & REQ_F_LINK_TIMEOUT) { struct io_ring_ctx *ctx = req->ctx; spin_lock_irq(&ctx->timeout_lock); posted = io_kill_linked_timeout(req); spin_unlock_irq(&ctx->timeout_lock); } if (unlikely((req->flags & REQ_F_FAIL) && !(req->flags & REQ_F_HARDLINK))) { posted |= (req->link != NULL); io_fail_links(req); } return posted; } static struct io_kiocb *__io_req_find_next(struct io_kiocb *req) { struct io_kiocb *nxt; /* * If LINK is set, we have dependent requests in this chain. If we * didn't fail this request, queue the first one up, moving any other * dependencies to the next request. In case of failure, fail the rest * of the chain. */ if (req->flags & IO_DISARM_MASK) { struct io_ring_ctx *ctx = req->ctx; bool posted; spin_lock(&ctx->completion_lock); posted = io_disarm_next(req); if (posted) io_commit_cqring(req->ctx); spin_unlock(&ctx->completion_lock); if (posted) io_cqring_ev_posted(ctx); } nxt = req->link; req->link = NULL; return nxt; } static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) { if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK)))) return NULL; return __io_req_find_next(req); } static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked) { if (!ctx) return; if (*locked) { if (ctx->submit_state.compl_nr) io_submit_flush_completions(ctx); mutex_unlock(&ctx->uring_lock); *locked = false; } percpu_ref_put(&ctx->refs); } static void tctx_task_work(struct callback_head *cb) { bool locked = false; struct io_ring_ctx *ctx = NULL; struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work); while (1) { struct io_wq_work_node *node; if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr) io_submit_flush_completions(ctx); spin_lock_irq(&tctx->task_lock); node = tctx->task_list.first; INIT_WQ_LIST(&tctx->task_list); if (!node) tctx->task_running = false; spin_unlock_irq(&tctx->task_lock); if (!node) break; do { struct io_wq_work_node *next = node->next; struct io_kiocb *req = container_of(node, struct io_kiocb, io_task_work.node); if (req->ctx != ctx) { ctx_flush_and_put(ctx, &locked); ctx = req->ctx; /* if not contended, grab and improve batching */ locked = mutex_trylock(&ctx->uring_lock); percpu_ref_get(&ctx->refs); } req->io_task_work.func(req, &locked); node = next; if (unlikely(need_resched())) { ctx_flush_and_put(ctx, &locked); ctx = NULL; cond_resched(); } } while (node); } ctx_flush_and_put(ctx, &locked); /* relaxed read is enough as only the task itself sets ->in_idle */ if (unlikely(atomic_read(&tctx->in_idle))) io_uring_drop_tctx_refs(current); } static void io_req_task_work_add(struct io_kiocb *req) { struct task_struct *tsk = req->task; struct io_uring_task *tctx = tsk->io_uring; enum task_work_notify_mode notify; struct io_wq_work_node *node; unsigned long flags; bool running; WARN_ON_ONCE(!tctx); spin_lock_irqsave(&tctx->task_lock, flags); wq_list_add_tail(&req->io_task_work.node, &tctx->task_list); running = tctx->task_running; if (!running) tctx->task_running = true; spin_unlock_irqrestore(&tctx->task_lock, flags); /* task_work already pending, we're done */ if (running) return; /* * SQPOLL kernel thread doesn't need notification, just a wakeup. For * all other cases, use TWA_SIGNAL unconditionally to ensure we're * processing task_work. There's no reliable way to tell if TWA_RESUME * will do the job. */ notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL; if (!task_work_add(tsk, &tctx->task_work, notify)) { wake_up_process(tsk); return; } spin_lock_irqsave(&tctx->task_lock, flags); tctx->task_running = false; node = tctx->task_list.first; INIT_WQ_LIST(&tctx->task_list); spin_unlock_irqrestore(&tctx->task_lock, flags); while (node) { req = container_of(node, struct io_kiocb, io_task_work.node); node = node->next; if (llist_add(&req->io_task_work.fallback_node, &req->ctx->fallback_llist)) schedule_delayed_work(&req->ctx->fallback_work, 1); } } static void io_req_task_cancel(struct io_kiocb *req, bool *locked) { struct io_ring_ctx *ctx = req->ctx; /* not needed for normal modes, but SQPOLL depends on it */ io_tw_lock(ctx, locked); io_req_complete_failed(req, req->result); } static void io_req_task_submit(struct io_kiocb *req, bool *locked) { struct io_ring_ctx *ctx = req->ctx; io_tw_lock(ctx, locked); /* req->task == current here, checking PF_EXITING is safe */ if (likely(!(req->task->flags & PF_EXITING))) __io_queue_sqe(req); else io_req_complete_failed(req, -EFAULT); } static void io_req_task_queue_fail(struct io_kiocb *req, int ret) { req->result = ret; req->io_task_work.func = io_req_task_cancel; io_req_task_work_add(req); } static void io_req_task_queue(struct io_kiocb *req) { req->io_task_work.func = io_req_task_submit; io_req_task_work_add(req); } static void io_req_task_queue_reissue(struct io_kiocb *req) { req->io_task_work.func = io_queue_async_work; io_req_task_work_add(req); } static inline void io_queue_next(struct io_kiocb *req) { struct io_kiocb *nxt = io_req_find_next(req); if (nxt) io_req_task_queue(nxt); } static void io_free_req(struct io_kiocb *req) { io_queue_next(req); __io_free_req(req); } static void io_free_req_work(struct io_kiocb *req, bool *locked) { io_free_req(req); } struct req_batch { struct task_struct *task; int task_refs; int ctx_refs; }; static inline void io_init_req_batch(struct req_batch *rb) { rb->task_refs = 0; rb->ctx_refs = 0; rb->task = NULL; } static void io_req_free_batch_finish(struct io_ring_ctx *ctx, struct req_batch *rb) { if (rb->ctx_refs) percpu_ref_put_many(&ctx->refs, rb->ctx_refs); if (rb->task) io_put_task(rb->task, rb->task_refs); } static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req, struct io_submit_state *state) { io_queue_next(req); io_dismantle_req(req); if (req->task != rb->task) { if (rb->task) io_put_task(rb->task, rb->task_refs); rb->task = req->task; rb->task_refs = 0; } rb->task_refs++; rb->ctx_refs++; if (state->free_reqs != ARRAY_SIZE(state->reqs)) state->reqs[state->free_reqs++] = req; else list_add(&req->inflight_entry, &state->free_list); } static void io_submit_flush_completions(struct io_ring_ctx *ctx) __must_hold(&ctx->uring_lock) { struct io_submit_state *state = &ctx->submit_state; int i, nr = state->compl_nr; struct req_batch rb; spin_lock(&ctx->completion_lock); for (i = 0; i < nr; i++) { struct io_kiocb *req = state->compl_reqs[i]; __io_fill_cqe(ctx, req->user_data, req->result, req->compl.cflags); } io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); io_cqring_ev_posted(ctx); io_init_req_batch(&rb); for (i = 0; i < nr; i++) { struct io_kiocb *req = state->compl_reqs[i]; if (req_ref_put_and_test(req)) io_req_free_batch(&rb, req, &ctx->submit_state); } io_req_free_batch_finish(ctx, &rb); state->compl_nr = 0; } /* * Drop reference to request, return next in chain (if there is one) if this * was the last reference to this request. */ static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req) { struct io_kiocb *nxt = NULL; if (req_ref_put_and_test(req)) { nxt = io_req_find_next(req); __io_free_req(req); } return nxt; } static inline void io_put_req(struct io_kiocb *req) { if (req_ref_put_and_test(req)) io_free_req(req); } static inline void io_put_req_deferred(struct io_kiocb *req) { if (req_ref_put_and_test(req)) { req->io_task_work.func = io_free_req_work; io_req_task_work_add(req); } } static unsigned io_cqring_events(struct io_ring_ctx *ctx) { /* See comment at the top of this file */ smp_rmb(); return __io_cqring_events(ctx); } static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; /* make sure SQ entry isn't read before tail */ return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; } static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf) { unsigned int cflags; cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT; cflags |= IORING_CQE_F_BUFFER; req->flags &= ~REQ_F_BUFFER_SELECTED; kfree(kbuf); return cflags; } static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req) { struct io_buffer *kbuf; if (likely(!(req->flags & REQ_F_BUFFER_SELECTED))) return 0; kbuf = (struct io_buffer *) (unsigned long) req->rw.addr; return io_put_kbuf(req, kbuf); } static inline bool io_run_task_work(void) { /* * PF_IO_WORKER never returns to userspace, so check here if we have * notify work that needs processing. */ if (current->flags & PF_IO_WORKER && test_thread_flag(TIF_NOTIFY_RESUME)) { __set_current_state(TASK_RUNNING); tracehook_notify_resume(NULL); } if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) { __set_current_state(TASK_RUNNING); tracehook_notify_signal(); return true; } return false; } /* * Find and free completed poll iocbs */ static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events, struct list_head *done) { struct req_batch rb; struct io_kiocb *req; /* order with ->result store in io_complete_rw_iopoll() */ smp_rmb(); io_init_req_batch(&rb); while (!list_empty(done)) { struct io_uring_cqe *cqe; unsigned cflags; req = list_first_entry(done, struct io_kiocb, inflight_entry); list_del(&req->inflight_entry); cflags = io_put_rw_kbuf(req); (*nr_events)++; cqe = io_get_cqe(ctx); if (cqe) { WRITE_ONCE(cqe->user_data, req->user_data); WRITE_ONCE(cqe->res, req->result); WRITE_ONCE(cqe->flags, cflags); } else { spin_lock(&ctx->completion_lock); io_cqring_event_overflow(ctx, req->user_data, req->result, cflags); spin_unlock(&ctx->completion_lock); } if (req_ref_put_and_test(req)) io_req_free_batch(&rb, req, &ctx->submit_state); } if (io_commit_needs_flush(ctx)) { spin_lock(&ctx->completion_lock); __io_commit_cqring_flush(ctx); spin_unlock(&ctx->completion_lock); } __io_commit_cqring(ctx); io_cqring_ev_posted_iopoll(ctx); io_req_free_batch_finish(ctx, &rb); } static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events, long min) { struct io_kiocb *req, *tmp; LIST_HEAD(done); bool spin; /* * Only spin for completions if we don't have multiple devices hanging * off our complete list, and we're under the requested amount. */ spin = !ctx->poll_multi_queue && *nr_events < min; list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) { struct kiocb *kiocb = &req->rw.kiocb; int ret; /* * Move completed and retryable entries to our local lists. * If we find a request that requires polling, break out * and complete those lists first, if we have entries there. */ if (READ_ONCE(req->iopoll_completed)) { list_move_tail(&req->inflight_entry, &done); continue; } if (!list_empty(&done)) break; ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin); if (unlikely(ret < 0)) return ret; else if (ret) spin = false; /* iopoll may have completed current req */ if (READ_ONCE(req->iopoll_completed)) list_move_tail(&req->inflight_entry, &done); } if (!list_empty(&done)) io_iopoll_complete(ctx, nr_events, &done); return 0; } /* * We can't just wait for polled events to come to us, we have to actively * find and complete them. */ static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) { if (!(ctx->flags & IORING_SETUP_IOPOLL)) return; percpu_ref_get(&ctx->refs); mutex_lock(&ctx->uring_lock); while (!list_empty(&ctx->iopoll_list)) { unsigned int nr_events = 0; io_do_iopoll(ctx, &nr_events, 0); /* let it sleep and repeat later if can't complete a request */ if (nr_events == 0) break; /* * Ensure we allow local-to-the-cpu processing to take place, * in this case we need to ensure that we reap all events. * Also let task_work, etc. to progress by releasing the mutex */ if (need_resched()) { mutex_unlock(&ctx->uring_lock); cond_resched(); mutex_lock(&ctx->uring_lock); } } mutex_unlock(&ctx->uring_lock); percpu_ref_put(&ctx->refs); } static int io_iopoll_check(struct io_ring_ctx *ctx, long min) { unsigned int nr_events = 0; int ret = 0; /* * We disallow the app entering submit/complete with polling, but we * still need to lock the ring to prevent racing with polled issue * that got punted to a workqueue. */ mutex_lock(&ctx->uring_lock); /* * Don't enter poll loop if we already have events pending. * If we do, we can potentially be spinning for commands that * already triggered a CQE (eg in error). */ if (test_bit(0, &ctx->check_cq_overflow)) __io_cqring_overflow_flush(ctx, false); if (io_cqring_events(ctx)) goto out; do { /* * If a submit got punted to a workqueue, we can have the * application entering polling for a command before it gets * issued. That app will hold the uring_lock for the duration * of the poll right here, so we need to take a breather every * now and then to ensure that the issue has a chance to add * the poll to the issued list. Otherwise we can spin here * forever, while the workqueue is stuck trying to acquire the * very same mutex. */ if (list_empty(&ctx->iopoll_list)) { u32 tail = ctx->cached_cq_tail; mutex_unlock(&ctx->uring_lock); io_run_task_work(); mutex_lock(&ctx->uring_lock); /* some requests don't go through iopoll_list */ if (tail != ctx->cached_cq_tail || list_empty(&ctx->iopoll_list)) break; } ret = io_do_iopoll(ctx, &nr_events, min); if (task_sigpending(current)) { ret = -EINTR; goto out; } } while (!ret && nr_events < min && !need_resched()); out: mutex_unlock(&ctx->uring_lock); return ret; } static void io_req_end_write(struct io_kiocb *req) { if (req->flags & REQ_F_ISREG) { struct io_rw *rw = &req->rw; kiocb_end_write(&rw->kiocb); } } #ifdef CONFIG_BLOCK static bool io_resubmit_prep(struct io_kiocb *req) { struct io_async_rw *rw = req->async_data; if (!rw) return !io_req_prep_async(req); iov_iter_restore(&rw->iter, &rw->iter_state); return true; } static bool io_rw_should_reissue(struct io_kiocb *req) { umode_t mode = file_inode(req->file)->i_mode; struct io_ring_ctx *ctx = req->ctx; if (!S_ISBLK(mode) && !S_ISREG(mode)) return false; if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && !(ctx->flags & IORING_SETUP_IOPOLL))) return false; /* * If ref is dying, we might be running poll reap from the exit work. * Don't attempt to reissue from that path, just let it fail with * -EAGAIN. */ if (percpu_ref_is_dying(&ctx->refs)) return false; /* * Play it safe and assume not safe to re-import and reissue if we're * not in the original thread group (or in task context). */ if (!same_thread_group(req->task, current) || !in_task()) return false; return true; } #else static bool io_resubmit_prep(struct io_kiocb *req) { return false; } static bool io_rw_should_reissue(struct io_kiocb *req) { return false; } #endif /* * Trigger the notifications after having done some IO, and finish the write * accounting, if any. */ static void io_req_io_end(struct io_kiocb *req) { struct io_rw *rw = &req->rw; if (rw->kiocb.ki_flags & IOCB_WRITE) { io_req_end_write(req); fsnotify_modify(req->file); } else { fsnotify_access(req->file); } } static bool __io_complete_rw_common(struct io_kiocb *req, long res) { if (res != req->result) { if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_should_reissue(req)) { /* * Reissue will start accounting again, finish the * current cycle. */ io_req_io_end(req); req->flags |= REQ_F_REISSUE; return true; } req_set_fail(req); req->result = res; } return false; } static inline int io_fixup_rw_res(struct io_kiocb *req, long res) { struct io_async_rw *io = req->async_data; /* add previously done IO, if any */ if (io && io->bytes_done > 0) { if (res < 0) res = io->bytes_done; else res += io->bytes_done; } return res; } static void io_req_task_complete(struct io_kiocb *req, bool *locked) { unsigned int cflags = io_put_rw_kbuf(req); int res = req->result; if (*locked) { struct io_ring_ctx *ctx = req->ctx; struct io_submit_state *state = &ctx->submit_state; io_req_complete_state(req, res, cflags); state->compl_reqs[state->compl_nr++] = req; if (state->compl_nr == ARRAY_SIZE(state->compl_reqs)) io_submit_flush_completions(ctx); } else { io_req_complete_post(req, res, cflags); } } static void io_req_rw_complete(struct io_kiocb *req, bool *locked) { io_req_io_end(req); io_req_task_complete(req, locked); } static void io_complete_rw(struct kiocb *kiocb, long res, long res2) { struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb); if (__io_complete_rw_common(req, res)) return; req->result = io_fixup_rw_res(req, res); req->io_task_work.func = io_req_rw_complete; io_req_task_work_add(req); } static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2) { struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb); if (kiocb->ki_flags & IOCB_WRITE) io_req_end_write(req); if (unlikely(res != req->result)) { if (res == -EAGAIN && io_rw_should_reissue(req)) { req->flags |= REQ_F_REISSUE; return; } } WRITE_ONCE(req->result, res); /* order with io_iopoll_complete() checking ->result */ smp_wmb(); WRITE_ONCE(req->iopoll_completed, 1); } /* * After the iocb has been issued, it's safe to be found on the poll list. * Adding the kiocb to the list AFTER submission ensures that we don't * find it from a io_do_iopoll() thread before the issuer is done * accessing the kiocb cookie. */ static void io_iopoll_req_issued(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; const bool in_async = io_wq_current_is_worker(); /* workqueue context doesn't hold uring_lock, grab it now */ if (unlikely(in_async)) mutex_lock(&ctx->uring_lock); /* * Track whether we have multiple files in our lists. This will impact * how we do polling eventually, not spinning if we're on potentially * different devices. */ if (list_empty(&ctx->iopoll_list)) { ctx->poll_multi_queue = false; } else if (!ctx->poll_multi_queue) { struct io_kiocb *list_req; unsigned int queue_num0, queue_num1; list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb, inflight_entry); if (list_req->file != req->file) { ctx->poll_multi_queue = true; } else { queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie); queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie); if (queue_num0 != queue_num1) ctx->poll_multi_queue = true; } } /* * For fast devices, IO may have already completed. If it has, add * it to the front so we find it first. */ if (READ_ONCE(req->iopoll_completed)) list_add(&req->inflight_entry, &ctx->iopoll_list); else list_add_tail(&req->inflight_entry, &ctx->iopoll_list); if (unlikely(in_async)) { /* * If IORING_SETUP_SQPOLL is enabled, sqes are either handle * in sq thread task context or in io worker task context. If * current task context is sq thread, we don't need to check * whether should wake up sq thread. */ if ((ctx->flags & IORING_SETUP_SQPOLL) && wq_has_sleeper(&ctx->sq_data->wait)) wake_up(&ctx->sq_data->wait); mutex_unlock(&ctx->uring_lock); } } static bool io_bdev_nowait(struct block_device *bdev) { return !bdev || blk_queue_nowait(bdev_get_queue(bdev)); } /* * If we tracked the file through the SCM inflight mechanism, we could support * any file. For now, just ensure that anything potentially problematic is done * inline. */ static bool __io_file_supports_nowait(struct file *file, int rw) { umode_t mode = file_inode(file)->i_mode; if (S_ISBLK(mode)) { if (IS_ENABLED(CONFIG_BLOCK) && io_bdev_nowait(I_BDEV(file->f_mapping->host))) return true; return false; } if (S_ISSOCK(mode)) return true; if (S_ISREG(mode)) { if (IS_ENABLED(CONFIG_BLOCK) && io_bdev_nowait(file->f_inode->i_sb->s_bdev) && file->f_op != &io_uring_fops) return true; return false; } /* any ->read/write should understand O_NONBLOCK */ if (file->f_flags & O_NONBLOCK) return true; if (!(file->f_mode & FMODE_NOWAIT)) return false; if (rw == READ) return file->f_op->read_iter != NULL; return file->f_op->write_iter != NULL; } static bool io_file_supports_nowait(struct io_kiocb *req, int rw) { if (rw == READ && (req->flags & REQ_F_NOWAIT_READ)) return true; else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE)) return true; return __io_file_supports_nowait(req->file, rw); } static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, int rw) { struct io_ring_ctx *ctx = req->ctx; struct kiocb *kiocb = &req->rw.kiocb; struct file *file = req->file; unsigned ioprio; int ret; if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode)) req->flags |= REQ_F_ISREG; kiocb->ki_pos = READ_ONCE(sqe->off); kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp)); kiocb->ki_flags = iocb_flags(kiocb->ki_filp); ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags)); if (unlikely(ret)) return ret; /* * If the file is marked O_NONBLOCK, still allow retry for it if it * supports async. Otherwise it's impossible to use O_NONBLOCK files * reliably. If not, or it IOCB_NOWAIT is set, don't retry. */ if ((kiocb->ki_flags & IOCB_NOWAIT) || ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw))) req->flags |= REQ_F_NOWAIT; ioprio = READ_ONCE(sqe->ioprio); if (ioprio) { ret = ioprio_check_cap(ioprio); if (ret) return ret; kiocb->ki_ioprio = ioprio; } else kiocb->ki_ioprio = get_current_ioprio(); if (ctx->flags & IORING_SETUP_IOPOLL) { if (!(kiocb->ki_flags & IOCB_DIRECT) || !kiocb->ki_filp->f_op->iopoll) return -EOPNOTSUPP; kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE; kiocb->ki_complete = io_complete_rw_iopoll; req->iopoll_completed = 0; } else { if (kiocb->ki_flags & IOCB_HIPRI) return -EINVAL; kiocb->ki_complete = io_complete_rw; } /* used for fixed read/write too - just read unconditionally */ req->buf_index = READ_ONCE(sqe->buf_index); req->imu = NULL; if (req->opcode == IORING_OP_READ_FIXED || req->opcode == IORING_OP_WRITE_FIXED) { struct io_ring_ctx *ctx = req->ctx; u16 index; if (unlikely(req->buf_index >= ctx->nr_user_bufs)) return -EFAULT; index = array_index_nospec(req->buf_index, ctx->nr_user_bufs); req->imu = ctx->user_bufs[index]; io_req_set_rsrc_node(req); } req->rw.addr = READ_ONCE(sqe->addr); req->rw.len = READ_ONCE(sqe->len); return 0; } static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) { switch (ret) { case -EIOCBQUEUED: break; case -ERESTARTSYS: case -ERESTARTNOINTR: case -ERESTARTNOHAND: case -ERESTART_RESTARTBLOCK: /* * We can't just restart the syscall, since previously * submitted sqes may already be in progress. Just fail this * IO with EINTR. */ ret = -EINTR; fallthrough; default: kiocb->ki_complete(kiocb, ret, 0); } } static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) { struct kiocb *kiocb = &req->rw.kiocb; if (kiocb->ki_pos != -1) return &kiocb->ki_pos; if (!(req->file->f_mode & FMODE_STREAM)) { req->flags |= REQ_F_CUR_POS; kiocb->ki_pos = req->file->f_pos; return &kiocb->ki_pos; } kiocb->ki_pos = 0; return NULL; } static void kiocb_done(struct kiocb *kiocb, ssize_t ret, unsigned int issue_flags) { struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb); if (req->flags & REQ_F_CUR_POS) req->file->f_pos = kiocb->ki_pos; if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) { if (!__io_complete_rw_common(req, ret)) { /* * Safe to call io_end from here as we're inline * from the submission path. */ io_req_io_end(req); __io_req_complete(req, issue_flags, io_fixup_rw_res(req, ret), io_put_rw_kbuf(req)); } } else { io_rw_done(kiocb, ret); } if (req->flags & REQ_F_REISSUE) { req->flags &= ~REQ_F_REISSUE; if (io_resubmit_prep(req)) { io_req_task_queue_reissue(req); } else { unsigned int cflags = io_put_rw_kbuf(req); struct io_ring_ctx *ctx = req->ctx; ret = io_fixup_rw_res(req, ret); req_set_fail(req); if (!(issue_flags & IO_URING_F_NONBLOCK)) { mutex_lock(&ctx->uring_lock); __io_req_complete(req, issue_flags, ret, cflags); mutex_unlock(&ctx->uring_lock); } else { __io_req_complete(req, issue_flags, ret, cflags); } } } } static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter, struct io_mapped_ubuf *imu) { size_t len = req->rw.len; u64 buf_end, buf_addr = req->rw.addr; size_t offset; if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end))) return -EFAULT; /* not inside the mapped region */ if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end)) return -EFAULT; /* * May not be a start of buffer, set size appropriately * and advance us to the beginning. */ offset = buf_addr - imu->ubuf; iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len); if (offset) { /* * Don't use iov_iter_advance() here, as it's really slow for * using the latter parts of a big fixed buffer - it iterates * over each segment manually. We can cheat a bit here, because * we know that: * * 1) it's a BVEC iter, we set it up * 2) all bvecs are PAGE_SIZE in size, except potentially the * first and last bvec * * So just find our index, and adjust the iterator afterwards. * If the offset is within the first bvec (or the whole first * bvec, just use iov_iter_advance(). This makes it easier * since we can just skip the first segment, which may not * be PAGE_SIZE aligned. */ const struct bio_vec *bvec = imu->bvec; if (offset < bvec->bv_len) { iov_iter_advance(iter, offset); } else { unsigned long seg_skip; /* skip first vec */ offset -= bvec->bv_len; seg_skip = 1 + (offset >> PAGE_SHIFT); iter->bvec = bvec + seg_skip; iter->nr_segs -= seg_skip; iter->count -= bvec->bv_len + offset; iter->iov_offset = offset & ~PAGE_MASK; } } return 0; } static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter) { if (WARN_ON_ONCE(!req->imu)) return -EFAULT; return __io_import_fixed(req, rw, iter, req->imu); } static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock) { if (needs_lock) mutex_unlock(&ctx->uring_lock); } static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock) { /* * "Normal" inline submissions always hold the uring_lock, since we * grab it from the system call. Same is true for the SQPOLL offload. * The only exception is when we've detached the request and issue it * from an async worker thread, grab the lock for that case. */ if (needs_lock) mutex_lock(&ctx->uring_lock); } static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len, int bgid, struct io_buffer *kbuf, bool needs_lock) { struct io_buffer *head; if (req->flags & REQ_F_BUFFER_SELECTED) return kbuf; io_ring_submit_lock(req->ctx, needs_lock); lockdep_assert_held(&req->ctx->uring_lock); head = xa_load(&req->ctx->io_buffers, bgid); if (head) { if (!list_empty(&head->list)) { kbuf = list_last_entry(&head->list, struct io_buffer, list); list_del(&kbuf->list); } else { kbuf = head; xa_erase(&req->ctx->io_buffers, bgid); } if (*len > kbuf->len) *len = kbuf->len; } else { kbuf = ERR_PTR(-ENOBUFS); } io_ring_submit_unlock(req->ctx, needs_lock); return kbuf; } static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len, bool needs_lock) { struct io_buffer *kbuf; u16 bgid; kbuf = (struct io_buffer *) (unsigned long) req->rw.addr; bgid = req->buf_index; kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock); if (IS_ERR(kbuf)) return kbuf; req->rw.addr = (u64) (unsigned long) kbuf; req->flags |= REQ_F_BUFFER_SELECTED; return u64_to_user_ptr(kbuf->addr); } #ifdef CONFIG_COMPAT static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov, bool needs_lock) { struct compat_iovec __user *uiov; compat_ssize_t clen; void __user *buf; ssize_t len; uiov = u64_to_user_ptr(req->rw.addr); if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(clen, &uiov->iov_len)) return -EFAULT; if (clen < 0) return -EINVAL; len = clen; buf = io_rw_buffer_select(req, &len, needs_lock); if (IS_ERR(buf)) return PTR_ERR(buf); iov[0].iov_base = buf; iov[0].iov_len = (compat_size_t) len; return 0; } #endif static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock) { struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr); void __user *buf; ssize_t len; if (copy_from_user(iov, uiov, sizeof(*uiov))) return -EFAULT; len = iov[0].iov_len; if (len < 0) return -EINVAL; buf = io_rw_buffer_select(req, &len, needs_lock); if (IS_ERR(buf)) return PTR_ERR(buf); iov[0].iov_base = buf; iov[0].iov_len = len; return 0; } static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock) { if (req->flags & REQ_F_BUFFER_SELECTED) { struct io_buffer *kbuf; kbuf = (struct io_buffer *) (unsigned long) req->rw.addr; iov[0].iov_base = u64_to_user_ptr(kbuf->addr); iov[0].iov_len = kbuf->len; return 0; } if (req->rw.len != 1) return -EINVAL; #ifdef CONFIG_COMPAT if (req->ctx->compat) return io_compat_import(req, iov, needs_lock); #endif return __io_iov_buffer_select(req, iov, needs_lock); } static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec, struct iov_iter *iter, bool needs_lock) { void __user *buf = u64_to_user_ptr(req->rw.addr); size_t sqe_len = req->rw.len; u8 opcode = req->opcode; ssize_t ret; if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) { *iovec = NULL; return io_import_fixed(req, rw, iter); } /* buffer index only valid with fixed read/write, or buffer select */ if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT)) return -EINVAL; if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) { if (req->flags & REQ_F_BUFFER_SELECT) { buf = io_rw_buffer_select(req, &sqe_len, needs_lock); if (IS_ERR(buf)) return PTR_ERR(buf); req->rw.len = sqe_len; } ret = import_single_range(rw, buf, sqe_len, *iovec, iter); *iovec = NULL; return ret; } if (req->flags & REQ_F_BUFFER_SELECT) { ret = io_iov_buffer_select(req, *iovec, needs_lock); if (!ret) iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len); *iovec = NULL; return ret; } return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter, req->ctx->compat); } static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) { return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; } /* * For files that don't have ->read_iter() and ->write_iter(), handle them * by looping over ->read() or ->write() manually. */ static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter) { struct kiocb *kiocb = &req->rw.kiocb; struct file *file = req->file; ssize_t ret = 0; loff_t *ppos; /* * Don't support polled IO through this interface, and we can't * support non-blocking either. For the latter, this just causes * the kiocb to be handled from an async context. */ if (kiocb->ki_flags & IOCB_HIPRI) return -EOPNOTSUPP; if (kiocb->ki_flags & IOCB_NOWAIT) return -EAGAIN; ppos = io_kiocb_ppos(kiocb); while (iov_iter_count(iter)) { struct iovec iovec; ssize_t nr; if (!iov_iter_is_bvec(iter)) { iovec = iov_iter_iovec(iter); } else { iovec.iov_base = u64_to_user_ptr(req->rw.addr); iovec.iov_len = req->rw.len; } if (rw == READ) { nr = file->f_op->read(file, iovec.iov_base, iovec.iov_len, ppos); } else { nr = file->f_op->write(file, iovec.iov_base, iovec.iov_len, ppos); } if (nr < 0) { if (!ret) ret = nr; break; } ret += nr; if (!iov_iter_is_bvec(iter)) { iov_iter_advance(iter, nr); } else { req->rw.addr += nr; req->rw.len -= nr; if (!req->rw.len) break; } if (nr != iovec.iov_len) break; } return ret; } static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter) { struct io_async_rw *rw = req->async_data; memcpy(&rw->iter, iter, sizeof(*iter)); rw->free_iovec = iovec; rw->bytes_done = 0; /* can only be fixed buffers, no need to do anything */ if (iov_iter_is_bvec(iter)) return; if (!iovec) { unsigned iov_off = 0; rw->iter.iov = rw->fast_iov; if (iter->iov != fast_iov) { iov_off = iter->iov - fast_iov; rw->iter.iov += iov_off; } if (rw->fast_iov != fast_iov) memcpy(rw->fast_iov + iov_off, fast_iov + iov_off, sizeof(struct iovec) * iter->nr_segs); } else { req->flags |= REQ_F_NEED_CLEANUP; } } static inline int io_alloc_async_data(struct io_kiocb *req) { WARN_ON_ONCE(!io_op_defs[req->opcode].async_size); req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL); return req->async_data == NULL; } static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter, bool force) { if (!force && !io_op_defs[req->opcode].needs_async_setup) return 0; if (!req->async_data) { struct io_async_rw *iorw; if (io_alloc_async_data(req)) { kfree(iovec); return -ENOMEM; } io_req_map_rw(req, iovec, fast_iov, iter); iorw = req->async_data; /* we've copied and mapped the iter, ensure state is saved */ iov_iter_save_state(&iorw->iter, &iorw->iter_state); } return 0; } static inline int io_rw_prep_async(struct io_kiocb *req, int rw) { struct io_async_rw *iorw = req->async_data; struct iovec *iov = iorw->fast_iov; int ret; iorw->bytes_done = 0; iorw->free_iovec = NULL; ret = io_import_iovec(rw, req, &iov, &iorw->iter, false); if (unlikely(ret < 0)) return ret; if (iov) { iorw->free_iovec = iov; req->flags |= REQ_F_NEED_CLEANUP; } iov_iter_save_state(&iorw->iter, &iorw->iter_state); return 0; } static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(!(req->file->f_mode & FMODE_READ))) return -EBADF; return io_prep_rw(req, sqe, READ); } /* * This is our waitqueue callback handler, registered through lock_page_async() * when we initially tried to do the IO with the iocb armed our waitqueue. * This gets called when the page is unlocked, and we generally expect that to * happen when the page IO is completed and the page is now uptodate. This will * queue a task_work based retry of the operation, attempting to copy the data * again. If the latter fails because the page was NOT uptodate, then we will * do a thread based blocking retry of the operation. That's the unexpected * slow path. */ static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, int sync, void *arg) { struct wait_page_queue *wpq; struct io_kiocb *req = wait->private; struct wait_page_key *key = arg; wpq = container_of(wait, struct wait_page_queue, wait); if (!wake_page_match(wpq, key)) return 0; req->rw.kiocb.ki_flags &= ~IOCB_WAITQ; list_del_init(&wait->entry); io_req_task_queue(req); return 1; } /* * This controls whether a given IO request should be armed for async page * based retry. If we return false here, the request is handed to the async * worker threads for retry. If we're doing buffered reads on a regular file, * we prepare a private wait_page_queue entry and retry the operation. This * will either succeed because the page is now uptodate and unlocked, or it * will register a callback when the page is unlocked at IO completion. Through * that callback, io_uring uses task_work to setup a retry of the operation. * That retry will attempt the buffered read again. The retry will generally * succeed, or in rare cases where it fails, we then fall back to using the * async worker threads for a blocking retry. */ static bool io_rw_should_retry(struct io_kiocb *req) { struct io_async_rw *rw = req->async_data; struct wait_page_queue *wait = &rw->wpq; struct kiocb *kiocb = &req->rw.kiocb; /* never retry for NOWAIT, we just complete with -EAGAIN */ if (req->flags & REQ_F_NOWAIT) return false; /* Only for buffered IO */ if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) return false; /* * just use poll if we can, and don't attempt if the fs doesn't * support callback based unlocks */ if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC)) return false; wait->wait.func = io_async_buf_func; wait->wait.private = req; wait->wait.flags = 0; INIT_LIST_HEAD(&wait->wait.entry); kiocb->ki_flags |= IOCB_WAITQ; kiocb->ki_flags &= ~IOCB_NOWAIT; kiocb->ki_waitq = wait; return true; } static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter) { if (req->file->f_op->read_iter) return call_read_iter(req->file, &req->rw.kiocb, iter); else if (req->file->f_op->read) return loop_rw_iter(READ, req, iter); else return -EINVAL; } static bool need_read_all(struct io_kiocb *req) { return req->flags & REQ_F_ISREG || S_ISBLK(file_inode(req->file)->i_mode); } static int io_read(struct io_kiocb *req, unsigned int issue_flags) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct kiocb *kiocb = &req->rw.kiocb; struct iov_iter __iter, *iter = &__iter; struct io_async_rw *rw = req->async_data; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; struct iov_iter_state __state, *state; ssize_t ret, ret2; loff_t *ppos; if (rw) { iter = &rw->iter; state = &rw->iter_state; /* * We come here from an earlier attempt, restore our state to * match in case it doesn't. It's cheap enough that we don't * need to make this conditional. */ iov_iter_restore(iter, state); iovec = NULL; } else { ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock); if (ret < 0) return ret; state = &__state; iov_iter_save_state(iter, state); } req->result = iov_iter_count(iter); /* Ensure we clear previously set non-block flag */ if (!force_nonblock) kiocb->ki_flags &= ~IOCB_NOWAIT; else kiocb->ki_flags |= IOCB_NOWAIT; /* If the file doesn't support async, just async punt */ if (force_nonblock && !io_file_supports_nowait(req, READ)) { ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true); return ret ?: -EAGAIN; } ppos = io_kiocb_update_pos(req); ret = rw_verify_area(READ, req->file, ppos, req->result); if (unlikely(ret)) { kfree(iovec); return ret; } ret = io_iter_do_read(req, iter); if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) { req->flags &= ~REQ_F_REISSUE; /* IOPOLL retry should happen for io-wq threads */ if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) goto done; /* no retry on NONBLOCK nor RWF_NOWAIT */ if (req->flags & REQ_F_NOWAIT) goto done; ret = 0; } else if (ret == -EIOCBQUEUED) { goto out_free; } else if (ret <= 0 || ret == req->result || !force_nonblock || (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) { /* read all, failed, already did sync or don't want to retry */ goto done; } /* * Don't depend on the iter state matching what was consumed, or being * untouched in case of error. Restore it and we'll advance it * manually if we need to. */ iov_iter_restore(iter, state); ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true); if (ret2) return ret2; iovec = NULL; rw = req->async_data; /* * Now use our persistent iterator and state, if we aren't already. * We've restored and mapped the iter to match. */ if (iter != &rw->iter) { iter = &rw->iter; state = &rw->iter_state; } do { /* * We end up here because of a partial read, either from * above or inside this loop. Advance the iter by the bytes * that were consumed. */ iov_iter_advance(iter, ret); if (!iov_iter_count(iter)) break; rw->bytes_done += ret; iov_iter_save_state(iter, state); /* if we can retry, do so with the callbacks armed */ if (!io_rw_should_retry(req)) { kiocb->ki_flags &= ~IOCB_WAITQ; return -EAGAIN; } req->result = iov_iter_count(iter); /* * Now retry read with the IOCB_WAITQ parts set in the iocb. If * we get -EIOCBQUEUED, then we'll get a notification when the * desired page gets unlocked. We can also get a partial read * here, and if we do, then just retry at the new offset. */ ret = io_iter_do_read(req, iter); if (ret == -EIOCBQUEUED) return 0; /* we got some bytes, but not all. retry. */ kiocb->ki_flags &= ~IOCB_WAITQ; iov_iter_restore(iter, state); } while (ret > 0); done: kiocb_done(kiocb, ret, issue_flags); out_free: /* it's faster to check here then delegate to kfree */ if (iovec) kfree(iovec); return 0; } static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(!(req->file->f_mode & FMODE_WRITE))) return -EBADF; return io_prep_rw(req, sqe, WRITE); } static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb) { struct inode *inode; bool ret; if (!(req->flags & REQ_F_ISREG)) return true; if (!(kiocb->ki_flags & IOCB_NOWAIT)) { kiocb_start_write(kiocb); return true; } inode = file_inode(kiocb->ki_filp); ret = sb_start_write_trylock(inode->i_sb); if (ret) __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); return ret; } static int io_write(struct io_kiocb *req, unsigned int issue_flags) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct kiocb *kiocb = &req->rw.kiocb; struct iov_iter __iter, *iter = &__iter; struct io_async_rw *rw = req->async_data; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; struct iov_iter_state __state, *state; ssize_t ret, ret2; loff_t *ppos; if (rw) { iter = &rw->iter; state = &rw->iter_state; iov_iter_restore(iter, state); iovec = NULL; } else { ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock); if (ret < 0) return ret; state = &__state; iov_iter_save_state(iter, state); } req->result = iov_iter_count(iter); /* Ensure we clear previously set non-block flag */ if (!force_nonblock) kiocb->ki_flags &= ~IOCB_NOWAIT; else kiocb->ki_flags |= IOCB_NOWAIT; /* If the file doesn't support async, just async punt */ if (force_nonblock && !io_file_supports_nowait(req, WRITE)) goto copy_iov; /* file path doesn't support NOWAIT for non-direct_IO */ if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) && (req->flags & REQ_F_ISREG)) goto copy_iov; ppos = io_kiocb_update_pos(req); ret = rw_verify_area(WRITE, req->file, ppos, req->result); if (unlikely(ret)) goto out_free; if (unlikely(!io_kiocb_start_write(req, kiocb))) goto copy_iov; kiocb->ki_flags |= IOCB_WRITE; if (req->file->f_op->write_iter) ret2 = call_write_iter(req->file, kiocb, iter); else if (req->file->f_op->write) ret2 = loop_rw_iter(WRITE, req, iter); else ret2 = -EINVAL; if (req->flags & REQ_F_REISSUE) { req->flags &= ~REQ_F_REISSUE; ret2 = -EAGAIN; } /* * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just * retry them without IOCB_NOWAIT. */ if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) ret2 = -EAGAIN; /* no retry on NONBLOCK nor RWF_NOWAIT */ if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) goto done; if (!force_nonblock || ret2 != -EAGAIN) { /* IOPOLL retry should happen for io-wq threads */ if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN) goto copy_iov; done: kiocb_done(kiocb, ret2, issue_flags); } else { copy_iov: iov_iter_restore(iter, state); ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false); if (!ret) { if (kiocb->ki_flags & IOCB_WRITE) io_req_end_write(req); return -EAGAIN; } return ret; } out_free: /* it's reportedly faster than delegating the null check to kfree() */ if (iovec) kfree(iovec); return ret; } static int io_renameat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_rename *ren = &req->rename; const char __user *oldf, *newf; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; ren->old_dfd = READ_ONCE(sqe->fd); oldf = u64_to_user_ptr(READ_ONCE(sqe->addr)); newf = u64_to_user_ptr(READ_ONCE(sqe->addr2)); ren->new_dfd = READ_ONCE(sqe->len); ren->flags = READ_ONCE(sqe->rename_flags); ren->oldpath = getname(oldf); if (IS_ERR(ren->oldpath)) return PTR_ERR(ren->oldpath); ren->newpath = getname(newf); if (IS_ERR(ren->newpath)) { putname(ren->oldpath); return PTR_ERR(ren->newpath); } req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_renameat(struct io_kiocb *req, unsigned int issue_flags) { struct io_rename *ren = &req->rename; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd, ren->newpath, ren->flags); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_unlinkat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_unlink *un = &req->unlink; const char __user *fname; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; un->dfd = READ_ONCE(sqe->fd); un->flags = READ_ONCE(sqe->unlink_flags); if (un->flags & ~AT_REMOVEDIR) return -EINVAL; fname = u64_to_user_ptr(READ_ONCE(sqe->addr)); un->filename = getname(fname); if (IS_ERR(un->filename)) return PTR_ERR(un->filename); req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags) { struct io_unlink *un = &req->unlink; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; if (un->flags & AT_REMOVEDIR) ret = do_rmdir(un->dfd, un->filename); else ret = do_unlinkat(un->dfd, un->filename); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_mkdirat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_mkdir *mkd = &req->mkdir; const char __user *fname; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; mkd->dfd = READ_ONCE(sqe->fd); mkd->mode = READ_ONCE(sqe->len); fname = u64_to_user_ptr(READ_ONCE(sqe->addr)); mkd->filename = getname(fname); if (IS_ERR(mkd->filename)) return PTR_ERR(mkd->filename); req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_mkdirat(struct io_kiocb *req, int issue_flags) { struct io_mkdir *mkd = &req->mkdir; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_symlinkat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_symlink *sl = &req->symlink; const char __user *oldpath, *newpath; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; sl->new_dfd = READ_ONCE(sqe->fd); oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr)); newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2)); sl->oldpath = getname(oldpath); if (IS_ERR(sl->oldpath)) return PTR_ERR(sl->oldpath); sl->newpath = getname(newpath); if (IS_ERR(sl->newpath)) { putname(sl->oldpath); return PTR_ERR(sl->newpath); } req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_symlinkat(struct io_kiocb *req, int issue_flags) { struct io_symlink *sl = &req->symlink; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_linkat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_hardlink *lnk = &req->hardlink; const char __user *oldf, *newf; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; lnk->old_dfd = READ_ONCE(sqe->fd); lnk->new_dfd = READ_ONCE(sqe->len); oldf = u64_to_user_ptr(READ_ONCE(sqe->addr)); newf = u64_to_user_ptr(READ_ONCE(sqe->addr2)); lnk->flags = READ_ONCE(sqe->hardlink_flags); lnk->oldpath = getname_uflags(oldf, lnk->flags); if (IS_ERR(lnk->oldpath)) return PTR_ERR(lnk->oldpath); lnk->newpath = getname(newf); if (IS_ERR(lnk->newpath)) { putname(lnk->oldpath); return PTR_ERR(lnk->newpath); } req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_linkat(struct io_kiocb *req, int issue_flags) { struct io_hardlink *lnk = &req->hardlink; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd, lnk->newpath, lnk->flags); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { #if defined(CONFIG_NET) if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)) return -EINVAL; req->shutdown.how = READ_ONCE(sqe->len); return 0; #else return -EOPNOTSUPP; #endif } static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags) { #if defined(CONFIG_NET) struct socket *sock; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; ret = __sys_shutdown_sock(sock, req->shutdown.how); if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; #else return -EOPNOTSUPP; #endif } static int __io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_splice *sp = &req->splice; unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; sp->len = READ_ONCE(sqe->len); sp->flags = READ_ONCE(sqe->splice_flags); if (unlikely(sp->flags & ~valid_flags)) return -EINVAL; sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in); return 0; } static int io_tee_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off)) return -EINVAL; return __io_splice_prep(req, sqe); } static int io_tee(struct io_kiocb *req, unsigned int issue_flags) { struct io_splice *sp = &req->splice; struct file *out = sp->file_out; unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED; struct file *in; long ret = 0; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; in = io_file_get(req->ctx, req, sp->splice_fd_in, (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags); if (!in) { ret = -EBADF; goto done; } if (sp->len) ret = do_tee(in, out, sp->len, flags); if (!(sp->flags & SPLICE_F_FD_IN_FIXED)) io_put_file(in); done: if (ret != sp->len) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_splice *sp = &req->splice; sp->off_in = READ_ONCE(sqe->splice_off_in); sp->off_out = READ_ONCE(sqe->off); return __io_splice_prep(req, sqe); } static int io_splice(struct io_kiocb *req, unsigned int issue_flags) { struct io_splice *sp = &req->splice; struct file *out = sp->file_out; unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED; loff_t *poff_in, *poff_out; struct file *in; long ret = 0; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; in = io_file_get(req->ctx, req, sp->splice_fd_in, (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags); if (!in) { ret = -EBADF; goto done; } poff_in = (sp->off_in == -1) ? NULL : &sp->off_in; poff_out = (sp->off_out == -1) ? NULL : &sp->off_out; if (sp->len) ret = do_splice(in, poff_in, out, poff_out, sp->len, flags); if (!(sp->flags & SPLICE_F_FD_IN_FIXED)) io_put_file(in); done: if (ret != sp->len) req_set_fail(req); io_req_complete(req, ret); return 0; } /* * IORING_OP_NOP just posts a completion event, nothing else. */ static int io_nop(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; __io_req_complete(req, issue_flags, 0, 0); return 0; } static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_ring_ctx *ctx = req->ctx; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)) return -EINVAL; req->sync.flags = READ_ONCE(sqe->fsync_flags); if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC)) return -EINVAL; req->sync.off = READ_ONCE(sqe->off); req->sync.len = READ_ONCE(sqe->len); return 0; } static int io_fsync(struct io_kiocb *req, unsigned int issue_flags) { loff_t end = req->sync.off + req->sync.len; int ret; /* fsync always requires a blocking context */ if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = vfs_fsync_range(req->file, req->sync.off, end > 0 ? end : LLONG_MAX, req->sync.flags & IORING_FSYNC_DATASYNC); if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_fallocate_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (sqe->ioprio || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; req->sync.off = READ_ONCE(sqe->off); req->sync.len = READ_ONCE(sqe->addr); req->sync.mode = READ_ONCE(sqe->len); return 0; } static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags) { int ret; /* fallocate always requiring blocking context */ if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off, req->sync.len); if (ret < 0) req_set_fail(req); else fsnotify_modify(req->file); io_req_complete(req, ret); return 0; } static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { const char __user *fname; int ret; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->ioprio || sqe->buf_index)) return -EINVAL; if (unlikely(req->flags & REQ_F_FIXED_FILE)) return -EBADF; /* open.how should be already initialised */ if (!(req->open.how.flags & O_PATH) && force_o_largefile()) req->open.how.flags |= O_LARGEFILE; req->open.dfd = READ_ONCE(sqe->fd); fname = u64_to_user_ptr(READ_ONCE(sqe->addr)); req->open.filename = getname(fname); if (IS_ERR(req->open.filename)) { ret = PTR_ERR(req->open.filename); req->open.filename = NULL; return ret; } req->open.file_slot = READ_ONCE(sqe->file_index); if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC)) return -EINVAL; req->open.nofile = rlimit(RLIMIT_NOFILE); req->flags |= REQ_F_NEED_CLEANUP; return 0; } static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { u64 mode = READ_ONCE(sqe->len); u64 flags = READ_ONCE(sqe->open_flags); req->open.how = build_open_how(flags, mode); return __io_openat_prep(req, sqe); } static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct open_how __user *how; size_t len; int ret; how = u64_to_user_ptr(READ_ONCE(sqe->addr2)); len = READ_ONCE(sqe->len); if (len < OPEN_HOW_SIZE_VER0) return -EINVAL; ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how, len); if (ret) return ret; return __io_openat_prep(req, sqe); } static int io_openat2(struct io_kiocb *req, unsigned int issue_flags) { struct open_flags op; struct file *file; bool resolve_nonblock, nonblock_set; bool fixed = !!req->open.file_slot; int ret; ret = build_open_flags(&req->open.how, &op); if (ret) goto err; nonblock_set = op.open_flag & O_NONBLOCK; resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED; if (issue_flags & IO_URING_F_NONBLOCK) { /* * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open, * it'll always -EAGAIN. Note that we test for __O_TMPFILE * because O_TMPFILE includes O_DIRECTORY, which isn't a flag * we need to force async for. */ if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE)) return -EAGAIN; op.lookup_flags |= LOOKUP_CACHED; op.open_flag |= O_NONBLOCK; } if (!fixed) { ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile); if (ret < 0) goto err; } file = do_filp_open(req->open.dfd, req->open.filename, &op); if (IS_ERR(file)) { /* * We could hang on to this 'fd' on retrying, but seems like * marginal gain for something that is now known to be a slower * path. So just put it, and we'll get a new one when we retry. */ if (!fixed) put_unused_fd(ret); ret = PTR_ERR(file); /* only retry if RESOLVE_CACHED wasn't already set by application */ if (ret == -EAGAIN && (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK))) return -EAGAIN; goto err; } if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set) file->f_flags &= ~O_NONBLOCK; fsnotify_open(file); if (!fixed) fd_install(ret, file); else ret = io_install_fixed_file(req, file, issue_flags, req->open.file_slot - 1); err: putname(req->open.filename); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret < 0) req_set_fail(req); __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_openat(struct io_kiocb *req, unsigned int issue_flags) { return io_openat2(req, issue_flags); } static int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_provide_buf *p = &req->pbuf; u64 tmp; if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off || sqe->splice_fd_in) return -EINVAL; tmp = READ_ONCE(sqe->fd); if (!tmp || tmp > USHRT_MAX) return -EINVAL; memset(p, 0, sizeof(*p)); p->nbufs = tmp; p->bgid = READ_ONCE(sqe->buf_group); return 0; } static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf, int bgid, unsigned nbufs) { unsigned i = 0; /* shouldn't happen */ if (!nbufs) return 0; /* the head kbuf is the list itself */ while (!list_empty(&buf->list)) { struct io_buffer *nxt; nxt = list_first_entry(&buf->list, struct io_buffer, list); list_del(&nxt->list); kfree(nxt); if (++i == nbufs) return i; cond_resched(); } i++; kfree(buf); xa_erase(&ctx->io_buffers, bgid); return i; } static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags) { struct io_provide_buf *p = &req->pbuf; struct io_ring_ctx *ctx = req->ctx; struct io_buffer *head; int ret = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; io_ring_submit_lock(ctx, !force_nonblock); lockdep_assert_held(&ctx->uring_lock); ret = -ENOENT; head = xa_load(&ctx->io_buffers, p->bgid); if (head) ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs); if (ret < 0) req_set_fail(req); /* complete before unlock, IOPOLL may need the lock */ __io_req_complete(req, issue_flags, ret, 0); io_ring_submit_unlock(ctx, !force_nonblock); return 0; } static int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { unsigned long size, tmp_check; struct io_provide_buf *p = &req->pbuf; u64 tmp; if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; tmp = READ_ONCE(sqe->fd); if (!tmp || tmp > USHRT_MAX) return -E2BIG; p->nbufs = tmp; p->addr = READ_ONCE(sqe->addr); p->len = READ_ONCE(sqe->len); if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs, &size)) return -EOVERFLOW; if (check_add_overflow((unsigned long)p->addr, size, &tmp_check)) return -EOVERFLOW; size = (unsigned long)p->len * p->nbufs; if (!access_ok(u64_to_user_ptr(p->addr), size)) return -EFAULT; p->bgid = READ_ONCE(sqe->buf_group); tmp = READ_ONCE(sqe->off); if (tmp > USHRT_MAX) return -E2BIG; p->bid = tmp; return 0; } static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head) { struct io_buffer *buf; u64 addr = pbuf->addr; int i, bid = pbuf->bid; for (i = 0; i < pbuf->nbufs; i++) { buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT); if (!buf) break; buf->addr = addr; buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT); buf->bid = bid; addr += pbuf->len; bid++; if (!*head) { INIT_LIST_HEAD(&buf->list); *head = buf; } else { list_add_tail(&buf->list, &(*head)->list); } cond_resched(); } return i ? i : -ENOMEM; } static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags) { struct io_provide_buf *p = &req->pbuf; struct io_ring_ctx *ctx = req->ctx; struct io_buffer *head, *list; int ret = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; io_ring_submit_lock(ctx, !force_nonblock); lockdep_assert_held(&ctx->uring_lock); list = head = xa_load(&ctx->io_buffers, p->bgid); ret = io_add_buffers(p, &head); if (ret >= 0 && !list) { ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL_ACCOUNT); if (ret < 0) __io_remove_buffers(ctx, head, p->bgid, -1U); } if (ret < 0) req_set_fail(req); /* complete before unlock, IOPOLL may need the lock */ __io_req_complete(req, issue_flags, ret, 0); io_ring_submit_unlock(ctx, !force_nonblock); return 0; } static int io_epoll_ctl_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { #if defined(CONFIG_EPOLL) if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; req->epoll.epfd = READ_ONCE(sqe->fd); req->epoll.op = READ_ONCE(sqe->len); req->epoll.fd = READ_ONCE(sqe->off); if (ep_op_has_event(req->epoll.op)) { struct epoll_event __user *ev; ev = u64_to_user_ptr(READ_ONCE(sqe->addr)); if (copy_from_user(&req->epoll.event, ev, sizeof(*ev))) return -EFAULT; } return 0; #else return -EOPNOTSUPP; #endif } static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags) { #if defined(CONFIG_EPOLL) struct io_epoll *ie = &req->epoll; int ret; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock); if (force_nonblock && ret == -EAGAIN) return -EAGAIN; if (ret < 0) req_set_fail(req); __io_req_complete(req, issue_flags, ret, 0); return 0; #else return -EOPNOTSUPP; #endif } static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU) if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; req->madvise.addr = READ_ONCE(sqe->addr); req->madvise.len = READ_ONCE(sqe->len); req->madvise.advice = READ_ONCE(sqe->fadvise_advice); return 0; #else return -EOPNOTSUPP; #endif } static int io_madvise(struct io_kiocb *req, unsigned int issue_flags) { #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU) struct io_madvise *ma = &req->madvise; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice); if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; #else return -EOPNOTSUPP; #endif } static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in) return -EINVAL; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; req->fadvise.offset = READ_ONCE(sqe->off); req->fadvise.len = READ_ONCE(sqe->len); req->fadvise.advice = READ_ONCE(sqe->fadvise_advice); return 0; } static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags) { struct io_fadvise *fa = &req->fadvise; int ret; if (issue_flags & IO_URING_F_NONBLOCK) { switch (fa->advice) { case POSIX_FADV_NORMAL: case POSIX_FADV_RANDOM: case POSIX_FADV_SEQUENTIAL: break; default: return -EAGAIN; } } ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice); if (ret < 0) req_set_fail(req); __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; if (req->flags & REQ_F_FIXED_FILE) return -EBADF; req->statx.dfd = READ_ONCE(sqe->fd); req->statx.mask = READ_ONCE(sqe->len); req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr)); req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2)); req->statx.flags = READ_ONCE(sqe->statx_flags); return 0; } static int io_statx(struct io_kiocb *req, unsigned int issue_flags) { struct io_statx *ctx = &req->statx; int ret; if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask, ctx->buffer); if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->off || sqe->addr || sqe->len || sqe->rw_flags || sqe->buf_index) return -EINVAL; if (req->flags & REQ_F_FIXED_FILE) return -EBADF; req->close.fd = READ_ONCE(sqe->fd); req->close.file_slot = READ_ONCE(sqe->file_index); if (req->close.file_slot && req->close.fd) return -EINVAL; return 0; } static int io_close(struct io_kiocb *req, unsigned int issue_flags) { struct files_struct *files = current->files; struct io_close *close = &req->close; struct fdtable *fdt; struct file *file = NULL; int ret = -EBADF; if (req->close.file_slot) { ret = io_close_fixed(req, issue_flags); goto err; } spin_lock(&files->file_lock); fdt = files_fdtable(files); if (close->fd >= fdt->max_fds) { spin_unlock(&files->file_lock); goto err; } file = fdt->fd[close->fd]; if (!file || file->f_op == &io_uring_fops) { spin_unlock(&files->file_lock); file = NULL; goto err; } /* if the file has a flush method, be safe and punt to async */ if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) { spin_unlock(&files->file_lock); return -EAGAIN; } ret = __close_fd_get_file(close->fd, &file); spin_unlock(&files->file_lock); if (ret < 0) { if (ret == -ENOENT) ret = -EBADF; goto err; } /* No ->flush() or already async, safely close from here */ ret = filp_close(file, current->files); err: if (ret < 0) req_set_fail(req); if (file) fput(file); __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_ring_ctx *ctx = req->ctx; if (unlikely(ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)) return -EINVAL; req->sync.off = READ_ONCE(sqe->off); req->sync.len = READ_ONCE(sqe->len); req->sync.flags = READ_ONCE(sqe->sync_range_flags); return 0; } static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags) { int ret; /* sync_file_range always requires a blocking context */ if (issue_flags & IO_URING_F_NONBLOCK) return -EAGAIN; ret = sync_file_range(req->file, req->sync.off, req->sync.len, req->sync.flags); if (ret < 0) req_set_fail(req); io_req_complete(req, ret); return 0; } #if defined(CONFIG_NET) static bool io_net_retry(struct socket *sock, int flags) { if (!(flags & MSG_WAITALL)) return false; return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET; } static int io_setup_async_msg(struct io_kiocb *req, struct io_async_msghdr *kmsg) { struct io_async_msghdr *async_msg = req->async_data; if (async_msg) return -EAGAIN; if (io_alloc_async_data(req)) { kfree(kmsg->free_iov); return -ENOMEM; } async_msg = req->async_data; req->flags |= REQ_F_NEED_CLEANUP; memcpy(async_msg, kmsg, sizeof(*kmsg)); if (async_msg->msg.msg_name) async_msg->msg.msg_name = &async_msg->addr; /* if were using fast_iov, set it to the new one */ if (!kmsg->free_iov) { size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov; async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx]; } return -EAGAIN; } static int io_sendmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { struct io_sr_msg *sr = &req->sr_msg; int ret; iomsg->msg.msg_name = &iomsg->addr; iomsg->free_iov = iomsg->fast_iov; ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg, req->sr_msg.msg_flags, &iomsg->free_iov); /* save msg_control as sys_sendmsg() overwrites it */ sr->msg_control = iomsg->msg.msg_control; return ret; } static int io_sendmsg_prep_async(struct io_kiocb *req) { int ret; ret = io_sendmsg_copy_hdr(req, req->async_data); if (!ret) req->flags |= REQ_F_NEED_CLEANUP; return ret; } static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = &req->sr_msg; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr2 || sqe->file_index)) return -EINVAL; if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio)) return -EINVAL; sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr)); sr->len = READ_ONCE(sqe->len); sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL; if (sr->msg_flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; #ifdef CONFIG_COMPAT if (req->ctx->compat) sr->msg_flags |= MSG_CMSG_COMPAT; #endif sr->done_io = 0; return 0; } static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags) { struct io_async_msghdr iomsg, *kmsg; struct io_sr_msg *sr = &req->sr_msg; struct socket *sock; unsigned flags; int min_ret = 0; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; kmsg = req->async_data; if (!kmsg) { ret = io_sendmsg_copy_hdr(req, &iomsg); if (ret) return ret; kmsg = &iomsg; } else { kmsg->msg.msg_control = sr->msg_control; } flags = req->sr_msg.msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&kmsg->msg.msg_iter); ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags); if (ret < min_ret) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return io_setup_async_msg(req, kmsg); if (ret == -ERESTARTSYS) ret = -EINTR; if (ret > 0 && io_net_retry(sock, flags)) { kmsg->msg.msg_controllen = 0; kmsg->msg.msg_control = NULL; sr->done_io += ret; req->flags |= REQ_F_PARTIAL_IO; return io_setup_async_msg(req, kmsg); } req_set_fail(req); } /* fast path, check for non-NULL to avoid function call */ if (kmsg->free_iov) kfree(kmsg->free_iov); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_send(struct io_kiocb *req, unsigned int issue_flags) { struct io_sr_msg *sr = &req->sr_msg; struct msghdr msg; struct iovec iov; struct socket *sock; unsigned flags; int min_ret = 0; int ret; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter); if (unlikely(ret)) return ret; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; flags = req->sr_msg.msg_flags; if (issue_flags & IO_URING_F_NONBLOCK) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&msg.msg_iter); msg.msg_flags = flags; ret = sock_sendmsg(sock, &msg); if (ret < min_ret) { if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK)) return -EAGAIN; if (ret == -ERESTARTSYS) ret = -EINTR; if (ret > 0 && io_net_retry(sock, flags)) { sr->len -= ret; sr->buf += ret; sr->done_io += ret; req->flags |= REQ_F_PARTIAL_IO; return -EAGAIN; } req_set_fail(req); } if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; __io_req_complete(req, issue_flags, ret, 0); return 0; } static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { struct io_sr_msg *sr = &req->sr_msg; struct iovec __user *uiov; size_t iov_len; int ret; ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg, &iomsg->uaddr, &uiov, &iov_len); if (ret) return ret; if (req->flags & REQ_F_BUFFER_SELECT) { if (iov_len > 1) return -EINVAL; if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov))) return -EFAULT; sr->len = iomsg->fast_iov[0].iov_len; iomsg->free_iov = NULL; } else { iomsg->free_iov = iomsg->fast_iov; ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV, &iomsg->free_iov, &iomsg->msg.msg_iter, false); if (ret > 0) ret = 0; } return ret; } #ifdef CONFIG_COMPAT static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { struct io_sr_msg *sr = &req->sr_msg; struct compat_iovec __user *uiov; compat_uptr_t ptr; compat_size_t len; int ret; ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr, &ptr, &len); if (ret) return ret; uiov = compat_ptr(ptr); if (req->flags & REQ_F_BUFFER_SELECT) { compat_ssize_t clen; if (len > 1) return -EINVAL; if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(clen, &uiov->iov_len)) return -EFAULT; if (clen < 0) return -EINVAL; sr->len = clen; iomsg->free_iov = NULL; } else { iomsg->free_iov = iomsg->fast_iov; ret = __import_iovec(READ, (struct iovec __user *)uiov, len, UIO_FASTIOV, &iomsg->free_iov, &iomsg->msg.msg_iter, true); if (ret < 0) return ret; } return 0; } #endif static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg) { iomsg->msg.msg_name = &iomsg->addr; #ifdef CONFIG_COMPAT if (req->ctx->compat) return __io_compat_recvmsg_copy_hdr(req, iomsg); #endif return __io_recvmsg_copy_hdr(req, iomsg); } static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req, bool needs_lock) { struct io_sr_msg *sr = &req->sr_msg; struct io_buffer *kbuf; kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock); if (IS_ERR(kbuf)) return kbuf; sr->kbuf = kbuf; req->flags |= REQ_F_BUFFER_SELECTED; return kbuf; } static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req) { return io_put_kbuf(req, req->sr_msg.kbuf); } static int io_recvmsg_prep_async(struct io_kiocb *req) { int ret; ret = io_recvmsg_copy_hdr(req, req->async_data); if (!ret) req->flags |= REQ_F_NEED_CLEANUP; return ret; } static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_sr_msg *sr = &req->sr_msg; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(sqe->addr2 || sqe->file_index)) return -EINVAL; if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio)) return -EINVAL; sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr)); sr->len = READ_ONCE(sqe->len); sr->bgid = READ_ONCE(sqe->buf_group); sr->msg_flags = READ_ONCE(sqe->msg_flags); if (sr->msg_flags & MSG_DONTWAIT) req->flags |= REQ_F_NOWAIT; #ifdef CONFIG_COMPAT if (req->ctx->compat) sr->msg_flags |= MSG_CMSG_COMPAT; #endif sr->done_io = 0; return 0; } static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags) { struct io_async_msghdr iomsg, *kmsg; struct io_sr_msg *sr = &req->sr_msg; struct socket *sock; struct io_buffer *kbuf; unsigned flags; int min_ret = 0; int ret, cflags = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; kmsg = req->async_data; if (!kmsg) { ret = io_recvmsg_copy_hdr(req, &iomsg); if (ret) return ret; kmsg = &iomsg; } if (req->flags & REQ_F_BUFFER_SELECT) { kbuf = io_recv_buffer_select(req, !force_nonblock); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr); kmsg->fast_iov[0].iov_len = req->sr_msg.len; iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov, 1, req->sr_msg.len); } flags = req->sr_msg.msg_flags; if (force_nonblock) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen) min_ret = iov_iter_count(&kmsg->msg.msg_iter); ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg, kmsg->uaddr, flags); if (ret < min_ret) { if (ret == -EAGAIN && force_nonblock) return io_setup_async_msg(req, kmsg); if (ret == -ERESTARTSYS) ret = -EINTR; if (ret > 0 && io_net_retry(sock, flags)) { sr->done_io += ret; req->flags |= REQ_F_PARTIAL_IO; return io_setup_async_msg(req, kmsg); } req_set_fail(req); } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) { req_set_fail(req); } if (req->flags & REQ_F_BUFFER_SELECTED) cflags = io_put_recv_kbuf(req); /* fast path, check for non-NULL to avoid function call */ if (kmsg->free_iov) kfree(kmsg->free_iov); req->flags &= ~REQ_F_NEED_CLEANUP; if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; __io_req_complete(req, issue_flags, ret, cflags); return 0; } static int io_recv(struct io_kiocb *req, unsigned int issue_flags) { struct io_buffer *kbuf; struct io_sr_msg *sr = &req->sr_msg; struct msghdr msg; void __user *buf = sr->buf; struct socket *sock; struct iovec iov; unsigned flags; int min_ret = 0; int ret, cflags = 0; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; sock = sock_from_file(req->file); if (unlikely(!sock)) return -ENOTSOCK; if (req->flags & REQ_F_BUFFER_SELECT) { kbuf = io_recv_buffer_select(req, !force_nonblock); if (IS_ERR(kbuf)) return PTR_ERR(kbuf); buf = u64_to_user_ptr(kbuf->addr); } ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter); if (unlikely(ret)) goto out_free; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; msg.msg_iocb = NULL; msg.msg_flags = 0; flags = req->sr_msg.msg_flags; if (force_nonblock) flags |= MSG_DONTWAIT; if (flags & MSG_WAITALL) min_ret = iov_iter_count(&msg.msg_iter); ret = sock_recvmsg(sock, &msg, flags); if (ret < min_ret) { if (ret == -EAGAIN && force_nonblock) return -EAGAIN; if (ret == -ERESTARTSYS) ret = -EINTR; if (ret > 0 && io_net_retry(sock, flags)) { sr->len -= ret; sr->buf += ret; sr->done_io += ret; req->flags |= REQ_F_PARTIAL_IO; return -EAGAIN; } req_set_fail(req); } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) { out_free: req_set_fail(req); } if (req->flags & REQ_F_BUFFER_SELECTED) cflags = io_put_recv_kbuf(req); if (ret >= 0) ret += sr->done_io; else if (sr->done_io) ret = sr->done_io; __io_req_complete(req, issue_flags, ret, cflags); return 0; } static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_accept *accept = &req->accept; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->len || sqe->buf_index) return -EINVAL; accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr)); accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2)); accept->flags = READ_ONCE(sqe->accept_flags); accept->nofile = rlimit(RLIMIT_NOFILE); accept->file_slot = READ_ONCE(sqe->file_index); if (accept->file_slot && (accept->flags & SOCK_CLOEXEC)) return -EINVAL; if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK)) accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK; return 0; } static int io_accept(struct io_kiocb *req, unsigned int issue_flags) { struct io_accept *accept = &req->accept; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0; bool fixed = !!accept->file_slot; struct file *file; int ret, fd; if (!fixed) { fd = __get_unused_fd_flags(accept->flags, accept->nofile); if (unlikely(fd < 0)) return fd; } file = do_accept(req->file, file_flags, accept->addr, accept->addr_len, accept->flags); if (IS_ERR(file)) { if (!fixed) put_unused_fd(fd); ret = PTR_ERR(file); /* safe to retry */ req->flags |= REQ_F_PARTIAL_IO; if (ret == -EAGAIN && force_nonblock) return -EAGAIN; if (ret == -ERESTARTSYS) ret = -EINTR; req_set_fail(req); } else if (!fixed) { fd_install(fd, file); ret = fd; } else { ret = io_install_fixed_file(req, file, issue_flags, accept->file_slot - 1); } __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_connect_prep_async(struct io_kiocb *req) { struct io_async_connect *io = req->async_data; struct io_connect *conn = &req->connect; return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address); } static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_connect *conn = &req->connect; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr)); conn->addr_len = READ_ONCE(sqe->addr2); return 0; } static int io_connect(struct io_kiocb *req, unsigned int issue_flags) { struct io_async_connect __io, *io; unsigned file_flags; int ret; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; if (req->async_data) { io = req->async_data; } else { ret = move_addr_to_kernel(req->connect.addr, req->connect.addr_len, &__io.address); if (ret) goto out; io = &__io; } file_flags = force_nonblock ? O_NONBLOCK : 0; ret = __sys_connect_file(req->file, &io->address, req->connect.addr_len, file_flags); if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) { if (req->async_data) return -EAGAIN; if (io_alloc_async_data(req)) { ret = -ENOMEM; goto out; } memcpy(req->async_data, &__io, sizeof(__io)); return -EAGAIN; } if (ret == -ERESTARTSYS) ret = -EINTR; out: if (ret < 0) req_set_fail(req); __io_req_complete(req, issue_flags, ret, 0); return 0; } #else /* !CONFIG_NET */ #define IO_NETOP_FN(op) \ static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \ { \ return -EOPNOTSUPP; \ } #define IO_NETOP_PREP(op) \ IO_NETOP_FN(op) \ static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \ { \ return -EOPNOTSUPP; \ } \ #define IO_NETOP_PREP_ASYNC(op) \ IO_NETOP_PREP(op) \ static int io_##op##_prep_async(struct io_kiocb *req) \ { \ return -EOPNOTSUPP; \ } IO_NETOP_PREP_ASYNC(sendmsg); IO_NETOP_PREP_ASYNC(recvmsg); IO_NETOP_PREP_ASYNC(connect); IO_NETOP_PREP(accept); IO_NETOP_FN(send); IO_NETOP_FN(recv); #endif /* CONFIG_NET */ struct io_poll_table { struct poll_table_struct pt; struct io_kiocb *req; int nr_entries; int error; }; #define IO_POLL_CANCEL_FLAG BIT(31) #define IO_POLL_RETRY_FLAG BIT(30) #define IO_POLL_REF_MASK GENMASK(29, 0) /* * We usually have 1-2 refs taken, 128 is more than enough and we want to * maximise the margin between this amount and the moment when it overflows. */ #define IO_POLL_REF_BIAS 128 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req) { int v; /* * poll_refs are already elevated and we don't have much hope for * grabbing the ownership. Instead of incrementing set a retry flag * to notify the loop that there might have been some change. */ v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs); if (v & IO_POLL_REF_MASK) return false; return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK); } /* * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can * bump it and acquire ownership. It's disallowed to modify requests while not * owning it, that prevents from races for enqueueing task_work's and b/w * arming poll and wakeups. */ static inline bool io_poll_get_ownership(struct io_kiocb *req) { if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS)) return io_poll_get_ownership_slowpath(req); return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK); } static void io_poll_mark_cancelled(struct io_kiocb *req) { atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs); } static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req) { /* pure poll stashes this in ->async_data, poll driven retry elsewhere */ if (req->opcode == IORING_OP_POLL_ADD) return req->async_data; return req->apoll->double_poll; } static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req) { if (req->opcode == IORING_OP_POLL_ADD) return &req->poll; return &req->apoll->poll; } static void io_poll_req_insert(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; struct hlist_head *list; list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)]; hlist_add_head(&req->hash_node, list); } static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events, wait_queue_func_t wake_func) { poll->head = NULL; #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP) /* mask in events that we always want/need */ poll->events = events | IO_POLL_UNMASK; INIT_LIST_HEAD(&poll->wait.entry); init_waitqueue_func_entry(&poll->wait, wake_func); } static inline void io_poll_remove_entry(struct io_poll_iocb *poll) { struct wait_queue_head *head = smp_load_acquire(&poll->head); if (head) { spin_lock_irq(&head->lock); list_del_init(&poll->wait.entry); poll->head = NULL; spin_unlock_irq(&head->lock); } } static void io_poll_remove_entries(struct io_kiocb *req) { struct io_poll_iocb *poll = io_poll_get_single(req); struct io_poll_iocb *poll_double = io_poll_get_double(req); /* * While we hold the waitqueue lock and the waitqueue is nonempty, * wake_up_pollfree() will wait for us. However, taking the waitqueue * lock in the first place can race with the waitqueue being freed. * * We solve this as eventpoll does: by taking advantage of the fact that * all users of wake_up_pollfree() will RCU-delay the actual free. If * we enter rcu_read_lock() and see that the pointer to the queue is * non-NULL, we can then lock it without the memory being freed out from * under us. * * Keep holding rcu_read_lock() as long as we hold the queue lock, in * case the caller deletes the entry from the queue, leaving it empty. * In that case, only RCU prevents the queue memory from being freed. */ rcu_read_lock(); io_poll_remove_entry(poll); if (poll_double) io_poll_remove_entry(poll_double); rcu_read_unlock(); } /* * All poll tw should go through this. Checks for poll events, manages * references, does rewait, etc. * * Returns a negative error on failure. >0 when no action require, which is * either spurious wakeup or multishot CQE is served. 0 when it's done with * the request, then the mask is stored in req->result. */ static int io_poll_check_events(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; struct io_poll_iocb *poll = io_poll_get_single(req); int v; /* req->task == current here, checking PF_EXITING is safe */ if (unlikely(req->task->flags & PF_EXITING)) io_poll_mark_cancelled(req); do { v = atomic_read(&req->poll_refs); /* tw handler should be the owner, and so have some references */ if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK))) return 0; if (v & IO_POLL_CANCEL_FLAG) return -ECANCELED; /* * cqe.res contains only events of the first wake up * and all others are be lost. Redo vfs_poll() to get * up to date state. */ if ((v & IO_POLL_REF_MASK) != 1) req->result = 0; if (v & IO_POLL_RETRY_FLAG) { req->result = 0; /* * We won't find new events that came in between * vfs_poll and the ref put unless we clear the * flag in advance. */ atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs); v &= ~IO_POLL_RETRY_FLAG; } if (!req->result) { struct poll_table_struct pt = { ._key = poll->events }; req->result = vfs_poll(req->file, &pt) & poll->events; } /* multishot, just fill an CQE and proceed */ if (req->result && !(poll->events & EPOLLONESHOT)) { __poll_t mask = mangle_poll(req->result & poll->events); bool filled; spin_lock(&ctx->completion_lock); filled = io_fill_cqe_aux(ctx, req->user_data, mask, IORING_CQE_F_MORE); io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); if (unlikely(!filled)) return -ECANCELED; io_cqring_ev_posted(ctx); } else if (req->result) { return 0; } /* force the next iteration to vfs_poll() */ req->result = 0; /* * Release all references, retry if someone tried to restart * task_work while we were executing it. */ } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) & IO_POLL_REF_MASK); return 1; } static void io_poll_task_func(struct io_kiocb *req, bool *locked) { struct io_ring_ctx *ctx = req->ctx; int ret; ret = io_poll_check_events(req); if (ret > 0) return; if (!ret) { req->result = mangle_poll(req->result & req->poll.events); } else { req->result = ret; req_set_fail(req); } io_poll_remove_entries(req); spin_lock(&ctx->completion_lock); hash_del(&req->hash_node); spin_unlock(&ctx->completion_lock); io_req_complete_post(req, req->result, 0); } static void io_apoll_task_func(struct io_kiocb *req, bool *locked) { struct io_ring_ctx *ctx = req->ctx; int ret; ret = io_poll_check_events(req); if (ret > 0) return; io_tw_lock(req->ctx, locked); io_poll_remove_entries(req); spin_lock(&ctx->completion_lock); hash_del(&req->hash_node); spin_unlock(&ctx->completion_lock); if (!ret) io_req_task_submit(req, locked); else io_req_complete_failed(req, ret); } static void __io_poll_execute(struct io_kiocb *req, int mask) { req->result = mask; if (req->opcode == IORING_OP_POLL_ADD) req->io_task_work.func = io_poll_task_func; else req->io_task_work.func = io_apoll_task_func; trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask); io_req_task_work_add(req); } static inline void io_poll_execute(struct io_kiocb *req, int res) { if (io_poll_get_ownership(req)) __io_poll_execute(req, res); } static void io_poll_cancel_req(struct io_kiocb *req) { io_poll_mark_cancelled(req); /* kick tw, which should complete the request */ io_poll_execute(req, 0); } static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key) { struct io_kiocb *req = wait->private; struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb, wait); __poll_t mask = key_to_poll(key); if (unlikely(mask & POLLFREE)) { io_poll_mark_cancelled(req); /* we have to kick tw in case it's not already */ io_poll_execute(req, 0); /* * If the waitqueue is being freed early but someone is already * holds ownership over it, we have to tear down the request as * best we can. That means immediately removing the request from * its waitqueue and preventing all further accesses to the * waitqueue via the request. */ list_del_init(&poll->wait.entry); /* * Careful: this *must* be the last step, since as soon * as req->head is NULL'ed out, the request can be * completed and freed, since aio_poll_complete_work() * will no longer need to take the waitqueue lock. */ smp_store_release(&poll->head, NULL); return 1; } /* for instances that support it check for an event match first */ if (mask && !(mask & poll->events)) return 0; if (io_poll_get_ownership(req)) { /* * If we trigger a multishot poll off our own wakeup path, * disable multishot as there is a circular dependency between * CQ posting and triggering the event. */ if (mask & EPOLL_URING_WAKE) poll->events |= EPOLLONESHOT; __io_poll_execute(req, mask); } return 1; } static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt, struct wait_queue_head *head, struct io_poll_iocb **poll_ptr) { struct io_kiocb *req = pt->req; /* * The file being polled uses multiple waitqueues for poll handling * (e.g. one for read, one for write). Setup a separate io_poll_iocb * if this happens. */ if (unlikely(pt->nr_entries)) { struct io_poll_iocb *first = poll; /* double add on the same waitqueue head, ignore */ if (first->head == head) return; /* already have a 2nd entry, fail a third attempt */ if (*poll_ptr) { if ((*poll_ptr)->head == head) return; pt->error = -EINVAL; return; } poll = kmalloc(sizeof(*poll), GFP_ATOMIC); if (!poll) { pt->error = -ENOMEM; return; } io_init_poll_iocb(poll, first->events, first->wait.func); *poll_ptr = poll; } pt->nr_entries++; poll->head = head; poll->wait.private = req; if (poll->events & EPOLLEXCLUSIVE) add_wait_queue_exclusive(head, &poll->wait); else add_wait_queue(head, &poll->wait); } static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p) { struct io_poll_table *pt = container_of(p, struct io_poll_table, pt); __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data); } static int __io_arm_poll_handler(struct io_kiocb *req, struct io_poll_iocb *poll, struct io_poll_table *ipt, __poll_t mask) { struct io_ring_ctx *ctx = req->ctx; INIT_HLIST_NODE(&req->hash_node); io_init_poll_iocb(poll, mask, io_poll_wake); poll->file = req->file; poll->wait.private = req; ipt->pt._key = mask; ipt->req = req; ipt->error = 0; ipt->nr_entries = 0; /* * Take the ownership to delay any tw execution up until we're done * with poll arming. see io_poll_get_ownership(). */ atomic_set(&req->poll_refs, 1); mask = vfs_poll(req->file, &ipt->pt) & poll->events; if (mask && (poll->events & EPOLLONESHOT)) { io_poll_remove_entries(req); /* no one else has access to the req, forget about the ref */ return mask; } if (!mask && unlikely(ipt->error || !ipt->nr_entries)) { io_poll_remove_entries(req); if (!ipt->error) ipt->error = -EINVAL; return 0; } spin_lock(&ctx->completion_lock); io_poll_req_insert(req); spin_unlock(&ctx->completion_lock); if (mask) { /* can't multishot if failed, just queue the event we've got */ if (unlikely(ipt->error || !ipt->nr_entries)) { poll->events |= EPOLLONESHOT; ipt->error = 0; } __io_poll_execute(req, mask); return 0; } /* * Try to release ownership. If we see a change of state, e.g. * poll was waken up, queue up a tw, it'll deal with it. */ if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1) __io_poll_execute(req, 0); return 0; } static void io_async_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p) { struct io_poll_table *pt = container_of(p, struct io_poll_table, pt); struct async_poll *apoll = pt->req->apoll; __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll); } enum { IO_APOLL_OK, IO_APOLL_ABORTED, IO_APOLL_READY }; /* * We can't reliably detect loops in repeated poll triggers and issue * subsequently failing. But rather than fail these immediately, allow a * certain amount of retries before we give up. Given that this condition * should _rarely_ trigger even once, we should be fine with a larger value. */ #define APOLL_MAX_RETRY 128 static int io_arm_poll_handler(struct io_kiocb *req) { const struct io_op_def *def = &io_op_defs[req->opcode]; struct io_ring_ctx *ctx = req->ctx; struct async_poll *apoll; struct io_poll_table ipt; __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI; int ret; if (!req->file || !file_can_poll(req->file)) return IO_APOLL_ABORTED; if (!def->pollin && !def->pollout) return IO_APOLL_ABORTED; if (def->pollin) { mask |= POLLIN | POLLRDNORM; /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */ if ((req->opcode == IORING_OP_RECVMSG) && (req->sr_msg.msg_flags & MSG_ERRQUEUE)) mask &= ~POLLIN; } else { mask |= POLLOUT | POLLWRNORM; } if (req->flags & REQ_F_POLLED) { apoll = req->apoll; kfree(apoll->double_poll); if (unlikely(!--apoll->poll.retries)) { apoll->double_poll = NULL; return IO_APOLL_ABORTED; } } else { apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC); if (unlikely(!apoll)) return IO_APOLL_ABORTED; apoll->poll.retries = APOLL_MAX_RETRY; } apoll->double_poll = NULL; req->apoll = apoll; req->flags |= REQ_F_POLLED; ipt.pt._qproc = io_async_queue_proc; ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask); if (ret || ipt.error) return ret ? IO_APOLL_READY : IO_APOLL_ABORTED; trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data, mask, apoll->poll.events); return IO_APOLL_OK; } /* * Returns true if we found and killed one or more poll requests */ static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all) { struct hlist_node *tmp; struct io_kiocb *req; bool found = false; int i; spin_lock(&ctx->completion_lock); for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) { struct hlist_head *list; list = &ctx->cancel_hash[i]; hlist_for_each_entry_safe(req, tmp, list, hash_node) { if (io_match_task_safe(req, tsk, cancel_all)) { hlist_del_init(&req->hash_node); io_poll_cancel_req(req); found = true; } } } spin_unlock(&ctx->completion_lock); return found; } static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr, bool poll_only) __must_hold(&ctx->completion_lock) { struct hlist_head *list; struct io_kiocb *req; list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)]; hlist_for_each_entry(req, list, hash_node) { if (sqe_addr != req->user_data) continue; if (poll_only && req->opcode != IORING_OP_POLL_ADD) continue; return req; } return NULL; } static bool io_poll_disarm(struct io_kiocb *req) __must_hold(&ctx->completion_lock) { if (!io_poll_get_ownership(req)) return false; io_poll_remove_entries(req); hash_del(&req->hash_node); return true; } static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr, bool poll_only) __must_hold(&ctx->completion_lock) { struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only); if (!req) return -ENOENT; io_poll_cancel_req(req); return 0; } static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe, unsigned int flags) { u32 events; events = READ_ONCE(sqe->poll32_events); #ifdef __BIG_ENDIAN events = swahw32(events); #endif if (!(flags & IORING_POLL_ADD_MULTI)) events |= EPOLLONESHOT; return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT)); } static int io_poll_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_poll_update *upd = &req->poll_update; u32 flags; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in) return -EINVAL; flags = READ_ONCE(sqe->len); if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA | IORING_POLL_ADD_MULTI)) return -EINVAL; /* meaningless without update */ if (flags == IORING_POLL_ADD_MULTI) return -EINVAL; upd->old_user_data = READ_ONCE(sqe->addr); upd->update_events = flags & IORING_POLL_UPDATE_EVENTS; upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA; upd->new_user_data = READ_ONCE(sqe->off); if (!upd->update_user_data && upd->new_user_data) return -EINVAL; if (upd->update_events) upd->events = io_poll_parse_events(sqe, flags); else if (sqe->poll32_events) return -EINVAL; return 0; } static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_poll_iocb *poll = &req->poll; u32 flags; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr) return -EINVAL; flags = READ_ONCE(sqe->len); if (flags & ~IORING_POLL_ADD_MULTI) return -EINVAL; io_req_set_refcount(req); poll->events = io_poll_parse_events(sqe, flags); return 0; } static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags) { struct io_poll_iocb *poll = &req->poll; struct io_poll_table ipt; int ret; ipt.pt._qproc = io_poll_queue_proc; ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events); if (!ret && ipt.error) req_set_fail(req); ret = ret ?: ipt.error; if (ret) __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; struct io_kiocb *preq; int ret2, ret = 0; io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); spin_lock(&ctx->completion_lock); preq = io_poll_find(ctx, req->poll_update.old_user_data, true); if (!preq || !io_poll_disarm(preq)) { spin_unlock(&ctx->completion_lock); ret = preq ? -EALREADY : -ENOENT; goto out; } spin_unlock(&ctx->completion_lock); if (req->poll_update.update_events || req->poll_update.update_user_data) { /* only mask one event flags, keep behavior flags */ if (req->poll_update.update_events) { preq->poll.events &= ~0xffff; preq->poll.events |= req->poll_update.events & 0xffff; preq->poll.events |= IO_POLL_UNMASK; } if (req->poll_update.update_user_data) preq->user_data = req->poll_update.new_user_data; ret2 = io_poll_add(preq, issue_flags); /* successfully updated, don't complete poll request */ if (!ret2) goto out; } req_set_fail(preq); io_req_complete(preq, -ECANCELED); out: if (ret < 0) req_set_fail(req); /* complete update request, we're done with it */ io_req_complete(req, ret); io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); return 0; } static void io_req_task_timeout(struct io_kiocb *req, bool *locked) { req_set_fail(req); io_req_complete_post(req, -ETIME, 0); } static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer) { struct io_timeout_data *data = container_of(timer, struct io_timeout_data, timer); struct io_kiocb *req = data->req; struct io_ring_ctx *ctx = req->ctx; unsigned long flags; spin_lock_irqsave(&ctx->timeout_lock, flags); list_del_init(&req->timeout.list); atomic_set(&req->ctx->cq_timeouts, atomic_read(&req->ctx->cq_timeouts) + 1); spin_unlock_irqrestore(&ctx->timeout_lock, flags); req->io_task_work.func = io_req_task_timeout; io_req_task_work_add(req); return HRTIMER_NORESTART; } static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx, __u64 user_data) __must_hold(&ctx->timeout_lock) { struct io_timeout_data *io; struct io_kiocb *req; bool found = false; list_for_each_entry(req, &ctx->timeout_list, timeout.list) { found = user_data == req->user_data; if (found) break; } if (!found) return ERR_PTR(-ENOENT); io = req->async_data; if (hrtimer_try_to_cancel(&io->timer) == -1) return ERR_PTR(-EALREADY); list_del_init(&req->timeout.list); return req; } static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data) __must_hold(&ctx->completion_lock) __must_hold(&ctx->timeout_lock) { struct io_kiocb *req = io_timeout_extract(ctx, user_data); if (IS_ERR(req)) return PTR_ERR(req); req_set_fail(req); io_fill_cqe_req(req, -ECANCELED, 0); io_put_req_deferred(req); return 0; } static clockid_t io_timeout_get_clock(struct io_timeout_data *data) { switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) { case IORING_TIMEOUT_BOOTTIME: return CLOCK_BOOTTIME; case IORING_TIMEOUT_REALTIME: return CLOCK_REALTIME; default: /* can't happen, vetted at prep time */ WARN_ON_ONCE(1); fallthrough; case 0: return CLOCK_MONOTONIC; } } static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data, struct timespec64 *ts, enum hrtimer_mode mode) __must_hold(&ctx->timeout_lock) { struct io_timeout_data *io; struct io_kiocb *req; bool found = false; list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) { found = user_data == req->user_data; if (found) break; } if (!found) return -ENOENT; io = req->async_data; if (hrtimer_try_to_cancel(&io->timer) == -1) return -EALREADY; hrtimer_init(&io->timer, io_timeout_get_clock(io), mode); io->timer.function = io_link_timeout_fn; hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode); return 0; } static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data, struct timespec64 *ts, enum hrtimer_mode mode) __must_hold(&ctx->timeout_lock) { struct io_kiocb *req = io_timeout_extract(ctx, user_data); struct io_timeout_data *data; if (IS_ERR(req)) return PTR_ERR(req); req->timeout.off = 0; /* noseq */ data = req->async_data; list_add_tail(&req->timeout.list, &ctx->timeout_list); hrtimer_init(&data->timer, io_timeout_get_clock(data), mode); data->timer.function = io_timeout_fn; hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode); return 0; } static int io_timeout_remove_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_timeout_rem *tr = &req->timeout_rem; if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT))) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in) return -EINVAL; tr->ltimeout = false; tr->addr = READ_ONCE(sqe->addr); tr->flags = READ_ONCE(sqe->timeout_flags); if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) { if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1) return -EINVAL; if (tr->flags & IORING_LINK_TIMEOUT_UPDATE) tr->ltimeout = true; if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS)) return -EINVAL; if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2))) return -EFAULT; } else if (tr->flags) { /* timeout removal doesn't support flags */ return -EINVAL; } return 0; } static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags) { return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; } /* * Remove or update an existing timeout command */ static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags) { struct io_timeout_rem *tr = &req->timeout_rem; struct io_ring_ctx *ctx = req->ctx; int ret; if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) { spin_lock(&ctx->completion_lock); spin_lock_irq(&ctx->timeout_lock); ret = io_timeout_cancel(ctx, tr->addr); spin_unlock_irq(&ctx->timeout_lock); spin_unlock(&ctx->completion_lock); } else { enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags); spin_lock_irq(&ctx->timeout_lock); if (tr->ltimeout) ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode); else ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode); spin_unlock_irq(&ctx->timeout_lock); } if (ret < 0) req_set_fail(req); io_req_complete_post(req, ret, 0); return 0; } static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool is_timeout_link) { struct io_timeout_data *data; unsigned flags; u32 off = READ_ONCE(sqe->off); if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (sqe->ioprio || sqe->buf_index || sqe->len != 1 || sqe->splice_fd_in) return -EINVAL; if (off && is_timeout_link) return -EINVAL; flags = READ_ONCE(sqe->timeout_flags); if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK)) return -EINVAL; /* more than one clock specified is invalid, obviously */ if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1) return -EINVAL; INIT_LIST_HEAD(&req->timeout.list); req->timeout.off = off; if (unlikely(off && !req->ctx->off_timeout_used)) req->ctx->off_timeout_used = true; if (!req->async_data && io_alloc_async_data(req)) return -ENOMEM; data = req->async_data; data->req = req; data->flags = flags; if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr))) return -EFAULT; INIT_LIST_HEAD(&req->timeout.list); data->mode = io_translate_timeout_mode(flags); hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode); if (is_timeout_link) { struct io_submit_link *link = &req->ctx->submit_state.link; if (!link->head) return -EINVAL; if (link->last->opcode == IORING_OP_LINK_TIMEOUT) return -EINVAL; req->timeout.head = link->last; link->last->flags |= REQ_F_ARM_LTIMEOUT; } return 0; } static int io_timeout(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; struct io_timeout_data *data = req->async_data; struct list_head *entry; u32 tail, off = req->timeout.off; spin_lock_irq(&ctx->timeout_lock); /* * sqe->off holds how many events that need to occur for this * timeout event to be satisfied. If it isn't set, then this is * a pure timeout request, sequence isn't used. */ if (io_is_timeout_noseq(req)) { entry = ctx->timeout_list.prev; goto add; } tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts); req->timeout.target_seq = tail + off; /* Update the last seq here in case io_flush_timeouts() hasn't. * This is safe because ->completion_lock is held, and submissions * and completions are never mixed in the same ->completion_lock section. */ ctx->cq_last_tm_flush = tail; /* * Insertion sort, ensuring the first entry in the list is always * the one we need first. */ list_for_each_prev(entry, &ctx->timeout_list) { struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, timeout.list); if (io_is_timeout_noseq(nxt)) continue; /* nxt.seq is behind @tail, otherwise would've been completed */ if (off >= nxt->timeout.target_seq - tail) break; } add: list_add(&req->timeout.list, entry); data->timer.function = io_timeout_fn; hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode); spin_unlock_irq(&ctx->timeout_lock); return 0; } struct io_cancel_data { struct io_ring_ctx *ctx; u64 user_data; }; static bool io_cancel_cb(struct io_wq_work *work, void *data) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_cancel_data *cd = data; return req->ctx == cd->ctx && req->user_data == cd->user_data; } static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data, struct io_ring_ctx *ctx) { struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, }; enum io_wq_cancel cancel_ret; int ret = 0; if (!tctx || !tctx->io_wq) return -ENOENT; cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false); switch (cancel_ret) { case IO_WQ_CANCEL_OK: ret = 0; break; case IO_WQ_CANCEL_RUNNING: ret = -EALREADY; break; case IO_WQ_CANCEL_NOTFOUND: ret = -ENOENT; break; } return ret; } static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr) { struct io_ring_ctx *ctx = req->ctx; int ret; WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current); ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx); if (ret != -ENOENT) return ret; spin_lock(&ctx->completion_lock); spin_lock_irq(&ctx->timeout_lock); ret = io_timeout_cancel(ctx, sqe_addr); spin_unlock_irq(&ctx->timeout_lock); if (ret != -ENOENT) goto out; ret = io_poll_cancel(ctx, sqe_addr, false); out: spin_unlock(&ctx->completion_lock); return ret; } static int io_async_cancel_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL)) return -EINVAL; if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT))) return -EINVAL; if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags || sqe->splice_fd_in) return -EINVAL; req->cancel.addr = READ_ONCE(sqe->addr); return 0; } static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; u64 sqe_addr = req->cancel.addr; struct io_tctx_node *node; int ret; ret = io_try_cancel_userdata(req, sqe_addr); if (ret != -ENOENT) goto done; /* slow path, try all io-wq's */ io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); ret = -ENOENT; list_for_each_entry(node, &ctx->tctx_list, ctx_node) { struct io_uring_task *tctx = node->task->io_uring; ret = io_async_cancel_one(tctx, req->cancel.addr, ctx); if (ret != -ENOENT) break; } io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); done: if (ret < 0) req_set_fail(req); io_req_complete_post(req, ret, 0); return 0; } static int io_rsrc_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT))) return -EINVAL; if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in) return -EINVAL; req->rsrc_update.offset = READ_ONCE(sqe->off); req->rsrc_update.nr_args = READ_ONCE(sqe->len); if (!req->rsrc_update.nr_args) return -EINVAL; req->rsrc_update.arg = READ_ONCE(sqe->addr); return 0; } static int io_files_update(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; struct io_uring_rsrc_update2 up; int ret; up.offset = req->rsrc_update.offset; up.data = req->rsrc_update.arg; up.nr = 0; up.tags = 0; up.resv = 0; up.resv2 = 0; io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, req->rsrc_update.nr_args); io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); if (ret < 0) req_set_fail(req); __io_req_complete(req, issue_flags, ret, 0); return 0; } static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { switch (req->opcode) { case IORING_OP_NOP: if (READ_ONCE(sqe->rw_flags)) return -EINVAL; return 0; case IORING_OP_READV: case IORING_OP_READ_FIXED: case IORING_OP_READ: return io_read_prep(req, sqe); case IORING_OP_WRITEV: case IORING_OP_WRITE_FIXED: case IORING_OP_WRITE: return io_write_prep(req, sqe); case IORING_OP_POLL_ADD: return io_poll_add_prep(req, sqe); case IORING_OP_POLL_REMOVE: return io_poll_update_prep(req, sqe); case IORING_OP_FSYNC: return io_fsync_prep(req, sqe); case IORING_OP_SYNC_FILE_RANGE: return io_sfr_prep(req, sqe); case IORING_OP_SENDMSG: case IORING_OP_SEND: return io_sendmsg_prep(req, sqe); case IORING_OP_RECVMSG: case IORING_OP_RECV: return io_recvmsg_prep(req, sqe); case IORING_OP_CONNECT: return io_connect_prep(req, sqe); case IORING_OP_TIMEOUT: return io_timeout_prep(req, sqe, false); case IORING_OP_TIMEOUT_REMOVE: return io_timeout_remove_prep(req, sqe); case IORING_OP_ASYNC_CANCEL: return io_async_cancel_prep(req, sqe); case IORING_OP_LINK_TIMEOUT: return io_timeout_prep(req, sqe, true); case IORING_OP_ACCEPT: return io_accept_prep(req, sqe); case IORING_OP_FALLOCATE: return io_fallocate_prep(req, sqe); case IORING_OP_OPENAT: return io_openat_prep(req, sqe); case IORING_OP_CLOSE: return io_close_prep(req, sqe); case IORING_OP_FILES_UPDATE: return io_rsrc_update_prep(req, sqe); case IORING_OP_STATX: return io_statx_prep(req, sqe); case IORING_OP_FADVISE: return io_fadvise_prep(req, sqe); case IORING_OP_MADVISE: return io_madvise_prep(req, sqe); case IORING_OP_OPENAT2: return io_openat2_prep(req, sqe); case IORING_OP_EPOLL_CTL: return io_epoll_ctl_prep(req, sqe); case IORING_OP_SPLICE: return io_splice_prep(req, sqe); case IORING_OP_PROVIDE_BUFFERS: return io_provide_buffers_prep(req, sqe); case IORING_OP_REMOVE_BUFFERS: return io_remove_buffers_prep(req, sqe); case IORING_OP_TEE: return io_tee_prep(req, sqe); case IORING_OP_SHUTDOWN: return io_shutdown_prep(req, sqe); case IORING_OP_RENAMEAT: return io_renameat_prep(req, sqe); case IORING_OP_UNLINKAT: return io_unlinkat_prep(req, sqe); case IORING_OP_MKDIRAT: return io_mkdirat_prep(req, sqe); case IORING_OP_SYMLINKAT: return io_symlinkat_prep(req, sqe); case IORING_OP_LINKAT: return io_linkat_prep(req, sqe); } printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n", req->opcode); return -EINVAL; } static int io_req_prep_async(struct io_kiocb *req) { if (!io_op_defs[req->opcode].needs_async_setup) return 0; if (WARN_ON_ONCE(req->async_data)) return -EFAULT; if (io_alloc_async_data(req)) return -EAGAIN; switch (req->opcode) { case IORING_OP_READV: return io_rw_prep_async(req, READ); case IORING_OP_WRITEV: return io_rw_prep_async(req, WRITE); case IORING_OP_SENDMSG: return io_sendmsg_prep_async(req); case IORING_OP_RECVMSG: return io_recvmsg_prep_async(req); case IORING_OP_CONNECT: return io_connect_prep_async(req); } printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n", req->opcode); return -EFAULT; } static u32 io_get_sequence(struct io_kiocb *req) { u32 seq = req->ctx->cached_sq_head; /* need original cached_sq_head, but it was increased for each req */ io_for_each_link(req, req) seq--; return seq; } static bool io_drain_req(struct io_kiocb *req) { struct io_kiocb *pos; struct io_ring_ctx *ctx = req->ctx; struct io_defer_entry *de; int ret; u32 seq; if (req->flags & REQ_F_FAIL) { io_req_complete_fail_submit(req); return true; } /* * If we need to drain a request in the middle of a link, drain the * head request and the next request/link after the current link. * Considering sequential execution of links, IOSQE_IO_DRAIN will be * maintained for every request of our link. */ if (ctx->drain_next) { req->flags |= REQ_F_IO_DRAIN; ctx->drain_next = false; } /* not interested in head, start from the first linked */ io_for_each_link(pos, req->link) { if (pos->flags & REQ_F_IO_DRAIN) { ctx->drain_next = true; req->flags |= REQ_F_IO_DRAIN; break; } } /* Still need defer if there is pending req in defer list. */ spin_lock(&ctx->completion_lock); if (likely(list_empty_careful(&ctx->defer_list) && !(req->flags & REQ_F_IO_DRAIN))) { spin_unlock(&ctx->completion_lock); ctx->drain_active = false; return false; } spin_unlock(&ctx->completion_lock); seq = io_get_sequence(req); /* Still a chance to pass the sequence check */ if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) return false; ret = io_req_prep_async(req); if (ret) goto fail; io_prep_async_link(req); de = kmalloc(sizeof(*de), GFP_KERNEL); if (!de) { ret = -ENOMEM; fail: io_req_complete_failed(req, ret); return true; } spin_lock(&ctx->completion_lock); if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { spin_unlock(&ctx->completion_lock); kfree(de); io_queue_async_work(req, NULL); return true; } trace_io_uring_defer(ctx, req, req->user_data); de->req = req; de->seq = seq; list_add_tail(&de->list, &ctx->defer_list); spin_unlock(&ctx->completion_lock); return true; } static void io_clean_op(struct io_kiocb *req) { if (req->flags & REQ_F_BUFFER_SELECTED) { switch (req->opcode) { case IORING_OP_READV: case IORING_OP_READ_FIXED: case IORING_OP_READ: kfree((void *)(unsigned long)req->rw.addr); break; case IORING_OP_RECVMSG: case IORING_OP_RECV: kfree(req->sr_msg.kbuf); break; } } if (req->flags & REQ_F_NEED_CLEANUP) { switch (req->opcode) { case IORING_OP_READV: case IORING_OP_READ_FIXED: case IORING_OP_READ: case IORING_OP_WRITEV: case IORING_OP_WRITE_FIXED: case IORING_OP_WRITE: { struct io_async_rw *io = req->async_data; kfree(io->free_iovec); break; } case IORING_OP_RECVMSG: case IORING_OP_SENDMSG: { struct io_async_msghdr *io = req->async_data; kfree(io->free_iov); break; } case IORING_OP_OPENAT: case IORING_OP_OPENAT2: if (req->open.filename) putname(req->open.filename); break; case IORING_OP_RENAMEAT: putname(req->rename.oldpath); putname(req->rename.newpath); break; case IORING_OP_UNLINKAT: putname(req->unlink.filename); break; case IORING_OP_MKDIRAT: putname(req->mkdir.filename); break; case IORING_OP_SYMLINKAT: putname(req->symlink.oldpath); putname(req->symlink.newpath); break; case IORING_OP_LINKAT: putname(req->hardlink.oldpath); putname(req->hardlink.newpath); break; } } if ((req->flags & REQ_F_POLLED) && req->apoll) { kfree(req->apoll->double_poll); kfree(req->apoll); req->apoll = NULL; } if (req->flags & REQ_F_INFLIGHT) { struct io_uring_task *tctx = req->task->io_uring; atomic_dec(&tctx->inflight_tracked); } if (req->flags & REQ_F_CREDS) put_cred(req->creds); req->flags &= ~IO_REQ_CLEAN_FLAGS; } static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) { struct io_ring_ctx *ctx = req->ctx; const struct cred *creds = NULL; int ret; if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) creds = override_creds(req->creds); switch (req->opcode) { case IORING_OP_NOP: ret = io_nop(req, issue_flags); break; case IORING_OP_READV: case IORING_OP_READ_FIXED: case IORING_OP_READ: ret = io_read(req, issue_flags); break; case IORING_OP_WRITEV: case IORING_OP_WRITE_FIXED: case IORING_OP_WRITE: ret = io_write(req, issue_flags); break; case IORING_OP_FSYNC: ret = io_fsync(req, issue_flags); break; case IORING_OP_POLL_ADD: ret = io_poll_add(req, issue_flags); break; case IORING_OP_POLL_REMOVE: ret = io_poll_update(req, issue_flags); break; case IORING_OP_SYNC_FILE_RANGE: ret = io_sync_file_range(req, issue_flags); break; case IORING_OP_SENDMSG: ret = io_sendmsg(req, issue_flags); break; case IORING_OP_SEND: ret = io_send(req, issue_flags); break; case IORING_OP_RECVMSG: ret = io_recvmsg(req, issue_flags); break; case IORING_OP_RECV: ret = io_recv(req, issue_flags); break; case IORING_OP_TIMEOUT: ret = io_timeout(req, issue_flags); break; case IORING_OP_TIMEOUT_REMOVE: ret = io_timeout_remove(req, issue_flags); break; case IORING_OP_ACCEPT: ret = io_accept(req, issue_flags); break; case IORING_OP_CONNECT: ret = io_connect(req, issue_flags); break; case IORING_OP_ASYNC_CANCEL: ret = io_async_cancel(req, issue_flags); break; case IORING_OP_FALLOCATE: ret = io_fallocate(req, issue_flags); break; case IORING_OP_OPENAT: ret = io_openat(req, issue_flags); break; case IORING_OP_CLOSE: ret = io_close(req, issue_flags); break; case IORING_OP_FILES_UPDATE: ret = io_files_update(req, issue_flags); break; case IORING_OP_STATX: ret = io_statx(req, issue_flags); break; case IORING_OP_FADVISE: ret = io_fadvise(req, issue_flags); break; case IORING_OP_MADVISE: ret = io_madvise(req, issue_flags); break; case IORING_OP_OPENAT2: ret = io_openat2(req, issue_flags); break; case IORING_OP_EPOLL_CTL: ret = io_epoll_ctl(req, issue_flags); break; case IORING_OP_SPLICE: ret = io_splice(req, issue_flags); break; case IORING_OP_PROVIDE_BUFFERS: ret = io_provide_buffers(req, issue_flags); break; case IORING_OP_REMOVE_BUFFERS: ret = io_remove_buffers(req, issue_flags); break; case IORING_OP_TEE: ret = io_tee(req, issue_flags); break; case IORING_OP_SHUTDOWN: ret = io_shutdown(req, issue_flags); break; case IORING_OP_RENAMEAT: ret = io_renameat(req, issue_flags); break; case IORING_OP_UNLINKAT: ret = io_unlinkat(req, issue_flags); break; case IORING_OP_MKDIRAT: ret = io_mkdirat(req, issue_flags); break; case IORING_OP_SYMLINKAT: ret = io_symlinkat(req, issue_flags); break; case IORING_OP_LINKAT: ret = io_linkat(req, issue_flags); break; default: ret = -EINVAL; break; } if (creds) revert_creds(creds); if (ret) return ret; /* If the op doesn't have a file, we're not polling for it */ if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) io_iopoll_req_issued(req); return 0; } static struct io_wq_work *io_wq_free_work(struct io_wq_work *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); req = io_put_req_find_next(req); return req ? &req->work : NULL; } static void io_wq_submit_work(struct io_wq_work *work) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_kiocb *timeout; int ret = 0; /* one will be dropped by ->io_free_work() after returning to io-wq */ if (!(req->flags & REQ_F_REFCOUNT)) __io_req_set_refcount(req, 2); else req_ref_get(req); timeout = io_prep_linked_timeout(req); if (timeout) io_queue_linked_timeout(timeout); /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ if (work->flags & IO_WQ_WORK_CANCEL) ret = -ECANCELED; if (!ret) { do { ret = io_issue_sqe(req, 0); /* * We can get EAGAIN for polled IO even though we're * forcing a sync submission from here, since we can't * wait for request slots on the block side. */ if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL)) break; if (io_wq_worker_stopped()) break; /* * If REQ_F_NOWAIT is set, then don't wait or retry with * poll. -EAGAIN is final for that case. */ if (req->flags & REQ_F_NOWAIT) break; cond_resched(); } while (1); } /* avoid locking problems by failing it from a clean context */ if (ret) io_req_task_queue_fail(req, ret); } static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table, unsigned i) { return &table->files[i]; } static inline struct file *io_file_from_index(struct io_ring_ctx *ctx, int index) { struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index); return (struct file *) (slot->file_ptr & FFS_MASK); } static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file) { unsigned long file_ptr = (unsigned long) file; if (__io_file_supports_nowait(file, READ)) file_ptr |= FFS_ASYNC_READ; if (__io_file_supports_nowait(file, WRITE)) file_ptr |= FFS_ASYNC_WRITE; if (S_ISREG(file_inode(file)->i_mode)) file_ptr |= FFS_ISREG; file_slot->file_ptr = file_ptr; } static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, unsigned int issue_flags) { struct file *file = NULL; unsigned long file_ptr; io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); if (unlikely((unsigned int)fd >= ctx->nr_user_files)) goto out; fd = array_index_nospec(fd, ctx->nr_user_files); file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr; file = (struct file *) (file_ptr & FFS_MASK); file_ptr &= ~FFS_MASK; /* mask in overlapping REQ_F and FFS bits */ req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT); io_req_set_rsrc_node(req); out: io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); return file; } static struct file *io_file_get_normal(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd) { struct file *file = fget(fd); trace_io_uring_file_get(ctx, fd); /* we don't allow fixed io_uring files */ if (file && unlikely(file->f_op == &io_uring_fops)) io_req_track_inflight(req); return file; } static inline struct file *io_file_get(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, bool fixed, unsigned int issue_flags) { if (fixed) return io_file_get_fixed(ctx, req, fd, issue_flags); else return io_file_get_normal(ctx, req, fd); } static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked) { struct io_kiocb *prev = req->timeout.prev; int ret = -ENOENT; if (prev) { if (!(req->task->flags & PF_EXITING)) ret = io_try_cancel_userdata(req, prev->user_data); io_req_complete_post(req, ret ?: -ETIME, 0); io_put_req(prev); } else { io_req_complete_post(req, -ETIME, 0); } } static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer) { struct io_timeout_data *data = container_of(timer, struct io_timeout_data, timer); struct io_kiocb *prev, *req = data->req; struct io_ring_ctx *ctx = req->ctx; unsigned long flags; spin_lock_irqsave(&ctx->timeout_lock, flags); prev = req->timeout.head; req->timeout.head = NULL; /* * We don't expect the list to be empty, that will only happen if we * race with the completion of the linked work. */ if (prev) { io_remove_next_linked(prev); if (!req_ref_inc_not_zero(prev)) prev = NULL; } list_del(&req->timeout.list); req->timeout.prev = prev; spin_unlock_irqrestore(&ctx->timeout_lock, flags); req->io_task_work.func = io_req_task_link_timeout; io_req_task_work_add(req); return HRTIMER_NORESTART; } static void io_queue_linked_timeout(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; spin_lock_irq(&ctx->timeout_lock); /* * If the back reference is NULL, then our linked request finished * before we got a chance to setup the timer */ if (req->timeout.head) { struct io_timeout_data *data = req->async_data; data->timer.function = io_link_timeout_fn; hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode); list_add_tail(&req->timeout.list, &ctx->ltimeout_list); } spin_unlock_irq(&ctx->timeout_lock); /* drop submission reference */ io_put_req(req); } static void __io_queue_sqe(struct io_kiocb *req) __must_hold(&req->ctx->uring_lock) { struct io_kiocb *linked_timeout; int ret; issue_sqe: ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); /* * We async punt it if the file wasn't marked NOWAIT, or if the file * doesn't support non-blocking read/write attempts */ if (likely(!ret)) { if (req->flags & REQ_F_COMPLETE_INLINE) { struct io_ring_ctx *ctx = req->ctx; struct io_submit_state *state = &ctx->submit_state; state->compl_reqs[state->compl_nr++] = req; if (state->compl_nr == ARRAY_SIZE(state->compl_reqs)) io_submit_flush_completions(ctx); return; } linked_timeout = io_prep_linked_timeout(req); if (linked_timeout) io_queue_linked_timeout(linked_timeout); } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) { linked_timeout = io_prep_linked_timeout(req); switch (io_arm_poll_handler(req)) { case IO_APOLL_READY: if (linked_timeout) io_queue_linked_timeout(linked_timeout); goto issue_sqe; case IO_APOLL_ABORTED: /* * Queued up for async execution, worker will release * submit reference when the iocb is actually submitted. */ io_queue_async_work(req, NULL); break; } if (linked_timeout) io_queue_linked_timeout(linked_timeout); } else { io_req_complete_failed(req, ret); } } static inline void io_queue_sqe(struct io_kiocb *req) __must_hold(&req->ctx->uring_lock) { if (unlikely(req->ctx->drain_active) && io_drain_req(req)) return; if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) { __io_queue_sqe(req); } else if (req->flags & REQ_F_FAIL) { io_req_complete_fail_submit(req); } else { int ret = io_req_prep_async(req); if (unlikely(ret)) io_req_complete_failed(req, ret); else io_queue_async_work(req, NULL); } } /* * Check SQE restrictions (opcode and flags). * * Returns 'true' if SQE is allowed, 'false' otherwise. */ static inline bool io_check_restriction(struct io_ring_ctx *ctx, struct io_kiocb *req, unsigned int sqe_flags) { if (likely(!ctx->restricted)) return true; if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) return false; if ((sqe_flags & ctx->restrictions.sqe_flags_required) != ctx->restrictions.sqe_flags_required) return false; if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | ctx->restrictions.sqe_flags_required)) return false; return true; } static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, const struct io_uring_sqe *sqe) __must_hold(&ctx->uring_lock) { struct io_submit_state *state; unsigned int sqe_flags; int personality, ret = 0; /* req is partially pre-initialised, see io_preinit_req() */ req->opcode = READ_ONCE(sqe->opcode); /* same numerical values with corresponding REQ_F_*, safe to copy */ req->flags = sqe_flags = READ_ONCE(sqe->flags); req->user_data = READ_ONCE(sqe->user_data); req->file = NULL; req->fixed_rsrc_refs = NULL; req->task = current; /* enforce forwards compatibility on users */ if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) return -EINVAL; if (unlikely(req->opcode >= IORING_OP_LAST)) return -EINVAL; if (!io_check_restriction(ctx, req, sqe_flags)) return -EACCES; if ((sqe_flags & IOSQE_BUFFER_SELECT) && !io_op_defs[req->opcode].buffer_select) return -EOPNOTSUPP; if (unlikely(sqe_flags & IOSQE_IO_DRAIN)) ctx->drain_active = true; personality = READ_ONCE(sqe->personality); if (personality) { req->creds = xa_load(&ctx->personalities, personality); if (!req->creds) return -EINVAL; get_cred(req->creds); req->flags |= REQ_F_CREDS; } state = &ctx->submit_state; /* * Plug now if we have more than 1 IO left after this, and the target * is potentially a read/write to block based storage. */ if (!state->plug_started && state->ios_left > 1 && io_op_defs[req->opcode].plug) { blk_start_plug(&state->plug); state->plug_started = true; } if (io_op_defs[req->opcode].needs_file) { req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd), (sqe_flags & IOSQE_FIXED_FILE), IO_URING_F_NONBLOCK); if (unlikely(!req->file)) ret = -EBADF; } state->ios_left--; return ret; } static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, const struct io_uring_sqe *sqe) __must_hold(&ctx->uring_lock) { struct io_submit_link *link = &ctx->submit_state.link; int ret; ret = io_init_req(ctx, req, sqe); if (unlikely(ret)) { fail_req: /* fail even hard links since we don't submit */ if (link->head) { /* * we can judge a link req is failed or cancelled by if * REQ_F_FAIL is set, but the head is an exception since * it may be set REQ_F_FAIL because of other req's failure * so let's leverage req->result to distinguish if a head * is set REQ_F_FAIL because of its failure or other req's * failure so that we can set the correct ret code for it. * init result here to avoid affecting the normal path. */ if (!(link->head->flags & REQ_F_FAIL)) req_fail_link_node(link->head, -ECANCELED); } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) { /* * the current req is a normal req, we should return * error and thus break the submittion loop. */ io_req_complete_failed(req, ret); return ret; } req_fail_link_node(req, ret); } else { ret = io_req_prep(req, sqe); if (unlikely(ret)) goto fail_req; } /* don't need @sqe from now on */ trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data, req->flags, true, ctx->flags & IORING_SETUP_SQPOLL); /* * If we already have a head request, queue this one for async * submittal once the head completes. If we don't have a head but * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be * submitted sync once the chain is complete. If none of those * conditions are true (normal request), then just queue it. */ if (link->head) { struct io_kiocb *head = link->head; if (!(req->flags & REQ_F_FAIL)) { ret = io_req_prep_async(req); if (unlikely(ret)) { req_fail_link_node(req, ret); if (!(head->flags & REQ_F_FAIL)) req_fail_link_node(head, -ECANCELED); } } trace_io_uring_link(ctx, req, head); link->last->link = req; link->last = req; /* last request of a link, enqueue the link */ if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) { link->head = NULL; io_queue_sqe(head); } } else { if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) { link->head = req; link->last = req; } else { io_queue_sqe(req); } } return 0; } /* * Batched submission is done, ensure local IO is flushed out. */ static void io_submit_state_end(struct io_submit_state *state, struct io_ring_ctx *ctx) { if (state->link.head) io_queue_sqe(state->link.head); if (state->compl_nr) io_submit_flush_completions(ctx); if (state->plug_started) blk_finish_plug(&state->plug); } /* * Start submission side cache. */ static void io_submit_state_start(struct io_submit_state *state, unsigned int max_ios) { state->plug_started = false; state->ios_left = max_ios; /* set only head, no need to init link_last in advance */ state->link.head = NULL; } static void io_commit_sqring(struct io_ring_ctx *ctx) { struct io_rings *rings = ctx->rings; /* * Ensure any loads from the SQEs are done at this point, * since once we write the new head, the application could * write new data to them. */ smp_store_release(&rings->sq.head, ctx->cached_sq_head); } /* * Fetch an sqe, if one is available. Note this returns a pointer to memory * that is mapped by userspace. This means that care needs to be taken to * ensure that reads are stable, as we cannot rely on userspace always * being a good citizen. If members of the sqe are validated and then later * used, it's important that those reads are done through READ_ONCE() to * prevent a re-load down the line. */ static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx) { unsigned head, mask = ctx->sq_entries - 1; unsigned sq_idx = ctx->cached_sq_head++ & mask; /* * The cached sq head (or cq tail) serves two purposes: * * 1) allows us to batch the cost of updating the user visible * head updates. * 2) allows the kernel side to track the head on its own, even * though the application is the one updating it. */ head = READ_ONCE(ctx->sq_array[sq_idx]); if (likely(head < ctx->sq_entries)) return &ctx->sq_sqes[head]; /* drop invalid entries */ spin_lock(&ctx->completion_lock); ctx->cq_extra--; spin_unlock(&ctx->completion_lock); WRITE_ONCE(ctx->rings->sq_dropped, READ_ONCE(ctx->rings->sq_dropped) + 1); return NULL; } static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) __must_hold(&ctx->uring_lock) { int submitted = 0; /* make sure SQ entry isn't read before tail */ nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx)); if (!percpu_ref_tryget_many(&ctx->refs, nr)) return -EAGAIN; io_get_task_refs(nr); io_submit_state_start(&ctx->submit_state, nr); while (submitted < nr) { const struct io_uring_sqe *sqe; struct io_kiocb *req; req = io_alloc_req(ctx); if (unlikely(!req)) { if (!submitted) submitted = -EAGAIN; break; } sqe = io_get_sqe(ctx); if (unlikely(!sqe)) { list_add(&req->inflight_entry, &ctx->submit_state.free_list); break; } /* will complete beyond this point, count as submitted */ submitted++; if (io_submit_sqe(ctx, req, sqe)) break; } if (unlikely(submitted != nr)) { int ref_used = (submitted == -EAGAIN) ? 0 : submitted; int unused = nr - ref_used; current->io_uring->cached_refs += unused; percpu_ref_put_many(&ctx->refs, unused); } io_submit_state_end(&ctx->submit_state, ctx); /* Commit SQ ring head once we've consumed and submitted all SQEs */ io_commit_sqring(ctx); return submitted; } static inline bool io_sqd_events_pending(struct io_sq_data *sqd) { return READ_ONCE(sqd->state); } static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx) { /* Tell userspace we may need a wakeup call */ spin_lock(&ctx->completion_lock); WRITE_ONCE(ctx->rings->sq_flags, ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP); spin_unlock(&ctx->completion_lock); } static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx) { spin_lock(&ctx->completion_lock); WRITE_ONCE(ctx->rings->sq_flags, ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP); spin_unlock(&ctx->completion_lock); } static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries) { unsigned int to_submit; int ret = 0; to_submit = io_sqring_entries(ctx); /* if we're handling multiple rings, cap submit size for fairness */ if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE) to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE; if (!list_empty(&ctx->iopoll_list) || to_submit) { unsigned nr_events = 0; const struct cred *creds = NULL; if (ctx->sq_creds != current_cred()) creds = override_creds(ctx->sq_creds); mutex_lock(&ctx->uring_lock); if (!list_empty(&ctx->iopoll_list)) io_do_iopoll(ctx, &nr_events, 0); /* * Don't submit if refs are dying, good for io_uring_register(), * but also it is relied upon by io_ring_exit_work() */ if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) && !(ctx->flags & IORING_SETUP_R_DISABLED)) ret = io_submit_sqes(ctx, to_submit); mutex_unlock(&ctx->uring_lock); if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait)) wake_up(&ctx->sqo_sq_wait); if (creds) revert_creds(creds); } return ret; } static void io_sqd_update_thread_idle(struct io_sq_data *sqd) { struct io_ring_ctx *ctx; unsigned sq_thread_idle = 0; list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle); sqd->sq_thread_idle = sq_thread_idle; } static bool io_sqd_handle_event(struct io_sq_data *sqd) { bool did_sig = false; struct ksignal ksig; if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) || signal_pending(current)) { mutex_unlock(&sqd->lock); if (signal_pending(current)) did_sig = get_signal(&ksig); cond_resched(); mutex_lock(&sqd->lock); } return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state); } static int io_sq_thread(void *data) { struct io_sq_data *sqd = data; struct io_ring_ctx *ctx; unsigned long timeout = 0; char buf[TASK_COMM_LEN]; DEFINE_WAIT(wait); snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid); set_task_comm(current, buf); if (sqd->sq_cpu != -1) set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu)); else set_cpus_allowed_ptr(current, cpu_online_mask); current->flags |= PF_NO_SETAFFINITY; mutex_lock(&sqd->lock); while (1) { bool cap_entries, sqt_spin = false; if (io_sqd_events_pending(sqd) || signal_pending(current)) { if (io_sqd_handle_event(sqd)) break; timeout = jiffies + sqd->sq_thread_idle; } cap_entries = !list_is_singular(&sqd->ctx_list); list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) { int ret = __io_sq_thread(ctx, cap_entries); if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list))) sqt_spin = true; } if (io_run_task_work()) sqt_spin = true; if (sqt_spin || !time_after(jiffies, timeout)) { cond_resched(); if (sqt_spin) timeout = jiffies + sqd->sq_thread_idle; continue; } prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE); if (!io_sqd_events_pending(sqd) && !current->task_works) { bool needs_sched = true; list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) { io_ring_set_wakeup_flag(ctx); if ((ctx->flags & IORING_SETUP_IOPOLL) && !list_empty_careful(&ctx->iopoll_list)) { needs_sched = false; break; } if (io_sqring_entries(ctx)) { needs_sched = false; break; } } if (needs_sched) { mutex_unlock(&sqd->lock); schedule(); mutex_lock(&sqd->lock); } list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) io_ring_clear_wakeup_flag(ctx); } finish_wait(&sqd->wait, &wait); timeout = jiffies + sqd->sq_thread_idle; } io_uring_cancel_generic(true, sqd); sqd->thread = NULL; list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) io_ring_set_wakeup_flag(ctx); io_run_task_work(); mutex_unlock(&sqd->lock); complete(&sqd->exited); do_exit(0); } struct io_wait_queue { struct wait_queue_entry wq; struct io_ring_ctx *ctx; unsigned cq_tail; unsigned nr_timeouts; }; static inline bool io_should_wake(struct io_wait_queue *iowq) { struct io_ring_ctx *ctx = iowq->ctx; int dist = ctx->cached_cq_tail - (int) iowq->cq_tail; /* * Wake up if we have enough events, or if a timeout occurred since we * started waiting. For timeouts, we always want to return to userspace, * regardless of event count. */ return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; } static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key) { struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); /* * Cannot safely flush overflowed CQEs from here, ensure we wake up * the task, and the next invocation will do it. */ if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow)) return autoremove_wake_function(curr, mode, wake_flags, key); return -1; } static int io_run_task_work_sig(void) { if (io_run_task_work()) return 1; if (!signal_pending(current)) return 0; if (test_thread_flag(TIF_NOTIFY_SIGNAL)) return -ERESTARTSYS; return -EINTR; } static bool current_pending_io(void) { struct io_uring_task *tctx = current->io_uring; if (!tctx) return false; return percpu_counter_read_positive(&tctx->inflight); } /* when returns >0, the caller should retry */ static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, struct io_wait_queue *iowq, ktime_t *timeout) { int ret; /* make sure we run task_work before checking for signals */ ret = io_run_task_work_sig(); if (ret || io_should_wake(iowq)) return ret; /* let the caller flush overflows, retry */ if (test_bit(0, &ctx->check_cq_overflow)) return 1; /* * Mark us as being in io_wait if we have pending requests, so cpufreq * can take into account that the task is waiting for IO - turns out * to be important for low QD IO. */ if (current_pending_io()) current->in_iowait = 1; ret = 1; if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS)) ret = -ETIME; current->in_iowait = 0; return ret; } /* * Wait until events become available, if we don't already have some. The * application must reap them itself, as they reside on the shared cq ring. */ static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, const sigset_t __user *sig, size_t sigsz, struct __kernel_timespec __user *uts) { struct io_wait_queue iowq; struct io_rings *rings = ctx->rings; ktime_t timeout = KTIME_MAX; int ret; do { io_cqring_overflow_flush(ctx); if (io_cqring_events(ctx) >= min_events) return 0; if (!io_run_task_work()) break; } while (1); if (uts) { struct timespec64 ts; if (get_timespec64(&ts, uts)) return -EFAULT; timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns()); } if (sig) { #ifdef CONFIG_COMPAT if (in_compat_syscall()) ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig, sigsz); else #endif ret = set_user_sigmask(sig, sigsz); if (ret) return ret; } init_waitqueue_func_entry(&iowq.wq, io_wake_function); iowq.wq.private = current; INIT_LIST_HEAD(&iowq.wq.entry); iowq.ctx = ctx; iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; trace_io_uring_cqring_wait(ctx, min_events); do { /* if we can't even flush overflow, don't wait for more */ if (!io_cqring_overflow_flush(ctx)) { ret = -EBUSY; break; } prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, TASK_INTERRUPTIBLE); ret = io_cqring_wait_schedule(ctx, &iowq, &timeout); finish_wait(&ctx->cq_wait, &iowq.wq); cond_resched(); } while (ret > 0); restore_saved_sigmask_unless(ret == -EINTR); return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; } static void io_free_page_table(void **table, size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); for (i = 0; i < nr_tables; i++) kfree(table[i]); kfree(table); } static void **io_alloc_page_table(size_t size) { unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE); size_t init_size = size; void **table; table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT); if (!table) return NULL; for (i = 0; i < nr_tables; i++) { unsigned int this_size = min_t(size_t, size, PAGE_SIZE); table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT); if (!table[i]) { io_free_page_table(table, init_size); return NULL; } size -= this_size; } return table; } static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node) { percpu_ref_exit(&ref_node->refs); kfree(ref_node); } static void io_rsrc_node_ref_zero(struct percpu_ref *ref) { struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs); struct io_ring_ctx *ctx = node->rsrc_data->ctx; unsigned long flags; bool first_add = false; unsigned long delay = HZ; spin_lock_irqsave(&ctx->rsrc_ref_lock, flags); node->done = true; /* if we are mid-quiesce then do not delay */ if (node->rsrc_data->quiesce) delay = 0; while (!list_empty(&ctx->rsrc_ref_list)) { node = list_first_entry(&ctx->rsrc_ref_list, struct io_rsrc_node, node); /* recycle ref nodes in order */ if (!node->done) break; list_del(&node->node); first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist); } spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags); if (first_add) mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay); } static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx) { struct io_rsrc_node *ref_node; ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL); if (!ref_node) return NULL; if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero, 0, GFP_KERNEL)) { kfree(ref_node); return NULL; } INIT_LIST_HEAD(&ref_node->node); INIT_LIST_HEAD(&ref_node->rsrc_list); ref_node->done = false; return ref_node; } static void io_rsrc_node_switch(struct io_ring_ctx *ctx, struct io_rsrc_data *data_to_kill) { WARN_ON_ONCE(!ctx->rsrc_backup_node); WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node); if (data_to_kill) { struct io_rsrc_node *rsrc_node = ctx->rsrc_node; rsrc_node->rsrc_data = data_to_kill; spin_lock_irq(&ctx->rsrc_ref_lock); list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list); spin_unlock_irq(&ctx->rsrc_ref_lock); atomic_inc(&data_to_kill->refs); percpu_ref_kill(&rsrc_node->refs); ctx->rsrc_node = NULL; } if (!ctx->rsrc_node) { ctx->rsrc_node = ctx->rsrc_backup_node; ctx->rsrc_backup_node = NULL; } } static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx) { if (ctx->rsrc_backup_node) return 0; ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx); return ctx->rsrc_backup_node ? 0 : -ENOMEM; } static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx) { int ret; /* As we may drop ->uring_lock, other task may have started quiesce */ if (data->quiesce) return -ENXIO; data->quiesce = true; do { ret = io_rsrc_node_switch_start(ctx); if (ret) break; io_rsrc_node_switch(ctx, data); /* kill initial ref, already quiesced if zero */ if (atomic_dec_and_test(&data->refs)) break; mutex_unlock(&ctx->uring_lock); flush_delayed_work(&ctx->rsrc_put_work); ret = wait_for_completion_interruptible(&data->done); if (!ret) { mutex_lock(&ctx->uring_lock); if (atomic_read(&data->refs) > 0) { /* * it has been revived by another thread while * we were unlocked */ mutex_unlock(&ctx->uring_lock); } else { break; } } atomic_inc(&data->refs); /* wait for all works potentially completing data->done */ flush_delayed_work(&ctx->rsrc_put_work); reinit_completion(&data->done); ret = io_run_task_work_sig(); mutex_lock(&ctx->uring_lock); } while (ret >= 0); data->quiesce = false; return ret; } static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx) { unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK; unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT; return &data->tags[table_idx][off]; } static void io_rsrc_data_free(struct io_rsrc_data *data) { size_t size = data->nr * sizeof(data->tags[0][0]); if (data->tags) io_free_page_table((void **)data->tags, size); kfree(data); } static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put, u64 __user *utags, unsigned nr, struct io_rsrc_data **pdata) { struct io_rsrc_data *data; int ret = -ENOMEM; unsigned i; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0])); if (!data->tags) { kfree(data); return -ENOMEM; } data->nr = nr; data->ctx = ctx; data->do_put = do_put; if (utags) { ret = -EFAULT; for (i = 0; i < nr; i++) { u64 *tag_slot = io_get_tag_slot(data, i); if (copy_from_user(tag_slot, &utags[i], sizeof(*tag_slot))) goto fail; } } atomic_set(&data->refs, 1); init_completion(&data->done); *pdata = data; return 0; fail: io_rsrc_data_free(data); return ret; } static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files) { table->files = kvcalloc(nr_files, sizeof(table->files[0]), GFP_KERNEL_ACCOUNT); return !!table->files; } static void io_free_file_tables(struct io_file_table *table) { kvfree(table->files); table->files = NULL; } static void __io_sqe_files_unregister(struct io_ring_ctx *ctx) { int i; for (i = 0; i < ctx->nr_user_files; i++) { struct file *file; file = io_file_from_index(ctx, i); if (file) fput(file); } io_free_file_tables(&ctx->file_table); io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; ctx->nr_user_files = 0; } static int io_sqe_files_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_files; int ret; if (!ctx->file_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_files = 0; ret = io_rsrc_ref_quiesce(ctx->file_data, ctx); ctx->nr_user_files = nr; if (!ret) __io_sqe_files_unregister(ctx); return ret; } static void io_sq_thread_unpark(struct io_sq_data *sqd) __releases(&sqd->lock) { WARN_ON_ONCE(sqd->thread == current); /* * Do the dance but not conditional clear_bit() because it'd race with * other threads incrementing park_pending and setting the bit. */ clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state); if (atomic_dec_return(&sqd->park_pending)) set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state); mutex_unlock(&sqd->lock); } static void io_sq_thread_park(struct io_sq_data *sqd) __acquires(&sqd->lock) { WARN_ON_ONCE(sqd->thread == current); atomic_inc(&sqd->park_pending); set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state); mutex_lock(&sqd->lock); if (sqd->thread) wake_up_process(sqd->thread); } static void io_sq_thread_stop(struct io_sq_data *sqd) { WARN_ON_ONCE(sqd->thread == current); WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)); set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state); mutex_lock(&sqd->lock); if (sqd->thread) wake_up_process(sqd->thread); mutex_unlock(&sqd->lock); wait_for_completion(&sqd->exited); } static void io_put_sq_data(struct io_sq_data *sqd) { if (refcount_dec_and_test(&sqd->refs)) { WARN_ON_ONCE(atomic_read(&sqd->park_pending)); io_sq_thread_stop(sqd); kfree(sqd); } } static void io_sq_thread_finish(struct io_ring_ctx *ctx) { struct io_sq_data *sqd = ctx->sq_data; if (sqd) { io_sq_thread_park(sqd); list_del_init(&ctx->sqd_list); io_sqd_update_thread_idle(sqd); io_sq_thread_unpark(sqd); io_put_sq_data(sqd); ctx->sq_data = NULL; } } static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p) { struct io_ring_ctx *ctx_attach; struct io_sq_data *sqd; struct fd f; f = fdget(p->wq_fd); if (!f.file) return ERR_PTR(-ENXIO); if (f.file->f_op != &io_uring_fops) { fdput(f); return ERR_PTR(-EINVAL); } ctx_attach = f.file->private_data; sqd = ctx_attach->sq_data; if (!sqd) { fdput(f); return ERR_PTR(-EINVAL); } if (sqd->task_tgid != current->tgid) { fdput(f); return ERR_PTR(-EPERM); } refcount_inc(&sqd->refs); fdput(f); return sqd; } static struct io_sq_data *io_get_sq_data(struct io_uring_params *p, bool *attached) { struct io_sq_data *sqd; *attached = false; if (p->flags & IORING_SETUP_ATTACH_WQ) { sqd = io_attach_sq_data(p); if (!IS_ERR(sqd)) { *attached = true; return sqd; } /* fall through for EPERM case, setup new sqd/task */ if (PTR_ERR(sqd) != -EPERM) return sqd; } sqd = kzalloc(sizeof(*sqd), GFP_KERNEL); if (!sqd) return ERR_PTR(-ENOMEM); atomic_set(&sqd->park_pending, 0); refcount_set(&sqd->refs, 1); INIT_LIST_HEAD(&sqd->ctx_list); mutex_init(&sqd->lock); init_waitqueue_head(&sqd->wait); init_completion(&sqd->exited); return sqd; } static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc) { struct file *file = prsrc->file; fput(file); } static void __io_rsrc_put_work(struct io_rsrc_node *ref_node) { struct io_rsrc_data *rsrc_data = ref_node->rsrc_data; struct io_ring_ctx *ctx = rsrc_data->ctx; struct io_rsrc_put *prsrc, *tmp; list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) { list_del(&prsrc->list); if (prsrc->tag) { bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL; io_ring_submit_lock(ctx, lock_ring); spin_lock(&ctx->completion_lock); io_fill_cqe_aux(ctx, prsrc->tag, 0, 0); io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); io_cqring_ev_posted(ctx); io_ring_submit_unlock(ctx, lock_ring); } rsrc_data->do_put(ctx, prsrc); kfree(prsrc); } io_rsrc_node_destroy(ref_node); if (atomic_dec_and_test(&rsrc_data->refs)) complete(&rsrc_data->done); } static void io_rsrc_put_work(struct work_struct *work) { struct io_ring_ctx *ctx; struct llist_node *node; ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work); node = llist_del_all(&ctx->rsrc_put_llist); while (node) { struct io_rsrc_node *ref_node; struct llist_node *next = node->next; ref_node = llist_entry(node, struct io_rsrc_node, llist); __io_rsrc_put_work(ref_node); node = next; } } static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args, u64 __user *tags) { __s32 __user *fds = (__s32 __user *) arg; struct file *file; int fd, ret; unsigned i; if (ctx->file_data) return -EBUSY; if (!nr_args) return -EINVAL; if (nr_args > IORING_MAX_FIXED_FILES) return -EMFILE; if (nr_args > rlimit(RLIMIT_NOFILE)) return -EMFILE; ret = io_rsrc_node_switch_start(ctx); if (ret) return ret; ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args, &ctx->file_data); if (ret) return ret; ret = -ENOMEM; if (!io_alloc_file_tables(&ctx->file_table, nr_args)) goto out_free; for (i = 0; i < nr_args; i++, ctx->nr_user_files++) { if (copy_from_user(&fd, &fds[i], sizeof(fd))) { ret = -EFAULT; goto out_fput; } /* allow sparse sets */ if (fd == -1) { ret = -EINVAL; if (unlikely(*io_get_tag_slot(ctx->file_data, i))) goto out_fput; continue; } file = fget(fd); ret = -EBADF; if (unlikely(!file)) goto out_fput; /* * Don't allow io_uring instances to be registered. If UNIX * isn't enabled, then this causes a reference cycle and this * instance can never get freed. If UNIX is enabled we'll * handle it just fine, but there's still no point in allowing * a ring fd as it doesn't support regular read/write anyway. */ if (file->f_op == &io_uring_fops) { fput(file); goto out_fput; } io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file); } io_rsrc_node_switch(ctx, NULL); return 0; out_fput: for (i = 0; i < ctx->nr_user_files; i++) { file = io_file_from_index(ctx, i); if (file) fput(file); } io_free_file_tables(&ctx->file_table); ctx->nr_user_files = 0; out_free: io_rsrc_data_free(ctx->file_data); ctx->file_data = NULL; return ret; } static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx, struct io_rsrc_node *node, void *rsrc) { u64 *tag_slot = io_get_tag_slot(data, idx); struct io_rsrc_put *prsrc; prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL); if (!prsrc) return -ENOMEM; prsrc->tag = *tag_slot; *tag_slot = 0; prsrc->rsrc = rsrc; list_add(&prsrc->list, &node->rsrc_list); return 0; } static int io_install_fixed_file(struct io_kiocb *req, struct file *file, unsigned int issue_flags, u32 slot_index) { struct io_ring_ctx *ctx = req->ctx; bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; bool needs_switch = false; struct io_fixed_file *file_slot; int ret = -EBADF; io_ring_submit_lock(ctx, !force_nonblock); if (file->f_op == &io_uring_fops) goto err; ret = -ENXIO; if (!ctx->file_data) goto err; ret = -EINVAL; if (slot_index >= ctx->nr_user_files) goto err; slot_index = array_index_nospec(slot_index, ctx->nr_user_files); file_slot = io_fixed_file_slot(&ctx->file_table, slot_index); if (file_slot->file_ptr) { struct file *old_file; ret = io_rsrc_node_switch_start(ctx); if (ret) goto err; old_file = (struct file *)(file_slot->file_ptr & FFS_MASK); ret = io_queue_rsrc_removal(ctx->file_data, slot_index, ctx->rsrc_node, old_file); if (ret) goto err; file_slot->file_ptr = 0; needs_switch = true; } *io_get_tag_slot(ctx->file_data, slot_index) = 0; io_fixed_file_set(file_slot, file); ret = 0; err: if (needs_switch) io_rsrc_node_switch(ctx, ctx->file_data); io_ring_submit_unlock(ctx, !force_nonblock); if (ret) fput(file); return ret; } static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags) { unsigned int offset = req->close.file_slot - 1; struct io_ring_ctx *ctx = req->ctx; struct io_fixed_file *file_slot; struct file *file; int ret; io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); ret = -ENXIO; if (unlikely(!ctx->file_data)) goto out; ret = -EINVAL; if (offset >= ctx->nr_user_files) goto out; ret = io_rsrc_node_switch_start(ctx); if (ret) goto out; offset = array_index_nospec(offset, ctx->nr_user_files); file_slot = io_fixed_file_slot(&ctx->file_table, offset); ret = -EBADF; if (!file_slot->file_ptr) goto out; file = (struct file *)(file_slot->file_ptr & FFS_MASK); ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file); if (ret) goto out; file_slot->file_ptr = 0; io_rsrc_node_switch(ctx, ctx->file_data); ret = 0; out: io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK)); return ret; } static int __io_sqe_files_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); __s32 __user *fds = u64_to_user_ptr(up->data); struct io_rsrc_data *data = ctx->file_data; struct io_fixed_file *file_slot; struct file *file; int fd, i, err = 0; unsigned int done; bool needs_switch = false; if (!ctx->file_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_files) return -EINVAL; for (done = 0; done < nr_args; done++) { u64 tag = 0; if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) || copy_from_user(&fd, &fds[done], sizeof(fd))) { err = -EFAULT; break; } if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) { err = -EINVAL; break; } if (fd == IORING_REGISTER_FILES_SKIP) continue; i = array_index_nospec(up->offset + done, ctx->nr_user_files); file_slot = io_fixed_file_slot(&ctx->file_table, i); if (file_slot->file_ptr) { file = (struct file *)(file_slot->file_ptr & FFS_MASK); err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file); if (err) break; file_slot->file_ptr = 0; needs_switch = true; } if (fd != -1) { file = fget(fd); if (!file) { err = -EBADF; break; } /* * Don't allow io_uring instances to be registered. If * UNIX isn't enabled, then this causes a reference * cycle and this instance can never get freed. If UNIX * is enabled we'll handle it just fine, but there's * still no point in allowing a ring fd as it doesn't * support regular read/write anyway. */ if (file->f_op == &io_uring_fops) { fput(file); err = -EBADF; break; } *io_get_tag_slot(data, i) = tag; io_fixed_file_set(file_slot, file); } } if (needs_switch) io_rsrc_node_switch(ctx, data); return done ? done : err; } static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx, struct task_struct *task) { struct io_wq_hash *hash; struct io_wq_data data; unsigned int concurrency; mutex_lock(&ctx->uring_lock); hash = ctx->hash_map; if (!hash) { hash = kzalloc(sizeof(*hash), GFP_KERNEL); if (!hash) { mutex_unlock(&ctx->uring_lock); return ERR_PTR(-ENOMEM); } refcount_set(&hash->refs, 1); init_waitqueue_head(&hash->wait); ctx->hash_map = hash; } mutex_unlock(&ctx->uring_lock); data.hash = hash; data.task = task; data.free_work = io_wq_free_work; data.do_work = io_wq_submit_work; /* Do QD, or 4 * CPUS, whatever is smallest */ concurrency = min(ctx->sq_entries, 4 * num_online_cpus()); return io_wq_create(concurrency, &data); } static int io_uring_alloc_task_context(struct task_struct *task, struct io_ring_ctx *ctx) { struct io_uring_task *tctx; int ret; tctx = kzalloc(sizeof(*tctx), GFP_KERNEL); if (unlikely(!tctx)) return -ENOMEM; ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL); if (unlikely(ret)) { kfree(tctx); return ret; } tctx->io_wq = io_init_wq_offload(ctx, task); if (IS_ERR(tctx->io_wq)) { ret = PTR_ERR(tctx->io_wq); percpu_counter_destroy(&tctx->inflight); kfree(tctx); return ret; } xa_init(&tctx->xa); init_waitqueue_head(&tctx->wait); atomic_set(&tctx->in_idle, 0); atomic_set(&tctx->inflight_tracked, 0); task->io_uring = tctx; spin_lock_init(&tctx->task_lock); INIT_WQ_LIST(&tctx->task_list); init_task_work(&tctx->task_work, tctx_task_work); return 0; } void __io_uring_free(struct task_struct *tsk) { struct io_uring_task *tctx = tsk->io_uring; WARN_ON_ONCE(!xa_empty(&tctx->xa)); WARN_ON_ONCE(tctx->io_wq); WARN_ON_ONCE(tctx->cached_refs); percpu_counter_destroy(&tctx->inflight); kfree(tctx); tsk->io_uring = NULL; } static int io_sq_offload_create(struct io_ring_ctx *ctx, struct io_uring_params *p) { int ret; /* Retain compatibility with failing for an invalid attach attempt */ if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) == IORING_SETUP_ATTACH_WQ) { struct fd f; f = fdget(p->wq_fd); if (!f.file) return -ENXIO; if (f.file->f_op != &io_uring_fops) { fdput(f); return -EINVAL; } fdput(f); } if (ctx->flags & IORING_SETUP_SQPOLL) { struct task_struct *tsk; struct io_sq_data *sqd; bool attached; sqd = io_get_sq_data(p, &attached); if (IS_ERR(sqd)) { ret = PTR_ERR(sqd); goto err; } ctx->sq_creds = get_current_cred(); ctx->sq_data = sqd; ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle); if (!ctx->sq_thread_idle) ctx->sq_thread_idle = HZ; io_sq_thread_park(sqd); list_add(&ctx->sqd_list, &sqd->ctx_list); io_sqd_update_thread_idle(sqd); /* don't attach to a dying SQPOLL thread, would be racy */ ret = (attached && !sqd->thread) ? -ENXIO : 0; io_sq_thread_unpark(sqd); if (ret < 0) goto err; if (attached) return 0; if (p->flags & IORING_SETUP_SQ_AFF) { cpumask_var_t allowed_mask; int cpu = p->sq_thread_cpu; ret = -EINVAL; if (cpu >= nr_cpu_ids || !cpu_online(cpu)) goto err_sqpoll; ret = -ENOMEM; if (!alloc_cpumask_var(&allowed_mask, GFP_KERNEL)) goto err_sqpoll; ret = -EINVAL; cpuset_cpus_allowed(current, allowed_mask); if (!cpumask_test_cpu(cpu, allowed_mask)) { free_cpumask_var(allowed_mask); goto err_sqpoll; } free_cpumask_var(allowed_mask); sqd->sq_cpu = cpu; } else { sqd->sq_cpu = -1; } sqd->task_pid = current->pid; sqd->task_tgid = current->tgid; tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE); if (IS_ERR(tsk)) { ret = PTR_ERR(tsk); goto err_sqpoll; } sqd->thread = tsk; ret = io_uring_alloc_task_context(tsk, ctx); wake_up_new_task(tsk); if (ret) goto err; } else if (p->flags & IORING_SETUP_SQ_AFF) { /* Can't have SQ_AFF without SQPOLL */ ret = -EINVAL; goto err; } return 0; err_sqpoll: complete(&ctx->sq_data->exited); err: io_sq_thread_finish(ctx); return ret; } static inline void __io_unaccount_mem(struct user_struct *user, unsigned long nr_pages) { atomic_long_sub(nr_pages, &user->locked_vm); } static inline int __io_account_mem(struct user_struct *user, unsigned long nr_pages) { unsigned long page_limit, cur_pages, new_pages; /* Don't allow more pages than we can safely lock */ page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; do { cur_pages = atomic_long_read(&user->locked_vm); new_pages = cur_pages + nr_pages; if (new_pages > page_limit) return -ENOMEM; } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages, new_pages) != cur_pages); return 0; } static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { if (ctx->user) __io_unaccount_mem(ctx->user, nr_pages); if (ctx->mm_account) atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm); } static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages) { int ret; if (ctx->user) { ret = __io_account_mem(ctx->user, nr_pages); if (ret) return ret; } if (ctx->mm_account) atomic64_add(nr_pages, &ctx->mm_account->pinned_vm); return 0; } static void io_mem_free(void *ptr) { struct page *page; if (!ptr) return; page = virt_to_head_page(ptr); if (put_page_testzero(page)) free_compound_page(page); } static void *io_mem_alloc(size_t size) { gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP; return (void *) __get_free_pages(gfp, get_order(size)); } static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries, size_t *sq_offset) { struct io_rings *rings; size_t off, sq_array_size; off = struct_size(rings, cqes, cq_entries); if (off == SIZE_MAX) return SIZE_MAX; #ifdef CONFIG_SMP off = ALIGN(off, SMP_CACHE_BYTES); if (off == 0) return SIZE_MAX; #endif if (sq_offset) *sq_offset = off; sq_array_size = array_size(sizeof(u32), sq_entries); if (sq_array_size == SIZE_MAX) return SIZE_MAX; if (check_add_overflow(off, sq_array_size, &off)) return SIZE_MAX; return off; } static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot) { struct io_mapped_ubuf *imu = *slot; unsigned int i; if (imu != ctx->dummy_ubuf) { for (i = 0; i < imu->nr_bvecs; i++) unpin_user_page(imu->bvec[i].bv_page); if (imu->acct_pages) io_unaccount_mem(ctx, imu->acct_pages); kvfree(imu); } *slot = NULL; } static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc) { io_buffer_unmap(ctx, &prsrc->buf); prsrc->buf = NULL; } static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned int i; for (i = 0; i < ctx->nr_user_bufs; i++) io_buffer_unmap(ctx, &ctx->user_bufs[i]); kfree(ctx->user_bufs); io_rsrc_data_free(ctx->buf_data); ctx->user_bufs = NULL; ctx->buf_data = NULL; ctx->nr_user_bufs = 0; } static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx) { unsigned nr = ctx->nr_user_bufs; int ret; if (!ctx->buf_data) return -ENXIO; /* * Quiesce may unlock ->uring_lock, and while it's not held * prevent new requests using the table. */ ctx->nr_user_bufs = 0; ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx); ctx->nr_user_bufs = nr; if (!ret) __io_sqe_buffers_unregister(ctx); return ret; } static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst, void __user *arg, unsigned index) { struct iovec __user *src; #ifdef CONFIG_COMPAT if (ctx->compat) { struct compat_iovec __user *ciovs; struct compat_iovec ciov; ciovs = (struct compat_iovec __user *) arg; if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov))) return -EFAULT; dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base); dst->iov_len = ciov.iov_len; return 0; } #endif src = (struct iovec __user *) arg; if (copy_from_user(dst, &src[index], sizeof(*dst))) return -EFAULT; return 0; } /* * Not super efficient, but this is just a registration time. And we do cache * the last compound head, so generally we'll only do a full search if we don't * match that one. * * We check if the given compound head page has already been accounted, to * avoid double accounting it. This allows us to account the full size of the * page, not just the constituent pages of a huge page. */ static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct page *hpage) { int i, j; /* check current page array */ for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) continue; if (compound_head(pages[i]) == hpage) return true; } /* check previously registered pages */ for (i = 0; i < ctx->nr_user_bufs; i++) { struct io_mapped_ubuf *imu = ctx->user_bufs[i]; for (j = 0; j < imu->nr_bvecs; j++) { if (!PageCompound(imu->bvec[j].bv_page)) continue; if (compound_head(imu->bvec[j].bv_page) == hpage) return true; } } return false; } static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct io_mapped_ubuf *imu, struct page **last_hpage) { int i, ret; imu->acct_pages = 0; for (i = 0; i < nr_pages; i++) { if (!PageCompound(pages[i])) { imu->acct_pages++; } else { struct page *hpage; hpage = compound_head(pages[i]); if (hpage == *last_hpage) continue; *last_hpage = hpage; if (headpage_already_acct(ctx, pages, i, hpage)) continue; imu->acct_pages += page_size(hpage) >> PAGE_SHIFT; } } if (!imu->acct_pages) return 0; ret = io_account_mem(ctx, imu->acct_pages); if (ret) imu->acct_pages = 0; return ret; } static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage) { struct io_mapped_ubuf *imu = NULL; struct vm_area_struct **vmas = NULL; struct page **pages = NULL; unsigned long off, start, end, ubuf; size_t size; int ret, pret, nr_pages, i; if (!iov->iov_base) { *pimu = ctx->dummy_ubuf; return 0; } ubuf = (unsigned long) iov->iov_base; end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; start = ubuf >> PAGE_SHIFT; nr_pages = end - start; *pimu = NULL; ret = -ENOMEM; pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) goto done; vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *), GFP_KERNEL); if (!vmas) goto done; imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL); if (!imu) goto done; ret = 0; mmap_read_lock(current->mm); pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM, pages, vmas); if (pret == nr_pages) { struct file *file = vmas[0]->vm_file; /* don't support file backed memory */ for (i = 0; i < nr_pages; i++) { if (vmas[i]->vm_file != file) { ret = -EINVAL; break; } if (!file) continue; if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) { ret = -EOPNOTSUPP; break; } } } else { ret = pret < 0 ? pret : -EFAULT; } mmap_read_unlock(current->mm); if (ret) { /* * if we did partial map, or found file backed vmas, * release any pages we did get */ if (pret > 0) unpin_user_pages(pages, pret); goto done; } ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage); if (ret) { unpin_user_pages(pages, pret); goto done; } off = ubuf & ~PAGE_MASK; size = iov->iov_len; for (i = 0; i < nr_pages; i++) { size_t vec_len; vec_len = min_t(size_t, size, PAGE_SIZE - off); imu->bvec[i].bv_page = pages[i]; imu->bvec[i].bv_len = vec_len; imu->bvec[i].bv_offset = off; off = 0; size -= vec_len; } /* store original address for later verification */ imu->ubuf = ubuf; imu->ubuf_end = ubuf + iov->iov_len; imu->nr_bvecs = nr_pages; *pimu = imu; ret = 0; done: if (ret) kvfree(imu); kvfree(pages); kvfree(vmas); return ret; } static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args) { ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL); return ctx->user_bufs ? 0 : -ENOMEM; } static int io_buffer_validate(struct iovec *iov) { unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1); /* * Don't impose further limits on the size and buffer * constraints here, we'll -EINVAL later when IO is * submitted if they are wrong. */ if (!iov->iov_base) return iov->iov_len ? -EFAULT : 0; if (!iov->iov_len) return -EFAULT; /* arbitrary limit, but we need something */ if (iov->iov_len > SZ_1G) return -EFAULT; if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp)) return -EOVERFLOW; return 0; } static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args, u64 __user *tags) { struct page *last_hpage = NULL; struct io_rsrc_data *data; int i, ret; struct iovec iov; if (ctx->user_bufs) return -EBUSY; if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS) return -EINVAL; ret = io_rsrc_node_switch_start(ctx); if (ret) return ret; ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data); if (ret) return ret; ret = io_buffers_map_alloc(ctx, nr_args); if (ret) { io_rsrc_data_free(data); return ret; } for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) { ret = io_copy_iov(ctx, &iov, arg, i); if (ret) break; ret = io_buffer_validate(&iov); if (ret) break; if (!iov.iov_base && *io_get_tag_slot(data, i)) { ret = -EINVAL; break; } ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i], &last_hpage); if (ret) break; } WARN_ON_ONCE(ctx->buf_data); ctx->buf_data = data; if (ret) __io_sqe_buffers_unregister(ctx); else io_rsrc_node_switch(ctx, NULL); return ret; } static int __io_sqe_buffers_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned int nr_args) { u64 __user *tags = u64_to_user_ptr(up->tags); struct iovec iov, __user *iovs = u64_to_user_ptr(up->data); struct page *last_hpage = NULL; bool needs_switch = false; __u32 done; int i, err; if (!ctx->buf_data) return -ENXIO; if (up->offset + nr_args > ctx->nr_user_bufs) return -EINVAL; for (done = 0; done < nr_args; done++) { struct io_mapped_ubuf *imu; int offset = up->offset + done; u64 tag = 0; err = io_copy_iov(ctx, &iov, iovs, done); if (err) break; if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) { err = -EFAULT; break; } err = io_buffer_validate(&iov); if (err) break; if (!iov.iov_base && tag) { err = -EINVAL; break; } err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage); if (err) break; i = array_index_nospec(offset, ctx->nr_user_bufs); if (ctx->user_bufs[i] != ctx->dummy_ubuf) { err = io_queue_rsrc_removal(ctx->buf_data, i, ctx->rsrc_node, ctx->user_bufs[i]); if (unlikely(err)) { io_buffer_unmap(ctx, &imu); break; } ctx->user_bufs[i] = NULL; needs_switch = true; } ctx->user_bufs[i] = imu; *io_get_tag_slot(ctx->buf_data, offset) = tag; } if (needs_switch) io_rsrc_node_switch(ctx, ctx->buf_data); return done ? done : err; } static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg) { __s32 __user *fds = arg; int fd; if (ctx->cq_ev_fd) return -EBUSY; if (copy_from_user(&fd, fds, sizeof(*fds))) return -EFAULT; ctx->cq_ev_fd = eventfd_ctx_fdget(fd); if (IS_ERR(ctx->cq_ev_fd)) { int ret = PTR_ERR(ctx->cq_ev_fd); ctx->cq_ev_fd = NULL; return ret; } return 0; } static int io_eventfd_unregister(struct io_ring_ctx *ctx) { if (ctx->cq_ev_fd) { eventfd_ctx_put(ctx->cq_ev_fd); ctx->cq_ev_fd = NULL; return 0; } return -ENXIO; } static void io_destroy_buffers(struct io_ring_ctx *ctx) { struct io_buffer *buf; unsigned long index; xa_for_each(&ctx->io_buffers, index, buf) __io_remove_buffers(ctx, buf, index, -1U); } static void io_req_cache_free(struct list_head *list) { struct io_kiocb *req, *nxt; list_for_each_entry_safe(req, nxt, list, inflight_entry) { list_del(&req->inflight_entry); kmem_cache_free(req_cachep, req); } } static void io_req_caches_free(struct io_ring_ctx *ctx) { struct io_submit_state *state = &ctx->submit_state; mutex_lock(&ctx->uring_lock); if (state->free_reqs) { kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs); state->free_reqs = 0; } io_flush_cached_locked_reqs(ctx, state); io_req_cache_free(&state->free_list); mutex_unlock(&ctx->uring_lock); } static void io_wait_rsrc_data(struct io_rsrc_data *data) { if (data && !atomic_dec_and_test(&data->refs)) wait_for_completion(&data->done); } static void io_ring_ctx_free(struct io_ring_ctx *ctx) { io_sq_thread_finish(ctx); /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */ io_wait_rsrc_data(ctx->buf_data); io_wait_rsrc_data(ctx->file_data); mutex_lock(&ctx->uring_lock); if (ctx->buf_data) __io_sqe_buffers_unregister(ctx); if (ctx->file_data) __io_sqe_files_unregister(ctx); if (ctx->rings) __io_cqring_overflow_flush(ctx, true); mutex_unlock(&ctx->uring_lock); io_eventfd_unregister(ctx); io_destroy_buffers(ctx); if (ctx->sq_creds) put_cred(ctx->sq_creds); /* there are no registered resources left, nobody uses it */ if (ctx->rsrc_node) io_rsrc_node_destroy(ctx->rsrc_node); if (ctx->rsrc_backup_node) io_rsrc_node_destroy(ctx->rsrc_backup_node); flush_delayed_work(&ctx->rsrc_put_work); WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)); WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist)); WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); if (ctx->mm_account) { mmdrop(ctx->mm_account); ctx->mm_account = NULL; } io_mem_free(ctx->rings); io_mem_free(ctx->sq_sqes); percpu_ref_exit(&ctx->refs); free_uid(ctx->user); io_req_caches_free(ctx); if (ctx->hash_map) io_wq_put_hash(ctx->hash_map); kfree(ctx->cancel_hash); kfree(ctx->dummy_ubuf); kfree(ctx); } static __poll_t io_uring_poll(struct file *file, poll_table *wait) { struct io_ring_ctx *ctx = file->private_data; __poll_t mask = 0; poll_wait(file, &ctx->poll_wait, wait); /* * synchronizes with barrier from wq_has_sleeper call in * io_commit_cqring */ smp_rmb(); if (!io_sqring_full(ctx)) mask |= EPOLLOUT | EPOLLWRNORM; /* * Don't flush cqring overflow list here, just do a simple check. * Otherwise there could possible be ABBA deadlock: * CPU0 CPU1 * ---- ---- * lock(&ctx->uring_lock); * lock(&ep->mtx); * lock(&ctx->uring_lock); * lock(&ep->mtx); * * Users may get EPOLLIN meanwhile seeing nothing in cqring, this * pushs them to do the flush. */ if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow)) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id) { const struct cred *creds; creds = xa_erase(&ctx->personalities, id); if (creds) { put_cred(creds); return 0; } return -EINVAL; } struct io_tctx_exit { struct callback_head task_work; struct completion completion; struct io_ring_ctx *ctx; }; static void io_tctx_exit_cb(struct callback_head *cb) { struct io_uring_task *tctx = current->io_uring; struct io_tctx_exit *work; work = container_of(cb, struct io_tctx_exit, task_work); /* * When @in_idle, we're in cancellation and it's racy to remove the * node. It'll be removed by the end of cancellation, just ignore it. * tctx can be NULL if the queueing of this task_work raced with * work cancelation off the exec path. */ if (tctx && !atomic_read(&tctx->in_idle)) io_uring_del_tctx_node((unsigned long)work->ctx); complete(&work->completion); } static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); return req->ctx == data; } static void io_ring_exit_work(struct work_struct *work) { struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); unsigned long timeout = jiffies + HZ * 60 * 5; unsigned long interval = HZ / 20; struct io_tctx_exit exit; struct io_tctx_node *node; int ret; /* * If we're doing polled IO and end up having requests being * submitted async (out-of-line), then completions can come in while * we're waiting for refs to drop. We need to reap these manually, * as nobody else will be looking for them. */ do { io_uring_try_cancel_requests(ctx, NULL, true); if (ctx->sq_data) { struct io_sq_data *sqd = ctx->sq_data; struct task_struct *tsk; io_sq_thread_park(sqd); tsk = sqd->thread; if (tsk && tsk->io_uring && tsk->io_uring->io_wq) io_wq_cancel_cb(tsk->io_uring->io_wq, io_cancel_ctx_cb, ctx, true); io_sq_thread_unpark(sqd); } if (WARN_ON_ONCE(time_after(jiffies, timeout))) { /* there is little hope left, don't run it too often */ interval = HZ * 60; } /* * This is really an uninterruptible wait, as it has to be * complete. But it's also run from a kworker, which doesn't * take signals, so it's fine to make it interruptible. This * avoids scenarios where we knowingly can wait much longer * on completions, for example if someone does a SIGSTOP on * a task that needs to finish task_work to make this loop * complete. That's a synthetic situation that should not * cause a stuck task backtrace, and hence a potential panic * on stuck tasks if that is enabled. */ } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); init_completion(&exit.completion); init_task_work(&exit.task_work, io_tctx_exit_cb); exit.ctx = ctx; mutex_lock(&ctx->uring_lock); while (!list_empty(&ctx->tctx_list)) { WARN_ON_ONCE(time_after(jiffies, timeout)); node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, ctx_node); /* don't spin on a single task if cancellation failed */ list_rotate_left(&ctx->tctx_list); ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); if (WARN_ON_ONCE(ret)) continue; wake_up_process(node->task); mutex_unlock(&ctx->uring_lock); /* * See comment above for * wait_for_completion_interruptible_timeout() on why this * wait is marked as interruptible. */ wait_for_completion_interruptible(&exit.completion); mutex_lock(&ctx->uring_lock); } mutex_unlock(&ctx->uring_lock); spin_lock(&ctx->completion_lock); spin_unlock(&ctx->completion_lock); io_ring_ctx_free(ctx); } /* Returns true if we found and killed one or more timeouts */ static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all) { struct io_kiocb *req, *tmp; int canceled = 0; spin_lock(&ctx->completion_lock); spin_lock_irq(&ctx->timeout_lock); list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) { if (io_match_task(req, tsk, cancel_all)) { io_kill_timeout(req, -ECANCELED); canceled++; } } spin_unlock_irq(&ctx->timeout_lock); if (canceled != 0) io_commit_cqring(ctx); spin_unlock(&ctx->completion_lock); if (canceled != 0) io_cqring_ev_posted(ctx); return canceled != 0; } static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) { unsigned long index; struct creds *creds; mutex_lock(&ctx->uring_lock); percpu_ref_kill(&ctx->refs); if (ctx->rings) __io_cqring_overflow_flush(ctx, true); xa_for_each(&ctx->personalities, index, creds) io_unregister_personality(ctx, index); mutex_unlock(&ctx->uring_lock); io_kill_timeouts(ctx, NULL, true); io_poll_remove_all(ctx, NULL, true); /* if we failed setting up the ctx, we might not have any rings */ io_iopoll_try_reap_events(ctx); /* drop cached put refs after potentially doing completions */ if (current->io_uring) io_uring_drop_tctx_refs(current); INIT_WORK(&ctx->exit_work, io_ring_exit_work); /* * Use system_unbound_wq to avoid spawning tons of event kworkers * if we're exiting a ton of rings at the same time. It just adds * noise and overhead, there's no discernable change in runtime * over using system_wq. */ queue_work(system_unbound_wq, &ctx->exit_work); } static int io_uring_release(struct inode *inode, struct file *file) { struct io_ring_ctx *ctx = file->private_data; file->private_data = NULL; io_ring_ctx_wait_and_kill(ctx); return 0; } struct io_task_cancel { struct task_struct *task; bool all; }; static bool io_cancel_task_cb(struct io_wq_work *work, void *data) { struct io_kiocb *req = container_of(work, struct io_kiocb, work); struct io_task_cancel *cancel = data; return io_match_task_safe(req, cancel->task, cancel->all); } static bool io_cancel_defer_files(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all) { struct io_defer_entry *de; LIST_HEAD(list); spin_lock(&ctx->completion_lock); list_for_each_entry_reverse(de, &ctx->defer_list, list) { if (io_match_task_safe(de->req, task, cancel_all)) { list_cut_position(&list, &ctx->defer_list, &de->list); break; } } spin_unlock(&ctx->completion_lock); if (list_empty(&list)) return false; while (!list_empty(&list)) { de = list_first_entry(&list, struct io_defer_entry, list); list_del_init(&de->list); io_req_complete_failed(de->req, -ECANCELED); kfree(de); } return true; } static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) { struct io_tctx_node *node; enum io_wq_cancel cret; bool ret = false; mutex_lock(&ctx->uring_lock); list_for_each_entry(node, &ctx->tctx_list, ctx_node) { struct io_uring_task *tctx = node->task->io_uring; /* * io_wq will stay alive while we hold uring_lock, because it's * killed after ctx nodes, which requires to take the lock. */ if (!tctx || !tctx->io_wq) continue; cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); ret |= (cret != IO_WQ_CANCEL_NOTFOUND); } mutex_unlock(&ctx->uring_lock); return ret; } static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all) { struct io_task_cancel cancel = { .task = task, .all = cancel_all, }; struct io_uring_task *tctx = task ? task->io_uring : NULL; while (1) { enum io_wq_cancel cret; bool ret = false; if (!task) { ret |= io_uring_try_cancel_iowq(ctx); } else if (tctx && tctx->io_wq) { /* * Cancels requests of all rings, not only @ctx, but * it's fine as the task is in exit/exec. */ cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, &cancel, true); ret |= (cret != IO_WQ_CANCEL_NOTFOUND); } /* SQPOLL thread does its own polling */ if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || (ctx->sq_data && ctx->sq_data->thread == current)) { while (!list_empty_careful(&ctx->iopoll_list)) { io_iopoll_try_reap_events(ctx); ret = true; cond_resched(); } } ret |= io_cancel_defer_files(ctx, task, cancel_all); ret |= io_poll_remove_all(ctx, task, cancel_all); ret |= io_kill_timeouts(ctx, task, cancel_all); if (task) ret |= io_run_task_work(); if (!ret) break; cond_resched(); } } static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx) { struct io_uring_task *tctx = current->io_uring; struct io_tctx_node *node; int ret; if (unlikely(!tctx)) { ret = io_uring_alloc_task_context(current, ctx); if (unlikely(ret)) return ret; tctx = current->io_uring; if (ctx->iowq_limits_set) { unsigned int limits[2] = { ctx->iowq_limits[0], ctx->iowq_limits[1], }; ret = io_wq_max_workers(tctx->io_wq, limits); if (ret) return ret; } } if (!xa_load(&tctx->xa, (unsigned long)ctx)) { node = kmalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; node->ctx = ctx; node->task = current; ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx, node, GFP_KERNEL)); if (ret) { kfree(node); return ret; } mutex_lock(&ctx->uring_lock); list_add(&node->ctx_node, &ctx->tctx_list); mutex_unlock(&ctx->uring_lock); } tctx->last = ctx; return 0; } /* * Note that this task has used io_uring. We use it for cancelation purposes. */ static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx) { struct io_uring_task *tctx = current->io_uring; if (likely(tctx && tctx->last == ctx)) return 0; return __io_uring_add_tctx_node(ctx); } /* * Remove this io_uring_file -> task mapping. */ static void io_uring_del_tctx_node(unsigned long index) { struct io_uring_task *tctx = current->io_uring; struct io_tctx_node *node; if (!tctx) return; node = xa_erase(&tctx->xa, index); if (!node) return; WARN_ON_ONCE(current != node->task); WARN_ON_ONCE(list_empty(&node->ctx_node)); mutex_lock(&node->ctx->uring_lock); list_del(&node->ctx_node); mutex_unlock(&node->ctx->uring_lock); if (tctx->last == node->ctx) tctx->last = NULL; kfree(node); } static void io_uring_clean_tctx(struct io_uring_task *tctx) { struct io_wq *wq = tctx->io_wq; struct io_tctx_node *node; unsigned long index; xa_for_each(&tctx->xa, index, node) { io_uring_del_tctx_node(index); cond_resched(); } if (wq) { /* * Must be after io_uring_del_task_file() (removes nodes under * uring_lock) to avoid race with io_uring_try_cancel_iowq(). */ io_wq_put_and_exit(wq); tctx->io_wq = NULL; } } static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) { if (tracked) return atomic_read(&tctx->inflight_tracked); return percpu_counter_sum(&tctx->inflight); } /* * Find any io_uring ctx that this task has registered or done IO on, and cancel * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. */ static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) { struct io_uring_task *tctx = current->io_uring; struct io_ring_ctx *ctx; s64 inflight; DEFINE_WAIT(wait); WARN_ON_ONCE(sqd && sqd->thread != current); if (!current->io_uring) return; if (tctx->io_wq) io_wq_exit_start(tctx->io_wq); atomic_inc(&tctx->in_idle); do { io_uring_drop_tctx_refs(current); if (!tctx_inflight(tctx, !cancel_all)) break; /* read completions before cancelations */ inflight = tctx_inflight(tctx, false); if (!inflight) break; if (!sqd) { struct io_tctx_node *node; unsigned long index; xa_for_each(&tctx->xa, index, node) { /* sqpoll task will cancel all its requests */ if (node->ctx->sq_data) continue; io_uring_try_cancel_requests(node->ctx, current, cancel_all); } } else { list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) io_uring_try_cancel_requests(ctx, current, cancel_all); } prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); io_run_task_work(); io_uring_drop_tctx_refs(current); /* * If we've seen completions, retry without waiting. This * avoids a race where a completion comes in before we did * prepare_to_wait(). */ if (inflight == tctx_inflight(tctx, !cancel_all)) schedule(); finish_wait(&tctx->wait, &wait); } while (1); io_uring_clean_tctx(tctx); if (cancel_all) { /* * We shouldn't run task_works after cancel, so just leave * ->in_idle set for normal exit. */ atomic_dec(&tctx->in_idle); /* for exec all current's requests should be gone, kill tctx */ __io_uring_free(current); } } void __io_uring_cancel(bool cancel_all) { io_uring_cancel_generic(cancel_all, NULL); } static void *io_uring_validate_mmap_request(struct file *file, loff_t pgoff, size_t sz) { struct io_ring_ctx *ctx = file->private_data; loff_t offset = pgoff << PAGE_SHIFT; struct page *page; void *ptr; switch (offset) { case IORING_OFF_SQ_RING: case IORING_OFF_CQ_RING: ptr = ctx->rings; break; case IORING_OFF_SQES: ptr = ctx->sq_sqes; break; default: return ERR_PTR(-EINVAL); } page = virt_to_head_page(ptr); if (sz > page_size(page)) return ERR_PTR(-EINVAL); return ptr; } #ifdef CONFIG_MMU static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) { size_t sz = vma->vm_end - vma->vm_start; unsigned long pfn; void *ptr; ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz); if (IS_ERR(ptr)) return PTR_ERR(ptr); pfn = virt_to_phys(ptr) >> PAGE_SHIFT; return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot); } #else /* !CONFIG_MMU */ static int io_uring_mmap(struct file *file, struct vm_area_struct *vma) { return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL; } static unsigned int io_uring_nommu_mmap_capabilities(struct file *file) { return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE; } static unsigned long io_uring_nommu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { void *ptr; ptr = io_uring_validate_mmap_request(file, pgoff, len); if (IS_ERR(ptr)) return PTR_ERR(ptr); return (unsigned long) ptr; } #endif /* !CONFIG_MMU */ static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx) { DEFINE_WAIT(wait); do { if (!io_sqring_full(ctx)) break; prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE); if (!io_sqring_full(ctx)) break; schedule(); } while (!signal_pending(current)); finish_wait(&ctx->sqo_sq_wait, &wait); return 0; } static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, struct __kernel_timespec __user **ts, const sigset_t __user **sig) { struct io_uring_getevents_arg arg; /* * If EXT_ARG isn't set, then we have no timespec and the argp pointer * is just a pointer to the sigset_t. */ if (!(flags & IORING_ENTER_EXT_ARG)) { *sig = (const sigset_t __user *) argp; *ts = NULL; return 0; } /* * EXT_ARG is set - ensure we agree on the size of it and copy in our * timespec and sigset_t pointers if good. */ if (*argsz != sizeof(arg)) return -EINVAL; if (copy_from_user(&arg, argp, sizeof(arg))) return -EFAULT; if (arg.pad) return -EINVAL; *sig = u64_to_user_ptr(arg.sigmask); *argsz = arg.sigmask_sz; *ts = u64_to_user_ptr(arg.ts); return 0; } SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, u32, min_complete, u32, flags, const void __user *, argp, size_t, argsz) { struct io_ring_ctx *ctx; int submitted = 0; struct fd f; long ret; io_run_task_work(); if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))) return -EINVAL; f = fdget(fd); if (unlikely(!f.file)) return -EBADF; ret = -EOPNOTSUPP; if (unlikely(f.file->f_op != &io_uring_fops)) goto out_fput; ret = -ENXIO; ctx = f.file->private_data; if (unlikely(!percpu_ref_tryget(&ctx->refs))) goto out_fput; ret = -EBADFD; if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) goto out; /* * For SQ polling, the thread will do all submissions and completions. * Just return the requested submit count, and wake the thread if * we were asked to. */ ret = 0; if (ctx->flags & IORING_SETUP_SQPOLL) { io_cqring_overflow_flush(ctx); if (unlikely(ctx->sq_data->thread == NULL)) { ret = -EOWNERDEAD; goto out; } if (flags & IORING_ENTER_SQ_WAKEUP) wake_up(&ctx->sq_data->wait); if (flags & IORING_ENTER_SQ_WAIT) { ret = io_sqpoll_wait_sq(ctx); if (ret) goto out; } submitted = to_submit; } else if (to_submit) { ret = io_uring_add_tctx_node(ctx); if (unlikely(ret)) goto out; mutex_lock(&ctx->uring_lock); submitted = io_submit_sqes(ctx, to_submit); mutex_unlock(&ctx->uring_lock); if (submitted != to_submit) goto out; } if (flags & IORING_ENTER_GETEVENTS) { const sigset_t __user *sig; struct __kernel_timespec __user *ts; ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig); if (unlikely(ret)) goto out; min_complete = min(min_complete, ctx->cq_entries); /* * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user * space applications don't need to do io completion events * polling again, they can rely on io_sq_thread to do polling * work, which can reduce cpu usage and uring_lock contention. */ if (ctx->flags & IORING_SETUP_IOPOLL && !(ctx->flags & IORING_SETUP_SQPOLL)) { ret = io_iopoll_check(ctx, min_complete); } else { ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts); } } out: percpu_ref_put(&ctx->refs); out_fput: fdput(f); return submitted ? submitted : ret; } #ifdef CONFIG_PROC_FS static int io_uring_show_cred(struct seq_file *m, unsigned int id, const struct cred *cred) { struct user_namespace *uns = seq_user_ns(m); struct group_info *gi; kernel_cap_t cap; unsigned __capi; int g; seq_printf(m, "%5d\n", id); seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid)); seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid)); seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid)); seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid)); seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid)); seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid)); seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid)); seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid)); seq_puts(m, "\n\tGroups:\t"); gi = cred->group_info; for (g = 0; g < gi->ngroups; g++) { seq_put_decimal_ull(m, g ? " " : "", from_kgid_munged(uns, gi->gid[g])); } seq_puts(m, "\n\tCapEff:\t"); cap = cred->cap_effective; CAP_FOR_EACH_U32(__capi) seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8); seq_putc(m, '\n'); return 0; } static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m) { int sq_pid = -1, sq_cpu = -1; bool has_lock; int i; /* * Avoid ABBA deadlock between the seq lock and the io_uring mutex, * since fdinfo case grabs it in the opposite direction of normal use * cases. If we fail to get the lock, we just don't iterate any * structures that could be going away outside the io_uring mutex. */ has_lock = mutex_trylock(&ctx->uring_lock); if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) { struct io_sq_data *sq = ctx->sq_data; if (mutex_trylock(&sq->lock)) { if (sq->thread) { sq_pid = task_pid_nr(sq->thread); sq_cpu = task_cpu(sq->thread); } mutex_unlock(&sq->lock); } } seq_printf(m, "SqThread:\t%d\n", sq_pid); seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu); seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files); for (i = 0; has_lock && i < ctx->nr_user_files; i++) { struct file *f = io_file_from_index(ctx, i); if (f) seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname); else seq_printf(m, "%5u: <none>\n", i); } seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs); for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) { struct io_mapped_ubuf *buf = ctx->user_bufs[i]; unsigned int len = buf->ubuf_end - buf->ubuf; seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len); } if (has_lock && !xa_empty(&ctx->personalities)) { unsigned long index; const struct cred *cred; seq_printf(m, "Personalities:\n"); xa_for_each(&ctx->personalities, index, cred) io_uring_show_cred(m, index, cred); } seq_printf(m, "PollList:\n"); spin_lock(&ctx->completion_lock); for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) { struct hlist_head *list = &ctx->cancel_hash[i]; struct io_kiocb *req; hlist_for_each_entry(req, list, hash_node) seq_printf(m, " op=%d, task_works=%d\n", req->opcode, req->task->task_works != NULL); } spin_unlock(&ctx->completion_lock); if (has_lock) mutex_unlock(&ctx->uring_lock); } static void io_uring_show_fdinfo(struct seq_file *m, struct file *f) { struct io_ring_ctx *ctx = f->private_data; if (percpu_ref_tryget(&ctx->refs)) { __io_uring_show_fdinfo(ctx, m); percpu_ref_put(&ctx->refs); } } #endif static const struct file_operations io_uring_fops = { .release = io_uring_release, .mmap = io_uring_mmap, #ifndef CONFIG_MMU .get_unmapped_area = io_uring_nommu_get_unmapped_area, .mmap_capabilities = io_uring_nommu_mmap_capabilities, #endif .poll = io_uring_poll, #ifdef CONFIG_PROC_FS .show_fdinfo = io_uring_show_fdinfo, #endif }; bool io_is_uring_fops(struct file *file) { return file->f_op == &io_uring_fops; } static int io_allocate_scq_urings(struct io_ring_ctx *ctx, struct io_uring_params *p) { struct io_rings *rings; size_t size, sq_array_offset; /* make sure these are sane, as we already accounted them */ ctx->sq_entries = p->sq_entries; ctx->cq_entries = p->cq_entries; size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset); if (size == SIZE_MAX) return -EOVERFLOW; rings = io_mem_alloc(size); if (!rings) return -ENOMEM; ctx->rings = rings; ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); rings->sq_ring_mask = p->sq_entries - 1; rings->cq_ring_mask = p->cq_entries - 1; rings->sq_ring_entries = p->sq_entries; rings->cq_ring_entries = p->cq_entries; size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); if (size == SIZE_MAX) { io_mem_free(ctx->rings); ctx->rings = NULL; return -EOVERFLOW; } ctx->sq_sqes = io_mem_alloc(size); if (!ctx->sq_sqes) { io_mem_free(ctx->rings); ctx->rings = NULL; return -ENOMEM; } return 0; } static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file) { int ret, fd; fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); if (fd < 0) return fd; ret = io_uring_add_tctx_node(ctx); if (ret) { put_unused_fd(fd); return ret; } fd_install(fd, file); return fd; } /* * Allocate an anonymous fd, this is what constitutes the application * visible backing of an io_uring instance. The application mmaps this * fd to gain access to the SQ/CQ ring details. */ static struct file *io_uring_get_file(struct io_ring_ctx *ctx) { return anon_inode_getfile("[io_uring]", &io_uring_fops, ctx, O_RDWR | O_CLOEXEC); } static int io_uring_create(unsigned entries, struct io_uring_params *p, struct io_uring_params __user *params) { struct io_ring_ctx *ctx; struct file *file; int ret; if (!entries) return -EINVAL; if (entries > IORING_MAX_ENTRIES) { if (!(p->flags & IORING_SETUP_CLAMP)) return -EINVAL; entries = IORING_MAX_ENTRIES; } /* * Use twice as many entries for the CQ ring. It's possible for the * application to drive a higher depth than the size of the SQ ring, * since the sqes are only used at submission time. This allows for * some flexibility in overcommitting a bit. If the application has * set IORING_SETUP_CQSIZE, it will have passed in the desired number * of CQ ring entries manually. */ p->sq_entries = roundup_pow_of_two(entries); if (p->flags & IORING_SETUP_CQSIZE) { /* * If IORING_SETUP_CQSIZE is set, we do the same roundup * to a power-of-two, if it isn't already. We do NOT impose * any cq vs sq ring sizing. */ if (!p->cq_entries) return -EINVAL; if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { if (!(p->flags & IORING_SETUP_CLAMP)) return -EINVAL; p->cq_entries = IORING_MAX_CQ_ENTRIES; } p->cq_entries = roundup_pow_of_two(p->cq_entries); if (p->cq_entries < p->sq_entries) return -EINVAL; } else { p->cq_entries = 2 * p->sq_entries; } ctx = io_ring_ctx_alloc(p); if (!ctx) return -ENOMEM; ctx->compat = in_compat_syscall(); if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) ctx->user = get_uid(current_user()); /* * This is just grabbed for accounting purposes. When a process exits, * the mm is exited and dropped before the files, hence we need to hang * on to this mm purely for the purposes of being able to unaccount * memory (locked/pinned vm). It's not used for anything else. */ mmgrab(current->mm); ctx->mm_account = current->mm; ret = io_allocate_scq_urings(ctx, p); if (ret) goto err; ret = io_sq_offload_create(ctx, p); if (ret) goto err; /* always set a rsrc node */ ret = io_rsrc_node_switch_start(ctx); if (ret) goto err; io_rsrc_node_switch(ctx, NULL); memset(&p->sq_off, 0, sizeof(p->sq_off)); p->sq_off.head = offsetof(struct io_rings, sq.head); p->sq_off.tail = offsetof(struct io_rings, sq.tail); p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); p->sq_off.flags = offsetof(struct io_rings, sq_flags); p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; memset(&p->cq_off, 0, sizeof(p->cq_off)); p->cq_off.head = offsetof(struct io_rings, cq.head); p->cq_off.tail = offsetof(struct io_rings, cq.tail); p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); p->cq_off.cqes = offsetof(struct io_rings, cqes); p->cq_off.flags = offsetof(struct io_rings, cq_flags); p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | IORING_FEAT_RSRC_TAGS; if (copy_to_user(params, p, sizeof(*p))) { ret = -EFAULT; goto err; } file = io_uring_get_file(ctx); if (IS_ERR(file)) { ret = PTR_ERR(file); goto err; } /* * Install ring fd as the very last thing, so we don't risk someone * having closed it before we finish setup */ ret = io_uring_install_fd(ctx, file); if (ret < 0) { /* fput will clean it up */ fput(file); return ret; } trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); return ret; err: io_ring_ctx_wait_and_kill(ctx); return ret; } /* * Sets up an aio uring context, and returns the fd. Applications asks for a * ring size, we return the actual sq/cq ring sizes (among other things) in the * params structure passed in. */ static long io_uring_setup(u32 entries, struct io_uring_params __user *params) { struct io_uring_params p; int i; if (copy_from_user(&p, params, sizeof(p))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(p.resv); i++) { if (p.resv[i]) return -EINVAL; } if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | IORING_SETUP_R_DISABLED)) return -EINVAL; return io_uring_create(entries, &p, params); } SYSCALL_DEFINE2(io_uring_setup, u32, entries, struct io_uring_params __user *, params) { return io_uring_setup(entries, params); } static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { struct io_uring_probe *p; size_t size; int i, ret; size = struct_size(p, ops, nr_args); if (size == SIZE_MAX) return -EOVERFLOW; p = kzalloc(size, GFP_KERNEL); if (!p) return -ENOMEM; ret = -EFAULT; if (copy_from_user(p, arg, size)) goto out; ret = -EINVAL; if (memchr_inv(p, 0, size)) goto out; p->last_op = IORING_OP_LAST - 1; if (nr_args > IORING_OP_LAST) nr_args = IORING_OP_LAST; for (i = 0; i < nr_args; i++) { p->ops[i].op = i; if (!io_op_defs[i].not_supported) p->ops[i].flags = IO_URING_OP_SUPPORTED; } p->ops_len = i; ret = 0; if (copy_to_user(arg, p, size)) ret = -EFAULT; out: kfree(p); return ret; } static int io_register_personality(struct io_ring_ctx *ctx) { const struct cred *creds; u32 id; int ret; creds = get_current_cred(); ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds, XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL); if (ret < 0) { put_cred(creds); return ret; } return id; } static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args) { struct io_uring_restriction *res; size_t size; int i, ret; /* Restrictions allowed only if rings started disabled */ if (!(ctx->flags & IORING_SETUP_R_DISABLED)) return -EBADFD; /* We allow only a single restrictions registration */ if (ctx->restrictions.registered) return -EBUSY; if (!arg || nr_args > IORING_MAX_RESTRICTIONS) return -EINVAL; size = array_size(nr_args, sizeof(*res)); if (size == SIZE_MAX) return -EOVERFLOW; res = memdup_user(arg, size); if (IS_ERR(res)) return PTR_ERR(res); ret = 0; for (i = 0; i < nr_args; i++) { switch (res[i].opcode) { case IORING_RESTRICTION_REGISTER_OP: if (res[i].register_op >= IORING_REGISTER_LAST) { ret = -EINVAL; goto out; } __set_bit(res[i].register_op, ctx->restrictions.register_op); break; case IORING_RESTRICTION_SQE_OP: if (res[i].sqe_op >= IORING_OP_LAST) { ret = -EINVAL; goto out; } __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op); break; case IORING_RESTRICTION_SQE_FLAGS_ALLOWED: ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags; break; case IORING_RESTRICTION_SQE_FLAGS_REQUIRED: ctx->restrictions.sqe_flags_required = res[i].sqe_flags; break; default: ret = -EINVAL; goto out; } } out: /* Reset all restrictions if an error happened */ if (ret != 0) memset(&ctx->restrictions, 0, sizeof(ctx->restrictions)); else ctx->restrictions.registered = true; kfree(res); return ret; } static int io_register_enable_rings(struct io_ring_ctx *ctx) { if (!(ctx->flags & IORING_SETUP_R_DISABLED)) return -EBADFD; if (ctx->restrictions.registered) ctx->restricted = 1; ctx->flags &= ~IORING_SETUP_R_DISABLED; if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait)) wake_up(&ctx->sq_data->wait); return 0; } static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args) { __u32 tmp; int err; if (check_add_overflow(up->offset, nr_args, &tmp)) return -EOVERFLOW; err = io_rsrc_node_switch_start(ctx); if (err) return err; switch (type) { case IORING_RSRC_FILE: return __io_sqe_files_update(ctx, up, nr_args); case IORING_RSRC_BUFFER: return __io_sqe_buffers_update(ctx, up, nr_args); } return -EINVAL; } static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args) { struct io_uring_rsrc_update2 up; if (!nr_args) return -EINVAL; memset(&up, 0, sizeof(up)); if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update))) return -EFAULT; if (up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args); } static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg, unsigned size, unsigned type) { struct io_uring_rsrc_update2 up; if (size != sizeof(up)) return -EINVAL; if (copy_from_user(&up, arg, sizeof(up))) return -EFAULT; if (!up.nr || up.resv || up.resv2) return -EINVAL; return __io_register_rsrc_update(ctx, type, &up, up.nr); } static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg, unsigned int size, unsigned int type) { struct io_uring_rsrc_register rr; /* keep it extendible */ if (size != sizeof(rr)) return -EINVAL; memset(&rr, 0, sizeof(rr)); if (copy_from_user(&rr, arg, size)) return -EFAULT; if (!rr.nr || rr.resv || rr.resv2) return -EINVAL; switch (type) { case IORING_RSRC_FILE: return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); case IORING_RSRC_BUFFER: return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data), rr.nr, u64_to_user_ptr(rr.tags)); } return -EINVAL; } static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg, unsigned len) { struct io_uring_task *tctx = current->io_uring; cpumask_var_t new_mask; int ret; if (!tctx || !tctx->io_wq) return -EINVAL; if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) return -ENOMEM; cpumask_clear(new_mask); if (len > cpumask_size()) len = cpumask_size(); if (in_compat_syscall()) { ret = compat_get_bitmap(cpumask_bits(new_mask), (const compat_ulong_t __user *)arg, len * 8 /* CHAR_BIT */); } else { ret = copy_from_user(new_mask, arg, len); } if (ret) { free_cpumask_var(new_mask); return -EFAULT; } ret = io_wq_cpu_affinity(tctx->io_wq, new_mask); free_cpumask_var(new_mask); return ret; } static int io_unregister_iowq_aff(struct io_ring_ctx *ctx) { struct io_uring_task *tctx = current->io_uring; if (!tctx || !tctx->io_wq) return -EINVAL; return io_wq_cpu_affinity(tctx->io_wq, NULL); } static int io_register_iowq_max_workers(struct io_ring_ctx *ctx, void __user *arg) __must_hold(&ctx->uring_lock) { struct io_tctx_node *node; struct io_uring_task *tctx = NULL; struct io_sq_data *sqd = NULL; __u32 new_count[2]; int i, ret; if (copy_from_user(new_count, arg, sizeof(new_count))) return -EFAULT; for (i = 0; i < ARRAY_SIZE(new_count); i++) if (new_count[i] > INT_MAX) return -EINVAL; if (ctx->flags & IORING_SETUP_SQPOLL) { sqd = ctx->sq_data; if (sqd) { /* * Observe the correct sqd->lock -> ctx->uring_lock * ordering. Fine to drop uring_lock here, we hold * a ref to the ctx. */ refcount_inc(&sqd->refs); mutex_unlock(&ctx->uring_lock); mutex_lock(&sqd->lock); mutex_lock(&ctx->uring_lock); if (sqd->thread) tctx = sqd->thread->io_uring; } } else { tctx = current->io_uring; } BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits)); for (i = 0; i < ARRAY_SIZE(new_count); i++) if (new_count[i]) ctx->iowq_limits[i] = new_count[i]; ctx->iowq_limits_set = true; ret = -EINVAL; if (tctx && tctx->io_wq) { ret = io_wq_max_workers(tctx->io_wq, new_count); if (ret) goto err; } else { memset(new_count, 0, sizeof(new_count)); } if (sqd) { mutex_unlock(&ctx->uring_lock); mutex_unlock(&sqd->lock); io_put_sq_data(sqd); mutex_lock(&ctx->uring_lock); } if (copy_to_user(arg, new_count, sizeof(new_count))) return -EFAULT; /* that's it for SQPOLL, only the SQPOLL task creates requests */ if (sqd) return 0; /* now propagate the restriction to all registered users */ list_for_each_entry(node, &ctx->tctx_list, ctx_node) { struct io_uring_task *tctx = node->task->io_uring; if (WARN_ON_ONCE(!tctx->io_wq)) continue; for (i = 0; i < ARRAY_SIZE(new_count); i++) new_count[i] = ctx->iowq_limits[i]; /* ignore errors, it always returns zero anyway */ (void)io_wq_max_workers(tctx->io_wq, new_count); } return 0; err: if (sqd) { mutex_unlock(&ctx->uring_lock); mutex_unlock(&sqd->lock); io_put_sq_data(sqd); mutex_lock(&ctx->uring_lock); } return ret; } static bool io_register_op_must_quiesce(int op) { switch (op) { case IORING_REGISTER_BUFFERS: case IORING_UNREGISTER_BUFFERS: case IORING_REGISTER_FILES: case IORING_UNREGISTER_FILES: case IORING_REGISTER_FILES_UPDATE: case IORING_REGISTER_PROBE: case IORING_REGISTER_PERSONALITY: case IORING_UNREGISTER_PERSONALITY: case IORING_REGISTER_FILES2: case IORING_REGISTER_FILES_UPDATE2: case IORING_REGISTER_BUFFERS2: case IORING_REGISTER_BUFFERS_UPDATE: case IORING_REGISTER_IOWQ_AFF: case IORING_UNREGISTER_IOWQ_AFF: case IORING_REGISTER_IOWQ_MAX_WORKERS: return false; default: return true; } } static int io_ctx_quiesce(struct io_ring_ctx *ctx) { long ret; percpu_ref_kill(&ctx->refs); /* * Drop uring mutex before waiting for references to exit. If another * thread is currently inside io_uring_enter() it might need to grab the * uring_lock to make progress. If we hold it here across the drain * wait, then we can deadlock. It's safe to drop the mutex here, since * no new references will come in after we've killed the percpu ref. */ mutex_unlock(&ctx->uring_lock); do { ret = wait_for_completion_interruptible(&ctx->ref_comp); if (!ret) break; ret = io_run_task_work_sig(); } while (ret >= 0); mutex_lock(&ctx->uring_lock); if (ret) io_refs_resurrect(&ctx->refs, &ctx->ref_comp); return ret; } static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode, void __user *arg, unsigned nr_args) __releases(ctx->uring_lock) __acquires(ctx->uring_lock) { int ret; /* * We're inside the ring mutex, if the ref is already dying, then * someone else killed the ctx or is already going through * io_uring_register(). */ if (percpu_ref_is_dying(&ctx->refs)) return -ENXIO; if (ctx->restricted) { opcode = array_index_nospec(opcode, IORING_REGISTER_LAST); if (!test_bit(opcode, ctx->restrictions.register_op)) return -EACCES; } if (io_register_op_must_quiesce(opcode)) { ret = io_ctx_quiesce(ctx); if (ret) return ret; } switch (opcode) { case IORING_REGISTER_BUFFERS: ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL); break; case IORING_UNREGISTER_BUFFERS: ret = -EINVAL; if (arg || nr_args) break; ret = io_sqe_buffers_unregister(ctx); break; case IORING_REGISTER_FILES: ret = io_sqe_files_register(ctx, arg, nr_args, NULL); break; case IORING_UNREGISTER_FILES: ret = -EINVAL; if (arg || nr_args) break; ret = io_sqe_files_unregister(ctx); break; case IORING_REGISTER_FILES_UPDATE: ret = io_register_files_update(ctx, arg, nr_args); break; case IORING_REGISTER_EVENTFD: case IORING_REGISTER_EVENTFD_ASYNC: ret = -EINVAL; if (nr_args != 1) break; ret = io_eventfd_register(ctx, arg); if (ret) break; if (opcode == IORING_REGISTER_EVENTFD_ASYNC) ctx->eventfd_async = 1; else ctx->eventfd_async = 0; break; case IORING_UNREGISTER_EVENTFD: ret = -EINVAL; if (arg || nr_args) break; ret = io_eventfd_unregister(ctx); break; case IORING_REGISTER_PROBE: ret = -EINVAL; if (!arg || nr_args > 256) break; ret = io_probe(ctx, arg, nr_args); break; case IORING_REGISTER_PERSONALITY: ret = -EINVAL; if (arg || nr_args) break; ret = io_register_personality(ctx); break; case IORING_UNREGISTER_PERSONALITY: ret = -EINVAL; if (arg) break; ret = io_unregister_personality(ctx, nr_args); break; case IORING_REGISTER_ENABLE_RINGS: ret = -EINVAL; if (arg || nr_args) break; ret = io_register_enable_rings(ctx); break; case IORING_REGISTER_RESTRICTIONS: ret = io_register_restrictions(ctx, arg, nr_args); break; case IORING_REGISTER_FILES2: ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE); break; case IORING_REGISTER_FILES_UPDATE2: ret = io_register_rsrc_update(ctx, arg, nr_args, IORING_RSRC_FILE); break; case IORING_REGISTER_BUFFERS2: ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER); break; case IORING_REGISTER_BUFFERS_UPDATE: ret = io_register_rsrc_update(ctx, arg, nr_args, IORING_RSRC_BUFFER); break; case IORING_REGISTER_IOWQ_AFF: ret = -EINVAL; if (!arg || !nr_args) break; ret = io_register_iowq_aff(ctx, arg, nr_args); break; case IORING_UNREGISTER_IOWQ_AFF: ret = -EINVAL; if (arg || nr_args) break; ret = io_unregister_iowq_aff(ctx); break; case IORING_REGISTER_IOWQ_MAX_WORKERS: ret = -EINVAL; if (!arg || nr_args != 2) break; ret = io_register_iowq_max_workers(ctx, arg); break; default: ret = -EINVAL; break; } if (io_register_op_must_quiesce(opcode)) { /* bring the ctx back to life */ percpu_ref_reinit(&ctx->refs); reinit_completion(&ctx->ref_comp); } return ret; } SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, void __user *, arg, unsigned int, nr_args) { struct io_ring_ctx *ctx; long ret = -EBADF; struct fd f; if (opcode >= IORING_REGISTER_LAST) return -EINVAL; f = fdget(fd); if (!f.file) return -EBADF; ret = -EOPNOTSUPP; if (f.file->f_op != &io_uring_fops) goto out_fput; ctx = f.file->private_data; io_run_task_work(); mutex_lock(&ctx->uring_lock); ret = __io_uring_register(ctx, opcode, arg, nr_args); mutex_unlock(&ctx->uring_lock); trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ctx->cq_ev_fd != NULL, ret); out_fput: fdput(f); return ret; } static int __init io_uring_init(void) { #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \ BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \ } while (0) #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename) BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); BUILD_BUG_SQE_ELEM(0, __u8, opcode); BUILD_BUG_SQE_ELEM(1, __u8, flags); BUILD_BUG_SQE_ELEM(2, __u16, ioprio); BUILD_BUG_SQE_ELEM(4, __s32, fd); BUILD_BUG_SQE_ELEM(8, __u64, off); BUILD_BUG_SQE_ELEM(8, __u64, addr2); BUILD_BUG_SQE_ELEM(16, __u64, addr); BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); BUILD_BUG_SQE_ELEM(24, __u32, len); BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); BUILD_BUG_SQE_ELEM(28, __u32, open_flags); BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); BUILD_BUG_SQE_ELEM(32, __u64, user_data); BUILD_BUG_SQE_ELEM(40, __u16, buf_index); BUILD_BUG_SQE_ELEM(40, __u16, buf_group); BUILD_BUG_SQE_ELEM(42, __u16, personality); BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); BUILD_BUG_SQE_ELEM(44, __u32, file_index); BUILD_BUG_ON(sizeof(struct io_uring_files_update) != sizeof(struct io_uring_rsrc_update)); BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > sizeof(struct io_uring_rsrc_update2)); /* ->buf_index is u16 */ BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16)); /* should fit into one byte */ BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST); BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int)); req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); return 0; }; __initcall(io_uring_init); |
92 92 92 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/ptrace.c * * (C) Copyright 1999 Linus Torvalds * * Common interfaces for "ptrace()" which we do not want * to continually duplicate across every architecture. */ #include <linux/capability.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/signal.h> #include <linux/uio.h> #include <linux/audit.h> #include <linux/pid_namespace.h> #include <linux/syscalls.h> #include <linux/uaccess.h> #include <linux/regset.h> #include <linux/hw_breakpoint.h> #include <linux/cn_proc.h> #include <linux/compat.h> #include <linux/sched/signal.h> #include <linux/minmax.h> #include <asm/syscall.h> /* for syscall_get_* */ /* * Access another process' address space via ptrace. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; if (!tsk->ptrace || (current != tsk->parent) || ((get_dumpable(mm) != SUID_DUMP_USER) && !ptracer_capable(tsk, mm->user_ns))) { mmput(mm); return 0; } ret = __access_remote_vm(mm, addr, buf, len, gup_flags); mmput(mm); return ret; } void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, const struct cred *ptracer_cred) { BUG_ON(!list_empty(&child->ptrace_entry)); list_add(&child->ptrace_entry, &new_parent->ptraced); child->parent = new_parent; child->ptracer_cred = get_cred(ptracer_cred); } /* * ptrace a task: make the debugger its new parent and * move it to the ptrace list. * * Must be called with the tasklist lock write-held. */ static void ptrace_link(struct task_struct *child, struct task_struct *new_parent) { __ptrace_link(child, new_parent, current_cred()); } /** * __ptrace_unlink - unlink ptracee and restore its execution state * @child: ptracee to be unlinked * * Remove @child from the ptrace list, move it back to the original parent, * and restore the execution state so that it conforms to the group stop * state. * * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer * exiting. For PTRACE_DETACH, unless the ptracee has been killed between * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED. * If the ptracer is exiting, the ptracee can be in any state. * * After detach, the ptracee should be in a state which conforms to the * group stop. If the group is stopped or in the process of stopping, the * ptracee should be put into TASK_STOPPED; otherwise, it should be woken * up from TASK_TRACED. * * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED, * it goes through TRACED -> RUNNING -> STOPPED transition which is similar * to but in the opposite direction of what happens while attaching to a * stopped task. However, in this direction, the intermediate RUNNING * state is not hidden even from the current ptracer and if it immediately * re-attaches and performs a WNOHANG wait(2), it may fail. * * CONTEXT: * write_lock_irq(tasklist_lock) */ void __ptrace_unlink(struct task_struct *child) { const struct cred *old_cred; BUG_ON(!child->ptrace); clear_task_syscall_work(child, SYSCALL_TRACE); #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) clear_task_syscall_work(child, SYSCALL_EMU); #endif child->parent = child->real_parent; list_del_init(&child->ptrace_entry); old_cred = child->ptracer_cred; child->ptracer_cred = NULL; put_cred(old_cred); spin_lock(&child->sighand->siglock); child->ptrace = 0; /* * Clear all pending traps and TRAPPING. TRAPPING should be * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly. */ task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK); task_clear_jobctl_trapping(child); /* * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and * @child isn't dead. */ if (!(child->flags & PF_EXITING) && (child->signal->flags & SIGNAL_STOP_STOPPED || child->signal->group_stop_count)) { child->jobctl |= JOBCTL_STOP_PENDING; /* * This is only possible if this thread was cloned by the * traced task running in the stopped group, set the signal * for the future reports. * FIXME: we should change ptrace_init_task() to handle this * case. */ if (!(child->jobctl & JOBCTL_STOP_SIGMASK)) child->jobctl |= SIGSTOP; } /* * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick * @child in the butt. Note that @resume should be used iff @child * is in TASK_TRACED; otherwise, we might unduly disrupt * TASK_KILLABLE sleeps. */ if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child)) ptrace_signal_wake_up(child, true); spin_unlock(&child->sighand->siglock); } static bool looks_like_a_spurious_pid(struct task_struct *task) { if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP)) return false; if (task_pid_vnr(task) == task->ptrace_message) return false; /* * The tracee changed its pid but the PTRACE_EVENT_EXEC event * was not wait()'ed, most probably debugger targets the old * leader which was destroyed in de_thread(). */ return true; } /* Ensure that nothing can wake it up, even SIGKILL */ static bool ptrace_freeze_traced(struct task_struct *task) { bool ret = false; /* Lockless, nobody but us can set this flag */ if (task->jobctl & JOBCTL_LISTENING) return ret; spin_lock_irq(&task->sighand->siglock); if (task_is_traced(task) && !looks_like_a_spurious_pid(task) && !__fatal_signal_pending(task)) { WRITE_ONCE(task->__state, __TASK_TRACED); ret = true; } spin_unlock_irq(&task->sighand->siglock); return ret; } static void ptrace_unfreeze_traced(struct task_struct *task) { if (READ_ONCE(task->__state) != __TASK_TRACED) return; WARN_ON(!task->ptrace || task->parent != current); /* * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely. * Recheck state under the lock to close this race. */ spin_lock_irq(&task->sighand->siglock); if (READ_ONCE(task->__state) == __TASK_TRACED) { if (__fatal_signal_pending(task)) wake_up_state(task, __TASK_TRACED); else WRITE_ONCE(task->__state, TASK_TRACED); } spin_unlock_irq(&task->sighand->siglock); } /** * ptrace_check_attach - check whether ptracee is ready for ptrace operation * @child: ptracee to check for * @ignore_state: don't check whether @child is currently %TASK_TRACED * * Check whether @child is being ptraced by %current and ready for further * ptrace operations. If @ignore_state is %false, @child also should be in * %TASK_TRACED state and on return the child is guaranteed to be traced * and not executing. If @ignore_state is %true, @child can be in any * state. * * CONTEXT: * Grabs and releases tasklist_lock and @child->sighand->siglock. * * RETURNS: * 0 on success, -ESRCH if %child is not ready. */ static int ptrace_check_attach(struct task_struct *child, bool ignore_state) { int ret = -ESRCH; /* * We take the read lock around doing both checks to close a * possible race where someone else was tracing our child and * detached between these two checks. After this locked check, * we are sure that this is our traced child and that can only * be changed by us so it's not changing right after this. */ read_lock(&tasklist_lock); if (child->ptrace && child->parent == current) { WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED); /* * child->sighand can't be NULL, release_task() * does ptrace_unlink() before __exit_signal(). */ if (ignore_state || ptrace_freeze_traced(child)) ret = 0; } read_unlock(&tasklist_lock); if (!ret && !ignore_state) { if (!wait_task_inactive(child, __TASK_TRACED)) { /* * This can only happen if may_ptrace_stop() fails and * ptrace_stop() changes ->state back to TASK_RUNNING, * so we should not worry about leaking __TASK_TRACED. */ WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED); ret = -ESRCH; } } return ret; } static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode) { if (mode & PTRACE_MODE_NOAUDIT) return ns_capable_noaudit(ns, CAP_SYS_PTRACE); return ns_capable(ns, CAP_SYS_PTRACE); } /* Returns 0 on success, -errno on denial. */ static int __ptrace_may_access(struct task_struct *task, unsigned int mode) { const struct cred *cred = current_cred(), *tcred; struct mm_struct *mm; kuid_t caller_uid; kgid_t caller_gid; if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) { WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n"); return -EPERM; } /* May we inspect the given task? * This check is used both for attaching with ptrace * and for allowing access to sensitive information in /proc. * * ptrace_attach denies several cases that /proc allows * because setting up the necessary parent/child relationship * or halting the specified task is impossible. */ /* Don't let security modules deny introspection */ if (same_thread_group(task, current)) return 0; rcu_read_lock(); if (mode & PTRACE_MODE_FSCREDS) { caller_uid = cred->fsuid; caller_gid = cred->fsgid; } else { /* * Using the euid would make more sense here, but something * in userland might rely on the old behavior, and this * shouldn't be a security problem since * PTRACE_MODE_REALCREDS implies that the caller explicitly * used a syscall that requests access to another process * (and not a filesystem syscall to procfs). */ caller_uid = cred->uid; caller_gid = cred->gid; } tcred = __task_cred(task); if (uid_eq(caller_uid, tcred->euid) && uid_eq(caller_uid, tcred->suid) && uid_eq(caller_uid, tcred->uid) && gid_eq(caller_gid, tcred->egid) && gid_eq(caller_gid, tcred->sgid) && gid_eq(caller_gid, tcred->gid)) goto ok; if (ptrace_has_cap(tcred->user_ns, mode)) goto ok; rcu_read_unlock(); return -EPERM; ok: rcu_read_unlock(); /* * If a task drops privileges and becomes nondumpable (through a syscall * like setresuid()) while we are trying to access it, we must ensure * that the dumpability is read after the credentials; otherwise, * we may be able to attach to a task that we shouldn't be able to * attach to (as if the task had dropped privileges without becoming * nondumpable). * Pairs with a write barrier in commit_creds(). */ smp_rmb(); mm = task->mm; if (mm && ((get_dumpable(mm) != SUID_DUMP_USER) && !ptrace_has_cap(mm->user_ns, mode))) return -EPERM; return security_ptrace_access_check(task, mode); } bool ptrace_may_access(struct task_struct *task, unsigned int mode) { int err; task_lock(task); err = __ptrace_may_access(task, mode); task_unlock(task); return !err; } static int check_ptrace_options(unsigned long data) { if (data & ~(unsigned long)PTRACE_O_MASK) return -EINVAL; if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) { if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) || !IS_ENABLED(CONFIG_SECCOMP)) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED || current->ptrace & PT_SUSPEND_SECCOMP) return -EPERM; } return 0; } static int ptrace_attach(struct task_struct *task, long request, unsigned long addr, unsigned long flags) { bool seize = (request == PTRACE_SEIZE); int retval; retval = -EIO; if (seize) { if (addr != 0) goto out; /* * This duplicates the check in check_ptrace_options() because * ptrace_attach() and ptrace_setoptions() have historically * used different error codes for unknown ptrace options. */ if (flags & ~(unsigned long)PTRACE_O_MASK) goto out; retval = check_ptrace_options(flags); if (retval) return retval; flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT); } else { flags = PT_PTRACED; } audit_ptrace(task); retval = -EPERM; if (unlikely(task->flags & PF_KTHREAD)) goto out; if (same_thread_group(task, current)) goto out; /* * Protect exec's credential calculations against our interference; * SUID, SGID and LSM creds get determined differently * under ptrace. */ retval = -ERESTARTNOINTR; if (mutex_lock_interruptible(&task->signal->cred_guard_mutex)) goto out; task_lock(task); retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS); task_unlock(task); if (retval) goto unlock_creds; write_lock_irq(&tasklist_lock); retval = -EPERM; if (unlikely(task->exit_state)) goto unlock_tasklist; if (task->ptrace) goto unlock_tasklist; if (seize) flags |= PT_SEIZED; task->ptrace = flags; ptrace_link(task, current); /* SEIZE doesn't trap tracee on attach */ if (!seize) send_sig_info(SIGSTOP, SEND_SIG_PRIV, task); spin_lock(&task->sighand->siglock); /* * If the task is already STOPPED, set JOBCTL_TRAP_STOP and * TRAPPING, and kick it so that it transits to TRACED. TRAPPING * will be cleared if the child completes the transition or any * event which clears the group stop states happens. We'll wait * for the transition to complete before returning from this * function. * * This hides STOPPED -> RUNNING -> TRACED transition from the * attaching thread but a different thread in the same group can * still observe the transient RUNNING state. IOW, if another * thread's WNOHANG wait(2) on the stopped tracee races against * ATTACH, the wait(2) may fail due to the transient RUNNING. * * The following task_is_stopped() test is safe as both transitions * in and out of STOPPED are protected by siglock. */ if (task_is_stopped(task) && task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING)) signal_wake_up_state(task, __TASK_STOPPED); spin_unlock(&task->sighand->siglock); retval = 0; unlock_tasklist: write_unlock_irq(&tasklist_lock); unlock_creds: mutex_unlock(&task->signal->cred_guard_mutex); out: if (!retval) { /* * We do not bother to change retval or clear JOBCTL_TRAPPING * if wait_on_bit() was interrupted by SIGKILL. The tracer will * not return to user-mode, it will exit and clear this bit in * __ptrace_unlink() if it wasn't already cleared by the tracee; * and until then nobody can ptrace this task. */ wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE); proc_ptrace_connector(task, PTRACE_ATTACH); } return retval; } /** * ptrace_traceme -- helper for PTRACE_TRACEME * * Performs checks and sets PT_PTRACED. * Should be used by all ptrace implementations for PTRACE_TRACEME. */ static int ptrace_traceme(void) { int ret = -EPERM; write_lock_irq(&tasklist_lock); /* Are we already being traced? */ if (!current->ptrace) { ret = security_ptrace_traceme(current->parent); /* * Check PF_EXITING to ensure ->real_parent has not passed * exit_ptrace(). Otherwise we don't report the error but * pretend ->real_parent untraces us right after return. */ if (!ret && !(current->real_parent->flags & PF_EXITING)) { current->ptrace = PT_PTRACED; ptrace_link(current, current->real_parent); } } write_unlock_irq(&tasklist_lock); return ret; } /* * Called with irqs disabled, returns true if childs should reap themselves. */ static int ignoring_children(struct sighand_struct *sigh) { int ret; spin_lock(&sigh->siglock); ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) || (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT); spin_unlock(&sigh->siglock); return ret; } /* * Called with tasklist_lock held for writing. * Unlink a traced task, and clean it up if it was a traced zombie. * Return true if it needs to be reaped with release_task(). * (We can't call release_task() here because we already hold tasklist_lock.) * * If it's a zombie, our attachedness prevented normal parent notification * or self-reaping. Do notification now if it would have happened earlier. * If it should reap itself, return true. * * If it's our own child, there is no notification to do. But if our normal * children self-reap, then this child was prevented by ptrace and we must * reap it now, in that case we must also wake up sub-threads sleeping in * do_wait(). */ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) { bool dead; __ptrace_unlink(p); if (p->exit_state != EXIT_ZOMBIE) return false; dead = !thread_group_leader(p); if (!dead && thread_group_empty(p)) { if (!same_thread_group(p->real_parent, tracer)) dead = do_notify_parent(p, p->exit_signal); else if (ignoring_children(tracer->sighand)) { __wake_up_parent(p, tracer); dead = true; } } /* Mark it as in the process of being reaped. */ if (dead) p->exit_state = EXIT_DEAD; return dead; } static int ptrace_detach(struct task_struct *child, unsigned int data) { if (!valid_signal(data)) return -EIO; /* Architecture-specific hardware disable .. */ ptrace_disable(child); write_lock_irq(&tasklist_lock); /* * We rely on ptrace_freeze_traced(). It can't be killed and * untraced by another thread, it can't be a zombie. */ WARN_ON(!child->ptrace || child->exit_state); /* * tasklist_lock avoids the race with wait_task_stopped(), see * the comment in ptrace_resume(). */ child->exit_code = data; __ptrace_detach(current, child); write_unlock_irq(&tasklist_lock); proc_ptrace_connector(child, PTRACE_DETACH); return 0; } /* * Detach all tasks we were using ptrace on. Called with tasklist held * for writing. */ void exit_ptrace(struct task_struct *tracer, struct list_head *dead) { struct task_struct *p, *n; list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) { if (unlikely(p->ptrace & PT_EXITKILL)) send_sig_info(SIGKILL, SEND_SIG_PRIV, p); if (__ptrace_detach(tracer, p)) list_add(&p->ptrace_entry, dead); } } int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len) { int copied = 0; while (len > 0) { char buf[128]; int this_len, retval; this_len = (len > sizeof(buf)) ? sizeof(buf) : len; retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE); if (!retval) { if (copied) break; return -EIO; } if (copy_to_user(dst, buf, retval)) return -EFAULT; copied += retval; src += retval; dst += retval; len -= retval; } return copied; } int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len) { int copied = 0; while (len > 0) { char buf[128]; int this_len, retval; this_len = (len > sizeof(buf)) ? sizeof(buf) : len; if (copy_from_user(buf, src, this_len)) return -EFAULT; retval = ptrace_access_vm(tsk, dst, buf, this_len, FOLL_FORCE | FOLL_WRITE); if (!retval) { if (copied) break; return -EIO; } copied += retval; src += retval; dst += retval; len -= retval; } return copied; } static int ptrace_setoptions(struct task_struct *child, unsigned long data) { unsigned flags; int ret; ret = check_ptrace_options(data); if (ret) return ret; /* Avoid intermediate state when all opts are cleared */ flags = child->ptrace; flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT); flags |= (data << PT_OPT_FLAG_SHIFT); child->ptrace = flags; return 0; } static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info) { unsigned long flags; int error = -ESRCH; if (lock_task_sighand(child, &flags)) { error = -EINVAL; if (likely(child->last_siginfo != NULL)) { copy_siginfo(info, child->last_siginfo); error = 0; } unlock_task_sighand(child, &flags); } return error; } static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info) { unsigned long flags; int error = -ESRCH; if (lock_task_sighand(child, &flags)) { error = -EINVAL; if (likely(child->last_siginfo != NULL)) { copy_siginfo(child->last_siginfo, info); error = 0; } unlock_task_sighand(child, &flags); } return error; } static int ptrace_peek_siginfo(struct task_struct *child, unsigned long addr, unsigned long data) { struct ptrace_peeksiginfo_args arg; struct sigpending *pending; struct sigqueue *q; int ret, i; ret = copy_from_user(&arg, (void __user *) addr, sizeof(struct ptrace_peeksiginfo_args)); if (ret) return -EFAULT; if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED) return -EINVAL; /* unknown flags */ if (arg.nr < 0) return -EINVAL; /* Ensure arg.off fits in an unsigned long */ if (arg.off > ULONG_MAX) return 0; if (arg.flags & PTRACE_PEEKSIGINFO_SHARED) pending = &child->signal->shared_pending; else pending = &child->pending; for (i = 0; i < arg.nr; ) { kernel_siginfo_t info; unsigned long off = arg.off + i; bool found = false; spin_lock_irq(&child->sighand->siglock); list_for_each_entry(q, &pending->list, list) { if (!off--) { found = true; copy_siginfo(&info, &q->info); break; } } spin_unlock_irq(&child->sighand->siglock); if (!found) /* beyond the end of the list */ break; #ifdef CONFIG_COMPAT if (unlikely(in_compat_syscall())) { compat_siginfo_t __user *uinfo = compat_ptr(data); if (copy_siginfo_to_user32(uinfo, &info)) { ret = -EFAULT; break; } } else #endif { siginfo_t __user *uinfo = (siginfo_t __user *) data; if (copy_siginfo_to_user(uinfo, &info)) { ret = -EFAULT; break; } } data += sizeof(siginfo_t); i++; if (signal_pending(current)) break; cond_resched(); } if (i > 0) return i; return ret; } #ifdef CONFIG_RSEQ static long ptrace_get_rseq_configuration(struct task_struct *task, unsigned long size, void __user *data) { struct ptrace_rseq_configuration conf = { .rseq_abi_pointer = (u64)(uintptr_t)task->rseq, .rseq_abi_size = sizeof(*task->rseq), .signature = task->rseq_sig, .flags = 0, }; size = min_t(unsigned long, size, sizeof(conf)); if (copy_to_user(data, &conf, size)) return -EFAULT; return sizeof(conf); } #endif #ifdef PTRACE_SINGLESTEP #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP) #else #define is_singlestep(request) 0 #endif #ifdef PTRACE_SINGLEBLOCK #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK) #else #define is_singleblock(request) 0 #endif #ifdef PTRACE_SYSEMU #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP) #else #define is_sysemu_singlestep(request) 0 #endif static int ptrace_resume(struct task_struct *child, long request, unsigned long data) { bool need_siglock; if (!valid_signal(data)) return -EIO; if (request == PTRACE_SYSCALL) set_task_syscall_work(child, SYSCALL_TRACE); else clear_task_syscall_work(child, SYSCALL_TRACE); #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP) set_task_syscall_work(child, SYSCALL_EMU); else clear_task_syscall_work(child, SYSCALL_EMU); #endif if (is_singleblock(request)) { if (unlikely(!arch_has_block_step())) return -EIO; user_enable_block_step(child); } else if (is_singlestep(request) || is_sysemu_singlestep(request)) { if (unlikely(!arch_has_single_step())) return -EIO; user_enable_single_step(child); } else { user_disable_single_step(child); } /* * Change ->exit_code and ->state under siglock to avoid the race * with wait_task_stopped() in between; a non-zero ->exit_code will * wrongly look like another report from tracee. * * Note that we need siglock even if ->exit_code == data and/or this * status was not reported yet, the new status must not be cleared by * wait_task_stopped() after resume. * * If data == 0 we do not care if wait_task_stopped() reports the old * status and clears the code too; this can't race with the tracee, it * takes siglock after resume. */ need_siglock = data && !thread_group_empty(current); if (need_siglock) spin_lock_irq(&child->sighand->siglock); child->exit_code = data; wake_up_state(child, __TASK_TRACED); if (need_siglock) spin_unlock_irq(&child->sighand->siglock); return 0; } #ifdef CONFIG_HAVE_ARCH_TRACEHOOK static const struct user_regset * find_regset(const struct user_regset_view *view, unsigned int type) { const struct user_regset *regset; int n; for (n = 0; n < view->n; ++n) { regset = view->regsets + n; if (regset->core_note_type == type) return regset; } return NULL; } static int ptrace_regset(struct task_struct *task, int req, unsigned int type, struct iovec *kiov) { const struct user_regset_view *view = task_user_regset_view(task); const struct user_regset *regset = find_regset(view, type); int regset_no; if (!regset || (kiov->iov_len % regset->size) != 0) return -EINVAL; regset_no = regset - view->regsets; kiov->iov_len = min(kiov->iov_len, (__kernel_size_t) (regset->n * regset->size)); if (req == PTRACE_GETREGSET) return copy_regset_to_user(task, view, regset_no, 0, kiov->iov_len, kiov->iov_base); else return copy_regset_from_user(task, view, regset_no, 0, kiov->iov_len, kiov->iov_base); } /* * This is declared in linux/regset.h and defined in machine-dependent * code. We put the export here, near the primary machine-neutral use, * to ensure no machine forgets it. */ EXPORT_SYMBOL_GPL(task_user_regset_view); static unsigned long ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs, struct ptrace_syscall_info *info) { unsigned long args[ARRAY_SIZE(info->entry.args)]; int i; info->op = PTRACE_SYSCALL_INFO_ENTRY; info->entry.nr = syscall_get_nr(child, regs); syscall_get_arguments(child, regs, args); for (i = 0; i < ARRAY_SIZE(args); i++) info->entry.args[i] = args[i]; /* args is the last field in struct ptrace_syscall_info.entry */ return offsetofend(struct ptrace_syscall_info, entry.args); } static unsigned long ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs, struct ptrace_syscall_info *info) { /* * As struct ptrace_syscall_info.entry is currently a subset * of struct ptrace_syscall_info.seccomp, it makes sense to * initialize that subset using ptrace_get_syscall_info_entry(). * This can be reconsidered in the future if these structures * diverge significantly enough. */ ptrace_get_syscall_info_entry(child, regs, info); info->op = PTRACE_SYSCALL_INFO_SECCOMP; info->seccomp.ret_data = child->ptrace_message; /* ret_data is the last field in struct ptrace_syscall_info.seccomp */ return offsetofend(struct ptrace_syscall_info, seccomp.ret_data); } static unsigned long ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs, struct ptrace_syscall_info *info) { info->op = PTRACE_SYSCALL_INFO_EXIT; info->exit.rval = syscall_get_error(child, regs); info->exit.is_error = !!info->exit.rval; if (!info->exit.is_error) info->exit.rval = syscall_get_return_value(child, regs); /* is_error is the last field in struct ptrace_syscall_info.exit */ return offsetofend(struct ptrace_syscall_info, exit.is_error); } static int ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size, void __user *datavp) { struct pt_regs *regs = task_pt_regs(child); struct ptrace_syscall_info info = { .op = PTRACE_SYSCALL_INFO_NONE, .arch = syscall_get_arch(child), .instruction_pointer = instruction_pointer(regs), .stack_pointer = user_stack_pointer(regs), }; unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry); unsigned long write_size; /* * This does not need lock_task_sighand() to access * child->last_siginfo because ptrace_freeze_traced() * called earlier by ptrace_check_attach() ensures that * the tracee cannot go away and clear its last_siginfo. */ switch (child->last_siginfo ? child->last_siginfo->si_code : 0) { case SIGTRAP | 0x80: switch (child->ptrace_message) { case PTRACE_EVENTMSG_SYSCALL_ENTRY: actual_size = ptrace_get_syscall_info_entry(child, regs, &info); break; case PTRACE_EVENTMSG_SYSCALL_EXIT: actual_size = ptrace_get_syscall_info_exit(child, regs, &info); break; } break; case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8): actual_size = ptrace_get_syscall_info_seccomp(child, regs, &info); break; } write_size = min(actual_size, user_size); return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size; } #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ int ptrace_request(struct task_struct *child, long request, unsigned long addr, unsigned long data) { bool seized = child->ptrace & PT_SEIZED; int ret = -EIO; kernel_siginfo_t siginfo, *si; void __user *datavp = (void __user *) data; unsigned long __user *datalp = datavp; unsigned long flags; switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: return generic_ptrace_peekdata(child, addr, data); case PTRACE_POKETEXT: case PTRACE_POKEDATA: return generic_ptrace_pokedata(child, addr, data); #ifdef PTRACE_OLDSETOPTIONS case PTRACE_OLDSETOPTIONS: #endif case PTRACE_SETOPTIONS: ret = ptrace_setoptions(child, data); break; case PTRACE_GETEVENTMSG: ret = put_user(child->ptrace_message, datalp); break; case PTRACE_PEEKSIGINFO: ret = ptrace_peek_siginfo(child, addr, data); break; case PTRACE_GETSIGINFO: ret = ptrace_getsiginfo(child, &siginfo); if (!ret) ret = copy_siginfo_to_user(datavp, &siginfo); break; case PTRACE_SETSIGINFO: ret = copy_siginfo_from_user(&siginfo, datavp); if (!ret) ret = ptrace_setsiginfo(child, &siginfo); break; case PTRACE_GETSIGMASK: { sigset_t *mask; if (addr != sizeof(sigset_t)) { ret = -EINVAL; break; } if (test_tsk_restore_sigmask(child)) mask = &child->saved_sigmask; else mask = &child->blocked; if (copy_to_user(datavp, mask, sizeof(sigset_t))) ret = -EFAULT; else ret = 0; break; } case PTRACE_SETSIGMASK: { sigset_t new_set; if (addr != sizeof(sigset_t)) { ret = -EINVAL; break; } if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) { ret = -EFAULT; break; } sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); /* * Every thread does recalc_sigpending() after resume, so * retarget_shared_pending() and recalc_sigpending() are not * called here. */ spin_lock_irq(&child->sighand->siglock); child->blocked = new_set; spin_unlock_irq(&child->sighand->siglock); clear_tsk_restore_sigmask(child); ret = 0; break; } case PTRACE_INTERRUPT: /* * Stop tracee without any side-effect on signal or job * control. At least one trap is guaranteed to happen * after this request. If @child is already trapped, the * current trap is not disturbed and another trap will * happen after the current trap is ended with PTRACE_CONT. * * The actual trap might not be PTRACE_EVENT_STOP trap but * the pending condition is cleared regardless. */ if (unlikely(!seized || !lock_task_sighand(child, &flags))) break; /* * INTERRUPT doesn't disturb existing trap sans one * exception. If ptracer issued LISTEN for the current * STOP, this INTERRUPT should clear LISTEN and re-trap * tracee into STOP. */ if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP))) ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING); unlock_task_sighand(child, &flags); ret = 0; break; case PTRACE_LISTEN: /* * Listen for events. Tracee must be in STOP. It's not * resumed per-se but is not considered to be in TRACED by * wait(2) or ptrace(2). If an async event (e.g. group * stop state change) happens, tracee will enter STOP trap * again. Alternatively, ptracer can issue INTERRUPT to * finish listening and re-trap tracee into STOP. */ if (unlikely(!seized || !lock_task_sighand(child, &flags))) break; si = child->last_siginfo; if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) { child->jobctl |= JOBCTL_LISTENING; /* * If NOTIFY is set, it means event happened between * start of this trap and now. Trigger re-trap. */ if (child->jobctl & JOBCTL_TRAP_NOTIFY) ptrace_signal_wake_up(child, true); ret = 0; } unlock_task_sighand(child, &flags); break; case PTRACE_DETACH: /* detach a process that was attached. */ ret = ptrace_detach(child, data); break; #ifdef CONFIG_BINFMT_ELF_FDPIC case PTRACE_GETFDPIC: { struct mm_struct *mm = get_task_mm(child); unsigned long tmp = 0; ret = -ESRCH; if (!mm) break; switch (addr) { case PTRACE_GETFDPIC_EXEC: tmp = mm->context.exec_fdpic_loadmap; break; case PTRACE_GETFDPIC_INTERP: tmp = mm->context.interp_fdpic_loadmap; break; default: break; } mmput(mm); ret = put_user(tmp, datalp); break; } #endif #ifdef PTRACE_SINGLESTEP case PTRACE_SINGLESTEP: #endif #ifdef PTRACE_SINGLEBLOCK case PTRACE_SINGLEBLOCK: #endif #ifdef PTRACE_SYSEMU case PTRACE_SYSEMU: case PTRACE_SYSEMU_SINGLESTEP: #endif case PTRACE_SYSCALL: case PTRACE_CONT: return ptrace_resume(child, request, data); case PTRACE_KILL: send_sig_info(SIGKILL, SEND_SIG_NOINFO, child); return 0; #ifdef CONFIG_HAVE_ARCH_TRACEHOOK case PTRACE_GETREGSET: case PTRACE_SETREGSET: { struct iovec kiov; struct iovec __user *uiov = datavp; if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(kiov.iov_base, &uiov->iov_base) || __get_user(kiov.iov_len, &uiov->iov_len)) return -EFAULT; ret = ptrace_regset(child, request, addr, &kiov); if (!ret) ret = __put_user(kiov.iov_len, &uiov->iov_len); break; } case PTRACE_GET_SYSCALL_INFO: ret = ptrace_get_syscall_info(child, addr, datavp); break; #endif case PTRACE_SECCOMP_GET_FILTER: ret = seccomp_get_filter(child, addr, datavp); break; case PTRACE_SECCOMP_GET_METADATA: ret = seccomp_get_metadata(child, addr, datavp); break; #ifdef CONFIG_RSEQ case PTRACE_GET_RSEQ_CONFIGURATION: ret = ptrace_get_rseq_configuration(child, addr, datavp); break; #endif default: break; } return ret; } #ifndef arch_ptrace_attach #define arch_ptrace_attach(child) do { } while (0) #endif SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr, unsigned long, data) { struct task_struct *child; long ret; if (request == PTRACE_TRACEME) { ret = ptrace_traceme(); if (!ret) arch_ptrace_attach(current); goto out; } child = find_get_task_by_vpid(pid); if (!child) { ret = -ESRCH; goto out; } if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { ret = ptrace_attach(child, request, addr, data); /* * Some architectures need to do book-keeping after * a ptrace attach. */ if (!ret) arch_ptrace_attach(child); goto out_put_task_struct; } ret = ptrace_check_attach(child, request == PTRACE_KILL || request == PTRACE_INTERRUPT); if (ret < 0) goto out_put_task_struct; ret = arch_ptrace(child, request, addr, data); if (ret || request != PTRACE_DETACH) ptrace_unfreeze_traced(child); out_put_task_struct: put_task_struct(child); out: return ret; } int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, unsigned long data) { unsigned long tmp; int copied; copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE); if (copied != sizeof(tmp)) return -EIO; return put_user(tmp, (unsigned long __user *)data); } int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, unsigned long data) { int copied; copied = ptrace_access_vm(tsk, addr, &data, sizeof(data), FOLL_FORCE | FOLL_WRITE); return (copied == sizeof(data)) ? 0 : -EIO; } #if defined CONFIG_COMPAT int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data) { compat_ulong_t __user *datap = compat_ptr(data); compat_ulong_t word; kernel_siginfo_t siginfo; int ret; switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: ret = ptrace_access_vm(child, addr, &word, sizeof(word), FOLL_FORCE); if (ret != sizeof(word)) ret = -EIO; else ret = put_user(word, datap); break; case PTRACE_POKETEXT: case PTRACE_POKEDATA: ret = ptrace_access_vm(child, addr, &data, sizeof(data), FOLL_FORCE | FOLL_WRITE); ret = (ret != sizeof(data) ? -EIO : 0); break; case PTRACE_GETEVENTMSG: ret = put_user((compat_ulong_t) child->ptrace_message, datap); break; case PTRACE_GETSIGINFO: ret = ptrace_getsiginfo(child, &siginfo); if (!ret) ret = copy_siginfo_to_user32( (struct compat_siginfo __user *) datap, &siginfo); break; case PTRACE_SETSIGINFO: ret = copy_siginfo_from_user32( &siginfo, (struct compat_siginfo __user *) datap); if (!ret) ret = ptrace_setsiginfo(child, &siginfo); break; #ifdef CONFIG_HAVE_ARCH_TRACEHOOK case PTRACE_GETREGSET: case PTRACE_SETREGSET: { struct iovec kiov; struct compat_iovec __user *uiov = (struct compat_iovec __user *) datap; compat_uptr_t ptr; compat_size_t len; if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(ptr, &uiov->iov_base) || __get_user(len, &uiov->iov_len)) return -EFAULT; kiov.iov_base = compat_ptr(ptr); kiov.iov_len = len; ret = ptrace_regset(child, request, addr, &kiov); if (!ret) ret = __put_user(kiov.iov_len, &uiov->iov_len); break; } #endif default: ret = ptrace_request(child, request, addr, data); } return ret; } COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid, compat_long_t, addr, compat_long_t, data) { struct task_struct *child; long ret; if (request == PTRACE_TRACEME) { ret = ptrace_traceme(); goto out; } child = find_get_task_by_vpid(pid); if (!child) { ret = -ESRCH; goto out; } if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) { ret = ptrace_attach(child, request, addr, data); /* * Some architectures need to do book-keeping after * a ptrace attach. */ if (!ret) arch_ptrace_attach(child); goto out_put_task_struct; } ret = ptrace_check_attach(child, request == PTRACE_KILL || request == PTRACE_INTERRUPT); if (!ret) { ret = compat_arch_ptrace(child, request, addr, data); if (ret || request != PTRACE_DETACH) ptrace_unfreeze_traced(child); } out_put_task_struct: put_task_struct(child); out: return ret; } #endif /* CONFIG_COMPAT */ |
5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Stream Parser * * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> */ #ifndef __NET_STRPARSER_H_ #define __NET_STRPARSER_H_ #include <linux/skbuff.h> #include <net/sock.h> #define STRP_STATS_ADD(stat, count) ((stat) += (count)) #define STRP_STATS_INCR(stat) ((stat)++) struct strp_stats { unsigned long long msgs; unsigned long long bytes; unsigned int mem_fail; unsigned int need_more_hdr; unsigned int msg_too_big; unsigned int msg_timeouts; unsigned int bad_hdr_len; }; struct strp_aggr_stats { unsigned long long msgs; unsigned long long bytes; unsigned int mem_fail; unsigned int need_more_hdr; unsigned int msg_too_big; unsigned int msg_timeouts; unsigned int bad_hdr_len; unsigned int aborts; unsigned int interrupted; unsigned int unrecov_intr; }; struct strparser; /* Callbacks are called with lock held for the attached socket */ struct strp_callbacks { int (*parse_msg)(struct strparser *strp, struct sk_buff *skb); void (*rcv_msg)(struct strparser *strp, struct sk_buff *skb); int (*read_sock_done)(struct strparser *strp, int err); void (*abort_parser)(struct strparser *strp, int err); void (*lock)(struct strparser *strp); void (*unlock)(struct strparser *strp); }; struct strp_msg { int full_len; int offset; }; struct _strp_msg { /* Internal cb structure. struct strp_msg must be first for passing * to upper layer. */ struct strp_msg strp; int accum_len; }; struct sk_skb_cb { #define SK_SKB_CB_PRIV_LEN 20 unsigned char data[SK_SKB_CB_PRIV_LEN]; struct _strp_msg strp; /* temp_reg is a temporary register used for bpf_convert_data_end_access * when dst_reg == src_reg. */ u64 temp_reg; struct tls_msg { u8 control; u8 decrypted; } tls; }; static inline struct strp_msg *strp_msg(struct sk_buff *skb) { return (struct strp_msg *)((void *)skb->cb + offsetof(struct sk_skb_cb, strp)); } /* Structure for an attached lower socket */ struct strparser { struct sock *sk; u32 stopped : 1; u32 paused : 1; u32 aborted : 1; u32 interrupted : 1; u32 unrecov_intr : 1; struct sk_buff **skb_nextp; struct sk_buff *skb_head; unsigned int need_bytes; struct delayed_work msg_timer_work; struct work_struct work; struct strp_stats stats; struct strp_callbacks cb; }; /* Must be called with lock held for attached socket */ static inline void strp_pause(struct strparser *strp) { strp->paused = 1; } /* May be called without holding lock for attached socket */ void strp_unpause(struct strparser *strp); /* Must be called with process lock held (lock_sock) */ void __strp_unpause(struct strparser *strp); static inline void save_strp_stats(struct strparser *strp, struct strp_aggr_stats *agg_stats) { /* Save psock statistics in the mux when psock is being unattached. */ #define SAVE_PSOCK_STATS(_stat) (agg_stats->_stat += \ strp->stats._stat) SAVE_PSOCK_STATS(msgs); SAVE_PSOCK_STATS(bytes); SAVE_PSOCK_STATS(mem_fail); SAVE_PSOCK_STATS(need_more_hdr); SAVE_PSOCK_STATS(msg_too_big); SAVE_PSOCK_STATS(msg_timeouts); SAVE_PSOCK_STATS(bad_hdr_len); #undef SAVE_PSOCK_STATS if (strp->aborted) agg_stats->aborts++; if (strp->interrupted) agg_stats->interrupted++; if (strp->unrecov_intr) agg_stats->unrecov_intr++; } static inline void aggregate_strp_stats(struct strp_aggr_stats *stats, struct strp_aggr_stats *agg_stats) { #define SAVE_PSOCK_STATS(_stat) (agg_stats->_stat += stats->_stat) SAVE_PSOCK_STATS(msgs); SAVE_PSOCK_STATS(bytes); SAVE_PSOCK_STATS(mem_fail); SAVE_PSOCK_STATS(need_more_hdr); SAVE_PSOCK_STATS(msg_too_big); SAVE_PSOCK_STATS(msg_timeouts); SAVE_PSOCK_STATS(bad_hdr_len); SAVE_PSOCK_STATS(aborts); SAVE_PSOCK_STATS(interrupted); SAVE_PSOCK_STATS(unrecov_intr); #undef SAVE_PSOCK_STATS } void strp_done(struct strparser *strp); void strp_stop(struct strparser *strp); void strp_check_rcv(struct strparser *strp); int strp_init(struct strparser *strp, struct sock *sk, const struct strp_callbacks *cb); void strp_data_ready(struct strparser *strp); int strp_process(struct strparser *strp, struct sk_buff *orig_skb, unsigned int orig_offset, size_t orig_len, size_t max_msg_size, long timeo); #endif /* __NET_STRPARSER_H_ */ |
147 84 104 108 413 490 490 492 411 415 415 6 6 746 270 95 189 88 198 5 1 10 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP module. * * Version: @(#)ip.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Changes: * Mike McLagan : Routing by source */ #ifndef _IP_H #define _IP_H #include <linux/types.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/jhash.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/route.h> #include <net/snmp.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/netns/hash.h> #include <net/lwtunnel.h> #define IPV4_MAX_PMTU 65535U /* RFC 2675, Section 5.1 */ #define IPV4_MIN_MTU 68 /* RFC 791 */ extern unsigned int sysctl_fib_sync_mem; extern unsigned int sysctl_fib_sync_mem_min; extern unsigned int sysctl_fib_sync_mem_max; struct sock; struct inet_skb_parm { int iif; struct ip_options opt; /* Compiled IP options */ u16 flags; #define IPSKB_FORWARDED BIT(0) #define IPSKB_XFRM_TUNNEL_SIZE BIT(1) #define IPSKB_XFRM_TRANSFORMED BIT(2) #define IPSKB_FRAG_COMPLETE BIT(3) #define IPSKB_REROUTED BIT(4) #define IPSKB_DOREDIRECT BIT(5) #define IPSKB_FRAG_PMTU BIT(6) #define IPSKB_L3SLAVE BIT(7) #define IPSKB_NOPOLICY BIT(8) #define IPSKB_MULTIPATH BIT(9) u16 frag_max_size; }; static inline bool ipv4_l3mdev_skb(u16 flags) { return !!(flags & IPSKB_L3SLAVE); } static inline unsigned int ip_hdrlen(const struct sk_buff *skb) { return ip_hdr(skb)->ihl * 4; } struct ipcm_cookie { struct sockcm_cookie sockc; __be32 addr; int oif; struct ip_options_rcu *opt; __u8 protocol; __u8 ttl; __s16 tos; char priority; __u16 gso_size; }; static inline void ipcm_init(struct ipcm_cookie *ipcm) { *ipcm = (struct ipcm_cookie) { .tos = -1 }; } static inline void ipcm_init_sk(struct ipcm_cookie *ipcm, const struct inet_sock *inet) { ipcm_init(ipcm); ipcm->sockc.mark = inet->sk.sk_mark; ipcm->sockc.tsflags = inet->sk.sk_tsflags; ipcm->oif = inet->sk.sk_bound_dev_if; ipcm->addr = inet->inet_saddr; ipcm->protocol = inet->inet_num; } #define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb)) #define PKTINFO_SKB_CB(skb) ((struct in_pktinfo *)((skb)->cb)) /* return enslaved device index if relevant */ static inline int inet_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) return IPCB(skb)->iif; #endif return 0; } /* Special input handler for packets caught by router alert option. They are selected only by protocol field, and then processed likely local ones; but only if someone wants them! Otherwise, router not running rsvpd will kill RSVP. It is user level problem, what it will make with them. I have no idea, how it will masquearde or NAT them (it is joke, joke :-)), but receiver should be enough clever f.e. to forward mtrace requests, sent to multicast group to reach destination designated router. */ struct ip_ra_chain { struct ip_ra_chain __rcu *next; struct sock *sk; union { void (*destructor)(struct sock *); struct sock *saved_sk; }; struct rcu_head rcu; }; /* IP flags. */ #define IP_CE 0x8000 /* Flag: "Congestion" */ #define IP_DF 0x4000 /* Flag: "Don't Fragment" */ #define IP_MF 0x2000 /* Flag: "More Fragments" */ #define IP_OFFSET 0x1FFF /* "Fragment Offset" part */ #define IP_FRAG_TIME (30 * HZ) /* fragment lifetime */ struct msghdr; struct net_device; struct packet_type; struct rtable; struct sockaddr; int igmp_mc_init(void); /* * Functions provided by ip.c */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, u8 tos); int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ip_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip_local_deliver(struct sk_buff *skb); void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int proto); int ip_mr_input(struct sk_buff *skb); int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); struct ip_fraglist_iter { struct sk_buff *frag; struct iphdr *iph; int offset; unsigned int hlen; }; void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter); void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter); static inline struct sk_buff *ip_fraglist_next(struct ip_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip_frag_state { bool DF; unsigned int hlen; unsigned int ll_rs; unsigned int mtu; unsigned int left; int offset; int ptr; __be16 not_last_frag; }; void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state); struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state); void ip_send_check(struct iphdr *ip); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos); void ip_init(void); int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int len, int protolen, struct ipcm_cookie *ipc, struct rtable **rt, unsigned int flags); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb); ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, int offset, size_t size, int flags); struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork); int ip_send_skb(struct net *net, struct sk_buff *skb); int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4); void ip_flush_pending_frames(struct sock *sk); struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl); static inline struct sk_buff *ip_finish_skb(struct sock *sk, struct flowi4 *fl4) { return __ip_make_skb(sk, fl4, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } static inline __u8 get_rttos(struct ipcm_cookie* ipc, struct inet_sock *inet) { return (ipc->tos != -1) ? RT_TOS(ipc->tos) : RT_TOS(inet->tos); } static inline __u8 get_rtconn_flags(struct ipcm_cookie* ipc, struct sock* sk) { return (ipc->tos != -1) ? RT_CONN_FLAGS_TOS(sk, ipc->tos) : RT_CONN_FLAGS(sk); } /* datagram.c */ int __ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); void ip4_datagram_release_cb(struct sock *sk); struct ip_reply_arg { struct kvec iov[1]; int flags; __wsum csum; int csumoffset; /* u16 offset of csum in iov[0].iov_base */ /* -1 if not needed */ int bound_dev_if; u8 tos; kuid_t uid; }; #define IP_REPLY_ARG_NOSRCCHECK 1 static inline __u8 ip_reply_arg_flowi_flags(const struct ip_reply_arg *arg) { return (arg->flags & IP_REPLY_ARG_NOSRCCHECK) ? FLOWI_FLAG_ANYSRC : 0; } void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time); #define IP_INC_STATS(net, field) SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define __IP_INC_STATS(net, field) __SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define IP_ADD_STATS(net, field, val) SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define __IP_ADD_STATS(net, field, val) __SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define IP_UPD_PO_STATS(net, field, val) SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define __IP_UPD_PO_STATS(net, field, val) __SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define NET_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.net_statistics, field) #define __NET_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.net_statistics, field) #define NET_ADD_STATS(net, field, adnd) SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) #define __NET_ADD_STATS(net, field, adnd) __SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offct); unsigned long snmp_fold_field(void __percpu *mib, int offt); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t sync_off); #else static inline u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset) { return snmp_get_cpu_field(mib, cpu, offct); } static inline u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_off) { return snmp_fold_field(mib, offt); } #endif #define snmp_get_cpu_field64_batch(buff64, stats_list, mib_statistic, offset) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff64[i] += snmp_get_cpu_field64( \ mib_statistic, \ c, stats_list[i].entry, \ offset); \ } \ } #define snmp_get_cpu_field_batch(buff, stats_list, mib_statistic) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff[i] += snmp_get_cpu_field( \ mib_statistic, \ c, stats_list[i].entry); \ } \ } void inet_get_local_port_range(struct net *net, int *low, int *high); #ifdef CONFIG_SYSCTL static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { if (!net->ipv4.sysctl_local_reserved_ports) return false; return test_bit(port, net->ipv4.sysctl_local_reserved_ports); } static inline bool sysctl_dev_name_is_allowed(const char *name) { return strcmp(name, "default") != 0 && strcmp(name, "all") != 0; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < READ_ONCE(net->ipv4.sysctl_ip_prot_sock); } #else static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { return false; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < PROT_SOCK; } #endif __be32 inet_current_timestamp(void); /* From inetpeer.c */ extern int inet_peer_threshold; extern int inet_peer_minttl; extern int inet_peer_maxttl; void ipfrag_init(void); void ip_static_sysctl_init(void); #define IP4_REPLY_MARK(net, mark) \ (READ_ONCE((net)->ipv4.sysctl_fwmark_reflect) ? (mark) : 0) static inline bool ip_is_fragment(const struct iphdr *iph) { return (iph->frag_off & htons(IP_MF | IP_OFFSET)) != 0; } #ifdef CONFIG_INET #include <net/dst.h> /* The function in 2.2 was invalid, producing wrong result for * check=0xFEFF. It was noticed by Arthur Skawina _year_ ago. --ANK(000625) */ static inline int ip_decrease_ttl(struct iphdr *iph) { u32 check = (__force u32)iph->check; check += (__force u32)htons(0x0100); iph->check = (__force __sum16)(check + (check>=0xFFFF)); return --iph->ttl; } static inline int ip_mtu_locked(const struct dst_entry *dst) { const struct rtable *rt = (const struct rtable *)dst; return rt->rt_mtu_locked || dst_metric_locked(dst, RTAX_MTU); } static inline int ip_dont_fragment(const struct sock *sk, const struct dst_entry *dst) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc == IP_PMTUDISC_DO || (pmtudisc == IP_PMTUDISC_WANT && !ip_mtu_locked(dst)); } static inline bool ip_sk_accept_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc != IP_PMTUDISC_INTERFACE && inet_sk(sk)->pmtudisc != IP_PMTUDISC_OMIT; } static inline bool ip_sk_use_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_PROBE; } static inline bool ip_sk_ignore_df(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_DO || inet_sk(sk)->pmtudisc == IP_PMTUDISC_OMIT; } static inline unsigned int ip_dst_mtu_maybe_forward(const struct dst_entry *dst, bool forwarding) { const struct rtable *rt = container_of(dst, struct rtable, dst); struct net *net = dev_net(dst->dev); unsigned int mtu; if (READ_ONCE(net->ipv4.sysctl_ip_fwd_use_pmtu) || ip_mtu_locked(dst) || !forwarding) { mtu = rt->rt_pmtu; if (mtu && time_before(jiffies, rt->dst.expires)) goto out; } /* 'forwarding = true' case should always honour route mtu */ mtu = dst_metric_raw(dst, RTAX_MTU); if (mtu) goto out; mtu = READ_ONCE(dst->dev->mtu); if (unlikely(ip_mtu_locked(dst))) { if (rt->rt_uses_gateway && mtu > 576) mtu = 576; } out: mtu = min_t(unsigned int, mtu, IP_MAX_MTU); return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } static inline unsigned int ip_skb_dst_mtu(struct sock *sk, const struct sk_buff *skb) { unsigned int mtu; if (!sk || !sk_fullsock(sk) || ip_sk_use_pmtu(sk)) { bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED; return ip_dst_mtu_maybe_forward(skb_dst(skb), forwarding); } mtu = min(READ_ONCE(skb_dst(skb)->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } struct dst_metrics *ip_fib_metrics_init(struct net *net, struct nlattr *fc_mx, int fc_mx_len, struct netlink_ext_ack *extack); static inline void ip_fib_metrics_put(struct dst_metrics *fib_metrics) { if (fib_metrics != &dst_default_metrics && refcount_dec_and_test(&fib_metrics->refcnt)) kfree(fib_metrics); } /* ipv4 and ipv6 both use refcounted metrics if it is not the default */ static inline void ip_dst_init_metrics(struct dst_entry *dst, struct dst_metrics *fib_metrics) { dst_init_metrics(dst, fib_metrics->metrics, true); if (fib_metrics != &dst_default_metrics) { dst->_metrics |= DST_METRICS_REFCOUNTED; refcount_inc(&fib_metrics->refcnt); } } static inline void ip_dst_metrics_put(struct dst_entry *dst) { struct dst_metrics *p = (struct dst_metrics *)DST_METRICS_PTR(dst); if (p != &dst_default_metrics && refcount_dec_and_test(&p->refcnt)) kfree(p); } u32 ip_idents_reserve(u32 hash, int segs); void __ip_select_ident(struct net *net, struct iphdr *iph, int segs); static inline void ip_select_ident_segs(struct net *net, struct sk_buff *skb, struct sock *sk, int segs) { struct iphdr *iph = ip_hdr(skb); /* We had many attacks based on IPID, use the private * generator as much as we can. */ if (sk && inet_sk(sk)->inet_daddr) { iph->id = htons(inet_sk(sk)->inet_id); inet_sk(sk)->inet_id += segs; return; } if ((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) { iph->id = 0; } else { /* Unfortunately we need the big hammer to get a suitable IPID */ __ip_select_ident(net, iph, segs); } } static inline void ip_select_ident(struct net *net, struct sk_buff *skb, struct sock *sk) { ip_select_ident_segs(net, skb, sk, 1); } static inline __wsum inet_compute_pseudo(struct sk_buff *skb, int proto) { return csum_tcpudp_nofold(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len, proto, 0); } /* copy IPv4 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v4addrs.src = iph->saddr; * flow->v4addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v4addrs(struct flow_keys *flow, const struct iphdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v4addrs.dst) != offsetof(typeof(flow->addrs), v4addrs.src) + sizeof(flow->addrs.v4addrs.src)); memcpy(&flow->addrs.v4addrs, &iph->addrs, sizeof(flow->addrs.v4addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } static inline __wsum inet_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct iphdr *iph = skb_gro_network_header(skb); return csum_tcpudp_nofold(iph->saddr, iph->daddr, skb_gro_len(skb), proto, 0); } /* * Map a multicast IP onto multicast MAC for type ethernet. */ static inline void ip_eth_mc_map(__be32 naddr, char *buf) { __u32 addr=ntohl(naddr); buf[0]=0x01; buf[1]=0x00; buf[2]=0x5e; buf[5]=addr&0xFF; addr>>=8; buf[4]=addr&0xFF; addr>>=8; buf[3]=addr&0x7F; } /* * Map a multicast IP onto multicast MAC for type IP-over-InfiniBand. * Leave P_Key as 0 to be filled in by driver. */ static inline void ip_ib_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { __u32 addr; unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; addr = ntohl(naddr); buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x40; /* IPv4 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; buf[10] = 0; buf[11] = 0; buf[12] = 0; buf[13] = 0; buf[14] = 0; buf[15] = 0; buf[19] = addr & 0xff; addr >>= 8; buf[18] = addr & 0xff; addr >>= 8; buf[17] = addr & 0xff; addr >>= 8; buf[16] = addr & 0x0f; } static inline void ip_ipgre_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) memcpy(buf, broadcast, 4); else memcpy(buf, &naddr, sizeof(naddr)); } #if IS_ENABLED(CONFIG_IPV6) #include <linux/ipv6.h> #endif static __inline__ void inet_reset_saddr(struct sock *sk) { inet_sk(sk)->inet_rcv_saddr = inet_sk(sk)->inet_saddr = 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); memset(&np->saddr, 0, sizeof(np->saddr)); memset(&sk->sk_v6_rcv_saddr, 0, sizeof(sk->sk_v6_rcv_saddr)); } #endif } #endif static inline unsigned int ipv4_addr_hash(__be32 ip) { return (__force unsigned int) ip; } static inline u32 ipv4_portaddr_hash(const struct net *net, __be32 saddr, unsigned int port) { return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; } bool ip_call_ra_chain(struct sk_buff *skb); /* * Functions provided by ip_fragment.c */ enum ip_defrag_users { IP_DEFRAG_LOCAL_DELIVER, IP_DEFRAG_CALL_RA_CHAIN, IP_DEFRAG_CONNTRACK_IN, __IP_DEFRAG_CONNTRACK_IN_END = IP_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP_DEFRAG_CONNTRACK_OUT, __IP_DEFRAG_CONNTRACK_OUT_END = IP_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP_DEFRAG_CONNTRACK_BRIDGE_IN, __IP_DEFRAG_CONNTRACK_BRIDGE_IN = IP_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, IP_DEFRAG_VS_IN, IP_DEFRAG_VS_OUT, IP_DEFRAG_VS_FWD, IP_DEFRAG_AF_PACKET, IP_DEFRAG_MACVLAN, }; /* Return true if the value of 'user' is between 'lower_bond' * and 'upper_bond' inclusively. */ static inline bool ip_defrag_user_in_between(u32 user, enum ip_defrag_users lower_bond, enum ip_defrag_users upper_bond) { return user >= lower_bond && user <= upper_bond; } int ip_defrag(struct net *net, struct sk_buff *skb, u32 user); #ifdef CONFIG_INET struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user); #else static inline struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) { return skb; } #endif /* * Functions provided by ip_forward.c */ int ip_forward(struct sk_buff *skb); /* * Functions provided by ip_options.c */ void ip_options_build(struct sk_buff *skb, struct ip_options *opt, __be32 daddr, struct rtable *rt, int is_frag); int __ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb, const struct ip_options *sopt); static inline int ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb) { return __ip_options_echo(net, dopt, skb, &IPCB(skb)->opt); } void ip_options_fragment(struct sk_buff *skb); int __ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb, __be32 *info); int ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb); int ip_options_get(struct net *net, struct ip_options_rcu **optp, sockptr_t data, int optlen); void ip_options_undo(struct ip_options *opt); void ip_forward_options(struct sk_buff *skb); int ip_options_rcv_srr(struct sk_buff *skb, struct net_device *dev); /* * Functions provided by ip_sockglue.c */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb); void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6); int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)); int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len); void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 dport, u32 info); static inline void ip_cmsg_recv(struct msghdr *msg, struct sk_buff *skb) { ip_cmsg_recv_offset(msg, skb->sk, skb, 0, 0); } bool icmp_global_allow(void); extern int sysctl_icmp_msgs_per_sec; extern int sysctl_icmp_msgs_burst; #ifdef CONFIG_PROC_FS int ip_misc_proc_init(void); #endif int rtm_getroute_parse_ip_proto(struct nlattr *attr, u8 *ip_proto, u8 family, struct netlink_ext_ack *extack); static inline bool inetdev_valid_mtu(unsigned int mtu) { return likely(mtu >= IPV4_MIN_MTU); } void ip_sock_set_freebind(struct sock *sk); int ip_sock_set_mtu_discover(struct sock *sk, int val); void ip_sock_set_pktinfo(struct sock *sk); void ip_sock_set_recverr(struct sock *sk); void ip_sock_set_tos(struct sock *sk, int val); #endif /* _IP_H */ |
45 45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS: Locality-Based Least-Connection with Replication scheduler * * Authors: Wensong Zhang <wensong@gnuchina.org> * * Changes: * Julian Anastasov : Added the missing (dest->weight>0) * condition in the ip_vs_dest_set_max. */ /* * The lblc/r algorithm is as follows (pseudo code): * * if serverSet[dest_ip] is null then * n, serverSet[dest_ip] <- {weighted least-conn node}; * else * n <- {least-conn (alive) node in serverSet[dest_ip]}; * if (n is null) OR * (n.conns>n.weight AND * there is a node m with m.conns<m.weight/2) then * n <- {weighted least-conn node}; * add n to serverSet[dest_ip]; * if |serverSet[dest_ip]| > 1 AND * now - serverSet[dest_ip].lastMod > T then * m <- {most conn node in serverSet[dest_ip]}; * remove m from serverSet[dest_ip]; * if serverSet[dest_ip] changed then * serverSet[dest_ip].lastMod <- now; * * return n; * */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/ip.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/jiffies.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/hash.h> /* for sysctl */ #include <linux/fs.h> #include <linux/sysctl.h> #include <net/net_namespace.h> #include <net/ip_vs.h> /* * It is for garbage collection of stale IPVS lblcr entries, * when the table is full. */ #define CHECK_EXPIRE_INTERVAL (60*HZ) #define ENTRY_TIMEOUT (6*60*HZ) #define DEFAULT_EXPIRATION (24*60*60*HZ) /* * It is for full expiration check. * When there is no partial expiration check (garbage collection) * in a half hour, do a full expiration check to collect stale * entries that haven't been touched for a day. */ #define COUNT_FOR_FULL_EXPIRATION 30 /* * for IPVS lblcr entry hash table */ #ifndef CONFIG_IP_VS_LBLCR_TAB_BITS #define CONFIG_IP_VS_LBLCR_TAB_BITS 10 #endif #define IP_VS_LBLCR_TAB_BITS CONFIG_IP_VS_LBLCR_TAB_BITS #define IP_VS_LBLCR_TAB_SIZE (1 << IP_VS_LBLCR_TAB_BITS) #define IP_VS_LBLCR_TAB_MASK (IP_VS_LBLCR_TAB_SIZE - 1) /* * IPVS destination set structure and operations */ struct ip_vs_dest_set_elem { struct list_head list; /* list link */ struct ip_vs_dest *dest; /* destination server */ struct rcu_head rcu_head; }; struct ip_vs_dest_set { atomic_t size; /* set size */ unsigned long lastmod; /* last modified time */ struct list_head list; /* destination list */ }; static void ip_vs_dest_set_insert(struct ip_vs_dest_set *set, struct ip_vs_dest *dest, bool check) { struct ip_vs_dest_set_elem *e; if (check) { list_for_each_entry(e, &set->list, list) { if (e->dest == dest) return; } } e = kmalloc(sizeof(*e), GFP_ATOMIC); if (e == NULL) return; ip_vs_dest_hold(dest); e->dest = dest; list_add_rcu(&e->list, &set->list); atomic_inc(&set->size); set->lastmod = jiffies; } static void ip_vs_lblcr_elem_rcu_free(struct rcu_head *head) { struct ip_vs_dest_set_elem *e; e = container_of(head, struct ip_vs_dest_set_elem, rcu_head); ip_vs_dest_put_and_free(e->dest); kfree(e); } static void ip_vs_dest_set_erase(struct ip_vs_dest_set *set, struct ip_vs_dest *dest) { struct ip_vs_dest_set_elem *e; list_for_each_entry(e, &set->list, list) { if (e->dest == dest) { /* HIT */ atomic_dec(&set->size); set->lastmod = jiffies; list_del_rcu(&e->list); call_rcu(&e->rcu_head, ip_vs_lblcr_elem_rcu_free); break; } } } static void ip_vs_dest_set_eraseall(struct ip_vs_dest_set *set) { struct ip_vs_dest_set_elem *e, *ep; list_for_each_entry_safe(e, ep, &set->list, list) { list_del_rcu(&e->list); call_rcu(&e->rcu_head, ip_vs_lblcr_elem_rcu_free); } } /* get weighted least-connection node in the destination set */ static inline struct ip_vs_dest *ip_vs_dest_set_min(struct ip_vs_dest_set *set) { struct ip_vs_dest_set_elem *e; struct ip_vs_dest *dest, *least; int loh, doh; /* select the first destination server, whose weight > 0 */ list_for_each_entry_rcu(e, &set->list, list) { least = e->dest; if (least->flags & IP_VS_DEST_F_OVERLOAD) continue; if ((atomic_read(&least->weight) > 0) && (least->flags & IP_VS_DEST_F_AVAILABLE)) { loh = ip_vs_dest_conn_overhead(least); goto nextstage; } } return NULL; /* find the destination with the weighted least load */ nextstage: list_for_each_entry_continue_rcu(e, &set->list, list) { dest = e->dest; if (dest->flags & IP_VS_DEST_F_OVERLOAD) continue; doh = ip_vs_dest_conn_overhead(dest); if (((__s64)loh * atomic_read(&dest->weight) > (__s64)doh * atomic_read(&least->weight)) && (dest->flags & IP_VS_DEST_F_AVAILABLE)) { least = dest; loh = doh; } } IP_VS_DBG_BUF(6, "%s(): server %s:%d " "activeconns %d refcnt %d weight %d overhead %d\n", __func__, IP_VS_DBG_ADDR(least->af, &least->addr), ntohs(least->port), atomic_read(&least->activeconns), refcount_read(&least->refcnt), atomic_read(&least->weight), loh); return least; } /* get weighted most-connection node in the destination set */ static inline struct ip_vs_dest *ip_vs_dest_set_max(struct ip_vs_dest_set *set) { struct ip_vs_dest_set_elem *e; struct ip_vs_dest *dest, *most; int moh, doh; if (set == NULL) return NULL; /* select the first destination server, whose weight > 0 */ list_for_each_entry(e, &set->list, list) { most = e->dest; if (atomic_read(&most->weight) > 0) { moh = ip_vs_dest_conn_overhead(most); goto nextstage; } } return NULL; /* find the destination with the weighted most load */ nextstage: list_for_each_entry_continue(e, &set->list, list) { dest = e->dest; doh = ip_vs_dest_conn_overhead(dest); /* moh/mw < doh/dw ==> moh*dw < doh*mw, where mw,dw>0 */ if (((__s64)moh * atomic_read(&dest->weight) < (__s64)doh * atomic_read(&most->weight)) && (atomic_read(&dest->weight) > 0)) { most = dest; moh = doh; } } IP_VS_DBG_BUF(6, "%s(): server %s:%d " "activeconns %d refcnt %d weight %d overhead %d\n", __func__, IP_VS_DBG_ADDR(most->af, &most->addr), ntohs(most->port), atomic_read(&most->activeconns), refcount_read(&most->refcnt), atomic_read(&most->weight), moh); return most; } /* * IPVS lblcr entry represents an association between destination * IP address and its destination server set */ struct ip_vs_lblcr_entry { struct hlist_node list; int af; /* address family */ union nf_inet_addr addr; /* destination IP address */ struct ip_vs_dest_set set; /* destination server set */ unsigned long lastuse; /* last used time */ struct rcu_head rcu_head; }; /* * IPVS lblcr hash table */ struct ip_vs_lblcr_table { struct rcu_head rcu_head; struct hlist_head bucket[IP_VS_LBLCR_TAB_SIZE]; /* hash bucket */ atomic_t entries; /* number of entries */ int max_size; /* maximum size of entries */ struct timer_list periodic_timer; /* collect stale entries */ struct ip_vs_service *svc; /* pointer back to service */ int rover; /* rover for expire check */ int counter; /* counter for no expire */ bool dead; }; #ifdef CONFIG_SYSCTL /* * IPVS LBLCR sysctl table */ static struct ctl_table vs_vars_table[] = { { .procname = "lblcr_expiration", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { } }; #endif static inline void ip_vs_lblcr_free(struct ip_vs_lblcr_entry *en) { hlist_del_rcu(&en->list); ip_vs_dest_set_eraseall(&en->set); kfree_rcu(en, rcu_head); } /* * Returns hash value for IPVS LBLCR entry */ static inline unsigned int ip_vs_lblcr_hashkey(int af, const union nf_inet_addr *addr) { __be32 addr_fold = addr->ip; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) addr_fold = addr->ip6[0]^addr->ip6[1]^ addr->ip6[2]^addr->ip6[3]; #endif return hash_32(ntohl(addr_fold), IP_VS_LBLCR_TAB_BITS); } /* * Hash an entry in the ip_vs_lblcr_table. * returns bool success. */ static void ip_vs_lblcr_hash(struct ip_vs_lblcr_table *tbl, struct ip_vs_lblcr_entry *en) { unsigned int hash = ip_vs_lblcr_hashkey(en->af, &en->addr); hlist_add_head_rcu(&en->list, &tbl->bucket[hash]); atomic_inc(&tbl->entries); } /* Get ip_vs_lblcr_entry associated with supplied parameters. */ static inline struct ip_vs_lblcr_entry * ip_vs_lblcr_get(int af, struct ip_vs_lblcr_table *tbl, const union nf_inet_addr *addr) { unsigned int hash = ip_vs_lblcr_hashkey(af, addr); struct ip_vs_lblcr_entry *en; hlist_for_each_entry_rcu(en, &tbl->bucket[hash], list) if (ip_vs_addr_equal(af, &en->addr, addr)) return en; return NULL; } /* * Create or update an ip_vs_lblcr_entry, which is a mapping of a destination * IP address to a server. Called under spin lock. */ static inline struct ip_vs_lblcr_entry * ip_vs_lblcr_new(struct ip_vs_lblcr_table *tbl, const union nf_inet_addr *daddr, u16 af, struct ip_vs_dest *dest) { struct ip_vs_lblcr_entry *en; en = ip_vs_lblcr_get(af, tbl, daddr); if (!en) { en = kmalloc(sizeof(*en), GFP_ATOMIC); if (!en) return NULL; en->af = af; ip_vs_addr_copy(af, &en->addr, daddr); en->lastuse = jiffies; /* initialize its dest set */ atomic_set(&(en->set.size), 0); INIT_LIST_HEAD(&en->set.list); ip_vs_dest_set_insert(&en->set, dest, false); ip_vs_lblcr_hash(tbl, en); return en; } ip_vs_dest_set_insert(&en->set, dest, true); return en; } /* * Flush all the entries of the specified table. */ static void ip_vs_lblcr_flush(struct ip_vs_service *svc) { struct ip_vs_lblcr_table *tbl = svc->sched_data; int i; struct ip_vs_lblcr_entry *en; struct hlist_node *next; spin_lock_bh(&svc->sched_lock); tbl->dead = true; for (i = 0; i < IP_VS_LBLCR_TAB_SIZE; i++) { hlist_for_each_entry_safe(en, next, &tbl->bucket[i], list) { ip_vs_lblcr_free(en); } } spin_unlock_bh(&svc->sched_lock); } static int sysctl_lblcr_expiration(struct ip_vs_service *svc) { #ifdef CONFIG_SYSCTL return svc->ipvs->sysctl_lblcr_expiration; #else return DEFAULT_EXPIRATION; #endif } static inline void ip_vs_lblcr_full_check(struct ip_vs_service *svc) { struct ip_vs_lblcr_table *tbl = svc->sched_data; unsigned long now = jiffies; int i, j; struct ip_vs_lblcr_entry *en; struct hlist_node *next; for (i = 0, j = tbl->rover; i < IP_VS_LBLCR_TAB_SIZE; i++) { j = (j + 1) & IP_VS_LBLCR_TAB_MASK; spin_lock(&svc->sched_lock); hlist_for_each_entry_safe(en, next, &tbl->bucket[j], list) { if (time_after(en->lastuse + sysctl_lblcr_expiration(svc), now)) continue; ip_vs_lblcr_free(en); atomic_dec(&tbl->entries); } spin_unlock(&svc->sched_lock); } tbl->rover = j; } /* * Periodical timer handler for IPVS lblcr table * It is used to collect stale entries when the number of entries * exceeds the maximum size of the table. * * Fixme: we probably need more complicated algorithm to collect * entries that have not been used for a long time even * if the number of entries doesn't exceed the maximum size * of the table. * The full expiration check is for this purpose now. */ static void ip_vs_lblcr_check_expire(struct timer_list *t) { struct ip_vs_lblcr_table *tbl = from_timer(tbl, t, periodic_timer); struct ip_vs_service *svc = tbl->svc; unsigned long now = jiffies; int goal; int i, j; struct ip_vs_lblcr_entry *en; struct hlist_node *next; if ((tbl->counter % COUNT_FOR_FULL_EXPIRATION) == 0) { /* do full expiration check */ ip_vs_lblcr_full_check(svc); tbl->counter = 1; goto out; } if (atomic_read(&tbl->entries) <= tbl->max_size) { tbl->counter++; goto out; } goal = (atomic_read(&tbl->entries) - tbl->max_size)*4/3; if (goal > tbl->max_size/2) goal = tbl->max_size/2; for (i = 0, j = tbl->rover; i < IP_VS_LBLCR_TAB_SIZE; i++) { j = (j + 1) & IP_VS_LBLCR_TAB_MASK; spin_lock(&svc->sched_lock); hlist_for_each_entry_safe(en, next, &tbl->bucket[j], list) { if (time_before(now, en->lastuse+ENTRY_TIMEOUT)) continue; ip_vs_lblcr_free(en); atomic_dec(&tbl->entries); goal--; } spin_unlock(&svc->sched_lock); if (goal <= 0) break; } tbl->rover = j; out: mod_timer(&tbl->periodic_timer, jiffies+CHECK_EXPIRE_INTERVAL); } static int ip_vs_lblcr_init_svc(struct ip_vs_service *svc) { int i; struct ip_vs_lblcr_table *tbl; /* * Allocate the ip_vs_lblcr_table for this service */ tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); if (tbl == NULL) return -ENOMEM; svc->sched_data = tbl; IP_VS_DBG(6, "LBLCR hash table (memory=%zdbytes) allocated for " "current service\n", sizeof(*tbl)); /* * Initialize the hash buckets */ for (i = 0; i < IP_VS_LBLCR_TAB_SIZE; i++) { INIT_HLIST_HEAD(&tbl->bucket[i]); } tbl->max_size = IP_VS_LBLCR_TAB_SIZE*16; tbl->rover = 0; tbl->counter = 1; tbl->dead = false; tbl->svc = svc; atomic_set(&tbl->entries, 0); /* * Hook periodic timer for garbage collection */ timer_setup(&tbl->periodic_timer, ip_vs_lblcr_check_expire, 0); mod_timer(&tbl->periodic_timer, jiffies + CHECK_EXPIRE_INTERVAL); return 0; } static void ip_vs_lblcr_done_svc(struct ip_vs_service *svc) { struct ip_vs_lblcr_table *tbl = svc->sched_data; /* remove periodic timer */ del_timer_sync(&tbl->periodic_timer); /* got to clean up table entries here */ ip_vs_lblcr_flush(svc); /* release the table itself */ kfree_rcu(tbl, rcu_head); IP_VS_DBG(6, "LBLCR hash table (memory=%zdbytes) released\n", sizeof(*tbl)); } static inline struct ip_vs_dest * __ip_vs_lblcr_schedule(struct ip_vs_service *svc) { struct ip_vs_dest *dest, *least; int loh, doh; /* * We use the following formula to estimate the load: * (dest overhead) / dest->weight * * Remember -- no floats in kernel mode!!! * The comparison of h1*w2 > h2*w1 is equivalent to that of * h1/w1 > h2/w2 * if every weight is larger than zero. * * The server with weight=0 is quiesced and will not receive any * new connection. */ list_for_each_entry_rcu(dest, &svc->destinations, n_list) { if (dest->flags & IP_VS_DEST_F_OVERLOAD) continue; if (atomic_read(&dest->weight) > 0) { least = dest; loh = ip_vs_dest_conn_overhead(least); goto nextstage; } } return NULL; /* * Find the destination with the least load. */ nextstage: list_for_each_entry_continue_rcu(dest, &svc->destinations, n_list) { if (dest->flags & IP_VS_DEST_F_OVERLOAD) continue; doh = ip_vs_dest_conn_overhead(dest); if ((__s64)loh * atomic_read(&dest->weight) > (__s64)doh * atomic_read(&least->weight)) { least = dest; loh = doh; } } IP_VS_DBG_BUF(6, "LBLCR: server %s:%d " "activeconns %d refcnt %d weight %d overhead %d\n", IP_VS_DBG_ADDR(least->af, &least->addr), ntohs(least->port), atomic_read(&least->activeconns), refcount_read(&least->refcnt), atomic_read(&least->weight), loh); return least; } /* * If this destination server is overloaded and there is a less loaded * server, then return true. */ static inline int is_overloaded(struct ip_vs_dest *dest, struct ip_vs_service *svc) { if (atomic_read(&dest->activeconns) > atomic_read(&dest->weight)) { struct ip_vs_dest *d; list_for_each_entry_rcu(d, &svc->destinations, n_list) { if (atomic_read(&d->activeconns)*2 < atomic_read(&d->weight)) { return 1; } } } return 0; } /* * Locality-Based (weighted) Least-Connection scheduling */ static struct ip_vs_dest * ip_vs_lblcr_schedule(struct ip_vs_service *svc, const struct sk_buff *skb, struct ip_vs_iphdr *iph) { struct ip_vs_lblcr_table *tbl = svc->sched_data; struct ip_vs_dest *dest; struct ip_vs_lblcr_entry *en; IP_VS_DBG(6, "%s(): Scheduling...\n", __func__); /* First look in our cache */ en = ip_vs_lblcr_get(svc->af, tbl, &iph->daddr); if (en) { en->lastuse = jiffies; /* Get the least loaded destination */ dest = ip_vs_dest_set_min(&en->set); /* More than one destination + enough time passed by, cleanup */ if (atomic_read(&en->set.size) > 1 && time_after(jiffies, en->set.lastmod + sysctl_lblcr_expiration(svc))) { spin_lock_bh(&svc->sched_lock); if (atomic_read(&en->set.size) > 1) { struct ip_vs_dest *m; m = ip_vs_dest_set_max(&en->set); if (m) ip_vs_dest_set_erase(&en->set, m); } spin_unlock_bh(&svc->sched_lock); } /* If the destination is not overloaded, use it */ if (dest && !is_overloaded(dest, svc)) goto out; /* The cache entry is invalid, time to schedule */ dest = __ip_vs_lblcr_schedule(svc); if (!dest) { ip_vs_scheduler_err(svc, "no destination available"); return NULL; } /* Update our cache entry */ spin_lock_bh(&svc->sched_lock); if (!tbl->dead) ip_vs_dest_set_insert(&en->set, dest, true); spin_unlock_bh(&svc->sched_lock); goto out; } /* No cache entry, time to schedule */ dest = __ip_vs_lblcr_schedule(svc); if (!dest) { IP_VS_DBG(1, "no destination available\n"); return NULL; } /* If we fail to create a cache entry, we'll just use the valid dest */ spin_lock_bh(&svc->sched_lock); if (!tbl->dead) ip_vs_lblcr_new(tbl, &iph->daddr, svc->af, dest); spin_unlock_bh(&svc->sched_lock); out: IP_VS_DBG_BUF(6, "LBLCR: destination IP address %s --> server %s:%d\n", IP_VS_DBG_ADDR(svc->af, &iph->daddr), IP_VS_DBG_ADDR(dest->af, &dest->addr), ntohs(dest->port)); return dest; } /* * IPVS LBLCR Scheduler structure */ static struct ip_vs_scheduler ip_vs_lblcr_scheduler = { .name = "lblcr", .refcnt = ATOMIC_INIT(0), .module = THIS_MODULE, .n_list = LIST_HEAD_INIT(ip_vs_lblcr_scheduler.n_list), .init_service = ip_vs_lblcr_init_svc, .done_service = ip_vs_lblcr_done_svc, .schedule = ip_vs_lblcr_schedule, }; /* * per netns init. */ #ifdef CONFIG_SYSCTL static int __net_init __ip_vs_lblcr_init(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); if (!ipvs) return -ENOENT; if (!net_eq(net, &init_net)) { ipvs->lblcr_ctl_table = kmemdup(vs_vars_table, sizeof(vs_vars_table), GFP_KERNEL); if (ipvs->lblcr_ctl_table == NULL) return -ENOMEM; /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) ipvs->lblcr_ctl_table[0].procname = NULL; } else ipvs->lblcr_ctl_table = vs_vars_table; ipvs->sysctl_lblcr_expiration = DEFAULT_EXPIRATION; ipvs->lblcr_ctl_table[0].data = &ipvs->sysctl_lblcr_expiration; ipvs->lblcr_ctl_header = register_net_sysctl(net, "net/ipv4/vs", ipvs->lblcr_ctl_table); if (!ipvs->lblcr_ctl_header) { if (!net_eq(net, &init_net)) kfree(ipvs->lblcr_ctl_table); return -ENOMEM; } return 0; } static void __net_exit __ip_vs_lblcr_exit(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); unregister_net_sysctl_table(ipvs->lblcr_ctl_header); if (!net_eq(net, &init_net)) kfree(ipvs->lblcr_ctl_table); } #else static int __net_init __ip_vs_lblcr_init(struct net *net) { return 0; } static void __net_exit __ip_vs_lblcr_exit(struct net *net) { } #endif static struct pernet_operations ip_vs_lblcr_ops = { .init = __ip_vs_lblcr_init, .exit = __ip_vs_lblcr_exit, }; static int __init ip_vs_lblcr_init(void) { int ret; ret = register_pernet_subsys(&ip_vs_lblcr_ops); if (ret) return ret; ret = register_ip_vs_scheduler(&ip_vs_lblcr_scheduler); if (ret) unregister_pernet_subsys(&ip_vs_lblcr_ops); return ret; } static void __exit ip_vs_lblcr_cleanup(void) { unregister_ip_vs_scheduler(&ip_vs_lblcr_scheduler); unregister_pernet_subsys(&ip_vs_lblcr_ops); rcu_barrier(); } module_init(ip_vs_lblcr_init); module_exit(ip_vs_lblcr_cleanup); MODULE_LICENSE("GPL"); |
2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2004, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2014-2015, Qualcomm Atheros, Inc. * * Rewrite: Copyright (C) 2013 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/err.h> #include <linux/scatterlist.h> #include <crypto/aead.h> #include "aead_api.h" int aead_encrypt(struct crypto_aead *tfm, u8 *b_0, u8 *aad, size_t aad_len, u8 *data, size_t data_len, u8 *mic) { size_t mic_len = crypto_aead_authsize(tfm); struct scatterlist sg[3]; struct aead_request *aead_req; int reqsize = sizeof(*aead_req) + crypto_aead_reqsize(tfm); u8 *__aad; int ret; aead_req = kzalloc(reqsize + aad_len, GFP_ATOMIC); if (!aead_req) return -ENOMEM; __aad = (u8 *)aead_req + reqsize; memcpy(__aad, aad, aad_len); sg_init_table(sg, 3); sg_set_buf(&sg[0], __aad, aad_len); sg_set_buf(&sg[1], data, data_len); sg_set_buf(&sg[2], mic, mic_len); aead_request_set_tfm(aead_req, tfm); aead_request_set_crypt(aead_req, sg, sg, data_len, b_0); aead_request_set_ad(aead_req, sg[0].length); ret = crypto_aead_encrypt(aead_req); kfree_sensitive(aead_req); return ret; } int aead_decrypt(struct crypto_aead *tfm, u8 *b_0, u8 *aad, size_t aad_len, u8 *data, size_t data_len, u8 *mic) { size_t mic_len = crypto_aead_authsize(tfm); struct scatterlist sg[3]; struct aead_request *aead_req; int reqsize = sizeof(*aead_req) + crypto_aead_reqsize(tfm); u8 *__aad; int err; if (data_len == 0) return -EINVAL; aead_req = kzalloc(reqsize + aad_len, GFP_ATOMIC); if (!aead_req) return -ENOMEM; __aad = (u8 *)aead_req + reqsize; memcpy(__aad, aad, aad_len); sg_init_table(sg, 3); sg_set_buf(&sg[0], __aad, aad_len); sg_set_buf(&sg[1], data, data_len); sg_set_buf(&sg[2], mic, mic_len); aead_request_set_tfm(aead_req, tfm); aead_request_set_crypt(aead_req, sg, sg, data_len + mic_len, b_0); aead_request_set_ad(aead_req, sg[0].length); err = crypto_aead_decrypt(aead_req); kfree_sensitive(aead_req); return err; } struct crypto_aead * aead_key_setup_encrypt(const char *alg, const u8 key[], size_t key_len, size_t mic_len) { struct crypto_aead *tfm; int err; tfm = crypto_alloc_aead(alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return tfm; err = crypto_aead_setkey(tfm, key, key_len); if (err) goto free_aead; err = crypto_aead_setauthsize(tfm, mic_len); if (err) goto free_aead; return tfm; free_aead: crypto_free_aead(tfm); return ERR_PTR(err); } void aead_key_free(struct crypto_aead *tfm) { crypto_free_aead(tfm); } |
410 409 408 410 27 27 27 160 402 27 27 27 27 43 44 406 264 264 3179 67 3201 3144 3157 3143 3136 3146 3157 3146 27 27 406 407 406 1644 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { /* Local (CPU and cgroup) page state & events */ long state[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; /* Delta calculation for lockless upward propagation */ long state_prev[MEMCG_NR_STAT]; unsigned long events_prev[NR_VM_EVENT_ITEMS]; /* Cgroup1: threshold notifications & softlimit tree updates */ unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct memcg_vmstats { /* Aggregated (CPU and subtree) page state & events */ long state[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; /* Pending child counts during tree propagation */ long state_pending[MEMCG_NR_STAT]; unsigned long events_pending[NR_VM_EVENT_ITEMS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; /* * Bitmap and deferred work of shrinker::id corresponding to memcg-aware * shrinkers, which have elements charged to this memcg. */ struct shrinker_info { struct rcu_head rcu; atomic_long_t *nr_deferred; unsigned long *map; }; struct lruvec_stats_percpu { /* Local (CPU and cgroup) state */ long state[NR_VM_NODE_STAT_ITEMS]; /* Delta calculation for lockless upward propagation */ long state_prev[NR_VM_NODE_STAT_ITEMS]; }; struct lruvec_stats { /* Aggregated (CPU and subtree) state */ long state[NR_VM_NODE_STAT_ITEMS]; /* Pending child counts during tree propagation */ long state_pending[NR_VM_NODE_STAT_ITEMS]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; struct lruvec_stats lruvec_stats; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct shrinker_info __rcu *shrinker_info; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; /* protected by objcg_lock */ struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); /* memory.stat */ struct memcg_vmstats vmstats; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; /* * Hint of reclaim pressure for socket memroy management. Note * that this indicator should NOT be used in legacy cgroup mode * where socket memory is accounted/charged separately. */ unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; /* list of inherited objcgs, protected by objcg_lock */ struct list_head objcg_list; #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[]; }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; enum page_memcg_data_flags { /* page->memcg_data is a pointer to an objcgs vector */ MEMCG_DATA_OBJCGS = (1UL << 0), /* page has been accounted as a non-slab kernel page */ MEMCG_DATA_KMEM = (1UL << 1), /* the next bit after the last actual flag */ __NR_MEMCG_DATA_FLAGS = (1UL << 2), }; #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) static inline bool PageMemcgKmem(struct page *page); /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } /* * __page_memcg - get the memory cgroup associated with a non-kmem page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages or * kmem pages. */ static inline struct mem_cgroup *__page_memcg(struct page *page) { unsigned long memcg_data = page->memcg_data; VM_BUG_ON_PAGE(PageSlab(page), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * __page_objcg - get the object cgroup associated with a kmem page * @page: a pointer to the page struct * * Returns a pointer to the object cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper object cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages or * LRU pages. */ static inline struct obj_cgroup *__page_objcg(struct page *page) { unsigned long memcg_data = page->memcg_data; VM_BUG_ON_PAGE(PageSlab(page), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page); return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_memcg - get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages. * * For a non-kmem page any of the following ensures page and memcg binding * stability: * * - the page lock * - LRU isolation * - lock_page_memcg() * - exclusive reference * * For a kmem page a caller should hold an rcu read lock to protect memcg * associated with a kmem page from being released. */ static inline struct mem_cgroup *page_memcg(struct page *page) { if (PageMemcgKmem(page)) return obj_cgroup_memcg(__page_objcg(page)); else return __page_memcg(page); } /* * page_memcg_rcu - locklessly get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function assumes that the page is known to have a * proper memory cgroup pointer. It's not safe to call this function * against some type of pages, e.g. slab pages or ex-slab pages. */ static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); VM_BUG_ON_PAGE(PageSlab(page), page); WARN_ON_ONCE(!rcu_read_lock_held()); if (memcg_data & MEMCG_DATA_KMEM) { struct obj_cgroup *objcg; objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); return obj_cgroup_memcg(objcg); } return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_memcg_check - get the memory cgroup associated with a page * @page: a pointer to the page struct * * Returns a pointer to the memory cgroup associated with the page, * or NULL. This function unlike page_memcg() can take any page * as an argument. It has to be used in cases when it's not known if a page * has an associated memory cgroup pointer or an object cgroups vector or * an object cgroup. * * For a non-kmem page any of the following ensures page and memcg binding * stability: * * - the page lock * - LRU isolation * - lock_page_memcg() * - exclusive reference * * For a kmem page a caller should hold an rcu read lock to protect memcg * associated with a kmem page from being released. */ static inline struct mem_cgroup *page_memcg_check(struct page *page) { /* * Because page->memcg_data might be changed asynchronously * for slab pages, READ_ONCE() should be used here. */ unsigned long memcg_data = READ_ONCE(page->memcg_data); if (memcg_data & MEMCG_DATA_OBJCGS) return NULL; if (memcg_data & MEMCG_DATA_KMEM) { struct obj_cgroup *objcg; objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); return obj_cgroup_memcg(objcg); } return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } #ifdef CONFIG_MEMCG_KMEM /* * PageMemcgKmem - check if the page has MemcgKmem flag set * @page: a pointer to the page struct * * Checks if the page has MemcgKmem flag set. The caller must ensure that * the page has an associated memory cgroup. It's not safe to call this function * against some types of pages, e.g. slab pages. */ static inline bool PageMemcgKmem(struct page *page) { VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); return page->memcg_data & MEMCG_DATA_KMEM; } /* * page_objcgs - get the object cgroups vector associated with a page * @page: a pointer to the page struct * * Returns a pointer to the object cgroups vector associated with the page, * or NULL. This function assumes that the page is known to have an * associated object cgroups vector. It's not safe to call this function * against pages, which might have an associated memory cgroup: e.g. * kernel stack pages. */ static inline struct obj_cgroup **page_objcgs(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } /* * page_objcgs_check - get the object cgroups vector associated with a page * @page: a pointer to the page struct * * Returns a pointer to the object cgroups vector associated with the page, * or NULL. This function is safe to use if the page can be directly associated * with a memory cgroup. */ static inline struct obj_cgroup **page_objcgs_check(struct page *page) { unsigned long memcg_data = READ_ONCE(page->memcg_data); if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) return NULL; VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); } #else static inline bool PageMemcgKmem(struct page *page) { return false; } static inline struct obj_cgroup **page_objcgs(struct page *page) { return NULL; } static inline struct obj_cgroup **page_objcgs_check(struct page *page) { return NULL; } #endif static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { if (mem_cgroup_disabled()) return 0; return __mem_cgroup_charge(page, mm, gfp_mask); } int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, gfp_t gfp, swp_entry_t entry); void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); void __mem_cgroup_uncharge(struct page *page); static inline void mem_cgroup_uncharge(struct page *page) { if (mem_cgroup_disabled()) return; __mem_cgroup_uncharge(page); } void __mem_cgroup_uncharge_list(struct list_head *page_list); static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { if (mem_cgroup_disabled()) return; __mem_cgroup_uncharge_list(page_list); } void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * @pgdat: pglist_data * * Returns the lru list vector holding pages for a given @memcg & * @pgdat combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = memcg->nodeinfo[pgdat->node_id]; lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } /** * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page * @page: the page * * This function relies on page->mem_cgroup being stable. */ static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) { pg_data_t *pgdat = page_pgdat(page); struct mem_cgroup *memcg = page_memcg(page); VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); return mem_cgroup_lruvec(memcg, pgdat); } struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct lruvec *lock_page_lruvec(struct page *page); struct lruvec *lock_page_lruvec_irq(struct page *page); struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags); #ifdef CONFIG_DEBUG_VM void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); #else static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) { } #endif static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, unsigned long nr) { percpu_ref_get_many(&objcg->refcnt, nr); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif void lock_page_memcg(struct page *page); void unlock_page_memcg(struct page *page); void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = READ_ONCE(memcg->vmstats.state[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = READ_ONCE(pn->lruvec_stats.state[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void mem_cgroup_flush_stats(void); void mem_cgroup_flush_stats_delayed(void); void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_kmem_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { struct mem_cgroup *memcg = page_memcg(page); if (memcg) count_memcg_events(memcg, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 static inline struct mem_cgroup *page_memcg(struct page *page) { return NULL; } static inline struct mem_cgroup *page_memcg_rcu(struct page *page) { WARN_ON_ONCE(!rcu_read_lock_held()); return NULL; } static inline struct mem_cgroup *page_memcg_check(struct page *page) { return NULL; } static inline bool PageMemcgKmem(struct page *page) { return false; } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) { return 0; } static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) { } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) { pg_data_t *pgdat = page_pgdat(page); return &pgdat->__lruvec; } static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) { } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct lruvec *lock_page_lruvec(struct page *page) { struct pglist_data *pgdat = page_pgdat(page); spin_lock(&pgdat->__lruvec.lru_lock); return &pgdat->__lruvec; } static inline struct lruvec *lock_page_lruvec_irq(struct page *page) { struct pglist_data *pgdat = page_pgdat(page); spin_lock_irq(&pgdat->__lruvec.lru_lock); return &pgdat->__lruvec; } static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flagsp) { struct pglist_data *pgdat = page_pgdat(page); spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); return &pgdat->__lruvec; } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline void lock_page_memcg(struct page *page) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void mem_cgroup_flush_stats(void) { } static inline void mem_cgroup_flush_stats_delayed(void) { } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } #endif /* CONFIG_MEMCG */ static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) { __mod_lruvec_kmem_state(p, idx, 1); } static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) { __mod_lruvec_kmem_state(p, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } static inline void unlock_page_lruvec(struct lruvec *lruvec) { spin_unlock(&lruvec->lru_lock); } static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) { spin_unlock_irq(&lruvec->lru_lock); } static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, unsigned long flags) { spin_unlock_irqrestore(&lruvec->lru_lock, flags); } /* Test requires a stable page->memcg binding, see page_memcg() */ static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec) { return lruvec_pgdat(lruvec) == page_pgdat(page) && lruvec_memcg(lruvec) == page_memcg(page); } /* Don't lock again iff page's lruvec locked */ static inline struct lruvec *relock_page_lruvec_irq(struct page *page, struct lruvec *locked_lruvec) { if (locked_lruvec) { if (page_matches_lruvec(page, locked_lruvec)) return locked_lruvec; unlock_page_lruvec_irq(locked_lruvec); } return lock_page_lruvec_irq(page); } /* Don't lock again iff page's lruvec locked */ static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, struct lruvec *locked_lruvec, unsigned long *flags) { if (locked_lruvec) { if (page_matches_lruvec(page, locked_lruvec)) return locked_lruvec; unlock_page_lruvec_irqrestore(locked_lruvec, *flags); } return lock_page_lruvec_irqsave(page, flags); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page_memcg(page)->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, gfp_t gfp_mask); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) return !!memcg->tcpmem_pressure; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } int alloc_shrinker_info(struct mem_cgroup *memcg); void free_shrinker_info(struct mem_cgroup *memcg); void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); void reparent_shrinker_deferred(struct mem_cgroup *memcg); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM bool mem_cgroup_kmem_disabled(void); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } /* * A helper for accessing memcg's kmem_id, used for getting * corresponding LRU lists. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline bool mem_cgroup_kmem_disabled(void) { return true; } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */ |
306 305 306 304 305 331 331 331 109 1 45 45 45 45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Pseudo-driver for the loopback interface. * * Version: @(#)loopback.c 1.0.4b 08/16/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Donald Becker, <becker@scyld.com> * * Alan Cox : Fixed oddments for NET3.014 * Alan Cox : Rejig for NET3.029 snap #3 * Alan Cox : Fixed NET3.029 bugs and sped up * Larry McVoy : Tiny tweak to double performance * Alan Cox : Backed out LMV's tweak - the linux mm * can't take it... * Michael Griffith: Don't bother computing the checksums * on packets received on the loopback * interface. * Alexey Kuznetsov: Potential hang under some extreme * cases removed. */ #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/errno.h> #include <linux/fcntl.h> #include <linux/in.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <net/sock.h> #include <net/checksum.h> #include <linux/if_ether.h> /* For the statistics structure. */ #include <linux/if_arp.h> /* For ARPHRD_ETHER */ #include <linux/ip.h> #include <linux/tcp.h> #include <linux/percpu.h> #include <linux/net_tstamp.h> #include <net/net_namespace.h> #include <linux/u64_stats_sync.h> /* blackhole_netdev - a device used for dsts that are marked expired! * This is global device (instead of per-net-ns) since it's not needed * to be per-ns and gets initialized at boot time. */ struct net_device *blackhole_netdev; EXPORT_SYMBOL(blackhole_netdev); /* The higher levels take care of making this non-reentrant (it's * called with bh's disabled). */ static netdev_tx_t loopback_xmit(struct sk_buff *skb, struct net_device *dev) { int len; skb_tx_timestamp(skb); /* do not fool net_timestamp_check() with various clock bases */ skb->tstamp = 0; skb_orphan(skb); /* Before queueing this packet to netif_rx(), * make sure dst is refcounted. */ skb_dst_force(skb); skb->protocol = eth_type_trans(skb, dev); len = skb->len; if (likely(netif_rx(skb) == NET_RX_SUCCESS)) dev_lstats_add(dev, len); return NETDEV_TX_OK; } void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes) { int i; *packets = 0; *bytes = 0; for_each_possible_cpu(i) { const struct pcpu_lstats *lb_stats; u64 tbytes, tpackets; unsigned int start; lb_stats = per_cpu_ptr(dev->lstats, i); do { start = u64_stats_fetch_begin_irq(&lb_stats->syncp); tpackets = u64_stats_read(&lb_stats->packets); tbytes = u64_stats_read(&lb_stats->bytes); } while (u64_stats_fetch_retry_irq(&lb_stats->syncp, start)); *bytes += tbytes; *packets += tpackets; } } EXPORT_SYMBOL(dev_lstats_read); static void loopback_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { u64 packets, bytes; dev_lstats_read(dev, &packets, &bytes); stats->rx_packets = packets; stats->tx_packets = packets; stats->rx_bytes = bytes; stats->tx_bytes = bytes; } static u32 always_on(struct net_device *dev) { return 1; } static const struct ethtool_ops loopback_ethtool_ops = { .get_link = always_on, .get_ts_info = ethtool_op_get_ts_info, }; static int loopback_dev_init(struct net_device *dev) { dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); if (!dev->lstats) return -ENOMEM; return 0; } static void loopback_dev_free(struct net_device *dev) { dev_net(dev)->loopback_dev = NULL; free_percpu(dev->lstats); } static const struct net_device_ops loopback_ops = { .ndo_init = loopback_dev_init, .ndo_start_xmit = loopback_xmit, .ndo_get_stats64 = loopback_get_stats64, .ndo_set_mac_address = eth_mac_addr, }; static void gen_lo_setup(struct net_device *dev, unsigned int mtu, const struct ethtool_ops *eth_ops, const struct header_ops *hdr_ops, const struct net_device_ops *dev_ops, void (*dev_destructor)(struct net_device *dev)) { dev->mtu = mtu; dev->hard_header_len = ETH_HLEN; /* 14 */ dev->min_header_len = ETH_HLEN; /* 14 */ dev->addr_len = ETH_ALEN; /* 6 */ dev->type = ARPHRD_LOOPBACK; /* 0x0001*/ dev->flags = IFF_LOOPBACK; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE; netif_keep_dst(dev); dev->hw_features = NETIF_F_GSO_SOFTWARE; dev->features = NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_GSO_SOFTWARE | NETIF_F_HW_CSUM | NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | NETIF_F_LLTX | NETIF_F_NETNS_LOCAL | NETIF_F_VLAN_CHALLENGED | NETIF_F_LOOPBACK; dev->ethtool_ops = eth_ops; dev->header_ops = hdr_ops; dev->netdev_ops = dev_ops; dev->needs_free_netdev = true; dev->priv_destructor = dev_destructor; } /* The loopback device is special. There is only one instance * per network namespace. */ static void loopback_setup(struct net_device *dev) { gen_lo_setup(dev, (64 * 1024), &loopback_ethtool_ops, ð_header_ops, &loopback_ops, loopback_dev_free); } /* Setup and register the loopback device. */ static __net_init int loopback_net_init(struct net *net) { struct net_device *dev; int err; err = -ENOMEM; dev = alloc_netdev(0, "lo", NET_NAME_PREDICTABLE, loopback_setup); if (!dev) goto out; dev_net_set(dev, net); err = register_netdev(dev); if (err) goto out_free_netdev; BUG_ON(dev->ifindex != LOOPBACK_IFINDEX); net->loopback_dev = dev; return 0; out_free_netdev: free_netdev(dev); out: if (net_eq(net, &init_net)) panic("loopback: Failed to register netdevice: %d\n", err); return err; } /* Registered in net/core/dev.c */ struct pernet_operations __net_initdata loopback_net_ops = { .init = loopback_net_init, }; /* blackhole netdevice */ static netdev_tx_t blackhole_netdev_xmit(struct sk_buff *skb, struct net_device *dev) { kfree_skb(skb); net_warn_ratelimited("%s(): Dropping skb.\n", __func__); return NETDEV_TX_OK; } static const struct net_device_ops blackhole_netdev_ops = { .ndo_start_xmit = blackhole_netdev_xmit, }; /* This is a dst-dummy device used specifically for invalidated * DSTs and unlike loopback, this is not per-ns. */ static void blackhole_netdev_setup(struct net_device *dev) { gen_lo_setup(dev, ETH_MIN_MTU, NULL, NULL, &blackhole_netdev_ops, NULL); } /* Setup and register the blackhole_netdev. */ static int __init blackhole_netdev_init(void) { blackhole_netdev = alloc_netdev(0, "blackhole_dev", NET_NAME_UNKNOWN, blackhole_netdev_setup); if (!blackhole_netdev) return -ENOMEM; rtnl_lock(); dev_init_scheduler(blackhole_netdev); dev_activate(blackhole_netdev); rtnl_unlock(); blackhole_netdev->flags |= IFF_UP | IFF_RUNNING; dev_net_set(blackhole_netdev, &init_net); return 0; } device_initcall(blackhole_netdev_init); |
108 108 5 5 3 3 611 611 613 612 415 109 354 420 421 423 232 6 6 6 210 291 43 43 43 43 43 43 43 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | // SPDX-License-Identifier: GPL-2.0 #include <linux/types.h> #include <linux/netfilter.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/stddef.h> #include <linux/err.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_bridge.h> #include <net/netfilter/nf_log.h> #include <linux/ip.h> #include <linux/icmp.h> #include <linux/sysctl.h> #include <net/route.h> #include <net/ip.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <net/netfilter/ipv4/nf_conntrack_ipv4.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> #include <net/netfilter/nf_nat_helper.h> #include <net/netfilter/ipv4/nf_defrag_ipv4.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> #include <linux/ipv6.h> #include <linux/in6.h> #include <net/ipv6.h> #include <net/inet_frag.h> static DEFINE_MUTEX(nf_ct_proto_mutex); #ifdef CONFIG_SYSCTL __printf(4, 5) void nf_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_hook_state *state, u8 protonum, const char *fmt, ...) { struct net *net = state->net; struct va_format vaf; va_list args; if (net->ct.sysctl_log_invalid != protonum && net->ct.sysctl_log_invalid != IPPROTO_RAW) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; nf_log_packet(net, state->pf, 0, skb, state->in, state->out, NULL, "nf_ct_proto_%d: %pV ", protonum, &vaf); va_end(args); } EXPORT_SYMBOL_GPL(nf_l4proto_log_invalid); __printf(4, 5) void nf_ct_l4proto_log_invalid(const struct sk_buff *skb, const struct nf_conn *ct, const struct nf_hook_state *state, const char *fmt, ...) { struct va_format vaf; struct net *net; va_list args; net = nf_ct_net(ct); if (likely(net->ct.sysctl_log_invalid == 0)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; nf_l4proto_log_invalid(skb, state, nf_ct_protonum(ct), "%pV", &vaf); va_end(args); } EXPORT_SYMBOL_GPL(nf_ct_l4proto_log_invalid); #endif const struct nf_conntrack_l4proto *nf_ct_l4proto_find(u8 l4proto) { switch (l4proto) { case IPPROTO_UDP: return &nf_conntrack_l4proto_udp; case IPPROTO_TCP: return &nf_conntrack_l4proto_tcp; case IPPROTO_ICMP: return &nf_conntrack_l4proto_icmp; #ifdef CONFIG_NF_CT_PROTO_DCCP case IPPROTO_DCCP: return &nf_conntrack_l4proto_dccp; #endif #ifdef CONFIG_NF_CT_PROTO_SCTP case IPPROTO_SCTP: return &nf_conntrack_l4proto_sctp; #endif #ifdef CONFIG_NF_CT_PROTO_UDPLITE case IPPROTO_UDPLITE: return &nf_conntrack_l4proto_udplite; #endif #ifdef CONFIG_NF_CT_PROTO_GRE case IPPROTO_GRE: return &nf_conntrack_l4proto_gre; #endif #if IS_ENABLED(CONFIG_IPV6) case IPPROTO_ICMPV6: return &nf_conntrack_l4proto_icmpv6; #endif /* CONFIG_IPV6 */ } return &nf_conntrack_l4proto_generic; }; EXPORT_SYMBOL_GPL(nf_ct_l4proto_find); unsigned int nf_confirm(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { const struct nf_conn_help *help; help = nfct_help(ct); if (help) { const struct nf_conntrack_helper *helper; int ret; /* rcu_read_lock()ed by nf_hook_thresh */ helper = rcu_dereference(help->helper); if (helper) { ret = helper->help(skb, protoff, ct, ctinfo); if (ret != NF_ACCEPT) return ret; } } if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && !nf_is_loopback_packet(skb)) { if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) { NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop); return NF_DROP; } } /* We've seen it coming out the other side: confirm it */ return nf_conntrack_confirm(skb); } EXPORT_SYMBOL_GPL(nf_confirm); static unsigned int ipv4_confirm(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; ct = nf_ct_get(skb, &ctinfo); if (!ct || ctinfo == IP_CT_RELATED_REPLY) return nf_conntrack_confirm(skb); return nf_confirm(skb, skb_network_offset(skb) + ip_hdrlen(skb), ct, ctinfo); } static unsigned int ipv4_conntrack_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return nf_conntrack_in(skb, state); } static unsigned int ipv4_conntrack_local(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { if (ip_is_fragment(ip_hdr(skb))) { /* IP_NODEFRAG setsockopt set */ enum ip_conntrack_info ctinfo; struct nf_conn *tmpl; tmpl = nf_ct_get(skb, &ctinfo); if (tmpl && nf_ct_is_template(tmpl)) { /* when skipping ct, clear templates to avoid fooling * later targets/matches */ skb->_nfct = 0; nf_ct_put(tmpl); } return NF_ACCEPT; } return nf_conntrack_in(skb, state); } /* Connection tracking may drop packets, but never alters them, so * make it the first hook. */ static const struct nf_hook_ops ipv4_conntrack_ops[] = { { .hook = ipv4_conntrack_in, .pf = NFPROTO_IPV4, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP_PRI_CONNTRACK, }, { .hook = ipv4_conntrack_local, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_CONNTRACK, }, { .hook = ipv4_confirm, .pf = NFPROTO_IPV4, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP_PRI_CONNTRACK_CONFIRM, }, { .hook = ipv4_confirm, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP_PRI_CONNTRACK_CONFIRM, }, }; /* Fast function for those who don't want to parse /proc (and I don't * blame them). * Reversing the socket's dst/src point of view gives us the reply * mapping. */ static int getorigdst(struct sock *sk, int optval, void __user *user, int *len) { const struct inet_sock *inet = inet_sk(sk); const struct nf_conntrack_tuple_hash *h; struct nf_conntrack_tuple tuple; memset(&tuple, 0, sizeof(tuple)); lock_sock(sk); tuple.src.u3.ip = inet->inet_rcv_saddr; tuple.src.u.tcp.port = inet->inet_sport; tuple.dst.u3.ip = inet->inet_daddr; tuple.dst.u.tcp.port = inet->inet_dport; tuple.src.l3num = PF_INET; tuple.dst.protonum = sk->sk_protocol; release_sock(sk); /* We only do TCP and SCTP at the moment: is there a better way? */ if (tuple.dst.protonum != IPPROTO_TCP && tuple.dst.protonum != IPPROTO_SCTP) { pr_debug("SO_ORIGINAL_DST: Not a TCP/SCTP socket\n"); return -ENOPROTOOPT; } if ((unsigned int)*len < sizeof(struct sockaddr_in)) { pr_debug("SO_ORIGINAL_DST: len %d not %zu\n", *len, sizeof(struct sockaddr_in)); return -EINVAL; } h = nf_conntrack_find_get(sock_net(sk), &nf_ct_zone_dflt, &tuple); if (h) { struct sockaddr_in sin; struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); sin.sin_family = AF_INET; sin.sin_port = ct->tuplehash[IP_CT_DIR_ORIGINAL] .tuple.dst.u.tcp.port; sin.sin_addr.s_addr = ct->tuplehash[IP_CT_DIR_ORIGINAL] .tuple.dst.u3.ip; memset(sin.sin_zero, 0, sizeof(sin.sin_zero)); pr_debug("SO_ORIGINAL_DST: %pI4 %u\n", &sin.sin_addr.s_addr, ntohs(sin.sin_port)); nf_ct_put(ct); if (copy_to_user(user, &sin, sizeof(sin)) != 0) return -EFAULT; else return 0; } pr_debug("SO_ORIGINAL_DST: Can't find %pI4/%u-%pI4/%u.\n", &tuple.src.u3.ip, ntohs(tuple.src.u.tcp.port), &tuple.dst.u3.ip, ntohs(tuple.dst.u.tcp.port)); return -ENOENT; } static struct nf_sockopt_ops so_getorigdst = { .pf = PF_INET, .get_optmin = SO_ORIGINAL_DST, .get_optmax = SO_ORIGINAL_DST + 1, .get = getorigdst, .owner = THIS_MODULE, }; #if IS_ENABLED(CONFIG_IPV6) static int ipv6_getorigdst(struct sock *sk, int optval, void __user *user, int *len) { struct nf_conntrack_tuple tuple = { .src.l3num = NFPROTO_IPV6 }; const struct ipv6_pinfo *inet6 = inet6_sk(sk); const struct inet_sock *inet = inet_sk(sk); const struct nf_conntrack_tuple_hash *h; struct sockaddr_in6 sin6; struct nf_conn *ct; __be32 flow_label; int bound_dev_if; lock_sock(sk); tuple.src.u3.in6 = sk->sk_v6_rcv_saddr; tuple.src.u.tcp.port = inet->inet_sport; tuple.dst.u3.in6 = sk->sk_v6_daddr; tuple.dst.u.tcp.port = inet->inet_dport; tuple.dst.protonum = sk->sk_protocol; bound_dev_if = sk->sk_bound_dev_if; flow_label = inet6->flow_label; release_sock(sk); if (tuple.dst.protonum != IPPROTO_TCP && tuple.dst.protonum != IPPROTO_SCTP) return -ENOPROTOOPT; if (*len < 0 || (unsigned int)*len < sizeof(sin6)) return -EINVAL; h = nf_conntrack_find_get(sock_net(sk), &nf_ct_zone_dflt, &tuple); if (!h) { pr_debug("IP6T_SO_ORIGINAL_DST: Can't find %pI6c/%u-%pI6c/%u.\n", &tuple.src.u3.ip6, ntohs(tuple.src.u.tcp.port), &tuple.dst.u3.ip6, ntohs(tuple.dst.u.tcp.port)); return -ENOENT; } ct = nf_ct_tuplehash_to_ctrack(h); sin6.sin6_family = AF_INET6; sin6.sin6_port = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.tcp.port; sin6.sin6_flowinfo = flow_label & IPV6_FLOWINFO_MASK; memcpy(&sin6.sin6_addr, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.in6, sizeof(sin6.sin6_addr)); nf_ct_put(ct); sin6.sin6_scope_id = ipv6_iface_scope_id(&sin6.sin6_addr, bound_dev_if); return copy_to_user(user, &sin6, sizeof(sin6)) ? -EFAULT : 0; } static struct nf_sockopt_ops so_getorigdst6 = { .pf = NFPROTO_IPV6, .get_optmin = IP6T_SO_ORIGINAL_DST, .get_optmax = IP6T_SO_ORIGINAL_DST + 1, .get = ipv6_getorigdst, .owner = THIS_MODULE, }; static unsigned int ipv6_confirm(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_conn *ct; enum ip_conntrack_info ctinfo; unsigned char pnum = ipv6_hdr(skb)->nexthdr; __be16 frag_off; int protoff; ct = nf_ct_get(skb, &ctinfo); if (!ct || ctinfo == IP_CT_RELATED_REPLY) return nf_conntrack_confirm(skb); protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum, &frag_off); if (protoff < 0 || (frag_off & htons(~0x7)) != 0) { pr_debug("proto header not found\n"); return nf_conntrack_confirm(skb); } return nf_confirm(skb, protoff, ct, ctinfo); } static unsigned int ipv6_conntrack_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return nf_conntrack_in(skb, state); } static unsigned int ipv6_conntrack_local(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return nf_conntrack_in(skb, state); } static const struct nf_hook_ops ipv6_conntrack_ops[] = { { .hook = ipv6_conntrack_in, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_CONNTRACK, }, { .hook = ipv6_conntrack_local, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_CONNTRACK, }, { .hook = ipv6_confirm, .pf = NFPROTO_IPV6, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP6_PRI_LAST, }, { .hook = ipv6_confirm, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_LAST - 1, }, }; #endif static int nf_ct_tcp_fixup(struct nf_conn *ct, void *_nfproto) { u8 nfproto = (unsigned long)_nfproto; if (nf_ct_l3num(ct) != nfproto) return 0; if (nf_ct_protonum(ct) == IPPROTO_TCP && ct->proto.tcp.state == TCP_CONNTRACK_ESTABLISHED) { ct->proto.tcp.seen[0].td_maxwin = 0; ct->proto.tcp.seen[1].td_maxwin = 0; } return 0; } static struct nf_ct_bridge_info *nf_ct_bridge_info; static int nf_ct_netns_do_get(struct net *net, u8 nfproto) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); bool fixup_needed = false, retry = true; int err = 0; retry: mutex_lock(&nf_ct_proto_mutex); switch (nfproto) { case NFPROTO_IPV4: cnet->users4++; if (cnet->users4 > 1) goto out_unlock; err = nf_defrag_ipv4_enable(net); if (err) { cnet->users4 = 0; goto out_unlock; } err = nf_register_net_hooks(net, ipv4_conntrack_ops, ARRAY_SIZE(ipv4_conntrack_ops)); if (err) cnet->users4 = 0; else fixup_needed = true; break; #if IS_ENABLED(CONFIG_IPV6) case NFPROTO_IPV6: cnet->users6++; if (cnet->users6 > 1) goto out_unlock; err = nf_defrag_ipv6_enable(net); if (err < 0) { cnet->users6 = 0; goto out_unlock; } err = nf_register_net_hooks(net, ipv6_conntrack_ops, ARRAY_SIZE(ipv6_conntrack_ops)); if (err) cnet->users6 = 0; else fixup_needed = true; break; #endif case NFPROTO_BRIDGE: if (!nf_ct_bridge_info) { if (!retry) { err = -EPROTO; goto out_unlock; } mutex_unlock(&nf_ct_proto_mutex); request_module("nf_conntrack_bridge"); retry = false; goto retry; } if (!try_module_get(nf_ct_bridge_info->me)) { err = -EPROTO; goto out_unlock; } cnet->users_bridge++; if (cnet->users_bridge > 1) goto out_unlock; err = nf_register_net_hooks(net, nf_ct_bridge_info->ops, nf_ct_bridge_info->ops_size); if (err) cnet->users_bridge = 0; else fixup_needed = true; break; default: err = -EPROTO; break; } out_unlock: mutex_unlock(&nf_ct_proto_mutex); if (fixup_needed) nf_ct_iterate_cleanup_net(net, nf_ct_tcp_fixup, (void *)(unsigned long)nfproto, 0, 0); return err; } static void nf_ct_netns_do_put(struct net *net, u8 nfproto) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); mutex_lock(&nf_ct_proto_mutex); switch (nfproto) { case NFPROTO_IPV4: if (cnet->users4 && (--cnet->users4 == 0)) { nf_unregister_net_hooks(net, ipv4_conntrack_ops, ARRAY_SIZE(ipv4_conntrack_ops)); nf_defrag_ipv4_disable(net); } break; #if IS_ENABLED(CONFIG_IPV6) case NFPROTO_IPV6: if (cnet->users6 && (--cnet->users6 == 0)) { nf_unregister_net_hooks(net, ipv6_conntrack_ops, ARRAY_SIZE(ipv6_conntrack_ops)); nf_defrag_ipv6_disable(net); } break; #endif case NFPROTO_BRIDGE: if (!nf_ct_bridge_info) break; if (cnet->users_bridge && (--cnet->users_bridge == 0)) nf_unregister_net_hooks(net, nf_ct_bridge_info->ops, nf_ct_bridge_info->ops_size); module_put(nf_ct_bridge_info->me); break; } mutex_unlock(&nf_ct_proto_mutex); } static int nf_ct_netns_inet_get(struct net *net) { int err; err = nf_ct_netns_do_get(net, NFPROTO_IPV4); #if IS_ENABLED(CONFIG_IPV6) if (err < 0) goto err1; err = nf_ct_netns_do_get(net, NFPROTO_IPV6); if (err < 0) goto err2; return err; err2: nf_ct_netns_put(net, NFPROTO_IPV4); err1: #endif return err; } int nf_ct_netns_get(struct net *net, u8 nfproto) { int err; switch (nfproto) { case NFPROTO_INET: err = nf_ct_netns_inet_get(net); break; case NFPROTO_BRIDGE: err = nf_ct_netns_do_get(net, NFPROTO_BRIDGE); if (err < 0) return err; err = nf_ct_netns_inet_get(net); if (err < 0) { nf_ct_netns_put(net, NFPROTO_BRIDGE); return err; } break; default: err = nf_ct_netns_do_get(net, nfproto); break; } return err; } EXPORT_SYMBOL_GPL(nf_ct_netns_get); void nf_ct_netns_put(struct net *net, uint8_t nfproto) { switch (nfproto) { case NFPROTO_BRIDGE: nf_ct_netns_do_put(net, NFPROTO_BRIDGE); fallthrough; case NFPROTO_INET: nf_ct_netns_do_put(net, NFPROTO_IPV4); nf_ct_netns_do_put(net, NFPROTO_IPV6); break; default: nf_ct_netns_do_put(net, nfproto); break; } } EXPORT_SYMBOL_GPL(nf_ct_netns_put); void nf_ct_bridge_register(struct nf_ct_bridge_info *info) { WARN_ON(nf_ct_bridge_info); mutex_lock(&nf_ct_proto_mutex); nf_ct_bridge_info = info; mutex_unlock(&nf_ct_proto_mutex); } EXPORT_SYMBOL_GPL(nf_ct_bridge_register); void nf_ct_bridge_unregister(struct nf_ct_bridge_info *info) { WARN_ON(!nf_ct_bridge_info); mutex_lock(&nf_ct_proto_mutex); nf_ct_bridge_info = NULL; mutex_unlock(&nf_ct_proto_mutex); } EXPORT_SYMBOL_GPL(nf_ct_bridge_unregister); int nf_conntrack_proto_init(void) { int ret; ret = nf_register_sockopt(&so_getorigdst); if (ret < 0) return ret; #if IS_ENABLED(CONFIG_IPV6) ret = nf_register_sockopt(&so_getorigdst6); if (ret < 0) goto cleanup_sockopt; #endif return ret; #if IS_ENABLED(CONFIG_IPV6) cleanup_sockopt: nf_unregister_sockopt(&so_getorigdst); #endif return ret; } void nf_conntrack_proto_fini(void) { nf_unregister_sockopt(&so_getorigdst); #if IS_ENABLED(CONFIG_IPV6) nf_unregister_sockopt(&so_getorigdst6); #endif } void nf_conntrack_proto_pernet_init(struct net *net) { nf_conntrack_generic_init_net(net); nf_conntrack_udp_init_net(net); nf_conntrack_tcp_init_net(net); nf_conntrack_icmp_init_net(net); #if IS_ENABLED(CONFIG_IPV6) nf_conntrack_icmpv6_init_net(net); #endif #ifdef CONFIG_NF_CT_PROTO_DCCP nf_conntrack_dccp_init_net(net); #endif #ifdef CONFIG_NF_CT_PROTO_SCTP nf_conntrack_sctp_init_net(net); #endif #ifdef CONFIG_NF_CT_PROTO_GRE nf_conntrack_gre_init_net(net); #endif } module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint, &nf_conntrack_htable_size, 0600); MODULE_ALIAS("ip_conntrack"); MODULE_ALIAS("nf_conntrack-" __stringify(AF_INET)); MODULE_ALIAS("nf_conntrack-" __stringify(AF_INET6)); MODULE_LICENSE("GPL"); |
2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2008 by Karsten Keil <kkeil@novell.com> */ #include <linux/slab.h> #include <linux/types.h> #include <linux/stddef.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/mISDNif.h> #include "core.h" static u_int debug; MODULE_AUTHOR("Karsten Keil"); MODULE_LICENSE("GPL"); module_param(debug, uint, S_IRUGO | S_IWUSR); static u64 device_ids; #define MAX_DEVICE_ID 63 static LIST_HEAD(Bprotocols); static DEFINE_RWLOCK(bp_lock); static void mISDN_dev_release(struct device *dev) { /* nothing to do: the device is part of its parent's data structure */ } static ssize_t id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return -ENODEV; return sprintf(buf, "%d\n", mdev->id); } static DEVICE_ATTR_RO(id); static ssize_t nrbchan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return -ENODEV; return sprintf(buf, "%d\n", mdev->nrbchan); } static DEVICE_ATTR_RO(nrbchan); static ssize_t d_protocols_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return -ENODEV; return sprintf(buf, "%d\n", mdev->Dprotocols); } static DEVICE_ATTR_RO(d_protocols); static ssize_t b_protocols_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return -ENODEV; return sprintf(buf, "%d\n", mdev->Bprotocols | get_all_Bprotocols()); } static DEVICE_ATTR_RO(b_protocols); static ssize_t protocol_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return -ENODEV; return sprintf(buf, "%d\n", mdev->D.protocol); } static DEVICE_ATTR_RO(protocol); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { strcpy(buf, dev_name(dev)); return strlen(buf); } static DEVICE_ATTR_RO(name); #if 0 /* hangs */ static ssize_t name_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int err = 0; char *out = kmalloc(count + 1, GFP_KERNEL); if (!out) return -ENOMEM; memcpy(out, buf, count); if (count && out[count - 1] == '\n') out[--count] = 0; if (count) err = device_rename(dev, out); kfree(out); return (err < 0) ? err : count; } static DEVICE_ATTR_RW(name); #endif static ssize_t channelmap_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mISDNdevice *mdev = dev_to_mISDN(dev); char *bp = buf; int i; for (i = 0; i <= mdev->nrbchan; i++) *bp++ = test_channelmap(i, mdev->channelmap) ? '1' : '0'; return bp - buf; } static DEVICE_ATTR_RO(channelmap); static struct attribute *mISDN_attrs[] = { &dev_attr_id.attr, &dev_attr_d_protocols.attr, &dev_attr_b_protocols.attr, &dev_attr_protocol.attr, &dev_attr_channelmap.attr, &dev_attr_nrbchan.attr, &dev_attr_name.attr, NULL, }; ATTRIBUTE_GROUPS(mISDN); static int mISDN_uevent(struct device *dev, struct kobj_uevent_env *env) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return 0; if (add_uevent_var(env, "nchans=%d", mdev->nrbchan)) return -ENOMEM; return 0; } static void mISDN_class_release(struct class *cls) { /* do nothing, it's static */ } static struct class mISDN_class = { .name = "mISDN", .owner = THIS_MODULE, .dev_uevent = mISDN_uevent, .dev_groups = mISDN_groups, .dev_release = mISDN_dev_release, .class_release = mISDN_class_release, }; static int _get_mdevice(struct device *dev, const void *id) { struct mISDNdevice *mdev = dev_to_mISDN(dev); if (!mdev) return 0; if (mdev->id != *(const u_int *)id) return 0; return 1; } struct mISDNdevice *get_mdevice(u_int id) { return dev_to_mISDN(class_find_device(&mISDN_class, NULL, &id, _get_mdevice)); } static int _get_mdevice_count(struct device *dev, void *cnt) { *(int *)cnt += 1; return 0; } int get_mdevice_count(void) { int cnt = 0; class_for_each_device(&mISDN_class, NULL, &cnt, _get_mdevice_count); return cnt; } static int get_free_devid(void) { u_int i; for (i = 0; i <= MAX_DEVICE_ID; i++) if (!test_and_set_bit(i, (u_long *)&device_ids)) break; if (i > MAX_DEVICE_ID) return -EBUSY; return i; } int mISDN_register_device(struct mISDNdevice *dev, struct device *parent, char *name) { int err; err = get_free_devid(); if (err < 0) return err; dev->id = err; device_initialize(&dev->dev); if (name && name[0]) dev_set_name(&dev->dev, "%s", name); else dev_set_name(&dev->dev, "mISDN%d", dev->id); if (debug & DEBUG_CORE) printk(KERN_DEBUG "mISDN_register %s %d\n", dev_name(&dev->dev), dev->id); dev->dev.class = &mISDN_class; err = create_stack(dev); if (err) goto error1; dev->dev.platform_data = dev; dev->dev.parent = parent; dev_set_drvdata(&dev->dev, dev); err = device_add(&dev->dev); if (err) goto error3; return 0; error3: delete_stack(dev); error1: put_device(&dev->dev); return err; } EXPORT_SYMBOL(mISDN_register_device); void mISDN_unregister_device(struct mISDNdevice *dev) { if (debug & DEBUG_CORE) printk(KERN_DEBUG "mISDN_unregister %s %d\n", dev_name(&dev->dev), dev->id); /* sysfs_remove_link(&dev->dev.kobj, "device"); */ device_del(&dev->dev); dev_set_drvdata(&dev->dev, NULL); test_and_clear_bit(dev->id, (u_long *)&device_ids); delete_stack(dev); put_device(&dev->dev); } EXPORT_SYMBOL(mISDN_unregister_device); u_int get_all_Bprotocols(void) { struct Bprotocol *bp; u_int m = 0; read_lock(&bp_lock); list_for_each_entry(bp, &Bprotocols, list) m |= bp->Bprotocols; read_unlock(&bp_lock); return m; } struct Bprotocol * get_Bprotocol4mask(u_int m) { struct Bprotocol *bp; read_lock(&bp_lock); list_for_each_entry(bp, &Bprotocols, list) if (bp->Bprotocols & m) { read_unlock(&bp_lock); return bp; } read_unlock(&bp_lock); return NULL; } struct Bprotocol * get_Bprotocol4id(u_int id) { u_int m; if (id < ISDN_P_B_START || id > 63) { printk(KERN_WARNING "%s id not in range %d\n", __func__, id); return NULL; } m = 1 << (id & ISDN_P_B_MASK); return get_Bprotocol4mask(m); } int mISDN_register_Bprotocol(struct Bprotocol *bp) { u_long flags; struct Bprotocol *old; if (debug & DEBUG_CORE) printk(KERN_DEBUG "%s: %s/%x\n", __func__, bp->name, bp->Bprotocols); old = get_Bprotocol4mask(bp->Bprotocols); if (old) { printk(KERN_WARNING "register duplicate protocol old %s/%x new %s/%x\n", old->name, old->Bprotocols, bp->name, bp->Bprotocols); return -EBUSY; } write_lock_irqsave(&bp_lock, flags); list_add_tail(&bp->list, &Bprotocols); write_unlock_irqrestore(&bp_lock, flags); return 0; } EXPORT_SYMBOL(mISDN_register_Bprotocol); void mISDN_unregister_Bprotocol(struct Bprotocol *bp) { u_long flags; if (debug & DEBUG_CORE) printk(KERN_DEBUG "%s: %s/%x\n", __func__, bp->name, bp->Bprotocols); write_lock_irqsave(&bp_lock, flags); list_del(&bp->list); write_unlock_irqrestore(&bp_lock, flags); } EXPORT_SYMBOL(mISDN_unregister_Bprotocol); static const char *msg_no_channel = "<no channel>"; static const char *msg_no_stack = "<no stack>"; static const char *msg_no_stackdev = "<no stack device>"; const char *mISDNDevName4ch(struct mISDNchannel *ch) { if (!ch) return msg_no_channel; if (!ch->st) return msg_no_stack; if (!ch->st->dev) return msg_no_stackdev; return dev_name(&ch->st->dev->dev); }; EXPORT_SYMBOL(mISDNDevName4ch); static int mISDNInit(void) { int err; printk(KERN_INFO "Modular ISDN core version %d.%d.%d\n", MISDN_MAJOR_VERSION, MISDN_MINOR_VERSION, MISDN_RELEASE); mISDN_init_clock(&debug); mISDN_initstack(&debug); err = class_register(&mISDN_class); if (err) goto error1; err = mISDN_inittimer(&debug); if (err) goto error2; err = Isdnl1_Init(&debug); if (err) goto error3; err = Isdnl2_Init(&debug); if (err) goto error4; err = misdn_sock_init(&debug); if (err) goto error5; return 0; error5: Isdnl2_cleanup(); error4: Isdnl1_cleanup(); error3: mISDN_timer_cleanup(); error2: class_unregister(&mISDN_class); error1: return err; } static void mISDN_cleanup(void) { misdn_sock_cleanup(); Isdnl2_cleanup(); Isdnl1_cleanup(); mISDN_timer_cleanup(); class_unregister(&mISDN_class); printk(KERN_DEBUG "mISDNcore unloaded\n"); } module_init(mISDNInit); module_exit(mISDN_cleanup); |
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (C) B.A.T.M.A.N. contributors: * * Simon Wunderlich */ #ifndef _NET_BATMAN_ADV_BLA_H_ #define _NET_BATMAN_ADV_BLA_H_ #include "main.h" #include <linux/compiler.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/skbuff.h> #include <linux/stddef.h> #include <linux/types.h> /** * batadv_bla_is_loopdetect_mac() - check if the mac address is from a loop * detect frame sent by bridge loop avoidance * @mac: mac address to check * * Return: true if the it looks like a loop detect frame * (mac starts with BA:BE), false otherwise */ static inline bool batadv_bla_is_loopdetect_mac(const uint8_t *mac) { if (mac[0] == 0xba && mac[1] == 0xbe) return true; return false; } #ifdef CONFIG_BATMAN_ADV_BLA bool batadv_bla_rx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int packet_type); bool batadv_bla_tx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid); bool batadv_bla_is_backbone_gw(struct sk_buff *skb, struct batadv_orig_node *orig_node, int hdr_size); int batadv_bla_claim_dump(struct sk_buff *msg, struct netlink_callback *cb); int batadv_bla_backbone_dump(struct sk_buff *msg, struct netlink_callback *cb); bool batadv_bla_is_backbone_gw_orig(struct batadv_priv *bat_priv, u8 *orig, unsigned short vid); bool batadv_bla_check_bcast_duplist(struct batadv_priv *bat_priv, struct sk_buff *skb); void batadv_bla_update_orig_address(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, struct batadv_hard_iface *oldif); void batadv_bla_status_update(struct net_device *net_dev); int batadv_bla_init(struct batadv_priv *bat_priv); void batadv_bla_free(struct batadv_priv *bat_priv); #ifdef CONFIG_BATMAN_ADV_DAT bool batadv_bla_check_claim(struct batadv_priv *bat_priv, u8 *addr, unsigned short vid); #endif #define BATADV_BLA_CRC_INIT 0 #else /* ifdef CONFIG_BATMAN_ADV_BLA */ static inline bool batadv_bla_rx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int packet_type) { return false; } static inline bool batadv_bla_tx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { return false; } static inline bool batadv_bla_is_backbone_gw(struct sk_buff *skb, struct batadv_orig_node *orig_node, int hdr_size) { return false; } static inline bool batadv_bla_is_backbone_gw_orig(struct batadv_priv *bat_priv, u8 *orig, unsigned short vid) { return false; } static inline bool batadv_bla_check_bcast_duplist(struct batadv_priv *bat_priv, struct sk_buff *skb) { return false; } static inline void batadv_bla_update_orig_address(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, struct batadv_hard_iface *oldif) { } static inline int batadv_bla_init(struct batadv_priv *bat_priv) { return 1; } static inline void batadv_bla_free(struct batadv_priv *bat_priv) { } static inline int batadv_bla_claim_dump(struct sk_buff *msg, struct netlink_callback *cb) { return -EOPNOTSUPP; } static inline int batadv_bla_backbone_dump(struct sk_buff *msg, struct netlink_callback *cb) { return -EOPNOTSUPP; } static inline bool batadv_bla_check_claim(struct batadv_priv *bat_priv, u8 *addr, unsigned short vid) { return true; } #endif /* ifdef CONFIG_BATMAN_ADV_BLA */ #endif /* ifndef _NET_BATMAN_ADV_BLA_H_ */ |
1568 1568 1553 52 1555 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 | #include <linux/gfp.h> #include <linux/initrd.h> #include <linux/ioport.h> #include <linux/swap.h> #include <linux/memblock.h> #include <linux/swapfile.h> #include <linux/swapops.h> #include <linux/kmemleak.h> #include <linux/sched/task.h> #include <asm/set_memory.h> #include <asm/cpu_device_id.h> #include <asm/e820/api.h> #include <asm/init.h> #include <asm/page.h> #include <asm/page_types.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/tlbflush.h> #include <asm/tlb.h> #include <asm/proto.h> #include <asm/dma.h> /* for MAX_DMA_PFN */ #include <asm/microcode.h> #include <asm/kaslr.h> #include <asm/hypervisor.h> #include <asm/cpufeature.h> #include <asm/pti.h> #include <asm/text-patching.h> #include <asm/memtype.h> #include <asm/paravirt.h> /* * We need to define the tracepoints somewhere, and tlb.c * is only compiled when SMP=y. */ #define CREATE_TRACE_POINTS #include <trace/events/tlb.h> #include "mm_internal.h" /* * Tables translating between page_cache_type_t and pte encoding. * * The default values are defined statically as minimal supported mode; * WC and WT fall back to UC-. pat_init() updates these values to support * more cache modes, WC and WT, when it is safe to do so. See pat_init() * for the details. Note, __early_ioremap() used during early boot-time * takes pgprot_t (pte encoding) and does not use these tables. * * Index into __cachemode2pte_tbl[] is the cachemode. * * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2. */ static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = { [_PAGE_CACHE_MODE_WB ] = 0 | 0 , [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD, [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD, [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD, }; unsigned long cachemode2protval(enum page_cache_mode pcm) { if (likely(pcm == 0)) return 0; return __cachemode2pte_tbl[pcm]; } EXPORT_SYMBOL(cachemode2protval); static uint8_t __pte2cachemode_tbl[8] = { [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB, [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC, [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB, [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS, [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC, }; /* * Check that the write-protect PAT entry is set for write-protect. * To do this without making assumptions how PAT has been set up (Xen has * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache * mode via the __cachemode2pte_tbl[] into protection bits (those protection * bits will select a cache mode of WP or better), and then translate the * protection bits back into the cache mode using __pte2cm_idx() and the * __pte2cachemode_tbl[] array. This will return the really used cache mode. */ bool x86_has_pat_wp(void) { uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP]; return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP; } enum page_cache_mode pgprot2cachemode(pgprot_t pgprot) { unsigned long masked; masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK; if (likely(masked == 0)) return 0; return __pte2cachemode_tbl[__pte2cm_idx(masked)]; } static unsigned long __initdata pgt_buf_start; static unsigned long __initdata pgt_buf_end; static unsigned long __initdata pgt_buf_top; static unsigned long min_pfn_mapped; static bool __initdata can_use_brk_pgt = true; /* * Pages returned are already directly mapped. * * Changing that is likely to break Xen, see commit: * * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve * * for detailed information. */ __ref void *alloc_low_pages(unsigned int num) { unsigned long pfn; int i; if (after_bootmem) { unsigned int order; order = get_order((unsigned long)num << PAGE_SHIFT); return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); } if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) { unsigned long ret = 0; if (min_pfn_mapped < max_pfn_mapped) { ret = memblock_phys_alloc_range( PAGE_SIZE * num, PAGE_SIZE, min_pfn_mapped << PAGE_SHIFT, max_pfn_mapped << PAGE_SHIFT); } if (!ret && can_use_brk_pgt) ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE)); if (!ret) panic("alloc_low_pages: can not alloc memory"); pfn = ret >> PAGE_SHIFT; } else { pfn = pgt_buf_end; pgt_buf_end += num; } for (i = 0; i < num; i++) { void *adr; adr = __va((pfn + i) << PAGE_SHIFT); clear_page(adr); } return __va(pfn << PAGE_SHIFT); } /* * By default need to be able to allocate page tables below PGD firstly for * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping. * With KASLR memory randomization, depending on the machine e820 memory and the * PUD alignment, twice that many pages may be needed when KASLR memory * randomization is enabled. */ #ifndef CONFIG_X86_5LEVEL #define INIT_PGD_PAGE_TABLES 3 #else #define INIT_PGD_PAGE_TABLES 4 #endif #ifndef CONFIG_RANDOMIZE_MEMORY #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES) #else #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES) #endif #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE) RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); void __init early_alloc_pgt_buf(void) { unsigned long tables = INIT_PGT_BUF_SIZE; phys_addr_t base; base = __pa(extend_brk(tables, PAGE_SIZE)); pgt_buf_start = base >> PAGE_SHIFT; pgt_buf_end = pgt_buf_start; pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); } int after_bootmem; early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES); struct map_range { unsigned long start; unsigned long end; unsigned page_size_mask; }; static int page_size_mask; /* * Save some of cr4 feature set we're using (e.g. Pentium 4MB * enable and PPro Global page enable), so that any CPU's that boot * up after us can get the correct flags. Invoked on the boot CPU. */ static inline void cr4_set_bits_and_update_boot(unsigned long mask) { mmu_cr4_features |= mask; if (trampoline_cr4_features) *trampoline_cr4_features = mmu_cr4_features; cr4_set_bits(mask); } static void __init probe_page_size_mask(void) { /* * For pagealloc debugging, identity mapping will use small pages. * This will simplify cpa(), which otherwise needs to support splitting * large pages into small in interrupt context, etc. */ if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled()) page_size_mask |= 1 << PG_LEVEL_2M; else direct_gbpages = 0; /* Enable PSE if available */ if (boot_cpu_has(X86_FEATURE_PSE)) cr4_set_bits_and_update_boot(X86_CR4_PSE); /* Enable PGE if available */ __supported_pte_mask &= ~_PAGE_GLOBAL; if (boot_cpu_has(X86_FEATURE_PGE)) { cr4_set_bits_and_update_boot(X86_CR4_PGE); __supported_pte_mask |= _PAGE_GLOBAL; } /* By the default is everything supported: */ __default_kernel_pte_mask = __supported_pte_mask; /* Except when with PTI where the kernel is mostly non-Global: */ if (cpu_feature_enabled(X86_FEATURE_PTI)) __default_kernel_pte_mask &= ~_PAGE_GLOBAL; /* Enable 1 GB linear kernel mappings if available: */ if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) { printk(KERN_INFO "Using GB pages for direct mapping\n"); page_size_mask |= 1 << PG_LEVEL_1G; } else { direct_gbpages = 0; } } /* * INVLPG may not properly flush Global entries * on these CPUs when PCIDs are enabled. */ static const struct x86_cpu_id invlpg_miss_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, 0), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 0), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, 0), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, 0), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, 0), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, 0), {} }; static void setup_pcid(void) { if (!IS_ENABLED(CONFIG_X86_64)) return; if (!boot_cpu_has(X86_FEATURE_PCID)) return; if (x86_match_cpu(invlpg_miss_ids)) { pr_info("Incomplete global flushes, disabling PCID"); setup_clear_cpu_cap(X86_FEATURE_PCID); return; } if (boot_cpu_has(X86_FEATURE_PGE)) { /* * This can't be cr4_set_bits_and_update_boot() -- the * trampoline code can't handle CR4.PCIDE and it wouldn't * do any good anyway. Despite the name, * cr4_set_bits_and_update_boot() doesn't actually cause * the bits in question to remain set all the way through * the secondary boot asm. * * Instead, we brute-force it and set CR4.PCIDE manually in * start_secondary(). */ cr4_set_bits(X86_CR4_PCIDE); /* * INVPCID's single-context modes (2/3) only work if we set * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable * on systems that have X86_CR4_PCIDE clear, or that have * no INVPCID support at all. */ if (boot_cpu_has(X86_FEATURE_INVPCID)) setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE); } else { /* * flush_tlb_all(), as currently implemented, won't work if * PCID is on but PGE is not. Since that combination * doesn't exist on real hardware, there's no reason to try * to fully support it, but it's polite to avoid corrupting * data if we're on an improperly configured VM. */ setup_clear_cpu_cap(X86_FEATURE_PCID); } } #ifdef CONFIG_X86_32 #define NR_RANGE_MR 3 #else /* CONFIG_X86_64 */ #define NR_RANGE_MR 5 #endif static int __meminit save_mr(struct map_range *mr, int nr_range, unsigned long start_pfn, unsigned long end_pfn, unsigned long page_size_mask) { if (start_pfn < end_pfn) { if (nr_range >= NR_RANGE_MR) panic("run out of range for init_memory_mapping\n"); mr[nr_range].start = start_pfn<<PAGE_SHIFT; mr[nr_range].end = end_pfn<<PAGE_SHIFT; mr[nr_range].page_size_mask = page_size_mask; nr_range++; } return nr_range; } /* * adjust the page_size_mask for small range to go with * big page size instead small one if nearby are ram too. */ static void __ref adjust_range_page_size_mask(struct map_range *mr, int nr_range) { int i; for (i = 0; i < nr_range; i++) { if ((page_size_mask & (1<<PG_LEVEL_2M)) && !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) { unsigned long start = round_down(mr[i].start, PMD_SIZE); unsigned long end = round_up(mr[i].end, PMD_SIZE); #ifdef CONFIG_X86_32 if ((end >> PAGE_SHIFT) > max_low_pfn) continue; #endif if (memblock_is_region_memory(start, end - start)) mr[i].page_size_mask |= 1<<PG_LEVEL_2M; } if ((page_size_mask & (1<<PG_LEVEL_1G)) && !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) { unsigned long start = round_down(mr[i].start, PUD_SIZE); unsigned long end = round_up(mr[i].end, PUD_SIZE); if (memblock_is_region_memory(start, end - start)) mr[i].page_size_mask |= 1<<PG_LEVEL_1G; } } } static const char *page_size_string(struct map_range *mr) { static const char str_1g[] = "1G"; static const char str_2m[] = "2M"; static const char str_4m[] = "4M"; static const char str_4k[] = "4k"; if (mr->page_size_mask & (1<<PG_LEVEL_1G)) return str_1g; /* * 32-bit without PAE has a 4M large page size. * PG_LEVEL_2M is misnamed, but we can at least * print out the right size in the string. */ if (IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_X86_PAE) && mr->page_size_mask & (1<<PG_LEVEL_2M)) return str_4m; if (mr->page_size_mask & (1<<PG_LEVEL_2M)) return str_2m; return str_4k; } static int __meminit split_mem_range(struct map_range *mr, int nr_range, unsigned long start, unsigned long end) { unsigned long start_pfn, end_pfn, limit_pfn; unsigned long pfn; int i; limit_pfn = PFN_DOWN(end); /* head if not big page alignment ? */ pfn = start_pfn = PFN_DOWN(start); #ifdef CONFIG_X86_32 /* * Don't use a large page for the first 2/4MB of memory * because there are often fixed size MTRRs in there * and overlapping MTRRs into large pages can cause * slowdowns. */ if (pfn == 0) end_pfn = PFN_DOWN(PMD_SIZE); else end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); #else /* CONFIG_X86_64 */ end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); #endif if (end_pfn > limit_pfn) end_pfn = limit_pfn; if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); pfn = end_pfn; } /* big page (2M) range */ start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); #ifdef CONFIG_X86_32 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); #else /* CONFIG_X86_64 */ end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE))) end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); #endif if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<<PG_LEVEL_2M)); pfn = end_pfn; } #ifdef CONFIG_X86_64 /* big page (1G) range */ start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE)); end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE)); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); pfn = end_pfn; } /* tail is not big page (1G) alignment */ start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE)); end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE)); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<<PG_LEVEL_2M)); pfn = end_pfn; } #endif /* tail is not big page (2M) alignment */ start_pfn = pfn; end_pfn = limit_pfn; nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); if (!after_bootmem) adjust_range_page_size_mask(mr, nr_range); /* try to merge same page size and continuous */ for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { unsigned long old_start; if (mr[i].end != mr[i+1].start || mr[i].page_size_mask != mr[i+1].page_size_mask) continue; /* move it */ old_start = mr[i].start; memmove(&mr[i], &mr[i+1], (nr_range - 1 - i) * sizeof(struct map_range)); mr[i--].start = old_start; nr_range--; } for (i = 0; i < nr_range; i++) pr_debug(" [mem %#010lx-%#010lx] page %s\n", mr[i].start, mr[i].end - 1, page_size_string(&mr[i])); return nr_range; } struct range pfn_mapped[E820_MAX_ENTRIES]; int nr_pfn_mapped; static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn) { nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES, nr_pfn_mapped, start_pfn, end_pfn); nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES); max_pfn_mapped = max(max_pfn_mapped, end_pfn); if (start_pfn < (1UL<<(32-PAGE_SHIFT))) max_low_pfn_mapped = max(max_low_pfn_mapped, min(end_pfn, 1UL<<(32-PAGE_SHIFT))); } bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn) { int i; for (i = 0; i < nr_pfn_mapped; i++) if ((start_pfn >= pfn_mapped[i].start) && (end_pfn <= pfn_mapped[i].end)) return true; return false; } /* * Setup the direct mapping of the physical memory at PAGE_OFFSET. * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ unsigned long __ref init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot) { struct map_range mr[NR_RANGE_MR]; unsigned long ret = 0; int nr_range, i; pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n", start, end - 1); memset(mr, 0, sizeof(mr)); nr_range = split_mem_range(mr, 0, start, end); for (i = 0; i < nr_range; i++) ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, mr[i].page_size_mask, prot); add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); return ret >> PAGE_SHIFT; } /* * We need to iterate through the E820 memory map and create direct mappings * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply * create direct mappings for all pfns from [0 to max_low_pfn) and * [4GB to max_pfn) because of possible memory holes in high addresses * that cannot be marked as UC by fixed/variable range MTRRs. * Depending on the alignment of E820 ranges, this may possibly result * in using smaller size (i.e. 4K instead of 2M or 1G) page tables. * * init_mem_mapping() calls init_range_memory_mapping() with big range. * That range would have hole in the middle or ends, and only ram parts * will be mapped in init_range_memory_mapping(). */ static unsigned long __init init_range_memory_mapping( unsigned long r_start, unsigned long r_end) { unsigned long start_pfn, end_pfn; unsigned long mapped_ram_size = 0; int i; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end); u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end); if (start >= end) continue; /* * if it is overlapping with brk pgt, we need to * alloc pgt buf from memblock instead. */ can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >= min(end, (u64)pgt_buf_top<<PAGE_SHIFT); init_memory_mapping(start, end, PAGE_KERNEL); mapped_ram_size += end - start; can_use_brk_pgt = true; } return mapped_ram_size; } static unsigned long __init get_new_step_size(unsigned long step_size) { /* * Initial mapped size is PMD_SIZE (2M). * We can not set step_size to be PUD_SIZE (1G) yet. * In worse case, when we cross the 1G boundary, and * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k) * to map 1G range with PTE. Hence we use one less than the * difference of page table level shifts. * * Don't need to worry about overflow in the top-down case, on 32bit, * when step_size is 0, round_down() returns 0 for start, and that * turns it into 0x100000000ULL. * In the bottom-up case, round_up(x, 0) returns 0 though too, which * needs to be taken into consideration by the code below. */ return step_size << (PMD_SHIFT - PAGE_SHIFT - 1); } /** * memory_map_top_down - Map [map_start, map_end) top down * @map_start: start address of the target memory range * @map_end: end address of the target memory range * * This function will setup direct mapping for memory range * [map_start, map_end) in top-down. That said, the page tables * will be allocated at the end of the memory, and we map the * memory in top-down. */ static void __init memory_map_top_down(unsigned long map_start, unsigned long map_end) { unsigned long real_end, last_start; unsigned long step_size; unsigned long addr; unsigned long mapped_ram_size = 0; /* * Systems that have many reserved areas near top of the memory, * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will * require lots of 4K mappings which may exhaust pgt_buf. * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure * there is enough mapped memory that can be allocated from * memblock. */ addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start, map_end); memblock_free(addr, PMD_SIZE); real_end = addr + PMD_SIZE; /* step_size need to be small so pgt_buf from BRK could cover it */ step_size = PMD_SIZE; max_pfn_mapped = 0; /* will get exact value next */ min_pfn_mapped = real_end >> PAGE_SHIFT; last_start = real_end; /* * We start from the top (end of memory) and go to the bottom. * The memblock_find_in_range() gets us a block of RAM from the * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages * for page table. */ while (last_start > map_start) { unsigned long start; if (last_start > step_size) { start = round_down(last_start - 1, step_size); if (start < map_start) start = map_start; } else start = map_start; mapped_ram_size += init_range_memory_mapping(start, last_start); last_start = start; min_pfn_mapped = last_start >> PAGE_SHIFT; if (mapped_ram_size >= step_size) step_size = get_new_step_size(step_size); } if (real_end < map_end) init_range_memory_mapping(real_end, map_end); } /** * memory_map_bottom_up - Map [map_start, map_end) bottom up * @map_start: start address of the target memory range * @map_end: end address of the target memory range * * This function will setup direct mapping for memory range * [map_start, map_end) in bottom-up. Since we have limited the * bottom-up allocation above the kernel, the page tables will * be allocated just above the kernel and we map the memory * in [map_start, map_end) in bottom-up. */ static void __init memory_map_bottom_up(unsigned long map_start, unsigned long map_end) { unsigned long next, start; unsigned long mapped_ram_size = 0; /* step_size need to be small so pgt_buf from BRK could cover it */ unsigned long step_size = PMD_SIZE; start = map_start; min_pfn_mapped = start >> PAGE_SHIFT; /* * We start from the bottom (@map_start) and go to the top (@map_end). * The memblock_find_in_range() gets us a block of RAM from the * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages * for page table. */ while (start < map_end) { if (step_size && map_end - start > step_size) { next = round_up(start + 1, step_size); if (next > map_end) next = map_end; } else { next = map_end; } mapped_ram_size += init_range_memory_mapping(start, next); start = next; if (mapped_ram_size >= step_size) step_size = get_new_step_size(step_size); } } /* * The real mode trampoline, which is required for bootstrapping CPUs * occupies only a small area under the low 1MB. See reserve_real_mode() * for details. * * If KASLR is disabled the first PGD entry of the direct mapping is copied * to map the real mode trampoline. * * If KASLR is enabled, copy only the PUD which covers the low 1MB * area. This limits the randomization granularity to 1GB for both 4-level * and 5-level paging. */ static void __init init_trampoline(void) { #ifdef CONFIG_X86_64 if (!kaslr_memory_enabled()) trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)]; else init_trampoline_kaslr(); #endif } void __init init_mem_mapping(void) { unsigned long end; pti_check_boottime_disable(); probe_page_size_mask(); setup_pcid(); #ifdef CONFIG_X86_64 end = max_pfn << PAGE_SHIFT; #else end = max_low_pfn << PAGE_SHIFT; #endif /* the ISA range is always mapped regardless of memory holes */ init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL); /* Init the trampoline, possibly with KASLR memory offset */ init_trampoline(); /* * If the allocation is in bottom-up direction, we setup direct mapping * in bottom-up, otherwise we setup direct mapping in top-down. */ if (memblock_bottom_up()) { unsigned long kernel_end = __pa_symbol(_end); /* * we need two separate calls here. This is because we want to * allocate page tables above the kernel. So we first map * [kernel_end, end) to make memory above the kernel be mapped * as soon as possible. And then use page tables allocated above * the kernel to map [ISA_END_ADDRESS, kernel_end). */ memory_map_bottom_up(kernel_end, end); memory_map_bottom_up(ISA_END_ADDRESS, kernel_end); } else { memory_map_top_down(ISA_END_ADDRESS, end); } #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { /* can we preserve max_low_pfn ?*/ max_low_pfn = max_pfn; } #else early_ioremap_page_table_range_init(); #endif load_cr3(swapper_pg_dir); __flush_tlb_all(); x86_init.hyper.init_mem_mapping(); early_memtest(0, max_pfn_mapped << PAGE_SHIFT); } /* * Initialize an mm_struct to be used during poking and a pointer to be used * during patching. */ void __init poking_init(void) { spinlock_t *ptl; pte_t *ptep; poking_mm = mm_alloc(); BUG_ON(!poking_mm); /* Xen PV guests need the PGD to be pinned. */ paravirt_arch_dup_mmap(NULL, poking_mm); /* * Randomize the poking address, but make sure that the following page * will be mapped at the same PMD. We need 2 pages, so find space for 3, * and adjust the address if the PMD ends after the first one. */ poking_addr = TASK_UNMAPPED_BASE; if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) % (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE); if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0) poking_addr += PAGE_SIZE; /* * We need to trigger the allocation of the page-tables that will be * needed for poking now. Later, poking may be performed in an atomic * section, which might cause allocation to fail. */ ptep = get_locked_pte(poking_mm, poking_addr, &ptl); BUG_ON(!ptep); pte_unmap_unlock(ptep, ptl); } /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * On x86, access has to be given to the first megabyte of RAM because that * area traditionally contains BIOS code and data regions used by X, dosemu, * and similar apps. Since they map the entire memory range, the whole range * must be allowed (for mapping), but any areas that would otherwise be * disallowed are flagged as being "zero filled" instead of rejected. * Access has to be given to non-kernel-ram areas as well, these contain the * PCI mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) != REGION_DISJOINT) { /* * For disallowed memory regions in the low 1MB range, * request that the page be shown as all zeros. */ if (pagenr < 256) return 2; return 0; } /* * This must follow RAM test, since System RAM is considered a * restricted resource under CONFIG_STRICT_IOMEM. */ if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) { /* Low 1MB bypasses iomem restrictions. */ if (pagenr < 256) return 1; return 0; } return 1; } void free_init_pages(const char *what, unsigned long begin, unsigned long end) { unsigned long begin_aligned, end_aligned; /* Make sure boundaries are page aligned */ begin_aligned = PAGE_ALIGN(begin); end_aligned = end & PAGE_MASK; if (WARN_ON(begin_aligned != begin || end_aligned != end)) { begin = begin_aligned; end = end_aligned; } if (begin >= end) return; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ if (debug_pagealloc_enabled()) { pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n", begin, end - 1); /* * Inform kmemleak about the hole in the memory since the * corresponding pages will be unmapped. */ kmemleak_free_part((void *)begin, end - begin); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); } else { /* * We just marked the kernel text read only above, now that * we are going to free part of that, we need to make that * writeable and non-executable first. */ set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what); } } /* * begin/end can be in the direct map or the "high kernel mapping" * used for the kernel image only. free_init_pages() will do the * right thing for either kind of address. */ void free_kernel_image_pages(const char *what, void *begin, void *end) { unsigned long begin_ul = (unsigned long)begin; unsigned long end_ul = (unsigned long)end; unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT; free_init_pages(what, begin_ul, end_ul); /* * PTI maps some of the kernel into userspace. For performance, * this includes some kernel areas that do not contain secrets. * Those areas might be adjacent to the parts of the kernel image * being freed, which may contain secrets. Remove the "high kernel * image mapping" for these freed areas, ensuring they are not even * potentially vulnerable to Meltdown regardless of the specific * optimizations PTI is currently using. * * The "noalias" prevents unmapping the direct map alias which is * needed to access the freed pages. * * This is only valid for 64bit kernels. 32bit has only one mapping * which can't be treated in this way for obvious reasons. */ if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI)) set_memory_np_noalias(begin_ul, len_pages); } void __ref free_initmem(void) { e820__reallocate_tables(); mem_encrypt_free_decrypted_mem(); free_kernel_image_pages("unused kernel image (initmem)", &__init_begin, &__init_end); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { /* * end could be not aligned, and We can not align that, * decompressor could be confused by aligned initrd_end * We already reserve the end partial page before in * - i386_start_kernel() * - x86_64_start_kernel() * - relocate_initrd() * So here We can do PAGE_ALIGN() safely to get partial page to be freed */ free_init_pages("initrd", start, PAGE_ALIGN(end)); } #endif /* * Calculate the precise size of the DMA zone (first 16 MB of RAM), * and pass it to the MM layer - to help it set zone watermarks more * accurately. * * Done on 64-bit systems only for the time being, although 32-bit systems * might benefit from this as well. */ void __init memblock_find_dma_reserve(void) { #ifdef CONFIG_X86_64 u64 nr_pages = 0, nr_free_pages = 0; unsigned long start_pfn, end_pfn; phys_addr_t start_addr, end_addr; int i; u64 u; /* * Iterate over all memory ranges (free and reserved ones alike), * to calculate the total number of pages in the first 16 MB of RAM: */ nr_pages = 0; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { start_pfn = min(start_pfn, MAX_DMA_PFN); end_pfn = min(end_pfn, MAX_DMA_PFN); nr_pages += end_pfn - start_pfn; } /* * Iterate over free memory ranges to calculate the number of free * pages in the DMA zone, while not counting potential partial * pages at the beginning or the end of the range: */ nr_free_pages = 0; for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN); end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN); if (start_pfn < end_pfn) nr_free_pages += end_pfn - start_pfn; } set_dma_reserve(nr_pages - nr_free_pages); #endif } void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn); #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn); #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif free_area_init(max_zone_pfns); } __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = { .loaded_mm = &init_mm, .next_asid = 1, .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */ }; void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache) { /* entry 0 MUST be WB (hardwired to speed up translations) */ BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB); __cachemode2pte_tbl[cache] = __cm_idx2pte(entry); __pte2cachemode_tbl[entry] = cache; } #ifdef CONFIG_SWAP unsigned long max_swapfile_size(void) { unsigned long pages; pages = generic_max_swapfile_size(); if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) { /* Limit the swap file size to MAX_PA/2 for L1TF workaround */ unsigned long long l1tf_limit = l1tf_pfn_limit(); /* * We encode swap offsets also with 3 bits below those for pfn * which makes the usable limit higher. */ #if CONFIG_PGTABLE_LEVELS > 2 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT; #endif pages = min_t(unsigned long long, l1tf_limit, pages); } return pages; } #endif |
30 30 30 30 30 30 220 221 34 34 986 988 12 12 45 45 45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Handle firewalling * Linux ethernet bridge * * Authors: * Lennert Buytenhek <buytenh@gnu.org> * Bart De Schuymer <bdschuym@pandora.be> * * Lennert dedicates this file to Kerstin Wurdinger. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> #include <linux/netfilter_bridge.h> #include <uapi/linux/netfilter_bridge.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_arp.h> #include <linux/in_route.h> #include <linux/rculist.h> #include <linux/inetdevice.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/addrconf.h> #include <net/dst_metadata.h> #include <net/route.h> #include <net/netfilter/br_netfilter.h> #include <net/netns/generic.h> #include <linux/uaccess.h> #include "br_private.h" #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack_core.h> #endif static unsigned int brnf_net_id __read_mostly; struct brnf_net { bool enabled; #ifdef CONFIG_SYSCTL struct ctl_table_header *ctl_hdr; #endif /* default value is 1 */ int call_iptables; int call_ip6tables; int call_arptables; /* default value is 0 */ int filter_vlan_tagged; int filter_pppoe_tagged; int pass_vlan_indev; }; #define IS_IP(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP)) #define IS_IPV6(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6)) #define IS_ARP(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP)) static inline __be16 vlan_proto(const struct sk_buff *skb) { if (skb_vlan_tag_present(skb)) return skb->protocol; else if (skb->protocol == htons(ETH_P_8021Q)) return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; else return 0; } static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged; } static inline bool is_vlan_ipv6(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_IPV6) && brnet->filter_vlan_tagged; } static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged; } static inline __be16 pppoe_proto(const struct sk_buff *skb) { return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN + sizeof(struct pppoe_hdr))); } static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return skb->protocol == htons(ETH_P_PPP_SES) && pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged; } static inline bool is_pppoe_ipv6(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return skb->protocol == htons(ETH_P_PPP_SES) && pppoe_proto(skb) == htons(PPP_IPV6) && brnet->filter_pppoe_tagged; } /* largest possible L2 header, see br_nf_dev_queue_xmit() */ #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN) struct brnf_frag_data { char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH]; u8 encap_size; u8 size; u16 vlan_tci; __be16 vlan_proto; }; static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage); static void nf_bridge_info_free(struct sk_buff *skb) { skb_ext_del(skb, SKB_EXT_BRIDGE_NF); } static inline struct net_device *bridge_parent(const struct net_device *dev) { struct net_bridge_port *port; port = br_port_get_rcu(dev); return port ? port->br->dev : NULL; } static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb) { return skb_ext_add(skb, SKB_EXT_BRIDGE_NF); } unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb) { switch (skb->protocol) { case __cpu_to_be16(ETH_P_8021Q): return VLAN_HLEN; case __cpu_to_be16(ETH_P_PPP_SES): return PPPOE_SES_HLEN; default: return 0; } } static inline void nf_bridge_pull_encap_header(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull(skb, len); skb->network_header += len; } static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull_rcsum(skb, len); skb->network_header += len; } /* When handing a packet over to the IP layer * check whether we have a skb that is in the * expected format */ static int br_validate_ipv4(struct net *net, struct sk_buff *skb) { const struct iphdr *iph; u32 len; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto inhdr_error; iph = ip_hdr(skb); /* Basic sanity checks */ if (iph->ihl < 5 || iph->version != 4) goto inhdr_error; if (!pskb_may_pull(skb, iph->ihl*4)) goto inhdr_error; iph = ip_hdr(skb); if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) goto csum_error; len = ntohs(iph->tot_len); if (skb->len < len) { __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS); goto drop; } else if (len < (iph->ihl*4)) goto inhdr_error; if (pskb_trim_rcsum(skb, len)) { __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); goto drop; } memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); /* We should really parse IP options here but until * somebody who actually uses IP options complains to * us we'll just silently ignore the options because * we're lazy! */ return 0; csum_error: __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS); inhdr_error: __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS); drop: return -1; } void nf_bridge_update_protocol(struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); switch (nf_bridge->orig_proto) { case BRNF_PROTO_8021Q: skb->protocol = htons(ETH_P_8021Q); break; case BRNF_PROTO_PPPOE: skb->protocol = htons(ETH_P_PPP_SES); break; case BRNF_PROTO_UNCHANGED: break; } } /* Obtain the correct destination MAC address, while preserving the original * source MAC address. If we already know this address, we just copy it. If we * don't, we use the neighbour framework to find out. In both cases, we make * sure that br_handle_frame_finish() is called afterwards. */ int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb) { struct neighbour *neigh; struct dst_entry *dst; skb->dev = bridge_parent(skb->dev); if (!skb->dev) goto free_skb; dst = skb_dst(skb); neigh = dst_neigh_lookup_skb(dst, skb); if (neigh) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); int ret; if ((neigh->nud_state & NUD_CONNECTED) && neigh->hh.hh_len) { neigh_hh_bridge(&neigh->hh, skb); skb->dev = nf_bridge->physindev; ret = br_handle_frame_finish(net, sk, skb); } else { /* the neighbour function below overwrites the complete * MAC header, so we save the Ethernet source address and * protocol number. */ skb_copy_from_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN), nf_bridge->neigh_header, ETH_HLEN-ETH_ALEN); /* tell br_dev_xmit to continue with forwarding */ nf_bridge->bridged_dnat = 1; /* FIXME Need to refragment */ ret = neigh->output(neigh, skb); } neigh_release(neigh); return ret; } free_skb: kfree_skb(skb); return 0; } static inline bool br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb, const struct nf_bridge_info *nf_bridge) { return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr; } /* This requires some explaining. If DNAT has taken place, * we will need to fix up the destination Ethernet address. * This is also true when SNAT takes place (for the reply direction). * * There are two cases to consider: * 1. The packet was DNAT'ed to a device in the same bridge * port group as it was received on. We can still bridge * the packet. * 2. The packet was DNAT'ed to a different device, either * a non-bridged device or another bridge port group. * The packet will need to be routed. * * The correct way of distinguishing between these two cases is to * call ip_route_input() and to look at skb->dst->dev, which is * changed to the destination device if ip_route_input() succeeds. * * Let's first consider the case that ip_route_input() succeeds: * * If the output device equals the logical bridge device the packet * came in on, we can consider this bridging. The corresponding MAC * address will be obtained in br_nf_pre_routing_finish_bridge. * Otherwise, the packet is considered to be routed and we just * change the destination MAC address so that the packet will * later be passed up to the IP stack to be routed. For a redirected * packet, ip_route_input() will give back the localhost as output device, * which differs from the bridge device. * * Let's now consider the case that ip_route_input() fails: * * This can be because the destination address is martian, in which case * the packet will be dropped. * If IP forwarding is disabled, ip_route_input() will fail, while * ip_route_output_key() can return success. The source * address for ip_route_output_key() is set to zero, so ip_route_output_key() * thinks we're handling a locally generated packet and won't care * if IP forwarding is enabled. If the output device equals the logical bridge * device, we proceed as if ip_route_input() succeeded. If it differs from the * logical bridge port or if ip_route_output_key() fails we drop the packet. */ static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb->dev; struct iphdr *iph = ip_hdr(skb); struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct rtable *rt; int err; nf_bridge->frag_max_size = IPCB(skb)->frag_max_size; if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } nf_bridge->in_prerouting = 0; if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) { if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) { struct in_device *in_dev = __in_dev_get_rcu(dev); /* If err equals -EHOSTUNREACH the error is due to a * martian destination or due to the fact that * forwarding is disabled. For most martian packets, * ip_route_output_key() will fail. It won't fail for 2 types of * martian destinations: loopback destinations and destination * 0.0.0.0. In both cases the packet will be dropped because the * destination is the loopback device and not the bridge. */ if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev)) goto free_skb; rt = ip_route_output(net, iph->daddr, 0, RT_TOS(iph->tos), 0); if (!IS_ERR(rt)) { /* - Bridged-and-DNAT'ed traffic doesn't * require ip_forwarding. */ if (rt->dst.dev == dev) { skb_dst_drop(skb); skb_dst_set(skb, &rt->dst); goto bridged_dnat; } ip_rt_put(rt); } free_skb: kfree_skb(skb); return 0; } else { if (skb_dst(skb)->dev == dev) { bridged_dnat: skb->dev = nf_bridge->physindev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL, br_nf_pre_routing_finish_bridge); return 0; } ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr); skb->pkt_type = PACKET_HOST; } } else { rt = bridge_parent_rtable(nf_bridge->physindev); if (!rt) { kfree_skb(skb); return 0; } skb_dst_drop(skb); skb_dst_set_noref(skb, &rt->dst); } skb->dev = nf_bridge->physindev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL, br_handle_frame_finish); return 0; } static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev, const struct net *net) { struct net_device *vlan, *br; struct brnf_net *brnet = net_generic(net, brnf_net_id); br = bridge_parent(dev); if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb)) return br; vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto, skb_vlan_tag_get(skb) & VLAN_VID_MASK); return vlan ? vlan : br; } /* Some common code for IPv4/IPv6 */ struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } nf_bridge->in_prerouting = 1; nf_bridge->physindev = skb->dev; skb->dev = brnf_get_logical_dev(skb, skb->dev, net); if (skb->protocol == htons(ETH_P_8021Q)) nf_bridge->orig_proto = BRNF_PROTO_8021Q; else if (skb->protocol == htons(ETH_P_PPP_SES)) nf_bridge->orig_proto = BRNF_PROTO_PPPOE; /* Must drop socket now because of tproxy. */ skb_orphan(skb); return skb->dev; } /* Direct IPv6 traffic to br_nf_pre_routing_ipv6. * Replicate the checks that IPv4 does on packet reception. * Set skb->dev to the bridge device (i.e. parent of the * receiving device) to make netfilter happy, the REDIRECT * target in particular. Save the original destination IP * address to be able to detect DNAT afterwards. */ static unsigned int br_nf_pre_routing(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge; struct net_bridge_port *p; struct net_bridge *br; __u32 len = nf_bridge_encap_header_len(skb); struct brnf_net *brnet; if (unlikely(!pskb_may_pull(skb, len))) return NF_DROP; p = br_port_get_rcu(state->in); if (p == NULL) return NF_DROP; br = p->br; brnet = net_generic(state->net, brnf_net_id); if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) { if (!brnet->call_ip6tables && !br_opt_get(br, BROPT_NF_CALL_IP6TABLES)) return NF_ACCEPT; if (!ipv6_mod_enabled()) { pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported."); return NF_DROP; } nf_bridge_pull_encap_header_rcsum(skb); return br_nf_pre_routing_ipv6(priv, skb, state); } if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES)) return NF_ACCEPT; if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) && !is_pppoe_ip(skb, state->net)) return NF_ACCEPT; nf_bridge_pull_encap_header_rcsum(skb); if (br_validate_ipv4(state->net, skb)) return NF_DROP; if (!nf_bridge_alloc(skb)) return NF_DROP; if (!setup_pre_routing(skb, state->net)) return NF_DROP; nf_bridge = nf_bridge_info_get(skb); nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr; skb->protocol = htons(ETH_P_IP); skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4; NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb, skb->dev, NULL, br_nf_pre_routing_finish); return NF_STOLEN; } #if IS_ENABLED(CONFIG_NF_CONNTRACK) /* conntracks' nf_confirm logic cannot handle cloned skbs referencing * the same nf_conn entry, which will happen for multicast (broadcast) * Frames on bridges. * * Example: * macvlan0 * br0 * ethX ethY * * ethX (or Y) receives multicast or broadcast packet containing * an IP packet, not yet in conntrack table. * * 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting. * -> skb->_nfct now references a unconfirmed entry * 2. skb is broad/mcast packet. bridge now passes clones out on each bridge * interface. * 3. skb gets passed up the stack. * 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb * and schedules a work queue to send them out on the lower devices. * * The clone skb->_nfct is not a copy, it is the same entry as the * original skb. The macvlan rx handler then returns RX_HANDLER_PASS. * 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb. * * The Macvlan broadcast worker and normal confirm path will race. * * This race will not happen if step 2 already confirmed a clone. In that * case later steps perform skb_clone() with skb->_nfct already confirmed (in * hash table). This works fine. * * But such confirmation won't happen when eb/ip/nftables rules dropped the * packets before they reached the nf_confirm step in postrouting. * * Work around this problem by explicit confirmation of the entry at * LOCAL_IN time, before upper layer has a chance to clone the unconfirmed * entry. * */ static unsigned int br_nf_local_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { bool promisc = BR_INPUT_SKB_CB(skb)->promisc; struct nf_conntrack *nfct = skb_nfct(skb); const struct nf_ct_hook *ct_hook; struct nf_conn *ct; int ret; if (promisc) { nf_reset_ct(skb); return NF_ACCEPT; } if (!nfct || skb->pkt_type == PACKET_HOST) return NF_ACCEPT; ct = container_of(nfct, struct nf_conn, ct_general); if (likely(nf_ct_is_confirmed(ct))) return NF_ACCEPT; if (WARN_ON_ONCE(refcount_read(&nfct->use) != 1)) { nf_reset_ct(skb); return NF_ACCEPT; } WARN_ON_ONCE(skb_shared(skb)); /* We can't call nf_confirm here, it would create a dependency * on nf_conntrack module. */ ct_hook = rcu_dereference(nf_ct_hook); if (!ct_hook) { skb->_nfct = 0ul; nf_conntrack_put(nfct); return NF_ACCEPT; } nf_bridge_pull_encap_header(skb); ret = ct_hook->confirm(skb); switch (ret & NF_VERDICT_MASK) { case NF_STOLEN: return NF_STOLEN; default: nf_bridge_push_encap_header(skb); break; } ct = container_of(nfct, struct nf_conn, ct_general); WARN_ON_ONCE(!nf_ct_is_confirmed(ct)); return ret; } #endif /* PF_BRIDGE/FORWARD *************************************************/ static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *in; if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) { if (skb->protocol == htons(ETH_P_IP)) nf_bridge->frag_max_size = IPCB(skb)->frag_max_size; if (skb->protocol == htons(ETH_P_IPV6)) nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size; in = nf_bridge->physindev; if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } nf_bridge_update_protocol(skb); } else { in = *((struct net_device **)(skb->cb)); } nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev, br_forward_finish); return 0; } /* This is the 'purely bridged' case. For IP, we pass the packet to * netfilter with indev and outdev set to the bridge device, * but we are still able to filter on the 'real' indev/outdev * because of the physdev module. For ARP, indev and outdev are the * bridge ports. */ static unsigned int br_nf_forward_ip(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge; struct net_device *parent; u_int8_t pf; nf_bridge = nf_bridge_info_get(skb); if (!nf_bridge) return NF_ACCEPT; /* Need exclusive nf_bridge_info since we might have multiple * different physoutdevs. */ if (!nf_bridge_unshare(skb)) return NF_DROP; nf_bridge = nf_bridge_info_get(skb); if (!nf_bridge) return NF_DROP; parent = bridge_parent(state->out); if (!parent) return NF_DROP; if (IS_IP(skb) || is_vlan_ip(skb, state->net) || is_pppoe_ip(skb, state->net)) pf = NFPROTO_IPV4; else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) pf = NFPROTO_IPV6; else return NF_ACCEPT; nf_bridge_pull_encap_header(skb); if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } if (pf == NFPROTO_IPV4) { if (br_validate_ipv4(state->net, skb)) return NF_DROP; IPCB(skb)->frag_max_size = nf_bridge->frag_max_size; } if (pf == NFPROTO_IPV6) { if (br_validate_ipv6(state->net, skb)) return NF_DROP; IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size; } nf_bridge->physoutdev = skb->dev; if (pf == NFPROTO_IPV4) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb, brnf_get_logical_dev(skb, state->in, state->net), parent, br_nf_forward_finish); return NF_STOLEN; } static unsigned int br_nf_forward_arp(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct net_bridge_port *p; struct net_bridge *br; struct net_device **d = (struct net_device **)(skb->cb); struct brnf_net *brnet; p = br_port_get_rcu(state->out); if (p == NULL) return NF_ACCEPT; br = p->br; brnet = net_generic(state->net, brnf_net_id); if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES)) return NF_ACCEPT; if (!IS_ARP(skb)) { if (!is_vlan_arp(skb, state->net)) return NF_ACCEPT; nf_bridge_pull_encap_header(skb); } if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr)))) return NF_DROP; if (arp_hdr(skb)->ar_pln != 4) { if (is_vlan_arp(skb, state->net)) nf_bridge_push_encap_header(skb); return NF_ACCEPT; } *d = state->in; NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb, state->in, state->out, br_nf_forward_finish); return NF_STOLEN; } static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { struct brnf_frag_data *data; int err; data = this_cpu_ptr(&brnf_frag_data_storage); err = skb_cow_head(skb, data->size); if (err) { kfree_skb(skb); return 0; } if (data->vlan_proto) __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci); skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size); __skb_push(skb, data->encap_size); nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); } static int br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { unsigned int mtu = ip_skb_dst_mtu(sk, skb); struct iphdr *iph = ip_hdr(skb); if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) || (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size > mtu))) { IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } return ip_do_fragment(net, sk, skb, output); } static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE) return PPPOE_SES_HLEN; return 0; } static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); unsigned int mtu, mtu_reserved; mtu_reserved = nf_bridge_mtu_reduction(skb); mtu = skb->dev->mtu; if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu) mtu = nf_bridge->frag_max_size; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) { nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); } /* Fragmentation on metadata/template dst is not supported */ if (unlikely(!skb_valid_dst(skb))) goto drop; /* This is wrong! We should preserve the original fragment * boundaries by preserving frag_list rather than refragmenting. */ if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) && skb->protocol == htons(ETH_P_IP)) { struct brnf_frag_data *data; if (br_validate_ipv4(net, skb)) goto drop; IPCB(skb)->frag_max_size = nf_bridge->frag_max_size; data = this_cpu_ptr(&brnf_frag_data_storage); if (skb_vlan_tag_present(skb)) { data->vlan_tci = skb->vlan_tci; data->vlan_proto = skb->vlan_proto; } else { data->vlan_proto = 0; } data->encap_size = nf_bridge_encap_header_len(skb); data->size = ETH_HLEN + data->encap_size; skb_copy_from_linear_data_offset(skb, -data->size, data->mac, data->size); return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit); } if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) && skb->protocol == htons(ETH_P_IPV6)) { const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); struct brnf_frag_data *data; if (br_validate_ipv6(net, skb)) goto drop; IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size; data = this_cpu_ptr(&brnf_frag_data_storage); data->encap_size = nf_bridge_encap_header_len(skb); data->size = ETH_HLEN + data->encap_size; skb_copy_from_linear_data_offset(skb, -data->size, data->mac, data->size); if (v6ops) return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit); kfree_skb(skb); return -EMSGSIZE; } nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); drop: kfree_skb(skb); return 0; } /* PF_BRIDGE/POST_ROUTING ********************************************/ static unsigned int br_nf_post_routing(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *realoutdev = bridge_parent(skb->dev); u_int8_t pf; /* if nf_bridge is set, but ->physoutdev is NULL, this packet came in * on a bridge, but was delivered locally and is now being routed: * * POST_ROUTING was already invoked from the ip stack. */ if (!nf_bridge || !nf_bridge->physoutdev) return NF_ACCEPT; if (!realoutdev) return NF_DROP; if (IS_IP(skb) || is_vlan_ip(skb, state->net) || is_pppoe_ip(skb, state->net)) pf = NFPROTO_IPV4; else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) pf = NFPROTO_IPV6; else return NF_ACCEPT; if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } nf_bridge_pull_encap_header(skb); if (pf == NFPROTO_IPV4) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb, NULL, realoutdev, br_nf_dev_queue_xmit); return NF_STOLEN; } /* IP/SABOTAGE *****************************************************/ /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING * for the second time. */ static unsigned int ip_sabotage_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge) { if (nf_bridge->sabotage_in_done) return NF_ACCEPT; if (!nf_bridge->in_prerouting && !netif_is_l3_master(skb->dev) && !netif_is_l3_slave(skb->dev)) { nf_bridge->sabotage_in_done = 1; state->okfn(state->net, state->sk, skb); return NF_STOLEN; } } return NF_ACCEPT; } /* This is called when br_netfilter has called into iptables/netfilter, * and DNAT has taken place on a bridge-forwarded packet. * * neigh->output has created a new MAC header, with local br0 MAC * as saddr. * * This restores the original MAC saddr of the bridged packet * before invoking bridge forward logic to transmit the packet. */ static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); skb_pull(skb, ETH_HLEN); nf_bridge->bridged_dnat = 0; BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN)); skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN), nf_bridge->neigh_header, ETH_HLEN - ETH_ALEN); skb->dev = nf_bridge->physindev; nf_bridge->physoutdev = NULL; br_handle_frame_finish(dev_net(skb->dev), NULL, skb); } static int br_nf_dev_xmit(struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge && nf_bridge->bridged_dnat) { br_nf_pre_routing_finish_bridge_slow(skb); return 1; } return 0; } static const struct nf_br_ops br_ops = { .br_dev_xmit_hook = br_nf_dev_xmit, }; /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because * br_dev_queue_push_xmit is called afterwards */ static const struct nf_hook_ops br_nf_ops[] = { { .hook = br_nf_pre_routing, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_PRE_ROUTING, .priority = NF_BR_PRI_BRNF, }, #if IS_ENABLED(CONFIG_NF_CONNTRACK) { .hook = br_nf_local_in, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_LOCAL_IN, .priority = NF_BR_PRI_LAST, }, #endif { .hook = br_nf_forward_ip, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_FORWARD, .priority = NF_BR_PRI_BRNF - 1, }, { .hook = br_nf_forward_arp, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_FORWARD, .priority = NF_BR_PRI_BRNF, }, { .hook = br_nf_post_routing, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_POST_ROUTING, .priority = NF_BR_PRI_LAST, }, { .hook = ip_sabotage_in, .pf = NFPROTO_IPV4, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP_PRI_FIRST, }, { .hook = ip_sabotage_in, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_FIRST, }, }; static int brnf_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct brnf_net *brnet; struct net *net; int ret; if (event != NETDEV_REGISTER || !(dev->priv_flags & IFF_EBRIDGE)) return NOTIFY_DONE; ASSERT_RTNL(); net = dev_net(dev); brnet = net_generic(net, brnf_net_id); if (brnet->enabled) return NOTIFY_OK; ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops)); if (ret) return NOTIFY_BAD; brnet->enabled = true; return NOTIFY_OK; } static struct notifier_block brnf_notifier __read_mostly = { .notifier_call = brnf_device_event, }; /* recursively invokes nf_hook_slow (again), skipping already-called * hooks (< NF_BR_PRI_BRNF). * * Called with rcu read lock held. */ int br_nf_hook_thresh(unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { const struct nf_hook_entries *e; struct nf_hook_state state; struct nf_hook_ops **ops; unsigned int i; int ret; e = rcu_dereference(net->nf.hooks_bridge[hook]); if (!e) return okfn(net, sk, skb); ops = nf_hook_entries_get_hook_ops(e); for (i = 0; i < e->num_hook_entries; i++) { /* These hooks have already been called */ if (ops[i]->priority < NF_BR_PRI_BRNF) continue; /* These hooks have not been called yet, run them. */ if (ops[i]->priority > NF_BR_PRI_BRNF) break; /* take a closer look at NF_BR_PRI_BRNF. */ if (ops[i]->hook == br_nf_pre_routing) { /* This hook diverted the skb to this function, * hooks after this have not been run yet. */ i++; break; } } nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev, sk, net, okfn); ret = nf_hook_slow(skb, &state, e, i); if (ret == 1) ret = okfn(net, sk, skb); return ret; } #ifdef CONFIG_SYSCTL static int brnf_sysctl_call_tables(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (write && *(int *)(ctl->data)) *(int *)(ctl->data) = 1; return ret; } static struct ctl_table brnf_table[] = { { .procname = "bridge-nf-call-arptables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-iptables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-ip6tables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-vlan-tagged", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-pppoe-tagged", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-pass-vlan-input-dev", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { } }; static inline void br_netfilter_sysctl_default(struct brnf_net *brnf) { brnf->call_iptables = 1; brnf->call_ip6tables = 1; brnf->call_arptables = 1; brnf->filter_vlan_tagged = 0; brnf->filter_pppoe_tagged = 0; brnf->pass_vlan_indev = 0; } static int br_netfilter_sysctl_init_net(struct net *net) { struct ctl_table *table = brnf_table; struct brnf_net *brnet; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL); if (!table) return -ENOMEM; } brnet = net_generic(net, brnf_net_id); table[0].data = &brnet->call_arptables; table[1].data = &brnet->call_iptables; table[2].data = &brnet->call_ip6tables; table[3].data = &brnet->filter_vlan_tagged; table[4].data = &brnet->filter_pppoe_tagged; table[5].data = &brnet->pass_vlan_indev; br_netfilter_sysctl_default(brnet); brnet->ctl_hdr = register_net_sysctl(net, "net/bridge", table); if (!brnet->ctl_hdr) { if (!net_eq(net, &init_net)) kfree(table); return -ENOMEM; } return 0; } static void br_netfilter_sysctl_exit_net(struct net *net, struct brnf_net *brnet) { struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg; unregister_net_sysctl_table(brnet->ctl_hdr); if (!net_eq(net, &init_net)) kfree(table); } static int __net_init brnf_init_net(struct net *net) { return br_netfilter_sysctl_init_net(net); } #endif static void __net_exit brnf_exit_net(struct net *net) { struct brnf_net *brnet; brnet = net_generic(net, brnf_net_id); if (brnet->enabled) { nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops)); brnet->enabled = false; } #ifdef CONFIG_SYSCTL br_netfilter_sysctl_exit_net(net, brnet); #endif } static struct pernet_operations brnf_net_ops __read_mostly = { #ifdef CONFIG_SYSCTL .init = brnf_init_net, #endif .exit = brnf_exit_net, .id = &brnf_net_id, .size = sizeof(struct brnf_net), }; static int __init br_netfilter_init(void) { int ret; ret = register_pernet_subsys(&brnf_net_ops); if (ret < 0) return ret; ret = register_netdevice_notifier(&brnf_notifier); if (ret < 0) { unregister_pernet_subsys(&brnf_net_ops); return ret; } RCU_INIT_POINTER(nf_br_ops, &br_ops); printk(KERN_NOTICE "Bridge firewalling registered\n"); return 0; } static void __exit br_netfilter_fini(void) { RCU_INIT_POINTER(nf_br_ops, NULL); unregister_netdevice_notifier(&brnf_notifier); unregister_pernet_subsys(&brnf_net_ops); } module_init(br_netfilter_init); module_exit(br_netfilter_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>"); MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>"); MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge"); |
6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ /* * Basic idea behind the notification queue: An fsnotify group (like inotify) * sends the userspace notification about events asynchronously some time after * the event happened. When inotify gets an event it will need to add that * event to the group notify queue. Since a single event might need to be on * multiple group's notification queues we can't add the event directly to each * queue and instead add a small "event_holder" to each queue. This event_holder * has a pointer back to the original event. Since the majority of events are * going to end up on one, and only one, notification queue we embed one * event_holder into each event. This means we have a single allocation instead * of always needing two. If the embedded event_holder is already in use by * another group a new event_holder (from fsnotify_event_holder_cachep) will be * allocated and used. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/mutex.h> #include <linux/namei.h> #include <linux/path.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/fsnotify_backend.h> #include "fsnotify.h" static atomic_t fsnotify_sync_cookie = ATOMIC_INIT(0); /** * fsnotify_get_cookie - return a unique cookie for use in synchronizing events. * Called from fsnotify_move, which is inlined into filesystem modules. */ u32 fsnotify_get_cookie(void) { return atomic_inc_return(&fsnotify_sync_cookie); } EXPORT_SYMBOL_GPL(fsnotify_get_cookie); void fsnotify_destroy_event(struct fsnotify_group *group, struct fsnotify_event *event) { /* Overflow events are per-group and we don't want to free them */ if (!event || event == group->overflow_event) return; /* * If the event is still queued, we have a problem... Do an unreliable * lockless check first to avoid locking in the common case. The * locking may be necessary for permission events which got removed * from the list by a different CPU than the one freeing the event. */ if (!list_empty(&event->list)) { spin_lock(&group->notification_lock); WARN_ON(!list_empty(&event->list)); spin_unlock(&group->notification_lock); } group->ops->free_event(group, event); } /* * Try to add an event to the notification queue. * The group can later pull this event off the queue to deal with. * The group can use the @merge hook to merge the event with a queued event. * The group can use the @insert hook to insert the event into hash table. * The function returns: * 0 if the event was added to a queue * 1 if the event was merged with some other queued event * 2 if the event was not queued - either the queue of events has overflown * or the group is shutting down. */ int fsnotify_insert_event(struct fsnotify_group *group, struct fsnotify_event *event, int (*merge)(struct fsnotify_group *, struct fsnotify_event *), void (*insert)(struct fsnotify_group *, struct fsnotify_event *)) { int ret = 0; struct list_head *list = &group->notification_list; pr_debug("%s: group=%p event=%p\n", __func__, group, event); spin_lock(&group->notification_lock); if (group->shutdown) { spin_unlock(&group->notification_lock); return 2; } if (event == group->overflow_event || group->q_len >= group->max_events) { ret = 2; /* Queue overflow event only if it isn't already queued */ if (!list_empty(&group->overflow_event->list)) { spin_unlock(&group->notification_lock); return ret; } event = group->overflow_event; goto queue; } if (!list_empty(list) && merge) { ret = merge(group, event); if (ret) { spin_unlock(&group->notification_lock); return ret; } } queue: group->q_len++; list_add_tail(&event->list, list); if (insert) insert(group, event); spin_unlock(&group->notification_lock); wake_up(&group->notification_waitq); kill_fasync(&group->fsn_fa, SIGIO, POLL_IN); return ret; } void fsnotify_remove_queued_event(struct fsnotify_group *group, struct fsnotify_event *event) { assert_spin_locked(&group->notification_lock); /* * We need to init list head for the case of overflow event so that * check in fsnotify_add_event() works */ list_del_init(&event->list); group->q_len--; } /* * Return the first event on the notification list without removing it. * Returns NULL if the list is empty. */ struct fsnotify_event *fsnotify_peek_first_event(struct fsnotify_group *group) { assert_spin_locked(&group->notification_lock); if (fsnotify_notify_queue_is_empty(group)) return NULL; return list_first_entry(&group->notification_list, struct fsnotify_event, list); } /* * Remove and return the first event from the notification list. It is the * responsibility of the caller to destroy the obtained event */ struct fsnotify_event *fsnotify_remove_first_event(struct fsnotify_group *group) { struct fsnotify_event *event = fsnotify_peek_first_event(group); if (!event) return NULL; pr_debug("%s: group=%p event=%p\n", __func__, group, event); fsnotify_remove_queued_event(group, event); return event; } /* * Called when a group is being torn down to clean up any outstanding * event notifications. */ void fsnotify_flush_notify(struct fsnotify_group *group) { struct fsnotify_event *event; spin_lock(&group->notification_lock); while (!fsnotify_notify_queue_is_empty(group)) { event = fsnotify_remove_first_event(group); spin_unlock(&group->notification_lock); fsnotify_destroy_event(group, event); spin_lock(&group->notification_lock); } spin_unlock(&group->notification_lock); } |
8 38 67 67 67 67 21 45 121 5 116 116 116 108 8 8 8 8 8 8 98 89 13 78 2 14 27 27 27 27 27 27 393 378 16 16 16 16 143 133 5 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | // SPDX-License-Identifier: GPL-2.0-or-later /* * lwtunnel Infrastructure for light weight tunnels like mpls * * Authors: Roopa Prabhu, <roopa@cumulusnetworks.com> */ #include <linux/capability.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/lwtunnel.h> #include <linux/in.h> #include <linux/init.h> #include <linux/err.h> #include <net/lwtunnel.h> #include <net/rtnetlink.h> #include <net/ip6_fib.h> #include <net/rtnh.h> DEFINE_STATIC_KEY_FALSE(nf_hooks_lwtunnel_enabled); EXPORT_SYMBOL_GPL(nf_hooks_lwtunnel_enabled); #ifdef CONFIG_MODULES static const char *lwtunnel_encap_str(enum lwtunnel_encap_types encap_type) { /* Only lwt encaps implemented without using an interface for * the encap need to return a string here. */ switch (encap_type) { case LWTUNNEL_ENCAP_MPLS: return "MPLS"; case LWTUNNEL_ENCAP_ILA: return "ILA"; case LWTUNNEL_ENCAP_SEG6: return "SEG6"; case LWTUNNEL_ENCAP_BPF: return "BPF"; case LWTUNNEL_ENCAP_SEG6_LOCAL: return "SEG6LOCAL"; case LWTUNNEL_ENCAP_RPL: return "RPL"; case LWTUNNEL_ENCAP_IOAM6: return "IOAM6"; case LWTUNNEL_ENCAP_IP6: case LWTUNNEL_ENCAP_IP: case LWTUNNEL_ENCAP_NONE: case __LWTUNNEL_ENCAP_MAX: /* should not have got here */ WARN_ON(1); break; } return NULL; } #endif /* CONFIG_MODULES */ struct lwtunnel_state *lwtunnel_state_alloc(int encap_len) { struct lwtunnel_state *lws; lws = kzalloc(sizeof(*lws) + encap_len, GFP_ATOMIC); return lws; } EXPORT_SYMBOL_GPL(lwtunnel_state_alloc); static const struct lwtunnel_encap_ops __rcu * lwtun_encaps[LWTUNNEL_ENCAP_MAX + 1] __read_mostly; int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *ops, unsigned int num) { if (num > LWTUNNEL_ENCAP_MAX) return -ERANGE; return !cmpxchg((const struct lwtunnel_encap_ops **) &lwtun_encaps[num], NULL, ops) ? 0 : -1; } EXPORT_SYMBOL_GPL(lwtunnel_encap_add_ops); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *ops, unsigned int encap_type) { int ret; if (encap_type == LWTUNNEL_ENCAP_NONE || encap_type > LWTUNNEL_ENCAP_MAX) return -ERANGE; ret = (cmpxchg((const struct lwtunnel_encap_ops **) &lwtun_encaps[encap_type], ops, NULL) == ops) ? 0 : -1; synchronize_net(); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_encap_del_ops); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { const struct lwtunnel_encap_ops *ops; bool found = false; int ret = -EINVAL; if (encap_type == LWTUNNEL_ENCAP_NONE || encap_type > LWTUNNEL_ENCAP_MAX) { NL_SET_ERR_MSG_ATTR(extack, encap, "Unknown LWT encapsulation type"); return ret; } ret = -EOPNOTSUPP; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[encap_type]); if (likely(ops && ops->build_state && try_module_get(ops->owner))) found = true; rcu_read_unlock(); if (found) { ret = ops->build_state(net, encap, family, cfg, lws, extack); if (ret) module_put(ops->owner); } else { /* don't rely on -EOPNOTSUPP to detect match as build_state * handlers could return it */ NL_SET_ERR_MSG_ATTR(extack, encap, "LWT encapsulation type not supported"); } return ret; } EXPORT_SYMBOL_GPL(lwtunnel_build_state); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { const struct lwtunnel_encap_ops *ops; int ret = -EINVAL; if (encap_type == LWTUNNEL_ENCAP_NONE || encap_type > LWTUNNEL_ENCAP_MAX) { NL_SET_ERR_MSG(extack, "Unknown lwt encapsulation type"); return ret; } rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[encap_type]); rcu_read_unlock(); #ifdef CONFIG_MODULES if (!ops) { const char *encap_type_str = lwtunnel_encap_str(encap_type); if (encap_type_str) { __rtnl_unlock(); request_module("rtnl-lwt-%s", encap_type_str); rtnl_lock(); rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[encap_type]); rcu_read_unlock(); } } #endif ret = ops ? 0 : -EOPNOTSUPP; if (ret < 0) NL_SET_ERR_MSG(extack, "lwt encapsulation type not supported"); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_valid_encap_type); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int remaining, struct netlink_ext_ack *extack) { struct rtnexthop *rtnh = (struct rtnexthop *)attr; struct nlattr *nla_entype; struct nlattr *attrs; u16 encap_type; int attrlen; while (rtnh_ok(rtnh, remaining)) { attrlen = rtnh_attrlen(rtnh); if (attrlen > 0) { attrs = rtnh_attrs(rtnh); nla_entype = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); if (nla_entype) { if (nla_len(nla_entype) < sizeof(u16)) { NL_SET_ERR_MSG(extack, "Invalid RTA_ENCAP_TYPE"); return -EINVAL; } encap_type = nla_get_u16(nla_entype); if (lwtunnel_valid_encap_type(encap_type, extack) != 0) return -EOPNOTSUPP; } } rtnh = rtnh_next(rtnh, &remaining); } return 0; } EXPORT_SYMBOL_GPL(lwtunnel_valid_encap_type_attr); void lwtstate_free(struct lwtunnel_state *lws) { const struct lwtunnel_encap_ops *ops = lwtun_encaps[lws->type]; if (ops->destroy_state) { ops->destroy_state(lws); kfree_rcu(lws, rcu); } else { kfree(lws); } module_put(ops->owner); } EXPORT_SYMBOL_GPL(lwtstate_free); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { const struct lwtunnel_encap_ops *ops; struct nlattr *nest; int ret; if (!lwtstate) return 0; if (lwtstate->type == LWTUNNEL_ENCAP_NONE || lwtstate->type > LWTUNNEL_ENCAP_MAX) return 0; nest = nla_nest_start_noflag(skb, encap_attr); if (!nest) return -EMSGSIZE; ret = -EOPNOTSUPP; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[lwtstate->type]); if (likely(ops && ops->fill_encap)) ret = ops->fill_encap(skb, lwtstate); rcu_read_unlock(); if (ret) goto nla_put_failure; nla_nest_end(skb, nest); ret = nla_put_u16(skb, encap_type_attr, lwtstate->type); if (ret) goto nla_put_failure; return 0; nla_put_failure: nla_nest_cancel(skb, nest); return (ret == -EOPNOTSUPP ? 0 : ret); } EXPORT_SYMBOL_GPL(lwtunnel_fill_encap); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { const struct lwtunnel_encap_ops *ops; int ret = 0; if (!lwtstate) return 0; if (lwtstate->type == LWTUNNEL_ENCAP_NONE || lwtstate->type > LWTUNNEL_ENCAP_MAX) return 0; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[lwtstate->type]); if (likely(ops && ops->get_encap_size)) ret = nla_total_size(ops->get_encap_size(lwtstate)); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_get_encap_size); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { const struct lwtunnel_encap_ops *ops; int ret = 0; if (!a && !b) return 0; if (!a || !b) return 1; if (a->type != b->type) return 1; if (a->type == LWTUNNEL_ENCAP_NONE || a->type > LWTUNNEL_ENCAP_MAX) return 0; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[a->type]); if (likely(ops && ops->cmp_encap)) ret = ops->cmp_encap(a, b); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_cmp_encap); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); const struct lwtunnel_encap_ops *ops; struct lwtunnel_state *lwtstate; int ret = -EINVAL; if (!dst) goto drop; lwtstate = dst->lwtstate; if (lwtstate->type == LWTUNNEL_ENCAP_NONE || lwtstate->type > LWTUNNEL_ENCAP_MAX) return 0; ret = -EOPNOTSUPP; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[lwtstate->type]); if (likely(ops && ops->output)) ret = ops->output(net, sk, skb); rcu_read_unlock(); if (ret == -EOPNOTSUPP) goto drop; return ret; drop: kfree_skb(skb); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_output); int lwtunnel_xmit(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); const struct lwtunnel_encap_ops *ops; struct lwtunnel_state *lwtstate; int ret = -EINVAL; if (!dst) goto drop; lwtstate = dst->lwtstate; if (lwtstate->type == LWTUNNEL_ENCAP_NONE || lwtstate->type > LWTUNNEL_ENCAP_MAX) return 0; ret = -EOPNOTSUPP; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[lwtstate->type]); if (likely(ops && ops->xmit)) ret = ops->xmit(skb); rcu_read_unlock(); if (ret == -EOPNOTSUPP) goto drop; return ret; drop: kfree_skb(skb); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_xmit); int lwtunnel_input(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); const struct lwtunnel_encap_ops *ops; struct lwtunnel_state *lwtstate; int ret = -EINVAL; if (!dst) goto drop; lwtstate = dst->lwtstate; if (lwtstate->type == LWTUNNEL_ENCAP_NONE || lwtstate->type > LWTUNNEL_ENCAP_MAX) return 0; ret = -EOPNOTSUPP; rcu_read_lock(); ops = rcu_dereference(lwtun_encaps[lwtstate->type]); if (likely(ops && ops->input)) ret = ops->input(skb); rcu_read_unlock(); if (ret == -EOPNOTSUPP) goto drop; return ret; drop: kfree_skb(skb); return ret; } EXPORT_SYMBOL_GPL(lwtunnel_input); |
2 6994 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: common low-level thread information accessors * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds */ #ifndef _LINUX_THREAD_INFO_H #define _LINUX_THREAD_INFO_H #include <linux/types.h> #include <linux/limits.h> #include <linux/bug.h> #include <linux/restart_block.h> #include <linux/errno.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For CONFIG_THREAD_INFO_IN_TASK kernels we need <asm/current.h> for the * definition of current, but for !CONFIG_THREAD_INFO_IN_TASK kernels, * including <asm/current.h> can cause a circular dependency on some platforms. */ #include <asm/current.h> #define current_thread_info() ((struct thread_info *)current) #endif #include <linux/bitops.h> /* * For per-arch arch_within_stack_frames() implementations, defined in * asm/thread_info.h. */ enum { BAD_STACK = -1, NOT_STACK = 0, GOOD_FRAME, GOOD_STACK, }; #ifdef CONFIG_GENERIC_ENTRY enum syscall_work_bit { SYSCALL_WORK_BIT_SECCOMP, SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT, SYSCALL_WORK_BIT_SYSCALL_TRACE, SYSCALL_WORK_BIT_SYSCALL_EMU, SYSCALL_WORK_BIT_SYSCALL_AUDIT, SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH, SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP, }; #define SYSCALL_WORK_SECCOMP BIT(SYSCALL_WORK_BIT_SECCOMP) #define SYSCALL_WORK_SYSCALL_TRACEPOINT BIT(SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT) #define SYSCALL_WORK_SYSCALL_TRACE BIT(SYSCALL_WORK_BIT_SYSCALL_TRACE) #define SYSCALL_WORK_SYSCALL_EMU BIT(SYSCALL_WORK_BIT_SYSCALL_EMU) #define SYSCALL_WORK_SYSCALL_AUDIT BIT(SYSCALL_WORK_BIT_SYSCALL_AUDIT) #define SYSCALL_WORK_SYSCALL_USER_DISPATCH BIT(SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH) #define SYSCALL_WORK_SYSCALL_EXIT_TRAP BIT(SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP) #endif #include <asm/thread_info.h> #ifdef __KERNEL__ #ifndef arch_set_restart_data #define arch_set_restart_data(restart) do { } while (0) #endif static inline long set_restart_fn(struct restart_block *restart, long (*fn)(struct restart_block *)) { restart->fn = fn; arch_set_restart_data(restart); return -ERESTART_RESTARTBLOCK; } #ifndef THREAD_ALIGN #define THREAD_ALIGN THREAD_SIZE #endif #define THREADINFO_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) /* * flag set/clear/test wrappers * - pass TIF_xxxx constants to these functions */ static inline void set_ti_thread_flag(struct thread_info *ti, int flag) { set_bit(flag, (unsigned long *)&ti->flags); } static inline void clear_ti_thread_flag(struct thread_info *ti, int flag) { clear_bit(flag, (unsigned long *)&ti->flags); } static inline void update_ti_thread_flag(struct thread_info *ti, int flag, bool value) { if (value) set_ti_thread_flag(ti, flag); else clear_ti_thread_flag(ti, flag); } static inline int test_and_set_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_set_bit(flag, (unsigned long *)&ti->flags); } static inline int test_and_clear_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_clear_bit(flag, (unsigned long *)&ti->flags); } static inline int test_ti_thread_flag(struct thread_info *ti, int flag) { return test_bit(flag, (unsigned long *)&ti->flags); } /* * This may be used in noinstr code, and needs to be __always_inline to prevent * inadvertent instrumentation. */ static __always_inline unsigned long read_ti_thread_flags(struct thread_info *ti) { return READ_ONCE(ti->flags); } #define set_thread_flag(flag) \ set_ti_thread_flag(current_thread_info(), flag) #define clear_thread_flag(flag) \ clear_ti_thread_flag(current_thread_info(), flag) #define update_thread_flag(flag, value) \ update_ti_thread_flag(current_thread_info(), flag, value) #define test_and_set_thread_flag(flag) \ test_and_set_ti_thread_flag(current_thread_info(), flag) #define test_and_clear_thread_flag(flag) \ test_and_clear_ti_thread_flag(current_thread_info(), flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) #define read_thread_flags() \ read_ti_thread_flags(current_thread_info()) #define read_task_thread_flags(t) \ read_ti_thread_flags(task_thread_info(t)) #ifdef CONFIG_GENERIC_ENTRY #define set_syscall_work(fl) \ set_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define test_syscall_work(fl) \ test_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define clear_syscall_work(fl) \ clear_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define set_task_syscall_work(t, fl) \ set_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #define test_task_syscall_work(t, fl) \ test_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #define clear_task_syscall_work(t, fl) \ clear_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #else /* CONFIG_GENERIC_ENTRY */ #define set_syscall_work(fl) \ set_ti_thread_flag(current_thread_info(), TIF_##fl) #define test_syscall_work(fl) \ test_ti_thread_flag(current_thread_info(), TIF_##fl) #define clear_syscall_work(fl) \ clear_ti_thread_flag(current_thread_info(), TIF_##fl) #define set_task_syscall_work(t, fl) \ set_ti_thread_flag(task_thread_info(t), TIF_##fl) #define test_task_syscall_work(t, fl) \ test_ti_thread_flag(task_thread_info(t), TIF_##fl) #define clear_task_syscall_work(t, fl) \ clear_ti_thread_flag(task_thread_info(t), TIF_##fl) #endif /* !CONFIG_GENERIC_ENTRY */ #define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { return 0; } #endif #ifdef CONFIG_HARDENED_USERCOPY extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n)) __check_object_size(ptr, n, to_user); } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); static inline void copy_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __compiletime_object_size(addr); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #ifndef arch_setup_new_exec static inline void arch_setup_new_exec(void) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_THREAD_INFO_H */ |
4 4 4 4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | // SPDX-License-Identifier: GPL-2.0 #include "blk-rq-qos.h" /* * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, * false if 'v' + 1 would be bigger than 'below'. */ static bool atomic_inc_below(atomic_t *v, unsigned int below) { unsigned int cur = atomic_read(v); for (;;) { unsigned int old; if (cur >= below) return false; old = atomic_cmpxchg(v, cur, cur + 1); if (old == cur) break; cur = old; } return true; } bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit) { return atomic_inc_below(&rq_wait->inflight, limit); } void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->cleanup) rqos->ops->cleanup(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_done(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->done) rqos->ops->done(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_issue(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->issue) rqos->ops->issue(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->requeue) rqos->ops->requeue(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->throttle) rqos->ops->throttle(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) { do { if (rqos->ops->track) rqos->ops->track(rqos, rq, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio) { do { if (rqos->ops->merge) rqos->ops->merge(rqos, rq, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->done_bio) rqos->ops->done_bio(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_queue_depth_changed(struct rq_qos *rqos) { do { if (rqos->ops->queue_depth_changed) rqos->ops->queue_depth_changed(rqos); rqos = rqos->next; } while (rqos); } /* * Return true, if we can't increase the depth further by scaling */ bool rq_depth_calc_max_depth(struct rq_depth *rqd) { unsigned int depth; bool ret = false; /* * For QD=1 devices, this is a special case. It's important for those * to have one request ready when one completes, so force a depth of * 2 for those devices. On the backend, it'll be a depth of 1 anyway, * since the device can't have more than that in flight. If we're * scaling down, then keep a setting of 1/1/1. */ if (rqd->queue_depth == 1) { if (rqd->scale_step > 0) rqd->max_depth = 1; else { rqd->max_depth = 2; ret = true; } } else { /* * scale_step == 0 is our default state. If we have suffered * latency spikes, step will be > 0, and we shrink the * allowed write depths. If step is < 0, we're only doing * writes, and we allow a temporarily higher depth to * increase performance. */ depth = min_t(unsigned int, rqd->default_depth, rqd->queue_depth); if (rqd->scale_step > 0) depth = 1 + ((depth - 1) >> min(31, rqd->scale_step)); else if (rqd->scale_step < 0) { unsigned int maxd = 3 * rqd->queue_depth / 4; depth = 1 + ((depth - 1) << -rqd->scale_step); if (depth > maxd) { depth = maxd; ret = true; } } rqd->max_depth = depth; } return ret; } /* Returns true on success and false if scaling up wasn't possible */ bool rq_depth_scale_up(struct rq_depth *rqd) { /* * Hit max in previous round, stop here */ if (rqd->scaled_max) return false; rqd->scale_step--; rqd->scaled_max = rq_depth_calc_max_depth(rqd); return true; } /* * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we * had a latency violation. Returns true on success and returns false if * scaling down wasn't possible. */ bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle) { /* * Stop scaling down when we've hit the limit. This also prevents * ->scale_step from going to crazy values, if the device can't * keep up. */ if (rqd->max_depth == 1) return false; if (rqd->scale_step < 0 && hard_throttle) rqd->scale_step = 0; else rqd->scale_step++; rqd->scaled_max = false; rq_depth_calc_max_depth(rqd); return true; } struct rq_qos_wait_data { struct wait_queue_entry wq; struct task_struct *task; struct rq_wait *rqw; acquire_inflight_cb_t *cb; void *private_data; bool got_token; }; static int rq_qos_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key) { struct rq_qos_wait_data *data = container_of(curr, struct rq_qos_wait_data, wq); /* * If we fail to get a budget, return -1 to interrupt the wake up loop * in __wake_up_common. */ if (!data->cb(data->rqw, data->private_data)) return -1; data->got_token = true; smp_wmb(); wake_up_process(data->task); list_del_init_careful(&curr->entry); return 1; } /** * rq_qos_wait - throttle on a rqw if we need to * @rqw: rqw to throttle on * @private_data: caller provided specific data * @acquire_inflight_cb: inc the rqw->inflight counter if we can * @cleanup_cb: the callback to cleanup in case we race with a waker * * This provides a uniform place for the rq_qos users to do their throttling. * Since you can end up with a lot of things sleeping at once, this manages the * waking up based on the resources available. The acquire_inflight_cb should * inc the rqw->inflight if we have the ability to do so, or return false if not * and then we will sleep until the room becomes available. * * cleanup_cb is in case that we race with a waker and need to cleanup the * inflight count accordingly. */ void rq_qos_wait(struct rq_wait *rqw, void *private_data, acquire_inflight_cb_t *acquire_inflight_cb, cleanup_cb_t *cleanup_cb) { struct rq_qos_wait_data data = { .wq = { .func = rq_qos_wake_function, .entry = LIST_HEAD_INIT(data.wq.entry), }, .task = current, .rqw = rqw, .cb = acquire_inflight_cb, .private_data = private_data, }; bool has_sleeper; has_sleeper = wq_has_sleeper(&rqw->wait); if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) return; has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE); do { /* The memory barrier in set_task_state saves us here. */ if (data.got_token) break; if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) { finish_wait(&rqw->wait, &data.wq); /* * We raced with wbt_wake_function() getting a token, * which means we now have two. Put our local token * and wake anyone else potentially waiting for one. */ smp_rmb(); if (data.got_token) cleanup_cb(rqw, private_data); break; } io_schedule(); has_sleeper = true; set_current_state(TASK_UNINTERRUPTIBLE); } while (1); finish_wait(&rqw->wait, &data.wq); } void rq_qos_exit(struct request_queue *q) { blk_mq_debugfs_unregister_queue_rqos(q); while (q->rq_qos) { struct rq_qos *rqos = q->rq_qos; q->rq_qos = rqos->next; rqos->ops->exit(rqos); } } |
3 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | // SPDX-License-Identifier: GPL-2.0-only /* * net/dccp/diag.c * * An implementation of the DCCP protocol * Arnaldo Carvalho de Melo <acme@mandriva.com> */ #include <linux/module.h> #include <linux/inet_diag.h> #include "ccid.h" #include "dccp.h" static void dccp_get_info(struct sock *sk, struct tcp_info *info) { struct dccp_sock *dp = dccp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); memset(info, 0, sizeof(*info)); info->tcpi_state = sk->sk_state; info->tcpi_retransmits = icsk->icsk_retransmits; info->tcpi_probes = icsk->icsk_probes_out; info->tcpi_backoff = icsk->icsk_backoff; info->tcpi_pmtu = icsk->icsk_pmtu_cookie; if (dp->dccps_hc_rx_ackvec != NULL) info->tcpi_options |= TCPI_OPT_SACK; if (dp->dccps_hc_rx_ccid != NULL) ccid_hc_rx_get_info(dp->dccps_hc_rx_ccid, sk, info); if (dp->dccps_hc_tx_ccid != NULL) ccid_hc_tx_get_info(dp->dccps_hc_tx_ccid, sk, info); } static void dccp_diag_get_info(struct sock *sk, struct inet_diag_msg *r, void *_info) { r->idiag_rqueue = r->idiag_wqueue = 0; if (_info != NULL) dccp_get_info(sk, _info); } static void dccp_diag_dump(struct sk_buff *skb, struct netlink_callback *cb, const struct inet_diag_req_v2 *r) { inet_diag_dump_icsk(&dccp_hashinfo, skb, cb, r); } static int dccp_diag_dump_one(struct netlink_callback *cb, const struct inet_diag_req_v2 *req) { return inet_diag_dump_one_icsk(&dccp_hashinfo, cb, req); } static const struct inet_diag_handler dccp_diag_handler = { .dump = dccp_diag_dump, .dump_one = dccp_diag_dump_one, .idiag_get_info = dccp_diag_get_info, .idiag_type = IPPROTO_DCCP, .idiag_info_size = sizeof(struct tcp_info), }; static int __init dccp_diag_init(void) { return inet_diag_register(&dccp_diag_handler); } static void __exit dccp_diag_fini(void) { inet_diag_unregister(&dccp_diag_handler); } module_init(dccp_diag_init); module_exit(dccp_diag_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnaldo Carvalho de Melo <acme@mandriva.com>"); MODULE_DESCRIPTION("DCCP inet_diag handler"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 2-33 /* AF_INET - IPPROTO_DCCP */); |
12 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/core/netclassid_cgroup.c Classid Cgroupfs Handling * * Authors: Thomas Graf <tgraf@suug.ch> */ #include <linux/slab.h> #include <linux/cgroup.h> #include <linux/fdtable.h> #include <linux/sched/task.h> #include <net/cls_cgroup.h> #include <net/sock.h> static inline struct cgroup_cls_state *css_cls_state(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cgroup_cls_state, css) : NULL; } struct cgroup_cls_state *task_cls_state(struct task_struct *p) { return css_cls_state(task_css_check(p, net_cls_cgrp_id, rcu_read_lock_bh_held())); } EXPORT_SYMBOL_GPL(task_cls_state); static struct cgroup_subsys_state * cgrp_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_cls_state *cs; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); return &cs->css; } static int cgrp_css_online(struct cgroup_subsys_state *css) { struct cgroup_cls_state *cs = css_cls_state(css); struct cgroup_cls_state *parent = css_cls_state(css->parent); if (parent) cs->classid = parent->classid; return 0; } static void cgrp_css_free(struct cgroup_subsys_state *css) { kfree(css_cls_state(css)); } /* * To avoid freezing of sockets creation for tasks with big number of threads * and opened sockets lets release file_lock every 1000 iterated descriptors. * New sockets will already have been created with new classid. */ struct update_classid_context { u32 classid; unsigned int batch; }; #define UPDATE_CLASSID_BATCH 1000 static int update_classid_sock(const void *v, struct file *file, unsigned n) { struct update_classid_context *ctx = (void *)v; struct socket *sock = sock_from_file(file); if (sock) sock_cgroup_set_classid(&sock->sk->sk_cgrp_data, ctx->classid); if (--ctx->batch == 0) { ctx->batch = UPDATE_CLASSID_BATCH; return n + 1; } return 0; } static void update_classid_task(struct task_struct *p, u32 classid) { struct update_classid_context ctx = { .classid = classid, .batch = UPDATE_CLASSID_BATCH }; unsigned int fd = 0; do { task_lock(p); fd = iterate_fd(p->files, fd, update_classid_sock, &ctx); task_unlock(p); cond_resched(); } while (fd); } static void cgrp_attach(struct cgroup_taskset *tset) { struct cgroup_subsys_state *css; struct task_struct *p; cgroup_taskset_for_each(p, css, tset) { update_classid_task(p, css_cls_state(css)->classid); } } static u64 read_classid(struct cgroup_subsys_state *css, struct cftype *cft) { return css_cls_state(css)->classid; } static int write_classid(struct cgroup_subsys_state *css, struct cftype *cft, u64 value) { struct cgroup_cls_state *cs = css_cls_state(css); struct css_task_iter it; struct task_struct *p; cs->classid = (u32)value; css_task_iter_start(css, 0, &it); while ((p = css_task_iter_next(&it))) update_classid_task(p, cs->classid); css_task_iter_end(&it); return 0; } static struct cftype ss_files[] = { { .name = "classid", .read_u64 = read_classid, .write_u64 = write_classid, }, { } /* terminate */ }; struct cgroup_subsys net_cls_cgrp_subsys = { .css_alloc = cgrp_css_alloc, .css_online = cgrp_css_online, .css_free = cgrp_css_free, .attach = cgrp_attach, .legacy_cftypes = ss_files, }; |
3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 1 4 4 1 5 5 5 3 5 5 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPV4 GSO/GRO offload support * Linux INET implementation * * UDPv4 GSO support */ #include <linux/skbuff.h> #include <net/udp.h> #include <net/protocol.h> #include <net/inet_common.h> static struct sk_buff *__skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features), __be16 new_protocol, bool is_ipv6) { int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb); bool remcsum, need_csum, offload_csum, gso_partial; struct sk_buff *segs = ERR_PTR(-EINVAL); struct udphdr *uh = udp_hdr(skb); u16 mac_offset = skb->mac_header; __be16 protocol = skb->protocol; u16 mac_len = skb->mac_len; int udp_offset, outer_hlen; __wsum partial; bool need_ipsec; if (unlikely(!pskb_may_pull(skb, tnl_hlen))) goto out; /* Adjust partial header checksum to negate old length. * We cannot rely on the value contained in uh->len as it is * possible that the actual value exceeds the boundaries of the * 16 bit length field due to the header being added outside of an * IP or IPv6 frame that was already limited to 64K - 1. */ if (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) partial = (__force __wsum)uh->len; else partial = (__force __wsum)htonl(skb->len); partial = csum_sub(csum_unfold(uh->check), partial); /* setup inner skb. */ skb->encapsulation = 0; SKB_GSO_CB(skb)->encap_level = 0; __skb_pull(skb, tnl_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, skb_inner_network_offset(skb)); skb_set_transport_header(skb, skb_inner_transport_offset(skb)); skb->mac_len = skb_inner_network_offset(skb); skb->protocol = new_protocol; need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM); skb->encap_hdr_csum = need_csum; remcsum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TUNNEL_REMCSUM); skb->remcsum_offload = remcsum; need_ipsec = skb_dst(skb) && dst_xfrm(skb_dst(skb)); /* Try to offload checksum if possible */ offload_csum = !!(need_csum && !need_ipsec && (skb->dev->features & (is_ipv6 ? (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM) : (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)))); features &= skb->dev->hw_enc_features; if (need_csum) features &= ~NETIF_F_SCTP_CRC; /* The only checksum offload we care about from here on out is the * outer one so strip the existing checksum feature flags and * instead set the flag based on our outer checksum offload value. */ if (remcsum) { features &= ~NETIF_F_CSUM_MASK; if (!need_csum || offload_csum) features |= NETIF_F_HW_CSUM; } /* segment inner packet. */ segs = gso_inner_segment(skb, features); if (IS_ERR_OR_NULL(segs)) { skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset, mac_len); goto out; } gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); outer_hlen = skb_tnl_header_len(skb); udp_offset = outer_hlen - tnl_hlen; skb = segs; do { unsigned int len; if (remcsum) skb->ip_summed = CHECKSUM_NONE; /* Set up inner headers if we are offloading inner checksum */ if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_reset_inner_headers(skb); skb->encapsulation = 1; } skb->mac_len = mac_len; skb->protocol = protocol; __skb_push(skb, outer_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); skb_set_transport_header(skb, udp_offset); len = skb->len - udp_offset; uh = udp_hdr(skb); /* If we are only performing partial GSO the inner header * will be using a length value equal to only one MSS sized * segment instead of the entire frame. */ if (gso_partial && skb_is_gso(skb)) { uh->len = htons(skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)uh); } else { uh->len = htons(len); } if (!need_csum) continue; uh->check = ~csum_fold(csum_add(partial, (__force __wsum)htonl(len))); if (skb->encapsulation || !offload_csum) { uh->check = gso_make_checksum(skb, ~uh->check); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); } } while ((skb = skb->next)); out: return segs; } struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { const struct net_offload __rcu **offloads; __be16 protocol = skb->protocol; const struct net_offload *ops; struct sk_buff *segs = ERR_PTR(-EINVAL); struct sk_buff *(*gso_inner_segment)(struct sk_buff *skb, netdev_features_t features); rcu_read_lock(); switch (skb->inner_protocol_type) { case ENCAP_TYPE_ETHER: protocol = skb->inner_protocol; gso_inner_segment = skb_mac_gso_segment; break; case ENCAP_TYPE_IPPROTO: offloads = is_ipv6 ? inet6_offloads : inet_offloads; ops = rcu_dereference(offloads[skb->inner_ipproto]); if (!ops || !ops->callbacks.gso_segment) goto out_unlock; gso_inner_segment = ops->callbacks.gso_segment; break; default: goto out_unlock; } segs = __skb_udp_tunnel_segment(skb, features, gso_inner_segment, protocol, is_ipv6); out_unlock: rcu_read_unlock(); return segs; } EXPORT_SYMBOL(skb_udp_tunnel_segment); static void __udpv4_gso_segment_csum(struct sk_buff *seg, __be32 *oldip, __be32 *newip, __be16 *oldport, __be16 *newport) { struct udphdr *uh; struct iphdr *iph; if (*oldip == *newip && *oldport == *newport) return; uh = udp_hdr(seg); iph = ip_hdr(seg); if (uh->check) { inet_proto_csum_replace4(&uh->check, seg, *oldip, *newip, true); inet_proto_csum_replace2(&uh->check, seg, *oldport, *newport, false); if (!uh->check) uh->check = CSUM_MANGLED_0; } *oldport = *newport; csum_replace4(&iph->check, *oldip, *newip); *oldip = *newip; } static struct sk_buff *__udpv4_gso_segment_list_csum(struct sk_buff *segs) { struct sk_buff *seg; struct udphdr *uh, *uh2; struct iphdr *iph, *iph2; seg = segs; uh = udp_hdr(seg); iph = ip_hdr(seg); if ((udp_hdr(seg)->dest == udp_hdr(seg->next)->dest) && (udp_hdr(seg)->source == udp_hdr(seg->next)->source) && (ip_hdr(seg)->daddr == ip_hdr(seg->next)->daddr) && (ip_hdr(seg)->saddr == ip_hdr(seg->next)->saddr)) return segs; while ((seg = seg->next)) { uh2 = udp_hdr(seg); iph2 = ip_hdr(seg); __udpv4_gso_segment_csum(seg, &iph2->saddr, &iph->saddr, &uh2->source, &uh->source); __udpv4_gso_segment_csum(seg, &iph2->daddr, &iph->daddr, &uh2->dest, &uh->dest); } return segs; } static struct sk_buff *__udp_gso_segment_list(struct sk_buff *skb, netdev_features_t features, bool is_ipv6) { unsigned int mss = skb_shinfo(skb)->gso_size; skb = skb_segment_list(skb, features, skb_mac_header_len(skb)); if (IS_ERR(skb)) return skb; udp_hdr(skb)->len = htons(sizeof(struct udphdr) + mss); return is_ipv6 ? skb : __udpv4_gso_segment_list_csum(skb); } struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, netdev_features_t features, bool is_ipv6) { struct sock *sk = gso_skb->sk; unsigned int sum_truesize = 0; struct sk_buff *segs, *seg; struct udphdr *uh; unsigned int mss; bool copy_dtor; __sum16 check; __be16 newlen; mss = skb_shinfo(gso_skb)->gso_size; if (gso_skb->len <= sizeof(*uh) + mss) return ERR_PTR(-EINVAL); if (unlikely(skb_checksum_start(gso_skb) != skb_transport_header(gso_skb) && !(skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST))) return ERR_PTR(-EINVAL); if (skb_gso_ok(gso_skb, features | NETIF_F_GSO_ROBUST)) { /* Packet is from an untrusted source, reset gso_segs. */ skb_shinfo(gso_skb)->gso_segs = DIV_ROUND_UP(gso_skb->len - sizeof(*uh), mss); return NULL; } if (skb_shinfo(gso_skb)->gso_type & SKB_GSO_FRAGLIST) return __udp_gso_segment_list(gso_skb, features, is_ipv6); skb_pull(gso_skb, sizeof(*uh)); /* clear destructor to avoid skb_segment assigning it to tail */ copy_dtor = gso_skb->destructor == sock_wfree; if (copy_dtor) gso_skb->destructor = NULL; segs = skb_segment(gso_skb, features); if (IS_ERR_OR_NULL(segs)) { if (copy_dtor) gso_skb->destructor = sock_wfree; return segs; } /* GSO partial and frag_list segmentation only requires splitting * the frame into an MSS multiple and possibly a remainder, both * cases return a GSO skb. So update the mss now. */ if (skb_is_gso(segs)) mss *= skb_shinfo(segs)->gso_segs; seg = segs; uh = udp_hdr(seg); /* preserve TX timestamp flags and TS key for first segment */ skb_shinfo(seg)->tskey = skb_shinfo(gso_skb)->tskey; skb_shinfo(seg)->tx_flags |= (skb_shinfo(gso_skb)->tx_flags & SKBTX_ANY_TSTAMP); /* compute checksum adjustment based on old length versus new */ newlen = htons(sizeof(*uh) + mss); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); for (;;) { if (copy_dtor) { seg->destructor = sock_wfree; seg->sk = sk; sum_truesize += seg->truesize; } if (!seg->next) break; uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; seg = seg->next; uh = udp_hdr(seg); } /* last packet can be partial gso_size, account for that in checksum */ newlen = htons(skb_tail_pointer(seg) - skb_transport_header(seg) + seg->data_len); check = csum16_add(csum16_sub(uh->check, uh->len), newlen); uh->len = newlen; uh->check = check; if (seg->ip_summed == CHECKSUM_PARTIAL) gso_reset_checksum(seg, ~check); else uh->check = gso_make_checksum(seg, ~check) ? : CSUM_MANGLED_0; /* update refcount for the packet */ if (copy_dtor) { int delta = sum_truesize - gso_skb->truesize; /* In some pathological cases, delta can be negative. * We need to either use refcount_add() or refcount_sub_and_test() */ if (likely(delta >= 0)) refcount_add(delta, &sk->sk_wmem_alloc); else WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); } return segs; } EXPORT_SYMBOL_GPL(__udp_gso_segment); static struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); unsigned int mss; __wsum csum; struct udphdr *uh; struct iphdr *iph; if (skb->encapsulation && (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL|SKB_GSO_UDP_TUNNEL_CSUM))) { segs = skb_udp_tunnel_segment(skb, features, false); goto out; } if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP | SKB_GSO_UDP_L4))) goto out; if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto out; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) return __udp_gso_segment(skb, features, false); mss = skb_shinfo(skb)->gso_size; if (unlikely(skb->len <= mss)) goto out; /* Do software UFO. Complete and fill in the UDP checksum as * HW cannot do checksum of UDP packets sent as multiple * IP fragments. */ uh = udp_hdr(skb); iph = ip_hdr(skb); uh->check = 0; csum = skb_checksum(skb, 0, skb->len, 0); uh->check = udp_v4_check(skb->len, iph->saddr, iph->daddr, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; skb->ip_summed = CHECKSUM_UNNECESSARY; /* If there is no outer header we can fake a checksum offload * due to the fact that we have already done the checksum in * software prior to segmenting the frame. */ if (!skb->encap_hdr_csum) features |= NETIF_F_HW_CSUM; /* Fragment the skb. IP headers of the fragments are updated in * inet_gso_segment() */ segs = skb_segment(skb, features); out: return segs; } #define UDP_GRO_CNT_MAX 64 static struct sk_buff *udp_gro_receive_segment(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sk_buff *pp = NULL; struct udphdr *uh2; struct sk_buff *p; unsigned int ulen; int ret = 0; int flush; /* requires non zero csum, for symmetry with GSO */ if (!uh->check) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* Do not deal with padded or malicious packets, sorry ! */ ulen = ntohs(uh->len); if (ulen <= sizeof(*uh) || ulen != skb_gro_len(skb)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } /* pull encapsulating udp header */ skb_gro_pull(skb, sizeof(struct udphdr)); list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = udp_hdr(p); /* Match ports only, as csum is always non zero */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } if (NAPI_GRO_CB(skb)->is_flist != NAPI_GRO_CB(p)->is_flist) { NAPI_GRO_CB(skb)->flush = 1; return p; } flush = NAPI_GRO_CB(p)->flush; if (NAPI_GRO_CB(p)->flush_id != 1 || NAPI_GRO_CB(p)->count != 1 || !NAPI_GRO_CB(p)->is_atomic) flush |= NAPI_GRO_CB(p)->flush_id; else NAPI_GRO_CB(p)->is_atomic = false; /* Terminate the flow on len mismatch or if it grow "too much". * Under small packet flood GRO count could elsewhere grow a lot * leading to excessive truesize values. * On len mismatch merge the first packet shorter than gso_size, * otherwise complete the GRO packet. */ if (ulen > ntohs(uh2->len) || flush) { pp = p; } else { if (NAPI_GRO_CB(skb)->is_flist) { if (!pskb_may_pull(skb, skb_gro_offset(skb))) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } if ((skb->ip_summed != p->ip_summed) || (skb->csum_level != p->csum_level)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } ret = skb_gro_receive_list(p, skb); } else { skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); ret = skb_gro_receive(p, skb); } } if (ret || ulen != ntohs(uh2->len) || NAPI_GRO_CB(p)->count >= UDP_GRO_CNT_MAX) pp = p; return pp; } /* mismatch, but we never need to flush */ return NULL; } struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb, struct udphdr *uh, struct sock *sk) { struct sk_buff *pp = NULL; struct sk_buff *p; struct udphdr *uh2; unsigned int off = skb_gro_offset(skb); int flush = 1; /* We can do L4 aggregation only if the packet can't land in a tunnel * otherwise we could corrupt the inner stream. Detecting such packets * cannot be foolproof and the aggregation might still happen in some * cases. Such packets should be caught in udp_unexpected_gso later. */ NAPI_GRO_CB(skb)->is_flist = 0; if (!sk || !udp_sk(sk)->gro_receive) { /* If the packet was locally encapsulated in a UDP tunnel that * wasn't detected above, do not GRO. */ if (skb->encapsulation) goto out; if (skb->dev->features & NETIF_F_GRO_FRAGLIST) NAPI_GRO_CB(skb)->is_flist = sk ? !udp_sk(sk)->gro_enabled : 1; if ((!sk && (skb->dev->features & NETIF_F_GRO_UDP_FWD)) || (sk && udp_sk(sk)->gro_enabled) || NAPI_GRO_CB(skb)->is_flist) return call_gro_receive(udp_gro_receive_segment, head, skb); /* no GRO, be sure flush the current packet */ goto out; } if (NAPI_GRO_CB(skb)->encap_mark || (uh->check && skb->ip_summed != CHECKSUM_PARTIAL && NAPI_GRO_CB(skb)->csum_cnt == 0 && !NAPI_GRO_CB(skb)->csum_valid)) goto out; /* mark that this skb passed once through the tunnel gro layer */ NAPI_GRO_CB(skb)->encap_mark = 1; flush = 0; list_for_each_entry(p, head, list) { if (!NAPI_GRO_CB(p)->same_flow) continue; uh2 = (struct udphdr *)(p->data + off); /* Match ports and either checksums are either both zero * or nonzero. */ if ((*(u32 *)&uh->source != *(u32 *)&uh2->source) || (!uh->check ^ !uh2->check)) { NAPI_GRO_CB(p)->same_flow = 0; continue; } } skb_gro_pull(skb, sizeof(struct udphdr)); /* pull encapsulating udp header */ skb_gro_postpull_rcsum(skb, uh, sizeof(struct udphdr)); pp = call_gro_receive_sk(udp_sk(sk)->gro_receive, sk, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } EXPORT_SYMBOL(udp_gro_receive); static struct sock *udp4_gro_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport) { const struct iphdr *iph = skb_gro_network_header(skb); return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, iph->daddr, dport, inet_iif(skb), inet_sdif(skb), &udp_table, NULL); } INDIRECT_CALLABLE_SCOPE struct sk_buff *udp4_gro_receive(struct list_head *head, struct sk_buff *skb) { struct udphdr *uh = udp_gro_udphdr(skb); struct sock *sk = NULL; struct sk_buff *pp; if (unlikely(!uh)) goto flush; /* Don't bother verifying checksum if we're going to flush anyway. */ if (NAPI_GRO_CB(skb)->flush) goto skip; if (skb_gro_checksum_validate_zero_check(skb, IPPROTO_UDP, uh->check, inet_gro_compute_pseudo)) goto flush; else if (uh->check) skb_gro_checksum_try_convert(skb, IPPROTO_UDP, inet_gro_compute_pseudo); skip: NAPI_GRO_CB(skb)->is_ipv6 = 0; if (static_branch_unlikely(&udp_encap_needed_key)) sk = udp4_gro_lookup_skb(skb, uh->source, uh->dest); pp = udp_gro_receive(head, skb, uh, sk); return pp; flush: NAPI_GRO_CB(skb)->flush = 1; return NULL; } static int udp_gro_complete_segment(struct sk_buff *skb) { struct udphdr *uh = udp_hdr(skb); skb->csum_start = (unsigned char *)uh - skb->head; skb->csum_offset = offsetof(struct udphdr, check); skb->ip_summed = CHECKSUM_PARTIAL; skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_L4; if (skb->encapsulation) skb->inner_transport_header = skb->transport_header; return 0; } int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup) { __be16 newlen = htons(skb->len - nhoff); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); struct sock *sk; int err; uh->len = newlen; sk = INDIRECT_CALL_INET(lookup, udp6_lib_lookup_skb, udp4_lib_lookup_skb, skb, uh->source, uh->dest); if (sk && udp_sk(sk)->gro_complete) { skb_shinfo(skb)->gso_type = uh->check ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; /* clear the encap mark, so that inner frag_list gro_complete * can take place */ NAPI_GRO_CB(skb)->encap_mark = 0; /* Set encapsulation before calling into inner gro_complete() * functions to make them set up the inner offsets. */ skb->encapsulation = 1; err = udp_sk(sk)->gro_complete(sk, skb, nhoff + sizeof(struct udphdr)); } else { err = udp_gro_complete_segment(skb); } if (skb->remcsum_offload) skb_shinfo(skb)->gso_type |= SKB_GSO_TUNNEL_REMCSUM; return err; } EXPORT_SYMBOL(udp_gro_complete); INDIRECT_CALLABLE_SCOPE int udp4_gro_complete(struct sk_buff *skb, int nhoff) { const struct iphdr *iph = ip_hdr(skb); struct udphdr *uh = (struct udphdr *)(skb->data + nhoff); /* do fraglist only if there is no outer UDP encap (or we already processed it) */ if (NAPI_GRO_CB(skb)->is_flist && !NAPI_GRO_CB(skb)->encap_mark) { uh->len = htons(skb->len - nhoff); skb_shinfo(skb)->gso_type |= (SKB_GSO_FRAGLIST|SKB_GSO_UDP_L4); skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; __skb_incr_checksum_unnecessary(skb); return 0; } if (uh->check) uh->check = ~udp_v4_check(skb->len - nhoff, iph->saddr, iph->daddr, 0); return udp_gro_complete(skb, nhoff, udp4_lib_lookup_skb); } static const struct net_offload udpv4_offload = { .callbacks = { .gso_segment = udp4_ufo_fragment, .gro_receive = udp4_gro_receive, .gro_complete = udp4_gro_complete, }, }; int __init udpv4_offload_init(void) { return inet_add_offload(&udpv4_offload, IPPROTO_UDP); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCATTERLIST_H #define _LINUX_SCATTERLIST_H #include <linux/string.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/mm.h> #include <asm/io.h> struct scatterlist { unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; #ifdef CONFIG_NEED_SG_DMA_LENGTH unsigned int dma_length; #endif }; /* * These macros should be used after a dma_map_sg call has been done * to get bus addresses of each of the SG entries and their lengths. * You should only work with the number of sg entries dma_map_sg * returns, or alternatively stop on the first sg_dma_len(sg) which * is 0. */ #define sg_dma_address(sg) ((sg)->dma_address) #ifdef CONFIG_NEED_SG_DMA_LENGTH #define sg_dma_len(sg) ((sg)->dma_length) #else #define sg_dma_len(sg) ((sg)->length) #endif struct sg_table { struct scatterlist *sgl; /* the list */ unsigned int nents; /* number of mapped entries */ unsigned int orig_nents; /* original size of list */ }; struct sg_append_table { struct sg_table sgt; /* The scatter list table */ struct scatterlist *prv; /* last populated sge in the table */ unsigned int total_nents; /* Total entries in the table */ }; /* * Notes on SG table design. * * We use the unsigned long page_link field in the scatterlist struct to place * the page pointer AND encode information about the sg table as well. The two * lower bits are reserved for this information. * * If bit 0 is set, then the page_link contains a pointer to the next sg * table list. Otherwise the next entry is at sg + 1. * * If bit 1 is set, then this sg entry is the last element in a list. * * See sg_next(). * */ #define SG_CHAIN 0x01UL #define SG_END 0x02UL /* * We overload the LSB of the page pointer to indicate whether it's * a valid sg entry, or whether it points to the start of a new scatterlist. * Those low bits are there for everyone! (thanks mason :-) */ #define sg_is_chain(sg) ((sg)->page_link & SG_CHAIN) #define sg_is_last(sg) ((sg)->page_link & SG_END) #define sg_chain_ptr(sg) \ ((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END))) /** * sg_assign_page - Assign a given page to an SG entry * @sg: SG entry * @page: The page * * Description: * Assign page to sg entry. Also see sg_set_page(), the most commonly used * variant. * **/ static inline void sg_assign_page(struct scatterlist *sg, struct page *page) { unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END); /* * In order for the low bit stealing approach to work, pages * must be aligned at a 32-bit boundary as a minimum. */ BUG_ON((unsigned long) page & (SG_CHAIN | SG_END)); #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif sg->page_link = page_link | (unsigned long) page; } /** * sg_set_page - Set sg entry to point at given page * @sg: SG entry * @page: The page * @len: Length of data * @offset: Offset into page * * Description: * Use this function to set an sg entry pointing at a page, never assign * the page directly. We encode sg table information in the lower bits * of the page pointer. See sg_page() for looking up the page belonging * to an sg entry. * **/ static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } static inline struct page *sg_page(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END)); } /** * sg_set_buf - Set sg entry to point at given data * @sg: SG entry * @buf: Data * @buflen: Data length * **/ static inline void sg_set_buf(struct scatterlist *sg, const void *buf, unsigned int buflen) { #ifdef CONFIG_DEBUG_SG BUG_ON(!virt_addr_valid(buf)); #endif sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf)); } /* * Loop over each sg element, following the pointer to a new list if necessary */ #define for_each_sg(sglist, sg, nr, __i) \ for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg)) /* * Loop over each sg element in the given sg_table object. */ #define for_each_sgtable_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i) /* * Loop over each sg element in the given *DMA mapped* sg_table object. * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses * of the each element. */ #define for_each_sgtable_dma_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->nents, i) static inline void __sg_chain(struct scatterlist *chain_sg, struct scatterlist *sgl) { /* * offset and length are unused for chain entry. Clear them. */ chain_sg->offset = 0; chain_sg->length = 0; /* * Set lowest bit to indicate a link pointer, and make sure to clear * the termination bit if it happens to be set. */ chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END; } /** * sg_chain - Chain two sglists together * @prv: First scatterlist * @prv_nents: Number of entries in prv * @sgl: Second scatterlist * * Description: * Links @prv@ and @sgl@ together, to form a longer scatterlist. * **/ static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents, struct scatterlist *sgl) { __sg_chain(&prv[prv_nents - 1], sgl); } /** * sg_mark_end - Mark the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Marks the passed in sg entry as the termination point for the sg * table. A call to sg_next() on this entry will return NULL. * **/ static inline void sg_mark_end(struct scatterlist *sg) { /* * Set termination bit, clear potential chain bit */ sg->page_link |= SG_END; sg->page_link &= ~SG_CHAIN; } /** * sg_unmark_end - Undo setting the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Removes the termination marker from the given entry of the scatterlist. * **/ static inline void sg_unmark_end(struct scatterlist *sg) { sg->page_link &= ~SG_END; } /** * sg_phys - Return physical address of an sg entry * @sg: SG entry * * Description: * This calls page_to_phys() on the page in this sg entry, and adds the * sg offset. The caller must know that it is legal to call page_to_phys() * on the sg page. * **/ static inline dma_addr_t sg_phys(struct scatterlist *sg) { return page_to_phys(sg_page(sg)) + sg->offset; } /** * sg_virt - Return virtual address of an sg entry * @sg: SG entry * * Description: * This calls page_address() on the page in this sg entry, and adds the * sg offset. The caller must know that the sg page has a valid virtual * mapping. * **/ static inline void *sg_virt(struct scatterlist *sg) { return page_address(sg_page(sg)) + sg->offset; } /** * sg_init_marker - Initialize markers in sg table * @sgl: The SG table * @nents: Number of entries in table * **/ static inline void sg_init_marker(struct scatterlist *sgl, unsigned int nents) { sg_mark_end(&sgl[nents - 1]); } int sg_nents(struct scatterlist *sg); int sg_nents_for_len(struct scatterlist *sg, u64 len); struct scatterlist *sg_next(struct scatterlist *); struct scatterlist *sg_last(struct scatterlist *s, unsigned int); void sg_init_table(struct scatterlist *, unsigned int); void sg_init_one(struct scatterlist *, const void *, unsigned int); int sg_split(struct scatterlist *in, const int in_mapped_nents, const off_t skip, const int nb_splits, const size_t *split_sizes, struct scatterlist **out, int *out_mapped_nents, gfp_t gfp_mask); typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); typedef void (sg_free_fn)(struct scatterlist *, unsigned int); void __sg_free_table(struct sg_table *, unsigned int, unsigned int, sg_free_fn *, unsigned int); void sg_free_table(struct sg_table *); void sg_free_append_table(struct sg_append_table *sgt); int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int, struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *); int sg_alloc_table(struct sg_table *, unsigned int, gfp_t); int sg_alloc_append_table_from_pages(struct sg_append_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, unsigned int left_pages, gfp_t gfp_mask); int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, gfp_t gfp_mask); /** * sg_alloc_table_from_pages - Allocate and initialize an sg table from * an array of pages * @sgt: The sg table header to use * @pages: Pointer to an array of page pointers * @n_pages: Number of pages in the pages array * @offset: Offset from start of the first page to the start of a buffer * @size: Number of valid bytes in the buffer (after offset) * @gfp_mask: GFP allocation mask * * Description: * Allocate and initialize an sg table from a list of pages. Contiguous * ranges of the pages are squashed into a single scatterlist node. A user * may provide an offset at a start and a size of valid data in a buffer * specified by the page array. The returned sg table is released by * sg_free_table. * * Returns: * 0 on success, negative error on failure */ static inline int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, gfp_t gfp_mask) { return sg_alloc_table_from_pages_segment(sgt, pages, n_pages, offset, size, UINT_MAX, gfp_mask); } #ifdef CONFIG_SGL_ALLOC struct scatterlist *sgl_alloc_order(unsigned long long length, unsigned int order, bool chainable, gfp_t gfp, unsigned int *nent_p); struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, unsigned int *nent_p); void sgl_free_n_order(struct scatterlist *sgl, int nents, int order); void sgl_free_order(struct scatterlist *sgl, int order); void sgl_free(struct scatterlist *sgl); #endif /* CONFIG_SGL_ALLOC */ size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip, bool to_buffer); size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen); size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen); size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen, off_t skip); size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip); size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, size_t buflen, off_t skip); /* * Maximum number of entries that will be allocated in one piece, if * a list larger than this is required then chaining will be utilized. */ #define SG_MAX_SINGLE_ALLOC (PAGE_SIZE / sizeof(struct scatterlist)) /* * The maximum number of SG segments that we will put inside a * scatterlist (unless chaining is used). Should ideally fit inside a * single page, to avoid a higher order allocation. We could define this * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order. The * minimum value is 32 */ #define SG_CHUNK_SIZE 128 /* * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit * is totally arbitrary, a setting of 2048 will get you at least 8mb ios. */ #ifdef CONFIG_ARCH_NO_SG_CHAIN #define SG_MAX_SEGMENTS SG_CHUNK_SIZE #else #define SG_MAX_SEGMENTS 2048 #endif #ifdef CONFIG_SG_POOL void sg_free_table_chained(struct sg_table *table, unsigned nents_first_chunk); int sg_alloc_table_chained(struct sg_table *table, int nents, struct scatterlist *first_chunk, unsigned nents_first_chunk); #endif /* * sg page iterator * * Iterates over sg entries page-by-page. On each successful iteration, you * can call sg_page_iter_page(@piter) to get the current page. * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to * the page's page offset within the sg. The iteration will stop either when a * maximum number of sg entries was reached or a terminating sg * (sg_last(sg) == true) was reached. */ struct sg_page_iter { struct scatterlist *sg; /* sg holding the page */ unsigned int sg_pgoffset; /* page offset within the sg */ /* these are internal states, keep away */ unsigned int __nents; /* remaining sg entries */ int __pg_advance; /* nr pages to advance at the * next step */ }; /* * sg page iterator for DMA addresses * * This is the same as sg_page_iter however you can call * sg_page_iter_dma_address(@dma_iter) to get the page's DMA * address. sg_page_iter_page() cannot be called on this iterator. */ struct sg_dma_page_iter { struct sg_page_iter base; }; bool __sg_page_iter_next(struct sg_page_iter *piter); bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter); void __sg_page_iter_start(struct sg_page_iter *piter, struct scatterlist *sglist, unsigned int nents, unsigned long pgoffset); /** * sg_page_iter_page - get the current page held by the page iterator * @piter: page iterator holding the page */ static inline struct page *sg_page_iter_page(struct sg_page_iter *piter) { return nth_page(sg_page(piter->sg), piter->sg_pgoffset); } /** * sg_page_iter_dma_address - get the dma address of the current page held by * the page iterator. * @dma_iter: page iterator holding the page */ static inline dma_addr_t sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter) { return sg_dma_address(dma_iter->base.sg) + (dma_iter->base.sg_pgoffset << PAGE_SHIFT); } /** * for_each_sg_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @piter: page iterator to hold current page, sg, sg_pgoffset * @nents: maximum number of sg entries to iterate over * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_page() to get each page pointer. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_page(sglist, piter, nents, pgoffset) \ for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \ __sg_page_iter_next(piter);) /** * for_each_sg_dma_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @dma_iter: DMA page iterator to hold current page * @dma_nents: maximum number of sg entries to iterate over, this is the value * returned from dma_map_sg * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_dma_address() to get each page's DMA address. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset) \ for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents, \ pgoffset); \ __sg_page_iter_dma_next(dma_iter);) /** * for_each_sgtable_page - iterate over all pages in the sg_table object * @sgt: sg_table object to iterate over * @piter: page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all memory pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit. */ #define for_each_sgtable_page(sgt, piter, pgoffset) \ for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset) /** * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object * @sgt: sg_table object to iterate over * @dma_iter: DMA page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all DMA mapped pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE * unit. */ #define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset) \ for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset) /* * Mapping sg iterator * * Iterates over sg entries mapping page-by-page. On each successful * iteration, @miter->page points to the mapped page and * @miter->length bytes of data can be accessed at @miter->addr. As * long as an iteration is enclosed between start and stop, the user * is free to choose control structure and when to stop. * * @miter->consumed is set to @miter->length on each iteration. It * can be adjusted if the user can't consume all the bytes in one go. * Also, a stopped iteration can be resumed by calling next on it. * This is useful when iteration needs to release all resources and * continue later (e.g. at the next interrupt). */ #define SG_MITER_ATOMIC (1 << 0) /* use kmap_atomic */ #define SG_MITER_TO_SG (1 << 1) /* flush back to phys on unmap */ #define SG_MITER_FROM_SG (1 << 2) /* nop */ struct sg_mapping_iter { /* the following three fields can be accessed directly */ struct page *page; /* currently mapped page */ void *addr; /* pointer to the mapped area */ size_t length; /* length of the mapped area */ size_t consumed; /* number of consumed bytes */ struct sg_page_iter piter; /* page iterator */ /* these are internal states, keep away */ unsigned int __offset; /* offset within page */ unsigned int __remaining; /* remaining bytes on page */ unsigned int __flags; }; void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags); bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset); bool sg_miter_next(struct sg_mapping_iter *miter); void sg_miter_stop(struct sg_mapping_iter *miter); #endif /* _LINUX_SCATTERLIST_H */ |
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 12 12 12 12 8 8 12 4 12 12 4 4 4 4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 | // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/extents_status.c * * Written by Yongqiang Yang <xiaoqiangnk@gmail.com> * Modified by * Allison Henderson <achender@linux.vnet.ibm.com> * Hugh Dickins <hughd@google.com> * Zheng Liu <wenqing.lz@taobao.com> * * Ext4 extents status tree core functions. */ #include <linux/list_sort.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include "ext4.h" #include <trace/events/ext4.h> /* * According to previous discussion in Ext4 Developer Workshop, we * will introduce a new structure called io tree to track all extent * status in order to solve some problems that we have met * (e.g. Reservation space warning), and provide extent-level locking. * Delay extent tree is the first step to achieve this goal. It is * original built by Yongqiang Yang. At that time it is called delay * extent tree, whose goal is only track delayed extents in memory to * simplify the implementation of fiemap and bigalloc, and introduce * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called * delay extent tree at the first commit. But for better understand * what it does, it has been rename to extent status tree. * * Step1: * Currently the first step has been done. All delayed extents are * tracked in the tree. It maintains the delayed extent when a delayed * allocation is issued, and the delayed extent is written out or * invalidated. Therefore the implementation of fiemap and bigalloc * are simplified, and SEEK_DATA/SEEK_HOLE are introduced. * * The following comment describes the implemenmtation of extent * status tree and future works. * * Step2: * In this step all extent status are tracked by extent status tree. * Thus, we can first try to lookup a block mapping in this tree before * finding it in extent tree. Hence, single extent cache can be removed * because extent status tree can do a better job. Extents in status * tree are loaded on-demand. Therefore, the extent status tree may not * contain all of the extents in a file. Meanwhile we define a shrinker * to reclaim memory from extent status tree because fragmented extent * tree will make status tree cost too much memory. written/unwritten/- * hole extents in the tree will be reclaimed by this shrinker when we * are under high memory pressure. Delayed extents will not be * reclimed because fiemap, bigalloc, and seek_data/hole need it. */ /* * Extent status tree implementation for ext4. * * * ========================================================================== * Extent status tree tracks all extent status. * * 1. Why we need to implement extent status tree? * * Without extent status tree, ext4 identifies a delayed extent by looking * up page cache, this has several deficiencies - complicated, buggy, * and inefficient code. * * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a * block or a range of blocks are belonged to a delayed extent. * * Let us have a look at how they do without extent status tree. * -- FIEMAP * FIEMAP looks up page cache to identify delayed allocations from holes. * * -- SEEK_HOLE/DATA * SEEK_HOLE/DATA has the same problem as FIEMAP. * * -- bigalloc * bigalloc looks up page cache to figure out if a block is * already under delayed allocation or not to determine whether * quota reserving is needed for the cluster. * * -- writeout * Writeout looks up whole page cache to see if a buffer is * mapped, If there are not very many delayed buffers, then it is * time consuming. * * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA, * bigalloc and writeout can figure out if a block or a range of * blocks is under delayed allocation(belonged to a delayed extent) or * not by searching the extent tree. * * * ========================================================================== * 2. Ext4 extent status tree impelmentation * * -- extent * A extent is a range of blocks which are contiguous logically and * physically. Unlike extent in extent tree, this extent in ext4 is * a in-memory struct, there is no corresponding on-disk data. There * is no limit on length of extent, so an extent can contain as many * blocks as they are contiguous logically and physically. * * -- extent status tree * Every inode has an extent status tree and all allocation blocks * are added to the tree with different status. The extent in the * tree are ordered by logical block no. * * -- operations on a extent status tree * There are three important operations on a delayed extent tree: find * next extent, adding a extent(a range of blocks) and removing a extent. * * -- race on a extent status tree * Extent status tree is protected by inode->i_es_lock. * * -- memory consumption * Fragmented extent tree will make extent status tree cost too much * memory. Hence, we will reclaim written/unwritten/hole extents from * the tree under a heavy memory pressure. * * * ========================================================================== * 3. Performance analysis * * -- overhead * 1. There is a cache extent for write access, so if writes are * not very random, adding space operaions are in O(1) time. * * -- gain * 2. Code is much simpler, more readable, more maintainable and * more efficient. * * * ========================================================================== * 4. TODO list * * -- Refactor delayed space reservation * * -- Extent-level locking */ static struct kmem_cache *ext4_es_cachep; static struct kmem_cache *ext4_pending_cachep; static int __es_insert_extent(struct inode *inode, struct extent_status *newes, struct extent_status *prealloc); static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved, struct extent_status *prealloc); static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan); static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei); static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, struct pending_reservation **prealloc); int __init ext4_init_es(void) { ext4_es_cachep = kmem_cache_create("ext4_extent_status", sizeof(struct extent_status), 0, (SLAB_RECLAIM_ACCOUNT), NULL); if (ext4_es_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_es(void) { kmem_cache_destroy(ext4_es_cachep); } void ext4_es_init_tree(struct ext4_es_tree *tree) { tree->root = RB_ROOT; tree->cache_es = NULL; } #ifdef ES_DEBUG__ static void ext4_es_print_tree(struct inode *inode) { struct ext4_es_tree *tree; struct rb_node *node; printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_es_tree; node = rb_first(&tree->root); while (node) { struct extent_status *es; es = rb_entry(node, struct extent_status, rb_node); printk(KERN_DEBUG " [%u/%u) %llu %x", es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_es_print_tree(inode) #endif static inline ext4_lblk_t ext4_es_end(struct extent_status *es) { BUG_ON(es->es_lblk + es->es_len < es->es_lblk); return es->es_lblk + es->es_len - 1; } /* * search through the tree for an delayed extent with a given offset. If * it can't be found, try to find next extent. */ static struct extent_status *__es_tree_search(struct rb_root *root, ext4_lblk_t lblk) { struct rb_node *node = root->rb_node; struct extent_status *es = NULL; while (node) { es = rb_entry(node, struct extent_status, rb_node); if (lblk < es->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es)) node = node->rb_right; else return es; } if (es && lblk < es->es_lblk) return es; if (es && lblk > ext4_es_end(es)) { node = rb_next(&es->rb_node); return node ? rb_entry(node, struct extent_status, rb_node) : NULL; } return NULL; } /* * ext4_es_find_extent_range - find extent with specified status within block * range or next extent following block range in * extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * @es - extent found, if any * * Find the first extent within the block range specified by @lblk and @end * in the extents status tree that satisfies @matching_fn. If a match * is found, it's returned in @es. If not, and a matching extent is found * beyond the block range, it's returned in @es. If no match is found, an * extent is returned in @es whose es_lblk, es_len, and es_pblk components * are 0. */ static void __es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { struct ext4_es_tree *tree = NULL; struct extent_status *es1 = NULL; struct rb_node *node; WARN_ON(es == NULL); WARN_ON(end < lblk); tree = &EXT4_I(inode)->i_es_tree; /* see if the extent has been cached */ es->es_lblk = es->es_len = es->es_pblk = 0; es1 = READ_ONCE(tree->cache_es); if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u) %llu %x\n", lblk, es1->es_lblk, es1->es_len, ext4_es_pblock(es1), ext4_es_status(es1)); goto out; } es1 = __es_tree_search(&tree->root, lblk); out: if (es1 && !matching_fn(es1)) { while ((node = rb_next(&es1->rb_node)) != NULL) { es1 = rb_entry(node, struct extent_status, rb_node); if (es1->es_lblk > end) { es1 = NULL; break; } if (matching_fn(es1)) break; } } if (es1 && matching_fn(es1)) { WRITE_ONCE(tree->cache_es, es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; } } /* * Locking for __es_find_extent_range() for external use */ void ext4_es_find_extent_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end, struct extent_status *es) { es->es_lblk = es->es_len = es->es_pblk = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; trace_ext4_es_find_extent_range_enter(inode, lblk); read_lock(&EXT4_I(inode)->i_es_lock); __es_find_extent_range(inode, matching_fn, lblk, end, es); read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_find_extent_range_exit(inode, es); } /* * __es_scan_range - search block range for block with specified status * in extents status tree * * @inode - file containing the range * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block defining start of range * @end - logical block defining end of range * * Returns true if at least one block in the specified block range satisfies * the criterion specified by @matching_fn, and false if not. If at least * one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t start, ext4_lblk_t end) { struct extent_status es; __es_find_extent_range(inode, matching_fn, start, end, &es); if (es.es_len == 0) return false; /* no matching extent in the tree */ else if (es.es_lblk <= start && start < es.es_lblk + es.es_len) return true; else if (start <= es.es_lblk && es.es_lblk <= end) return true; else return false; } /* * Locking for __es_scan_range() for external use */ bool ext4_es_scan_range(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk, ext4_lblk_t end) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_range(inode, matching_fn, lblk, end); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } /* * __es_scan_clu - search cluster for block with specified status in * extents status tree * * @inode - file containing the cluster * @matching_fn - pointer to function that matches extents with desired status * @lblk - logical block in cluster to be searched * * Returns true if at least one extent in the cluster containing @lblk * satisfies the criterion specified by @matching_fn, and false if not. If at * least one extent has the specified status, then there is at least one block * in the cluster with that status. Should only be called by code that has * taken i_es_lock. */ static bool __es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t lblk_start, lblk_end; lblk_start = EXT4_LBLK_CMASK(sbi, lblk); lblk_end = lblk_start + sbi->s_cluster_ratio - 1; return __es_scan_range(inode, matching_fn, lblk_start, lblk_end); } /* * Locking for __es_scan_clu() for external use */ bool ext4_es_scan_clu(struct inode *inode, int (*matching_fn)(struct extent_status *es), ext4_lblk_t lblk) { bool ret; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return false; read_lock(&EXT4_I(inode)->i_es_lock); ret = __es_scan_clu(inode, matching_fn, lblk); read_unlock(&EXT4_I(inode)->i_es_lock); return ret; } static void ext4_es_list_add(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); if (!list_empty(&ei->i_es_list)) return; spin_lock(&sbi->s_es_lock); if (list_empty(&ei->i_es_list)) { list_add_tail(&ei->i_es_list, &sbi->s_es_list); sbi->s_es_nr_inode++; } spin_unlock(&sbi->s_es_lock); } static void ext4_es_list_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); spin_lock(&sbi->s_es_lock); if (!list_empty(&ei->i_es_list)) { list_del_init(&ei->i_es_list); sbi->s_es_nr_inode--; WARN_ON_ONCE(sbi->s_es_nr_inode < 0); } spin_unlock(&sbi->s_es_lock); } static inline struct pending_reservation *__alloc_pending(bool nofail) { if (!nofail) return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC); return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL); } static inline void __free_pending(struct pending_reservation *pr) { kmem_cache_free(ext4_pending_cachep, pr); } /* * Returns true if we cannot fail to allocate memory for this extent_status * entry and cannot reclaim it until its status changes. */ static inline bool ext4_es_must_keep(struct extent_status *es) { /* fiemap, bigalloc, and seek_data/hole need to use it. */ if (ext4_es_is_delayed(es)) return true; return false; } static inline struct extent_status *__es_alloc_extent(bool nofail) { if (!nofail) return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC); return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL); } static void ext4_es_init_extent(struct inode *inode, struct extent_status *es, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk) { es->es_lblk = lblk; es->es_len = len; es->es_pblk = pblk; /* We never try to reclaim a must kept extent, so we don't count it. */ if (!ext4_es_must_keep(es)) { if (!EXT4_I(inode)->i_es_shk_nr++) ext4_es_list_add(inode); percpu_counter_inc(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } EXT4_I(inode)->i_es_all_nr++; percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); } static inline void __es_free_extent(struct extent_status *es) { kmem_cache_free(ext4_es_cachep, es); } static void ext4_es_free_extent(struct inode *inode, struct extent_status *es) { EXT4_I(inode)->i_es_all_nr--; percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt); /* Decrease the shrink counter when we can reclaim the extent. */ if (!ext4_es_must_keep(es)) { BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0); if (!--EXT4_I(inode)->i_es_shk_nr) ext4_es_list_del(inode); percpu_counter_dec(&EXT4_SB(inode->i_sb)-> s_es_stats.es_stats_shk_cnt); } __es_free_extent(es); } /* * Check whether or not two extents can be merged * Condition: * - logical block number is contiguous * - physical block number is contiguous * - status is equal */ static int ext4_es_can_be_merged(struct extent_status *es1, struct extent_status *es2) { if (ext4_es_type(es1) != ext4_es_type(es2)) return 0; if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) { pr_warn("ES assertion failed when merging extents. " "The sum of lengths of es1 (%d) and es2 (%d) " "is bigger than allowed file size (%d)\n", es1->es_len, es2->es_len, EXT_MAX_BLOCKS); WARN_ON(1); return 0; } if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk) return 0; if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) && (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2))) return 1; if (ext4_es_is_hole(es1)) return 1; /* we need to check delayed extent is without unwritten status */ if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1)) return 1; return 0; } static struct extent_status * ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_prev(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es1, es)) { es1->es_len += es->es_len; if (ext4_es_is_referenced(es)) ext4_es_set_referenced(es1); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); es = es1; } return es; } static struct extent_status * ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es1; struct rb_node *node; node = rb_next(&es->rb_node); if (!node) return es; es1 = rb_entry(node, struct extent_status, rb_node); if (ext4_es_can_be_merged(es, es1)) { es->es_len += es1->es_len; if (ext4_es_is_referenced(es1)) ext4_es_set_referenced(es); rb_erase(node, &tree->root); ext4_es_free_extent(inode, es1); } return es; } #ifdef ES_AGGRESSIVE_TEST #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */ static void ext4_es_insert_extent_ext_check(struct inode *inode, struct extent_status *es) { struct ext4_ext_path *path = NULL; struct ext4_extent *ex; ext4_lblk_t ee_block; ext4_fsblk_t ee_start; unsigned short ee_len; int depth, ee_status, es_status; path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE); if (IS_ERR(path)) return; depth = ext_depth(inode); ex = path[depth].p_ext; if (ex) { ee_block = le32_to_cpu(ex->ee_block); ee_start = ext4_ext_pblock(ex); ee_len = ext4_ext_get_actual_len(ex); ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0; es_status = ext4_es_is_unwritten(es) ? 1 : 0; /* * Make sure ex and es are not overlap when we try to insert * a delayed/hole extent. */ if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) { if (in_range(es->es_lblk, ee_block, ee_len)) { pr_warn("ES insert assertion failed for " "inode: %lu we can find an extent " "at block [%d/%d/%llu/%c], but we " "want to add a delayed/hole extent " "[%d/%d/%llu/%x]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } goto out; } /* * We don't check ee_block == es->es_lblk, etc. because es * might be a part of whole extent, vice versa. */ if (es->es_lblk < ee_block || ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); goto out; } if (ee_status ^ es_status) { pr_warn("ES insert assertion failed for inode: %lu " "ex_status [%d/%d/%llu/%c] != " "es_status [%d/%d/%llu/%c]\n", inode->i_ino, ee_block, ee_len, ee_start, ee_status ? 'u' : 'w', es->es_lblk, es->es_len, ext4_es_pblock(es), es_status ? 'u' : 'w'); } } else { /* * We can't find an extent on disk. So we need to make sure * that we don't want to add an written/unwritten extent. */ if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) { pr_warn("ES insert assertion failed for inode: %lu " "can't find an extent at block %d but we want " "to add a written/unwritten extent " "[%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); } } out: ext4_ext_drop_refs(path); kfree(path); } static void ext4_es_insert_extent_ind_check(struct inode *inode, struct extent_status *es) { struct ext4_map_blocks map; int retval; /* * Here we call ext4_ind_map_blocks to lookup a block mapping because * 'Indirect' structure is defined in indirect.c. So we couldn't * access direct/indirect tree from outside. It is too dirty to define * this function in indirect.c file. */ map.m_lblk = es->es_lblk; map.m_len = es->es_len; retval = ext4_ind_map_blocks(NULL, inode, &map, 0); if (retval > 0) { if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) { /* * We want to add a delayed/hole extent but this * block has been allocated. */ pr_warn("ES insert assertion failed for inode: %lu " "We can find blocks but we want to add a " "delayed/hole extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } else if (ext4_es_is_written(es)) { if (retval != es->es_len) { pr_warn("ES insert assertion failed for " "inode: %lu retval %d != es_len %d\n", inode->i_ino, retval, es->es_len); return; } if (map.m_pblk != ext4_es_pblock(es)) { pr_warn("ES insert assertion failed for " "inode: %lu m_pblk %llu != " "es_pblk %llu\n", inode->i_ino, map.m_pblk, ext4_es_pblock(es)); return; } } else { /* * We don't need to check unwritten extent because * indirect-based file doesn't have it. */ BUG(); } } else if (retval == 0) { if (ext4_es_is_written(es)) { pr_warn("ES insert assertion failed for inode: %lu " "We can't find the block but we want to add " "a written extent [%d/%d/%llu/%x]\n", inode->i_ino, es->es_lblk, es->es_len, ext4_es_pblock(es), ext4_es_status(es)); return; } } } static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { /* * We don't need to worry about the race condition because * caller takes i_data_sem locking. */ BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem)); if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) ext4_es_insert_extent_ext_check(inode, es); else ext4_es_insert_extent_ind_check(inode, es); } #else static inline void ext4_es_insert_extent_check(struct inode *inode, struct extent_status *es) { } #endif static int __es_insert_extent(struct inode *inode, struct extent_status *newes, struct extent_status *prealloc) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct extent_status *es; while (*p) { parent = *p; es = rb_entry(parent, struct extent_status, rb_node); if (newes->es_lblk < es->es_lblk) { if (ext4_es_can_be_merged(newes, es)) { /* * Here we can modify es_lblk directly * because it isn't overlapped. */ es->es_lblk = newes->es_lblk; es->es_len += newes->es_len; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) ext4_es_store_pblock(es, newes->es_pblk); es = ext4_es_try_to_merge_left(inode, es); goto out; } p = &(*p)->rb_left; } else if (newes->es_lblk > ext4_es_end(es)) { if (ext4_es_can_be_merged(es, newes)) { es->es_len += newes->es_len; es = ext4_es_try_to_merge_right(inode, es); goto out; } p = &(*p)->rb_right; } else { BUG(); return -EINVAL; } } if (prealloc) es = prealloc; else es = __es_alloc_extent(false); if (!es) return -ENOMEM; ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len, newes->es_pblk); rb_link_node(&es->rb_node, parent, p); rb_insert_color(&es->rb_node, &tree->root); out: tree->cache_es = es; return 0; } /* * ext4_es_insert_extent() adds information to an inode's extent * status tree. */ void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status newes; ext4_lblk_t end = lblk + len - 1; int err1 = 0, err2 = 0, err3 = 0; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct extent_status *es1 = NULL; struct extent_status *es2 = NULL; struct pending_reservation *pr = NULL; bool revise_pending = false; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n", lblk, len, pblk, status, inode->i_ino); if (!len) return; BUG_ON(end < lblk); if ((status & EXTENT_STATUS_DELAYED) && (status & EXTENT_STATUS_WRITTEN)) { ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as " " delayed and written which can potentially " " cause data loss.", lblk, len); WARN_ON(1); } newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_insert_extent(inode, &newes); ext4_es_insert_extent_check(inode, &newes); revise_pending = sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) && (status & (EXTENT_STATUS_WRITTEN | EXTENT_STATUS_UNWRITTEN)); retry: if (err1 && !es1) es1 = __es_alloc_extent(true); if ((err1 || err2) && !es2) es2 = __es_alloc_extent(true); if ((err1 || err2 || err3) && revise_pending && !pr) pr = __alloc_pending(true); write_lock(&EXT4_I(inode)->i_es_lock); err1 = __es_remove_extent(inode, lblk, end, NULL, es1); if (err1 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es1) { if (!es1->es_len) __es_free_extent(es1); es1 = NULL; } err2 = __es_insert_extent(inode, &newes, es2); if (err2 == -ENOMEM && !ext4_es_must_keep(&newes)) err2 = 0; if (err2 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es2) { if (!es2->es_len) __es_free_extent(es2); es2 = NULL; } if (revise_pending) { err3 = __revise_pending(inode, lblk, len, &pr); if (err3 != 0) goto error; if (pr) { __free_pending(pr); pr = NULL; } } error: write_unlock(&EXT4_I(inode)->i_es_lock); if (err1 || err2 || err3) goto retry; ext4_es_print_tree(inode); return; } /* * ext4_es_cache_extent() inserts information into the extent status * tree if and only if there isn't information about the range in * question already. */ void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk, unsigned int status) { struct extent_status *es; struct extent_status newes; ext4_lblk_t end = lblk + len - 1; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return; newes.es_lblk = lblk; newes.es_len = len; ext4_es_store_pblock_status(&newes, pblk, status); trace_ext4_es_cache_extent(inode, &newes); if (!len) return; BUG_ON(end < lblk); write_lock(&EXT4_I(inode)->i_es_lock); es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk); if (!es || es->es_lblk > end) __es_insert_extent(inode, &newes, NULL); write_unlock(&EXT4_I(inode)->i_es_lock); } /* * ext4_es_lookup_extent() looks up an extent in extent status tree. * * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks. * * Return: 1 on found, 0 on not */ int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t *next_lblk, struct extent_status *es) { struct ext4_es_tree *tree; struct ext4_es_stats *stats; struct extent_status *es1 = NULL; struct rb_node *node; int found = 0; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; trace_ext4_es_lookup_extent_enter(inode, lblk); es_debug("lookup extent in block %u\n", lblk); tree = &EXT4_I(inode)->i_es_tree; read_lock(&EXT4_I(inode)->i_es_lock); /* find extent in cache firstly */ es->es_lblk = es->es_len = es->es_pblk = 0; es1 = READ_ONCE(tree->cache_es); if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) { es_debug("%u cached by [%u/%u)\n", lblk, es1->es_lblk, es1->es_len); found = 1; goto out; } node = tree->root.rb_node; while (node) { es1 = rb_entry(node, struct extent_status, rb_node); if (lblk < es1->es_lblk) node = node->rb_left; else if (lblk > ext4_es_end(es1)) node = node->rb_right; else { found = 1; break; } } out: stats = &EXT4_SB(inode->i_sb)->s_es_stats; if (found) { BUG_ON(!es1); es->es_lblk = es1->es_lblk; es->es_len = es1->es_len; es->es_pblk = es1->es_pblk; if (!ext4_es_is_referenced(es1)) ext4_es_set_referenced(es1); percpu_counter_inc(&stats->es_stats_cache_hits); if (next_lblk) { node = rb_next(&es1->rb_node); if (node) { es1 = rb_entry(node, struct extent_status, rb_node); *next_lblk = es1->es_lblk; } else *next_lblk = 0; } } else { percpu_counter_inc(&stats->es_stats_cache_misses); } read_unlock(&EXT4_I(inode)->i_es_lock); trace_ext4_es_lookup_extent_exit(inode, es, found); return found; } struct rsvd_count { int ndelonly; bool first_do_lblk_found; ext4_lblk_t first_do_lblk; ext4_lblk_t last_do_lblk; struct extent_status *left_es; bool partial; ext4_lblk_t lclu; }; /* * init_rsvd - initialize reserved count data before removing block range * in file from extent status tree * * @inode - file containing range * @lblk - first block in range * @es - pointer to first extent in range * @rc - pointer to reserved count data * * Assumes es is not NULL */ static void init_rsvd(struct inode *inode, ext4_lblk_t lblk, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; rc->ndelonly = 0; /* * for bigalloc, note the first delonly block in the range has not * been found, record the extent containing the block to the left of * the region to be removed, if any, and note that there's no partial * cluster to track */ if (sbi->s_cluster_ratio > 1) { rc->first_do_lblk_found = false; if (lblk > es->es_lblk) { rc->left_es = es; } else { node = rb_prev(&es->rb_node); rc->left_es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } rc->partial = false; } } /* * count_rsvd - count the clusters containing delayed and not unwritten * (delonly) blocks in a range within an extent and add to * the running tally in rsvd_count * * @inode - file containing extent * @lblk - first block in range * @len - length of range in blocks * @es - pointer to extent containing clusters to be counted * @rc - pointer to reserved count data * * Tracks partial clusters found at the beginning and end of extents so * they aren't overcounted when they span adjacent extents */ static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len, struct extent_status *es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t i, end, nclu; if (!ext4_es_is_delonly(es)) return; WARN_ON(len <= 0); if (sbi->s_cluster_ratio == 1) { rc->ndelonly += (int) len; return; } /* bigalloc */ i = (lblk < es->es_lblk) ? es->es_lblk : lblk; end = lblk + (ext4_lblk_t) len - 1; end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end; /* record the first block of the first delonly extent seen */ if (!rc->first_do_lblk_found) { rc->first_do_lblk = i; rc->first_do_lblk_found = true; } /* update the last lblk in the region seen so far */ rc->last_do_lblk = end; /* * if we're tracking a partial cluster and the current extent * doesn't start with it, count it and stop tracking */ if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) { rc->ndelonly++; rc->partial = false; } /* * if the first cluster doesn't start on a cluster boundary but * ends on one, count it */ if (EXT4_LBLK_COFF(sbi, i) != 0) { if (end >= EXT4_LBLK_CFILL(sbi, i)) { rc->ndelonly++; rc->partial = false; i = EXT4_LBLK_CFILL(sbi, i) + 1; } } /* * if the current cluster starts on a cluster boundary, count the * number of whole delonly clusters in the extent */ if ((i + sbi->s_cluster_ratio - 1) <= end) { nclu = (end - i + 1) >> sbi->s_cluster_bits; rc->ndelonly += nclu; i += nclu << sbi->s_cluster_bits; } /* * start tracking a partial cluster if there's a partial at the end * of the current extent and we're not already tracking one */ if (!rc->partial && i <= end) { rc->partial = true; rc->lclu = EXT4_B2C(sbi, i); } } /* * __pr_tree_search - search for a pending cluster reservation * * @root - root of pending reservation tree * @lclu - logical cluster to search for * * Returns the pending reservation for the cluster identified by @lclu * if found. If not, returns a reservation for the next cluster if any, * and if not, returns NULL. */ static struct pending_reservation *__pr_tree_search(struct rb_root *root, ext4_lblk_t lclu) { struct rb_node *node = root->rb_node; struct pending_reservation *pr = NULL; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else return pr; } if (pr && lclu < pr->lclu) return pr; if (pr && lclu > pr->lclu) { node = rb_next(&pr->rb_node); return node ? rb_entry(node, struct pending_reservation, rb_node) : NULL; } return NULL; } /* * get_rsvd - calculates and returns the number of cluster reservations to be * released when removing a block range from the extent status tree * and releases any pending reservations within the range * * @inode - file containing block range * @end - last block in range * @right_es - pointer to extent containing next block beyond end or NULL * @rc - pointer to reserved count data * * The number of reservations to be released is equal to the number of * clusters containing delayed and not unwritten (delonly) blocks within * the range, minus the number of clusters still containing delonly blocks * at the ends of the range, and minus the number of pending reservations * within the range. */ static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end, struct extent_status *right_es, struct rsvd_count *rc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; bool left_delonly, right_delonly, count_pending; struct extent_status *es; if (sbi->s_cluster_ratio > 1) { /* count any remaining partial cluster */ if (rc->partial) rc->ndelonly++; if (rc->ndelonly == 0) return 0; first_lclu = EXT4_B2C(sbi, rc->first_do_lblk); last_lclu = EXT4_B2C(sbi, rc->last_do_lblk); /* * decrease the delonly count by the number of clusters at the * ends of the range that still contain delonly blocks - * these clusters still need to be reserved */ left_delonly = right_delonly = false; es = rc->left_es; while (es && ext4_es_end(es) >= EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; left_delonly = true; break; } node = rb_prev(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } if (right_es && (!left_delonly || first_lclu != last_lclu)) { if (end < ext4_es_end(right_es)) { es = right_es; } else { node = rb_next(&right_es->rb_node); es = node ? rb_entry(node, struct extent_status, rb_node) : NULL; } while (es && es->es_lblk <= EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) { if (ext4_es_is_delonly(es)) { rc->ndelonly--; right_delonly = true; break; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } } /* * Determine the block range that should be searched for * pending reservations, if any. Clusters on the ends of the * original removed range containing delonly blocks are * excluded. They've already been accounted for and it's not * possible to determine if an associated pending reservation * should be released with the information available in the * extents status tree. */ if (first_lclu == last_lclu) { if (left_delonly | right_delonly) count_pending = false; else count_pending = true; } else { if (left_delonly) first_lclu++; if (right_delonly) last_lclu--; if (first_lclu <= last_lclu) count_pending = true; else count_pending = false; } /* * a pending reservation found between first_lclu and last_lclu * represents an allocated cluster that contained at least one * delonly block, so the delonly total must be reduced by one * for each pending reservation found and released */ if (count_pending) { pr = __pr_tree_search(&tree->root, first_lclu); while (pr && pr->lclu <= last_lclu) { rc->ndelonly--; node = rb_next(&pr->rb_node); rb_erase(&pr->rb_node, &tree->root); __free_pending(pr); if (!node) break; pr = rb_entry(node, struct pending_reservation, rb_node); } } } return rc->ndelonly; } /* * __es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @end - last block in range * @reserved - number of cluster reservations released * @prealloc - pre-allocated es to avoid memory allocation failures * * If @reserved is not NULL and delayed allocation is enabled, counts * block/cluster reservations freed by removing range and if bigalloc * enabled cancels pending reservations as needed. Returns 0 on success, * error code on failure. */ static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t end, int *reserved, struct extent_status *prealloc) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct rb_node *node; struct extent_status *es; struct extent_status orig_es; ext4_lblk_t len1, len2; ext4_fsblk_t block; int err = 0; bool count_reserved = true; struct rsvd_count rc; if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC)) count_reserved = false; es = __es_tree_search(&tree->root, lblk); if (!es) goto out; if (es->es_lblk > end) goto out; /* Simply invalidate cache_es. */ tree->cache_es = NULL; if (count_reserved) init_rsvd(inode, lblk, es, &rc); orig_es.es_lblk = es->es_lblk; orig_es.es_len = es->es_len; orig_es.es_pblk = es->es_pblk; len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0; len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0; if (len1 > 0) es->es_len = len1; if (len2 > 0) { if (len1 > 0) { struct extent_status newes; newes.es_lblk = end + 1; newes.es_len = len2; block = 0x7FDEADBEEFULL; if (ext4_es_is_written(&orig_es) || ext4_es_is_unwritten(&orig_es)) block = ext4_es_pblock(&orig_es) + orig_es.es_len - len2; ext4_es_store_pblock_status(&newes, block, ext4_es_status(&orig_es)); err = __es_insert_extent(inode, &newes, prealloc); if (err) { if (!ext4_es_must_keep(&newes)) return 0; es->es_lblk = orig_es.es_lblk; es->es_len = orig_es.es_len; goto out; } } else { es->es_lblk = end + 1; es->es_len = len2; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = orig_es.es_pblk + orig_es.es_len - len2; ext4_es_store_pblock(es, block); } } if (count_reserved) count_rsvd(inode, orig_es.es_lblk + len1, orig_es.es_len - len1 - len2, &orig_es, &rc); goto out_get_reserved; } if (len1 > 0) { if (count_reserved) count_rsvd(inode, lblk, orig_es.es_len - len1, &orig_es, &rc); node = rb_next(&es->rb_node); if (node) es = rb_entry(node, struct extent_status, rb_node); else es = NULL; } while (es && ext4_es_end(es) <= end) { if (count_reserved) count_rsvd(inode, es->es_lblk, es->es_len, es, &rc); node = rb_next(&es->rb_node); rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); if (!node) { es = NULL; break; } es = rb_entry(node, struct extent_status, rb_node); } if (es && es->es_lblk < end + 1) { ext4_lblk_t orig_len = es->es_len; len1 = ext4_es_end(es) - end; if (count_reserved) count_rsvd(inode, es->es_lblk, orig_len - len1, es, &rc); es->es_lblk = end + 1; es->es_len = len1; if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) { block = es->es_pblk + orig_len - len1; ext4_es_store_pblock(es, block); } } out_get_reserved: if (count_reserved) *reserved = get_rsvd(inode, end, es, &rc); out: return err; } /* * ext4_es_remove_extent - removes block range from extent status tree * * @inode - file containing range * @lblk - first block in range * @len - number of blocks to remove * * Reduces block/cluster reservation count and for bigalloc cancels pending * reservations as needed. Returns 0 on success, error code on failure. */ int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { ext4_lblk_t end; int err = 0; int reserved = 0; struct extent_status *es = NULL; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; trace_ext4_es_remove_extent(inode, lblk, len); es_debug("remove [%u/%u) from extent status tree of inode %lu\n", lblk, len, inode->i_ino); if (!len) return err; end = lblk + len - 1; BUG_ON(end < lblk); retry: if (err && !es) es = __es_alloc_extent(true); /* * ext4_clear_inode() depends on us taking i_es_lock unconditionally * so that we are sure __es_shrink() is done with the inode before it * is reclaimed. */ write_lock(&EXT4_I(inode)->i_es_lock); err = __es_remove_extent(inode, lblk, end, &reserved, es); /* Free preallocated extent if it didn't get used. */ if (es) { if (!es->es_len) __es_free_extent(es); es = NULL; } write_unlock(&EXT4_I(inode)->i_es_lock); if (err) goto retry; ext4_es_print_tree(inode); ext4_da_release_space(inode, reserved); return 0; } static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan, struct ext4_inode_info *locked_ei) { struct ext4_inode_info *ei; struct ext4_es_stats *es_stats; ktime_t start_time; u64 scan_time; int nr_to_walk; int nr_shrunk = 0; int retried = 0, nr_skipped = 0; es_stats = &sbi->s_es_stats; start_time = ktime_get(); retry: spin_lock(&sbi->s_es_lock); nr_to_walk = sbi->s_es_nr_inode; while (nr_to_walk-- > 0) { if (list_empty(&sbi->s_es_list)) { spin_unlock(&sbi->s_es_lock); goto out; } ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info, i_es_list); /* Move the inode to the tail */ list_move_tail(&ei->i_es_list, &sbi->s_es_list); /* * Normally we try hard to avoid shrinking precached inodes, * but we will as a last resort. */ if (!retried && ext4_test_inode_state(&ei->vfs_inode, EXT4_STATE_EXT_PRECACHED)) { nr_skipped++; continue; } if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) { nr_skipped++; continue; } /* * Now we hold i_es_lock which protects us from inode reclaim * freeing inode under us */ spin_unlock(&sbi->s_es_lock); nr_shrunk += es_reclaim_extents(ei, &nr_to_scan); write_unlock(&ei->i_es_lock); if (nr_to_scan <= 0) goto out; spin_lock(&sbi->s_es_lock); } spin_unlock(&sbi->s_es_lock); /* * If we skipped any inodes, and we weren't able to make any * forward progress, try again to scan precached inodes. */ if ((nr_shrunk == 0) && nr_skipped && !retried) { retried++; goto retry; } if (locked_ei && nr_shrunk == 0) nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan); out: scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); if (likely(es_stats->es_stats_scan_time)) es_stats->es_stats_scan_time = (scan_time + es_stats->es_stats_scan_time*3) / 4; else es_stats->es_stats_scan_time = scan_time; if (scan_time > es_stats->es_stats_max_scan_time) es_stats->es_stats_max_scan_time = scan_time; if (likely(es_stats->es_stats_shrunk)) es_stats->es_stats_shrunk = (nr_shrunk + es_stats->es_stats_shrunk*3) / 4; else es_stats->es_stats_shrunk = nr_shrunk; trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time, nr_skipped, retried); return nr_shrunk; } static unsigned long ext4_es_count(struct shrinker *shrink, struct shrink_control *sc) { unsigned long nr; struct ext4_sb_info *sbi; sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr); return nr; } static unsigned long ext4_es_scan(struct shrinker *shrink, struct shrink_control *sc) { struct ext4_sb_info *sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker); int nr_to_scan = sc->nr_to_scan; int ret, nr_shrunk; ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret); nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL); ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt); trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret); return nr_shrunk; } int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private); struct ext4_es_stats *es_stats = &sbi->s_es_stats; struct ext4_inode_info *ei, *max = NULL; unsigned int inode_cnt = 0; if (v != SEQ_START_TOKEN) return 0; /* here we just find an inode that has the max nr. of objects */ spin_lock(&sbi->s_es_lock); list_for_each_entry(ei, &sbi->s_es_list, i_es_list) { inode_cnt++; if (max && max->i_es_all_nr < ei->i_es_all_nr) max = ei; else if (!max) max = ei; } spin_unlock(&sbi->s_es_lock); seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n", percpu_counter_sum_positive(&es_stats->es_stats_all_cnt), percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt)); seq_printf(seq, " %lld/%lld cache hits/misses\n", percpu_counter_sum_positive(&es_stats->es_stats_cache_hits), percpu_counter_sum_positive(&es_stats->es_stats_cache_misses)); if (inode_cnt) seq_printf(seq, " %d inodes on list\n", inode_cnt); seq_printf(seq, "average:\n %llu us scan time\n", div_u64(es_stats->es_stats_scan_time, 1000)); seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk); if (inode_cnt) seq_printf(seq, "maximum:\n %lu inode (%u objects, %u reclaimable)\n" " %llu us max scan time\n", max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr, div_u64(es_stats->es_stats_max_scan_time, 1000)); return 0; } int ext4_es_register_shrinker(struct ext4_sb_info *sbi) { int err; /* Make sure we have enough bits for physical block number */ BUILD_BUG_ON(ES_SHIFT < 48); INIT_LIST_HEAD(&sbi->s_es_list); sbi->s_es_nr_inode = 0; spin_lock_init(&sbi->s_es_lock); sbi->s_es_stats.es_stats_shrunk = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0, GFP_KERNEL); if (err) return err; err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0, GFP_KERNEL); if (err) goto err1; sbi->s_es_stats.es_stats_scan_time = 0; sbi->s_es_stats.es_stats_max_scan_time = 0; err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL); if (err) goto err2; err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL); if (err) goto err3; sbi->s_es_shrinker.scan_objects = ext4_es_scan; sbi->s_es_shrinker.count_objects = ext4_es_count; sbi->s_es_shrinker.seeks = DEFAULT_SEEKS; err = register_shrinker(&sbi->s_es_shrinker); if (err) goto err4; return 0; err4: percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); err3: percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); err2: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); err1: percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); return err; } void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi) { percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits); percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses); percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt); percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt); unregister_shrinker(&sbi->s_es_shrinker); } /* * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at * most *nr_to_scan extents, update *nr_to_scan accordingly. * * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan. * Increment *nr_shrunk by the number of reclaimed extents. Also update * ei->i_es_shrink_lblk to where we should continue scanning. */ static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end, int *nr_to_scan, int *nr_shrunk) { struct inode *inode = &ei->vfs_inode; struct ext4_es_tree *tree = &ei->i_es_tree; struct extent_status *es; struct rb_node *node; es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk); if (!es) goto out_wrap; while (*nr_to_scan > 0) { if (es->es_lblk > end) { ei->i_es_shrink_lblk = end + 1; return 0; } (*nr_to_scan)--; node = rb_next(&es->rb_node); if (ext4_es_must_keep(es)) goto next; if (ext4_es_is_referenced(es)) { ext4_es_clear_referenced(es); goto next; } rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); (*nr_shrunk)++; next: if (!node) goto out_wrap; es = rb_entry(node, struct extent_status, rb_node); } ei->i_es_shrink_lblk = es->es_lblk; return 1; out_wrap: ei->i_es_shrink_lblk = 0; return 0; } static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan) { struct inode *inode = &ei->vfs_inode; int nr_shrunk = 0; ext4_lblk_t start = ei->i_es_shrink_lblk; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (ei->i_es_shk_nr == 0) return 0; if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) && __ratelimit(&_rs)) ext4_warning(inode->i_sb, "forced shrink of precached extents"); if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) && start != 0) es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk); ei->i_es_tree.cache_es = NULL; return nr_shrunk; } /* * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove * discretionary entries from the extent status cache. (Some entries * must be present for proper operations.) */ void ext4_clear_inode_es(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct extent_status *es; struct ext4_es_tree *tree; struct rb_node *node; write_lock(&ei->i_es_lock); tree = &EXT4_I(inode)->i_es_tree; tree->cache_es = NULL; node = rb_first(&tree->root); while (node) { es = rb_entry(node, struct extent_status, rb_node); node = rb_next(node); if (!ext4_es_must_keep(es)) { rb_erase(&es->rb_node, &tree->root); ext4_es_free_extent(inode, es); } } ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED); write_unlock(&ei->i_es_lock); } #ifdef ES_DEBUG__ static void ext4_print_pending_tree(struct inode *inode) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr; printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino); tree = &EXT4_I(inode)->i_pending_tree; node = rb_first(&tree->root); while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); printk(KERN_DEBUG " %u", pr->lclu); node = rb_next(node); } printk(KERN_DEBUG "\n"); } #else #define ext4_print_pending_tree(inode) #endif int __init ext4_init_pending(void) { ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation", sizeof(struct pending_reservation), 0, (SLAB_RECLAIM_ACCOUNT), NULL); if (ext4_pending_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_pending(void) { kmem_cache_destroy(ext4_pending_cachep); } void ext4_init_pending_tree(struct ext4_pending_tree *tree) { tree->root = RB_ROOT; } /* * __get_pending - retrieve a pointer to a pending reservation * * @inode - file containing the pending cluster reservation * @lclu - logical cluster of interest * * Returns a pointer to a pending reservation if it's a member of * the set, and NULL if not. Must be called holding i_es_lock. */ static struct pending_reservation *__get_pending(struct inode *inode, ext4_lblk_t lclu) { struct ext4_pending_tree *tree; struct rb_node *node; struct pending_reservation *pr = NULL; tree = &EXT4_I(inode)->i_pending_tree; node = (&tree->root)->rb_node; while (node) { pr = rb_entry(node, struct pending_reservation, rb_node); if (lclu < pr->lclu) node = node->rb_left; else if (lclu > pr->lclu) node = node->rb_right; else if (lclu == pr->lclu) return pr; } return NULL; } /* * __insert_pending - adds a pending cluster reservation to the set of * pending reservations * * @inode - file containing the cluster * @lblk - logical block in the cluster to be added * @prealloc - preallocated pending entry * * Returns 0 on successful insertion and -ENOMEM on failure. If the * pending reservation is already in the set, returns successfully. */ static int __insert_pending(struct inode *inode, ext4_lblk_t lblk, struct pending_reservation **prealloc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree; struct rb_node **p = &tree->root.rb_node; struct rb_node *parent = NULL; struct pending_reservation *pr; ext4_lblk_t lclu; int ret = 0; lclu = EXT4_B2C(sbi, lblk); /* search to find parent for insertion */ while (*p) { parent = *p; pr = rb_entry(parent, struct pending_reservation, rb_node); if (lclu < pr->lclu) { p = &(*p)->rb_left; } else if (lclu > pr->lclu) { p = &(*p)->rb_right; } else { /* pending reservation already inserted */ goto out; } } if (likely(*prealloc == NULL)) { pr = __alloc_pending(false); if (!pr) { ret = -ENOMEM; goto out; } } else { pr = *prealloc; *prealloc = NULL; } pr->lclu = lclu; rb_link_node(&pr->rb_node, parent, p); rb_insert_color(&pr->rb_node, &tree->root); out: return ret; } /* * __remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Returns successfully if pending reservation is not a member of the set. */ static void __remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct pending_reservation *pr; struct ext4_pending_tree *tree; pr = __get_pending(inode, EXT4_B2C(sbi, lblk)); if (pr != NULL) { tree = &EXT4_I(inode)->i_pending_tree; rb_erase(&pr->rb_node, &tree->root); __free_pending(pr); } } /* * ext4_remove_pending - removes a pending cluster reservation from the set * of pending reservations * * @inode - file containing the cluster * @lblk - logical block in the pending cluster reservation to be removed * * Locking for external use of __remove_pending. */ void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_inode_info *ei = EXT4_I(inode); write_lock(&ei->i_es_lock); __remove_pending(inode, lblk); write_unlock(&ei->i_es_lock); } /* * ext4_is_pending - determine whether a cluster has a pending reservation * on it * * @inode - file containing the cluster * @lblk - logical block in the cluster * * Returns true if there's a pending reservation for the cluster in the * set of pending reservations, and false if not. */ bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct ext4_inode_info *ei = EXT4_I(inode); bool ret; read_lock(&ei->i_es_lock); ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL); read_unlock(&ei->i_es_lock); return ret; } /* * ext4_es_insert_delayed_block - adds a delayed block to the extents status * tree, adding a pending reservation where * needed * * @inode - file containing the newly added block * @lblk - logical block to be added * @allocated - indicates whether a physical cluster has been allocated for * the logical cluster that contains the block * * Returns 0 on success, negative error code on failure. */ int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk, bool allocated) { struct extent_status newes; int err1 = 0, err2 = 0, err3 = 0; struct extent_status *es1 = NULL; struct extent_status *es2 = NULL; struct pending_reservation *pr = NULL; if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) return 0; es_debug("add [%u/1) delayed to extent status tree of inode %lu\n", lblk, inode->i_ino); newes.es_lblk = lblk; newes.es_len = 1; ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED); trace_ext4_es_insert_delayed_block(inode, &newes, allocated); ext4_es_insert_extent_check(inode, &newes); retry: if (err1 && !es1) es1 = __es_alloc_extent(true); if ((err1 || err2) && !es2) es2 = __es_alloc_extent(true); if ((err1 || err2 || err3) && allocated && !pr) pr = __alloc_pending(true); write_lock(&EXT4_I(inode)->i_es_lock); err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1); if (err1 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es1) { if (!es1->es_len) __es_free_extent(es1); es1 = NULL; } err2 = __es_insert_extent(inode, &newes, es2); if (err2 != 0) goto error; /* Free preallocated extent if it didn't get used. */ if (es2) { if (!es2->es_len) __es_free_extent(es2); es2 = NULL; } if (allocated) { err3 = __insert_pending(inode, lblk, &pr); if (err3 != 0) goto error; if (pr) { __free_pending(pr); pr = NULL; } } error: write_unlock(&EXT4_I(inode)->i_es_lock); if (err1 || err2 || err3) goto retry; ext4_es_print_tree(inode); ext4_print_pending_tree(inode); return 0; } /* * __es_delayed_clu - count number of clusters containing blocks that * are delayed only * * @inode - file containing block range * @start - logical block defining start of range * @end - logical block defining end of range * * Returns the number of clusters containing only delayed (not delayed * and unwritten) blocks in the range specified by @start and @end. Any * cluster or part of a cluster within the range and containing a delayed * and not unwritten block within the range is counted as a whole cluster. */ static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end) { struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree; struct extent_status *es; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct rb_node *node; ext4_lblk_t first_lclu, last_lclu; unsigned long long last_counted_lclu; unsigned int n = 0; /* guaranteed to be unequal to any ext4_lblk_t value */ last_counted_lclu = ~0ULL; es = __es_tree_search(&tree->root, start); while (es && (es->es_lblk <= end)) { if (ext4_es_is_delonly(es)) { if (es->es_lblk <= start) first_lclu = EXT4_B2C(sbi, start); else first_lclu = EXT4_B2C(sbi, es->es_lblk); if (ext4_es_end(es) >= end) last_lclu = EXT4_B2C(sbi, end); else last_lclu = EXT4_B2C(sbi, ext4_es_end(es)); if (first_lclu == last_counted_lclu) n += last_lclu - first_lclu; else n += last_lclu - first_lclu + 1; last_counted_lclu = last_lclu; } node = rb_next(&es->rb_node); if (!node) break; es = rb_entry(node, struct extent_status, rb_node); } return n; } /* * ext4_es_delayed_clu - count number of clusters containing blocks that * are both delayed and unwritten * * @inode - file containing block range * @lblk - logical block defining start of range * @len - number of blocks in range * * Locking for external use of __es_delayed_clu(). */ unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_lblk_t end; unsigned int n; if (len == 0) return 0; end = lblk + len - 1; WARN_ON(end < lblk); read_lock(&ei->i_es_lock); n = __es_delayed_clu(inode, lblk, end); read_unlock(&ei->i_es_lock); return n; } /* * __revise_pending - makes, cancels, or leaves unchanged pending cluster * reservations for a specified block range depending * upon the presence or absence of delayed blocks * outside the range within clusters at the ends of the * range * * @inode - file containing the range * @lblk - logical block defining the start of range * @len - length of range in blocks * @prealloc - preallocated pending entry * * Used after a newly allocated extent is added to the extents status tree. * Requires that the extents in the range have either written or unwritten * status. Must be called while holding i_es_lock. */ static int __revise_pending(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len, struct pending_reservation **prealloc) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); ext4_lblk_t end = lblk + len - 1; ext4_lblk_t first, last; bool f_del = false, l_del = false; int ret = 0; if (len == 0) return 0; /* * Two cases - block range within single cluster and block range * spanning two or more clusters. Note that a cluster belonging * to a range starting and/or ending on a cluster boundary is treated * as if it does not contain a delayed extent. The new range may * have allocated space for previously delayed blocks out to the * cluster boundary, requiring that any pre-existing pending * reservation be canceled. Because this code only looks at blocks * outside the range, it should revise pending reservations * correctly even if the extent represented by the range can't be * inserted in the extents status tree due to ENOSPC. */ if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) { ret = __insert_pending(inode, first, prealloc); if (ret < 0) goto out; } else { last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) { ret = __insert_pending(inode, last, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, last); } } else { first = EXT4_LBLK_CMASK(sbi, lblk); if (first != lblk) f_del = __es_scan_range(inode, &ext4_es_is_delonly, first, lblk - 1); if (f_del) { ret = __insert_pending(inode, first, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, first); last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1; if (last != end) l_del = __es_scan_range(inode, &ext4_es_is_delonly, end + 1, last); if (l_del) { ret = __insert_pending(inode, last, prealloc); if (ret < 0) goto out; } else __remove_pending(inode, last); } out: return ret; } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> #include <linux/static_call_types.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_thunk(void); #define __preempt_schedule_func preempt_schedule_thunk extern asmlinkage void preempt_schedule_notrace(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); #define __preempt_schedule_notrace_func preempt_schedule_notrace_thunk #ifdef CONFIG_PREEMPT_DYNAMIC DECLARE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); #define __preempt_schedule() \ do { \ __STATIC_CALL_MOD_ADDRESSABLE(preempt_schedule); \ asm volatile ("call " STATIC_CALL_TRAMP_STR(preempt_schedule) : ASM_CALL_CONSTRAINT); \ } while (0) DECLARE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); #define __preempt_schedule_notrace() \ do { \ __STATIC_CALL_MOD_ADDRESSABLE(preempt_schedule_notrace); \ asm volatile ("call " STATIC_CALL_TRAMP_STR(preempt_schedule_notrace) : ASM_CALL_CONSTRAINT); \ } while (0) #else /* PREEMPT_DYNAMIC */ #define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT); #define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT); #endif /* PREEMPT_DYNAMIC */ #endif /* PREEMPTION */ #endif /* __ASM_PREEMPT_H */ |
3 3 3 3 3 7 7 7 9 9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP token management * Copyright (c) 2017 - 2019, Intel Corporation. * * Note: This code is based on mptcp_ctrl.c from multipath-tcp.org, * authored by: * * Sébastien Barré <sebastien.barre@uclouvain.be> * Christoph Paasch <christoph.paasch@uclouvain.be> * Jaakko Korkeaniemi <jaakko.korkeaniemi@aalto.fi> * Gregory Detal <gregory.detal@uclouvain.be> * Fabien Duchêne <fabien.duchene@uclouvain.be> * Andreas Seelinger <Andreas.Seelinger@rwth-aachen.de> * Lavkesh Lahngir <lavkesh51@gmail.com> * Andreas Ripke <ripke@neclab.eu> * Vlad Dogaru <vlad.dogaru@intel.com> * Octavian Purdila <octavian.purdila@intel.com> * John Ronan <jronan@tssg.org> * Catalin Nicutar <catalin.nicutar@gmail.com> * Brandon Heller <brandonh@stanford.edu> */ #define pr_fmt(fmt) "MPTCP: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/memblock.h> #include <linux/ip.h> #include <linux/tcp.h> #include <net/sock.h> #include <net/inet_common.h> #include <net/protocol.h> #include <net/mptcp.h> #include "protocol.h" #define TOKEN_MAX_CHAIN_LEN 4 struct token_bucket { spinlock_t lock; int chain_len; struct hlist_nulls_head req_chain; struct hlist_nulls_head msk_chain; }; static struct token_bucket *token_hash __read_mostly; static unsigned int token_mask __read_mostly; static struct token_bucket *token_bucket(u32 token) { return &token_hash[token & token_mask]; } /* called with bucket lock held */ static struct mptcp_subflow_request_sock * __token_lookup_req(struct token_bucket *t, u32 token) { struct mptcp_subflow_request_sock *req; struct hlist_nulls_node *pos; hlist_nulls_for_each_entry_rcu(req, pos, &t->req_chain, token_node) if (req->token == token) return req; return NULL; } /* called with bucket lock held */ static struct mptcp_sock * __token_lookup_msk(struct token_bucket *t, u32 token) { struct hlist_nulls_node *pos; struct sock *sk; sk_nulls_for_each_rcu(sk, pos, &t->msk_chain) if (mptcp_sk(sk)->token == token) return mptcp_sk(sk); return NULL; } static bool __token_bucket_busy(struct token_bucket *t, u32 token) { return !token || t->chain_len >= TOKEN_MAX_CHAIN_LEN || __token_lookup_req(t, token) || __token_lookup_msk(t, token); } static void mptcp_crypto_key_gen_sha(u64 *key, u32 *token, u64 *idsn) { /* we might consider a faster version that computes the key as a * hash of some information available in the MPTCP socket. Use * random data at the moment, as it's probably the safest option * in case multiple sockets are opened in different namespaces at * the same time. */ get_random_bytes(key, sizeof(u64)); mptcp_crypto_key_sha(*key, token, idsn); } /** * mptcp_token_new_request - create new key/idsn/token for subflow_request * @req: the request socket * * This function is called when a new mptcp connection is coming in. * * It creates a unique token to identify the new mptcp connection, * a secret local key and the initial data sequence number (idsn). * * Returns 0 on success. */ int mptcp_token_new_request(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct token_bucket *bucket; u32 token; mptcp_crypto_key_sha(subflow_req->local_key, &subflow_req->token, &subflow_req->idsn); pr_debug("req=%p local_key=%llu, token=%u, idsn=%llu\n", req, subflow_req->local_key, subflow_req->token, subflow_req->idsn); token = subflow_req->token; bucket = token_bucket(token); spin_lock_bh(&bucket->lock); if (__token_bucket_busy(bucket, token)) { spin_unlock_bh(&bucket->lock); return -EBUSY; } hlist_nulls_add_head_rcu(&subflow_req->token_node, &bucket->req_chain); bucket->chain_len++; spin_unlock_bh(&bucket->lock); return 0; } /** * mptcp_token_new_connect - create new key/idsn/token for subflow * @sk: the socket that will initiate a connection * * This function is called when a new outgoing mptcp connection is * initiated. * * It creates a unique token to identify the new mptcp connection, * a secret local key and the initial data sequence number (idsn). * * On success, the mptcp connection can be found again using * the computed token at a later time, this is needed to process * join requests. * * returns 0 on success. */ int mptcp_token_new_connect(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); int retries = MPTCP_TOKEN_MAX_RETRIES; struct token_bucket *bucket; again: mptcp_crypto_key_gen_sha(&subflow->local_key, &subflow->token, &subflow->idsn); bucket = token_bucket(subflow->token); spin_lock_bh(&bucket->lock); if (__token_bucket_busy(bucket, subflow->token)) { spin_unlock_bh(&bucket->lock); if (!--retries) return -EBUSY; goto again; } pr_debug("ssk=%p, local_key=%llu, token=%u, idsn=%llu\n", sk, subflow->local_key, subflow->token, subflow->idsn); WRITE_ONCE(msk->token, subflow->token); __sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain); bucket->chain_len++; spin_unlock_bh(&bucket->lock); return 0; } /** * mptcp_token_accept - replace a req sk with full sock in token hash * @req: the request socket to be removed * @msk: the just cloned socket linked to the new connection * * Called when a SYN packet creates a new logical connection, i.e. * is not a join request. */ void mptcp_token_accept(struct mptcp_subflow_request_sock *req, struct mptcp_sock *msk) { struct mptcp_subflow_request_sock *pos; struct token_bucket *bucket; bucket = token_bucket(req->token); spin_lock_bh(&bucket->lock); /* pedantic lookup check for the moved token */ pos = __token_lookup_req(bucket, req->token); if (!WARN_ON_ONCE(pos != req)) hlist_nulls_del_init_rcu(&req->token_node); __sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain); spin_unlock_bh(&bucket->lock); } bool mptcp_token_exists(u32 token) { struct hlist_nulls_node *pos; struct token_bucket *bucket; struct mptcp_sock *msk; struct sock *sk; rcu_read_lock(); bucket = token_bucket(token); again: sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { msk = mptcp_sk(sk); if (READ_ONCE(msk->token) == token) goto found; } if (get_nulls_value(pos) != (token & token_mask)) goto again; rcu_read_unlock(); return false; found: rcu_read_unlock(); return true; } /** * mptcp_token_get_sock - retrieve mptcp connection sock using its token * @net: restrict to this namespace * @token: token of the mptcp connection to retrieve * * This function returns the mptcp connection structure with the given token. * A reference count on the mptcp socket returned is taken. * * returns NULL if no connection with the given token value exists. */ struct mptcp_sock *mptcp_token_get_sock(struct net *net, u32 token) { struct hlist_nulls_node *pos; struct token_bucket *bucket; struct mptcp_sock *msk; struct sock *sk; rcu_read_lock(); bucket = token_bucket(token); again: sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { msk = mptcp_sk(sk); if (READ_ONCE(msk->token) != token || !net_eq(sock_net(sk), net)) continue; if (!refcount_inc_not_zero(&sk->sk_refcnt)) goto not_found; if (READ_ONCE(msk->token) != token || !net_eq(sock_net(sk), net)) { sock_put(sk); goto again; } goto found; } if (get_nulls_value(pos) != (token & token_mask)) goto again; not_found: msk = NULL; found: rcu_read_unlock(); return msk; } EXPORT_SYMBOL_GPL(mptcp_token_get_sock); /** * mptcp_token_iter_next - iterate over the token container from given pos * @net: namespace to be iterated * @s_slot: start slot number * @s_num: start number inside the given lock * * This function returns the first mptcp connection structure found inside the * token container starting from the specified position, or NULL. * * On successful iteration, the iterator is move to the next position and the * the acquires a reference to the returned socket. */ struct mptcp_sock *mptcp_token_iter_next(const struct net *net, long *s_slot, long *s_num) { struct mptcp_sock *ret = NULL; struct hlist_nulls_node *pos; int slot, num = 0; for (slot = *s_slot; slot <= token_mask; *s_num = 0, slot++) { struct token_bucket *bucket = &token_hash[slot]; struct sock *sk; num = 0; if (hlist_nulls_empty(&bucket->msk_chain)) continue; rcu_read_lock(); sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) { ++num; if (!net_eq(sock_net(sk), net)) continue; if (num <= *s_num) continue; if (!refcount_inc_not_zero(&sk->sk_refcnt)) continue; if (!net_eq(sock_net(sk), net)) { sock_put(sk); continue; } ret = mptcp_sk(sk); rcu_read_unlock(); goto out; } rcu_read_unlock(); } out: *s_slot = slot; *s_num = num; return ret; } EXPORT_SYMBOL_GPL(mptcp_token_iter_next); /** * mptcp_token_destroy_request - remove mptcp connection/token * @req: mptcp request socket dropping the token * * Remove the token associated to @req. */ void mptcp_token_destroy_request(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_subflow_request_sock *pos; struct token_bucket *bucket; if (hlist_nulls_unhashed(&subflow_req->token_node)) return; bucket = token_bucket(subflow_req->token); spin_lock_bh(&bucket->lock); pos = __token_lookup_req(bucket, subflow_req->token); if (!WARN_ON_ONCE(pos != subflow_req)) { hlist_nulls_del_init_rcu(&pos->token_node); bucket->chain_len--; } spin_unlock_bh(&bucket->lock); } /** * mptcp_token_destroy - remove mptcp connection/token * @msk: mptcp connection dropping the token * * Remove the token associated to @msk */ void mptcp_token_destroy(struct mptcp_sock *msk) { struct token_bucket *bucket; struct mptcp_sock *pos; if (sk_unhashed((struct sock *)msk)) return; bucket = token_bucket(msk->token); spin_lock_bh(&bucket->lock); pos = __token_lookup_msk(bucket, msk->token); if (!WARN_ON_ONCE(pos != msk)) { __sk_nulls_del_node_init_rcu((struct sock *)pos); bucket->chain_len--; } spin_unlock_bh(&bucket->lock); } void __init mptcp_token_init(void) { int i; token_hash = alloc_large_system_hash("MPTCP token", sizeof(struct token_bucket), 0, 20,/* one slot per 1MB of memory */ HASH_ZERO, NULL, &token_mask, 0, 64 * 1024); for (i = 0; i < token_mask + 1; ++i) { INIT_HLIST_NULLS_HEAD(&token_hash[i].req_chain, i); INIT_HLIST_NULLS_HEAD(&token_hash[i].msk_chain, i); spin_lock_init(&token_hash[i].lock); } } #if IS_MODULE(CONFIG_MPTCP_KUNIT_TEST) EXPORT_SYMBOL_GPL(mptcp_token_new_request); EXPORT_SYMBOL_GPL(mptcp_token_new_connect); EXPORT_SYMBOL_GPL(mptcp_token_accept); EXPORT_SYMBOL_GPL(mptcp_token_destroy_request); EXPORT_SYMBOL_GPL(mptcp_token_destroy); #endif |
6820 7225 217 7322 26 1392 2582 1129 5 2 50 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * seqcount_t / seqlock_t - a reader-writer consistency mechanism with * lockless readers (read-only retry loops), and no writer starvation. * * See Documentation/locking/seqlock.rst * * Copyrights: * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH */ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <asm/processor.h> /* * The seqlock seqcount_t interface does not prescribe a precise sequence of * read begin/retry/end. For readers, typically there is a call to * read_seqcount_begin() and read_seqcount_retry(), however, there are more * esoteric cases which do not follow this pattern. * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of the seqlock_t interface * is not affected. */ #define KCSAN_SEQLOCK_REGION_MAX 1000 /* * Sequence counters (seqcount_t) * * This is the raw counting mechanism, without any writer protection. * * Write side critical sections must be serialized and non-preemptible. * * If readers can be invoked from hardirq or softirq contexts, * interrupts or bottom halves must also be respectively disabled before * entering the write section. * * This mechanism can't be used if the protected data contains pointers, * as the writer can invalidate a pointer that a reader is following. * * If the write serialization mechanism is one of the common kernel * locking primitives, use a sequence counter with associated lock * (seqcount_LOCKNAME_t) instead. * * If it's desired to automatically handle the sequence counter writer * serialization and non-preemptibility requirements, use a sequential * lock (seqlock_t) instead. * * See Documentation/locking/seqlock.rst */ typedef struct seqcount { unsigned sequence; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } seqcount_t; static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { /* * Make sure we are not reinitializing a held lock: */ lockdep_init_map(&s->dep_map, name, key, 0); s->sequence = 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } /** * seqcount_init() - runtime initializer for seqcount_t * @s: Pointer to the seqcount_t instance */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ __seqcount_init((s), #s, &__key); \ } while (0) static inline void seqcount_lockdep_reader_access(const seqcount_t *s) { seqcount_t *l = (seqcount_t *)s; unsigned long flags; local_irq_save(flags); seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); seqcount_release(&l->dep_map, _RET_IP_); local_irq_restore(flags); } #else # define SEQCOUNT_DEP_MAP_INIT(lockname) # define seqcount_init(s) __seqcount_init(s, NULL, NULL) # define seqcount_lockdep_reader_access(x) #endif /** * SEQCNT_ZERO() - static initializer for seqcount_t * @name: Name of the seqcount_t instance */ #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate * that the write side critical section is properly serialized. * * For associated locks which do not implicitly disable preemption, * preemption protection is enforced in the write side function. * * Lockdep is never used in any for the raw write variants. * * See Documentation/locking/seqlock.rst */ /* * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot * disable preemption. It can lead to higher latencies, and the write side * sections will not be able to acquire locks which become sleeping locks * (e.g. spinlock_t). * * To remain preemptible while avoiding a possible livelock caused by the * reader preempting the writer, use a different technique: let the reader * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the * case, acquire then release the associated LOCKNAME writer serialization * lock. This will allow any possibly-preempted writer to make progress * until the end of its writer serialization lock critical section. * * This lock-unlock technique must be implemented for all of PREEMPT_RT * sleeping locks. See Documentation/locking/locktypes.rst */ #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) #define __SEQ_LOCK(expr) expr #else #define __SEQ_LOCK(expr) #endif /* * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter * @lock: Pointer to the associated lock * * A plain sequence counter with external writer synchronization by * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. * * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. */ /* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated lock */ #define seqcount_LOCKNAME_init(s, _lock, lockname) \ do { \ seqcount_##lockname##_t *____s = (s); \ seqcount_init(&____s->seqcount); \ __SEQ_LOCK(____s->lock = (_lock)); \ } while (0) #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex) /* * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t * * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype * @lockmember: argument for lockdep_assert_held() * @lockbase: associated lock release function (prefix only) * @lock_acquire: associated lock acquisition function (full call) */ #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ typedef struct seqcount_##lockname { \ seqcount_t seqcount; \ __SEQ_LOCK(locktype *lock); \ } seqcount_##lockname##_t; \ \ static __always_inline seqcount_t * \ __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ static __always_inline unsigned \ __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ { \ unsigned seq = READ_ONCE(s->seqcount.sequence); \ \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return seq; \ \ if (preemptible && unlikely(seq & 1)) { \ __SEQ_LOCK(lock_acquire); \ __SEQ_LOCK(lockbase##_unlock(s->lock)); \ \ /* \ * Re-read the sequence counter since the (possibly \ * preempted) writer made progress. \ */ \ seq = READ_ONCE(s->seqcount.sequence); \ } \ \ return seq; \ } \ \ static __always_inline bool \ __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return preemptible; \ \ /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ return false; \ } \ \ static __always_inline void \ __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ __SEQ_LOCK(lockdep_assert_held(lockmember)); \ } /* * __seqprop() for seqcount_t */ static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } static inline unsigned __seqprop_sequence(const seqcount_t *s) { return READ_ONCE(s->sequence); } static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) /* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated LOCKNAME */ #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) #define __seqprop(s, prop) _Generic(*(s), \ seqcount_t: __seqprop_##prop((void *)(s)), \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ __seqprop_case((s), mutex, prop), \ __seqprop_case((s), ww_mutex, prop)) #define seqprop_ptr(s) __seqprop(s, ptr) #define seqprop_sequence(s) __seqprop(s, sequence) #define seqprop_preemptible(s) __seqprop(s, preemptible) #define seqprop_assert(s) __seqprop(s, assert) /** * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ ({ \ unsigned __seq; \ \ while ((__seq = seqprop_sequence(s)) & 1) \ cpu_relax(); \ \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ __seq; \ }) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount_begin(s) \ ({ \ unsigned _seq = __read_seqcount_begin(s); \ \ smp_rmb(); \ _seq; \ }) /** * read_seqcount_begin() - begin a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ ({ \ seqcount_lockdep_reader_access(seqprop_ptr(s)); \ raw_read_seqcount_begin(s); \ }) /** * raw_read_seqcount() - read the raw seqcount_t counter value * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or * masking the sequence counter LSB. Calling code is responsible for * handling that. * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ ({ \ unsigned __seq = seqprop_sequence(s); \ \ smp_rmb(); \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ __seq; \ }) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait * for the count to stabilize. If a writer is active when it begins, it * will fail the read_seqcount_retry() at the end of the read critical * section instead of stabilizing at the beginning of it. * * Use this only in special kernel hot paths where the read section is * small and has a high probability of success through other external * means. It will save a single branching instruction. * * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ ({ \ /* \ * If the counter is odd, let read_seqcount_retry() fail \ * by decrementing the counter. \ */ \ raw_read_seqcount(s) & ~1; \ }) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ do___read_seqcount_retry(seqprop_ptr(s), start) static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); } /** * read_seqcount_retry() - end a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given * seqcount_t. If the critical section was invalid, it must be ignored * (and typically retried). * * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ do_read_seqcount_retry(seqprop_ptr(s), start) static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return do___read_seqcount_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Context: check write_seqcount_begin() */ #define raw_write_seqcount_begin(s) \ do { \ if (seqprop_preemptible(s)) \ preempt_disable(); \ \ do_raw_write_seqcount_begin(seqprop_ptr(s)); \ } while (0) static inline void do_raw_write_seqcount_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); } /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Context: check write_seqcount_end() */ #define raw_write_seqcount_end(s) \ do { \ do_raw_write_seqcount_end(seqprop_ptr(s)); \ \ if (seqprop_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void do_raw_write_seqcount_end(seqcount_t *s) { smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst * Context: check write_seqcount_begin() */ #define write_seqcount_begin_nested(s, subclass) \ do { \ seqprop_assert(s); \ \ if (seqprop_preemptible(s)) \ preempt_disable(); \ \ do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ } while (0) static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) { seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); do_raw_write_seqcount_begin(s); } /** * write_seqcount_begin() - start a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Context: sequence counter write side sections must be serialized and * non-preemptible. Preemption will be automatically disabled if and * only if the seqcount write serialization lock is associated, and * preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ seqprop_assert(s); \ \ if (seqprop_preemptible(s)) \ preempt_disable(); \ \ do_write_seqcount_begin(seqprop_ptr(s)); \ } while (0) static inline void do_write_seqcount_begin(seqcount_t *s) { do_write_seqcount_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Context: Preemption will be automatically re-enabled if and only if * the seqcount write serialization lock is associated, and preemptible. */ #define write_seqcount_end(s) \ do { \ do_write_seqcount_end(seqprop_ptr(s)); \ \ if (seqprop_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void do_write_seqcount_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); do_raw_write_seqcount_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because * neither writes before and after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; * bool X = true, Y = false; * * void read(void) * { * bool x, y; * * do { * int s = read_seqcount_begin(&seq); * * x = X; y = Y; * * } while (read_seqcount_retry(&seq, s)); * * BUG_ON(!x && !y); * } * * void write(void) * { * WRITE_ONCE(Y, true); * * raw_write_seqcount_barrier(seq); * * WRITE_ONCE(X, false); * } */ #define raw_write_seqcount_barrier(s) \ do_raw_write_seqcount_barrier(seqprop_ptr(s)) static inline void do_raw_write_seqcount_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ do_write_seqcount_invalidate(seqprop_ptr(s)) static inline void do_write_seqcount_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); s->sequence+=2; kcsan_nestable_atomic_end(); } /* * Latch sequence counters (seqcount_latch_t) * * A sequence counter variant where the counter even/odd value is used to * switch between two copies of protected data. This allows the read path, * typically NMIs, to safely interrupt the write side critical section. * * As the write sections are fully preemptible, no special handling for * PREEMPT_RT is needed. */ typedef struct { seqcount_t seqcount; } seqcount_latch_t; /** * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t * @seq_name: Name of the seqcount_latch_t instance */ #define SEQCNT_LATCH_ZERO(seq_name) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ } /** * seqcount_latch_init() - runtime initializer for seqcount_latch_t * @s: Pointer to the seqcount_latch_t instance */ #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) /** * raw_read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See raw_write_seqcount_latch() for details and a full reader/writer * usage example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with raw_read_seqcount_latch_retry(). */ static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) { /* * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). * Due to the dependent load, a full smp_rmb() is not needed. */ return READ_ONCE(s->seqcount.sequence); } /** * read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See write_seqcount_latch() for details and a full reader/writer usage * example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with read_seqcount_latch_retry(). */ static __always_inline unsigned read_seqcount_latch(const seqcount_latch_t *s) { kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); return raw_read_seqcount_latch(s); } /** * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from raw_read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static __always_inline int raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { smp_rmb(); return unlikely(READ_ONCE(s->seqcount.sequence) != start); } /** * read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static __always_inline int read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { kcsan_atomic_next(0); return raw_read_seqcount_latch_retry(s, start); } /** * raw_write_seqcount_latch() - redirect latch readers to even/odd copy * @s: Pointer to seqcount_latch_t */ static __always_inline void raw_write_seqcount_latch(seqcount_latch_t *s) { smp_wmb(); /* prior stores before incrementing "sequence" */ s->seqcount.sequence++; smp_wmb(); /* increment "sequence" before following stores */ } /** * write_seqcount_latch_begin() - redirect latch readers to odd copy * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never * interrupt the modification -- e.g. the concurrency is strictly between CPUs * -- you most likely do not need this. * * Where the traditional RCU/lockless data structures rely on atomic * modifications to ensure queries observe either the old or the new state the * latch allows the same for non-atomic updates. The trade-off is doubling the * cost of storage; we have to maintain two copies of the entire data * structure. * * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * * The basic form is a data structure like:: * * struct latch_struct { * seqcount_latch_t seq; * struct data_struct data[2]; * }; * * Where a modification, which is assumed to be externally serialized, does the * following:: * * void latch_modify(struct latch_struct *latch, ...) * { * write_seqcount_latch_begin(&latch->seq); * modify(latch->data[0], ...); * write_seqcount_latch(&latch->seq); * modify(latch->data[1], ...); * write_seqcount_latch_end(&latch->seq); * } * * The query will have a form like:: * * struct entry *latch_query(struct latch_struct *latch, ...) * { * struct entry *entry; * unsigned seq, idx; * * do { * seq = read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * * // This includes needed smp_rmb() * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * * NOTE: * * The non-requirement for atomic modifications does _NOT_ include * the publishing of new entries in the case where data is a dynamic * data structure. * * An iteration might start in data[0] and get suspended long enough * to miss an entire modification sequence, once it resumes it might * observe the new entry. * * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ static __always_inline void write_seqcount_latch_begin(seqcount_latch_t *s) { kcsan_nestable_atomic_begin(); raw_write_seqcount_latch(s); } /** * write_seqcount_latch() - redirect latch readers to even copy * @s: Pointer to seqcount_latch_t */ static __always_inline void write_seqcount_latch(seqcount_latch_t *s) { raw_write_seqcount_latch(s); } /** * write_seqcount_latch_end() - end a seqcount_latch_t write section * @s: Pointer to seqcount_latch_t * * Marks the end of a seqcount_latch_t writer section, after all copies of the * latch-protected data have been updated. */ static __always_inline void write_seqcount_latch_end(seqcount_latch_t *s) { kcsan_nestable_atomic_end(); } /* * Sequential locks (seqlock_t) * * Sequence counters with an embedded spinlock for writer serialization * and non-preemptibility. * * For more info, see: * - Comments on top of seqcount_t * - Documentation/locking/seqlock.rst */ typedef struct { /* * Make sure that readers don't starve writers on PREEMPT_RT: use * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). */ seqcount_spinlock_t seqcount; spinlock_t lock; } seqlock_t; #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } /** * seqlock_init() - dynamic initializer for seqlock_t * @sl: Pointer to the seqlock_t instance */ #define seqlock_init(sl) \ do { \ spin_lock_init(&(sl)->lock); \ seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ seqlock_t sl = __SEQLOCK_UNLOCKED(sl) /** * read_seqbegin() - start a seqlock_t read side critical section * @sl: Pointer to seqlock_t * * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { return read_seqcount_begin(&sl->seqcount); } /** * read_seqretry() - end a seqlock_t read side section * @sl: Pointer to seqlock_t * @start: count, from read_seqbegin() * * read_seqretry closes the read side critical section of given seqlock_t. * If the critical section was invalid, it must be ignored (and typically * retried). * * Return: true if a read section retry is required, else false */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { return read_seqcount_retry(&sl->seqcount, start); } /* * For all seqlock_t write side functions, use the the internal * do_write_seqcount_begin() instead of generic write_seqcount_begin(). * This way, no redundant lockdep_assert_held() checks are added. */ /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_seqlock opens a write side critical section for the given * seqlock_t. It also implicitly acquires the spinlock_t embedded inside * that sequential lock. All seqlock_t write side sections are thus * automatically serialized and non-preemptible. * * Context: if the seqlock_t read section, or other write side critical * sections, can be invoked from hardirq or softirq contexts, use the * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); do_write_seqcount_begin(&sl->seqcount.seqcount); } /** * write_sequnlock() - end a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_sequnlock closes the (serialized and non-preemptible) write side * critical section of given seqlock_t. */ static inline void write_sequnlock(seqlock_t *sl) { do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } /** * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * _bh variant of write_seqlock(). Use only if the read side section, or * other write side sections, can be invoked from softirq contexts. */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); do_write_seqcount_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_bh closes the serialized, non-preemptible, and * softirqs-disabled, seqlock_t write side critical section opened with * write_seqlock_bh(). */ static inline void write_sequnlock_bh(seqlock_t *sl) { do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } /** * write_seqlock_irq() - start a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * _irq variant of write_seqlock(). Use only if the read side section, or * other write sections, can be invoked from hardirq contexts. */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); do_write_seqcount_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_irq() - end a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_irq closes the serialized and non-interruptible * seqlock_t write side section opened with write_seqlock_irq(). */ static inline void write_sequnlock_irq(seqlock_t *sl) { do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); do_write_seqcount_begin(&sl->seqcount.seqcount); return flags; } /** * write_seqlock_irqsave() - start a non-interruptible seqlock_t write * section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to write_sequnlock_irqrestore(). * * _irqsave variant of write_seqlock(). Use it only if the read side * section, or other write sections, can be invoked from hardirq context. */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) /** * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write * section * @sl: Pointer to seqlock_t * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() * * write_sequnlock_irqrestore closes the serialized and non-interruptible * seqlock_t write section previously opened with write_seqlock_irqsave(). */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqlock_excl() - begin a seqlock_t locking reader section * @sl: Pointer to seqlock_t * * read_seqlock_excl opens a seqlock_t locking reader critical section. A * locking reader exclusively locks out *both* other writers *and* other * locking readers, but it does not update the embedded sequence number. * * Locking readers act like a normal spin_lock()/spin_unlock(). * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } /** * read_sequnlock_excl() - end a seqlock_t locking reader critical section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } /** * read_seqlock_excl_bh() - start a seqlock_t locking reader section with * softirqs disabled * @sl: Pointer to seqlock_t * * _bh variant of read_seqlock_excl(). Use this variant only if the * seqlock_t write side section, *or other read sections*, can be invoked * from softirq contexts. */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } /** * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking * reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } /** * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking * reader section * @sl: Pointer to seqlock_t * * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } /** * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t * locking reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); } static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); return flags; } /** * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t * locking reader section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to read_sequnlock_excl_irqrestore(). * * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) /** * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t * locking reader section * @sl: Pointer to seqlock_t * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader * @lock: Pointer to seqlock_t * @seq : Marker and return parameter. If the passed value is even, the * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). * If the passed value is odd, the reader will become a *locking* reader * as in read_seqlock_excl(). In the first call to this function, the * caller *must* initialize and pass an even value to @seq; this way, a * lockless read can be optimistically tried first. * * read_seqbegin_or_lock is an API designed to optimistically try a normal * lockless seqlock_t read section first. If an odd counter is found, the * lockless read trial has failed, and the next read iteration transforms * itself into a full seqlock_t locking reader. * * This is typically used to avoid seqlock_t lockless readers starvation * (too much retry loops) in the case of a sharp spike in write side * activity. * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * Check Documentation/locking/seqlock.rst for template example code. * * Return: the encountered sequence counter value, through the @seq * parameter, which is overloaded as a return parameter. This returned * value must be checked with need_seqretry(). If the read section need to * be retried, this returned value must also be passed as the @seq * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl(lock); } /** * need_seqretry() - validate seqlock_t "locking or lockless" read section * @lock: Pointer to seqlock_t * @seq: sequence count, from read_seqbegin_or_lock() * * Return: true if a read section retry is required, false otherwise */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } /** * done_seqretry() - end seqlock_t "locking or lockless" reader section * @lock: Pointer to seqlock_t * @seq: count, from read_seqbegin_or_lock() * * done_seqretry finishes the seqlock_t read side critical section started * with read_seqbegin_or_lock() and validated by need_seqretry(). */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } /** * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or * a non-interruptible locking reader * @lock: Pointer to seqlock_t * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). * * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if * the seqlock_t write section, *or other read sections*, can be invoked * from hardirq context. * * Note: Interrupts will be disabled only for "locking reader" mode. * * Return: * * 1. The saved local interrupts state in case of a locking reader, to * be passed to done_seqretry_irqrestore(). * * 2. The encountered sequence counter value, returned through @seq * overloaded as a return parameter. Check read_seqbegin_or_lock(). */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { unsigned long flags = 0; if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl_irqsave(lock, flags); return flags; } /** * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a * non-interruptible locking reader section * @lock: Pointer to seqlock_t * @seq: Count, from read_seqbegin_or_lock_irqsave() * @flags: Caller's saved local interrupt state in case of a locking * reader, also from read_seqbegin_or_lock_irqsave() * * This is the _irqrestore variant of done_seqretry(). The read section * must've been opened with read_seqbegin_or_lock_irqsave(), and validated * by need_seqretry(). */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { if (seq & 1) read_sequnlock_excl_irqrestore(lock, flags); } #endif /* __LINUX_SEQLOCK_H */ |
45 45 45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 | // SPDX-License-Identifier: GPL-2.0-or-later /* * ip_vs_ftp.c: IPVS ftp application module * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * * Changes: * * Most code here is taken from ip_masq_ftp.c in kernel 2.2. The difference * is that ip_vs_ftp module handles the reverse direction to ip_masq_ftp. * * IP_MASQ_FTP ftp masquerading module * * Version: @(#)ip_masq_ftp.c 0.04 02/05/96 * * Author: Wouter Gadeyne */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/ctype.h> #include <linux/inet.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/netfilter.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_expect.h> #include <net/netfilter/nf_nat.h> #include <net/netfilter/nf_nat_helper.h> #include <linux/gfp.h> #include <net/protocol.h> #include <net/tcp.h> #include <asm/unaligned.h> #include <net/ip_vs.h> #define SERVER_STRING_PASV "227 " #define CLIENT_STRING_PORT "PORT" #define SERVER_STRING_EPSV "229 " #define CLIENT_STRING_EPRT "EPRT" enum { IP_VS_FTP_ACTIVE = 0, IP_VS_FTP_PORT = 0, IP_VS_FTP_PASV, IP_VS_FTP_EPRT, IP_VS_FTP_EPSV, }; /* * List of ports (up to IP_VS_APP_MAX_PORTS) to be handled by helper * First port is set to the default port. */ static unsigned int ports_count = 1; static unsigned short ports[IP_VS_APP_MAX_PORTS] = {21, 0}; module_param_array(ports, ushort, &ports_count, 0444); MODULE_PARM_DESC(ports, "Ports to monitor for FTP control commands"); static char *ip_vs_ftp_data_ptr(struct sk_buff *skb, struct ip_vs_iphdr *ipvsh) { struct tcphdr *th = (struct tcphdr *)((char *)skb->data + ipvsh->len); if ((th->doff << 2) < sizeof(struct tcphdr)) return NULL; return (char *)th + (th->doff << 2); } static int ip_vs_ftp_init_conn(struct ip_vs_app *app, struct ip_vs_conn *cp) { /* We use connection tracking for the command connection */ cp->flags |= IP_VS_CONN_F_NFCT; return 0; } static int ip_vs_ftp_done_conn(struct ip_vs_app *app, struct ip_vs_conn *cp) { return 0; } /* Get <addr,port> from the string "xxx.xxx.xxx.xxx,ppp,ppp", started * with the "pattern". <addr,port> is in network order. * Parse extended format depending on ext. In this case addr can be pre-set. */ static int ip_vs_ftp_get_addrport(char *data, char *data_limit, const char *pattern, size_t plen, char skip, bool ext, int mode, union nf_inet_addr *addr, __be16 *port, __u16 af, char **start, char **end) { char *s, c; unsigned char p[6]; char edelim; __u16 hport; int i = 0; if (data_limit - data < plen) { /* check if there is partial match */ if (strncasecmp(data, pattern, data_limit - data) == 0) return -1; else return 0; } if (strncasecmp(data, pattern, plen) != 0) { return 0; } s = data + plen; if (skip) { bool found = false; for (;; s++) { if (s == data_limit) return -1; if (!found) { /* "(" is optional for non-extended format, * so catch the start of IPv4 address */ if (!ext && isdigit(*s)) break; if (*s == skip) found = true; } else if (*s != skip) { break; } } } /* Old IPv4-only format? */ if (!ext) { p[0] = 0; for (data = s; ; data++) { if (data == data_limit) return -1; c = *data; if (isdigit(c)) { p[i] = p[i]*10 + c - '0'; } else if (c == ',' && i < 5) { i++; p[i] = 0; } else { /* unexpected character or terminator */ break; } } if (i != 5) return -1; *start = s; *end = data; addr->ip = get_unaligned((__be32 *) p); *port = get_unaligned((__be16 *) (p + 4)); return 1; } if (s == data_limit) return -1; *start = s; edelim = *s++; if (edelim < 33 || edelim > 126) return -1; if (s == data_limit) return -1; if (*s == edelim) { /* Address family is usually missing for EPSV response */ if (mode != IP_VS_FTP_EPSV) return -1; s++; if (s == data_limit) return -1; /* Then address should be missing too */ if (*s != edelim) return -1; /* Caller can pre-set addr, if needed */ s++; } else { const char *ep; /* We allow address only from same family */ if (af == AF_INET6 && *s != '2') return -1; if (af == AF_INET && *s != '1') return -1; s++; if (s == data_limit) return -1; if (*s != edelim) return -1; s++; if (s == data_limit) return -1; if (af == AF_INET6) { if (in6_pton(s, data_limit - s, (u8 *)addr, edelim, &ep) <= 0) return -1; } else { if (in4_pton(s, data_limit - s, (u8 *)addr, edelim, &ep) <= 0) return -1; } s = (char *) ep; if (s == data_limit) return -1; if (*s != edelim) return -1; s++; } for (hport = 0; ; s++) { if (s == data_limit) return -1; if (!isdigit(*s)) break; hport = hport * 10 + *s - '0'; } if (s == data_limit || !hport || *s != edelim) return -1; s++; *end = s; *port = htons(hport); return 1; } /* Look at outgoing ftp packets to catch the response to a PASV/EPSV command * from the server (inside-to-outside). * When we see one, we build a connection entry with the client address, * client port 0 (unknown at the moment), the server address and the * server port. Mark the current connection entry as a control channel * of the new entry. All this work is just to make the data connection * can be scheduled to the right server later. * * The outgoing packet should be something like * "227 Entering Passive Mode (xxx,xxx,xxx,xxx,ppp,ppp)". * xxx,xxx,xxx,xxx is the server address, ppp,ppp is the server port number. * The extended format for EPSV response provides usually only port: * "229 Entering Extended Passive Mode (|||ppp|)" */ static int ip_vs_ftp_out(struct ip_vs_app *app, struct ip_vs_conn *cp, struct sk_buff *skb, int *diff, struct ip_vs_iphdr *ipvsh) { char *data, *data_limit; char *start, *end; union nf_inet_addr from; __be16 port; struct ip_vs_conn *n_cp; char buf[24]; /* xxx.xxx.xxx.xxx,ppp,ppp\000 */ unsigned int buf_len; int ret = 0; enum ip_conntrack_info ctinfo; struct nf_conn *ct; *diff = 0; /* Only useful for established sessions */ if (cp->state != IP_VS_TCP_S_ESTABLISHED) return 1; /* Linear packets are much easier to deal with. */ if (skb_ensure_writable(skb, skb->len)) return 0; if (cp->app_data == (void *) IP_VS_FTP_PASV) { data = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; if (ip_vs_ftp_get_addrport(data, data_limit, SERVER_STRING_PASV, sizeof(SERVER_STRING_PASV)-1, '(', false, IP_VS_FTP_PASV, &from, &port, cp->af, &start, &end) != 1) return 1; IP_VS_DBG(7, "PASV response (%pI4:%u) -> %pI4:%u detected\n", &from.ip, ntohs(port), &cp->caddr.ip, 0); } else if (cp->app_data == (void *) IP_VS_FTP_EPSV) { data = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; /* Usually, data address is not specified but * we support different address, so pre-set it. */ from = cp->daddr; if (ip_vs_ftp_get_addrport(data, data_limit, SERVER_STRING_EPSV, sizeof(SERVER_STRING_EPSV)-1, '(', true, IP_VS_FTP_EPSV, &from, &port, cp->af, &start, &end) != 1) return 1; IP_VS_DBG_BUF(7, "EPSV response (%s:%u) -> %s:%u detected\n", IP_VS_DBG_ADDR(cp->af, &from), ntohs(port), IP_VS_DBG_ADDR(cp->af, &cp->caddr), 0); } else { return 1; } /* Now update or create a connection entry for it */ { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &from, port, &cp->caddr, 0, &p); n_cp = ip_vs_conn_out_get(&p); } if (!n_cp) { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &cp->caddr, 0, &cp->vaddr, port, &p); n_cp = ip_vs_conn_new(&p, cp->af, &from, port, IP_VS_CONN_F_NO_CPORT | IP_VS_CONN_F_NFCT, cp->dest, skb->mark); if (!n_cp) return 0; /* add its controller */ ip_vs_control_add(n_cp, cp); } /* Replace the old passive address with the new one */ if (cp->app_data == (void *) IP_VS_FTP_PASV) { from.ip = n_cp->vaddr.ip; port = n_cp->vport; snprintf(buf, sizeof(buf), "%u,%u,%u,%u,%u,%u", ((unsigned char *)&from.ip)[0], ((unsigned char *)&from.ip)[1], ((unsigned char *)&from.ip)[2], ((unsigned char *)&from.ip)[3], ntohs(port) >> 8, ntohs(port) & 0xFF); } else if (cp->app_data == (void *) IP_VS_FTP_EPSV) { from = n_cp->vaddr; port = n_cp->vport; /* Only port, client will use VIP for the data connection */ snprintf(buf, sizeof(buf), "|||%u|", ntohs(port)); } else { *buf = 0; } buf_len = strlen(buf); ct = nf_ct_get(skb, &ctinfo); if (ct) { bool mangled; /* If mangling fails this function will return 0 * which will cause the packet to be dropped. * Mangling can only fail under memory pressure, * hopefully it will succeed on the retransmitted * packet. */ mangled = nf_nat_mangle_tcp_packet(skb, ct, ctinfo, ipvsh->len, start - data, end - start, buf, buf_len); if (mangled) { ip_vs_nfct_expect_related(skb, ct, n_cp, ipvsh->protocol, 0, 0); if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_UNNECESSARY; /* csum is updated */ ret = 1; } } /* Not setting 'diff' is intentional, otherwise the sequence * would be adjusted twice. */ cp->app_data = (void *) IP_VS_FTP_ACTIVE; ip_vs_tcp_conn_listen(n_cp); ip_vs_conn_put(n_cp); return ret; } /* Look at incoming ftp packets to catch the PASV/PORT/EPRT/EPSV command * (outside-to-inside). * * The incoming packet having the PORT command should be something like * "PORT xxx,xxx,xxx,xxx,ppp,ppp\n". * xxx,xxx,xxx,xxx is the client address, ppp,ppp is the client port number. * In this case, we create a connection entry using the client address and * port, so that the active ftp data connection from the server can reach * the client. * Extended format: * "EPSV\r\n" when client requests server address from same family * "EPSV 1\r\n" when client requests IPv4 server address * "EPSV 2\r\n" when client requests IPv6 server address * "EPSV ALL\r\n" - not supported * EPRT with specified delimiter (ASCII 33..126), "|" by default: * "EPRT |1|IPv4ADDR|PORT|\r\n" when client provides IPv4 addrport * "EPRT |2|IPv6ADDR|PORT|\r\n" when client provides IPv6 addrport */ static int ip_vs_ftp_in(struct ip_vs_app *app, struct ip_vs_conn *cp, struct sk_buff *skb, int *diff, struct ip_vs_iphdr *ipvsh) { char *data, *data_start, *data_limit; char *start, *end; union nf_inet_addr to; __be16 port; struct ip_vs_conn *n_cp; /* no diff required for incoming packets */ *diff = 0; /* Only useful for established sessions */ if (cp->state != IP_VS_TCP_S_ESTABLISHED) return 1; /* Linear packets are much easier to deal with. */ if (skb_ensure_writable(skb, skb->len)) return 0; data = data_start = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; while (data <= data_limit - 6) { if (cp->af == AF_INET && strncasecmp(data, "PASV\r\n", 6) == 0) { /* Passive mode on */ IP_VS_DBG(7, "got PASV at %td of %td\n", data - data_start, data_limit - data_start); cp->app_data = (void *) IP_VS_FTP_PASV; return 1; } /* EPSV or EPSV<space><net-prt> */ if (strncasecmp(data, "EPSV", 4) == 0 && (data[4] == ' ' || data[4] == '\r')) { if (data[4] == ' ') { char proto = data[5]; if (data > data_limit - 7 || data[6] != '\r') return 1; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6 && proto == '2') { } else #endif if (cp->af == AF_INET && proto == '1') { } else { return 1; } } /* Extended Passive mode on */ IP_VS_DBG(7, "got EPSV at %td of %td\n", data - data_start, data_limit - data_start); cp->app_data = (void *) IP_VS_FTP_EPSV; return 1; } data++; } /* * To support virtual FTP server, the scenerio is as follows: * FTP client ----> Load Balancer ----> FTP server * First detect the port number in the application data, * then create a new connection entry for the coming data * connection. */ if (cp->af == AF_INET && ip_vs_ftp_get_addrport(data_start, data_limit, CLIENT_STRING_PORT, sizeof(CLIENT_STRING_PORT)-1, ' ', false, IP_VS_FTP_PORT, &to, &port, cp->af, &start, &end) == 1) { IP_VS_DBG(7, "PORT %pI4:%u detected\n", &to.ip, ntohs(port)); /* Now update or create a connection entry for it */ IP_VS_DBG(7, "protocol %s %pI4:%u %pI4:%u\n", ip_vs_proto_name(ipvsh->protocol), &to.ip, ntohs(port), &cp->vaddr.ip, ntohs(cp->vport)-1); } else if (ip_vs_ftp_get_addrport(data_start, data_limit, CLIENT_STRING_EPRT, sizeof(CLIENT_STRING_EPRT)-1, ' ', true, IP_VS_FTP_EPRT, &to, &port, cp->af, &start, &end) == 1) { IP_VS_DBG_BUF(7, "EPRT %s:%u detected\n", IP_VS_DBG_ADDR(cp->af, &to), ntohs(port)); /* Now update or create a connection entry for it */ IP_VS_DBG_BUF(7, "protocol %s %s:%u %s:%u\n", ip_vs_proto_name(ipvsh->protocol), IP_VS_DBG_ADDR(cp->af, &to), ntohs(port), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport)-1); } else { return 1; } /* Passive mode off */ cp->app_data = (void *) IP_VS_FTP_ACTIVE; { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &to, port, &cp->vaddr, htons(ntohs(cp->vport)-1), &p); n_cp = ip_vs_conn_in_get(&p); if (!n_cp) { n_cp = ip_vs_conn_new(&p, cp->af, &cp->daddr, htons(ntohs(cp->dport)-1), IP_VS_CONN_F_NFCT, cp->dest, skb->mark); if (!n_cp) return 0; /* add its controller */ ip_vs_control_add(n_cp, cp); } } /* * Move tunnel to listen state */ ip_vs_tcp_conn_listen(n_cp); ip_vs_conn_put(n_cp); return 1; } static struct ip_vs_app ip_vs_ftp = { .name = "ftp", .type = IP_VS_APP_TYPE_FTP, .protocol = IPPROTO_TCP, .module = THIS_MODULE, .incs_list = LIST_HEAD_INIT(ip_vs_ftp.incs_list), .init_conn = ip_vs_ftp_init_conn, .done_conn = ip_vs_ftp_done_conn, .bind_conn = NULL, .unbind_conn = NULL, .pkt_out = ip_vs_ftp_out, .pkt_in = ip_vs_ftp_in, }; /* * per netns ip_vs_ftp initialization */ static int __net_init __ip_vs_ftp_init(struct net *net) { int i, ret; struct ip_vs_app *app; struct netns_ipvs *ipvs = net_ipvs(net); if (!ipvs) return -ENOENT; app = register_ip_vs_app(ipvs, &ip_vs_ftp); if (IS_ERR(app)) return PTR_ERR(app); for (i = 0; i < ports_count; i++) { if (!ports[i]) continue; ret = register_ip_vs_app_inc(ipvs, app, app->protocol, ports[i]); if (ret) goto err_unreg; } return 0; err_unreg: unregister_ip_vs_app(ipvs, &ip_vs_ftp); return ret; } /* * netns exit */ static void __ip_vs_ftp_exit(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); if (!ipvs) return; unregister_ip_vs_app(ipvs, &ip_vs_ftp); } static struct pernet_operations ip_vs_ftp_ops = { .init = __ip_vs_ftp_init, .exit = __ip_vs_ftp_exit, }; static int __init ip_vs_ftp_init(void) { /* rcu_barrier() is called by netns on error */ return register_pernet_subsys(&ip_vs_ftp_ops); } /* * ip_vs_ftp finish. */ static void __exit ip_vs_ftp_exit(void) { unregister_pernet_subsys(&ip_vs_ftp_ops); /* rcu_barrier() is called by netns */ } module_init(ip_vs_ftp_init); module_exit(ip_vs_ftp_exit); MODULE_LICENSE("GPL"); |
987 983 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 | // SPDX-License-Identifier: GPL-2.0-or-later /* * NetLabel Unlabeled Support * * This file defines functions for dealing with unlabeled packets for the * NetLabel system. The NetLabel system manages static and dynamic label * mappings for network protocols such as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2006 - 2008 */ #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/socket.h> #include <linux/string.h> #include <linux/skbuff.h> #include <linux/audit.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/notifier.h> #include <linux/netdevice.h> #include <linux/security.h> #include <linux/slab.h> #include <net/sock.h> #include <net/netlink.h> #include <net/genetlink.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/net_namespace.h> #include <net/netlabel.h> #include <asm/bug.h> #include <linux/atomic.h> #include "netlabel_user.h" #include "netlabel_addrlist.h" #include "netlabel_domainhash.h" #include "netlabel_unlabeled.h" #include "netlabel_mgmt.h" /* NOTE: at present we always use init's network namespace since we don't * presently support different namespaces even though the majority of * the functions in this file are "namespace safe" */ /* The unlabeled connection hash table which we use to map network interfaces * and addresses of unlabeled packets to a user specified secid value for the * LSM. The hash table is used to lookup the network interface entry * (struct netlbl_unlhsh_iface) and then the interface entry is used to * lookup an IP address match from an ordered list. If a network interface * match can not be found in the hash table then the default entry * (netlbl_unlhsh_def) is used. The IP address entry list * (struct netlbl_unlhsh_addr) is ordered such that the entries with a * larger netmask come first. */ struct netlbl_unlhsh_tbl { struct list_head *tbl; u32 size; }; #define netlbl_unlhsh_addr4_entry(iter) \ container_of(iter, struct netlbl_unlhsh_addr4, list) struct netlbl_unlhsh_addr4 { u32 secid; struct netlbl_af4list list; struct rcu_head rcu; }; #define netlbl_unlhsh_addr6_entry(iter) \ container_of(iter, struct netlbl_unlhsh_addr6, list) struct netlbl_unlhsh_addr6 { u32 secid; struct netlbl_af6list list; struct rcu_head rcu; }; struct netlbl_unlhsh_iface { int ifindex; struct list_head addr4_list; struct list_head addr6_list; u32 valid; struct list_head list; struct rcu_head rcu; }; /* Argument struct for netlbl_unlhsh_walk() */ struct netlbl_unlhsh_walk_arg { struct netlink_callback *nl_cb; struct sk_buff *skb; u32 seq; }; /* Unlabeled connection hash table */ /* updates should be so rare that having one spinlock for the entire * hash table should be okay */ static DEFINE_SPINLOCK(netlbl_unlhsh_lock); #define netlbl_unlhsh_rcu_deref(p) \ rcu_dereference_check(p, lockdep_is_held(&netlbl_unlhsh_lock)) static struct netlbl_unlhsh_tbl __rcu *netlbl_unlhsh; static struct netlbl_unlhsh_iface __rcu *netlbl_unlhsh_def; /* Accept unlabeled packets flag */ static u8 netlabel_unlabel_acceptflg; /* NetLabel Generic NETLINK unlabeled family */ static struct genl_family netlbl_unlabel_gnl_family; /* NetLabel Netlink attribute policy */ static const struct nla_policy netlbl_unlabel_genl_policy[NLBL_UNLABEL_A_MAX + 1] = { [NLBL_UNLABEL_A_ACPTFLG] = { .type = NLA_U8 }, [NLBL_UNLABEL_A_IPV6ADDR] = { .type = NLA_BINARY, .len = sizeof(struct in6_addr) }, [NLBL_UNLABEL_A_IPV6MASK] = { .type = NLA_BINARY, .len = sizeof(struct in6_addr) }, [NLBL_UNLABEL_A_IPV4ADDR] = { .type = NLA_BINARY, .len = sizeof(struct in_addr) }, [NLBL_UNLABEL_A_IPV4MASK] = { .type = NLA_BINARY, .len = sizeof(struct in_addr) }, [NLBL_UNLABEL_A_IFACE] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ - 1 }, [NLBL_UNLABEL_A_SECCTX] = { .type = NLA_BINARY } }; /* * Unlabeled Connection Hash Table Functions */ /** * netlbl_unlhsh_free_iface - Frees an interface entry from the hash table * @entry: the entry's RCU field * * Description: * This function is designed to be used as a callback to the call_rcu() * function so that memory allocated to a hash table interface entry can be * released safely. It is important to note that this function does not free * the IPv4 and IPv6 address lists contained as part of an interface entry. It * is up to the rest of the code to make sure an interface entry is only freed * once it's address lists are empty. * */ static void netlbl_unlhsh_free_iface(struct rcu_head *entry) { struct netlbl_unlhsh_iface *iface; struct netlbl_af4list *iter4; struct netlbl_af4list *tmp4; #if IS_ENABLED(CONFIG_IPV6) struct netlbl_af6list *iter6; struct netlbl_af6list *tmp6; #endif /* IPv6 */ iface = container_of(entry, struct netlbl_unlhsh_iface, rcu); /* no need for locks here since we are the only one with access to this * structure */ netlbl_af4list_foreach_safe(iter4, tmp4, &iface->addr4_list) { netlbl_af4list_remove_entry(iter4); kfree(netlbl_unlhsh_addr4_entry(iter4)); } #if IS_ENABLED(CONFIG_IPV6) netlbl_af6list_foreach_safe(iter6, tmp6, &iface->addr6_list) { netlbl_af6list_remove_entry(iter6); kfree(netlbl_unlhsh_addr6_entry(iter6)); } #endif /* IPv6 */ kfree(iface); } /** * netlbl_unlhsh_hash - Hashing function for the hash table * @ifindex: the network interface/device to hash * * Description: * This is the hashing function for the unlabeled hash table, it returns the * bucket number for the given device/interface. The caller is responsible for * ensuring that the hash table is protected with either a RCU read lock or * the hash table lock. * */ static u32 netlbl_unlhsh_hash(int ifindex) { return ifindex & (netlbl_unlhsh_rcu_deref(netlbl_unlhsh)->size - 1); } /** * netlbl_unlhsh_search_iface - Search for a matching interface entry * @ifindex: the network interface * * Description: * Searches the unlabeled connection hash table and returns a pointer to the * interface entry which matches @ifindex, otherwise NULL is returned. The * caller is responsible for ensuring that the hash table is protected with * either a RCU read lock or the hash table lock. * */ static struct netlbl_unlhsh_iface *netlbl_unlhsh_search_iface(int ifindex) { u32 bkt; struct list_head *bkt_list; struct netlbl_unlhsh_iface *iter; bkt = netlbl_unlhsh_hash(ifindex); bkt_list = &netlbl_unlhsh_rcu_deref(netlbl_unlhsh)->tbl[bkt]; list_for_each_entry_rcu(iter, bkt_list, list, lockdep_is_held(&netlbl_unlhsh_lock)) if (iter->valid && iter->ifindex == ifindex) return iter; return NULL; } /** * netlbl_unlhsh_add_addr4 - Add a new IPv4 address entry to the hash table * @iface: the associated interface entry * @addr: IPv4 address in network byte order * @mask: IPv4 address mask in network byte order * @secid: LSM secid value for entry * * Description: * Add a new address entry into the unlabeled connection hash table using the * interface entry specified by @iface. On success zero is returned, otherwise * a negative value is returned. * */ static int netlbl_unlhsh_add_addr4(struct netlbl_unlhsh_iface *iface, const struct in_addr *addr, const struct in_addr *mask, u32 secid) { int ret_val; struct netlbl_unlhsh_addr4 *entry; entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (entry == NULL) return -ENOMEM; entry->list.addr = addr->s_addr & mask->s_addr; entry->list.mask = mask->s_addr; entry->list.valid = 1; entry->secid = secid; spin_lock(&netlbl_unlhsh_lock); ret_val = netlbl_af4list_add(&entry->list, &iface->addr4_list); spin_unlock(&netlbl_unlhsh_lock); if (ret_val != 0) kfree(entry); return ret_val; } #if IS_ENABLED(CONFIG_IPV6) /** * netlbl_unlhsh_add_addr6 - Add a new IPv6 address entry to the hash table * @iface: the associated interface entry * @addr: IPv6 address in network byte order * @mask: IPv6 address mask in network byte order * @secid: LSM secid value for entry * * Description: * Add a new address entry into the unlabeled connection hash table using the * interface entry specified by @iface. On success zero is returned, otherwise * a negative value is returned. * */ static int netlbl_unlhsh_add_addr6(struct netlbl_unlhsh_iface *iface, const struct in6_addr *addr, const struct in6_addr *mask, u32 secid) { int ret_val; struct netlbl_unlhsh_addr6 *entry; entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (entry == NULL) return -ENOMEM; entry->list.addr = *addr; entry->list.addr.s6_addr32[0] &= mask->s6_addr32[0]; entry->list.addr.s6_addr32[1] &= mask->s6_addr32[1]; entry->list.addr.s6_addr32[2] &= mask->s6_addr32[2]; entry->list.addr.s6_addr32[3] &= mask->s6_addr32[3]; entry->list.mask = *mask; entry->list.valid = 1; entry->secid = secid; spin_lock(&netlbl_unlhsh_lock); ret_val = netlbl_af6list_add(&entry->list, &iface->addr6_list); spin_unlock(&netlbl_unlhsh_lock); if (ret_val != 0) kfree(entry); return 0; } #endif /* IPv6 */ /** * netlbl_unlhsh_add_iface - Adds a new interface entry to the hash table * @ifindex: network interface * * Description: * Add a new, empty, interface entry into the unlabeled connection hash table. * On success a pointer to the new interface entry is returned, on failure NULL * is returned. * */ static struct netlbl_unlhsh_iface *netlbl_unlhsh_add_iface(int ifindex) { u32 bkt; struct netlbl_unlhsh_iface *iface; iface = kzalloc(sizeof(*iface), GFP_ATOMIC); if (iface == NULL) return NULL; iface->ifindex = ifindex; INIT_LIST_HEAD(&iface->addr4_list); INIT_LIST_HEAD(&iface->addr6_list); iface->valid = 1; spin_lock(&netlbl_unlhsh_lock); if (ifindex > 0) { bkt = netlbl_unlhsh_hash(ifindex); if (netlbl_unlhsh_search_iface(ifindex) != NULL) goto add_iface_failure; list_add_tail_rcu(&iface->list, &netlbl_unlhsh_rcu_deref(netlbl_unlhsh)->tbl[bkt]); } else { INIT_LIST_HEAD(&iface->list); if (netlbl_unlhsh_rcu_deref(netlbl_unlhsh_def) != NULL) goto add_iface_failure; rcu_assign_pointer(netlbl_unlhsh_def, iface); } spin_unlock(&netlbl_unlhsh_lock); return iface; add_iface_failure: spin_unlock(&netlbl_unlhsh_lock); kfree(iface); return NULL; } /** * netlbl_unlhsh_add - Adds a new entry to the unlabeled connection hash table * @net: network namespace * @dev_name: interface name * @addr: IP address in network byte order * @mask: address mask in network byte order * @addr_len: length of address/mask (4 for IPv4, 16 for IPv6) * @secid: LSM secid value for the entry * @audit_info: NetLabel audit information * * Description: * Adds a new entry to the unlabeled connection hash table. Returns zero on * success, negative values on failure. * */ int netlbl_unlhsh_add(struct net *net, const char *dev_name, const void *addr, const void *mask, u32 addr_len, u32 secid, struct netlbl_audit *audit_info) { int ret_val; int ifindex; struct net_device *dev; struct netlbl_unlhsh_iface *iface; struct audit_buffer *audit_buf = NULL; char *secctx = NULL; u32 secctx_len; if (addr_len != sizeof(struct in_addr) && addr_len != sizeof(struct in6_addr)) return -EINVAL; rcu_read_lock(); if (dev_name != NULL) { dev = dev_get_by_name_rcu(net, dev_name); if (dev == NULL) { ret_val = -ENODEV; goto unlhsh_add_return; } ifindex = dev->ifindex; iface = netlbl_unlhsh_search_iface(ifindex); } else { ifindex = 0; iface = rcu_dereference(netlbl_unlhsh_def); } if (iface == NULL) { iface = netlbl_unlhsh_add_iface(ifindex); if (iface == NULL) { ret_val = -ENOMEM; goto unlhsh_add_return; } } audit_buf = netlbl_audit_start_common(AUDIT_MAC_UNLBL_STCADD, audit_info); switch (addr_len) { case sizeof(struct in_addr): { const struct in_addr *addr4 = addr; const struct in_addr *mask4 = mask; ret_val = netlbl_unlhsh_add_addr4(iface, addr4, mask4, secid); if (audit_buf != NULL) netlbl_af4list_audit_addr(audit_buf, 1, dev_name, addr4->s_addr, mask4->s_addr); break; } #if IS_ENABLED(CONFIG_IPV6) case sizeof(struct in6_addr): { const struct in6_addr *addr6 = addr; const struct in6_addr *mask6 = mask; ret_val = netlbl_unlhsh_add_addr6(iface, addr6, mask6, secid); if (audit_buf != NULL) netlbl_af6list_audit_addr(audit_buf, 1, dev_name, addr6, mask6); break; } #endif /* IPv6 */ default: ret_val = -EINVAL; } if (ret_val == 0) atomic_inc(&netlabel_mgmt_protocount); unlhsh_add_return: rcu_read_unlock(); if (audit_buf != NULL) { if (security_secid_to_secctx(secid, &secctx, &secctx_len) == 0) { audit_log_format(audit_buf, " sec_obj=%s", secctx); security_release_secctx(secctx, secctx_len); } audit_log_format(audit_buf, " res=%u", ret_val == 0 ? 1 : 0); audit_log_end(audit_buf); } return ret_val; } /** * netlbl_unlhsh_remove_addr4 - Remove an IPv4 address entry * @net: network namespace * @iface: interface entry * @addr: IP address * @mask: IP address mask * @audit_info: NetLabel audit information * * Description: * Remove an IP address entry from the unlabeled connection hash table. * Returns zero on success, negative values on failure. * */ static int netlbl_unlhsh_remove_addr4(struct net *net, struct netlbl_unlhsh_iface *iface, const struct in_addr *addr, const struct in_addr *mask, struct netlbl_audit *audit_info) { struct netlbl_af4list *list_entry; struct netlbl_unlhsh_addr4 *entry; struct audit_buffer *audit_buf; struct net_device *dev; char *secctx; u32 secctx_len; spin_lock(&netlbl_unlhsh_lock); list_entry = netlbl_af4list_remove(addr->s_addr, mask->s_addr, &iface->addr4_list); spin_unlock(&netlbl_unlhsh_lock); if (list_entry != NULL) entry = netlbl_unlhsh_addr4_entry(list_entry); else entry = NULL; audit_buf = netlbl_audit_start_common(AUDIT_MAC_UNLBL_STCDEL, audit_info); if (audit_buf != NULL) { dev = dev_get_by_index(net, iface->ifindex); netlbl_af4list_audit_addr(audit_buf, 1, (dev != NULL ? dev->name : NULL), addr->s_addr, mask->s_addr); dev_put(dev); if (entry != NULL && security_secid_to_secctx(entry->secid, &secctx, &secctx_len) == 0) { audit_log_format(audit_buf, " sec_obj=%s", secctx); security_release_secctx(secctx, secctx_len); } audit_log_format(audit_buf, " res=%u", entry != NULL ? 1 : 0); audit_log_end(audit_buf); } if (entry == NULL) return -ENOENT; kfree_rcu(entry, rcu); return 0; } #if IS_ENABLED(CONFIG_IPV6) /** * netlbl_unlhsh_remove_addr6 - Remove an IPv6 address entry * @net: network namespace * @iface: interface entry * @addr: IP address * @mask: IP address mask * @audit_info: NetLabel audit information * * Description: * Remove an IP address entry from the unlabeled connection hash table. * Returns zero on success, negative values on failure. * */ static int netlbl_unlhsh_remove_addr6(struct net *net, struct netlbl_unlhsh_iface *iface, const struct in6_addr *addr, const struct in6_addr *mask, struct netlbl_audit *audit_info) { struct netlbl_af6list *list_entry; struct netlbl_unlhsh_addr6 *entry; struct audit_buffer *audit_buf; struct net_device *dev; char *secctx; u32 secctx_len; spin_lock(&netlbl_unlhsh_lock); list_entry = netlbl_af6list_remove(addr, mask, &iface->addr6_list); spin_unlock(&netlbl_unlhsh_lock); if (list_entry != NULL) entry = netlbl_unlhsh_addr6_entry(list_entry); else entry = NULL; audit_buf = netlbl_audit_start_common(AUDIT_MAC_UNLBL_STCDEL, audit_info); if (audit_buf != NULL) { dev = dev_get_by_index(net, iface->ifindex); netlbl_af6list_audit_addr(audit_buf, 1, (dev != NULL ? dev->name : NULL), addr, mask); dev_put(dev); if (entry != NULL && security_secid_to_secctx(entry->secid, &secctx, &secctx_len) == 0) { audit_log_format(audit_buf, " sec_obj=%s", secctx); security_release_secctx(secctx, secctx_len); } audit_log_format(audit_buf, " res=%u", entry != NULL ? 1 : 0); audit_log_end(audit_buf); } if (entry == NULL) return -ENOENT; kfree_rcu(entry, rcu); return 0; } #endif /* IPv6 */ /** * netlbl_unlhsh_condremove_iface - Remove an interface entry * @iface: the interface entry * * Description: * Remove an interface entry from the unlabeled connection hash table if it is * empty. An interface entry is considered to be empty if there are no * address entries assigned to it. * */ static void netlbl_unlhsh_condremove_iface(struct netlbl_unlhsh_iface *iface) { struct netlbl_af4list *iter4; #if IS_ENABLED(CONFIG_IPV6) struct netlbl_af6list *iter6; #endif /* IPv6 */ spin_lock(&netlbl_unlhsh_lock); netlbl_af4list_foreach_rcu(iter4, &iface->addr4_list) goto unlhsh_condremove_failure; #if IS_ENABLED(CONFIG_IPV6) netlbl_af6list_foreach_rcu(iter6, &iface->addr6_list) goto unlhsh_condremove_failure; #endif /* IPv6 */ iface->valid = 0; if (iface->ifindex > 0) list_del_rcu(&iface->list); else RCU_INIT_POINTER(netlbl_unlhsh_def, NULL); spin_unlock(&netlbl_unlhsh_lock); call_rcu(&iface->rcu, netlbl_unlhsh_free_iface); return; unlhsh_condremove_failure: spin_unlock(&netlbl_unlhsh_lock); } /** * netlbl_unlhsh_remove - Remove an entry from the unlabeled hash table * @net: network namespace * @dev_name: interface name * @addr: IP address in network byte order * @mask: address mask in network byte order * @addr_len: length of address/mask (4 for IPv4, 16 for IPv6) * @audit_info: NetLabel audit information * * Description: * Removes and existing entry from the unlabeled connection hash table. * Returns zero on success, negative values on failure. * */ int netlbl_unlhsh_remove(struct net *net, const char *dev_name, const void *addr, const void *mask, u32 addr_len, struct netlbl_audit *audit_info) { int ret_val; struct net_device *dev; struct netlbl_unlhsh_iface *iface; if (addr_len != sizeof(struct in_addr) && addr_len != sizeof(struct in6_addr)) return -EINVAL; rcu_read_lock(); if (dev_name != NULL) { dev = dev_get_by_name_rcu(net, dev_name); if (dev == NULL) { ret_val = -ENODEV; goto unlhsh_remove_return; } iface = netlbl_unlhsh_search_iface(dev->ifindex); } else iface = rcu_dereference(netlbl_unlhsh_def); if (iface == NULL) { ret_val = -ENOENT; goto unlhsh_remove_return; } switch (addr_len) { case sizeof(struct in_addr): ret_val = netlbl_unlhsh_remove_addr4(net, iface, addr, mask, audit_info); break; #if IS_ENABLED(CONFIG_IPV6) case sizeof(struct in6_addr): ret_val = netlbl_unlhsh_remove_addr6(net, iface, addr, mask, audit_info); break; #endif /* IPv6 */ default: ret_val = -EINVAL; } if (ret_val == 0) { netlbl_unlhsh_condremove_iface(iface); atomic_dec(&netlabel_mgmt_protocount); } unlhsh_remove_return: rcu_read_unlock(); return ret_val; } /* * General Helper Functions */ /** * netlbl_unlhsh_netdev_handler - Network device notification handler * @this: notifier block * @event: the event * @ptr: the netdevice notifier info (cast to void) * * Description: * Handle network device events, although at present all we care about is a * network device going away. In the case of a device going away we clear any * related entries from the unlabeled connection hash table. * */ static int netlbl_unlhsh_netdev_handler(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netlbl_unlhsh_iface *iface = NULL; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; /* XXX - should this be a check for NETDEV_DOWN or _UNREGISTER? */ if (event == NETDEV_DOWN) { spin_lock(&netlbl_unlhsh_lock); iface = netlbl_unlhsh_search_iface(dev->ifindex); if (iface != NULL && iface->valid) { iface->valid = 0; list_del_rcu(&iface->list); } else iface = NULL; spin_unlock(&netlbl_unlhsh_lock); } if (iface != NULL) call_rcu(&iface->rcu, netlbl_unlhsh_free_iface); return NOTIFY_DONE; } /** * netlbl_unlabel_acceptflg_set - Set the unlabeled accept flag * @value: desired value * @audit_info: NetLabel audit information * * Description: * Set the value of the unlabeled accept flag to @value. * */ static void netlbl_unlabel_acceptflg_set(u8 value, struct netlbl_audit *audit_info) { struct audit_buffer *audit_buf; u8 old_val; old_val = netlabel_unlabel_acceptflg; netlabel_unlabel_acceptflg = value; audit_buf = netlbl_audit_start_common(AUDIT_MAC_UNLBL_ALLOW, audit_info); if (audit_buf != NULL) { audit_log_format(audit_buf, " unlbl_accept=%u old=%u", value, old_val); audit_log_end(audit_buf); } } /** * netlbl_unlabel_addrinfo_get - Get the IPv4/6 address information * @info: the Generic NETLINK info block * @addr: the IP address * @mask: the IP address mask * @len: the address length * * Description: * Examine the Generic NETLINK message and extract the IP address information. * Returns zero on success, negative values on failure. * */ static int netlbl_unlabel_addrinfo_get(struct genl_info *info, void **addr, void **mask, u32 *len) { u32 addr_len; if (info->attrs[NLBL_UNLABEL_A_IPV4ADDR] && info->attrs[NLBL_UNLABEL_A_IPV4MASK]) { addr_len = nla_len(info->attrs[NLBL_UNLABEL_A_IPV4ADDR]); if (addr_len != sizeof(struct in_addr) && addr_len != nla_len(info->attrs[NLBL_UNLABEL_A_IPV4MASK])) return -EINVAL; *len = addr_len; *addr = nla_data(info->attrs[NLBL_UNLABEL_A_IPV4ADDR]); *mask = nla_data(info->attrs[NLBL_UNLABEL_A_IPV4MASK]); return 0; } else if (info->attrs[NLBL_UNLABEL_A_IPV6ADDR]) { addr_len = nla_len(info->attrs[NLBL_UNLABEL_A_IPV6ADDR]); if (addr_len != sizeof(struct in6_addr) && addr_len != nla_len(info->attrs[NLBL_UNLABEL_A_IPV6MASK])) return -EINVAL; *len = addr_len; *addr = nla_data(info->attrs[NLBL_UNLABEL_A_IPV6ADDR]); *mask = nla_data(info->attrs[NLBL_UNLABEL_A_IPV6MASK]); return 0; } return -EINVAL; } /* * NetLabel Command Handlers */ /** * netlbl_unlabel_accept - Handle an ACCEPT message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated ACCEPT message and set the accept flag accordingly. * Returns zero on success, negative values on failure. * */ static int netlbl_unlabel_accept(struct sk_buff *skb, struct genl_info *info) { u8 value; struct netlbl_audit audit_info; if (info->attrs[NLBL_UNLABEL_A_ACPTFLG]) { value = nla_get_u8(info->attrs[NLBL_UNLABEL_A_ACPTFLG]); if (value == 1 || value == 0) { netlbl_netlink_auditinfo(&audit_info); netlbl_unlabel_acceptflg_set(value, &audit_info); return 0; } } return -EINVAL; } /** * netlbl_unlabel_list - Handle a LIST message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated LIST message and respond with the current status. * Returns zero on success, negative values on failure. * */ static int netlbl_unlabel_list(struct sk_buff *skb, struct genl_info *info) { int ret_val = -EINVAL; struct sk_buff *ans_skb; void *data; ans_skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (ans_skb == NULL) goto list_failure; data = genlmsg_put_reply(ans_skb, info, &netlbl_unlabel_gnl_family, 0, NLBL_UNLABEL_C_LIST); if (data == NULL) { ret_val = -ENOMEM; goto list_failure; } ret_val = nla_put_u8(ans_skb, NLBL_UNLABEL_A_ACPTFLG, netlabel_unlabel_acceptflg); if (ret_val != 0) goto list_failure; genlmsg_end(ans_skb, data); return genlmsg_reply(ans_skb, info); list_failure: kfree_skb(ans_skb); return ret_val; } /** * netlbl_unlabel_staticadd - Handle a STATICADD message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated STATICADD message and add a new unlabeled * connection entry to the hash table. Returns zero on success, negative * values on failure. * */ static int netlbl_unlabel_staticadd(struct sk_buff *skb, struct genl_info *info) { int ret_val; char *dev_name; void *addr; void *mask; u32 addr_len; u32 secid; struct netlbl_audit audit_info; /* Don't allow users to add both IPv4 and IPv6 addresses for a * single entry. However, allow users to create two entries, one each * for IPv4 and IPv4, with the same LSM security context which should * achieve the same result. */ if (!info->attrs[NLBL_UNLABEL_A_SECCTX] || !info->attrs[NLBL_UNLABEL_A_IFACE] || !((!info->attrs[NLBL_UNLABEL_A_IPV4ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV4MASK]) ^ (!info->attrs[NLBL_UNLABEL_A_IPV6ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV6MASK]))) return -EINVAL; netlbl_netlink_auditinfo(&audit_info); ret_val = netlbl_unlabel_addrinfo_get(info, &addr, &mask, &addr_len); if (ret_val != 0) return ret_val; dev_name = nla_data(info->attrs[NLBL_UNLABEL_A_IFACE]); ret_val = security_secctx_to_secid( nla_data(info->attrs[NLBL_UNLABEL_A_SECCTX]), nla_len(info->attrs[NLBL_UNLABEL_A_SECCTX]), &secid); if (ret_val != 0) return ret_val; return netlbl_unlhsh_add(&init_net, dev_name, addr, mask, addr_len, secid, &audit_info); } /** * netlbl_unlabel_staticadddef - Handle a STATICADDDEF message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated STATICADDDEF message and add a new default * unlabeled connection entry. Returns zero on success, negative values on * failure. * */ static int netlbl_unlabel_staticadddef(struct sk_buff *skb, struct genl_info *info) { int ret_val; void *addr; void *mask; u32 addr_len; u32 secid; struct netlbl_audit audit_info; /* Don't allow users to add both IPv4 and IPv6 addresses for a * single entry. However, allow users to create two entries, one each * for IPv4 and IPv6, with the same LSM security context which should * achieve the same result. */ if (!info->attrs[NLBL_UNLABEL_A_SECCTX] || !((!info->attrs[NLBL_UNLABEL_A_IPV4ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV4MASK]) ^ (!info->attrs[NLBL_UNLABEL_A_IPV6ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV6MASK]))) return -EINVAL; netlbl_netlink_auditinfo(&audit_info); ret_val = netlbl_unlabel_addrinfo_get(info, &addr, &mask, &addr_len); if (ret_val != 0) return ret_val; ret_val = security_secctx_to_secid( nla_data(info->attrs[NLBL_UNLABEL_A_SECCTX]), nla_len(info->attrs[NLBL_UNLABEL_A_SECCTX]), &secid); if (ret_val != 0) return ret_val; return netlbl_unlhsh_add(&init_net, NULL, addr, mask, addr_len, secid, &audit_info); } /** * netlbl_unlabel_staticremove - Handle a STATICREMOVE message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated STATICREMOVE message and remove the specified * unlabeled connection entry. Returns zero on success, negative values on * failure. * */ static int netlbl_unlabel_staticremove(struct sk_buff *skb, struct genl_info *info) { int ret_val; char *dev_name; void *addr; void *mask; u32 addr_len; struct netlbl_audit audit_info; /* See the note in netlbl_unlabel_staticadd() about not allowing both * IPv4 and IPv6 in the same entry. */ if (!info->attrs[NLBL_UNLABEL_A_IFACE] || !((!info->attrs[NLBL_UNLABEL_A_IPV4ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV4MASK]) ^ (!info->attrs[NLBL_UNLABEL_A_IPV6ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV6MASK]))) return -EINVAL; netlbl_netlink_auditinfo(&audit_info); ret_val = netlbl_unlabel_addrinfo_get(info, &addr, &mask, &addr_len); if (ret_val != 0) return ret_val; dev_name = nla_data(info->attrs[NLBL_UNLABEL_A_IFACE]); return netlbl_unlhsh_remove(&init_net, dev_name, addr, mask, addr_len, &audit_info); } /** * netlbl_unlabel_staticremovedef - Handle a STATICREMOVEDEF message * @skb: the NETLINK buffer * @info: the Generic NETLINK info block * * Description: * Process a user generated STATICREMOVEDEF message and remove the default * unlabeled connection entry. Returns zero on success, negative values on * failure. * */ static int netlbl_unlabel_staticremovedef(struct sk_buff *skb, struct genl_info *info) { int ret_val; void *addr; void *mask; u32 addr_len; struct netlbl_audit audit_info; /* See the note in netlbl_unlabel_staticadd() about not allowing both * IPv4 and IPv6 in the same entry. */ if (!((!info->attrs[NLBL_UNLABEL_A_IPV4ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV4MASK]) ^ (!info->attrs[NLBL_UNLABEL_A_IPV6ADDR] || !info->attrs[NLBL_UNLABEL_A_IPV6MASK]))) return -EINVAL; netlbl_netlink_auditinfo(&audit_info); ret_val = netlbl_unlabel_addrinfo_get(info, &addr, &mask, &addr_len); if (ret_val != 0) return ret_val; return netlbl_unlhsh_remove(&init_net, NULL, addr, mask, addr_len, &audit_info); } /** * netlbl_unlabel_staticlist_gen - Generate messages for STATICLIST[DEF] * @cmd: command/message * @iface: the interface entry * @addr4: the IPv4 address entry * @addr6: the IPv6 address entry * @arg: the netlbl_unlhsh_walk_arg structure * * Description: * This function is designed to be used to generate a response for a * STATICLIST or STATICLISTDEF message. When called either @addr4 or @addr6 * can be specified, not both, the other unspecified entry should be set to * NULL by the caller. Returns the size of the message on success, negative * values on failure. * */ static int netlbl_unlabel_staticlist_gen(u32 cmd, const struct netlbl_unlhsh_iface *iface, const struct netlbl_unlhsh_addr4 *addr4, const struct netlbl_unlhsh_addr6 *addr6, void *arg) { int ret_val = -ENOMEM; struct netlbl_unlhsh_walk_arg *cb_arg = arg; struct net_device *dev; void *data; u32 secid; char *secctx; u32 secctx_len; data = genlmsg_put(cb_arg->skb, NETLINK_CB(cb_arg->nl_cb->skb).portid, cb_arg->seq, &netlbl_unlabel_gnl_family, NLM_F_MULTI, cmd); if (data == NULL) goto list_cb_failure; if (iface->ifindex > 0) { dev = dev_get_by_index(&init_net, iface->ifindex); if (!dev) { ret_val = -ENODEV; goto list_cb_failure; } ret_val = nla_put_string(cb_arg->skb, NLBL_UNLABEL_A_IFACE, dev->name); dev_put(dev); if (ret_val != 0) goto list_cb_failure; } if (addr4) { struct in_addr addr_struct; addr_struct.s_addr = addr4->list.addr; ret_val = nla_put_in_addr(cb_arg->skb, NLBL_UNLABEL_A_IPV4ADDR, addr_struct.s_addr); if (ret_val != 0) goto list_cb_failure; addr_struct.s_addr = addr4->list.mask; ret_val = nla_put_in_addr(cb_arg->skb, NLBL_UNLABEL_A_IPV4MASK, addr_struct.s_addr); if (ret_val != 0) goto list_cb_failure; secid = addr4->secid; } else { ret_val = nla_put_in6_addr(cb_arg->skb, NLBL_UNLABEL_A_IPV6ADDR, &addr6->list.addr); if (ret_val != 0) goto list_cb_failure; ret_val = nla_put_in6_addr(cb_arg->skb, NLBL_UNLABEL_A_IPV6MASK, &addr6->list.mask); if (ret_val != 0) goto list_cb_failure; secid = addr6->secid; } ret_val = security_secid_to_secctx(secid, &secctx, &secctx_len); if (ret_val != 0) goto list_cb_failure; ret_val = nla_put(cb_arg->skb, NLBL_UNLABEL_A_SECCTX, secctx_len, secctx); security_release_secctx(secctx, secctx_len); if (ret_val != 0) goto list_cb_failure; cb_arg->seq++; genlmsg_end(cb_arg->skb, data); return 0; list_cb_failure: genlmsg_cancel(cb_arg->skb, data); return ret_val; } /** * netlbl_unlabel_staticlist - Handle a STATICLIST message * @skb: the NETLINK buffer * @cb: the NETLINK callback * * Description: * Process a user generated STATICLIST message and dump the unlabeled * connection hash table in a form suitable for use in a kernel generated * STATICLIST message. Returns the length of @skb. * */ static int netlbl_unlabel_staticlist(struct sk_buff *skb, struct netlink_callback *cb) { struct netlbl_unlhsh_walk_arg cb_arg; u32 skip_bkt = cb->args[0]; u32 skip_chain = cb->args[1]; u32 skip_addr4 = cb->args[2]; u32 iter_bkt, iter_chain = 0, iter_addr4 = 0, iter_addr6 = 0; struct netlbl_unlhsh_iface *iface; struct list_head *iter_list; struct netlbl_af4list *addr4; #if IS_ENABLED(CONFIG_IPV6) u32 skip_addr6 = cb->args[3]; struct netlbl_af6list *addr6; #endif cb_arg.nl_cb = cb; cb_arg.skb = skb; cb_arg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); for (iter_bkt = skip_bkt; iter_bkt < rcu_dereference(netlbl_unlhsh)->size; iter_bkt++) { iter_list = &rcu_dereference(netlbl_unlhsh)->tbl[iter_bkt]; list_for_each_entry_rcu(iface, iter_list, list) { if (!iface->valid || iter_chain++ < skip_chain) continue; netlbl_af4list_foreach_rcu(addr4, &iface->addr4_list) { if (iter_addr4++ < skip_addr4) continue; if (netlbl_unlabel_staticlist_gen( NLBL_UNLABEL_C_STATICLIST, iface, netlbl_unlhsh_addr4_entry(addr4), NULL, &cb_arg) < 0) { iter_addr4--; iter_chain--; goto unlabel_staticlist_return; } } iter_addr4 = 0; skip_addr4 = 0; #if IS_ENABLED(CONFIG_IPV6) netlbl_af6list_foreach_rcu(addr6, &iface->addr6_list) { if (iter_addr6++ < skip_addr6) continue; if (netlbl_unlabel_staticlist_gen( NLBL_UNLABEL_C_STATICLIST, iface, NULL, netlbl_unlhsh_addr6_entry(addr6), &cb_arg) < 0) { iter_addr6--; iter_chain--; goto unlabel_staticlist_return; } } iter_addr6 = 0; skip_addr6 = 0; #endif /* IPv6 */ } iter_chain = 0; skip_chain = 0; } unlabel_staticlist_return: rcu_read_unlock(); cb->args[0] = iter_bkt; cb->args[1] = iter_chain; cb->args[2] = iter_addr4; cb->args[3] = iter_addr6; return skb->len; } /** * netlbl_unlabel_staticlistdef - Handle a STATICLISTDEF message * @skb: the NETLINK buffer * @cb: the NETLINK callback * * Description: * Process a user generated STATICLISTDEF message and dump the default * unlabeled connection entry in a form suitable for use in a kernel generated * STATICLISTDEF message. Returns the length of @skb. * */ static int netlbl_unlabel_staticlistdef(struct sk_buff *skb, struct netlink_callback *cb) { struct netlbl_unlhsh_walk_arg cb_arg; struct netlbl_unlhsh_iface *iface; u32 iter_addr4 = 0, iter_addr6 = 0; struct netlbl_af4list *addr4; #if IS_ENABLED(CONFIG_IPV6) struct netlbl_af6list *addr6; #endif cb_arg.nl_cb = cb; cb_arg.skb = skb; cb_arg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); iface = rcu_dereference(netlbl_unlhsh_def); if (iface == NULL || !iface->valid) goto unlabel_staticlistdef_return; netlbl_af4list_foreach_rcu(addr4, &iface->addr4_list) { if (iter_addr4++ < cb->args[0]) continue; if (netlbl_unlabel_staticlist_gen(NLBL_UNLABEL_C_STATICLISTDEF, iface, netlbl_unlhsh_addr4_entry(addr4), NULL, &cb_arg) < 0) { iter_addr4--; goto unlabel_staticlistdef_return; } } #if IS_ENABLED(CONFIG_IPV6) netlbl_af6list_foreach_rcu(addr6, &iface->addr6_list) { if (iter_addr6++ < cb->args[1]) continue; if (netlbl_unlabel_staticlist_gen(NLBL_UNLABEL_C_STATICLISTDEF, iface, NULL, netlbl_unlhsh_addr6_entry(addr6), &cb_arg) < 0) { iter_addr6--; goto unlabel_staticlistdef_return; } } #endif /* IPv6 */ unlabel_staticlistdef_return: rcu_read_unlock(); cb->args[0] = iter_addr4; cb->args[1] = iter_addr6; return skb->len; } /* * NetLabel Generic NETLINK Command Definitions */ static const struct genl_small_ops netlbl_unlabel_genl_ops[] = { { .cmd = NLBL_UNLABEL_C_STATICADD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, .doit = netlbl_unlabel_staticadd, .dumpit = NULL, }, { .cmd = NLBL_UNLABEL_C_STATICREMOVE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, .doit = netlbl_unlabel_staticremove, .dumpit = NULL, }, { .cmd = NLBL_UNLABEL_C_STATICLIST, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, .doit = NULL, .dumpit = netlbl_unlabel_staticlist, }, { .cmd = NLBL_UNLABEL_C_STATICADDDEF, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, .doit = netlbl_unlabel_staticadddef, .dumpit = NULL, }, { .cmd = NLBL_UNLABEL_C_STATICREMOVEDEF, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, .doit = netlbl_unlabel_staticremovedef, .dumpit = NULL, }, { .cmd = NLBL_UNLABEL_C_STATICLISTDEF, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, .doit = NULL, .dumpit = netlbl_unlabel_staticlistdef, }, { .cmd = NLBL_UNLABEL_C_ACCEPT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, .doit = netlbl_unlabel_accept, .dumpit = NULL, }, { .cmd = NLBL_UNLABEL_C_LIST, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, .doit = netlbl_unlabel_list, .dumpit = NULL, }, }; static struct genl_family netlbl_unlabel_gnl_family __ro_after_init = { .hdrsize = 0, .name = NETLBL_NLTYPE_UNLABELED_NAME, .version = NETLBL_PROTO_VERSION, .maxattr = NLBL_UNLABEL_A_MAX, .policy = netlbl_unlabel_genl_policy, .module = THIS_MODULE, .small_ops = netlbl_unlabel_genl_ops, .n_small_ops = ARRAY_SIZE(netlbl_unlabel_genl_ops), }; /* * NetLabel Generic NETLINK Protocol Functions */ /** * netlbl_unlabel_genl_init - Register the Unlabeled NetLabel component * * Description: * Register the unlabeled packet NetLabel component with the Generic NETLINK * mechanism. Returns zero on success, negative values on failure. * */ int __init netlbl_unlabel_genl_init(void) { return genl_register_family(&netlbl_unlabel_gnl_family); } /* * NetLabel KAPI Hooks */ static struct notifier_block netlbl_unlhsh_netdev_notifier = { .notifier_call = netlbl_unlhsh_netdev_handler, }; /** * netlbl_unlabel_init - Initialize the unlabeled connection hash table * @size: the number of bits to use for the hash buckets * * Description: * Initializes the unlabeled connection hash table and registers a network * device notification handler. This function should only be called by the * NetLabel subsystem itself during initialization. Returns zero on success, * non-zero values on error. * */ int __init netlbl_unlabel_init(u32 size) { u32 iter; struct netlbl_unlhsh_tbl *hsh_tbl; if (size == 0) return -EINVAL; hsh_tbl = kmalloc(sizeof(*hsh_tbl), GFP_KERNEL); if (hsh_tbl == NULL) return -ENOMEM; hsh_tbl->size = 1 << size; hsh_tbl->tbl = kcalloc(hsh_tbl->size, sizeof(struct list_head), GFP_KERNEL); if (hsh_tbl->tbl == NULL) { kfree(hsh_tbl); return -ENOMEM; } for (iter = 0; iter < hsh_tbl->size; iter++) INIT_LIST_HEAD(&hsh_tbl->tbl[iter]); spin_lock(&netlbl_unlhsh_lock); rcu_assign_pointer(netlbl_unlhsh, hsh_tbl); spin_unlock(&netlbl_unlhsh_lock); register_netdevice_notifier(&netlbl_unlhsh_netdev_notifier); return 0; } /** * netlbl_unlabel_getattr - Get the security attributes for an unlabled packet * @skb: the packet * @family: protocol family * @secattr: the security attributes * * Description: * Determine the security attributes, if any, for an unlabled packet and return * them in @secattr. Returns zero on success and negative values on failure. * */ int netlbl_unlabel_getattr(const struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr) { struct netlbl_unlhsh_iface *iface; rcu_read_lock(); iface = netlbl_unlhsh_search_iface(skb->skb_iif); if (iface == NULL) iface = rcu_dereference(netlbl_unlhsh_def); if (iface == NULL || !iface->valid) goto unlabel_getattr_nolabel; #if IS_ENABLED(CONFIG_IPV6) /* When resolving a fallback label, check the sk_buff version as * it is possible (e.g. SCTP) to have family = PF_INET6 while * receiving ip_hdr(skb)->version = 4. */ if (family == PF_INET6 && ip_hdr(skb)->version == 4) family = PF_INET; #endif /* IPv6 */ switch (family) { case PF_INET: { struct iphdr *hdr4; struct netlbl_af4list *addr4; hdr4 = ip_hdr(skb); addr4 = netlbl_af4list_search(hdr4->saddr, &iface->addr4_list); if (addr4 == NULL) goto unlabel_getattr_nolabel; secattr->attr.secid = netlbl_unlhsh_addr4_entry(addr4)->secid; break; } #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: { struct ipv6hdr *hdr6; struct netlbl_af6list *addr6; hdr6 = ipv6_hdr(skb); addr6 = netlbl_af6list_search(&hdr6->saddr, &iface->addr6_list); if (addr6 == NULL) goto unlabel_getattr_nolabel; secattr->attr.secid = netlbl_unlhsh_addr6_entry(addr6)->secid; break; } #endif /* IPv6 */ default: goto unlabel_getattr_nolabel; } rcu_read_unlock(); secattr->flags |= NETLBL_SECATTR_SECID; secattr->type = NETLBL_NLTYPE_UNLABELED; return 0; unlabel_getattr_nolabel: rcu_read_unlock(); if (netlabel_unlabel_acceptflg == 0) return -ENOMSG; secattr->type = NETLBL_NLTYPE_UNLABELED; return 0; } /** * netlbl_unlabel_defconf - Set the default config to allow unlabeled packets * * Description: * Set the default NetLabel configuration to allow incoming unlabeled packets * and to send unlabeled network traffic by default. * */ int __init netlbl_unlabel_defconf(void) { int ret_val; struct netlbl_dom_map *entry; struct netlbl_audit audit_info; /* Only the kernel is allowed to call this function and the only time * it is called is at bootup before the audit subsystem is reporting * messages so don't worry to much about these values. */ security_task_getsecid_subj(current, &audit_info.secid); audit_info.loginuid = GLOBAL_ROOT_UID; audit_info.sessionid = 0; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (entry == NULL) return -ENOMEM; entry->family = AF_UNSPEC; entry->def.type = NETLBL_NLTYPE_UNLABELED; ret_val = netlbl_domhsh_add_default(entry, &audit_info); if (ret_val != 0) return ret_val; netlbl_unlabel_acceptflg_set(1, &audit_info); return 0; } |
9782 365 364 15 9724 9785 9823 10110 9730 100 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern void fpu__clear_user_states(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); extern void fpu_sync_fpstate(struct fpu *fpu); /* Clone and exit operations */ extern int fpu_clone(struct task_struct *dst); extern void fpu_flush_thread(void); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(void); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif extern void save_fpregs_to_fpstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_FPU_RESTORE) \ : output : input) static inline int fnsave_to_user_sigframe(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int fxsave_to_user_sigframe(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void fxrstor(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int fxrstor_safe(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int fxrstor_from_user_sigframe(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void frstor(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int frstor_safe(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int frstor_from_user_sigframe(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_TYPE(661b, 3b, EX_TYPE_FPU_RESTORE) \ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void os_xrstor_booting(struct xregs_state *xstate) { u64 mask = xfeatures_mask_fpstate(); u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. * * Uses either XSAVE or XSAVEOPT or XSAVES depending on the CPU features * and command line options. The choice is permanent until the next reboot. */ static inline void os_xsave(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. * * Uses XRSTORS when XSAVES is used, XRSTOR otherwise. */ static inline void os_xrstor(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int xsave_to_user_sigframe(struct xregs_state __user *buf) { /* * Include the features which are not xsaved/rstored by the kernel * internally, e.g. PKRU. That's user space ABI and also required * to allow the signal handler to modify PKRU. */ u64 mask = xfeatures_mask_uabi(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int xrstor_from_user_sigframe(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int os_xrstor_safe(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (cpu_feature_enabled(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern void __restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask); static inline void restore_fpregs_from_fpstate(union fpregs_state *fpstate) { __restore_fpregs_from_fpstate(fpstate, xfeatures_mask_fpstate()); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Invalidate a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* Internal helper for switch_fpu_return() and signal frame setup */ static inline void fpregs_restore_userregs(void) { struct fpu *fpu = ¤t->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { u64 mask; /* * This restores _all_ xstate which has not been * established yet. * * If PKRU is enabled, then the PKRU value is already * correct because it was either set in switch_to() or in * flush_thread(). So it is excluded because it might be * not up to date in current->thread.fpu.xsave state. */ mask = xfeatures_mask_restore_user() | xfeatures_mask_supervisor(); __restore_fpregs_from_fpstate(&fpu->state, mask); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { save_fpregs_to_fpstate(old_fpu); /* * The save operation preserved register state, so the * fpu_fpregs_owner_ctx is still @old_fpu. Store the * current CPU number in @old_fpu, so the next return * to user space can avoid the FPU register restore * when is returns on the same CPU and still owns the * context. */ old_fpu->last_cpu = cpu; trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Delay loading of the complete FPU state until the return to userland. * PKRU is handled separately. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { if (cpu_feature_enabled(X86_FEATURE_FPU)) set_thread_flag(TIF_NEED_FPU_LOAD); } #endif /* _ASM_X86_FPU_INTERNAL_H */ |
48 1046 2 1081 10 10 1049 1050 1044 1051 1049 1051 1050 2 1050 1047 1052 1052 1051 1051 1048 1049 1051 1049 1051 1050 4 1046 1951 1955 37 37 37 37 37 37 37 37 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/uaccess.h> #include <linux/fs_struct.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/prefetch.h> #include "mount.h" struct prepend_buffer { char *buf; int len; }; #define DECLARE_BUFFER(__name, __buf, __len) \ struct prepend_buffer __name = {.buf = __buf + __len, .len = __len} static char *extract_string(struct prepend_buffer *p) { if (likely(p->len >= 0)) return p->buf; return ERR_PTR(-ENAMETOOLONG); } static bool prepend_char(struct prepend_buffer *p, unsigned char c) { if (likely(p->len > 0)) { p->len--; *--p->buf = c; return true; } p->len = -1; return false; } /* * The source of the prepend data can be an optimistoc load * of a dentry name and length. And because we don't hold any * locks, the length and the pointer to the name may not be * in sync if a concurrent rename happens, and the kernel * copy might fault as a result. * * The end result will correct itself when we check the * rename sequence count, but we need to be able to handle * the fault gracefully. */ static bool prepend_copy(void *dst, const void *src, int len) { if (unlikely(copy_from_kernel_nofault(dst, src, len))) { memset(dst, 'x', len); return false; } return true; } static bool prepend(struct prepend_buffer *p, const char *str, int namelen) { // Already overflowed? if (p->len < 0) return false; // Will overflow? if (p->len < namelen) { // Fill as much as possible from the end of the name str += namelen - p->len; p->buf -= p->len; prepend_copy(p->buf, str, p->len); p->len = -1; return false; } // Fits fully p->len -= namelen; p->buf -= namelen; return prepend_copy(p->buf, str, namelen); } /** * prepend_name - prepend a pathname in front of current buffer pointer * @buffer: buffer pointer * @buflen: allocated length of the buffer * @name: name string and length qstr structure * * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to * make sure that either the old or the new name pointer and length are * fetched. However, there may be mismatch between length and pointer. * But since the length cannot be trusted, we need to copy the name very * carefully when doing the prepend_copy(). It also prepends "/" at * the beginning of the name. The sequence number check at the caller will * retry it again when a d_move() does happen. So any garbage in the buffer * due to mismatched pointer and length will be discarded. * * Load acquire is needed to make sure that we see the new name data even * if we might get the length wrong. */ static bool prepend_name(struct prepend_buffer *p, const struct qstr *name) { const char *dname = smp_load_acquire(&name->name); /* ^^^ */ u32 dlen = READ_ONCE(name->len); return prepend(p, dname, dlen) && prepend_char(p, '/'); } static int __prepend_path(const struct dentry *dentry, const struct mount *mnt, const struct path *root, struct prepend_buffer *p) { while (dentry != root->dentry || &mnt->mnt != root->mnt) { const struct dentry *parent = READ_ONCE(dentry->d_parent); if (dentry == mnt->mnt.mnt_root) { struct mount *m = READ_ONCE(mnt->mnt_parent); struct mnt_namespace *mnt_ns; if (likely(mnt != m)) { dentry = READ_ONCE(mnt->mnt_mountpoint); mnt = m; continue; } /* Global root */ mnt_ns = READ_ONCE(mnt->mnt_ns); /* open-coded is_mounted() to use local mnt_ns */ if (!IS_ERR_OR_NULL(mnt_ns) && !is_anon_ns(mnt_ns)) return 1; // absolute root else return 2; // detached or not attached yet } if (unlikely(dentry == parent)) /* Escaped? */ return 3; prefetch(parent); if (!prepend_name(p, &dentry->d_name)) break; dentry = parent; } return 0; } /** * prepend_path - Prepend path string to a buffer * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @buffer: pointer to the end of the buffer * @buflen: pointer to buffer length * * The function will first try to write out the pathname without taking any * lock other than the RCU read lock to make sure that dentries won't go away. * It only checks the sequence number of the global rename_lock as any change * in the dentry's d_seq will be preceded by changes in the rename_lock * sequence number. If the sequence number had been changed, it will restart * the whole pathname back-tracing sequence again by taking the rename_lock. * In this case, there is no need to take the RCU read lock as the recursive * parent pointer references will keep the dentry chain alive as long as no * rename operation is performed. */ static int prepend_path(const struct path *path, const struct path *root, struct prepend_buffer *p) { unsigned seq, m_seq = 0; struct prepend_buffer b; int error; rcu_read_lock(); restart_mnt: read_seqbegin_or_lock(&mount_lock, &m_seq); seq = 0; rcu_read_lock(); restart: b = *p; read_seqbegin_or_lock(&rename_lock, &seq); error = __prepend_path(path->dentry, real_mount(path->mnt), root, &b); if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (!(m_seq & 1)) rcu_read_unlock(); if (need_seqretry(&mount_lock, m_seq)) { m_seq = 1; goto restart_mnt; } done_seqretry(&mount_lock, m_seq); if (unlikely(error == 3)) b = *p; if (b.len == p->len) prepend_char(&b, '/'); *p = b; return error; } /** * __d_path - return the path of a dentry * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. * * Returns a pointer into the buffer or an error code if the * path was too long. * * "buflen" should be positive. * * If the path is not reachable from the supplied root, return %NULL. */ char *__d_path(const struct path *path, const struct path *root, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); if (unlikely(prepend_path(path, root, &b) > 0)) return NULL; return extract_string(&b); } char *d_absolute_path(const struct path *path, char *buf, int buflen) { struct path root = {}; DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); if (unlikely(prepend_path(path, &root, &b) > 1)) return ERR_PTR(-EINVAL); return extract_string(&b); } static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; } while (read_seqcount_retry(&fs->seq, seq)); } /** * d_path - return the path of a dentry * @path: path to report * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. If the entry has been deleted * the string " (deleted)" is appended. Note that this is ambiguous. * * Returns a pointer into the buffer or an error code if the path was * too long. Note: Callers should use the returned pointer, not the passed * in buffer, to use the name! The implementation often starts at an offset * into the buffer, and may leave 0 bytes at the start. * * "buflen" should be positive. */ char *d_path(const struct path *path, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); struct path root; /* * We have various synthetic filesystems that never get mounted. On * these filesystems dentries are never used for lookup purposes, and * thus don't need to be hashed. They also don't need a name until a * user wants to identify the object in /proc/pid/fd/. The little hack * below allows us to generate a name for these objects on demand: * * Some pseudo inodes are mountable. When they are mounted * path->dentry == path->mnt->mnt_root. In that case don't call d_dname * and instead have d_path return the mounted path. */ if (path->dentry->d_op && path->dentry->d_op->d_dname && (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) return path->dentry->d_op->d_dname(path->dentry, buf, buflen); rcu_read_lock(); get_fs_root_rcu(current->fs, &root); if (unlikely(d_unlinked(path->dentry))) prepend(&b, " (deleted)", 11); else prepend_char(&b, 0); prepend_path(path, &root, &b); rcu_read_unlock(); return extract_string(&b); } EXPORT_SYMBOL(d_path); /* * Helper function for dentry_operations.d_dname() members */ char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, const char *fmt, ...) { va_list args; char temp[64]; int sz; va_start(args, fmt); sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; va_end(args); if (sz > sizeof(temp) || sz > buflen) return ERR_PTR(-ENAMETOOLONG); buffer += buflen - sz; return memcpy(buffer, temp, sz); } char *simple_dname(struct dentry *dentry, char *buffer, int buflen) { DECLARE_BUFFER(b, buffer, buflen); /* these dentries are never renamed, so d_lock is not needed */ prepend(&b, " (deleted)", 11); prepend(&b, dentry->d_name.name, dentry->d_name.len); prepend_char(&b, '/'); return extract_string(&b); } /* * Write full pathname from the root of the filesystem into the buffer. */ static char *__dentry_path(const struct dentry *d, struct prepend_buffer *p) { const struct dentry *dentry; struct prepend_buffer b; int seq = 0; rcu_read_lock(); restart: dentry = d; b = *p; read_seqbegin_or_lock(&rename_lock, &seq); while (!IS_ROOT(dentry)) { const struct dentry *parent = dentry->d_parent; prefetch(parent); if (!prepend_name(&b, &dentry->d_name)) break; dentry = parent; } if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (b.len == p->len) prepend_char(&b, '/'); return extract_string(&b); } char *dentry_path_raw(const struct dentry *dentry, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); return __dentry_path(dentry, &b); } EXPORT_SYMBOL(dentry_path_raw); char *dentry_path(const struct dentry *dentry, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); if (unlikely(d_unlinked(dentry))) prepend(&b, "//deleted", 10); else prepend_char(&b, 0); return __dentry_path(dentry, &b); } static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, struct path *pwd) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; *pwd = fs->pwd; } while (read_seqcount_retry(&fs->seq, seq)); } /* * NOTE! The user-level library version returns a * character pointer. The kernel system call just * returns the length of the buffer filled (which * includes the ending '\0' character), or a negative * error value. So libc would do something like * * char *getcwd(char * buf, size_t size) * { * int retval; * * retval = sys_getcwd(buf, size); * if (retval >= 0) * return buf; * errno = -retval; * return NULL; * } */ SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) { int error; struct path pwd, root; char *page = __getname(); if (!page) return -ENOMEM; rcu_read_lock(); get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); if (unlikely(d_unlinked(pwd.dentry))) { rcu_read_unlock(); error = -ENOENT; } else { unsigned len; DECLARE_BUFFER(b, page, PATH_MAX); prepend_char(&b, 0); if (unlikely(prepend_path(&pwd, &root, &b) > 0)) prepend(&b, "(unreachable)", 13); rcu_read_unlock(); len = PATH_MAX - b.len; if (unlikely(len > PATH_MAX)) error = -ENAMETOOLONG; else if (unlikely(len > size)) error = -ERANGE; else if (copy_to_user(buf, b.buf, len)) error = -EFAULT; else error = len; } __putname(page); return error; } |
35 4 31 31 31 29 6 2 1 1 3 1 2 58 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 | // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/ctype.h> #include <linux/kmod.h> #include <linux/sort.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/delayacct.h> #include <linux/pid_namespace.h> #include <linux/cgroupstats.h> #include <linux/fs_parser.h> #include <trace/events/cgroup.h> /* * pidlists linger the following amount before being destroyed. The goal * is avoiding frequent destruction in the middle of consecutive read calls * Expiring in the middle is a performance problem not a correctness one. * 1 sec should be enough. */ #define CGROUP_PIDLIST_DESTROY_DELAY HZ /* Controllers blocked by the commandline in v1 */ static u16 cgroup_no_v1_mask; /* disable named v1 mounts */ static bool cgroup_no_v1_named; /* * pidlist destructions need to be flushed on cgroup destruction. Use a * separate workqueue as flush domain. */ static struct workqueue_struct *cgroup_pidlist_destroy_wq; /* protects cgroup_subsys->release_agent_path */ static DEFINE_SPINLOCK(release_agent_path_lock); bool cgroup1_ssid_disabled(int ssid) { return cgroup_no_v1_mask & (1 << ssid); } /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached * * Return: %0 on success or a negative errno code on failure */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroup_root *root; int retval = 0; mutex_lock(&cgroup_mutex); cpus_read_lock(); percpu_down_write(&cgroup_threadgroup_rwsem); for_each_root(root) { struct cgroup *from_cgrp; if (root == &cgrp_dfl_root) continue; spin_lock_irq(&css_set_lock); from_cgrp = task_cgroup_from_root(from, root); spin_unlock_irq(&css_set_lock); retval = cgroup_attach_task(from_cgrp, tsk, false); if (retval) break; } percpu_up_write(&cgroup_threadgroup_rwsem); cpus_read_unlock(); mutex_unlock(&cgroup_mutex); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); /** * cgroup_transfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside * * Locking rules between cgroup_post_fork() and the migration path * guarantee that, if a task is forking while being migrated, the new child * is guaranteed to be either visible in the source cgroup after the * parent's migration is complete or put into the target cgroup. No task * can slip out of migration through forking. * * Return: %0 on success or a negative errno code on failure */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { DEFINE_CGROUP_MGCTX(mgctx); struct cgrp_cset_link *link; struct css_task_iter it; struct task_struct *task; int ret; if (cgroup_on_dfl(to)) return -EINVAL; ret = cgroup_migrate_vet_dst(to); if (ret) return ret; mutex_lock(&cgroup_mutex); percpu_down_write(&cgroup_threadgroup_rwsem); /* all tasks in @from are being moved, all csets are source */ spin_lock_irq(&css_set_lock); list_for_each_entry(link, &from->cset_links, cset_link) cgroup_migrate_add_src(link->cset, to, &mgctx); spin_unlock_irq(&css_set_lock); ret = cgroup_migrate_prepare_dst(&mgctx); if (ret) goto out_err; /* * Migrate tasks one-by-one until @from is empty. This fails iff * ->can_attach() fails. */ do { css_task_iter_start(&from->self, 0, &it); do { task = css_task_iter_next(&it); } while (task && (task->flags & PF_EXITING)); if (task) get_task_struct(task); css_task_iter_end(&it); if (task) { ret = cgroup_migrate(task, false, &mgctx); if (!ret) TRACE_CGROUP_PATH(transfer_tasks, to, task, false); put_task_struct(task); } } while (task && !ret); out_err: cgroup_migrate_finish(&mgctx); percpu_up_write(&cgroup_threadgroup_rwsem); mutex_unlock(&cgroup_mutex); return ret; } /* * Stuff for reading the 'tasks'/'procs' files. * * Reading this file can return large amounts of data if a cgroup has * *lots* of attached tasks. So it may need several calls to read(), * but we cannot guarantee that the information we produce is correct * unless we produce it entirely atomically. * */ /* which pidlist file are we talking about? */ enum cgroup_filetype { CGROUP_FILE_PROCS, CGROUP_FILE_TASKS, }; /* * A pidlist is a list of pids that virtually represents the contents of one * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, * a pair (one each for procs, tasks) for each pid namespace that's relevant * to the cgroup. */ struct cgroup_pidlist { /* * used to find which pidlist is wanted. doesn't change as long as * this particular list stays in the list. */ struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; /* array of xids */ pid_t *list; /* how many elements the above list has */ int length; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; /* for delayed destruction */ struct delayed_work destroy_dwork; }; /* * Used to destroy all pidlists lingering waiting for destroy timer. None * should be left afterwards. */ void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) { struct cgroup_pidlist *l, *tmp_l; mutex_lock(&cgrp->pidlist_mutex); list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); mutex_unlock(&cgrp->pidlist_mutex); flush_workqueue(cgroup_pidlist_destroy_wq); BUG_ON(!list_empty(&cgrp->pidlists)); } static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork); struct cgroup_pidlist *tofree = NULL; mutex_lock(&l->owner->pidlist_mutex); /* * Destroy iff we didn't get queued again. The state won't change * as destroy_dwork can only be queued while locked. */ if (!delayed_work_pending(dwork)) { list_del(&l->links); kvfree(l->list); put_pid_ns(l->key.ns); tofree = l; } mutex_unlock(&l->owner->pidlist_mutex); kfree(tofree); } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries * Returns the number of unique elements. */ static int pidlist_uniq(pid_t *list, int length) { int src, dest = 1; /* * we presume the 0th element is unique, so i starts at 1. trivial * edge cases first; no work needs to be done for either */ if (length == 0 || length == 1) return length; /* src and dest walk down the list; dest counts unique elements */ for (src = 1; src < length; src++) { /* find next unique element */ while (list[src] == list[src-1]) { src++; if (src == length) goto after; } /* dest always points to where the next unique element goes */ list[dest] = list[src]; dest++; } after: return dest; } /* * The two pid files - task and cgroup.procs - guaranteed that the result * is sorted, which forced this whole pidlist fiasco. As pid order is * different per namespace, each namespace needs differently sorted list, * making it impossible to use, for example, single rbtree of member tasks * sorted by task pointer. As pidlists can be fairly large, allocating one * per open file is dangerous, so cgroup had to implement shared pool of * pidlists keyed by cgroup and namespace. */ static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; /* don't need task_nsproxy() if we're looking at ourself */ struct pid_namespace *ns = task_active_pid_ns(current); lockdep_assert_held(&cgrp->pidlist_mutex); list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l; return NULL; } /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); l = cgroup_pidlist_find(cgrp, type); if (l) return l; /* entry not found; create a new one */ l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); if (!l) return l; INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; /* don't need task_nsproxy() if we're looking at ourself */ l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); return l; } /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) { pid_t *array; int length; int pid, n = 0; /* used for populating the array */ struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; lockdep_assert_held(&cgrp->pidlist_mutex); /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the * caller from the case that the additional cgroup users didn't * show up until sometime later on. */ length = cgroup_task_count(cgrp); array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); if (!array) return -ENOMEM; /* now, populate the array */ css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ if (type == CGROUP_FILE_PROCS) pid = task_tgid_vnr(tsk); else pid = task_pid_vnr(tsk); if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } css_task_iter_end(&it); length = n; /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ sort(array, length, sizeof(pid_t), cmppid, NULL); length = pidlist_uniq(array, length); l = cgroup_pidlist_find_create(cgrp, type); if (!l) { kvfree(array); return -ENOMEM; } /* store array, freeing old if necessary */ kvfree(l->list); l->list = array; l->length = length; *lp = l; return 0; } /* * seq_file methods for the tasks/procs files. The seq_file position is the * next pid to display; the seq_file iterator is a pointer to the pid * in the cgroup->l->list array. */ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) { /* * Initially we receive a position value that corresponds to * one more than the last pid shown (or 0 on the first call or * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup *cgrp = seq_css(s)->cgroup; struct cgroup_pidlist *l; enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; int *iter, ret; mutex_lock(&cgrp->pidlist_mutex); /* * !NULL @ctx->procs1.pidlist indicates that this isn't the first * start() after open. If the matching pidlist is around, we can use * that. Look for it. Note that @ctx->procs1.pidlist can't be used * directly. It could already have been destroyed. */ if (ctx->procs1.pidlist) ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); /* * Either this is the first start() after open or the matching * pidlist has been destroyed inbetween. Create a new one. */ if (!ctx->procs1.pidlist) { ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); if (ret) return ERR_PTR(ret); } l = ctx->procs1.pidlist; if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; if (l->list[mid] == pid) { index = mid; break; } else if (l->list[mid] <= pid) index = mid + 1; else end = mid; } } /* If we're off the end of the array, we're done */ if (index >= l->length) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; *pos = *iter; return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup_pidlist *l = ctx->procs1.pidlist; if (l) mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY); mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct kernfs_open_file *of = s->private; struct cgroup_file_ctx *ctx = of->priv; struct cgroup_pidlist *l = ctx->procs1.pidlist; pid_t *p = v; pid_t *end = l->list + l->length; /* * Advance to the next pid in the array. If this goes off the * end, we're done */ p++; if (p >= end) { (*pos)++; return NULL; } else { *pos = *p; return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { seq_printf(s, "%d\n", *(int *)v); return 0; } static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off, bool threadgroup) { struct cgroup *cgrp; struct task_struct *task; const struct cred *cred, *tcred; ssize_t ret; bool locked; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; task = cgroup_procs_write_start(buf, threadgroup, &locked); ret = PTR_ERR_OR_ZERO(task); if (ret) goto out_unlock; /* * Even if we're attaching all tasks in the thread group, we only need * to check permissions on one of them. Check permissions using the * credentials from file open to protect against inherited fd attacks. */ cred = of->file->f_cred; tcred = get_task_cred(task); if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid)) ret = -EACCES; put_cred(tcred); if (ret) goto out_finish; ret = cgroup_attach_task(cgrp, task, threadgroup); out_finish: cgroup_procs_write_finish(task, locked); out_unlock: cgroup_kn_unlock(of->kn); return ret ?: nbytes; } static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup1_procs_write(of, buf, nbytes, off, true); } static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { return __cgroup1_procs_write(of, buf, nbytes, off, false); } static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cgroup *cgrp; struct cgroup_file_ctx *ctx; BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); /* * Release agent gets called with all capabilities, * require capabilities to set release agent. */ ctx = of->priv; if ((ctx->ns->user_ns != &init_user_ns) || !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) return -EPERM; cgrp = cgroup_kn_lock_live(of->kn, false); if (!cgrp) return -ENODEV; spin_lock(&release_agent_path_lock); strlcpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path)); spin_unlock(&release_agent_path_lock); cgroup_kn_unlock(of->kn); return nbytes; } static int cgroup_release_agent_show(struct seq_file *seq, void *v) { struct cgroup *cgrp = seq_css(seq)->cgroup; spin_lock(&release_agent_path_lock); seq_puts(seq, cgrp->root->release_agent_path); spin_unlock(&release_agent_path_lock); seq_putc(seq, '\n'); return 0; } static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { seq_puts(seq, "0\n"); return 0; } static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft) { return notify_on_release(css->cgroup); } static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); else clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; } static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft) { return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } /* cgroup core interface files for the legacy hierarchies */ struct cftype cgroup1_base_files[] = { { .name = "cgroup.procs", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_PROCS, .write = cgroup1_procs_write, }, { .name = "cgroup.clone_children", .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, { .name = "cgroup.sane_behavior", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_sane_behavior_show, }, { .name = "tasks", .seq_start = cgroup_pidlist_start, .seq_next = cgroup_pidlist_next, .seq_stop = cgroup_pidlist_stop, .seq_show = cgroup_pidlist_show, .private = CGROUP_FILE_TASKS, .write = cgroup1_tasks_write, }, { .name = "notify_on_release", .read_u64 = cgroup_read_notify_on_release, .write_u64 = cgroup_write_notify_on_release, }, { .name = "release_agent", .flags = CFTYPE_ONLY_ON_ROOT, .seq_show = cgroup_release_agent_show, .write = cgroup_release_agent_write, .max_write_len = PATH_MAX - 1, }, { } /* terminate */ }; /* Display information about each subsystem and each hierarchy */ int proc_cgroupstats_show(struct seq_file *m, void *v) { struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* * ideally we don't want subsystems moving around while we do this. * cgroup_mutex is also necessary to guarantee an atomic snapshot of * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, ss->root->hierarchy_id, atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i)); mutex_unlock(&cgroup_mutex); return 0; } /** * cgroupstats_build - build and fill cgroupstats * @stats: cgroupstats to fill information into * @dentry: A dentry entry belonging to the cgroup for which stats have * been requested. * * Build and fill cgroupstats so that taskstats can export it to user * space. * * Return: %0 on success or a negative errno code on failure */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct cgroup *cgrp; struct css_task_iter it; struct task_struct *tsk; /* it should be kernfs_node belonging to cgroupfs and is a directory */ if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || kernfs_type(kn) != KERNFS_DIR) return -EINVAL; mutex_lock(&cgroup_mutex); /* * We aren't being called from kernfs and there's no guarantee on * @kn->priv's validity. For this and css_tryget_online_from_dir(), * @kn->priv is RCU safe. Let's do the RCU dancing. */ rcu_read_lock(); cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); if (!cgrp || cgroup_is_dead(cgrp)) { rcu_read_unlock(); mutex_unlock(&cgroup_mutex); return -ENOENT; } rcu_read_unlock(); css_task_iter_start(&cgrp->self, 0, &it); while ((tsk = css_task_iter_next(&it))) { switch (READ_ONCE(tsk->__state)) { case TASK_RUNNING: stats->nr_running++; break; case TASK_INTERRUPTIBLE: stats->nr_sleeping++; break; case TASK_UNINTERRUPTIBLE: stats->nr_uninterruptible++; break; case TASK_STOPPED: stats->nr_stopped++; break; default: if (tsk->in_iowait) stats->nr_io_wait++; break; } } css_task_iter_end(&it); mutex_unlock(&cgroup_mutex); return 0; } void cgroup1_check_for_release(struct cgroup *cgrp) { if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) schedule_work(&cgrp->release_agent_work); } /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path * relative to the root of cgroup file system) as the argument. * * Most likely, this user command will try to rmdir this cgroup. * * This races with the possibility that some other task will be * attached to this cgroup before it is removed, or that some other * user task will 'mkdir' a child cgroup of this cgroup. That's ok. * The presumed 'rmdir' will fail quietly if this cgroup is no longer * unused, and this cgroup will be reprieved from its death sentence, * to continue to serve a useful existence. Next time it's released, * we will get notified again, if it still has 'notify_on_release' set. * * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which * means only wait until the task is successfully execve()'d. The * separate release agent task is forked by call_usermodehelper(), * then control in this thread returns here, without waiting for the * release agent task. We don't bother to wait because the caller of * this routine has no use for the exit status of the release agent * task, so no sense holding our caller up for that. */ void cgroup1_release_agent(struct work_struct *work) { struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work); char *pathbuf, *agentbuf; char *argv[3], *envp[3]; int ret; /* snoop agent path and exit early if empty */ if (!cgrp->root->release_agent_path[0]) return; /* prepare argument buffers */ pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); if (!pathbuf || !agentbuf) goto out_free; spin_lock(&release_agent_path_lock); strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); spin_unlock(&release_agent_path_lock); if (!agentbuf[0]) goto out_free; ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); if (ret < 0 || ret >= PATH_MAX) goto out_free; argv[0] = agentbuf; argv[1] = pathbuf; argv[2] = NULL; /* minimal command environment */ envp[0] = "HOME=/"; envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[2] = NULL; call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); out_free: kfree(agentbuf); kfree(pathbuf); } /* * cgroup_rename - Only allow simple rename of directories in place. */ static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name_str) { struct cgroup *cgrp = kn->priv; int ret; /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ if (strchr(new_name_str, '\n')) return -EINVAL; if (kernfs_type(kn) != KERNFS_DIR) return -ENOTDIR; if (kn->parent != new_parent) return -EIO; /* * We're gonna grab cgroup_mutex which nests outside kernfs * active_ref. kernfs_rename() doesn't require active_ref * protection. Break them before grabbing cgroup_mutex. */ kernfs_break_active_protection(new_parent); kernfs_break_active_protection(kn); mutex_lock(&cgroup_mutex); ret = kernfs_rename(kn, new_parent, new_name_str); if (!ret) TRACE_CGROUP_PATH(rename, cgrp); mutex_unlock(&cgroup_mutex); kernfs_unbreak_active_protection(kn); kernfs_unbreak_active_protection(new_parent); return ret; } static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) { struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_subsys *ss; int ssid; for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_show_option(seq, ss->legacy_name, NULL); if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) seq_puts(seq, ",cpuset_v2_mode"); spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) seq_show_option(seq, "release_agent", root->release_agent_path); spin_unlock(&release_agent_path_lock); if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_show_option(seq, "name", root->name); return 0; } enum cgroup1_param { Opt_all, Opt_clone_children, Opt_cpuset_v2_mode, Opt_name, Opt_none, Opt_noprefix, Opt_release_agent, Opt_xattr, }; const struct fs_parameter_spec cgroup1_fs_parameters[] = { fsparam_flag ("all", Opt_all), fsparam_flag ("clone_children", Opt_clone_children), fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), fsparam_string("name", Opt_name), fsparam_flag ("none", Opt_none), fsparam_flag ("noprefix", Opt_noprefix), fsparam_string("release_agent", Opt_release_agent), fsparam_flag ("xattr", Opt_xattr), {} }; int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct cgroup_subsys *ss; struct fs_parse_result result; int opt, i; opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); if (opt == -ENOPARAM) { int ret; ret = vfs_parse_fs_param_source(fc, param); if (ret != -ENOPARAM) return ret; for_each_subsys(ss, i) { if (strcmp(param->key, ss->legacy_name)) continue; if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) return invalfc(fc, "Disabled controller '%s'", param->key); ctx->subsys_mask |= (1 << i); return 0; } return invalfc(fc, "Unknown subsys name '%s'", param->key); } if (opt < 0) return opt; switch (opt) { case Opt_none: /* Explicitly have no subsystems */ ctx->none = true; break; case Opt_all: ctx->all_ss = true; break; case Opt_noprefix: ctx->flags |= CGRP_ROOT_NOPREFIX; break; case Opt_clone_children: ctx->cpuset_clone_children = true; break; case Opt_cpuset_v2_mode: ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; break; case Opt_xattr: ctx->flags |= CGRP_ROOT_XATTR; break; case Opt_release_agent: /* Specifying two release agents is forbidden */ if (ctx->release_agent) return invalfc(fc, "release_agent respecified"); /* * Release agent gets called with all capabilities, * require capabilities to set release agent. */ if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) return invalfc(fc, "Setting release_agent not allowed"); ctx->release_agent = param->string; param->string = NULL; break; case Opt_name: /* blocked by boot param? */ if (cgroup_no_v1_named) return -ENOENT; /* Can't specify an empty name */ if (!param->size) return invalfc(fc, "Empty name"); if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) return invalfc(fc, "Name too long"); /* Must match [\w.-]+ */ for (i = 0; i < param->size; i++) { char c = param->string[i]; if (isalnum(c)) continue; if ((c == '.') || (c == '-') || (c == '_')) continue; return invalfc(fc, "Invalid name"); } /* Specifying two names is forbidden */ if (ctx->name) return invalfc(fc, "name respecified"); ctx->name = param->string; param->string = NULL; break; } return 0; } static int check_cgroupfs_options(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); u16 mask = U16_MAX; u16 enabled = 0; struct cgroup_subsys *ss; int i; #ifdef CONFIG_CPUSETS mask = ~((u16)1 << cpuset_cgrp_id); #endif for_each_subsys(ss, i) if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) enabled |= 1 << i; ctx->subsys_mask &= enabled; /* * In absence of 'none', 'name=' and subsystem name options, * let's default to 'all'. */ if (!ctx->subsys_mask && !ctx->none && !ctx->name) ctx->all_ss = true; if (ctx->all_ss) { /* Mutually exclusive option 'all' + subsystem name */ if (ctx->subsys_mask) return invalfc(fc, "subsys name conflicts with all"); /* 'all' => select all the subsystems */ ctx->subsys_mask = enabled; } /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ if (!ctx->subsys_mask && !ctx->name) return invalfc(fc, "Need name or subsystem set"); /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) return invalfc(fc, "noprefix used incorrectly"); /* Can't specify "none" and some subsystems */ if (ctx->subsys_mask && ctx->none) return invalfc(fc, "none used incorrectly"); return 0; } int cgroup1_reconfigure(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); struct cgroup_root *root = cgroup_root_from_kf(kf_root); int ret = 0; u16 added_mask, removed_mask; cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); /* See what subsystems are wanted */ ret = check_cgroupfs_options(fc); if (ret) goto out_unlock; if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm); added_mask = ctx->subsys_mask & ~root->subsys_mask; removed_mask = root->subsys_mask & ~ctx->subsys_mask; /* Don't allow flags or name to change at remount */ if ((ctx->flags ^ root->flags) || (ctx->name && strcmp(ctx->name, root->name))) { errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", ctx->flags, ctx->name ?: "", root->flags, root->name); ret = -EINVAL; goto out_unlock; } /* remounting is not allowed for populated hierarchies */ if (!list_empty(&root->cgrp.self.children)) { ret = -EBUSY; goto out_unlock; } ret = rebind_subsystems(root, added_mask); if (ret) goto out_unlock; WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); if (ctx->release_agent) { spin_lock(&release_agent_path_lock); strcpy(root->release_agent_path, ctx->release_agent); spin_unlock(&release_agent_path_lock); } trace_cgroup_remount(root); out_unlock: mutex_unlock(&cgroup_mutex); return ret; } struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { .rename = cgroup1_rename, .show_options = cgroup1_show_options, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .show_path = cgroup_show_path, }; /* * The guts of cgroup1 mount - find or create cgroup_root to use. * Called with cgroup_mutex held; returns 0 on success, -E... on * error and positive - in case when the candidate is busy dying. * On success it stashes a reference to cgroup_root into given * cgroup_fs_context; that reference is *NOT* counting towards the * cgroup_root refcount. */ static int cgroup1_root_to_use(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); struct cgroup_root *root; struct cgroup_subsys *ss; int i, ret; /* First find the desired set of subsystems */ ret = check_cgroupfs_options(fc); if (ret) return ret; /* * Destruction of cgroup root is asynchronous, so subsystems may * still be dying after the previous unmount. Let's drain the * dying subsystems. We just need to ensure that the ones * unmounted previously finish dying and don't care about new ones * starting. Testing ref liveliness is good enough. */ for_each_subsys(ss, i) { if (!(ctx->subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) continue; if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) return 1; /* restart */ cgroup_put(&ss->root->cgrp); } for_each_root(root) { bool name_match = false; if (root == &cgrp_dfl_root) continue; /* * If we asked for a name then it must match. Also, if * name matches but sybsys_mask doesn't, we should fail. * Remember whether name matched. */ if (ctx->name) { if (strcmp(ctx->name, root->name)) continue; name_match = true; } /* * If we asked for subsystems (or explicitly for no * subsystems) then they must match. */ if ((ctx->subsys_mask || ctx->none) && (ctx->subsys_mask != root->subsys_mask)) { if (!name_match) continue; return -EBUSY; } if (root->flags ^ ctx->flags) pr_warn("new mount options do not match the existing superblock, will be ignored\n"); ctx->root = root; return 0; } /* * No such thing, create a new one. name= matching without subsys * specification is allowed for already existing hierarchies but we * can't create new one without subsys specification. */ if (!ctx->subsys_mask && !ctx->none) return invalfc(fc, "No subsys list or none specified"); /* Hierarchies may only be created in the initial cgroup namespace. */ if (ctx->ns != &init_cgroup_ns) return -EPERM; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return -ENOMEM; ctx->root = root; init_cgroup_root(ctx); ret = cgroup_setup_root(root, ctx->subsys_mask); if (ret) cgroup_free_root(root); return ret; } int cgroup1_get_tree(struct fs_context *fc) { struct cgroup_fs_context *ctx = cgroup_fc2context(fc); int ret; /* Check if the caller has permission to mount. */ if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); ret = cgroup1_root_to_use(fc); if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) ret = 1; /* restart */ mutex_unlock(&cgroup_mutex); if (!ret) ret = cgroup_do_get_tree(fc); if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { fc_drop_locked(fc); ret = 1; } if (unlikely(ret > 0)) { msleep(10); return restart_syscall(); } return ret; } static int __init cgroup1_wq_init(void) { /* * Used to destroy pidlists and separate to serve as flush domain. * Cap @max_active to 1 too. */ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1); BUG_ON(!cgroup_pidlist_destroy_wq); return 0; } core_initcall(cgroup1_wq_init); static int __init cgroup_no_v1(char *str) { struct cgroup_subsys *ss; char *token; int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; if (!strcmp(token, "all")) { cgroup_no_v1_mask = U16_MAX; continue; } if (!strcmp(token, "named")) { cgroup_no_v1_named = true; continue; } for_each_subsys(ss, i) { if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) continue; cgroup_no_v1_mask |= 1 << i; } } return 1; } __setup("cgroup_no_v1=", cgroup_no_v1); |
1116 1117 1119 1115 3 3 3 3 3 65 61 8 15 15 14 5 1 4 10 5 4 4 6 6 6 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Facebook */ #include <linux/rculist.h> #include <linux/list.h> #include <linux/hash.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/bpf.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/bpf_local_storage.h> #include <net/bpf_sk_storage.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> #include <uapi/linux/btf.h> DEFINE_BPF_STORAGE_CACHE(sk_cache); static struct bpf_local_storage_data * bpf_sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_map *smap; sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage) return NULL; smap = (struct bpf_local_storage_map *)map; return bpf_local_storage_lookup(sk_storage, smap, cacheit_lockit); } static int bpf_sk_storage_del(struct sock *sk, struct bpf_map *map) { struct bpf_local_storage_data *sdata; sdata = bpf_sk_storage_lookup(sk, map, false); if (!sdata) return -ENOENT; bpf_selem_unlink(SELEM(sdata)); return 0; } /* Called by __sk_destruct() & bpf_sk_storage_clone() */ void bpf_sk_storage_free(struct sock *sk) { struct bpf_local_storage_elem *selem; struct bpf_local_storage *sk_storage; bool free_sk_storage = false; struct hlist_node *n; rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage) { rcu_read_unlock(); return; } /* Netiher the bpf_prog nor the bpf-map's syscall * could be modifying the sk_storage->list now. * Thus, no elem can be added-to or deleted-from the * sk_storage->list by the bpf_prog or by the bpf-map's syscall. * * It is racing with bpf_local_storage_map_free() alone * when unlinking elem from the sk_storage->list and * the map's bucket->list. */ raw_spin_lock_bh(&sk_storage->lock); hlist_for_each_entry_safe(selem, n, &sk_storage->list, snode) { /* Always unlink from map before unlinking from * sk_storage. */ bpf_selem_unlink_map(selem); free_sk_storage = bpf_selem_unlink_storage_nolock(sk_storage, selem, true); } raw_spin_unlock_bh(&sk_storage->lock); rcu_read_unlock(); if (free_sk_storage) kfree_rcu(sk_storage, rcu); } static void bpf_sk_storage_map_free(struct bpf_map *map) { struct bpf_local_storage_map *smap; smap = (struct bpf_local_storage_map *)map; bpf_local_storage_cache_idx_free(&sk_cache, smap->cache_idx); bpf_local_storage_map_free(smap, NULL); } static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr) { struct bpf_local_storage_map *smap; smap = bpf_local_storage_map_alloc(attr); if (IS_ERR(smap)) return ERR_CAST(smap); smap->cache_idx = bpf_local_storage_cache_idx_get(&sk_cache); return &smap->map; } static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_sk_storage_lookup(sock->sk, map, true); sockfd_put(sock); return sdata ? sdata->data : NULL; } return ERR_PTR(err); } static int bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_local_storage_update( sock->sk, (struct bpf_local_storage_map *)map, value, map_flags); sockfd_put(sock); return PTR_ERR_OR_ZERO(sdata); } return err; } static int bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key) { struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { err = bpf_sk_storage_del(sock->sk, map); sockfd_put(sock); return err; } return err; } static struct bpf_local_storage_elem * bpf_sk_storage_clone_elem(struct sock *newsk, struct bpf_local_storage_map *smap, struct bpf_local_storage_elem *selem) { struct bpf_local_storage_elem *copy_selem; copy_selem = bpf_selem_alloc(smap, newsk, NULL, true); if (!copy_selem) return NULL; if (map_value_has_spin_lock(&smap->map)) copy_map_value_locked(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data, true); else copy_map_value(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data); return copy_selem; } int bpf_sk_storage_clone(const struct sock *sk, struct sock *newsk) { struct bpf_local_storage *new_sk_storage = NULL; struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; int ret = 0; RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) goto out; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { struct bpf_local_storage_elem *copy_selem; struct bpf_local_storage_map *smap; struct bpf_map *map; smap = rcu_dereference(SDATA(selem)->smap); if (!(smap->map.map_flags & BPF_F_CLONE)) continue; /* Note that for lockless listeners adding new element * here can race with cleanup in bpf_local_storage_map_free. * Try to grab map refcnt to make sure that it's still * alive and prevent concurrent removal. */ map = bpf_map_inc_not_zero(&smap->map); if (IS_ERR(map)) continue; copy_selem = bpf_sk_storage_clone_elem(newsk, smap, selem); if (!copy_selem) { ret = -ENOMEM; bpf_map_put(map); goto out; } if (new_sk_storage) { bpf_selem_link_map(smap, copy_selem); bpf_selem_link_storage_nolock(new_sk_storage, copy_selem); } else { ret = bpf_local_storage_alloc(newsk, smap, copy_selem); if (ret) { kfree(copy_selem); atomic_sub(smap->elem_size, &newsk->sk_omem_alloc); bpf_map_put(map); goto out; } new_sk_storage = rcu_dereference(copy_selem->local_storage); } bpf_map_put(map); } out: rcu_read_unlock(); /* In case of an error, don't free anything explicitly here, the * caller is responsible to call bpf_sk_storage_free. */ return ret; } BPF_CALL_4(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags) { struct bpf_local_storage_data *sdata; if (!sk || !sk_fullsock(sk) || flags > BPF_SK_STORAGE_GET_F_CREATE) return (unsigned long)NULL; sdata = bpf_sk_storage_lookup(sk, map, true); if (sdata) return (unsigned long)sdata->data; if (flags == BPF_SK_STORAGE_GET_F_CREATE && /* Cannot add new elem to a going away sk. * Otherwise, the new elem may become a leak * (and also other memory issues during map * destruction). */ refcount_inc_not_zero(&sk->sk_refcnt)) { sdata = bpf_local_storage_update( sk, (struct bpf_local_storage_map *)map, value, BPF_NOEXIST); /* sk must be a fullsock (guaranteed by verifier), * so sock_gen_put() is unnecessary. */ sock_put(sk); return IS_ERR(sdata) ? (unsigned long)NULL : (unsigned long)sdata->data; } return (unsigned long)NULL; } BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk) { if (!sk || !sk_fullsock(sk)) return -EINVAL; if (refcount_inc_not_zero(&sk->sk_refcnt)) { int err; err = bpf_sk_storage_del(sk, map); sock_put(sk); return err; } return -ENOENT; } static int bpf_sk_storage_charge(struct bpf_local_storage_map *smap, void *owner, u32 size) { int optmem_max = READ_ONCE(sysctl_optmem_max); struct sock *sk = (struct sock *)owner; /* same check as in sock_kmalloc() */ if (size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { atomic_add(size, &sk->sk_omem_alloc); return 0; } return -ENOMEM; } static void bpf_sk_storage_uncharge(struct bpf_local_storage_map *smap, void *owner, u32 size) { struct sock *sk = owner; atomic_sub(size, &sk->sk_omem_alloc); } static struct bpf_local_storage __rcu ** bpf_sk_storage_ptr(void *owner) { struct sock *sk = owner; return &sk->sk_bpf_storage; } static int sk_storage_map_btf_id; const struct bpf_map_ops sk_storage_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = bpf_local_storage_map_alloc_check, .map_alloc = bpf_sk_storage_map_alloc, .map_free = bpf_sk_storage_map_free, .map_get_next_key = notsupp_get_next_key, .map_lookup_elem = bpf_fd_sk_storage_lookup_elem, .map_update_elem = bpf_fd_sk_storage_update_elem, .map_delete_elem = bpf_fd_sk_storage_delete_elem, .map_check_btf = bpf_local_storage_map_check_btf, .map_btf_name = "bpf_local_storage_map", .map_btf_id = &sk_storage_map_btf_id, .map_local_storage_charge = bpf_sk_storage_charge, .map_local_storage_uncharge = bpf_sk_storage_uncharge, .map_owner_storage_ptr = bpf_sk_storage_ptr, }; const struct bpf_func_proto bpf_sk_storage_get_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_CTX, /* context is 'struct sock' */ .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_delete_proto = { .func = bpf_sk_storage_delete, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; static bool bpf_sk_storage_tracing_allowed(const struct bpf_prog *prog) { const struct btf *btf_vmlinux; const struct btf_type *t; const char *tname; u32 btf_id; if (prog->aux->dst_prog) return false; /* Ensure the tracing program is not tracing * any bpf_sk_storage*() function and also * use the bpf_sk_storage_(get|delete) helper. */ switch (prog->expected_attach_type) { case BPF_TRACE_ITER: case BPF_TRACE_RAW_TP: /* bpf_sk_storage has no trace point */ return true; case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: btf_vmlinux = bpf_get_btf_vmlinux(); btf_id = prog->aux->attach_btf_id; t = btf_type_by_id(btf_vmlinux, btf_id); tname = btf_name_by_offset(btf_vmlinux, t->name_off); return !!strncmp(tname, "bpf_sk_storage", strlen("bpf_sk_storage")); default: return false; } return false; } BPF_CALL_4(bpf_sk_storage_get_tracing, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags) { if (in_hardirq() || in_nmi()) return (unsigned long)NULL; return (unsigned long)____bpf_sk_storage_get(map, sk, value, flags); } BPF_CALL_2(bpf_sk_storage_delete_tracing, struct bpf_map *, map, struct sock *, sk) { if (in_hardirq() || in_nmi()) return -EPERM; return ____bpf_sk_storage_delete(map, sk); } const struct bpf_func_proto bpf_sk_storage_get_tracing_proto = { .func = bpf_sk_storage_get_tracing, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, .allowed = bpf_sk_storage_tracing_allowed, }; const struct bpf_func_proto bpf_sk_storage_delete_tracing_proto = { .func = bpf_sk_storage_delete_tracing, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .allowed = bpf_sk_storage_tracing_allowed, }; struct bpf_sk_storage_diag { u32 nr_maps; struct bpf_map *maps[]; }; /* The reply will be like: * INET_DIAG_BPF_SK_STORAGES (nla_nest) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * .... */ static int nla_value_size(u32 value_size) { /* SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) */ return nla_total_size(0) + nla_total_size(sizeof(u32)) + nla_total_size_64bit(value_size); } void bpf_sk_storage_diag_free(struct bpf_sk_storage_diag *diag) { u32 i; if (!diag) return; for (i = 0; i < diag->nr_maps; i++) bpf_map_put(diag->maps[i]); kfree(diag); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_free); static bool diag_check_dup(const struct bpf_sk_storage_diag *diag, const struct bpf_map *map) { u32 i; for (i = 0; i < diag->nr_maps; i++) { if (diag->maps[i] == map) return true; } return false; } struct bpf_sk_storage_diag * bpf_sk_storage_diag_alloc(const struct nlattr *nla_stgs) { struct bpf_sk_storage_diag *diag; struct nlattr *nla; u32 nr_maps = 0; int rem, err; /* bpf_local_storage_map is currently limited to CAP_SYS_ADMIN as * the map_alloc_check() side also does. */ if (!bpf_capable()) return ERR_PTR(-EPERM); nla_for_each_nested(nla, nla_stgs, rem) { if (nla_type(nla) == SK_DIAG_BPF_STORAGE_REQ_MAP_FD) { if (nla_len(nla) != sizeof(u32)) return ERR_PTR(-EINVAL); nr_maps++; } } diag = kzalloc(struct_size(diag, maps, nr_maps), GFP_KERNEL); if (!diag) return ERR_PTR(-ENOMEM); nla_for_each_nested(nla, nla_stgs, rem) { struct bpf_map *map; int map_fd; if (nla_type(nla) != SK_DIAG_BPF_STORAGE_REQ_MAP_FD) continue; map_fd = nla_get_u32(nla); map = bpf_map_get(map_fd); if (IS_ERR(map)) { err = PTR_ERR(map); goto err_free; } if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) { bpf_map_put(map); err = -EINVAL; goto err_free; } if (diag_check_dup(diag, map)) { bpf_map_put(map); err = -EEXIST; goto err_free; } diag->maps[diag->nr_maps++] = map; } return diag; err_free: bpf_sk_storage_diag_free(diag); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_alloc); static int diag_get(struct bpf_local_storage_data *sdata, struct sk_buff *skb) { struct nlattr *nla_stg, *nla_value; struct bpf_local_storage_map *smap; /* It cannot exceed max nlattr's payload */ BUILD_BUG_ON(U16_MAX - NLA_HDRLEN < BPF_LOCAL_STORAGE_MAX_VALUE_SIZE); nla_stg = nla_nest_start(skb, SK_DIAG_BPF_STORAGE); if (!nla_stg) return -EMSGSIZE; smap = rcu_dereference(sdata->smap); if (nla_put_u32(skb, SK_DIAG_BPF_STORAGE_MAP_ID, smap->map.id)) goto errout; nla_value = nla_reserve_64bit(skb, SK_DIAG_BPF_STORAGE_MAP_VALUE, smap->map.value_size, SK_DIAG_BPF_STORAGE_PAD); if (!nla_value) goto errout; if (map_value_has_spin_lock(&smap->map)) copy_map_value_locked(&smap->map, nla_data(nla_value), sdata->data, true); else copy_map_value(&smap->map, nla_data(nla_value), sdata->data); nla_nest_end(skb, nla_stg); return 0; errout: nla_nest_cancel(skb, nla_stg); return -EMSGSIZE; } static int bpf_sk_storage_diag_put_all(struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; struct bpf_local_storage_map *smap; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { smap = rcu_dereference(SDATA(selem)->smap); diag_size += nla_value_size(smap->map.value_size); if (nla_stgs && diag_get(SDATA(selem), skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } int bpf_sk_storage_diag_put(struct bpf_sk_storage_diag *diag, struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_data *sdata; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; u32 i; *res_diag_size = 0; /* No map has been specified. Dump all. */ if (!diag->nr_maps) return bpf_sk_storage_diag_put_all(sk, skb, stg_array_type, res_diag_size); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; for (i = 0; i < diag->nr_maps; i++) { sdata = bpf_local_storage_lookup(sk_storage, (struct bpf_local_storage_map *)diag->maps[i], false); if (!sdata) continue; diag_size += nla_value_size(diag->maps[i]->value_size); if (nla_stgs && diag_get(sdata, skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_put); struct bpf_iter_seq_sk_storage_map_info { struct bpf_map *map; unsigned int bucket_id; unsigned skip_elems; }; static struct bpf_local_storage_elem * bpf_sk_storage_map_seq_find_next(struct bpf_iter_seq_sk_storage_map_info *info, struct bpf_local_storage_elem *prev_selem) __acquires(RCU) __releases(RCU) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; u32 skip_elems = info->skip_elems; struct bpf_local_storage_map *smap; u32 bucket_id = info->bucket_id; u32 i, count, n_buckets; struct bpf_local_storage_map_bucket *b; smap = (struct bpf_local_storage_map *)info->map; n_buckets = 1U << smap->bucket_log; if (bucket_id >= n_buckets) return NULL; /* try to find next selem in the same bucket */ selem = prev_selem; count = 0; while (selem) { selem = hlist_entry_safe(rcu_dereference(hlist_next_rcu(&selem->map_node)), struct bpf_local_storage_elem, map_node); if (!selem) { /* not found, unlock and go to the next bucket */ b = &smap->buckets[bucket_id++]; rcu_read_unlock(); skip_elems = 0; break; } sk_storage = rcu_dereference(selem->local_storage); if (sk_storage) { info->skip_elems = skip_elems + count; return selem; } count++; } for (i = bucket_id; i < (1U << smap->bucket_log); i++) { b = &smap->buckets[i]; rcu_read_lock(); count = 0; hlist_for_each_entry_rcu(selem, &b->list, map_node) { sk_storage = rcu_dereference(selem->local_storage); if (sk_storage && count >= skip_elems) { info->bucket_id = i; info->skip_elems = count; return selem; } count++; } rcu_read_unlock(); skip_elems = 0; } info->bucket_id = i; info->skip_elems = 0; return NULL; } static void *bpf_sk_storage_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_local_storage_elem *selem; selem = bpf_sk_storage_map_seq_find_next(seq->private, NULL); if (!selem) return NULL; if (*pos == 0) ++*pos; return selem; } static void *bpf_sk_storage_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; ++*pos; ++info->skip_elems; return bpf_sk_storage_map_seq_find_next(seq->private, v); } struct bpf_iter__bpf_sk_storage_map { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct bpf_map *, map); __bpf_md_ptr(struct sock *, sk); __bpf_md_ptr(void *, value); }; DEFINE_BPF_ITER_FUNC(bpf_sk_storage_map, struct bpf_iter_meta *meta, struct bpf_map *map, struct sock *sk, void *value) static int __bpf_sk_storage_map_seq_show(struct seq_file *seq, struct bpf_local_storage_elem *selem) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; struct bpf_iter__bpf_sk_storage_map ctx = {}; struct bpf_local_storage *sk_storage; struct bpf_iter_meta meta; struct bpf_prog *prog; int ret = 0; meta.seq = seq; prog = bpf_iter_get_info(&meta, selem == NULL); if (prog) { ctx.meta = &meta; ctx.map = info->map; if (selem) { sk_storage = rcu_dereference(selem->local_storage); ctx.sk = sk_storage->owner; ctx.value = SDATA(selem)->data; } ret = bpf_iter_run_prog(prog, &ctx); } return ret; } static int bpf_sk_storage_map_seq_show(struct seq_file *seq, void *v) { return __bpf_sk_storage_map_seq_show(seq, v); } static void bpf_sk_storage_map_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { if (!v) (void)__bpf_sk_storage_map_seq_show(seq, v); else rcu_read_unlock(); } static int bpf_iter_init_sk_storage_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_inc_with_uref(aux->map); seq_info->map = aux->map; return 0; } static void bpf_iter_fini_sk_storage_map(void *priv_data) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); } static int bpf_iter_attach_map(struct bpf_prog *prog, union bpf_iter_link_info *linfo, struct bpf_iter_aux_info *aux) { struct bpf_map *map; int err = -EINVAL; if (!linfo->map.map_fd) return -EBADF; map = bpf_map_get_with_uref(linfo->map.map_fd); if (IS_ERR(map)) return PTR_ERR(map); if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) goto put_map; if (prog->aux->max_rdwr_access > map->value_size) { err = -EACCES; goto put_map; } aux->map = map; return 0; put_map: bpf_map_put_with_uref(map); return err; } static void bpf_iter_detach_map(struct bpf_iter_aux_info *aux) { bpf_map_put_with_uref(aux->map); } static const struct seq_operations bpf_sk_storage_map_seq_ops = { .start = bpf_sk_storage_map_seq_start, .next = bpf_sk_storage_map_seq_next, .stop = bpf_sk_storage_map_seq_stop, .show = bpf_sk_storage_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_sk_storage_map_seq_ops, .init_seq_private = bpf_iter_init_sk_storage_map, .fini_seq_private = bpf_iter_fini_sk_storage_map, .seq_priv_size = sizeof(struct bpf_iter_seq_sk_storage_map_info), }; static struct bpf_iter_reg bpf_sk_storage_map_reg_info = { .target = "bpf_sk_storage_map", .attach_target = bpf_iter_attach_map, .detach_target = bpf_iter_detach_map, .show_fdinfo = bpf_iter_map_show_fdinfo, .fill_link_info = bpf_iter_map_fill_link_info, .ctx_arg_info_size = 2, .ctx_arg_info = { { offsetof(struct bpf_iter__bpf_sk_storage_map, sk), PTR_TO_BTF_ID_OR_NULL }, { offsetof(struct bpf_iter__bpf_sk_storage_map, value), PTR_TO_BUF | PTR_MAYBE_NULL }, }, .seq_info = &iter_seq_info, }; static int __init bpf_sk_storage_map_iter_init(void) { bpf_sk_storage_map_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK]; return bpf_iter_reg_target(&bpf_sk_storage_map_reg_info); } late_initcall(bpf_sk_storage_map_iter_init); |
249 248 248 3157 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MMU_CONTEXT_H #define _ASM_X86_MMU_CONTEXT_H #include <asm/desc.h> #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/pkeys.h> #include <trace/events/tlb.h> #include <asm/tlbflush.h> #include <asm/paravirt.h> #include <asm/debugreg.h> extern atomic64_t last_mm_ctx_id; #ifndef CONFIG_PARAVIRT_XXL static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { } #endif /* !CONFIG_PARAVIRT_XXL */ #ifdef CONFIG_PERF_EVENTS DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key); DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); void cr4_update_pce(void *ignored); #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL /* * ldt_structs can be allocated, used, and freed, but they are never * modified while live. */ struct ldt_struct { /* * Xen requires page-aligned LDTs with special permissions. This is * needed to prevent us from installing evil descriptors such as * call gates. On native, we could merge the ldt_struct and LDT * allocations, but it's not worth trying to optimize. */ struct desc_struct *entries; unsigned int nr_entries; /* * If PTI is in use, then the entries array is not mapped while we're * in user mode. The whole array will be aliased at the addressed * given by ldt_slot_va(slot). We use two slots so that we can allocate * and map, and enable a new LDT without invalidating the mapping * of an older, still-in-use LDT. * * slot will be -1 if this LDT doesn't have an alias mapping. */ int slot; }; /* * Used for LDT copy/destruction. */ static inline void init_new_context_ldt(struct mm_struct *mm) { mm->context.ldt = NULL; init_rwsem(&mm->context.ldt_usr_sem); } int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); void destroy_context_ldt(struct mm_struct *mm); void ldt_arch_exit_mmap(struct mm_struct *mm); #else /* CONFIG_MODIFY_LDT_SYSCALL */ static inline void init_new_context_ldt(struct mm_struct *mm) { } static inline int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm) { return 0; } static inline void destroy_context_ldt(struct mm_struct *mm) { } static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } #endif #ifdef CONFIG_MODIFY_LDT_SYSCALL extern void load_mm_ldt(struct mm_struct *mm); extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next); #else static inline void load_mm_ldt(struct mm_struct *mm) { clear_LDT(); } static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) { DEBUG_LOCKS_WARN_ON(preemptible()); } #endif #define enter_lazy_tlb enter_lazy_tlb extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); /* * Init a new mm. Used on mm copies, like at fork() * and on mm's that are brand-new, like at execve(). */ #define init_new_context init_new_context static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { mutex_init(&mm->context.lock); mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); atomic64_set(&mm->context.tlb_gen, 0); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { /* pkey 0 is the default and allocated implicitly */ mm->context.pkey_allocation_map = 0x1; /* -1 means unallocated or invalid */ mm->context.execute_only_pkey = -1; } #endif init_new_context_ldt(mm); return 0; } #define destroy_context destroy_context static inline void destroy_context(struct mm_struct *mm) { destroy_context_ldt(mm); } extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk); #define switch_mm_irqs_off switch_mm_irqs_off #define activate_mm(prev, next) \ do { \ paravirt_activate_mm((prev), (next)); \ switch_mm((prev), (next), NULL); \ } while (0); #ifdef CONFIG_X86_32 #define deactivate_mm(tsk, mm) \ do { \ lazy_load_gs(0); \ } while (0) #else #define deactivate_mm(tsk, mm) \ do { \ load_gs_index(0); \ loadsegment(fs, 0); \ } while (0) #endif static inline void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* Duplicate the oldmm pkey state in mm: */ mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; #endif } static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { arch_dup_pkeys(oldmm, mm); paravirt_arch_dup_mmap(oldmm, mm); return ldt_dup_context(oldmm, mm); } static inline void arch_exit_mmap(struct mm_struct *mm) { paravirt_arch_exit_mmap(mm); ldt_arch_exit_mmap(mm); } #ifdef CONFIG_X86_64 static inline bool is_64bit_mm(struct mm_struct *mm) { return !IS_ENABLED(CONFIG_IA32_EMULATION) || !(mm->context.flags & MM_CONTEXT_UPROBE_IA32); } #else static inline bool is_64bit_mm(struct mm_struct *mm) { return false; } #endif static inline void arch_unmap(struct mm_struct *mm, unsigned long start, unsigned long end) { } /* * We only want to enforce protection keys on the current process * because we effectively have no access to PKRU for other * processes or any way to tell *which * PKRU in a threaded * process we could use. * * So do not enforce things if the VMA is not from the current * mm, or if we are in a kernel thread. */ static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { /* pkeys never affect instruction fetches */ if (execute) return true; /* allow access if the VMA is not one from this process */ if (foreign || vma_is_foreign(vma)) return true; return __pkru_allows_pkey(vma_pkey(vma), write); } unsigned long __get_current_cr3_fast(void); #include <asm-generic/mmu_context.h> #endif /* _ASM_X86_MMU_CONTEXT_H */ |
5 4 1 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 | // SPDX-License-Identifier: GPL-2.0-or-later /* * CALIPSO - Common Architecture Label IPv6 Security Option * * This is an implementation of the CALIPSO protocol as specified in * RFC 5570. * * Authors: Paul Moore <paul.moore@hp.com> * Huw Davies <huw@codeweavers.com> */ /* (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 * (c) Copyright Huw Davies <huw@codeweavers.com>, 2015 */ #include <linux/init.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/jhash.h> #include <linux/audit.h> #include <linux/slab.h> #include <net/ip.h> #include <net/icmp.h> #include <net/tcp.h> #include <net/netlabel.h> #include <net/calipso.h> #include <linux/atomic.h> #include <linux/bug.h> #include <asm/unaligned.h> #include <linux/crc-ccitt.h> /* Maximium size of the calipso option including * the two-byte TLV header. */ #define CALIPSO_OPT_LEN_MAX (2 + 252) /* Size of the minimum calipso option including * the two-byte TLV header. */ #define CALIPSO_HDR_LEN (2 + 8) /* Maximium size of the calipso option including * the two-byte TLV header and upto 3 bytes of * leading pad and 7 bytes of trailing pad. */ #define CALIPSO_OPT_LEN_MAX_WITH_PAD (3 + CALIPSO_OPT_LEN_MAX + 7) /* Maximium size of u32 aligned buffer required to hold calipso * option. Max of 3 initial pad bytes starting from buffer + 3. * i.e. the worst case is when the previous tlv finishes on 4n + 3. */ #define CALIPSO_MAX_BUFFER (6 + CALIPSO_OPT_LEN_MAX) /* List of available DOI definitions */ static DEFINE_SPINLOCK(calipso_doi_list_lock); static LIST_HEAD(calipso_doi_list); /* Label mapping cache */ int calipso_cache_enabled = 1; int calipso_cache_bucketsize = 10; #define CALIPSO_CACHE_BUCKETBITS 7 #define CALIPSO_CACHE_BUCKETS BIT(CALIPSO_CACHE_BUCKETBITS) #define CALIPSO_CACHE_REORDERLIMIT 10 struct calipso_map_cache_bkt { spinlock_t lock; u32 size; struct list_head list; }; struct calipso_map_cache_entry { u32 hash; unsigned char *key; size_t key_len; struct netlbl_lsm_cache *lsm_data; u32 activity; struct list_head list; }; static struct calipso_map_cache_bkt *calipso_cache; static void calipso_cache_invalidate(void); static void calipso_doi_putdef(struct calipso_doi *doi_def); /* Label Mapping Cache Functions */ /** * calipso_cache_entry_free - Frees a cache entry * @entry: the entry to free * * Description: * This function frees the memory associated with a cache entry including the * LSM cache data if there are no longer any users, i.e. reference count == 0. * */ static void calipso_cache_entry_free(struct calipso_map_cache_entry *entry) { if (entry->lsm_data) netlbl_secattr_cache_free(entry->lsm_data); kfree(entry->key); kfree(entry); } /** * calipso_map_cache_hash - Hashing function for the CALIPSO cache * @key: the hash key * @key_len: the length of the key in bytes * * Description: * The CALIPSO tag hashing function. Returns a 32-bit hash value. * */ static u32 calipso_map_cache_hash(const unsigned char *key, u32 key_len) { return jhash(key, key_len, 0); } /** * calipso_cache_init - Initialize the CALIPSO cache * * Description: * Initializes the CALIPSO label mapping cache, this function should be called * before any of the other functions defined in this file. Returns zero on * success, negative values on error. * */ static int __init calipso_cache_init(void) { u32 iter; calipso_cache = kcalloc(CALIPSO_CACHE_BUCKETS, sizeof(struct calipso_map_cache_bkt), GFP_KERNEL); if (!calipso_cache) return -ENOMEM; for (iter = 0; iter < CALIPSO_CACHE_BUCKETS; iter++) { spin_lock_init(&calipso_cache[iter].lock); calipso_cache[iter].size = 0; INIT_LIST_HEAD(&calipso_cache[iter].list); } return 0; } /** * calipso_cache_invalidate - Invalidates the current CALIPSO cache * * Description: * Invalidates and frees any entries in the CALIPSO cache. Returns zero on * success and negative values on failure. * */ static void calipso_cache_invalidate(void) { struct calipso_map_cache_entry *entry, *tmp_entry; u32 iter; for (iter = 0; iter < CALIPSO_CACHE_BUCKETS; iter++) { spin_lock_bh(&calipso_cache[iter].lock); list_for_each_entry_safe(entry, tmp_entry, &calipso_cache[iter].list, list) { list_del(&entry->list); calipso_cache_entry_free(entry); } calipso_cache[iter].size = 0; spin_unlock_bh(&calipso_cache[iter].lock); } } /** * calipso_cache_check - Check the CALIPSO cache for a label mapping * @key: the buffer to check * @key_len: buffer length in bytes * @secattr: the security attribute struct to use * * Description: * This function checks the cache to see if a label mapping already exists for * the given key. If there is a match then the cache is adjusted and the * @secattr struct is populated with the correct LSM security attributes. The * cache is adjusted in the following manner if the entry is not already the * first in the cache bucket: * * 1. The cache entry's activity counter is incremented * 2. The previous (higher ranking) entry's activity counter is decremented * 3. If the difference between the two activity counters is geater than * CALIPSO_CACHE_REORDERLIMIT the two entries are swapped * * Returns zero on success, -ENOENT for a cache miss, and other negative values * on error. * */ static int calipso_cache_check(const unsigned char *key, u32 key_len, struct netlbl_lsm_secattr *secattr) { u32 bkt; struct calipso_map_cache_entry *entry; struct calipso_map_cache_entry *prev_entry = NULL; u32 hash; if (!calipso_cache_enabled) return -ENOENT; hash = calipso_map_cache_hash(key, key_len); bkt = hash & (CALIPSO_CACHE_BUCKETS - 1); spin_lock_bh(&calipso_cache[bkt].lock); list_for_each_entry(entry, &calipso_cache[bkt].list, list) { if (entry->hash == hash && entry->key_len == key_len && memcmp(entry->key, key, key_len) == 0) { entry->activity += 1; refcount_inc(&entry->lsm_data->refcount); secattr->cache = entry->lsm_data; secattr->flags |= NETLBL_SECATTR_CACHE; secattr->type = NETLBL_NLTYPE_CALIPSO; if (!prev_entry) { spin_unlock_bh(&calipso_cache[bkt].lock); return 0; } if (prev_entry->activity > 0) prev_entry->activity -= 1; if (entry->activity > prev_entry->activity && entry->activity - prev_entry->activity > CALIPSO_CACHE_REORDERLIMIT) { __list_del(entry->list.prev, entry->list.next); __list_add(&entry->list, prev_entry->list.prev, &prev_entry->list); } spin_unlock_bh(&calipso_cache[bkt].lock); return 0; } prev_entry = entry; } spin_unlock_bh(&calipso_cache[bkt].lock); return -ENOENT; } /** * calipso_cache_add - Add an entry to the CALIPSO cache * @calipso_ptr: the CALIPSO option * @secattr: the packet's security attributes * * Description: * Add a new entry into the CALIPSO label mapping cache. Add the new entry to * head of the cache bucket's list, if the cache bucket is out of room remove * the last entry in the list first. It is important to note that there is * currently no checking for duplicate keys. Returns zero on success, * negative values on failure. The key stored starts at calipso_ptr + 2, * i.e. the type and length bytes are not stored, this corresponds to * calipso_ptr[1] bytes of data. * */ static int calipso_cache_add(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr) { int ret_val = -EPERM; u32 bkt; struct calipso_map_cache_entry *entry = NULL; struct calipso_map_cache_entry *old_entry = NULL; u32 calipso_ptr_len; if (!calipso_cache_enabled || calipso_cache_bucketsize <= 0) return 0; calipso_ptr_len = calipso_ptr[1]; entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return -ENOMEM; entry->key = kmemdup(calipso_ptr + 2, calipso_ptr_len, GFP_ATOMIC); if (!entry->key) { ret_val = -ENOMEM; goto cache_add_failure; } entry->key_len = calipso_ptr_len; entry->hash = calipso_map_cache_hash(calipso_ptr, calipso_ptr_len); refcount_inc(&secattr->cache->refcount); entry->lsm_data = secattr->cache; bkt = entry->hash & (CALIPSO_CACHE_BUCKETS - 1); spin_lock_bh(&calipso_cache[bkt].lock); if (calipso_cache[bkt].size < calipso_cache_bucketsize) { list_add(&entry->list, &calipso_cache[bkt].list); calipso_cache[bkt].size += 1; } else { old_entry = list_entry(calipso_cache[bkt].list.prev, struct calipso_map_cache_entry, list); list_del(&old_entry->list); list_add(&entry->list, &calipso_cache[bkt].list); calipso_cache_entry_free(old_entry); } spin_unlock_bh(&calipso_cache[bkt].lock); return 0; cache_add_failure: if (entry) calipso_cache_entry_free(entry); return ret_val; } /* DOI List Functions */ /** * calipso_doi_search - Searches for a DOI definition * @doi: the DOI to search for * * Description: * Search the DOI definition list for a DOI definition with a DOI value that * matches @doi. The caller is responsible for calling rcu_read_[un]lock(). * Returns a pointer to the DOI definition on success and NULL on failure. */ static struct calipso_doi *calipso_doi_search(u32 doi) { struct calipso_doi *iter; list_for_each_entry_rcu(iter, &calipso_doi_list, list) if (iter->doi == doi && refcount_read(&iter->refcount)) return iter; return NULL; } /** * calipso_doi_add - Add a new DOI to the CALIPSO protocol engine * @doi_def: the DOI structure * @audit_info: NetLabel audit information * * Description: * The caller defines a new DOI for use by the CALIPSO engine and calls this * function to add it to the list of acceptable domains. The caller must * ensure that the mapping table specified in @doi_def->map meets all of the * requirements of the mapping type (see calipso.h for details). Returns * zero on success and non-zero on failure. * */ static int calipso_doi_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { int ret_val = -EINVAL; u32 doi; u32 doi_type; struct audit_buffer *audit_buf; doi = doi_def->doi; doi_type = doi_def->type; if (doi_def->doi == CALIPSO_DOI_UNKNOWN) goto doi_add_return; refcount_set(&doi_def->refcount, 1); spin_lock(&calipso_doi_list_lock); if (calipso_doi_search(doi_def->doi)) { spin_unlock(&calipso_doi_list_lock); ret_val = -EEXIST; goto doi_add_return; } list_add_tail_rcu(&doi_def->list, &calipso_doi_list); spin_unlock(&calipso_doi_list_lock); ret_val = 0; doi_add_return: audit_buf = netlbl_audit_start(AUDIT_MAC_CALIPSO_ADD, audit_info); if (audit_buf) { const char *type_str; switch (doi_type) { case CALIPSO_MAP_PASS: type_str = "pass"; break; default: type_str = "(unknown)"; } audit_log_format(audit_buf, " calipso_doi=%u calipso_type=%s res=%u", doi, type_str, ret_val == 0 ? 1 : 0); audit_log_end(audit_buf); } return ret_val; } /** * calipso_doi_free - Frees a DOI definition * @doi_def: the DOI definition * * Description: * This function frees all of the memory associated with a DOI definition. * */ static void calipso_doi_free(struct calipso_doi *doi_def) { kfree(doi_def); } /** * calipso_doi_free_rcu - Frees a DOI definition via the RCU pointer * @entry: the entry's RCU field * * Description: * This function is designed to be used as a callback to the call_rcu() * function so that the memory allocated to the DOI definition can be released * safely. * */ static void calipso_doi_free_rcu(struct rcu_head *entry) { struct calipso_doi *doi_def; doi_def = container_of(entry, struct calipso_doi, rcu); calipso_doi_free(doi_def); } /** * calipso_doi_remove - Remove an existing DOI from the CALIPSO protocol engine * @doi: the DOI value * @audit_info: NetLabel audit information * * Description: * Removes a DOI definition from the CALIPSO engine. The NetLabel routines will * be called to release their own LSM domain mappings as well as our own * domain list. Returns zero on success and negative values on failure. * */ static int calipso_doi_remove(u32 doi, struct netlbl_audit *audit_info) { int ret_val; struct calipso_doi *doi_def; struct audit_buffer *audit_buf; spin_lock(&calipso_doi_list_lock); doi_def = calipso_doi_search(doi); if (!doi_def) { spin_unlock(&calipso_doi_list_lock); ret_val = -ENOENT; goto doi_remove_return; } list_del_rcu(&doi_def->list); spin_unlock(&calipso_doi_list_lock); calipso_doi_putdef(doi_def); ret_val = 0; doi_remove_return: audit_buf = netlbl_audit_start(AUDIT_MAC_CALIPSO_DEL, audit_info); if (audit_buf) { audit_log_format(audit_buf, " calipso_doi=%u res=%u", doi, ret_val == 0 ? 1 : 0); audit_log_end(audit_buf); } return ret_val; } /** * calipso_doi_getdef - Returns a reference to a valid DOI definition * @doi: the DOI value * * Description: * Searches for a valid DOI definition and if one is found it is returned to * the caller. Otherwise NULL is returned. The caller must ensure that * calipso_doi_putdef() is called when the caller is done. * */ static struct calipso_doi *calipso_doi_getdef(u32 doi) { struct calipso_doi *doi_def; rcu_read_lock(); doi_def = calipso_doi_search(doi); if (!doi_def) goto doi_getdef_return; if (!refcount_inc_not_zero(&doi_def->refcount)) doi_def = NULL; doi_getdef_return: rcu_read_unlock(); return doi_def; } /** * calipso_doi_putdef - Releases a reference for the given DOI definition * @doi_def: the DOI definition * * Description: * Releases a DOI definition reference obtained from calipso_doi_getdef(). * */ static void calipso_doi_putdef(struct calipso_doi *doi_def) { if (!doi_def) return; if (!refcount_dec_and_test(&doi_def->refcount)) return; calipso_cache_invalidate(); call_rcu(&doi_def->rcu, calipso_doi_free_rcu); } /** * calipso_doi_walk - Iterate through the DOI definitions * @skip_cnt: skip past this number of DOI definitions, updated * @callback: callback for each DOI definition * @cb_arg: argument for the callback function * * Description: * Iterate over the DOI definition list, skipping the first @skip_cnt entries. * For each entry call @callback, if @callback returns a negative value stop * 'walking' through the list and return. Updates the value in @skip_cnt upon * return. Returns zero on success, negative values on failure. * */ static int calipso_doi_walk(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg) { int ret_val = -ENOENT; u32 doi_cnt = 0; struct calipso_doi *iter_doi; rcu_read_lock(); list_for_each_entry_rcu(iter_doi, &calipso_doi_list, list) if (refcount_read(&iter_doi->refcount) > 0) { if (doi_cnt++ < *skip_cnt) continue; ret_val = callback(iter_doi, cb_arg); if (ret_val < 0) { doi_cnt--; goto doi_walk_return; } } doi_walk_return: rcu_read_unlock(); *skip_cnt = doi_cnt; return ret_val; } /** * calipso_validate - Validate a CALIPSO option * @skb: the packet * @option: the start of the option * * Description: * This routine is called to validate a CALIPSO option. * If the option is valid then %true is returned, otherwise * %false is returned. * * The caller should have already checked that the length of the * option (including the TLV header) is >= 10 and that the catmap * length is consistent with the option length. * * We leave checks on the level and categories to the socket layer. */ bool calipso_validate(const struct sk_buff *skb, const unsigned char *option) { struct calipso_doi *doi_def; bool ret_val; u16 crc, len = option[1] + 2; static const u8 zero[2]; /* The original CRC runs over the option including the TLV header * with the CRC-16 field (at offset 8) zeroed out. */ crc = crc_ccitt(0xffff, option, 8); crc = crc_ccitt(crc, zero, sizeof(zero)); if (len > 10) crc = crc_ccitt(crc, option + 10, len - 10); crc = ~crc; if (option[8] != (crc & 0xff) || option[9] != ((crc >> 8) & 0xff)) return false; rcu_read_lock(); doi_def = calipso_doi_search(get_unaligned_be32(option + 2)); ret_val = !!doi_def; rcu_read_unlock(); return ret_val; } /** * calipso_map_cat_hton - Perform a category mapping from host to network * @doi_def: the DOI definition * @secattr: the security attributes * @net_cat: the zero'd out category bitmap in network/CALIPSO format * @net_cat_len: the length of the CALIPSO bitmap in bytes * * Description: * Perform a label mapping to translate a local MLS category bitmap to the * correct CALIPSO bitmap using the given DOI definition. Returns the minimum * size in bytes of the network bitmap on success, negative values otherwise. * */ static int calipso_map_cat_hton(const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr, unsigned char *net_cat, u32 net_cat_len) { int spot = -1; u32 net_spot_max = 0; u32 net_clen_bits = net_cat_len * 8; for (;;) { spot = netlbl_catmap_walk(secattr->attr.mls.cat, spot + 1); if (spot < 0) break; if (spot >= net_clen_bits) return -ENOSPC; netlbl_bitmap_setbit(net_cat, spot, 1); if (spot > net_spot_max) net_spot_max = spot; } return (net_spot_max / 32 + 1) * 4; } /** * calipso_map_cat_ntoh - Perform a category mapping from network to host * @doi_def: the DOI definition * @net_cat: the category bitmap in network/CALIPSO format * @net_cat_len: the length of the CALIPSO bitmap in bytes * @secattr: the security attributes * * Description: * Perform a label mapping to translate a CALIPSO bitmap to the correct local * MLS category bitmap using the given DOI definition. Returns zero on * success, negative values on failure. * */ static int calipso_map_cat_ntoh(const struct calipso_doi *doi_def, const unsigned char *net_cat, u32 net_cat_len, struct netlbl_lsm_secattr *secattr) { int ret_val; int spot = -1; u32 net_clen_bits = net_cat_len * 8; for (;;) { spot = netlbl_bitmap_walk(net_cat, net_clen_bits, spot + 1, 1); if (spot < 0) { if (spot == -2) return -EFAULT; return 0; } ret_val = netlbl_catmap_setbit(&secattr->attr.mls.cat, spot, GFP_ATOMIC); if (ret_val != 0) return ret_val; } return -EINVAL; } /** * calipso_pad_write - Writes pad bytes in TLV format * @buf: the buffer * @offset: offset from start of buffer to write padding * @count: number of pad bytes to write * * Description: * Write @count bytes of TLV padding into @buffer starting at offset @offset. * @count should be less than 8 - see RFC 4942. * */ static int calipso_pad_write(unsigned char *buf, unsigned int offset, unsigned int count) { if (WARN_ON_ONCE(count >= 8)) return -EINVAL; switch (count) { case 0: break; case 1: buf[offset] = IPV6_TLV_PAD1; break; default: buf[offset] = IPV6_TLV_PADN; buf[offset + 1] = count - 2; if (count > 2) memset(buf + offset + 2, 0, count - 2); break; } return 0; } /** * calipso_genopt - Generate a CALIPSO option * @buf: the option buffer * @start: offset from which to write * @buf_len: the size of opt_buf * @doi_def: the CALIPSO DOI to use * @secattr: the security attributes * * Description: * Generate a CALIPSO option using the DOI definition and security attributes * passed to the function. This also generates upto three bytes of leading * padding that ensures that the option is 4n + 2 aligned. It returns the * number of bytes written (including any initial padding). */ static int calipso_genopt(unsigned char *buf, u32 start, u32 buf_len, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; u32 len, pad; u16 crc; static const unsigned char padding[4] = {2, 1, 0, 3}; unsigned char *calipso; /* CALIPSO has 4n + 2 alignment */ pad = padding[start & 3]; if (buf_len <= start + pad + CALIPSO_HDR_LEN) return -ENOSPC; if ((secattr->flags & NETLBL_SECATTR_MLS_LVL) == 0) return -EPERM; len = CALIPSO_HDR_LEN; if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { ret_val = calipso_map_cat_hton(doi_def, secattr, buf + start + pad + len, buf_len - start - pad - len); if (ret_val < 0) return ret_val; len += ret_val; } calipso_pad_write(buf, start, pad); calipso = buf + start + pad; calipso[0] = IPV6_TLV_CALIPSO; calipso[1] = len - 2; *(__be32 *)(calipso + 2) = htonl(doi_def->doi); calipso[6] = (len - CALIPSO_HDR_LEN) / 4; calipso[7] = secattr->attr.mls.lvl; crc = ~crc_ccitt(0xffff, calipso, len); calipso[8] = crc & 0xff; calipso[9] = (crc >> 8) & 0xff; return pad + len; } /* Hop-by-hop hdr helper functions */ /** * calipso_opt_update - Replaces socket's hop options with a new set * @sk: the socket * @hop: new hop options * * Description: * Replaces @sk's hop options with @hop. @hop may be NULL to leave * the socket with no hop options. * */ static int calipso_opt_update(struct sock *sk, struct ipv6_opt_hdr *hop) { struct ipv6_txoptions *old = txopt_get(inet6_sk(sk)), *txopts; txopts = ipv6_renew_options(sk, old, IPV6_HOPOPTS, hop); txopt_put(old); if (IS_ERR(txopts)) return PTR_ERR(txopts); txopts = ipv6_update_options(sk, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } return 0; } /** * calipso_tlv_len - Returns the length of the TLV * @opt: the option header * @offset: offset of the TLV within the header * * Description: * Returns the length of the TLV option at offset @offset within * the option header @opt. Checks that the entire TLV fits inside * the option header, returns a negative value if this is not the case. */ static int calipso_tlv_len(struct ipv6_opt_hdr *opt, unsigned int offset) { unsigned char *tlv = (unsigned char *)opt; unsigned int opt_len = ipv6_optlen(opt), tlv_len; if (offset < sizeof(*opt) || offset >= opt_len) return -EINVAL; if (tlv[offset] == IPV6_TLV_PAD1) return 1; if (offset + 1 >= opt_len) return -EINVAL; tlv_len = tlv[offset + 1] + 2; if (offset + tlv_len > opt_len) return -EINVAL; return tlv_len; } /** * calipso_opt_find - Finds the CALIPSO option in an IPv6 hop options header * @hop: the hop options header * @start: on return holds the offset of any leading padding * @end: on return holds the offset of the first non-pad TLV after CALIPSO * * Description: * Finds the space occupied by a CALIPSO option (including any leading and * trailing padding). * * If a CALIPSO option exists set @start and @end to the * offsets within @hop of the start of padding before the first * CALIPSO option and the end of padding after the first CALIPSO * option. In this case the function returns 0. * * In the absence of a CALIPSO option, @start and @end will be * set to the start and end of any trailing padding in the header. * This is useful when appending a new option, as the caller may want * to overwrite some of this padding. In this case the function will * return -ENOENT. */ static int calipso_opt_find(struct ipv6_opt_hdr *hop, unsigned int *start, unsigned int *end) { int ret_val = -ENOENT, tlv_len; unsigned int opt_len, offset, offset_s = 0, offset_e = 0; unsigned char *opt = (unsigned char *)hop; opt_len = ipv6_optlen(hop); offset = sizeof(*hop); while (offset < opt_len) { tlv_len = calipso_tlv_len(hop, offset); if (tlv_len < 0) return tlv_len; switch (opt[offset]) { case IPV6_TLV_PAD1: case IPV6_TLV_PADN: if (offset_e) offset_e = offset; break; case IPV6_TLV_CALIPSO: ret_val = 0; offset_e = offset; break; default: if (offset_e == 0) offset_s = offset; else goto out; } offset += tlv_len; } out: if (offset_s) *start = offset_s + calipso_tlv_len(hop, offset_s); else *start = sizeof(*hop); if (offset_e) *end = offset_e + calipso_tlv_len(hop, offset_e); else *end = opt_len; return ret_val; } /** * calipso_opt_insert - Inserts a CALIPSO option into an IPv6 hop opt hdr * @hop: the original hop options header * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Creates a new hop options header based on @hop with a * CALIPSO option added to it. If @hop already contains a CALIPSO * option this is overwritten, otherwise the new option is appended * after any existing options. If @hop is NULL then the new header * will contain just the CALIPSO option and any needed padding. * */ static struct ipv6_opt_hdr * calipso_opt_insert(struct ipv6_opt_hdr *hop, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { unsigned int start, end, buf_len, pad, hop_len; struct ipv6_opt_hdr *new; int ret_val; if (hop) { hop_len = ipv6_optlen(hop); ret_val = calipso_opt_find(hop, &start, &end); if (ret_val && ret_val != -ENOENT) return ERR_PTR(ret_val); } else { hop_len = 0; start = sizeof(*hop); end = 0; } buf_len = hop_len + start - end + CALIPSO_OPT_LEN_MAX_WITH_PAD; new = kzalloc(buf_len, GFP_ATOMIC); if (!new) return ERR_PTR(-ENOMEM); if (start > sizeof(*hop)) memcpy(new, hop, start); ret_val = calipso_genopt((unsigned char *)new, start, buf_len, doi_def, secattr); if (ret_val < 0) { kfree(new); return ERR_PTR(ret_val); } buf_len = start + ret_val; /* At this point buf_len aligns to 4n, so (buf_len & 4) pads to 8n */ pad = ((buf_len & 4) + (end & 7)) & 7; calipso_pad_write((unsigned char *)new, buf_len, pad); buf_len += pad; if (end != hop_len) { memcpy((char *)new + buf_len, (char *)hop + end, hop_len - end); buf_len += hop_len - end; } new->nexthdr = 0; new->hdrlen = buf_len / 8 - 1; return new; } /** * calipso_opt_del - Removes the CALIPSO option from an option header * @hop: the original header * @new: the new header * * Description: * Creates a new header based on @hop without any CALIPSO option. If @hop * doesn't contain a CALIPSO option it returns -ENOENT. If @hop contains * no other non-padding options, it returns zero with @new set to NULL. * Otherwise it returns zero, creates a new header without the CALIPSO * option (and removing as much padding as possible) and returns with * @new set to that header. * */ static int calipso_opt_del(struct ipv6_opt_hdr *hop, struct ipv6_opt_hdr **new) { int ret_val; unsigned int start, end, delta, pad, hop_len; ret_val = calipso_opt_find(hop, &start, &end); if (ret_val) return ret_val; hop_len = ipv6_optlen(hop); if (start == sizeof(*hop) && end == hop_len) { /* There's no other option in the header so return NULL */ *new = NULL; return 0; } delta = (end - start) & ~7; *new = kzalloc(hop_len - delta, GFP_ATOMIC); if (!*new) return -ENOMEM; memcpy(*new, hop, start); (*new)->hdrlen -= delta / 8; pad = (end - start) & 7; calipso_pad_write((unsigned char *)*new, start, pad); if (end != hop_len) memcpy((char *)*new + start + pad, (char *)hop + end, hop_len - end); return 0; } /** * calipso_opt_getattr - Get the security attributes from a memory block * @calipso: the CALIPSO option * @secattr: the security attributes * * Description: * Inspect @calipso and return the security attributes in @secattr. * Returns zero on success and negative values on failure. * */ static int calipso_opt_getattr(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr) { int ret_val = -ENOMSG; u32 doi, len = calipso[1], cat_len = calipso[6] * 4; struct calipso_doi *doi_def; if (cat_len + 8 > len) return -EINVAL; if (calipso_cache_check(calipso + 2, calipso[1], secattr) == 0) return 0; doi = get_unaligned_be32(calipso + 2); rcu_read_lock(); doi_def = calipso_doi_search(doi); if (!doi_def) goto getattr_return; secattr->attr.mls.lvl = calipso[7]; secattr->flags |= NETLBL_SECATTR_MLS_LVL; if (cat_len) { ret_val = calipso_map_cat_ntoh(doi_def, calipso + 10, cat_len, secattr); if (ret_val != 0) { netlbl_catmap_free(secattr->attr.mls.cat); goto getattr_return; } if (secattr->attr.mls.cat) secattr->flags |= NETLBL_SECATTR_MLS_CAT; } secattr->type = NETLBL_NLTYPE_CALIPSO; getattr_return: rcu_read_unlock(); return ret_val; } /* sock functions. */ /** * calipso_sock_getattr - Get the security attributes from a sock * @sk: the sock * @secattr: the security attributes * * Description: * Query @sk to see if there is a CALIPSO option attached to the sock and if * there is return the CALIPSO security attributes in @secattr. This function * requires that @sk be locked, or privately held, but it does not do any * locking itself. Returns zero on success and negative values on failure. * */ static int calipso_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { struct ipv6_opt_hdr *hop; int opt_len, len, ret_val = -ENOMSG, offset; unsigned char *opt; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); if (!txopts || !txopts->hopopt) goto done; hop = txopts->hopopt; opt = (unsigned char *)hop; opt_len = ipv6_optlen(hop); offset = sizeof(*hop); while (offset < opt_len) { len = calipso_tlv_len(hop, offset); if (len < 0) { ret_val = len; goto done; } switch (opt[offset]) { case IPV6_TLV_CALIPSO: if (len < CALIPSO_HDR_LEN) ret_val = -EINVAL; else ret_val = calipso_opt_getattr(&opt[offset], secattr); goto done; default: offset += len; break; } } done: txopt_put(txopts); return ret_val; } /** * calipso_sock_setattr - Add a CALIPSO option to a socket * @sk: the socket * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Set the CALIPSO option on the given socket using the DOI definition and * security attributes passed to the function. This function requires * exclusive access to @sk, which means it either needs to be in the * process of being created or locked. Returns zero on success and negative * values on failure. * */ static int calipso_sock_setattr(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; struct ipv6_opt_hdr *old, *new; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); old = NULL; if (txopts) old = txopts->hopopt; new = calipso_opt_insert(old, doi_def, secattr); txopt_put(txopts); if (IS_ERR(new)) return PTR_ERR(new); ret_val = calipso_opt_update(sk, new); kfree(new); return ret_val; } /** * calipso_sock_delattr - Delete the CALIPSO option from a socket * @sk: the socket * * Description: * Removes the CALIPSO option from a socket, if present. * */ static void calipso_sock_delattr(struct sock *sk) { struct ipv6_opt_hdr *new_hop; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); if (!txopts || !txopts->hopopt) goto done; if (calipso_opt_del(txopts->hopopt, &new_hop)) goto done; calipso_opt_update(sk, new_hop); kfree(new_hop); done: txopt_put(txopts); } /* request sock functions. */ /** * calipso_req_setattr - Add a CALIPSO option to a connection request socket * @req: the connection request socket * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Set the CALIPSO option on the given socket using the DOI definition and * security attributes passed to the function. Returns zero on success and * negative values on failure. * */ static int calipso_req_setattr(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { struct ipv6_txoptions *txopts; struct inet_request_sock *req_inet = inet_rsk(req); struct ipv6_opt_hdr *old, *new; struct sock *sk = sk_to_full_sk(req_to_sk(req)); if (req_inet->ipv6_opt && req_inet->ipv6_opt->hopopt) old = req_inet->ipv6_opt->hopopt; else old = NULL; new = calipso_opt_insert(old, doi_def, secattr); if (IS_ERR(new)) return PTR_ERR(new); txopts = ipv6_renew_options(sk, req_inet->ipv6_opt, IPV6_HOPOPTS, new); kfree(new); if (IS_ERR(txopts)) return PTR_ERR(txopts); txopts = xchg(&req_inet->ipv6_opt, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } return 0; } /** * calipso_req_delattr - Delete the CALIPSO option from a request socket * @req: the request socket * * Description: * Removes the CALIPSO option from a request socket, if present. * */ static void calipso_req_delattr(struct request_sock *req) { struct inet_request_sock *req_inet = inet_rsk(req); struct ipv6_opt_hdr *new; struct ipv6_txoptions *txopts; struct sock *sk = sk_to_full_sk(req_to_sk(req)); if (!req_inet->ipv6_opt || !req_inet->ipv6_opt->hopopt) return; if (calipso_opt_del(req_inet->ipv6_opt->hopopt, &new)) return; /* Nothing to do */ txopts = ipv6_renew_options(sk, req_inet->ipv6_opt, IPV6_HOPOPTS, new); if (!IS_ERR(txopts)) { txopts = xchg(&req_inet->ipv6_opt, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } } kfree(new); } /* skbuff functions. */ /** * calipso_skbuff_optptr - Find the CALIPSO option in the packet * @skb: the packet * * Description: * Parse the packet's IP header looking for a CALIPSO option. Returns a pointer * to the start of the CALIPSO option on success, NULL if one if not found. * */ static unsigned char *calipso_skbuff_optptr(const struct sk_buff *skb) { const struct ipv6hdr *ip6_hdr = ipv6_hdr(skb); int offset; if (ip6_hdr->nexthdr != NEXTHDR_HOP) return NULL; offset = ipv6_find_tlv(skb, sizeof(*ip6_hdr), IPV6_TLV_CALIPSO); if (offset >= 0) return (unsigned char *)ip6_hdr + offset; return NULL; } /** * calipso_skbuff_setattr - Set the CALIPSO option on a packet * @skb: the packet * @doi_def: the CALIPSO DOI to use * @secattr: the security attributes * * Description: * Set the CALIPSO option on the given packet based on the security attributes. * Returns a pointer to the IP header on success and NULL on failure. * */ static int calipso_skbuff_setattr(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; struct ipv6hdr *ip6_hdr; struct ipv6_opt_hdr *hop; unsigned char buf[CALIPSO_MAX_BUFFER]; int len_delta, new_end, pad, payload; unsigned int start, end; ip6_hdr = ipv6_hdr(skb); if (ip6_hdr->nexthdr == NEXTHDR_HOP) { hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); ret_val = calipso_opt_find(hop, &start, &end); if (ret_val && ret_val != -ENOENT) return ret_val; } else { start = 0; end = 0; } memset(buf, 0, sizeof(buf)); ret_val = calipso_genopt(buf, start & 3, sizeof(buf), doi_def, secattr); if (ret_val < 0) return ret_val; new_end = start + ret_val; /* At this point new_end aligns to 4n, so (new_end & 4) pads to 8n */ pad = ((new_end & 4) + (end & 7)) & 7; len_delta = new_end - (int)end + pad; ret_val = skb_cow(skb, skb_headroom(skb) + len_delta); if (ret_val < 0) return ret_val; ip6_hdr = ipv6_hdr(skb); /* Reset as skb_cow() may have moved it */ if (len_delta) { if (len_delta > 0) skb_push(skb, len_delta); else skb_pull(skb, -len_delta); memmove((char *)ip6_hdr - len_delta, ip6_hdr, sizeof(*ip6_hdr) + start); skb_reset_network_header(skb); ip6_hdr = ipv6_hdr(skb); payload = ntohs(ip6_hdr->payload_len); ip6_hdr->payload_len = htons(payload + len_delta); } hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); if (start == 0) { struct ipv6_opt_hdr *new_hop = (struct ipv6_opt_hdr *)buf; new_hop->nexthdr = ip6_hdr->nexthdr; new_hop->hdrlen = len_delta / 8 - 1; ip6_hdr->nexthdr = NEXTHDR_HOP; } else { hop->hdrlen += len_delta / 8; } memcpy((char *)hop + start, buf + (start & 3), new_end - start); calipso_pad_write((unsigned char *)hop, new_end, pad); return 0; } /** * calipso_skbuff_delattr - Delete any CALIPSO options from a packet * @skb: the packet * * Description: * Removes any and all CALIPSO options from the given packet. Returns zero on * success, negative values on failure. * */ static int calipso_skbuff_delattr(struct sk_buff *skb) { int ret_val; struct ipv6hdr *ip6_hdr; struct ipv6_opt_hdr *old_hop; u32 old_hop_len, start = 0, end = 0, delta, size, pad; if (!calipso_skbuff_optptr(skb)) return 0; /* since we are changing the packet we should make a copy */ ret_val = skb_cow(skb, skb_headroom(skb)); if (ret_val < 0) return ret_val; ip6_hdr = ipv6_hdr(skb); old_hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); old_hop_len = ipv6_optlen(old_hop); ret_val = calipso_opt_find(old_hop, &start, &end); if (ret_val) return ret_val; if (start == sizeof(*old_hop) && end == old_hop_len) { /* There's no other option in the header so we delete * the whole thing. */ delta = old_hop_len; size = sizeof(*ip6_hdr); ip6_hdr->nexthdr = old_hop->nexthdr; } else { delta = (end - start) & ~7; if (delta) old_hop->hdrlen -= delta / 8; pad = (end - start) & 7; size = sizeof(*ip6_hdr) + start + pad; calipso_pad_write((unsigned char *)old_hop, start, pad); } if (delta) { skb_pull(skb, delta); memmove((char *)ip6_hdr + delta, ip6_hdr, size); skb_reset_network_header(skb); } return 0; } static const struct netlbl_calipso_ops ops = { .doi_add = calipso_doi_add, .doi_free = calipso_doi_free, .doi_remove = calipso_doi_remove, .doi_getdef = calipso_doi_getdef, .doi_putdef = calipso_doi_putdef, .doi_walk = calipso_doi_walk, .sock_getattr = calipso_sock_getattr, .sock_setattr = calipso_sock_setattr, .sock_delattr = calipso_sock_delattr, .req_setattr = calipso_req_setattr, .req_delattr = calipso_req_delattr, .opt_getattr = calipso_opt_getattr, .skbuff_optptr = calipso_skbuff_optptr, .skbuff_setattr = calipso_skbuff_setattr, .skbuff_delattr = calipso_skbuff_delattr, .cache_invalidate = calipso_cache_invalidate, .cache_add = calipso_cache_add }; /** * calipso_init - Initialize the CALIPSO module * * Description: * Initialize the CALIPSO module and prepare it for use. Returns zero on * success and negative values on failure. * */ int __init calipso_init(void) { int ret_val; ret_val = calipso_cache_init(); if (!ret_val) netlbl_calipso_ops_register(&ops); return ret_val; } void calipso_exit(void) { netlbl_calipso_ops_register(NULL); calipso_cache_invalidate(); kfree(calipso_cache); } |
7 13 7 7 7 7 15 7 17 1 1 15 7 7 7 94 94 97 98 96 98 91 97 2 2 2 97 97 90 13 1 8 5 13 71 5 4 3 2 4 3 3 5 72 4 18 11 3 22 14 7 5 6 1 2 1 1 4 1 3 2 2 2 2 1 1 9 9 9 9 9 10 1 3 6 9 6 3 3 4 4 7 3 4 3 1 2 3 1 2 1 9 5 1 3 5 5 5 5 5 5 5 1 4 5 5 1 1 1 1 2 2 5 5 1 9 9 9 9 5 5 98 54 53 3 1 2 43 19 24 1 8 1 1 13 2 4 105 1 1 105 6 98 71 1 27 8 1 2 1 4 1 4 3 4 1 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/key/af_key.c An implementation of PF_KEYv2 sockets. * * Authors: Maxim Giryaev <gem@asplinux.ru> * David S. Miller <davem@redhat.com> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Kunihiro Ishiguro <kunihiro@ipinfusion.com> * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org> * Derek Atkins <derek@ihtfp.com> */ #include <linux/capability.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/slab.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/xfrm.h> #include <net/sock.h> #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x)) #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x)) static unsigned int pfkey_net_id __read_mostly; struct netns_pfkey { /* List of all pfkey sockets. */ struct hlist_head table; atomic_t socks_nr; }; static DEFINE_MUTEX(pfkey_mutex); #define DUMMY_MARK 0 static const struct xfrm_mark dummy_mark = {0, 0}; struct pfkey_sock { /* struct sock must be the first member of struct pfkey_sock */ struct sock sk; int registered; int promisc; struct { uint8_t msg_version; uint32_t msg_portid; int (*dump)(struct pfkey_sock *sk); void (*done)(struct pfkey_sock *sk); union { struct xfrm_policy_walk policy; struct xfrm_state_walk state; } u; struct sk_buff *skb; } dump; struct mutex dump_lock; }; static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len, xfrm_address_t *saddr, xfrm_address_t *daddr, u16 *family); static inline struct pfkey_sock *pfkey_sk(struct sock *sk) { return (struct pfkey_sock *)sk; } static int pfkey_can_dump(const struct sock *sk) { if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf) return 1; return 0; } static void pfkey_terminate_dump(struct pfkey_sock *pfk) { if (pfk->dump.dump) { if (pfk->dump.skb) { kfree_skb(pfk->dump.skb); pfk->dump.skb = NULL; } pfk->dump.done(pfk); pfk->dump.dump = NULL; pfk->dump.done = NULL; } } static void pfkey_sock_destruct(struct sock *sk) { struct net *net = sock_net(sk); struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); pfkey_terminate_dump(pfkey_sk(sk)); skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive pfkey socket: %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); atomic_dec(&net_pfkey->socks_nr); } static const struct proto_ops pfkey_ops; static void pfkey_insert(struct sock *sk) { struct net *net = sock_net(sk); struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); mutex_lock(&pfkey_mutex); sk_add_node_rcu(sk, &net_pfkey->table); mutex_unlock(&pfkey_mutex); } static void pfkey_remove(struct sock *sk) { mutex_lock(&pfkey_mutex); sk_del_node_init_rcu(sk); mutex_unlock(&pfkey_mutex); } static struct proto key_proto = { .name = "KEY", .owner = THIS_MODULE, .obj_size = sizeof(struct pfkey_sock), }; static int pfkey_create(struct net *net, struct socket *sock, int protocol, int kern) { struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); struct sock *sk; struct pfkey_sock *pfk; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (sock->type != SOCK_RAW) return -ESOCKTNOSUPPORT; if (protocol != PF_KEY_V2) return -EPROTONOSUPPORT; sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern); if (sk == NULL) return -ENOMEM; pfk = pfkey_sk(sk); mutex_init(&pfk->dump_lock); sock->ops = &pfkey_ops; sock_init_data(sock, sk); sk->sk_family = PF_KEY; sk->sk_destruct = pfkey_sock_destruct; atomic_inc(&net_pfkey->socks_nr); pfkey_insert(sk); return 0; } static int pfkey_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; pfkey_remove(sk); sock_orphan(sk); sock->sk = NULL; skb_queue_purge(&sk->sk_write_queue); synchronize_rcu(); sock_put(sk); return 0; } static int pfkey_broadcast_one(struct sk_buff *skb, gfp_t allocation, struct sock *sk) { int err = -ENOBUFS; if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) return err; skb = skb_clone(skb, allocation); if (skb) { skb_set_owner_r(skb, sk); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk); err = 0; } return err; } /* Send SKB to all pfkey sockets matching selected criteria. */ #define BROADCAST_ALL 0 #define BROADCAST_ONE 1 #define BROADCAST_REGISTERED 2 #define BROADCAST_PROMISC_ONLY 4 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation, int broadcast_flags, struct sock *one_sk, struct net *net) { struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); struct sock *sk; int err = -ESRCH; /* XXX Do we need something like netlink_overrun? I think * XXX PF_KEY socket apps will not mind current behavior. */ if (!skb) return -ENOMEM; rcu_read_lock(); sk_for_each_rcu(sk, &net_pfkey->table) { struct pfkey_sock *pfk = pfkey_sk(sk); int err2; /* Yes, it means that if you are meant to receive this * pfkey message you receive it twice as promiscuous * socket. */ if (pfk->promisc) pfkey_broadcast_one(skb, GFP_ATOMIC, sk); /* the exact target will be processed later */ if (sk == one_sk) continue; if (broadcast_flags != BROADCAST_ALL) { if (broadcast_flags & BROADCAST_PROMISC_ONLY) continue; if ((broadcast_flags & BROADCAST_REGISTERED) && !pfk->registered) continue; if (broadcast_flags & BROADCAST_ONE) continue; } err2 = pfkey_broadcast_one(skb, GFP_ATOMIC, sk); /* Error is cleared after successful sending to at least one * registered KM */ if ((broadcast_flags & BROADCAST_REGISTERED) && err) err = err2; } rcu_read_unlock(); if (one_sk != NULL) err = pfkey_broadcast_one(skb, allocation, one_sk); kfree_skb(skb); return err; } static int pfkey_do_dump(struct pfkey_sock *pfk) { struct sadb_msg *hdr; int rc; mutex_lock(&pfk->dump_lock); if (!pfk->dump.dump) { rc = 0; goto out; } rc = pfk->dump.dump(pfk); if (rc == -ENOBUFS) { rc = 0; goto out; } if (pfk->dump.skb) { if (!pfkey_can_dump(&pfk->sk)) { rc = 0; goto out; } hdr = (struct sadb_msg *) pfk->dump.skb->data; hdr->sadb_msg_seq = 0; hdr->sadb_msg_errno = rc; pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk, sock_net(&pfk->sk)); pfk->dump.skb = NULL; } pfkey_terminate_dump(pfk); out: mutex_unlock(&pfk->dump_lock); return rc; } static inline void pfkey_hdr_dup(struct sadb_msg *new, const struct sadb_msg *orig) { *new = *orig; } static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk) { struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL); struct sadb_msg *hdr; if (!skb) return -ENOBUFS; /* Woe be to the platform trying to support PFKEY yet * having normal errnos outside the 1-255 range, inclusive. */ err = -err; if (err == ERESTARTSYS || err == ERESTARTNOHAND || err == ERESTARTNOINTR) err = EINTR; if (err >= 512) err = EINVAL; BUG_ON(err <= 0 || err >= 256); hdr = skb_put(skb, sizeof(struct sadb_msg)); pfkey_hdr_dup(hdr, orig); hdr->sadb_msg_errno = (uint8_t) err; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk)); return 0; } static const u8 sadb_ext_min_len[] = { [SADB_EXT_RESERVED] = (u8) 0, [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa), [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime), [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address), [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address), [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address), [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key), [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key), [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident), [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident), [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens), [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop), [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported), [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported), [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange), [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate), [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy), [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2), [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type), [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port), [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address), [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx), [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress), [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter), }; /* Verify sadb_address_{len,prefixlen} against sa_family. */ static int verify_address_len(const void *p) { const struct sadb_address *sp = p; const struct sockaddr *addr = (const struct sockaddr *)(sp + 1); const struct sockaddr_in *sin; #if IS_ENABLED(CONFIG_IPV6) const struct sockaddr_in6 *sin6; #endif int len; if (sp->sadb_address_len < DIV_ROUND_UP(sizeof(*sp) + offsetofend(typeof(*addr), sa_family), sizeof(uint64_t))) return -EINVAL; switch (addr->sa_family) { case AF_INET: len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t)); if (sp->sadb_address_len != len || sp->sadb_address_prefixlen > 32) return -EINVAL; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t)); if (sp->sadb_address_len != len || sp->sadb_address_prefixlen > 128) return -EINVAL; break; #endif default: /* It is user using kernel to keep track of security * associations for another protocol, such as * OSPF/RSVP/RIPV2/MIP. It is user's job to verify * lengths. * * XXX Actually, association/policy database is not yet * XXX able to cope with arbitrary sockaddr families. * XXX When it can, remove this -EINVAL. -DaveM */ return -EINVAL; } return 0; } static inline int sadb_key_len(const struct sadb_key *key) { int key_bytes = DIV_ROUND_UP(key->sadb_key_bits, 8); return DIV_ROUND_UP(sizeof(struct sadb_key) + key_bytes, sizeof(uint64_t)); } static int verify_key_len(const void *p) { const struct sadb_key *key = p; if (sadb_key_len(key) > key->sadb_key_len) return -EINVAL; return 0; } static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx) { return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) + sec_ctx->sadb_x_ctx_len, sizeof(uint64_t)); } static inline int verify_sec_ctx_len(const void *p) { const struct sadb_x_sec_ctx *sec_ctx = p; int len = sec_ctx->sadb_x_ctx_len; if (len > PAGE_SIZE) return -EINVAL; len = pfkey_sec_ctx_len(sec_ctx); if (sec_ctx->sadb_x_sec_len != len) return -EINVAL; return 0; } static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx, gfp_t gfp) { struct xfrm_user_sec_ctx *uctx = NULL; int ctx_size = sec_ctx->sadb_x_ctx_len; uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp); if (!uctx) return NULL; uctx->len = pfkey_sec_ctx_len(sec_ctx); uctx->exttype = sec_ctx->sadb_x_sec_exttype; uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi; uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg; uctx->ctx_len = sec_ctx->sadb_x_ctx_len; memcpy(uctx + 1, sec_ctx + 1, uctx->ctx_len); return uctx; } static int present_and_same_family(const struct sadb_address *src, const struct sadb_address *dst) { const struct sockaddr *s_addr, *d_addr; if (!src || !dst) return 0; s_addr = (const struct sockaddr *)(src + 1); d_addr = (const struct sockaddr *)(dst + 1); if (s_addr->sa_family != d_addr->sa_family) return 0; if (s_addr->sa_family != AF_INET #if IS_ENABLED(CONFIG_IPV6) && s_addr->sa_family != AF_INET6 #endif ) return 0; return 1; } static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs) { const char *p = (char *) hdr; int len = skb->len; len -= sizeof(*hdr); p += sizeof(*hdr); while (len > 0) { const struct sadb_ext *ehdr = (const struct sadb_ext *) p; uint16_t ext_type; int ext_len; if (len < sizeof(*ehdr)) return -EINVAL; ext_len = ehdr->sadb_ext_len; ext_len *= sizeof(uint64_t); ext_type = ehdr->sadb_ext_type; if (ext_len < sizeof(uint64_t) || ext_len > len || ext_type == SADB_EXT_RESERVED) return -EINVAL; if (ext_type <= SADB_EXT_MAX) { int min = (int) sadb_ext_min_len[ext_type]; if (ext_len < min) return -EINVAL; if (ext_hdrs[ext_type-1] != NULL) return -EINVAL; switch (ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_X_EXT_NAT_T_OA: if (verify_address_len(p)) return -EINVAL; break; case SADB_X_EXT_SEC_CTX: if (verify_sec_ctx_len(p)) return -EINVAL; break; case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: if (verify_key_len(p)) return -EINVAL; break; default: break; } ext_hdrs[ext_type-1] = (void *) p; } p += ext_len; len -= ext_len; } return 0; } static uint16_t pfkey_satype2proto(uint8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_COMP; default: return 0; } /* NOTREACHED */ } static uint8_t pfkey_proto2satype(uint16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_COMP: return SADB_X_SATYPE_IPCOMP; default: return 0; } /* NOTREACHED */ } /* BTW, this scheme means that there is no way with PFKEY2 sockets to * say specifically 'just raw sockets' as we encode them as 255. */ static uint8_t pfkey_proto_to_xfrm(uint8_t proto) { return proto == IPSEC_PROTO_ANY ? 0 : proto; } static uint8_t pfkey_proto_from_xfrm(uint8_t proto) { return proto ? proto : IPSEC_PROTO_ANY; } static inline int pfkey_sockaddr_len(sa_family_t family) { switch (family) { case AF_INET: return sizeof(struct sockaddr_in); #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return sizeof(struct sockaddr_in6); #endif } return 0; } static int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr) { switch (sa->sa_family) { case AF_INET: xaddr->a4 = ((struct sockaddr_in *)sa)->sin_addr.s_addr; return AF_INET; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: memcpy(xaddr->a6, &((struct sockaddr_in6 *)sa)->sin6_addr, sizeof(struct in6_addr)); return AF_INET6; #endif } return 0; } static int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr) { return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1), xaddr); } static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs) { const struct sadb_sa *sa; const struct sadb_address *addr; uint16_t proto; unsigned short family; xfrm_address_t *xaddr; sa = ext_hdrs[SADB_EXT_SA - 1]; if (sa == NULL) return NULL; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return NULL; /* sadb_address_len should be checked by caller */ addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1]; if (addr == NULL) return NULL; family = ((const struct sockaddr *)(addr + 1))->sa_family; switch (family) { case AF_INET: xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr; break; #endif default: xaddr = NULL; } if (!xaddr) return NULL; return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family); } #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) static int pfkey_sockaddr_size(sa_family_t family) { return PFKEY_ALIGN8(pfkey_sockaddr_len(family)); } static inline int pfkey_mode_from_xfrm(int mode) { switch(mode) { case XFRM_MODE_TRANSPORT: return IPSEC_MODE_TRANSPORT; case XFRM_MODE_TUNNEL: return IPSEC_MODE_TUNNEL; case XFRM_MODE_BEET: return IPSEC_MODE_BEET; default: return -1; } } static inline int pfkey_mode_to_xfrm(int mode) { switch(mode) { case IPSEC_MODE_ANY: /*XXX*/ case IPSEC_MODE_TRANSPORT: return XFRM_MODE_TRANSPORT; case IPSEC_MODE_TUNNEL: return XFRM_MODE_TUNNEL; case IPSEC_MODE_BEET: return XFRM_MODE_BEET; default: return -1; } } static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port, struct sockaddr *sa, unsigned short family) { switch (family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; sin->sin_family = AF_INET; sin->sin_port = port; sin->sin_addr.s_addr = xaddr->a4; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); return 32; } #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; sin6->sin6_family = AF_INET6; sin6->sin6_port = port; sin6->sin6_flowinfo = 0; sin6->sin6_addr = xaddr->in6; sin6->sin6_scope_id = 0; return 128; } #endif } return 0; } static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x, int add_keys, int hsc) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_sa *sa; struct sadb_lifetime *lifetime; struct sadb_address *addr; struct sadb_key *key; struct sadb_x_sa2 *sa2; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *xfrm_ctx; int ctx_size = 0; int size; int auth_key_size = 0; int encrypt_key_size = 0; int sockaddr_size; struct xfrm_encap_tmpl *natt = NULL; int mode; /* address family check */ sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return ERR_PTR(-EINVAL); /* base, SA, (lifetime (HSC),) address(SD), (address(P),) key(AE), (identity(SD),) (sensitivity)> */ size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) + sizeof(struct sadb_lifetime) + ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) + ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) + sizeof(struct sadb_address)*2 + sockaddr_size*2 + sizeof(struct sadb_x_sa2); if ((xfrm_ctx = x->security)) { ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); size += sizeof(struct sadb_x_sec_ctx) + ctx_size; } /* identity & sensitivity */ if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family)) size += sizeof(struct sadb_address) + sockaddr_size; if (add_keys) { if (x->aalg && x->aalg->alg_key_len) { auth_key_size = PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8); size += sizeof(struct sadb_key) + auth_key_size; } if (x->ealg && x->ealg->alg_key_len) { encrypt_key_size = PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8); size += sizeof(struct sadb_key) + encrypt_key_size; } } if (x->encap) natt = x->encap; if (natt && natt->encap_type) { size += sizeof(struct sadb_x_nat_t_type); size += sizeof(struct sadb_x_nat_t_port); size += sizeof(struct sadb_x_nat_t_port); } skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return ERR_PTR(-ENOBUFS); /* call should fill header later */ hdr = skb_put(skb, sizeof(struct sadb_msg)); memset(hdr, 0, size); /* XXX do we need this ? */ hdr->sadb_msg_len = size / sizeof(uint64_t); /* sa */ sa = skb_put(skb, sizeof(struct sadb_sa)); sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_spi = x->id.spi; sa->sadb_sa_replay = x->props.replay_window; switch (x->km.state) { case XFRM_STATE_VALID: sa->sadb_sa_state = x->km.dying ? SADB_SASTATE_DYING : SADB_SASTATE_MATURE; break; case XFRM_STATE_ACQ: sa->sadb_sa_state = SADB_SASTATE_LARVAL; break; default: sa->sadb_sa_state = SADB_SASTATE_DEAD; break; } sa->sadb_sa_auth = 0; if (x->aalg) { struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0); sa->sadb_sa_auth = (a && a->pfkey_supported) ? a->desc.sadb_alg_id : 0; } sa->sadb_sa_encrypt = 0; BUG_ON(x->ealg && x->calg); if (x->ealg) { struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0); sa->sadb_sa_encrypt = (a && a->pfkey_supported) ? a->desc.sadb_alg_id : 0; } /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */ if (x->calg) { struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0); sa->sadb_sa_encrypt = (a && a->pfkey_supported) ? a->desc.sadb_alg_id : 0; } sa->sadb_sa_flags = 0; if (x->props.flags & XFRM_STATE_NOECN) sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN; if (x->props.flags & XFRM_STATE_DECAP_DSCP) sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP; if (x->props.flags & XFRM_STATE_NOPMTUDISC) sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC; /* hard time */ if (hsc & 2) { lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit); lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds; lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds; } /* soft time */ if (hsc & 1) { lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit); lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds; lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds; } /* current time */ lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lifetime->sadb_lifetime_allocations = x->curlft.packets; lifetime->sadb_lifetime_bytes = x->curlft.bytes; lifetime->sadb_lifetime_addtime = x->curlft.add_time; lifetime->sadb_lifetime_usetime = x->curlft.use_time; /* src address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; /* "if the ports are non-zero, then the sadb_address_proto field, normally zero, MUST be filled in with the transport protocol's number." - RFC2367 */ addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(&x->props.saddr, 0, (struct sockaddr *) (addr + 1), x->props.family); BUG_ON(!addr->sadb_address_prefixlen); /* dst address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(&x->id.daddr, 0, (struct sockaddr *) (addr + 1), x->props.family); BUG_ON(!addr->sadb_address_prefixlen); if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family)) { addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; addr->sadb_address_proto = pfkey_proto_from_xfrm(x->sel.proto); addr->sadb_address_prefixlen = x->sel.prefixlen_s; addr->sadb_address_reserved = 0; pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport, (struct sockaddr *) (addr + 1), x->props.family); } /* auth key */ if (add_keys && auth_key_size) { key = skb_put(skb, sizeof(struct sadb_key) + auth_key_size); key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) / sizeof(uint64_t); key->sadb_key_exttype = SADB_EXT_KEY_AUTH; key->sadb_key_bits = x->aalg->alg_key_len; key->sadb_key_reserved = 0; memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8); } /* encrypt key */ if (add_keys && encrypt_key_size) { key = skb_put(skb, sizeof(struct sadb_key) + encrypt_key_size); key->sadb_key_len = (sizeof(struct sadb_key) + encrypt_key_size) / sizeof(uint64_t); key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; key->sadb_key_bits = x->ealg->alg_key_len; key->sadb_key_reserved = 0; memcpy(key + 1, x->ealg->alg_key, (x->ealg->alg_key_len+7)/8); } /* sa */ sa2 = skb_put(skb, sizeof(struct sadb_x_sa2)); sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t); sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) { kfree_skb(skb); return ERR_PTR(-EINVAL); } sa2->sadb_x_sa2_mode = mode; sa2->sadb_x_sa2_reserved1 = 0; sa2->sadb_x_sa2_reserved2 = 0; sa2->sadb_x_sa2_sequence = 0; sa2->sadb_x_sa2_reqid = x->props.reqid; if (natt && natt->encap_type) { struct sadb_x_nat_t_type *n_type; struct sadb_x_nat_t_port *n_port; /* type */ n_type = skb_put(skb, sizeof(*n_type)); n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t); n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; n_type->sadb_x_nat_t_type_type = natt->encap_type; n_type->sadb_x_nat_t_type_reserved[0] = 0; n_type->sadb_x_nat_t_type_reserved[1] = 0; n_type->sadb_x_nat_t_type_reserved[2] = 0; /* source port */ n_port = skb_put(skb, sizeof(*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; n_port->sadb_x_nat_t_port_port = natt->encap_sport; n_port->sadb_x_nat_t_port_reserved = 0; /* dest port */ n_port = skb_put(skb, sizeof(*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; n_port->sadb_x_nat_t_port_port = natt->encap_dport; n_port->sadb_x_nat_t_port_reserved = 0; } /* security context */ if (xfrm_ctx) { sec_ctx = skb_put(skb, sizeof(struct sadb_x_sec_ctx) + ctx_size); sec_ctx->sadb_x_sec_len = (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, xfrm_ctx->ctx_len); } return skb; } static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x) { struct sk_buff *skb; skb = __pfkey_xfrm_state2msg(x, 1, 3); return skb; } static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x, int hsc) { return __pfkey_xfrm_state2msg(x, 0, hsc); } static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct xfrm_state *x; const struct sadb_lifetime *lifetime; const struct sadb_sa *sa; const struct sadb_key *key; const struct sadb_x_sec_ctx *sec_ctx; uint16_t proto; int err; sa = ext_hdrs[SADB_EXT_SA - 1]; if (!sa || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return ERR_PTR(-EINVAL); if (hdr->sadb_msg_satype == SADB_SATYPE_ESP && !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]) return ERR_PTR(-EINVAL); if (hdr->sadb_msg_satype == SADB_SATYPE_AH && !ext_hdrs[SADB_EXT_KEY_AUTH-1]) return ERR_PTR(-EINVAL); if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] != !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) return ERR_PTR(-EINVAL); proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return ERR_PTR(-EINVAL); /* default error is no buffer space */ err = -ENOBUFS; /* RFC2367: Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state. Therefore, the sadb_sa_state field of all submitted SAs MUST be SADB_SASTATE_MATURE and the kernel MUST return an error if this is not true. However, KAME setkey always uses SADB_SASTATE_LARVAL. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable. */ if (sa->sadb_sa_auth > SADB_AALG_MAX || (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP && sa->sadb_sa_encrypt > SADB_X_CALG_MAX) || sa->sadb_sa_encrypt > SADB_EALG_MAX) return ERR_PTR(-EINVAL); key = ext_hdrs[SADB_EXT_KEY_AUTH - 1]; if (key != NULL && sa->sadb_sa_auth != SADB_X_AALG_NULL && key->sadb_key_bits == 0) return ERR_PTR(-EINVAL); key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; if (key != NULL && sa->sadb_sa_encrypt != SADB_EALG_NULL && key->sadb_key_bits == 0) return ERR_PTR(-EINVAL); x = xfrm_state_alloc(net); if (x == NULL) return ERR_PTR(-ENOBUFS); x->id.proto = proto; x->id.spi = sa->sadb_sa_spi; x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay, (sizeof(x->replay.bitmap) * 8)); if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN) x->props.flags |= XFRM_STATE_NOECN; if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP) x->props.flags |= XFRM_STATE_DECAP_DSCP; if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC) x->props.flags |= XFRM_STATE_NOPMTUDISC; lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1]; if (lifetime != NULL) { x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; } lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1]; if (lifetime != NULL) { x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; } sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1]; if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL); if (!uctx) goto out; err = security_xfrm_state_alloc(x, uctx); kfree(uctx); if (err) goto out; } err = -ENOBUFS; key = ext_hdrs[SADB_EXT_KEY_AUTH - 1]; if (sa->sadb_sa_auth) { int keysize = 0; struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth); if (!a || !a->pfkey_supported) { err = -ENOSYS; goto out; } if (key) keysize = (key->sadb_key_bits + 7) / 8; x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL); if (!x->aalg) { err = -ENOMEM; goto out; } strcpy(x->aalg->alg_name, a->name); x->aalg->alg_key_len = 0; if (key) { x->aalg->alg_key_len = key->sadb_key_bits; memcpy(x->aalg->alg_key, key+1, keysize); } x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits; x->props.aalgo = sa->sadb_sa_auth; /* x->algo.flags = sa->sadb_sa_flags; */ } if (sa->sadb_sa_encrypt) { if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt); if (!a || !a->pfkey_supported) { err = -ENOSYS; goto out; } x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL); if (!x->calg) { err = -ENOMEM; goto out; } strcpy(x->calg->alg_name, a->name); x->props.calgo = sa->sadb_sa_encrypt; } else { int keysize = 0; struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt); if (!a || !a->pfkey_supported) { err = -ENOSYS; goto out; } key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; if (key) keysize = (key->sadb_key_bits + 7) / 8; x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL); if (!x->ealg) { err = -ENOMEM; goto out; } strcpy(x->ealg->alg_name, a->name); x->ealg->alg_key_len = 0; if (key) { x->ealg->alg_key_len = key->sadb_key_bits; memcpy(x->ealg->alg_key, key+1, keysize); } x->props.ealgo = sa->sadb_sa_encrypt; x->geniv = a->uinfo.encr.geniv; } } /* x->algo.flags = sa->sadb_sa_flags; */ x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1], &x->props.saddr); pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1], &x->id.daddr); if (ext_hdrs[SADB_X_EXT_SA2-1]) { const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1]; int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); if (mode < 0) { err = -EINVAL; goto out; } x->props.mode = mode; x->props.reqid = sa2->sadb_x_sa2_reqid; } if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) { const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]; /* Nobody uses this, but we try. */ x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr); x->sel.prefixlen_s = addr->sadb_address_prefixlen; } if (!x->sel.family) x->sel.family = x->props.family; if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) { const struct sadb_x_nat_t_type* n_type; struct xfrm_encap_tmpl *natt; x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL); if (!x->encap) { err = -ENOMEM; goto out; } natt = x->encap; n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]; natt->encap_type = n_type->sadb_x_nat_t_type_type; if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) { const struct sadb_x_nat_t_port *n_port = ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]; natt->encap_sport = n_port->sadb_x_nat_t_port_port; } if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) { const struct sadb_x_nat_t_port *n_port = ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]; natt->encap_dport = n_port->sadb_x_nat_t_port_port; } memset(&natt->encap_oa, 0, sizeof(natt->encap_oa)); } err = xfrm_init_state(x); if (err) goto out; x->km.seq = hdr->sadb_msg_seq; return x; out: x->km.state = XFRM_STATE_DEAD; xfrm_state_put(x); return ERR_PTR(err); } static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { return -EOPNOTSUPP; } static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); struct sk_buff *resp_skb; struct sadb_x_sa2 *sa2; struct sadb_address *saddr, *daddr; struct sadb_msg *out_hdr; struct sadb_spirange *range; struct xfrm_state *x = NULL; int mode; int err; u32 min_spi, max_spi; u32 reqid; u8 proto; unsigned short family; xfrm_address_t *xsaddr = NULL, *xdaddr = NULL; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return -EINVAL; if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) { mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); if (mode < 0) return -EINVAL; reqid = sa2->sadb_x_sa2_reqid; } else { mode = 0; reqid = 0; } saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; family = ((struct sockaddr *)(saddr + 1))->sa_family; switch (family) { case AF_INET: xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr; xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr; xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr; break; #endif } if (hdr->sadb_msg_seq) { x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq); if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) { xfrm_state_put(x); x = NULL; } } if (!x) x = xfrm_find_acq(net, &dummy_mark, mode, reqid, 0, proto, xdaddr, xsaddr, 1, family); if (x == NULL) return -ENOENT; min_spi = 0x100; max_spi = 0x0fffffff; range = ext_hdrs[SADB_EXT_SPIRANGE-1]; if (range) { min_spi = range->sadb_spirange_min; max_spi = range->sadb_spirange_max; } err = verify_spi_info(x->id.proto, min_spi, max_spi); if (err) { xfrm_state_put(x); return err; } err = xfrm_alloc_spi(x, min_spi, max_spi); resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x); if (IS_ERR(resp_skb)) { xfrm_state_put(x); return PTR_ERR(resp_skb); } out_hdr = (struct sadb_msg *) resp_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_GETSPI; out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; xfrm_state_put(x); pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net); return 0; } static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); struct xfrm_state *x; if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8) return -EOPNOTSUPP; if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0) return 0; x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq); if (x == NULL) return 0; spin_lock_bh(&x->lock); if (x->km.state == XFRM_STATE_ACQ) x->km.state = XFRM_STATE_ERROR; spin_unlock_bh(&x->lock); xfrm_state_put(x); return 0; } static inline int event2poltype(int event) { switch (event) { case XFRM_MSG_DELPOLICY: return SADB_X_SPDDELETE; case XFRM_MSG_NEWPOLICY: return SADB_X_SPDADD; case XFRM_MSG_UPDPOLICY: return SADB_X_SPDUPDATE; case XFRM_MSG_POLEXPIRE: // return SADB_X_SPDEXPIRE; default: pr_err("pfkey: Unknown policy event %d\n", event); break; } return 0; } static inline int event2keytype(int event) { switch (event) { case XFRM_MSG_DELSA: return SADB_DELETE; case XFRM_MSG_NEWSA: return SADB_ADD; case XFRM_MSG_UPDSA: return SADB_UPDATE; case XFRM_MSG_EXPIRE: return SADB_EXPIRE; default: pr_err("pfkey: Unknown SA event %d\n", event); break; } return 0; } /* ADD/UPD/DEL */ static int key_notify_sa(struct xfrm_state *x, const struct km_event *c) { struct sk_buff *skb; struct sadb_msg *hdr; skb = pfkey_xfrm_state2msg(x); if (IS_ERR(skb)) return PTR_ERR(skb); hdr = (struct sadb_msg *) skb->data; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = event2keytype(c->event); hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->portid; pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x)); return 0; } static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); struct xfrm_state *x; int err; struct km_event c; x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs); if (IS_ERR(x)) return PTR_ERR(x); xfrm_state_hold(x); if (hdr->sadb_msg_type == SADB_ADD) err = xfrm_state_add(x); else err = xfrm_state_update(x); xfrm_audit_state_add(x, err ? 0 : 1, true); if (err < 0) { x->km.state = XFRM_STATE_DEAD; __xfrm_state_put(x); goto out; } if (hdr->sadb_msg_type == SADB_ADD) c.event = XFRM_MSG_NEWSA; else c.event = XFRM_MSG_UPDSA; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; km_state_notify(x, &c); out: xfrm_state_put(x); return err; } static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); struct xfrm_state *x; struct km_event c; int err; if (!ext_hdrs[SADB_EXT_SA-1] || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs); if (x == NULL) return -ESRCH; if ((err = security_xfrm_state_delete(x))) goto out; if (xfrm_state_kern(x)) { err = -EPERM; goto out; } err = xfrm_state_delete(x); if (err < 0) goto out; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; c.event = XFRM_MSG_DELSA; km_state_notify(x, &c); out: xfrm_audit_state_delete(x, err ? 0 : 1, true); xfrm_state_put(x); return err; } static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); __u8 proto; struct sk_buff *out_skb; struct sadb_msg *out_hdr; struct xfrm_state *x; if (!ext_hdrs[SADB_EXT_SA-1] || !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1])) return -EINVAL; x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs); if (x == NULL) return -ESRCH; out_skb = pfkey_xfrm_state2msg(x); proto = x->id.proto; xfrm_state_put(x); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = SADB_GET; out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk)); return 0; } static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig, gfp_t allocation) { struct sk_buff *skb; struct sadb_msg *hdr; int len, auth_len, enc_len, i; auth_len = xfrm_count_pfkey_auth_supported(); if (auth_len) { auth_len *= sizeof(struct sadb_alg); auth_len += sizeof(struct sadb_supported); } enc_len = xfrm_count_pfkey_enc_supported(); if (enc_len) { enc_len *= sizeof(struct sadb_alg); enc_len += sizeof(struct sadb_supported); } len = enc_len + auth_len + sizeof(struct sadb_msg); skb = alloc_skb(len + 16, allocation); if (!skb) goto out_put_algs; hdr = skb_put(skb, sizeof(*hdr)); pfkey_hdr_dup(hdr, orig); hdr->sadb_msg_errno = 0; hdr->sadb_msg_len = len / sizeof(uint64_t); if (auth_len) { struct sadb_supported *sp; struct sadb_alg *ap; sp = skb_put(skb, auth_len); ap = (struct sadb_alg *) (sp + 1); sp->sadb_supported_len = auth_len / sizeof(uint64_t); sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; for (i = 0; ; i++) { struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (!aalg->pfkey_supported) continue; if (aalg->available) *ap++ = aalg->desc; } } if (enc_len) { struct sadb_supported *sp; struct sadb_alg *ap; sp = skb_put(skb, enc_len); ap = (struct sadb_alg *) (sp + 1); sp->sadb_supported_len = enc_len / sizeof(uint64_t); sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; for (i = 0; ; i++) { struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (!ealg->pfkey_supported) continue; if (ealg->available) *ap++ = ealg->desc; } } out_put_algs: return skb; } static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct pfkey_sock *pfk = pfkey_sk(sk); struct sk_buff *supp_skb; if (hdr->sadb_msg_satype > SADB_SATYPE_MAX) return -EINVAL; if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) { if (pfk->registered&(1<<hdr->sadb_msg_satype)) return -EEXIST; pfk->registered |= (1<<hdr->sadb_msg_satype); } mutex_lock(&pfkey_mutex); xfrm_probe_algs(); supp_skb = compose_sadb_supported(hdr, GFP_KERNEL | __GFP_ZERO); mutex_unlock(&pfkey_mutex); if (!supp_skb) { if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) pfk->registered &= ~(1<<hdr->sadb_msg_satype); return -ENOBUFS; } pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk)); return 0; } static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr) { struct sk_buff *skb; struct sadb_msg *hdr; skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); if (!skb) return -ENOBUFS; hdr = skb_put_data(skb, ihdr, sizeof(struct sadb_msg)); hdr->sadb_msg_errno = (uint8_t) 0; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk)); } static int key_notify_sa_flush(const struct km_event *c) { struct sk_buff *skb; struct sadb_msg *hdr; skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); if (!skb) return -ENOBUFS; hdr = skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto); hdr->sadb_msg_type = SADB_FLUSH; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->portid; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_errno = (uint8_t) 0; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); hdr->sadb_msg_reserved = 0; pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net); return 0; } static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); unsigned int proto; struct km_event c; int err, err2; proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) return -EINVAL; err = xfrm_state_flush(net, proto, true, false); err2 = unicast_flush_resp(sk, hdr); if (err || err2) { if (err == -ESRCH) /* empty table - go quietly */ err = 0; return err ? err : err2; } c.data.proto = proto; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; c.event = XFRM_MSG_FLUSHSA; c.net = net; km_state_notify(NULL, &c); return 0; } static int dump_sa(struct xfrm_state *x, int count, void *ptr) { struct pfkey_sock *pfk = ptr; struct sk_buff *out_skb; struct sadb_msg *out_hdr; if (!pfkey_can_dump(&pfk->sk)) return -ENOBUFS; out_skb = pfkey_xfrm_state2msg(x); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = pfk->dump.msg_version; out_hdr->sadb_msg_type = SADB_DUMP; out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = count + 1; out_hdr->sadb_msg_pid = pfk->dump.msg_portid; if (pfk->dump.skb) pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk, sock_net(&pfk->sk)); pfk->dump.skb = out_skb; return 0; } static int pfkey_dump_sa(struct pfkey_sock *pfk) { struct net *net = sock_net(&pfk->sk); return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk); } static void pfkey_dump_sa_done(struct pfkey_sock *pfk) { struct net *net = sock_net(&pfk->sk); xfrm_state_walk_done(&pfk->dump.u.state, net); } static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { u8 proto; struct xfrm_address_filter *filter = NULL; struct pfkey_sock *pfk = pfkey_sk(sk); mutex_lock(&pfk->dump_lock); if (pfk->dump.dump != NULL) { mutex_unlock(&pfk->dump_lock); return -EBUSY; } proto = pfkey_satype2proto(hdr->sadb_msg_satype); if (proto == 0) { mutex_unlock(&pfk->dump_lock); return -EINVAL; } if (ext_hdrs[SADB_X_EXT_FILTER - 1]) { struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1]; if ((xfilter->sadb_x_filter_splen > (sizeof(xfrm_address_t) << 3)) || (xfilter->sadb_x_filter_dplen > (sizeof(xfrm_address_t) << 3))) { mutex_unlock(&pfk->dump_lock); return -EINVAL; } filter = kmalloc(sizeof(*filter), GFP_KERNEL); if (filter == NULL) { mutex_unlock(&pfk->dump_lock); return -ENOMEM; } memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr, sizeof(xfrm_address_t)); memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr, sizeof(xfrm_address_t)); filter->family = xfilter->sadb_x_filter_family; filter->splen = xfilter->sadb_x_filter_splen; filter->dplen = xfilter->sadb_x_filter_dplen; } pfk->dump.msg_version = hdr->sadb_msg_version; pfk->dump.msg_portid = hdr->sadb_msg_pid; pfk->dump.dump = pfkey_dump_sa; pfk->dump.done = pfkey_dump_sa_done; xfrm_state_walk_init(&pfk->dump.u.state, proto, filter); mutex_unlock(&pfk->dump_lock); return pfkey_do_dump(pfk); } static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct pfkey_sock *pfk = pfkey_sk(sk); int satype = hdr->sadb_msg_satype; bool reset_errno = false; if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) { reset_errno = true; if (satype != 0 && satype != 1) return -EINVAL; pfk->promisc = satype; } if (reset_errno && skb_cloned(skb)) skb = skb_copy(skb, GFP_KERNEL); else skb = skb_clone(skb, GFP_KERNEL); if (reset_errno && skb) { struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data; new_hdr->sadb_msg_errno = 0; } pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk)); return 0; } static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr) { int i; u32 reqid = *(u32*)ptr; for (i=0; i<xp->xfrm_nr; i++) { if (xp->xfrm_vec[i].reqid == reqid) return -EEXIST; } return 0; } static u32 gen_reqid(struct net *net) { struct xfrm_policy_walk walk; u32 start; int rc; static u32 reqid = IPSEC_MANUAL_REQID_MAX; start = reqid; do { ++reqid; if (reqid == 0) reqid = IPSEC_MANUAL_REQID_MAX+1; xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN); rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid); xfrm_policy_walk_done(&walk, net); if (rc != -EEXIST) return reqid; } while (reqid != start); return 0; } static int parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_policy *pol, struct sadb_x_ipsecrequest *rq) { struct net *net = xp_net(xp); struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr; int mode; if (xp->xfrm_nr >= XFRM_MAX_DEPTH) return -ELOOP; if (rq->sadb_x_ipsecrequest_mode == 0) return -EINVAL; if (!xfrm_id_proto_valid(rq->sadb_x_ipsecrequest_proto)) return -EINVAL; t->id.proto = rq->sadb_x_ipsecrequest_proto; if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0) return -EINVAL; t->mode = mode; if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) { if ((mode == XFRM_MODE_TUNNEL || mode == XFRM_MODE_BEET) && pol->sadb_x_policy_dir == IPSEC_DIR_OUTBOUND) return -EINVAL; t->optional = 1; } else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) { t->reqid = rq->sadb_x_ipsecrequest_reqid; if (t->reqid > IPSEC_MANUAL_REQID_MAX) t->reqid = 0; if (!t->reqid && !(t->reqid = gen_reqid(net))) return -ENOBUFS; } /* addresses present only in tunnel mode */ if (t->mode == XFRM_MODE_TUNNEL) { int err; err = parse_sockaddr_pair( (struct sockaddr *)(rq + 1), rq->sadb_x_ipsecrequest_len - sizeof(*rq), &t->saddr, &t->id.daddr, &t->encap_family); if (err) return err; } else t->encap_family = xp->family; /* No way to set this via kame pfkey */ t->allalgs = 1; xp->xfrm_nr++; return 0; } static int parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol) { int err; int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy); struct sadb_x_ipsecrequest *rq = (void*)(pol+1); if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy)) return -EINVAL; while (len >= sizeof(*rq)) { if (len < rq->sadb_x_ipsecrequest_len || rq->sadb_x_ipsecrequest_len < sizeof(*rq)) return -EINVAL; if ((err = parse_ipsecrequest(xp, pol, rq)) < 0) return err; len -= rq->sadb_x_ipsecrequest_len; rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len); } return 0; } static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp) { struct xfrm_sec_ctx *xfrm_ctx = xp->security; if (xfrm_ctx) { int len = sizeof(struct sadb_x_sec_ctx); len += xfrm_ctx->ctx_len; return PFKEY_ALIGN8(len); } return 0; } static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp) { const struct xfrm_tmpl *t; int sockaddr_size = pfkey_sockaddr_size(xp->family); int socklen = 0; int i; for (i=0; i<xp->xfrm_nr; i++) { t = xp->xfrm_vec + i; socklen += pfkey_sockaddr_len(t->encap_family); } return sizeof(struct sadb_msg) + (sizeof(struct sadb_lifetime) * 3) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + sizeof(struct sadb_x_policy) + (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) + (socklen * 2) + pfkey_xfrm_policy2sec_ctx_size(xp); } static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp) { struct sk_buff *skb; int size; size = pfkey_xfrm_policy2msg_size(xp); skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return ERR_PTR(-ENOBUFS); return skb; } static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir) { struct sadb_msg *hdr; struct sadb_address *addr; struct sadb_lifetime *lifetime; struct sadb_x_policy *pol; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *xfrm_ctx; int i; int size; int sockaddr_size = pfkey_sockaddr_size(xp->family); int socklen = pfkey_sockaddr_len(xp->family); size = pfkey_xfrm_policy2msg_size(xp); /* call should fill header later */ hdr = skb_put(skb, sizeof(struct sadb_msg)); memset(hdr, 0, size); /* XXX do we need this ? */ /* src address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); addr->sadb_address_prefixlen = xp->selector.prefixlen_s; addr->sadb_address_reserved = 0; if (!pfkey_sockaddr_fill(&xp->selector.saddr, xp->selector.sport, (struct sockaddr *) (addr + 1), xp->family)) BUG(); /* dst address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); addr->sadb_address_prefixlen = xp->selector.prefixlen_d; addr->sadb_address_reserved = 0; pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport, (struct sockaddr *) (addr + 1), xp->family); /* hard time */ lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit); lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds; lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds; /* soft time */ lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit); lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit); lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds; lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds; /* current time */ lifetime = skb_put(skb, sizeof(struct sadb_lifetime)); lifetime->sadb_lifetime_len = sizeof(struct sadb_lifetime)/sizeof(uint64_t); lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lifetime->sadb_lifetime_allocations = xp->curlft.packets; lifetime->sadb_lifetime_bytes = xp->curlft.bytes; lifetime->sadb_lifetime_addtime = xp->curlft.add_time; lifetime->sadb_lifetime_usetime = xp->curlft.use_time; pol = skb_put(skb, sizeof(struct sadb_x_policy)); pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD; if (xp->action == XFRM_POLICY_ALLOW) { if (xp->xfrm_nr) pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; else pol->sadb_x_policy_type = IPSEC_POLICY_NONE; } pol->sadb_x_policy_dir = dir+1; pol->sadb_x_policy_reserved = 0; pol->sadb_x_policy_id = xp->index; pol->sadb_x_policy_priority = xp->priority; for (i=0; i<xp->xfrm_nr; i++) { const struct xfrm_tmpl *t = xp->xfrm_vec + i; struct sadb_x_ipsecrequest *rq; int req_size; int mode; req_size = sizeof(struct sadb_x_ipsecrequest); if (t->mode == XFRM_MODE_TUNNEL) { socklen = pfkey_sockaddr_len(t->encap_family); req_size += socklen * 2; } else { size -= 2*socklen; } rq = skb_put(skb, req_size); pol->sadb_x_policy_len += req_size/8; memset(rq, 0, sizeof(*rq)); rq->sadb_x_ipsecrequest_len = req_size; rq->sadb_x_ipsecrequest_proto = t->id.proto; if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0) return -EINVAL; rq->sadb_x_ipsecrequest_mode = mode; rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE; if (t->reqid) rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; if (t->optional) rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE; rq->sadb_x_ipsecrequest_reqid = t->reqid; if (t->mode == XFRM_MODE_TUNNEL) { u8 *sa = (void *)(rq + 1); pfkey_sockaddr_fill(&t->saddr, 0, (struct sockaddr *)sa, t->encap_family); pfkey_sockaddr_fill(&t->id.daddr, 0, (struct sockaddr *) (sa + socklen), t->encap_family); } } /* security context */ if ((xfrm_ctx = xp->security)) { int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp); sec_ctx = skb_put(skb, ctx_size); sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t); sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, xfrm_ctx->ctx_len); } hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_reserved = refcount_read(&xp->refcnt); return 0; } static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c) { struct sk_buff *out_skb; struct sadb_msg *out_hdr; int err; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); err = pfkey_xfrm_policy2msg(out_skb, xp, dir); if (err < 0) { kfree_skb(out_skb); return err; } out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = PF_KEY_V2; if (c->data.byid && c->event == XFRM_MSG_DELPOLICY) out_hdr->sadb_msg_type = SADB_X_SPDDELETE2; else out_hdr->sadb_msg_type = event2poltype(c->event); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = c->seq; out_hdr->sadb_msg_pid = c->portid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp)); return 0; } static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); int err = 0; struct sadb_lifetime *lifetime; struct sadb_address *sa; struct sadb_x_policy *pol; struct xfrm_policy *xp; struct km_event c; struct sadb_x_sec_ctx *sec_ctx; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || !ext_hdrs[SADB_X_EXT_POLICY-1]) return -EINVAL; pol = ext_hdrs[SADB_X_EXT_POLICY-1]; if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC) return -EINVAL; if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) return -EINVAL; xp = xfrm_policy_alloc(net, GFP_KERNEL); if (xp == NULL) return -ENOBUFS; xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); xp->priority = pol->sadb_x_policy_priority; sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr); xp->selector.family = xp->family; xp->selector.prefixlen_s = sa->sadb_address_prefixlen; xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port; if (xp->selector.sport) xp->selector.sport_mask = htons(0xffff); sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr); xp->selector.prefixlen_d = sa->sadb_address_prefixlen; /* Amusing, we set this twice. KAME apps appear to set same value * in both addresses. */ xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port; if (xp->selector.dport) xp->selector.dport_mask = htons(0xffff); sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1]; if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL); if (!uctx) { err = -ENOBUFS; goto out; } err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL); kfree(uctx); if (err) goto out; } xp->lft.soft_byte_limit = XFRM_INF; xp->lft.hard_byte_limit = XFRM_INF; xp->lft.soft_packet_limit = XFRM_INF; xp->lft.hard_packet_limit = XFRM_INF; if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) { xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; } if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) { xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; } xp->xfrm_nr = 0; if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && (err = parse_ipsecrequests(xp, pol)) < 0) goto out; err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp, hdr->sadb_msg_type != SADB_X_SPDUPDATE); xfrm_audit_policy_add(xp, err ? 0 : 1, true); if (err) goto out; if (hdr->sadb_msg_type == SADB_X_SPDUPDATE) c.event = XFRM_MSG_UPDPOLICY; else c.event = XFRM_MSG_NEWPOLICY; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); xfrm_pol_put(xp); return 0; out: xp->walk.dead = 1; xfrm_policy_destroy(xp); return err; } static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); int err; struct sadb_address *sa; struct sadb_x_policy *pol; struct xfrm_policy *xp; struct xfrm_selector sel; struct km_event c; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *pol_ctx = NULL; if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || !ext_hdrs[SADB_X_EXT_POLICY-1]) return -EINVAL; pol = ext_hdrs[SADB_X_EXT_POLICY-1]; if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) return -EINVAL; memset(&sel, 0, sizeof(sel)); sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); sel.prefixlen_s = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port; if (sel.sport) sel.sport_mask = htons(0xffff); sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); sel.prefixlen_d = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port; if (sel.dport) sel.dport_mask = htons(0xffff); sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1]; if (sec_ctx != NULL) { struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL); if (!uctx) return -ENOMEM; err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL); kfree(uctx); if (err) return err; } xp = xfrm_policy_bysel_ctx(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir - 1, &sel, pol_ctx, 1, &err); security_xfrm_policy_free(pol_ctx); if (xp == NULL) return -ENOENT; xfrm_audit_policy_delete(xp, err ? 0 : 1, true); if (err) goto out; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; c.data.byid = 0; c.event = XFRM_MSG_DELPOLICY; km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); out: xfrm_pol_put(xp); return err; } static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir) { int err; struct sk_buff *out_skb; struct sadb_msg *out_hdr; err = 0; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) { err = PTR_ERR(out_skb); goto out; } err = pfkey_xfrm_policy2msg(out_skb, xp, dir); if (err < 0) { kfree_skb(out_skb); goto out; } out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = hdr->sadb_msg_version; out_hdr->sadb_msg_type = hdr->sadb_msg_type; out_hdr->sadb_msg_satype = 0; out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp)); err = 0; out: return err; } static int pfkey_sockaddr_pair_size(sa_family_t family) { return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2); } static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len, xfrm_address_t *saddr, xfrm_address_t *daddr, u16 *family) { int af, socklen; if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family)) return -EINVAL; af = pfkey_sockaddr_extract(sa, saddr); if (!af) return -EINVAL; socklen = pfkey_sockaddr_len(af); if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen), daddr) != af) return -EINVAL; *family = af; return 0; } #ifdef CONFIG_NET_KEY_MIGRATE static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len, struct xfrm_migrate *m) { int err; struct sadb_x_ipsecrequest *rq2; int mode; if (len < sizeof(*rq1) || len < rq1->sadb_x_ipsecrequest_len || rq1->sadb_x_ipsecrequest_len < sizeof(*rq1)) return -EINVAL; /* old endoints */ err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1), rq1->sadb_x_ipsecrequest_len - sizeof(*rq1), &m->old_saddr, &m->old_daddr, &m->old_family); if (err) return err; rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len); len -= rq1->sadb_x_ipsecrequest_len; if (len <= sizeof(*rq2) || len < rq2->sadb_x_ipsecrequest_len || rq2->sadb_x_ipsecrequest_len < sizeof(*rq2)) return -EINVAL; /* new endpoints */ err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1), rq2->sadb_x_ipsecrequest_len - sizeof(*rq2), &m->new_saddr, &m->new_daddr, &m->new_family); if (err) return err; if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto || rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode || rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid) return -EINVAL; m->proto = rq1->sadb_x_ipsecrequest_proto; if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0) return -EINVAL; m->mode = mode; m->reqid = rq1->sadb_x_ipsecrequest_reqid; return ((int)(rq1->sadb_x_ipsecrequest_len + rq2->sadb_x_ipsecrequest_len)); } static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { int i, len, ret, err = -EINVAL; u8 dir; struct sadb_address *sa; struct sadb_x_kmaddress *kma; struct sadb_x_policy *pol; struct sadb_x_ipsecrequest *rq; struct xfrm_selector sel; struct xfrm_migrate m[XFRM_MAX_DEPTH]; struct xfrm_kmaddress k; struct net *net = sock_net(sk); if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1], ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) || !ext_hdrs[SADB_X_EXT_POLICY - 1]) { err = -EINVAL; goto out; } kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1]; pol = ext_hdrs[SADB_X_EXT_POLICY - 1]; if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) { err = -EINVAL; goto out; } if (kma) { /* convert sadb_x_kmaddress to xfrm_kmaddress */ k.reserved = kma->sadb_x_kmaddress_reserved; ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1), 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma), &k.local, &k.remote, &k.family); if (ret < 0) { err = ret; goto out; } } dir = pol->sadb_x_policy_dir - 1; memset(&sel, 0, sizeof(sel)); /* set source address info of selector */ sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1]; sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); sel.prefixlen_s = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port; if (sel.sport) sel.sport_mask = htons(0xffff); /* set destination address info of selector */ sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1]; pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); sel.prefixlen_d = sa->sadb_address_prefixlen; sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port; if (sel.dport) sel.dport_mask = htons(0xffff); rq = (struct sadb_x_ipsecrequest *)(pol + 1); /* extract ipsecrequests */ i = 0; len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy); while (len > 0 && i < XFRM_MAX_DEPTH) { ret = ipsecrequests_to_migrate(rq, len, &m[i]); if (ret < 0) { err = ret; goto out; } else { rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret); len -= ret; i++; } } if (!i || len > 0) { err = -EINVAL; goto out; } return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i, kma ? &k : NULL, net, NULL, 0); out: return err; } #else static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { return -ENOPROTOOPT; } #endif static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); unsigned int dir; int err = 0, delete; struct sadb_x_policy *pol; struct xfrm_policy *xp; struct km_event c; if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL) return -EINVAL; dir = xfrm_policy_id2dir(pol->sadb_x_policy_id); if (dir >= XFRM_POLICY_MAX) return -EINVAL; delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2); xp = xfrm_policy_byid(net, &dummy_mark, 0, XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id, delete, &err); if (xp == NULL) return -ENOENT; if (delete) { xfrm_audit_policy_delete(xp, err ? 0 : 1, true); if (err) goto out; c.seq = hdr->sadb_msg_seq; c.portid = hdr->sadb_msg_pid; c.data.byid = 1; c.event = XFRM_MSG_DELPOLICY; km_policy_notify(xp, dir, &c); } else { err = key_pol_get_resp(sk, xp, hdr, dir); } out: xfrm_pol_put(xp); return err; } static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr) { struct pfkey_sock *pfk = ptr; struct sk_buff *out_skb; struct sadb_msg *out_hdr; int err; if (!pfkey_can_dump(&pfk->sk)) return -ENOBUFS; out_skb = pfkey_xfrm_policy2msg_prep(xp); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); err = pfkey_xfrm_policy2msg(out_skb, xp, dir); if (err < 0) { kfree_skb(out_skb); return err; } out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = pfk->dump.msg_version; out_hdr->sadb_msg_type = SADB_X_SPDDUMP; out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_seq = count + 1; out_hdr->sadb_msg_pid = pfk->dump.msg_portid; if (pfk->dump.skb) pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk, sock_net(&pfk->sk)); pfk->dump.skb = out_skb; return 0; } static int pfkey_dump_sp(struct pfkey_sock *pfk) { struct net *net = sock_net(&pfk->sk); return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk); } static void pfkey_dump_sp_done(struct pfkey_sock *pfk) { struct net *net = sock_net((struct sock *)pfk); xfrm_policy_walk_done(&pfk->dump.u.policy, net); } static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct pfkey_sock *pfk = pfkey_sk(sk); mutex_lock(&pfk->dump_lock); if (pfk->dump.dump != NULL) { mutex_unlock(&pfk->dump_lock); return -EBUSY; } pfk->dump.msg_version = hdr->sadb_msg_version; pfk->dump.msg_portid = hdr->sadb_msg_pid; pfk->dump.dump = pfkey_dump_sp; pfk->dump.done = pfkey_dump_sp_done; xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN); mutex_unlock(&pfk->dump_lock); return pfkey_do_dump(pfk); } static int key_notify_policy_flush(const struct km_event *c) { struct sk_buff *skb_out; struct sadb_msg *hdr; skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); if (!skb_out) return -ENOBUFS; hdr = skb_put(skb_out, sizeof(struct sadb_msg)); hdr->sadb_msg_type = SADB_X_SPDFLUSH; hdr->sadb_msg_seq = c->seq; hdr->sadb_msg_pid = c->portid; hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_errno = (uint8_t) 0; hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); hdr->sadb_msg_reserved = 0; pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net); return 0; } static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs) { struct net *net = sock_net(sk); struct km_event c; int err, err2; err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true); err2 = unicast_flush_resp(sk, hdr); if (err || err2) { if (err == -ESRCH) /* empty table - old silent behavior */ return 0; return err; } c.data.type = XFRM_POLICY_TYPE_MAIN; c.event = XFRM_MSG_FLUSHPOLICY; c.portid = hdr->sadb_msg_pid; c.seq = hdr->sadb_msg_seq; c.net = net; km_policy_notify(NULL, 0, &c); return 0; } typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs); static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = { [SADB_RESERVED] = pfkey_reserved, [SADB_GETSPI] = pfkey_getspi, [SADB_UPDATE] = pfkey_add, [SADB_ADD] = pfkey_add, [SADB_DELETE] = pfkey_delete, [SADB_GET] = pfkey_get, [SADB_ACQUIRE] = pfkey_acquire, [SADB_REGISTER] = pfkey_register, [SADB_EXPIRE] = NULL, [SADB_FLUSH] = pfkey_flush, [SADB_DUMP] = pfkey_dump, [SADB_X_PROMISC] = pfkey_promisc, [SADB_X_PCHANGE] = NULL, [SADB_X_SPDUPDATE] = pfkey_spdadd, [SADB_X_SPDADD] = pfkey_spdadd, [SADB_X_SPDDELETE] = pfkey_spddelete, [SADB_X_SPDGET] = pfkey_spdget, [SADB_X_SPDACQUIRE] = NULL, [SADB_X_SPDDUMP] = pfkey_spddump, [SADB_X_SPDFLUSH] = pfkey_spdflush, [SADB_X_SPDSETIDX] = pfkey_spdadd, [SADB_X_SPDDELETE2] = pfkey_spdget, [SADB_X_MIGRATE] = pfkey_migrate, }; static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr) { void *ext_hdrs[SADB_EXT_MAX]; int err; /* Non-zero return value of pfkey_broadcast() does not always signal * an error and even on an actual error we may still want to process * the message so rather ignore the return value. */ pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_PROMISC_ONLY, NULL, sock_net(sk)); memset(ext_hdrs, 0, sizeof(ext_hdrs)); err = parse_exthdrs(skb, hdr, ext_hdrs); if (!err) { err = -EOPNOTSUPP; if (pfkey_funcs[hdr->sadb_msg_type]) err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs); } return err; } static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp) { struct sadb_msg *hdr = NULL; if (skb->len < sizeof(*hdr)) { *errp = -EMSGSIZE; } else { hdr = (struct sadb_msg *) skb->data; if (hdr->sadb_msg_version != PF_KEY_V2 || hdr->sadb_msg_reserved != 0 || (hdr->sadb_msg_type <= SADB_RESERVED || hdr->sadb_msg_type > SADB_MAX)) { hdr = NULL; *errp = -EINVAL; } else if (hdr->sadb_msg_len != (skb->len / sizeof(uint64_t)) || hdr->sadb_msg_len < (sizeof(struct sadb_msg) / sizeof(uint64_t))) { hdr = NULL; *errp = -EMSGSIZE; } else { *errp = 0; } } return hdr; } static inline int aalg_tmpl_set(const struct xfrm_tmpl *t, const struct xfrm_algo_desc *d) { unsigned int id = d->desc.sadb_alg_id; if (id >= sizeof(t->aalgos) * 8) return 0; return (t->aalgos >> id) & 1; } static inline int ealg_tmpl_set(const struct xfrm_tmpl *t, const struct xfrm_algo_desc *d) { unsigned int id = d->desc.sadb_alg_id; if (id >= sizeof(t->ealgos) * 8) return 0; return (t->ealgos >> id) & 1; } static int count_ah_combs(const struct xfrm_tmpl *t) { int i, sz = 0; for (i = 0; ; i++) { const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (!aalg->pfkey_supported) continue; if (aalg_tmpl_set(t, aalg)) sz += sizeof(struct sadb_comb); } return sz + sizeof(struct sadb_prop); } static int count_esp_combs(const struct xfrm_tmpl *t) { int i, k, sz = 0; for (i = 0; ; i++) { const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (!ealg->pfkey_supported) continue; if (!(ealg_tmpl_set(t, ealg))) continue; for (k = 1; ; k++) { const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); if (!aalg) break; if (!aalg->pfkey_supported) continue; if (aalg_tmpl_set(t, aalg)) sz += sizeof(struct sadb_comb); } } return sz + sizeof(struct sadb_prop); } static int dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t) { struct sadb_prop *p; int sz = 0; int i; p = skb_put(skb, sizeof(struct sadb_prop)); p->sadb_prop_len = sizeof(struct sadb_prop)/8; p->sadb_prop_exttype = SADB_EXT_PROPOSAL; p->sadb_prop_replay = 32; memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); for (i = 0; ; i++) { const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); if (!aalg) break; if (!aalg->pfkey_supported) continue; if (aalg_tmpl_set(t, aalg) && aalg->available) { struct sadb_comb *c; c = skb_put_zero(skb, sizeof(struct sadb_comb)); p->sadb_prop_len += sizeof(struct sadb_comb)/8; c->sadb_comb_auth = aalg->desc.sadb_alg_id; c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; c->sadb_comb_hard_addtime = 24*60*60; c->sadb_comb_soft_addtime = 20*60*60; c->sadb_comb_hard_usetime = 8*60*60; c->sadb_comb_soft_usetime = 7*60*60; sz += sizeof(*c); } } return sz + sizeof(*p); } static int dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t) { struct sadb_prop *p; int sz = 0; int i, k; p = skb_put(skb, sizeof(struct sadb_prop)); p->sadb_prop_len = sizeof(struct sadb_prop)/8; p->sadb_prop_exttype = SADB_EXT_PROPOSAL; p->sadb_prop_replay = 32; memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); for (i=0; ; i++) { const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); if (!ealg) break; if (!ealg->pfkey_supported) continue; if (!(ealg_tmpl_set(t, ealg) && ealg->available)) continue; for (k = 1; ; k++) { struct sadb_comb *c; const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); if (!aalg) break; if (!aalg->pfkey_supported) continue; if (!(aalg_tmpl_set(t, aalg) && aalg->available)) continue; c = skb_put(skb, sizeof(struct sadb_comb)); memset(c, 0, sizeof(*c)); p->sadb_prop_len += sizeof(struct sadb_comb)/8; c->sadb_comb_auth = aalg->desc.sadb_alg_id; c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; c->sadb_comb_encrypt = ealg->desc.sadb_alg_id; c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits; c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits; c->sadb_comb_hard_addtime = 24*60*60; c->sadb_comb_soft_addtime = 20*60*60; c->sadb_comb_hard_usetime = 8*60*60; c->sadb_comb_soft_usetime = 7*60*60; sz += sizeof(*c); } } return sz + sizeof(*p); } static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c) { return 0; } static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c) { struct sk_buff *out_skb; struct sadb_msg *out_hdr; int hard; int hsc; hard = c->data.hard; if (hard) hsc = 2; else hsc = 1; out_skb = pfkey_xfrm_state2msg_expire(x, hsc); if (IS_ERR(out_skb)) return PTR_ERR(out_skb); out_hdr = (struct sadb_msg *) out_skb->data; out_hdr->sadb_msg_version = PF_KEY_V2; out_hdr->sadb_msg_type = SADB_EXPIRE; out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); out_hdr->sadb_msg_errno = 0; out_hdr->sadb_msg_reserved = 0; out_hdr->sadb_msg_seq = 0; out_hdr->sadb_msg_pid = 0; pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x)); return 0; } static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c) { struct net *net = x ? xs_net(x) : c->net; struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); if (atomic_read(&net_pfkey->socks_nr) == 0) return 0; switch (c->event) { case XFRM_MSG_EXPIRE: return key_notify_sa_expire(x, c); case XFRM_MSG_DELSA: case XFRM_MSG_NEWSA: case XFRM_MSG_UPDSA: return key_notify_sa(x, c); case XFRM_MSG_FLUSHSA: return key_notify_sa_flush(c); case XFRM_MSG_NEWAE: /* not yet supported */ break; default: pr_err("pfkey: Unknown SA event %d\n", c->event); break; } return 0; } static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) { if (xp && xp->type != XFRM_POLICY_TYPE_MAIN) return 0; switch (c->event) { case XFRM_MSG_POLEXPIRE: return key_notify_policy_expire(xp, c); case XFRM_MSG_DELPOLICY: case XFRM_MSG_NEWPOLICY: case XFRM_MSG_UPDPOLICY: return key_notify_policy(xp, dir, c); case XFRM_MSG_FLUSHPOLICY: if (c->data.type != XFRM_POLICY_TYPE_MAIN) break; return key_notify_policy_flush(c); default: pr_err("pfkey: Unknown policy event %d\n", c->event); break; } return 0; } static u32 get_acqseq(void) { u32 res; static atomic_t acqseq; do { res = atomic_inc_return(&acqseq); } while (!res); return res; } static bool pfkey_is_alive(const struct km_event *c) { struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id); struct sock *sk; bool is_alive = false; rcu_read_lock(); sk_for_each_rcu(sk, &net_pfkey->table) { if (pfkey_sk(sk)->registered) { is_alive = true; break; } } rcu_read_unlock(); return is_alive; } static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_address *addr; struct sadb_x_policy *pol; int sockaddr_size; int size; struct sadb_x_sec_ctx *sec_ctx; struct xfrm_sec_ctx *xfrm_ctx; int ctx_size = 0; int alg_size = 0; sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return -EINVAL; size = sizeof(struct sadb_msg) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + sizeof(struct sadb_x_policy); if (x->id.proto == IPPROTO_AH) alg_size = count_ah_combs(t); else if (x->id.proto == IPPROTO_ESP) alg_size = count_esp_combs(t); if ((xfrm_ctx = x->security)) { ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); size += sizeof(struct sadb_x_sec_ctx) + ctx_size; } skb = alloc_skb(size + alg_size + 16, GFP_ATOMIC); if (skb == NULL) return -ENOMEM; hdr = skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = SADB_ACQUIRE; hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = x->km.seq = get_acqseq(); hdr->sadb_msg_pid = 0; /* src address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(&x->props.saddr, 0, (struct sockaddr *) (addr + 1), x->props.family); if (!addr->sadb_address_prefixlen) BUG(); /* dst address */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(&x->id.daddr, 0, (struct sockaddr *) (addr + 1), x->props.family); if (!addr->sadb_address_prefixlen) BUG(); pol = skb_put(skb, sizeof(struct sadb_x_policy)); pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1; pol->sadb_x_policy_reserved = 0; pol->sadb_x_policy_id = xp->index; pol->sadb_x_policy_priority = xp->priority; /* Set sadb_comb's. */ alg_size = 0; if (x->id.proto == IPPROTO_AH) alg_size = dump_ah_combs(skb, t); else if (x->id.proto == IPPROTO_ESP) alg_size = dump_esp_combs(skb, t); hdr->sadb_msg_len += alg_size / 8; /* security context */ if (xfrm_ctx) { sec_ctx = skb_put(skb, sizeof(struct sadb_x_sec_ctx) + ctx_size); sec_ctx->sadb_x_sec_len = (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, xfrm_ctx->ctx_len); } return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x)); } static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt, u8 *data, int len, int *dir) { struct net *net = sock_net(sk); struct xfrm_policy *xp; struct sadb_x_policy *pol = (struct sadb_x_policy*)data; struct sadb_x_sec_ctx *sec_ctx; switch (sk->sk_family) { case AF_INET: if (opt != IP_IPSEC_POLICY) { *dir = -EOPNOTSUPP; return NULL; } break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: if (opt != IPV6_IPSEC_POLICY) { *dir = -EOPNOTSUPP; return NULL; } break; #endif default: *dir = -EINVAL; return NULL; } *dir = -EINVAL; if (len < sizeof(struct sadb_x_policy) || pol->sadb_x_policy_len*8 > len || pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS || (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND)) return NULL; xp = xfrm_policy_alloc(net, GFP_ATOMIC); if (xp == NULL) { *dir = -ENOBUFS; return NULL; } xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); xp->lft.soft_byte_limit = XFRM_INF; xp->lft.hard_byte_limit = XFRM_INF; xp->lft.soft_packet_limit = XFRM_INF; xp->lft.hard_packet_limit = XFRM_INF; xp->family = sk->sk_family; xp->xfrm_nr = 0; if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && (*dir = parse_ipsecrequests(xp, pol)) < 0) goto out; /* security context too */ if (len >= (pol->sadb_x_policy_len*8 + sizeof(struct sadb_x_sec_ctx))) { char *p = (char *)pol; struct xfrm_user_sec_ctx *uctx; p += pol->sadb_x_policy_len*8; sec_ctx = (struct sadb_x_sec_ctx *)p; if (len < pol->sadb_x_policy_len*8 + sec_ctx->sadb_x_sec_len*8) { *dir = -EINVAL; goto out; } if ((*dir = verify_sec_ctx_len(p))) goto out; uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC); *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC); kfree(uctx); if (*dir) goto out; } *dir = pol->sadb_x_policy_dir-1; return xp; out: xp->walk.dead = 1; xfrm_policy_destroy(xp); return NULL; } static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) { struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_sa *sa; struct sadb_address *addr; struct sadb_x_nat_t_port *n_port; int sockaddr_size; int size; __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0); struct xfrm_encap_tmpl *natt = NULL; sockaddr_size = pfkey_sockaddr_size(x->props.family); if (!sockaddr_size) return -EINVAL; if (!satype) return -EINVAL; if (!x->encap) return -EINVAL; natt = x->encap; /* Build an SADB_X_NAT_T_NEW_MAPPING message: * * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) | * ADDRESS_DST (new addr) | NAT_T_DPORT (new port) */ size = sizeof(struct sadb_msg) + sizeof(struct sadb_sa) + (sizeof(struct sadb_address) * 2) + (sockaddr_size * 2) + (sizeof(struct sadb_x_nat_t_port) * 2); skb = alloc_skb(size + 16, GFP_ATOMIC); if (skb == NULL) return -ENOMEM; hdr = skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING; hdr->sadb_msg_satype = satype; hdr->sadb_msg_len = size / sizeof(uint64_t); hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = x->km.seq; hdr->sadb_msg_pid = 0; /* SA */ sa = skb_put(skb, sizeof(struct sadb_sa)); sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_spi = x->id.spi; sa->sadb_sa_replay = 0; sa->sadb_sa_state = 0; sa->sadb_sa_auth = 0; sa->sadb_sa_encrypt = 0; sa->sadb_sa_flags = 0; /* ADDRESS_SRC (old addr) */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(&x->props.saddr, 0, (struct sockaddr *) (addr + 1), x->props.family); if (!addr->sadb_address_prefixlen) BUG(); /* NAT_T_SPORT (old port) */ n_port = skb_put(skb, sizeof(*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; n_port->sadb_x_nat_t_port_port = natt->encap_sport; n_port->sadb_x_nat_t_port_reserved = 0; /* ADDRESS_DST (new addr) */ addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size); addr->sadb_address_len = (sizeof(struct sadb_address)+sockaddr_size)/ sizeof(uint64_t); addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; addr->sadb_address_proto = 0; addr->sadb_address_reserved = 0; addr->sadb_address_prefixlen = pfkey_sockaddr_fill(ipaddr, 0, (struct sockaddr *) (addr + 1), x->props.family); if (!addr->sadb_address_prefixlen) BUG(); /* NAT_T_DPORT (new port) */ n_port = skb_put(skb, sizeof(*n_port)); n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; n_port->sadb_x_nat_t_port_port = sport; n_port->sadb_x_nat_t_port_reserved = 0; return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x)); } #ifdef CONFIG_NET_KEY_MIGRATE static int set_sadb_address(struct sk_buff *skb, int sasize, int type, const struct xfrm_selector *sel) { struct sadb_address *addr; addr = skb_put(skb, sizeof(struct sadb_address) + sasize); addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8; addr->sadb_address_exttype = type; addr->sadb_address_proto = sel->proto; addr->sadb_address_reserved = 0; switch (type) { case SADB_EXT_ADDRESS_SRC: addr->sadb_address_prefixlen = sel->prefixlen_s; pfkey_sockaddr_fill(&sel->saddr, 0, (struct sockaddr *)(addr + 1), sel->family); break; case SADB_EXT_ADDRESS_DST: addr->sadb_address_prefixlen = sel->prefixlen_d; pfkey_sockaddr_fill(&sel->daddr, 0, (struct sockaddr *)(addr + 1), sel->family); break; default: return -EINVAL; } return 0; } static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k) { struct sadb_x_kmaddress *kma; u8 *sa; int family = k->family; int socklen = pfkey_sockaddr_len(family); int size_req; size_req = (sizeof(struct sadb_x_kmaddress) + pfkey_sockaddr_pair_size(family)); kma = skb_put_zero(skb, size_req); kma->sadb_x_kmaddress_len = size_req / 8; kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS; kma->sadb_x_kmaddress_reserved = k->reserved; sa = (u8 *)(kma + 1); if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) || !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family)) return -EINVAL; return 0; } static int set_ipsecrequest(struct sk_buff *skb, uint8_t proto, uint8_t mode, int level, uint32_t reqid, uint8_t family, const xfrm_address_t *src, const xfrm_address_t *dst) { struct sadb_x_ipsecrequest *rq; u8 *sa; int socklen = pfkey_sockaddr_len(family); int size_req; size_req = sizeof(struct sadb_x_ipsecrequest) + pfkey_sockaddr_pair_size(family); rq = skb_put_zero(skb, size_req); rq->sadb_x_ipsecrequest_len = size_req; rq->sadb_x_ipsecrequest_proto = proto; rq->sadb_x_ipsecrequest_mode = mode; rq->sadb_x_ipsecrequest_level = level; rq->sadb_x_ipsecrequest_reqid = reqid; sa = (u8 *) (rq + 1); if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) || !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family)) return -EINVAL; return 0; } #endif #ifdef CONFIG_NET_KEY_MIGRATE static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap) { int i; int sasize_sel; int size = 0; int size_pol = 0; struct sk_buff *skb; struct sadb_msg *hdr; struct sadb_x_policy *pol; const struct xfrm_migrate *mp; if (type != XFRM_POLICY_TYPE_MAIN) return 0; if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH) return -EINVAL; if (k != NULL) { /* addresses for KM */ size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) + pfkey_sockaddr_pair_size(k->family)); } /* selector */ sasize_sel = pfkey_sockaddr_size(sel->family); if (!sasize_sel) return -EINVAL; size += (sizeof(struct sadb_address) + sasize_sel) * 2; /* policy info */ size_pol += sizeof(struct sadb_x_policy); /* ipsecrequests */ for (i = 0, mp = m; i < num_bundles; i++, mp++) { /* old locator pair */ size_pol += sizeof(struct sadb_x_ipsecrequest) + pfkey_sockaddr_pair_size(mp->old_family); /* new locator pair */ size_pol += sizeof(struct sadb_x_ipsecrequest) + pfkey_sockaddr_pair_size(mp->new_family); } size += sizeof(struct sadb_msg) + size_pol; /* alloc buffer */ skb = alloc_skb(size, GFP_ATOMIC); if (skb == NULL) return -ENOMEM; hdr = skb_put(skb, sizeof(struct sadb_msg)); hdr->sadb_msg_version = PF_KEY_V2; hdr->sadb_msg_type = SADB_X_MIGRATE; hdr->sadb_msg_satype = pfkey_proto2satype(m->proto); hdr->sadb_msg_len = size / 8; hdr->sadb_msg_errno = 0; hdr->sadb_msg_reserved = 0; hdr->sadb_msg_seq = 0; hdr->sadb_msg_pid = 0; /* Addresses to be used by KM for negotiation, if ext is available */ if (k != NULL && (set_sadb_kmaddress(skb, k) < 0)) goto err; /* selector src */ set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel); /* selector dst */ set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel); /* policy information */ pol = skb_put(skb, sizeof(struct sadb_x_policy)); pol->sadb_x_policy_len = size_pol / 8; pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; pol->sadb_x_policy_dir = dir + 1; pol->sadb_x_policy_reserved = 0; pol->sadb_x_policy_id = 0; pol->sadb_x_policy_priority = 0; for (i = 0, mp = m; i < num_bundles; i++, mp++) { /* old ipsecrequest */ int mode = pfkey_mode_from_xfrm(mp->mode); if (mode < 0) goto err; if (set_ipsecrequest(skb, mp->proto, mode, (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), mp->reqid, mp->old_family, &mp->old_saddr, &mp->old_daddr) < 0) goto err; /* new ipsecrequest */ if (set_ipsecrequest(skb, mp->proto, mode, (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), mp->reqid, mp->new_family, &mp->new_saddr, &mp->new_daddr) < 0) goto err; } /* broadcast migrate message to sockets */ pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net); return 0; err: kfree_skb(skb); return -EINVAL; } #else static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap) { return -ENOPROTOOPT; } #endif static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct sk_buff *skb = NULL; struct sadb_msg *hdr = NULL; int err; struct net *net = sock_net(sk); err = -EOPNOTSUPP; if (msg->msg_flags & MSG_OOB) goto out; err = -EMSGSIZE; if ((unsigned int)len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = alloc_skb(len, GFP_KERNEL); if (skb == NULL) goto out; err = -EFAULT; if (memcpy_from_msg(skb_put(skb,len), msg, len)) goto out; hdr = pfkey_get_base_msg(skb, &err); if (!hdr) goto out; mutex_lock(&net->xfrm.xfrm_cfg_mutex); err = pfkey_process(sk, skb, hdr); mutex_unlock(&net->xfrm.xfrm_cfg_mutex); out: if (err && hdr && pfkey_error(hdr, err, sk) == 0) err = 0; kfree_skb(skb); return err ? : len; } static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct pfkey_sock *pfk = pfkey_sk(sk); struct sk_buff *skb; int copied, err; err = -EINVAL; if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) goto out; skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(skb); err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free; sock_recv_ts_and_drops(msg, sk, skb); err = (flags & MSG_TRUNC) ? skb->len : copied; if (pfk->dump.dump != NULL && 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) pfkey_do_dump(pfk); out_free: skb_free_datagram(sk, skb); out: return err; } static const struct proto_ops pfkey_ops = { .family = PF_KEY, .owner = THIS_MODULE, /* Operations that make no sense on pfkey sockets. */ .bind = sock_no_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, /* Now the operations that really occur. */ .release = pfkey_release, .poll = datagram_poll, .sendmsg = pfkey_sendmsg, .recvmsg = pfkey_recvmsg, }; static const struct net_proto_family pfkey_family_ops = { .family = PF_KEY, .create = pfkey_create, .owner = THIS_MODULE, }; #ifdef CONFIG_PROC_FS static int pfkey_seq_show(struct seq_file *f, void *v) { struct sock *s = sk_entry(v); if (v == SEQ_START_TOKEN) seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n"); else seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n", s, refcount_read(&s->sk_refcnt), sk_rmem_alloc_get(s), sk_wmem_alloc_get(s), from_kuid_munged(seq_user_ns(f), sock_i_uid(s)), sock_i_ino(s) ); return 0; } static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos) __acquires(rcu) { struct net *net = seq_file_net(f); struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); rcu_read_lock(); return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos); } static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos) { struct net *net = seq_file_net(f); struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); return seq_hlist_next_rcu(v, &net_pfkey->table, ppos); } static void pfkey_seq_stop(struct seq_file *f, void *v) __releases(rcu) { rcu_read_unlock(); } static const struct seq_operations pfkey_seq_ops = { .start = pfkey_seq_start, .next = pfkey_seq_next, .stop = pfkey_seq_stop, .show = pfkey_seq_show, }; static int __net_init pfkey_init_proc(struct net *net) { struct proc_dir_entry *e; e = proc_create_net("pfkey", 0, net->proc_net, &pfkey_seq_ops, sizeof(struct seq_net_private)); if (e == NULL) return -ENOMEM; return 0; } static void __net_exit pfkey_exit_proc(struct net *net) { remove_proc_entry("pfkey", net->proc_net); } #else static inline int pfkey_init_proc(struct net *net) { return 0; } static inline void pfkey_exit_proc(struct net *net) { } #endif static struct xfrm_mgr pfkeyv2_mgr = { .notify = pfkey_send_notify, .acquire = pfkey_send_acquire, .compile_policy = pfkey_compile_policy, .new_mapping = pfkey_send_new_mapping, .notify_policy = pfkey_send_policy_notify, .migrate = pfkey_send_migrate, .is_alive = pfkey_is_alive, }; static int __net_init pfkey_net_init(struct net *net) { struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); int rv; INIT_HLIST_HEAD(&net_pfkey->table); atomic_set(&net_pfkey->socks_nr, 0); rv = pfkey_init_proc(net); return rv; } static void __net_exit pfkey_net_exit(struct net *net) { struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id); pfkey_exit_proc(net); WARN_ON(!hlist_empty(&net_pfkey->table)); } static struct pernet_operations pfkey_net_ops = { .init = pfkey_net_init, .exit = pfkey_net_exit, .id = &pfkey_net_id, .size = sizeof(struct netns_pfkey), }; static void __exit ipsec_pfkey_exit(void) { xfrm_unregister_km(&pfkeyv2_mgr); sock_unregister(PF_KEY); unregister_pernet_subsys(&pfkey_net_ops); proto_unregister(&key_proto); } static int __init ipsec_pfkey_init(void) { int err = proto_register(&key_proto, 0); if (err != 0) goto out; err = register_pernet_subsys(&pfkey_net_ops); if (err != 0) goto out_unregister_key_proto; err = sock_register(&pfkey_family_ops); if (err != 0) goto out_unregister_pernet; err = xfrm_register_km(&pfkeyv2_mgr); if (err != 0) goto out_sock_unregister; out: return err; out_sock_unregister: sock_unregister(PF_KEY); out_unregister_pernet: unregister_pernet_subsys(&pfkey_net_ops); out_unregister_key_proto: proto_unregister(&key_proto); goto out; } module_init(ipsec_pfkey_init); module_exit(ipsec_pfkey_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_KEY); |
12 20 20 20 20 20 21 1 17 3 3 2 15 15 2 2 2 2 2 2 45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* af_can.c - Protocol family CAN core module * (used by different CAN protocol modules) * * Copyright (c) 2002-2017 Volkswagen Group Electronic Research * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Volkswagen nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * The provided data structures and external interfaces from this code * are not restricted to be used by modules with a GPL compatible license. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include <linux/module.h> #include <linux/stddef.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/uaccess.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/socket.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/can.h> #include <linux/can/core.h> #include <linux/can/skb.h> #include <linux/can/can-ml.h> #include <linux/ratelimit.h> #include <net/net_namespace.h> #include <net/sock.h> #include "af_can.h" MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); MODULE_ALIAS_NETPROTO(PF_CAN); static int stats_timer __read_mostly = 1; module_param(stats_timer, int, 0444); MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); static struct kmem_cache *rcv_cache __read_mostly; /* table of registered CAN protocols */ static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; static DEFINE_MUTEX(proto_tab_lock); static atomic_t skbcounter = ATOMIC_INIT(0); /* af_can socket functions */ void can_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_error_queue); } EXPORT_SYMBOL(can_sock_destruct); static const struct can_proto *can_get_proto(int protocol) { const struct can_proto *cp; rcu_read_lock(); cp = rcu_dereference(proto_tab[protocol]); if (cp && !try_module_get(cp->prot->owner)) cp = NULL; rcu_read_unlock(); return cp; } static inline void can_put_proto(const struct can_proto *cp) { module_put(cp->prot->owner); } static int can_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; const struct can_proto *cp; int err = 0; sock->state = SS_UNCONNECTED; if (protocol < 0 || protocol >= CAN_NPROTO) return -EINVAL; cp = can_get_proto(protocol); #ifdef CONFIG_MODULES if (!cp) { /* try to load protocol module if kernel is modular */ err = request_module("can-proto-%d", protocol); /* In case of error we only print a message but don't * return the error code immediately. Below we will * return -EPROTONOSUPPORT */ if (err) pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n", protocol); cp = can_get_proto(protocol); } #endif /* check for available protocol and correct usage */ if (!cp) return -EPROTONOSUPPORT; if (cp->type != sock->type) { err = -EPROTOTYPE; goto errout; } sock->ops = cp->ops; sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); if (!sk) { err = -ENOMEM; goto errout; } sock_init_data(sock, sk); sk->sk_destruct = can_sock_destruct; if (sk->sk_prot->init) err = sk->sk_prot->init(sk); if (err) { /* release sk on errors */ sock_orphan(sk); sock_put(sk); sock->sk = NULL; } errout: can_put_proto(cp); return err; } /* af_can tx path */ /** * can_send - transmit a CAN frame (optional with local loopback) * @skb: pointer to socket buffer with CAN frame in data section * @loop: loopback for listeners on local CAN sockets (recommended default!) * * Due to the loopback this routine must not be called from hardirq context. * * Return: * 0 on success * -ENETDOWN when the selected interface is down * -ENOBUFS on full driver queue (see net_xmit_errno()) * -ENOMEM when local loopback failed at calling skb_clone() * -EPERM when trying to send on a non-CAN interface * -EMSGSIZE CAN frame size is bigger than CAN interface MTU * -EINVAL when the skb->data does not contain a valid CAN frame */ int can_send(struct sk_buff *skb, int loop) { struct sk_buff *newskb = NULL; struct canfd_frame *cfd = (struct canfd_frame *)skb->data; struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats; int err = -EINVAL; if (skb->len == CAN_MTU) { skb->protocol = htons(ETH_P_CAN); if (unlikely(cfd->len > CAN_MAX_DLEN)) goto inval_skb; } else if (skb->len == CANFD_MTU) { skb->protocol = htons(ETH_P_CANFD); if (unlikely(cfd->len > CANFD_MAX_DLEN)) goto inval_skb; } else { goto inval_skb; } /* Make sure the CAN frame can pass the selected CAN netdevice. * As structs can_frame and canfd_frame are similar, we can provide * CAN FD frames to legacy CAN drivers as long as the length is <= 8 */ if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) { err = -EMSGSIZE; goto inval_skb; } if (unlikely(skb->dev->type != ARPHRD_CAN)) { err = -EPERM; goto inval_skb; } if (unlikely(!(skb->dev->flags & IFF_UP))) { err = -ENETDOWN; goto inval_skb; } skb->ip_summed = CHECKSUM_UNNECESSARY; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); if (loop) { /* local loopback of sent CAN frames */ /* indication for the CAN driver: do loopback */ skb->pkt_type = PACKET_LOOPBACK; /* The reference to the originating sock may be required * by the receiving socket to check whether the frame is * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS * Therefore we have to ensure that skb->sk remains the * reference to the originating sock by restoring skb->sk * after each skb_clone() or skb_orphan() usage. */ if (!(skb->dev->flags & IFF_ECHO)) { /* If the interface is not capable to do loopback * itself, we do it here. */ newskb = skb_clone(skb, GFP_ATOMIC); if (!newskb) { kfree_skb(skb); return -ENOMEM; } can_skb_set_owner(newskb, skb->sk); newskb->ip_summed = CHECKSUM_UNNECESSARY; newskb->pkt_type = PACKET_BROADCAST; } } else { /* indication for the CAN driver: no loopback required */ skb->pkt_type = PACKET_HOST; } /* send to netdevice */ err = dev_queue_xmit(skb); if (err > 0) err = net_xmit_errno(err); if (err) { kfree_skb(newskb); return err; } if (newskb) netif_rx_ni(newskb); /* update statistics */ pkg_stats->tx_frames++; pkg_stats->tx_frames_delta++; return 0; inval_skb: kfree_skb(skb); return err; } EXPORT_SYMBOL(can_send); /* af_can rx path */ static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net, struct net_device *dev) { if (dev) { struct can_ml_priv *can_ml = can_get_ml_priv(dev); return &can_ml->dev_rcv_lists; } else { return net->can.rx_alldev_list; } } /** * effhash - hash function for 29 bit CAN identifier reduction * @can_id: 29 bit CAN identifier * * Description: * To reduce the linear traversal in one linked list of _single_ EFF CAN * frame subscriptions the 29 bit identifier is mapped to 10 bits. * (see CAN_EFF_RCV_HASH_BITS definition) * * Return: * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) */ static unsigned int effhash(canid_t can_id) { unsigned int hash; hash = can_id; hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); } /** * can_rcv_list_find - determine optimal filterlist inside device filter struct * @can_id: pointer to CAN identifier of a given can_filter * @mask: pointer to CAN mask of a given can_filter * @dev_rcv_lists: pointer to the device filter struct * * Description: * Returns the optimal filterlist to reduce the filter handling in the * receive path. This function is called by service functions that need * to register or unregister a can_filter in the filter lists. * * A filter matches in general, when * * <received_can_id> & mask == can_id & mask * * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe * relevant bits for the filter. * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg * frames there is a special filterlist and a special rx path filter handling. * * Return: * Pointer to optimal filterlist for the given can_id/mask pair. * Consistency checked mask. * Reduced can_id to have a preprocessed filter compare value. */ static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask, struct can_dev_rcv_lists *dev_rcv_lists) { canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ /* filter for error message frames in extra filterlist */ if (*mask & CAN_ERR_FLAG) { /* clear CAN_ERR_FLAG in filter entry */ *mask &= CAN_ERR_MASK; return &dev_rcv_lists->rx[RX_ERR]; } /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) /* ensure valid values in can_mask for 'SFF only' frame filtering */ if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); /* reduce condition testing at receive time */ *can_id &= *mask; /* inverse can_id/can_mask filter */ if (inv) return &dev_rcv_lists->rx[RX_INV]; /* mask == 0 => no condition testing at receive time */ if (!(*mask)) return &dev_rcv_lists->rx[RX_ALL]; /* extra filterlists for the subscription of a single non-RTR can_id */ if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && !(*can_id & CAN_RTR_FLAG)) { if (*can_id & CAN_EFF_FLAG) { if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) return &dev_rcv_lists->rx_eff[effhash(*can_id)]; } else { if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) return &dev_rcv_lists->rx_sff[*can_id]; } } /* default: filter via can_id/can_mask */ return &dev_rcv_lists->rx[RX_FIL]; } /** * can_rx_register - subscribe CAN frames from a specific interface * @net: the applicable net namespace * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list) * @can_id: CAN identifier (see description) * @mask: CAN mask (see description) * @func: callback function on filter match * @data: returned parameter for callback function * @ident: string for calling module identification * @sk: socket pointer (might be NULL) * * Description: * Invokes the callback function with the received sk_buff and the given * parameter 'data' on a matching receive filter. A filter matches, when * * <received_can_id> & mask == can_id & mask * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error message frames (CAN_ERR_FLAG bit set in mask). * * The provided pointer to the sk_buff is guaranteed to be valid as long as * the callback function is running. The callback function must *not* free * the given sk_buff while processing it's task. When the given sk_buff is * needed after the end of the callback function it must be cloned inside * the callback function with skb_clone(). * * Return: * 0 on success * -ENOMEM on missing cache mem to create subscription entry * -ENODEV unknown device */ int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data, char *ident, struct sock *sk) { struct receiver *rcv; struct hlist_head *rcv_list; struct can_dev_rcv_lists *dev_rcv_lists; struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; int err = 0; /* insert new receiver (dev,canid,mask) -> (func,data) */ if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev))) return -ENODEV; if (dev && !net_eq(net, dev_net(dev))) return -ENODEV; rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL); if (!rcv) return -ENOMEM; spin_lock_bh(&net->can.rcvlists_lock); dev_rcv_lists = can_dev_rcv_lists_find(net, dev); rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); rcv->can_id = can_id; rcv->mask = mask; rcv->matches = 0; rcv->func = func; rcv->data = data; rcv->ident = ident; rcv->sk = sk; hlist_add_head_rcu(&rcv->list, rcv_list); dev_rcv_lists->entries++; rcv_lists_stats->rcv_entries++; rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max, rcv_lists_stats->rcv_entries); spin_unlock_bh(&net->can.rcvlists_lock); return err; } EXPORT_SYMBOL(can_rx_register); /* can_rx_delete_receiver - rcu callback for single receiver entry removal */ static void can_rx_delete_receiver(struct rcu_head *rp) { struct receiver *rcv = container_of(rp, struct receiver, rcu); struct sock *sk = rcv->sk; kmem_cache_free(rcv_cache, rcv); if (sk) sock_put(sk); } /** * can_rx_unregister - unsubscribe CAN frames from a specific interface * @net: the applicable net namespace * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) * @can_id: CAN identifier * @mask: CAN mask * @func: callback function on filter match * @data: returned parameter for callback function * * Description: * Removes subscription entry depending on given (subscription) values. */ void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data) { struct receiver *rcv = NULL; struct hlist_head *rcv_list; struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; struct can_dev_rcv_lists *dev_rcv_lists; if (dev && dev->type != ARPHRD_CAN) return; if (dev && !net_eq(net, dev_net(dev))) return; spin_lock_bh(&net->can.rcvlists_lock); dev_rcv_lists = can_dev_rcv_lists_find(net, dev); rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); /* Search the receiver list for the item to delete. This should * exist, since no receiver may be unregistered that hasn't * been registered before. */ hlist_for_each_entry_rcu(rcv, rcv_list, list) { if (rcv->can_id == can_id && rcv->mask == mask && rcv->func == func && rcv->data == data) break; } /* Check for bugs in CAN protocol implementations using af_can.c: * 'rcv' will be NULL if no matching list item was found for removal. * As this case may potentially happen when closing a socket while * the notifier for removing the CAN netdev is running we just print * a warning here. */ if (!rcv) { pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n", DNAME(dev), can_id, mask); goto out; } hlist_del_rcu(&rcv->list); dev_rcv_lists->entries--; if (rcv_lists_stats->rcv_entries > 0) rcv_lists_stats->rcv_entries--; out: spin_unlock_bh(&net->can.rcvlists_lock); /* schedule the receiver item for deletion */ if (rcv) { if (rcv->sk) sock_hold(rcv->sk); call_rcu(&rcv->rcu, can_rx_delete_receiver); } } EXPORT_SYMBOL(can_rx_unregister); static inline void deliver(struct sk_buff *skb, struct receiver *rcv) { rcv->func(skb, rcv->data); rcv->matches++; } static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb) { struct receiver *rcv; int matches = 0; struct can_frame *cf = (struct can_frame *)skb->data; canid_t can_id = cf->can_id; if (dev_rcv_lists->entries == 0) return 0; if (can_id & CAN_ERR_FLAG) { /* check for error message frame entries only */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) { if (can_id & rcv->mask) { deliver(skb, rcv); matches++; } } return matches; } /* check for unfiltered entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) { deliver(skb, rcv); matches++; } /* check for can_id/mask entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) { if ((can_id & rcv->mask) == rcv->can_id) { deliver(skb, rcv); matches++; } } /* check for inverted can_id/mask entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) { if ((can_id & rcv->mask) != rcv->can_id) { deliver(skb, rcv); matches++; } } /* check filterlists for single non-RTR can_ids */ if (can_id & CAN_RTR_FLAG) return matches; if (can_id & CAN_EFF_FLAG) { hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) { if (rcv->can_id == can_id) { deliver(skb, rcv); matches++; } } } else { can_id &= CAN_SFF_MASK; hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) { deliver(skb, rcv); matches++; } } return matches; } static void can_receive(struct sk_buff *skb, struct net_device *dev) { struct can_dev_rcv_lists *dev_rcv_lists; struct net *net = dev_net(dev); struct can_pkg_stats *pkg_stats = net->can.pkg_stats; int matches; /* update statistics */ pkg_stats->rx_frames++; pkg_stats->rx_frames_delta++; /* create non-zero unique skb identifier together with *skb */ while (!(can_skb_prv(skb)->skbcnt)) can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); rcu_read_lock(); /* deliver the packet to sockets listening on all devices */ matches = can_rcv_filter(net->can.rx_alldev_list, skb); /* find receive list for this device */ dev_rcv_lists = can_dev_rcv_lists_find(net, dev); matches += can_rcv_filter(dev_rcv_lists, skb); rcu_read_unlock(); /* consume the skbuff allocated by the netdevice driver */ consume_skb(skb); if (matches > 0) { pkg_stats->matches++; pkg_stats->matches_delta++; } } static int can_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct canfd_frame *cfd = (struct canfd_frame *)skb->data; if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || skb->len != CAN_MTU)) { pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n", dev->type, skb->len); goto free_skb; } /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */ if (unlikely(cfd->len > CAN_MAX_DLEN)) { pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d, datalen %d\n", dev->type, skb->len, cfd->len); goto free_skb; } can_receive(skb, dev); return NET_RX_SUCCESS; free_skb: kfree_skb(skb); return NET_RX_DROP; } static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct canfd_frame *cfd = (struct canfd_frame *)skb->data; if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || skb->len != CANFD_MTU)) { pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n", dev->type, skb->len); goto free_skb; } /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */ if (unlikely(cfd->len > CANFD_MAX_DLEN)) { pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d, datalen %d\n", dev->type, skb->len, cfd->len); goto free_skb; } can_receive(skb, dev); return NET_RX_SUCCESS; free_skb: kfree_skb(skb); return NET_RX_DROP; } /* af_can protocol functions */ /** * can_proto_register - register CAN transport protocol * @cp: pointer to CAN protocol structure * * Return: * 0 on success * -EINVAL invalid (out of range) protocol number * -EBUSY protocol already in use * -ENOBUF if proto_register() fails */ int can_proto_register(const struct can_proto *cp) { int proto = cp->protocol; int err = 0; if (proto < 0 || proto >= CAN_NPROTO) { pr_err("can: protocol number %d out of range\n", proto); return -EINVAL; } err = proto_register(cp->prot, 0); if (err < 0) return err; mutex_lock(&proto_tab_lock); if (rcu_access_pointer(proto_tab[proto])) { pr_err("can: protocol %d already registered\n", proto); err = -EBUSY; } else { RCU_INIT_POINTER(proto_tab[proto], cp); } mutex_unlock(&proto_tab_lock); if (err < 0) proto_unregister(cp->prot); return err; } EXPORT_SYMBOL(can_proto_register); /** * can_proto_unregister - unregister CAN transport protocol * @cp: pointer to CAN protocol structure */ void can_proto_unregister(const struct can_proto *cp) { int proto = cp->protocol; mutex_lock(&proto_tab_lock); BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); RCU_INIT_POINTER(proto_tab[proto], NULL); mutex_unlock(&proto_tab_lock); synchronize_rcu(); proto_unregister(cp->prot); } EXPORT_SYMBOL(can_proto_unregister); static int can_pernet_init(struct net *net) { spin_lock_init(&net->can.rcvlists_lock); net->can.rx_alldev_list = kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL); if (!net->can.rx_alldev_list) goto out; net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL); if (!net->can.pkg_stats) goto out_free_rx_alldev_list; net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL); if (!net->can.rcv_lists_stats) goto out_free_pkg_stats; if (IS_ENABLED(CONFIG_PROC_FS)) { /* the statistics are updated every second (timer triggered) */ if (stats_timer) { timer_setup(&net->can.stattimer, can_stat_update, 0); mod_timer(&net->can.stattimer, round_jiffies(jiffies + HZ)); } net->can.pkg_stats->jiffies_init = jiffies; can_init_proc(net); } return 0; out_free_pkg_stats: kfree(net->can.pkg_stats); out_free_rx_alldev_list: kfree(net->can.rx_alldev_list); out: return -ENOMEM; } static void can_pernet_exit(struct net *net) { if (IS_ENABLED(CONFIG_PROC_FS)) { can_remove_proc(net); if (stats_timer) del_timer_sync(&net->can.stattimer); } kfree(net->can.rx_alldev_list); kfree(net->can.pkg_stats); kfree(net->can.rcv_lists_stats); } /* af_can module init/exit functions */ static struct packet_type can_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CAN), .func = can_rcv, }; static struct packet_type canfd_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CANFD), .func = canfd_rcv, }; static const struct net_proto_family can_family_ops = { .family = PF_CAN, .create = can_create, .owner = THIS_MODULE, }; static struct pernet_operations can_pernet_ops __read_mostly = { .init = can_pernet_init, .exit = can_pernet_exit, }; static __init int can_init(void) { int err; /* check for correct padding to be able to use the structs similarly */ BUILD_BUG_ON(offsetof(struct can_frame, len) != offsetof(struct canfd_frame, len) || offsetof(struct can_frame, data) != offsetof(struct canfd_frame, data)); pr_info("can: controller area network core\n"); rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 0, 0, NULL); if (!rcv_cache) return -ENOMEM; err = register_pernet_subsys(&can_pernet_ops); if (err) goto out_pernet; /* protocol register */ err = sock_register(&can_family_ops); if (err) goto out_sock; dev_add_pack(&can_packet); dev_add_pack(&canfd_packet); return 0; out_sock: unregister_pernet_subsys(&can_pernet_ops); out_pernet: kmem_cache_destroy(rcv_cache); return err; } static __exit void can_exit(void) { /* protocol unregister */ dev_remove_pack(&canfd_packet); dev_remove_pack(&can_packet); sock_unregister(PF_CAN); unregister_pernet_subsys(&can_pernet_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ kmem_cache_destroy(rcv_cache); } module_init(can_init); module_exit(can_exit); |
30 23 1 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | // SPDX-License-Identifier: GPL-2.0-only /* * Support Intel/AMD RAPL energy consumption counters * Copyright (C) 2013 Google, Inc., Stephane Eranian * * Intel RAPL interface is specified in the IA-32 Manual Vol3b * section 14.7.1 (September 2013) * * AMD RAPL interface for Fam17h is described in the public PPR: * https://bugzilla.kernel.org/show_bug.cgi?id=206537 * * RAPL provides more controls than just reporting energy consumption * however here we only expose the 3 energy consumption free running * counters (pp0, pkg, dram). * * Each of those counters increments in a power unit defined by the * RAPL_POWER_UNIT MSR. On SandyBridge, this unit is 1/(2^16) Joules * but it can vary. * * Counter to rapl events mappings: * * pp0 counter: consumption of all physical cores (power plane 0) * event: rapl_energy_cores * perf code: 0x1 * * pkg counter: consumption of the whole processor package * event: rapl_energy_pkg * perf code: 0x2 * * dram counter: consumption of the dram domain (servers only) * event: rapl_energy_dram * perf code: 0x3 * * gpu counter: consumption of the builtin-gpu domain (client only) * event: rapl_energy_gpu * perf code: 0x4 * * psys counter: consumption of the builtin-psys domain (client only) * event: rapl_energy_psys * perf code: 0x5 * * We manage those counters as free running (read-only). They may be * use simultaneously by other tools, such as turbostat. * * The events only support system-wide mode counting. There is no * sampling support because it does not make sense and is not * supported by the RAPL hardware. * * Because we want to avoid floating-point operations in the kernel, * the events are all reported in fixed point arithmetic (32.32). * Tools must adjust the counts to convert them to Watts using * the duration of the measurement. Tools may use a function such as * ldexp(raw_count, -32); */ #define pr_fmt(fmt) "RAPL PMU: " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/perf_event.h> #include <linux/nospec.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "perf_event.h" #include "probe.h" MODULE_LICENSE("GPL"); /* * RAPL energy status counters */ enum perf_rapl_events { PERF_RAPL_PP0 = 0, /* all cores */ PERF_RAPL_PKG, /* entire package */ PERF_RAPL_RAM, /* DRAM */ PERF_RAPL_PP1, /* gpu */ PERF_RAPL_PSYS, /* psys */ PERF_RAPL_MAX, NR_RAPL_DOMAINS = PERF_RAPL_MAX, }; static const char *const rapl_domain_names[NR_RAPL_DOMAINS] __initconst = { "pp0-core", "package", "dram", "pp1-gpu", "psys", }; /* * event code: LSB 8 bits, passed in attr->config * any other bit is reserved */ #define RAPL_EVENT_MASK 0xFFULL #define RAPL_CNTR_WIDTH 32 #define RAPL_EVENT_ATTR_STR(_name, v, str) \ static struct perf_pmu_events_attr event_attr_##v = { \ .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ .id = 0, \ .event_str = str, \ }; struct rapl_pmu { raw_spinlock_t lock; int n_active; int cpu; struct list_head active_list; struct pmu *pmu; ktime_t timer_interval; struct hrtimer hrtimer; }; struct rapl_pmus { struct pmu pmu; unsigned int maxdie; struct rapl_pmu *pmus[]; }; enum rapl_unit_quirk { RAPL_UNIT_QUIRK_NONE, RAPL_UNIT_QUIRK_INTEL_HSW, RAPL_UNIT_QUIRK_INTEL_SPR, }; struct rapl_model { struct perf_msr *rapl_msrs; unsigned long events; unsigned int msr_power_unit; enum rapl_unit_quirk unit_quirk; }; /* 1/2^hw_unit Joule */ static int rapl_hw_unit[NR_RAPL_DOMAINS] __read_mostly; static struct rapl_pmus *rapl_pmus; static cpumask_t rapl_cpu_mask; static unsigned int rapl_cntr_mask; static u64 rapl_timer_ms; static struct perf_msr *rapl_msrs; static inline struct rapl_pmu *cpu_to_rapl_pmu(unsigned int cpu) { unsigned int dieid = topology_logical_die_id(cpu); /* * The unsigned check also catches the '-1' return value for non * existent mappings in the topology map. */ return dieid < rapl_pmus->maxdie ? rapl_pmus->pmus[dieid] : NULL; } static inline u64 rapl_read_counter(struct perf_event *event) { u64 raw; rdmsrl(event->hw.event_base, raw); return raw; } static inline u64 rapl_scale(u64 v, int cfg) { if (cfg > NR_RAPL_DOMAINS) { pr_warn("Invalid domain %d, failed to scale data\n", cfg); return v; } /* * scale delta to smallest unit (1/2^32) * users must then scale back: count * 1/(1e9*2^32) to get Joules * or use ldexp(count, -32). * Watts = Joules/Time delta */ return v << (32 - rapl_hw_unit[cfg - 1]); } static u64 rapl_event_update(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 prev_raw_count, new_raw_count; s64 delta, sdelta; int shift = RAPL_CNTR_WIDTH; again: prev_raw_count = local64_read(&hwc->prev_count); rdmsrl(event->hw.event_base, new_raw_count); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) { cpu_relax(); goto again; } /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (event-)time and add that to the generic event. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; sdelta = rapl_scale(delta, event->hw.config); local64_add(sdelta, &event->count); return new_raw_count; } static void rapl_start_hrtimer(struct rapl_pmu *pmu) { hrtimer_start(&pmu->hrtimer, pmu->timer_interval, HRTIMER_MODE_REL_PINNED); } static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer) { struct rapl_pmu *pmu = container_of(hrtimer, struct rapl_pmu, hrtimer); struct perf_event *event; unsigned long flags; if (!pmu->n_active) return HRTIMER_NORESTART; raw_spin_lock_irqsave(&pmu->lock, flags); list_for_each_entry(event, &pmu->active_list, active_entry) rapl_event_update(event); raw_spin_unlock_irqrestore(&pmu->lock, flags); hrtimer_forward_now(hrtimer, pmu->timer_interval); return HRTIMER_RESTART; } static void rapl_hrtimer_init(struct rapl_pmu *pmu) { struct hrtimer *hr = &pmu->hrtimer; hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hr->function = rapl_hrtimer_handle; } static void __rapl_pmu_event_start(struct rapl_pmu *pmu, struct perf_event *event) { if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; event->hw.state = 0; list_add_tail(&event->active_entry, &pmu->active_list); local64_set(&event->hw.prev_count, rapl_read_counter(event)); pmu->n_active++; if (pmu->n_active == 1) rapl_start_hrtimer(pmu); } static void rapl_pmu_event_start(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); __rapl_pmu_event_start(pmu, event); raw_spin_unlock_irqrestore(&pmu->lock, flags); } static void rapl_pmu_event_stop(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; struct hw_perf_event *hwc = &event->hw; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); /* mark event as deactivated and stopped */ if (!(hwc->state & PERF_HES_STOPPED)) { WARN_ON_ONCE(pmu->n_active <= 0); pmu->n_active--; if (pmu->n_active == 0) hrtimer_cancel(&pmu->hrtimer); list_del(&event->active_entry); WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); hwc->state |= PERF_HES_STOPPED; } /* check if update of sw counter is necessary */ if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { /* * Drain the remaining delta count out of a event * that we are disabling: */ rapl_event_update(event); hwc->state |= PERF_HES_UPTODATE; } raw_spin_unlock_irqrestore(&pmu->lock, flags); } static int rapl_pmu_event_add(struct perf_event *event, int mode) { struct rapl_pmu *pmu = event->pmu_private; struct hw_perf_event *hwc = &event->hw; unsigned long flags; raw_spin_lock_irqsave(&pmu->lock, flags); hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; if (mode & PERF_EF_START) __rapl_pmu_event_start(pmu, event); raw_spin_unlock_irqrestore(&pmu->lock, flags); return 0; } static void rapl_pmu_event_del(struct perf_event *event, int flags) { rapl_pmu_event_stop(event, PERF_EF_UPDATE); } static int rapl_pmu_event_init(struct perf_event *event) { u64 cfg = event->attr.config & RAPL_EVENT_MASK; int bit, ret = 0; struct rapl_pmu *pmu; /* only look at RAPL events */ if (event->attr.type != rapl_pmus->pmu.type) return -ENOENT; /* check only supported bits are set */ if (event->attr.config & ~RAPL_EVENT_MASK) return -EINVAL; if (event->cpu < 0) return -EINVAL; event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG; if (!cfg || cfg >= NR_RAPL_DOMAINS + 1) return -EINVAL; cfg = array_index_nospec((long)cfg, NR_RAPL_DOMAINS + 1); bit = cfg - 1; /* check event supported */ if (!(rapl_cntr_mask & (1 << bit))) return -EINVAL; /* unsupported modes and filters */ if (event->attr.sample_period) /* no sampling */ return -EINVAL; /* must be done before validate_group */ pmu = cpu_to_rapl_pmu(event->cpu); if (!pmu) return -EINVAL; event->cpu = pmu->cpu; event->pmu_private = pmu; event->hw.event_base = rapl_msrs[bit].msr; event->hw.config = cfg; event->hw.idx = bit; return ret; } static void rapl_pmu_event_read(struct perf_event *event) { rapl_event_update(event); } static ssize_t rapl_get_attr_cpumask(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &rapl_cpu_mask); } static DEVICE_ATTR(cpumask, S_IRUGO, rapl_get_attr_cpumask, NULL); static struct attribute *rapl_pmu_attrs[] = { &dev_attr_cpumask.attr, NULL, }; static struct attribute_group rapl_pmu_attr_group = { .attrs = rapl_pmu_attrs, }; RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01"); RAPL_EVENT_ATTR_STR(energy-pkg , rapl_pkg, "event=0x02"); RAPL_EVENT_ATTR_STR(energy-ram , rapl_ram, "event=0x03"); RAPL_EVENT_ATTR_STR(energy-gpu , rapl_gpu, "event=0x04"); RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05"); RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_cores_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-pkg.unit , rapl_pkg_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-ram.unit , rapl_ram_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-gpu.unit , rapl_gpu_unit, "Joules"); RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_psys_unit, "Joules"); /* * we compute in 0.23 nJ increments regardless of MSR */ RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_cores_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_pkg_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_ram_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_gpu_scale, "2.3283064365386962890625e-10"); RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_psys_scale, "2.3283064365386962890625e-10"); /* * There are no default events, but we need to create * "events" group (with empty attrs) before updating * it with detected events. */ static struct attribute *attrs_empty[] = { NULL, }; static struct attribute_group rapl_pmu_events_group = { .name = "events", .attrs = attrs_empty, }; PMU_FORMAT_ATTR(event, "config:0-7"); static struct attribute *rapl_formats_attr[] = { &format_attr_event.attr, NULL, }; static struct attribute_group rapl_pmu_format_group = { .name = "format", .attrs = rapl_formats_attr, }; static const struct attribute_group *rapl_attr_groups[] = { &rapl_pmu_attr_group, &rapl_pmu_format_group, &rapl_pmu_events_group, NULL, }; static struct attribute *rapl_events_cores[] = { EVENT_PTR(rapl_cores), EVENT_PTR(rapl_cores_unit), EVENT_PTR(rapl_cores_scale), NULL, }; static struct attribute_group rapl_events_cores_group = { .name = "events", .attrs = rapl_events_cores, }; static struct attribute *rapl_events_pkg[] = { EVENT_PTR(rapl_pkg), EVENT_PTR(rapl_pkg_unit), EVENT_PTR(rapl_pkg_scale), NULL, }; static struct attribute_group rapl_events_pkg_group = { .name = "events", .attrs = rapl_events_pkg, }; static struct attribute *rapl_events_ram[] = { EVENT_PTR(rapl_ram), EVENT_PTR(rapl_ram_unit), EVENT_PTR(rapl_ram_scale), NULL, }; static struct attribute_group rapl_events_ram_group = { .name = "events", .attrs = rapl_events_ram, }; static struct attribute *rapl_events_gpu[] = { EVENT_PTR(rapl_gpu), EVENT_PTR(rapl_gpu_unit), EVENT_PTR(rapl_gpu_scale), NULL, }; static struct attribute_group rapl_events_gpu_group = { .name = "events", .attrs = rapl_events_gpu, }; static struct attribute *rapl_events_psys[] = { EVENT_PTR(rapl_psys), EVENT_PTR(rapl_psys_unit), EVENT_PTR(rapl_psys_scale), NULL, }; static struct attribute_group rapl_events_psys_group = { .name = "events", .attrs = rapl_events_psys, }; static bool test_msr(int idx, void *data) { return test_bit(idx, (unsigned long *) data); } /* Only lower 32bits of the MSR represents the energy counter */ #define RAPL_MSR_MASK 0xFFFFFFFF static struct perf_msr intel_rapl_msrs[] = { [PERF_RAPL_PP0] = { MSR_PP0_ENERGY_STATUS, &rapl_events_cores_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PKG] = { MSR_PKG_ENERGY_STATUS, &rapl_events_pkg_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_RAM] = { MSR_DRAM_ENERGY_STATUS, &rapl_events_ram_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PP1] = { MSR_PP1_ENERGY_STATUS, &rapl_events_gpu_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PSYS] = { MSR_PLATFORM_ENERGY_STATUS, &rapl_events_psys_group, test_msr, false, RAPL_MSR_MASK }, }; static struct perf_msr intel_rapl_spr_msrs[] = { [PERF_RAPL_PP0] = { MSR_PP0_ENERGY_STATUS, &rapl_events_cores_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PKG] = { MSR_PKG_ENERGY_STATUS, &rapl_events_pkg_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_RAM] = { MSR_DRAM_ENERGY_STATUS, &rapl_events_ram_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PP1] = { MSR_PP1_ENERGY_STATUS, &rapl_events_gpu_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_PSYS] = { MSR_PLATFORM_ENERGY_STATUS, &rapl_events_psys_group, test_msr, true, RAPL_MSR_MASK }, }; /* * Force to PERF_RAPL_MAX size due to: * - perf_msr_probe(PERF_RAPL_MAX) * - want to use same event codes across both architectures */ static struct perf_msr amd_rapl_msrs[] = { [PERF_RAPL_PP0] = { 0, &rapl_events_cores_group, 0, false, 0 }, [PERF_RAPL_PKG] = { MSR_AMD_PKG_ENERGY_STATUS, &rapl_events_pkg_group, test_msr, false, RAPL_MSR_MASK }, [PERF_RAPL_RAM] = { 0, &rapl_events_ram_group, 0, false, 0 }, [PERF_RAPL_PP1] = { 0, &rapl_events_gpu_group, 0, false, 0 }, [PERF_RAPL_PSYS] = { 0, &rapl_events_psys_group, 0, false, 0 }, }; static int rapl_cpu_offline(unsigned int cpu) { struct rapl_pmu *pmu = cpu_to_rapl_pmu(cpu); int target; /* Check if exiting cpu is used for collecting rapl events */ if (!cpumask_test_and_clear_cpu(cpu, &rapl_cpu_mask)) return 0; pmu->cpu = -1; /* Find a new cpu to collect rapl events */ target = cpumask_any_but(topology_die_cpumask(cpu), cpu); /* Migrate rapl events to the new target */ if (target < nr_cpu_ids) { cpumask_set_cpu(target, &rapl_cpu_mask); pmu->cpu = target; perf_pmu_migrate_context(pmu->pmu, cpu, target); } return 0; } static int rapl_cpu_online(unsigned int cpu) { struct rapl_pmu *pmu = cpu_to_rapl_pmu(cpu); int target; if (!pmu) { pmu = kzalloc_node(sizeof(*pmu), GFP_KERNEL, cpu_to_node(cpu)); if (!pmu) return -ENOMEM; raw_spin_lock_init(&pmu->lock); INIT_LIST_HEAD(&pmu->active_list); pmu->pmu = &rapl_pmus->pmu; pmu->timer_interval = ms_to_ktime(rapl_timer_ms); rapl_hrtimer_init(pmu); rapl_pmus->pmus[topology_logical_die_id(cpu)] = pmu; } /* * Check if there is an online cpu in the package which collects rapl * events already. */ target = cpumask_any_and(&rapl_cpu_mask, topology_die_cpumask(cpu)); if (target < nr_cpu_ids) return 0; cpumask_set_cpu(cpu, &rapl_cpu_mask); pmu->cpu = cpu; return 0; } static int rapl_check_hw_unit(struct rapl_model *rm) { u64 msr_rapl_power_unit_bits; int i; /* protect rdmsrl() to handle virtualization */ if (rdmsrl_safe(rm->msr_power_unit, &msr_rapl_power_unit_bits)) return -1; for (i = 0; i < NR_RAPL_DOMAINS; i++) rapl_hw_unit[i] = (msr_rapl_power_unit_bits >> 8) & 0x1FULL; switch (rm->unit_quirk) { /* * DRAM domain on HSW server and KNL has fixed energy unit which can be * different than the unit from power unit MSR. See * "Intel Xeon Processor E5-1600 and E5-2600 v3 Product Families, V2 * of 2. Datasheet, September 2014, Reference Number: 330784-001 " */ case RAPL_UNIT_QUIRK_INTEL_HSW: rapl_hw_unit[PERF_RAPL_RAM] = 16; break; /* * SPR shares the same DRAM domain energy unit as HSW, plus it * also has a fixed energy unit for Psys domain. */ case RAPL_UNIT_QUIRK_INTEL_SPR: rapl_hw_unit[PERF_RAPL_RAM] = 16; rapl_hw_unit[PERF_RAPL_PSYS] = 0; break; default: break; } /* * Calculate the timer rate: * Use reference of 200W for scaling the timeout to avoid counter * overflows. 200W = 200 Joules/sec * Divide interval by 2 to avoid lockstep (2 * 100) * if hw unit is 32, then we use 2 ms 1/200/2 */ rapl_timer_ms = 2; if (rapl_hw_unit[0] < 32) { rapl_timer_ms = (1000 / (2 * 100)); rapl_timer_ms *= (1ULL << (32 - rapl_hw_unit[0] - 1)); } return 0; } static void __init rapl_advertise(void) { int i; pr_info("API unit is 2^-32 Joules, %d fixed counters, %llu ms ovfl timer\n", hweight32(rapl_cntr_mask), rapl_timer_ms); for (i = 0; i < NR_RAPL_DOMAINS; i++) { if (rapl_cntr_mask & (1 << i)) { pr_info("hw unit of domain %s 2^-%d Joules\n", rapl_domain_names[i], rapl_hw_unit[i]); } } } static void cleanup_rapl_pmus(void) { int i; for (i = 0; i < rapl_pmus->maxdie; i++) kfree(rapl_pmus->pmus[i]); kfree(rapl_pmus); } static const struct attribute_group *rapl_attr_update[] = { &rapl_events_cores_group, &rapl_events_pkg_group, &rapl_events_ram_group, &rapl_events_gpu_group, &rapl_events_psys_group, NULL, }; static int __init init_rapl_pmus(void) { int maxdie = topology_max_packages() * topology_max_die_per_package(); size_t size; size = sizeof(*rapl_pmus) + maxdie * sizeof(struct rapl_pmu *); rapl_pmus = kzalloc(size, GFP_KERNEL); if (!rapl_pmus) return -ENOMEM; rapl_pmus->maxdie = maxdie; rapl_pmus->pmu.attr_groups = rapl_attr_groups; rapl_pmus->pmu.attr_update = rapl_attr_update; rapl_pmus->pmu.task_ctx_nr = perf_invalid_context; rapl_pmus->pmu.event_init = rapl_pmu_event_init; rapl_pmus->pmu.add = rapl_pmu_event_add; rapl_pmus->pmu.del = rapl_pmu_event_del; rapl_pmus->pmu.start = rapl_pmu_event_start; rapl_pmus->pmu.stop = rapl_pmu_event_stop; rapl_pmus->pmu.read = rapl_pmu_event_read; rapl_pmus->pmu.module = THIS_MODULE; rapl_pmus->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; return 0; } static struct rapl_model model_snb = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_PP1), .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_snbep = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM), .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_hsw = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM) | BIT(PERF_RAPL_PP1), .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_hsx = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM), .unit_quirk = RAPL_UNIT_QUIRK_INTEL_HSW, .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_knl = { .events = BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM), .unit_quirk = RAPL_UNIT_QUIRK_INTEL_HSW, .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_skl = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM) | BIT(PERF_RAPL_PP1) | BIT(PERF_RAPL_PSYS), .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_msrs, }; static struct rapl_model model_spr = { .events = BIT(PERF_RAPL_PP0) | BIT(PERF_RAPL_PKG) | BIT(PERF_RAPL_RAM) | BIT(PERF_RAPL_PSYS), .unit_quirk = RAPL_UNIT_QUIRK_INTEL_SPR, .msr_power_unit = MSR_RAPL_POWER_UNIT, .rapl_msrs = intel_rapl_spr_msrs, }; static struct rapl_model model_amd_hygon = { .events = BIT(PERF_RAPL_PKG), .msr_power_unit = MSR_AMD_RAPL_POWER_UNIT, .rapl_msrs = amd_rapl_msrs, }; static const struct x86_cpu_id rapl_model_match[] __initconst = { X86_MATCH_FEATURE(X86_FEATURE_RAPL, &model_amd_hygon), X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &model_snb), X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &model_snbep), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &model_snb), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &model_snbep), X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &model_knl), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &model_knl), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &model_hsw), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &model_hsx), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &model_skl), X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &model_spr), {}, }; MODULE_DEVICE_TABLE(x86cpu, rapl_model_match); static int __init rapl_pmu_init(void) { const struct x86_cpu_id *id; struct rapl_model *rm; int ret; id = x86_match_cpu(rapl_model_match); if (!id) return -ENODEV; rm = (struct rapl_model *) id->driver_data; rapl_msrs = rm->rapl_msrs; rapl_cntr_mask = perf_msr_probe(rapl_msrs, PERF_RAPL_MAX, false, (void *) &rm->events); ret = rapl_check_hw_unit(rm); if (ret) return ret; ret = init_rapl_pmus(); if (ret) return ret; /* * Install callbacks. Core will call them for each online cpu. */ ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_RAPL_ONLINE, "perf/x86/rapl:online", rapl_cpu_online, rapl_cpu_offline); if (ret) goto out; ret = perf_pmu_register(&rapl_pmus->pmu, "power", -1); if (ret) goto out1; rapl_advertise(); return 0; out1: cpuhp_remove_state(CPUHP_AP_PERF_X86_RAPL_ONLINE); out: pr_warn("Initialization failed (%d), disabled\n", ret); cleanup_rapl_pmus(); return ret; } module_init(rapl_pmu_init); static void __exit intel_rapl_exit(void) { cpuhp_remove_state_nocalls(CPUHP_AP_PERF_X86_RAPL_ONLINE); perf_pmu_unregister(&rapl_pmus->pmu); cleanup_rapl_pmus(); } module_exit(intel_rapl_exit); |
45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_connmark.c netfilter connmark retriever action * skb mark is over-written * * Copyright (c) 2011 Felix Fietkau <nbd@openwrt.org> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/pkt_cls.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/act_api.h> #include <net/pkt_cls.h> #include <uapi/linux/tc_act/tc_connmark.h> #include <net/tc_act/tc_connmark.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_zones.h> static unsigned int connmark_net_id; static struct tc_action_ops act_connmark_ops; static int tcf_connmark_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { const struct nf_conntrack_tuple_hash *thash; struct nf_conntrack_tuple tuple; enum ip_conntrack_info ctinfo; struct tcf_connmark_info *ca = to_connmark(a); struct nf_conntrack_zone zone; struct nf_conn *c; int proto; spin_lock(&ca->tcf_lock); tcf_lastuse_update(&ca->tcf_tm); bstats_update(&ca->tcf_bstats, skb); switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): if (skb->len < sizeof(struct iphdr)) goto out; proto = NFPROTO_IPV4; break; case htons(ETH_P_IPV6): if (skb->len < sizeof(struct ipv6hdr)) goto out; proto = NFPROTO_IPV6; break; default: goto out; } c = nf_ct_get(skb, &ctinfo); if (c) { skb->mark = READ_ONCE(c->mark); /* using overlimits stats to count how many packets marked */ ca->tcf_qstats.overlimits++; goto out; } if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, ca->net, &tuple)) goto out; zone.id = ca->zone; zone.dir = NF_CT_DEFAULT_ZONE_DIR; thash = nf_conntrack_find_get(ca->net, &zone, &tuple); if (!thash) goto out; c = nf_ct_tuplehash_to_ctrack(thash); /* using overlimits stats to count how many packets marked */ ca->tcf_qstats.overlimits++; skb->mark = READ_ONCE(c->mark); nf_ct_put(c); out: spin_unlock(&ca->tcf_lock); return ca->tcf_action; } static const struct nla_policy connmark_policy[TCA_CONNMARK_MAX + 1] = { [TCA_CONNMARK_PARMS] = { .len = sizeof(struct tc_connmark) }, }; static int tcf_connmark_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, connmark_net_id); struct nlattr *tb[TCA_CONNMARK_MAX + 1]; bool bind = flags & TCA_ACT_FLAGS_BIND; struct tcf_chain *goto_ch = NULL; struct tcf_connmark_info *ci; struct tc_connmark *parm; int ret = 0, err; u32 index; if (!nla) return -EINVAL; ret = nla_parse_nested_deprecated(tb, TCA_CONNMARK_MAX, nla, connmark_policy, NULL); if (ret < 0) return ret; if (!tb[TCA_CONNMARK_PARMS]) return -EINVAL; parm = nla_data(tb[TCA_CONNMARK_PARMS]); index = parm->index; ret = tcf_idr_check_alloc(tn, &index, a, bind); if (!ret) { ret = tcf_idr_create(tn, index, est, a, &act_connmark_ops, bind, false, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ci = to_connmark(*a); err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; tcf_action_set_ctrlact(*a, parm->action, goto_ch); ci->net = net; ci->zone = parm->zone; ret = ACT_P_CREATED; } else if (ret > 0) { ci = to_connmark(*a); if (bind) return 0; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; /* replacing action and zone */ spin_lock_bh(&ci->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); ci->zone = parm->zone; spin_unlock_bh(&ci->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); ret = 0; } return ret; release_idr: tcf_idr_release(*a, bind); return err; } static inline int tcf_connmark_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_connmark_info *ci = to_connmark(a); struct tc_connmark opt = { .index = ci->tcf_index, .refcnt = refcount_read(&ci->tcf_refcnt) - ref, .bindcnt = atomic_read(&ci->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&ci->tcf_lock); opt.action = ci->tcf_action; opt.zone = ci->zone; if (nla_put(skb, TCA_CONNMARK_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &ci->tcf_tm); if (nla_put_64bit(skb, TCA_CONNMARK_TM, sizeof(t), &t, TCA_CONNMARK_PAD)) goto nla_put_failure; spin_unlock_bh(&ci->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&ci->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_connmark_walker(struct net *net, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, connmark_net_id); return tcf_generic_walker(tn, skb, cb, type, ops, extack); } static int tcf_connmark_search(struct net *net, struct tc_action **a, u32 index) { struct tc_action_net *tn = net_generic(net, connmark_net_id); return tcf_idr_search(tn, a, index); } static struct tc_action_ops act_connmark_ops = { .kind = "connmark", .id = TCA_ID_CONNMARK, .owner = THIS_MODULE, .act = tcf_connmark_act, .dump = tcf_connmark_dump, .init = tcf_connmark_init, .walk = tcf_connmark_walker, .lookup = tcf_connmark_search, .size = sizeof(struct tcf_connmark_info), }; static __net_init int connmark_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, connmark_net_id); return tc_action_net_init(net, tn, &act_connmark_ops); } static void __net_exit connmark_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, connmark_net_id); } static struct pernet_operations connmark_net_ops = { .init = connmark_init_net, .exit_batch = connmark_exit_net, .id = &connmark_net_id, .size = sizeof(struct tc_action_net), }; static int __init connmark_init_module(void) { return tcf_register_action(&act_connmark_ops, &connmark_net_ops); } static void __exit connmark_cleanup_module(void) { tcf_unregister_action(&act_connmark_ops, &connmark_net_ops); } module_init(connmark_init_module); module_exit(connmark_cleanup_module); MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); MODULE_DESCRIPTION("Connection tracking mark restoring"); MODULE_LICENSE("GPL"); |
27 27 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Sysfs attributes of bridge ports * Linux ethernet bridge * * Authors: * Stephen Hemminger <shemminger@osdl.org> */ #include <linux/capability.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/if_bridge.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/sched/signal.h> #include "br_private.h" /* IMPORTANT: new bridge port options must be added with netlink support only * please do not add new sysfs entries */ struct brport_attribute { struct attribute attr; ssize_t (*show)(struct net_bridge_port *, char *); int (*store)(struct net_bridge_port *, unsigned long); int (*store_raw)(struct net_bridge_port *, char *); }; #define BRPORT_ATTR_RAW(_name, _mode, _show, _store) \ const struct brport_attribute brport_attr_##_name = { \ .attr = {.name = __stringify(_name), \ .mode = _mode }, \ .show = _show, \ .store_raw = _store, \ }; #define BRPORT_ATTR(_name, _mode, _show, _store) \ const struct brport_attribute brport_attr_##_name = { \ .attr = {.name = __stringify(_name), \ .mode = _mode }, \ .show = _show, \ .store = _store, \ }; #define BRPORT_ATTR_FLAG(_name, _mask) \ static ssize_t show_##_name(struct net_bridge_port *p, char *buf) \ { \ return sprintf(buf, "%d\n", !!(p->flags & _mask)); \ } \ static int store_##_name(struct net_bridge_port *p, unsigned long v) \ { \ return store_flag(p, v, _mask); \ } \ static BRPORT_ATTR(_name, 0644, \ show_##_name, store_##_name) static int store_flag(struct net_bridge_port *p, unsigned long v, unsigned long mask) { struct netlink_ext_ack extack = {0}; unsigned long flags = p->flags; int err; if (v) flags |= mask; else flags &= ~mask; if (flags != p->flags) { err = br_switchdev_set_port_flag(p, flags, mask, &extack); if (err) { netdev_err(p->dev, "%s\n", extack._msg); return err; } p->flags = flags; br_port_flags_change(p, mask); } return 0; } static ssize_t show_path_cost(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->path_cost); } static BRPORT_ATTR(path_cost, 0644, show_path_cost, br_stp_set_path_cost); static ssize_t show_priority(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->priority); } static BRPORT_ATTR(priority, 0644, show_priority, br_stp_set_port_priority); static ssize_t show_designated_root(struct net_bridge_port *p, char *buf) { return br_show_bridge_id(buf, &p->designated_root); } static BRPORT_ATTR(designated_root, 0444, show_designated_root, NULL); static ssize_t show_designated_bridge(struct net_bridge_port *p, char *buf) { return br_show_bridge_id(buf, &p->designated_bridge); } static BRPORT_ATTR(designated_bridge, 0444, show_designated_bridge, NULL); static ssize_t show_designated_port(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->designated_port); } static BRPORT_ATTR(designated_port, 0444, show_designated_port, NULL); static ssize_t show_designated_cost(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->designated_cost); } static BRPORT_ATTR(designated_cost, 0444, show_designated_cost, NULL); static ssize_t show_port_id(struct net_bridge_port *p, char *buf) { return sprintf(buf, "0x%x\n", p->port_id); } static BRPORT_ATTR(port_id, 0444, show_port_id, NULL); static ssize_t show_port_no(struct net_bridge_port *p, char *buf) { return sprintf(buf, "0x%x\n", p->port_no); } static BRPORT_ATTR(port_no, 0444, show_port_no, NULL); static ssize_t show_change_ack(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->topology_change_ack); } static BRPORT_ATTR(change_ack, 0444, show_change_ack, NULL); static ssize_t show_config_pending(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->config_pending); } static BRPORT_ATTR(config_pending, 0444, show_config_pending, NULL); static ssize_t show_port_state(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->state); } static BRPORT_ATTR(state, 0444, show_port_state, NULL); static ssize_t show_message_age_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->message_age_timer)); } static BRPORT_ATTR(message_age_timer, 0444, show_message_age_timer, NULL); static ssize_t show_forward_delay_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->forward_delay_timer)); } static BRPORT_ATTR(forward_delay_timer, 0444, show_forward_delay_timer, NULL); static ssize_t show_hold_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->hold_timer)); } static BRPORT_ATTR(hold_timer, 0444, show_hold_timer, NULL); static int store_flush(struct net_bridge_port *p, unsigned long v) { br_fdb_delete_by_port(p->br, p, 0, 0); // Don't delete local entry return 0; } static BRPORT_ATTR(flush, 0200, NULL, store_flush); static ssize_t show_group_fwd_mask(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%#x\n", p->group_fwd_mask); } static int store_group_fwd_mask(struct net_bridge_port *p, unsigned long v) { if (v & BR_GROUPFWD_MACPAUSE) return -EINVAL; p->group_fwd_mask = v; return 0; } static BRPORT_ATTR(group_fwd_mask, 0644, show_group_fwd_mask, store_group_fwd_mask); static ssize_t show_backup_port(struct net_bridge_port *p, char *buf) { struct net_bridge_port *backup_p; int ret = 0; rcu_read_lock(); backup_p = rcu_dereference(p->backup_port); if (backup_p) ret = sprintf(buf, "%s\n", backup_p->dev->name); rcu_read_unlock(); return ret; } static int store_backup_port(struct net_bridge_port *p, char *buf) { struct net_device *backup_dev = NULL; char *nl = strchr(buf, '\n'); if (nl) *nl = '\0'; if (strlen(buf) > 0) { backup_dev = __dev_get_by_name(dev_net(p->dev), buf); if (!backup_dev) return -ENOENT; } return nbp_backup_change(p, backup_dev); } static BRPORT_ATTR_RAW(backup_port, 0644, show_backup_port, store_backup_port); BRPORT_ATTR_FLAG(hairpin_mode, BR_HAIRPIN_MODE); BRPORT_ATTR_FLAG(bpdu_guard, BR_BPDU_GUARD); BRPORT_ATTR_FLAG(root_block, BR_ROOT_BLOCK); BRPORT_ATTR_FLAG(learning, BR_LEARNING); BRPORT_ATTR_FLAG(unicast_flood, BR_FLOOD); BRPORT_ATTR_FLAG(proxyarp, BR_PROXYARP); BRPORT_ATTR_FLAG(proxyarp_wifi, BR_PROXYARP_WIFI); BRPORT_ATTR_FLAG(multicast_flood, BR_MCAST_FLOOD); BRPORT_ATTR_FLAG(broadcast_flood, BR_BCAST_FLOOD); BRPORT_ATTR_FLAG(neigh_suppress, BR_NEIGH_SUPPRESS); BRPORT_ATTR_FLAG(isolated, BR_ISOLATED); #ifdef CONFIG_BRIDGE_IGMP_SNOOPING static ssize_t show_multicast_router(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->multicast_ctx.multicast_router); } static int store_multicast_router(struct net_bridge_port *p, unsigned long v) { return br_multicast_set_port_router(&p->multicast_ctx, v); } static BRPORT_ATTR(multicast_router, 0644, show_multicast_router, store_multicast_router); BRPORT_ATTR_FLAG(multicast_fast_leave, BR_MULTICAST_FAST_LEAVE); BRPORT_ATTR_FLAG(multicast_to_unicast, BR_MULTICAST_TO_UNICAST); #endif static const struct brport_attribute *brport_attrs[] = { &brport_attr_path_cost, &brport_attr_priority, &brport_attr_port_id, &brport_attr_port_no, &brport_attr_designated_root, &brport_attr_designated_bridge, &brport_attr_designated_port, &brport_attr_designated_cost, &brport_attr_state, &brport_attr_change_ack, &brport_attr_config_pending, &brport_attr_message_age_timer, &brport_attr_forward_delay_timer, &brport_attr_hold_timer, &brport_attr_flush, &brport_attr_hairpin_mode, &brport_attr_bpdu_guard, &brport_attr_root_block, &brport_attr_learning, &brport_attr_unicast_flood, #ifdef CONFIG_BRIDGE_IGMP_SNOOPING &brport_attr_multicast_router, &brport_attr_multicast_fast_leave, &brport_attr_multicast_to_unicast, #endif &brport_attr_proxyarp, &brport_attr_proxyarp_wifi, &brport_attr_multicast_flood, &brport_attr_broadcast_flood, &brport_attr_group_fwd_mask, &brport_attr_neigh_suppress, &brport_attr_isolated, &brport_attr_backup_port, NULL }; #define to_brport_attr(_at) container_of(_at, struct brport_attribute, attr) static ssize_t brport_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct brport_attribute *brport_attr = to_brport_attr(attr); struct net_bridge_port *p = kobj_to_brport(kobj); if (!brport_attr->show) return -EINVAL; return brport_attr->show(p, buf); } static ssize_t brport_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct brport_attribute *brport_attr = to_brport_attr(attr); struct net_bridge_port *p = kobj_to_brport(kobj); ssize_t ret = -EINVAL; unsigned long val; char *endp; if (!ns_capable(dev_net(p->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (!rtnl_trylock()) return restart_syscall(); if (brport_attr->store_raw) { char *buf_copy; buf_copy = kstrndup(buf, count, GFP_KERNEL); if (!buf_copy) { ret = -ENOMEM; goto out_unlock; } spin_lock_bh(&p->br->lock); ret = brport_attr->store_raw(p, buf_copy); spin_unlock_bh(&p->br->lock); kfree(buf_copy); } else if (brport_attr->store) { val = simple_strtoul(buf, &endp, 0); if (endp == buf) goto out_unlock; spin_lock_bh(&p->br->lock); ret = brport_attr->store(p, val); spin_unlock_bh(&p->br->lock); } if (!ret) { br_ifinfo_notify(RTM_NEWLINK, NULL, p); ret = count; } out_unlock: rtnl_unlock(); return ret; } const struct sysfs_ops brport_sysfs_ops = { .show = brport_show, .store = brport_store, }; /* * Add sysfs entries to ethernet device added to a bridge. * Creates a brport subdirectory with bridge attributes. * Puts symlink in bridge's brif subdirectory */ int br_sysfs_addif(struct net_bridge_port *p) { struct net_bridge *br = p->br; const struct brport_attribute **a; int err; err = sysfs_create_link(&p->kobj, &br->dev->dev.kobj, SYSFS_BRIDGE_PORT_LINK); if (err) return err; for (a = brport_attrs; *a; ++a) { err = sysfs_create_file(&p->kobj, &((*a)->attr)); if (err) return err; } strlcpy(p->sysfs_name, p->dev->name, IFNAMSIZ); return sysfs_create_link(br->ifobj, &p->kobj, p->sysfs_name); } /* Rename bridge's brif symlink */ int br_sysfs_renameif(struct net_bridge_port *p) { struct net_bridge *br = p->br; int err; /* If a rename fails, the rollback will cause another * rename call with the existing name. */ if (!strncmp(p->sysfs_name, p->dev->name, IFNAMSIZ)) return 0; err = sysfs_rename_link(br->ifobj, &p->kobj, p->sysfs_name, p->dev->name); if (err) netdev_notice(br->dev, "unable to rename link %s to %s", p->sysfs_name, p->dev->name); else strlcpy(p->sysfs_name, p->dev->name, IFNAMSIZ); return err; } |
106 106 2 2 77 77 111 110 111 111 72 72 52 52 3 3 196 189 6 62 221 221 80 80 1 1 1 1 3 3 3 3 2 1 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 | /* * net/tipc/node.c: TIPC node management routines * * Copyright (c) 2000-2006, 2012-2016, Ericsson AB * Copyright (c) 2005-2006, 2010-2014, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "link.h" #include "node.h" #include "name_distr.h" #include "socket.h" #include "bcast.h" #include "monitor.h" #include "discover.h" #include "netlink.h" #include "trace.h" #include "crypto.h" #define INVALID_NODE_SIG 0x10000 #define NODE_CLEANUP_AFTER 300000 /* Flags used to take different actions according to flag type * TIPC_NOTIFY_NODE_DOWN: notify node is down * TIPC_NOTIFY_NODE_UP: notify node is up * TIPC_DISTRIBUTE_NAME: publish or withdraw link state name type */ enum { TIPC_NOTIFY_NODE_DOWN = (1 << 3), TIPC_NOTIFY_NODE_UP = (1 << 4), TIPC_NOTIFY_LINK_UP = (1 << 6), TIPC_NOTIFY_LINK_DOWN = (1 << 7) }; struct tipc_link_entry { struct tipc_link *link; spinlock_t lock; /* per link */ u32 mtu; struct sk_buff_head inputq; struct tipc_media_addr maddr; }; struct tipc_bclink_entry { struct tipc_link *link; struct sk_buff_head inputq1; struct sk_buff_head arrvq; struct sk_buff_head inputq2; struct sk_buff_head namedq; u16 named_rcv_nxt; bool named_open; }; /** * struct tipc_node - TIPC node structure * @addr: network address of node * @kref: reference counter to node object * @lock: rwlock governing access to structure * @net: the applicable net namespace * @hash: links to adjacent nodes in unsorted hash chain * @inputq: pointer to input queue containing messages for msg event * @namedq: pointer to name table input queue with name table messages * @active_links: bearer ids of active links, used as index into links[] array * @links: array containing references to all links to node * @bc_entry: broadcast link entry * @action_flags: bit mask of different types of node actions * @state: connectivity state vs peer node * @preliminary: a preliminary node or not * @failover_sent: failover sent or not * @sync_point: sequence number where synch/failover is finished * @list: links to adjacent nodes in sorted list of cluster's nodes * @working_links: number of working links to node (both active and standby) * @link_cnt: number of links to node * @capabilities: bitmap, indicating peer node's functional capabilities * @signature: node instance identifier * @link_id: local and remote bearer ids of changing link, if any * @peer_id: 128-bit ID of peer * @peer_id_string: ID string of peer * @publ_list: list of publications * @conn_sks: list of connections (FIXME) * @timer: node's keepalive timer * @keepalive_intv: keepalive interval in milliseconds * @rcu: rcu struct for tipc_node * @delete_at: indicates the time for deleting a down node * @peer_net: peer's net namespace * @peer_hash_mix: hash for this peer (FIXME) * @crypto_rx: RX crypto handler */ struct tipc_node { u32 addr; struct kref kref; rwlock_t lock; struct net *net; struct hlist_node hash; int active_links[2]; struct tipc_link_entry links[MAX_BEARERS]; struct tipc_bclink_entry bc_entry; int action_flags; struct list_head list; int state; bool preliminary; bool failover_sent; u16 sync_point; int link_cnt; u16 working_links; u16 capabilities; u32 signature; u32 link_id; u8 peer_id[16]; char peer_id_string[NODE_ID_STR_LEN]; struct list_head publ_list; struct list_head conn_sks; unsigned long keepalive_intv; struct timer_list timer; struct rcu_head rcu; unsigned long delete_at; struct net *peer_net; u32 peer_hash_mix; #ifdef CONFIG_TIPC_CRYPTO struct tipc_crypto *crypto_rx; #endif }; /* Node FSM states and events: */ enum { SELF_DOWN_PEER_DOWN = 0xdd, SELF_UP_PEER_UP = 0xaa, SELF_DOWN_PEER_LEAVING = 0xd1, SELF_UP_PEER_COMING = 0xac, SELF_COMING_PEER_UP = 0xca, SELF_LEAVING_PEER_DOWN = 0x1d, NODE_FAILINGOVER = 0xf0, NODE_SYNCHING = 0xcc }; enum { SELF_ESTABL_CONTACT_EVT = 0xece, SELF_LOST_CONTACT_EVT = 0x1ce, PEER_ESTABL_CONTACT_EVT = 0x9ece, PEER_LOST_CONTACT_EVT = 0x91ce, NODE_FAILOVER_BEGIN_EVT = 0xfbe, NODE_FAILOVER_END_EVT = 0xfee, NODE_SYNCH_BEGIN_EVT = 0xcbe, NODE_SYNCH_END_EVT = 0xcee }; static void __tipc_node_link_down(struct tipc_node *n, int *bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr **maddr); static void tipc_node_link_down(struct tipc_node *n, int bearer_id, bool delete); static void node_lost_contact(struct tipc_node *n, struct sk_buff_head *inputq); static void tipc_node_delete(struct tipc_node *node); static void tipc_node_timeout(struct timer_list *t); static void tipc_node_fsm_evt(struct tipc_node *n, int evt); static struct tipc_node *tipc_node_find(struct net *net, u32 addr); static struct tipc_node *tipc_node_find_by_id(struct net *net, u8 *id); static bool node_is_up(struct tipc_node *n); static void tipc_node_delete_from_list(struct tipc_node *node); struct tipc_sock_conn { u32 port; u32 peer_port; u32 peer_node; struct list_head list; }; static struct tipc_link *node_active_link(struct tipc_node *n, int sel) { int bearer_id = n->active_links[sel & 1]; if (unlikely(bearer_id == INVALID_BEARER_ID)) return NULL; return n->links[bearer_id].link; } int tipc_node_get_mtu(struct net *net, u32 addr, u32 sel, bool connected) { struct tipc_node *n; int bearer_id; unsigned int mtu = MAX_MSG_SIZE; n = tipc_node_find(net, addr); if (unlikely(!n)) return mtu; /* Allow MAX_MSG_SIZE when building connection oriented message * if they are in the same core network */ if (n->peer_net && connected) { tipc_node_put(n); return mtu; } bearer_id = n->active_links[sel & 1]; if (likely(bearer_id != INVALID_BEARER_ID)) mtu = n->links[bearer_id].mtu; tipc_node_put(n); return mtu; } bool tipc_node_get_id(struct net *net, u32 addr, u8 *id) { u8 *own_id = tipc_own_id(net); struct tipc_node *n; if (!own_id) return true; if (addr == tipc_own_addr(net)) { memcpy(id, own_id, TIPC_NODEID_LEN); return true; } n = tipc_node_find(net, addr); if (!n) return false; memcpy(id, &n->peer_id, TIPC_NODEID_LEN); tipc_node_put(n); return true; } u16 tipc_node_get_capabilities(struct net *net, u32 addr) { struct tipc_node *n; u16 caps; n = tipc_node_find(net, addr); if (unlikely(!n)) return TIPC_NODE_CAPABILITIES; caps = n->capabilities; tipc_node_put(n); return caps; } u32 tipc_node_get_addr(struct tipc_node *node) { return (node) ? node->addr : 0; } char *tipc_node_get_id_str(struct tipc_node *node) { return node->peer_id_string; } #ifdef CONFIG_TIPC_CRYPTO /** * tipc_node_crypto_rx - Retrieve crypto RX handle from node * @__n: target tipc_node * Note: node ref counter must be held first! */ struct tipc_crypto *tipc_node_crypto_rx(struct tipc_node *__n) { return (__n) ? __n->crypto_rx : NULL; } struct tipc_crypto *tipc_node_crypto_rx_by_list(struct list_head *pos) { return container_of(pos, struct tipc_node, list)->crypto_rx; } struct tipc_crypto *tipc_node_crypto_rx_by_addr(struct net *net, u32 addr) { struct tipc_node *n; n = tipc_node_find(net, addr); return (n) ? n->crypto_rx : NULL; } #endif static void tipc_node_free(struct rcu_head *rp) { struct tipc_node *n = container_of(rp, struct tipc_node, rcu); #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_stop(&n->crypto_rx); #endif kfree(n); } static void tipc_node_kref_release(struct kref *kref) { struct tipc_node *n = container_of(kref, struct tipc_node, kref); kfree(n->bc_entry.link); call_rcu(&n->rcu, tipc_node_free); } void tipc_node_put(struct tipc_node *node) { kref_put(&node->kref, tipc_node_kref_release); } void tipc_node_get(struct tipc_node *node) { kref_get(&node->kref); } /* * tipc_node_find - locate specified node object, if it exists */ static struct tipc_node *tipc_node_find(struct net *net, u32 addr) { struct tipc_net *tn = tipc_net(net); struct tipc_node *node; unsigned int thash = tipc_hashfn(addr); rcu_read_lock(); hlist_for_each_entry_rcu(node, &tn->node_htable[thash], hash) { if (node->addr != addr || node->preliminary) continue; if (!kref_get_unless_zero(&node->kref)) node = NULL; break; } rcu_read_unlock(); return node; } /* tipc_node_find_by_id - locate specified node object by its 128-bit id * Note: this function is called only when a discovery request failed * to find the node by its 32-bit id, and is not time critical */ static struct tipc_node *tipc_node_find_by_id(struct net *net, u8 *id) { struct tipc_net *tn = tipc_net(net); struct tipc_node *n; bool found = false; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { read_lock_bh(&n->lock); if (!memcmp(id, n->peer_id, 16) && kref_get_unless_zero(&n->kref)) found = true; read_unlock_bh(&n->lock); if (found) break; } rcu_read_unlock(); return found ? n : NULL; } static void tipc_node_read_lock(struct tipc_node *n) __acquires(n->lock) { read_lock_bh(&n->lock); } static void tipc_node_read_unlock(struct tipc_node *n) __releases(n->lock) { read_unlock_bh(&n->lock); } static void tipc_node_write_lock(struct tipc_node *n) __acquires(n->lock) { write_lock_bh(&n->lock); } static void tipc_node_write_unlock_fast(struct tipc_node *n) __releases(n->lock) { write_unlock_bh(&n->lock); } static void tipc_node_write_unlock(struct tipc_node *n) __releases(n->lock) { struct tipc_socket_addr sk; struct net *net = n->net; u32 flags = n->action_flags; struct list_head *publ_list; struct tipc_uaddr ua; u32 bearer_id, node; if (likely(!flags)) { write_unlock_bh(&n->lock); return; } tipc_uaddr(&ua, TIPC_SERVICE_RANGE, TIPC_NODE_SCOPE, TIPC_LINK_STATE, n->addr, n->addr); sk.ref = n->link_id; sk.node = tipc_own_addr(net); node = n->addr; bearer_id = n->link_id & 0xffff; publ_list = &n->publ_list; n->action_flags &= ~(TIPC_NOTIFY_NODE_DOWN | TIPC_NOTIFY_NODE_UP | TIPC_NOTIFY_LINK_DOWN | TIPC_NOTIFY_LINK_UP); write_unlock_bh(&n->lock); if (flags & TIPC_NOTIFY_NODE_DOWN) tipc_publ_notify(net, publ_list, node, n->capabilities); if (flags & TIPC_NOTIFY_NODE_UP) tipc_named_node_up(net, node, n->capabilities); if (flags & TIPC_NOTIFY_LINK_UP) { tipc_mon_peer_up(net, node, bearer_id); tipc_nametbl_publish(net, &ua, &sk, sk.ref); } if (flags & TIPC_NOTIFY_LINK_DOWN) { tipc_mon_peer_down(net, node, bearer_id); tipc_nametbl_withdraw(net, &ua, &sk, sk.ref); } } static void tipc_node_assign_peer_net(struct tipc_node *n, u32 hash_mixes) { int net_id = tipc_netid(n->net); struct tipc_net *tn_peer; struct net *tmp; u32 hash_chk; if (n->peer_net) return; for_each_net_rcu(tmp) { tn_peer = tipc_net(tmp); if (!tn_peer) continue; /* Integrity checking whether node exists in namespace or not */ if (tn_peer->net_id != net_id) continue; if (memcmp(n->peer_id, tn_peer->node_id, NODE_ID_LEN)) continue; hash_chk = tipc_net_hash_mixes(tmp, tn_peer->random); if (hash_mixes ^ hash_chk) continue; n->peer_net = tmp; n->peer_hash_mix = hash_mixes; break; } } struct tipc_node *tipc_node_create(struct net *net, u32 addr, u8 *peer_id, u16 capabilities, u32 hash_mixes, bool preliminary) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_link *l, *snd_l = tipc_bc_sndlink(net); struct tipc_node *n, *temp_node; unsigned long intv; int bearer_id; int i; spin_lock_bh(&tn->node_list_lock); n = tipc_node_find(net, addr) ?: tipc_node_find_by_id(net, peer_id); if (n) { if (!n->preliminary) goto update; if (preliminary) goto exit; /* A preliminary node becomes "real" now, refresh its data */ tipc_node_write_lock(n); if (!tipc_link_bc_create(net, tipc_own_addr(net), addr, peer_id, U16_MAX, tipc_link_min_win(snd_l), tipc_link_max_win(snd_l), n->capabilities, &n->bc_entry.inputq1, &n->bc_entry.namedq, snd_l, &n->bc_entry.link)) { pr_warn("Broadcast rcv link refresh failed, no memory\n"); tipc_node_write_unlock_fast(n); tipc_node_put(n); n = NULL; goto exit; } n->preliminary = false; n->addr = addr; hlist_del_rcu(&n->hash); hlist_add_head_rcu(&n->hash, &tn->node_htable[tipc_hashfn(addr)]); list_del_rcu(&n->list); list_for_each_entry_rcu(temp_node, &tn->node_list, list) { if (n->addr < temp_node->addr) break; } list_add_tail_rcu(&n->list, &temp_node->list); tipc_node_write_unlock_fast(n); update: if (n->peer_hash_mix ^ hash_mixes) tipc_node_assign_peer_net(n, hash_mixes); if (n->capabilities == capabilities) goto exit; /* Same node may come back with new capabilities */ tipc_node_write_lock(n); n->capabilities = capabilities; for (bearer_id = 0; bearer_id < MAX_BEARERS; bearer_id++) { l = n->links[bearer_id].link; if (l) tipc_link_update_caps(l, capabilities); } tipc_node_write_unlock_fast(n); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); goto exit; } n = kzalloc(sizeof(*n), GFP_ATOMIC); if (!n) { pr_warn("Node creation failed, no memory\n"); goto exit; } tipc_nodeid2string(n->peer_id_string, peer_id); #ifdef CONFIG_TIPC_CRYPTO if (unlikely(tipc_crypto_start(&n->crypto_rx, net, n))) { pr_warn("Failed to start crypto RX(%s)!\n", n->peer_id_string); kfree(n); n = NULL; goto exit; } #endif n->addr = addr; n->preliminary = preliminary; memcpy(&n->peer_id, peer_id, 16); n->net = net; n->peer_net = NULL; n->peer_hash_mix = 0; /* Assign kernel local namespace if exists */ tipc_node_assign_peer_net(n, hash_mixes); n->capabilities = capabilities; kref_init(&n->kref); rwlock_init(&n->lock); INIT_HLIST_NODE(&n->hash); INIT_LIST_HEAD(&n->list); INIT_LIST_HEAD(&n->publ_list); INIT_LIST_HEAD(&n->conn_sks); skb_queue_head_init(&n->bc_entry.namedq); skb_queue_head_init(&n->bc_entry.inputq1); __skb_queue_head_init(&n->bc_entry.arrvq); skb_queue_head_init(&n->bc_entry.inputq2); for (i = 0; i < MAX_BEARERS; i++) spin_lock_init(&n->links[i].lock); n->state = SELF_DOWN_PEER_LEAVING; n->delete_at = jiffies + msecs_to_jiffies(NODE_CLEANUP_AFTER); n->signature = INVALID_NODE_SIG; n->active_links[0] = INVALID_BEARER_ID; n->active_links[1] = INVALID_BEARER_ID; if (!preliminary && !tipc_link_bc_create(net, tipc_own_addr(net), addr, peer_id, U16_MAX, tipc_link_min_win(snd_l), tipc_link_max_win(snd_l), n->capabilities, &n->bc_entry.inputq1, &n->bc_entry.namedq, snd_l, &n->bc_entry.link)) { pr_warn("Broadcast rcv link creation failed, no memory\n"); tipc_node_put(n); n = NULL; goto exit; } tipc_node_get(n); timer_setup(&n->timer, tipc_node_timeout, 0); /* Start a slow timer anyway, crypto needs it */ n->keepalive_intv = 10000; intv = jiffies + msecs_to_jiffies(n->keepalive_intv); if (!mod_timer(&n->timer, intv)) tipc_node_get(n); hlist_add_head_rcu(&n->hash, &tn->node_htable[tipc_hashfn(addr)]); list_for_each_entry_rcu(temp_node, &tn->node_list, list) { if (n->addr < temp_node->addr) break; } list_add_tail_rcu(&n->list, &temp_node->list); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); trace_tipc_node_create(n, true, " "); exit: spin_unlock_bh(&tn->node_list_lock); return n; } static void tipc_node_calculate_timer(struct tipc_node *n, struct tipc_link *l) { unsigned long tol = tipc_link_tolerance(l); unsigned long intv = ((tol / 4) > 500) ? 500 : tol / 4; /* Link with lowest tolerance determines timer interval */ if (intv < n->keepalive_intv) n->keepalive_intv = intv; /* Ensure link's abort limit corresponds to current tolerance */ tipc_link_set_abort_limit(l, tol / n->keepalive_intv); } static void tipc_node_delete_from_list(struct tipc_node *node) { #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_key_flush(node->crypto_rx); #endif list_del_rcu(&node->list); hlist_del_rcu(&node->hash); tipc_node_put(node); } static void tipc_node_delete(struct tipc_node *node) { trace_tipc_node_delete(node, true, " "); tipc_node_delete_from_list(node); del_timer_sync(&node->timer); tipc_node_put(node); } void tipc_node_stop(struct net *net) { struct tipc_net *tn = tipc_net(net); struct tipc_node *node, *t_node; spin_lock_bh(&tn->node_list_lock); list_for_each_entry_safe(node, t_node, &tn->node_list, list) tipc_node_delete(node); spin_unlock_bh(&tn->node_list_lock); } void tipc_node_subscribe(struct net *net, struct list_head *subscr, u32 addr) { struct tipc_node *n; if (in_own_node(net, addr)) return; n = tipc_node_find(net, addr); if (!n) { pr_warn("Node subscribe rejected, unknown node 0x%x\n", addr); return; } tipc_node_write_lock(n); list_add_tail(subscr, &n->publ_list); tipc_node_write_unlock_fast(n); tipc_node_put(n); } void tipc_node_unsubscribe(struct net *net, struct list_head *subscr, u32 addr) { struct tipc_node *n; if (in_own_node(net, addr)) return; n = tipc_node_find(net, addr); if (!n) { pr_warn("Node unsubscribe rejected, unknown node 0x%x\n", addr); return; } tipc_node_write_lock(n); list_del_init(subscr); tipc_node_write_unlock_fast(n); tipc_node_put(n); } int tipc_node_add_conn(struct net *net, u32 dnode, u32 port, u32 peer_port) { struct tipc_node *node; struct tipc_sock_conn *conn; int err = 0; if (in_own_node(net, dnode)) return 0; node = tipc_node_find(net, dnode); if (!node) { pr_warn("Connecting sock to node 0x%x failed\n", dnode); return -EHOSTUNREACH; } conn = kmalloc(sizeof(*conn), GFP_ATOMIC); if (!conn) { err = -EHOSTUNREACH; goto exit; } conn->peer_node = dnode; conn->port = port; conn->peer_port = peer_port; tipc_node_write_lock(node); list_add_tail(&conn->list, &node->conn_sks); tipc_node_write_unlock(node); exit: tipc_node_put(node); return err; } void tipc_node_remove_conn(struct net *net, u32 dnode, u32 port) { struct tipc_node *node; struct tipc_sock_conn *conn, *safe; if (in_own_node(net, dnode)) return; node = tipc_node_find(net, dnode); if (!node) return; tipc_node_write_lock(node); list_for_each_entry_safe(conn, safe, &node->conn_sks, list) { if (port != conn->port) continue; list_del(&conn->list); kfree(conn); } tipc_node_write_unlock(node); tipc_node_put(node); } static void tipc_node_clear_links(struct tipc_node *node) { int i; for (i = 0; i < MAX_BEARERS; i++) { struct tipc_link_entry *le = &node->links[i]; if (le->link) { kfree(le->link); le->link = NULL; node->link_cnt--; } } } /* tipc_node_cleanup - delete nodes that does not * have active links for NODE_CLEANUP_AFTER time */ static bool tipc_node_cleanup(struct tipc_node *peer) { struct tipc_node *temp_node; struct tipc_net *tn = tipc_net(peer->net); bool deleted = false; /* If lock held by tipc_node_stop() the node will be deleted anyway */ if (!spin_trylock_bh(&tn->node_list_lock)) return false; tipc_node_write_lock(peer); if (!node_is_up(peer) && time_after(jiffies, peer->delete_at)) { tipc_node_clear_links(peer); tipc_node_delete_from_list(peer); deleted = true; } tipc_node_write_unlock(peer); if (!deleted) { spin_unlock_bh(&tn->node_list_lock); return deleted; } /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(peer->net, (tn->capabilities & TIPC_BCAST_RCAST)); spin_unlock_bh(&tn->node_list_lock); return deleted; } /* tipc_node_timeout - handle expiration of node timer */ static void tipc_node_timeout(struct timer_list *t) { struct tipc_node *n = from_timer(n, t, timer); struct tipc_link_entry *le; struct sk_buff_head xmitq; int remains = n->link_cnt; int bearer_id; int rc = 0; trace_tipc_node_timeout(n, false, " "); if (!node_is_up(n) && tipc_node_cleanup(n)) { /*Removing the reference of Timer*/ tipc_node_put(n); return; } #ifdef CONFIG_TIPC_CRYPTO /* Take any crypto key related actions first */ tipc_crypto_timeout(n->crypto_rx); #endif __skb_queue_head_init(&xmitq); /* Initial node interval to value larger (10 seconds), then it will be * recalculated with link lowest tolerance */ tipc_node_read_lock(n); n->keepalive_intv = 10000; tipc_node_read_unlock(n); for (bearer_id = 0; remains && (bearer_id < MAX_BEARERS); bearer_id++) { tipc_node_read_lock(n); le = &n->links[bearer_id]; if (le->link) { spin_lock_bh(&le->lock); /* Link tolerance may change asynchronously: */ tipc_node_calculate_timer(n, le->link); rc = tipc_link_timeout(le->link, &xmitq); spin_unlock_bh(&le->lock); remains--; } tipc_node_read_unlock(n); tipc_bearer_xmit(n->net, bearer_id, &xmitq, &le->maddr, n); if (rc & TIPC_LINK_DOWN_EVT) tipc_node_link_down(n, bearer_id, false); } mod_timer(&n->timer, jiffies + msecs_to_jiffies(n->keepalive_intv)); } /** * __tipc_node_link_up - handle addition of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * Node lock must be held by caller * Link becomes active (alone or shared) or standby, depending on its priority. */ static void __tipc_node_link_up(struct tipc_node *n, int bearer_id, struct sk_buff_head *xmitq) { int *slot0 = &n->active_links[0]; int *slot1 = &n->active_links[1]; struct tipc_link *ol = node_active_link(n, 0); struct tipc_link *nl = n->links[bearer_id].link; if (!nl || tipc_link_is_up(nl)) return; tipc_link_fsm_evt(nl, LINK_ESTABLISH_EVT); if (!tipc_link_is_up(nl)) return; n->working_links++; n->action_flags |= TIPC_NOTIFY_LINK_UP; n->link_id = tipc_link_id(nl); /* Leave room for tunnel header when returning 'mtu' to users: */ n->links[bearer_id].mtu = tipc_link_mss(nl); tipc_bearer_add_dest(n->net, bearer_id, n->addr); tipc_bcast_inc_bearer_dst_cnt(n->net, bearer_id); pr_debug("Established link <%s> on network plane %c\n", tipc_link_name(nl), tipc_link_plane(nl)); trace_tipc_node_link_up(n, true, " "); /* Ensure that a STATE message goes first */ tipc_link_build_state_msg(nl, xmitq); /* First link? => give it both slots */ if (!ol) { *slot0 = bearer_id; *slot1 = bearer_id; tipc_node_fsm_evt(n, SELF_ESTABL_CONTACT_EVT); n->action_flags |= TIPC_NOTIFY_NODE_UP; tipc_link_set_active(nl, true); tipc_bcast_add_peer(n->net, nl, xmitq); return; } /* Second link => redistribute slots */ if (tipc_link_prio(nl) > tipc_link_prio(ol)) { pr_debug("Old link <%s> becomes standby\n", tipc_link_name(ol)); *slot0 = bearer_id; *slot1 = bearer_id; tipc_link_set_active(nl, true); tipc_link_set_active(ol, false); } else if (tipc_link_prio(nl) == tipc_link_prio(ol)) { tipc_link_set_active(nl, true); *slot1 = bearer_id; } else { pr_debug("New link <%s> is standby\n", tipc_link_name(nl)); } /* Prepare synchronization with first link */ tipc_link_tnl_prepare(ol, nl, SYNCH_MSG, xmitq); } /** * tipc_node_link_up - handle addition of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * * Link becomes active (alone or shared) or standby, depending on its priority. */ static void tipc_node_link_up(struct tipc_node *n, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_media_addr *maddr; tipc_node_write_lock(n); __tipc_node_link_up(n, bearer_id, xmitq); maddr = &n->links[bearer_id].maddr; tipc_bearer_xmit(n->net, bearer_id, xmitq, maddr, n); tipc_node_write_unlock(n); } /** * tipc_node_link_failover() - start failover in case "half-failover" * * This function is only called in a very special situation where link * failover can be already started on peer node but not on this node. * This can happen when e.g.:: * * 1. Both links <1A-2A>, <1B-2B> down * 2. Link endpoint 2A up, but 1A still down (e.g. due to network * disturbance, wrong session, etc.) * 3. Link <1B-2B> up * 4. Link endpoint 2A down (e.g. due to link tolerance timeout) * 5. Node 2 starts failover onto link <1B-2B> * * ==> Node 1 does never start link/node failover! * * @n: tipc node structure * @l: link peer endpoint failingover (- can be NULL) * @tnl: tunnel link * @xmitq: queue for messages to be xmited on tnl link later */ static void tipc_node_link_failover(struct tipc_node *n, struct tipc_link *l, struct tipc_link *tnl, struct sk_buff_head *xmitq) { /* Avoid to be "self-failover" that can never end */ if (!tipc_link_is_up(tnl)) return; /* Don't rush, failure link may be in the process of resetting */ if (l && !tipc_link_is_reset(l)) return; tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); n->sync_point = tipc_link_rcv_nxt(tnl) + (U16_MAX / 2 - 1); tipc_link_failover_prepare(l, tnl, xmitq); if (l) tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_FAILOVER_BEGIN_EVT); } /** * __tipc_node_link_down - handle loss of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * @maddr: output media address of the bearer */ static void __tipc_node_link_down(struct tipc_node *n, int *bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr **maddr) { struct tipc_link_entry *le = &n->links[*bearer_id]; int *slot0 = &n->active_links[0]; int *slot1 = &n->active_links[1]; int i, highest = 0, prio; struct tipc_link *l, *_l, *tnl; l = n->links[*bearer_id].link; if (!l || tipc_link_is_reset(l)) return; n->working_links--; n->action_flags |= TIPC_NOTIFY_LINK_DOWN; n->link_id = tipc_link_id(l); tipc_bearer_remove_dest(n->net, *bearer_id, n->addr); pr_debug("Lost link <%s> on network plane %c\n", tipc_link_name(l), tipc_link_plane(l)); /* Select new active link if any available */ *slot0 = INVALID_BEARER_ID; *slot1 = INVALID_BEARER_ID; for (i = 0; i < MAX_BEARERS; i++) { _l = n->links[i].link; if (!_l || !tipc_link_is_up(_l)) continue; if (_l == l) continue; prio = tipc_link_prio(_l); if (prio < highest) continue; if (prio > highest) { highest = prio; *slot0 = i; *slot1 = i; continue; } *slot1 = i; } if (!node_is_up(n)) { if (tipc_link_peer_is_down(l)) tipc_node_fsm_evt(n, PEER_LOST_CONTACT_EVT); tipc_node_fsm_evt(n, SELF_LOST_CONTACT_EVT); trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link down!"); tipc_link_fsm_evt(l, LINK_RESET_EVT); tipc_link_reset(l); tipc_link_build_reset_msg(l, xmitq); *maddr = &n->links[*bearer_id].maddr; node_lost_contact(n, &le->inputq); tipc_bcast_dec_bearer_dst_cnt(n->net, *bearer_id); return; } tipc_bcast_dec_bearer_dst_cnt(n->net, *bearer_id); /* There is still a working link => initiate failover */ *bearer_id = n->active_links[0]; tnl = n->links[*bearer_id].link; tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); n->sync_point = tipc_link_rcv_nxt(tnl) + (U16_MAX / 2 - 1); tipc_link_tnl_prepare(l, tnl, FAILOVER_MSG, xmitq); trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link down -> failover!"); tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_FAILOVER_BEGIN_EVT); *maddr = &n->links[*bearer_id].maddr; } static void tipc_node_link_down(struct tipc_node *n, int bearer_id, bool delete) { struct tipc_link_entry *le = &n->links[bearer_id]; struct tipc_media_addr *maddr = NULL; struct tipc_link *l = le->link; int old_bearer_id = bearer_id; struct sk_buff_head xmitq; if (!l) return; __skb_queue_head_init(&xmitq); tipc_node_write_lock(n); if (!tipc_link_is_establishing(l)) { __tipc_node_link_down(n, &bearer_id, &xmitq, &maddr); } else { /* Defuse pending tipc_node_link_up() */ tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); } if (delete) { kfree(l); le->link = NULL; n->link_cnt--; } trace_tipc_node_link_down(n, true, "node link down or deleted!"); tipc_node_write_unlock(n); if (delete) tipc_mon_remove_peer(n->net, n->addr, old_bearer_id); if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(n->net, bearer_id, &xmitq, maddr, n); tipc_sk_rcv(n->net, &le->inputq); } static bool node_is_up(struct tipc_node *n) { return n->active_links[0] != INVALID_BEARER_ID; } bool tipc_node_is_up(struct net *net, u32 addr) { struct tipc_node *n; bool retval = false; if (in_own_node(net, addr)) return true; n = tipc_node_find(net, addr); if (!n) return false; retval = node_is_up(n); tipc_node_put(n); return retval; } static u32 tipc_node_suggest_addr(struct net *net, u32 addr) { struct tipc_node *n; addr ^= tipc_net(net)->random; while ((n = tipc_node_find(net, addr))) { tipc_node_put(n); addr++; } return addr; } /* tipc_node_try_addr(): Check if addr can be used by peer, suggest other if not * Returns suggested address if any, otherwise 0 */ u32 tipc_node_try_addr(struct net *net, u8 *id, u32 addr) { struct tipc_net *tn = tipc_net(net); struct tipc_node *n; bool preliminary; u32 sugg_addr; /* Suggest new address if some other peer is using this one */ n = tipc_node_find(net, addr); if (n) { if (!memcmp(n->peer_id, id, NODE_ID_LEN)) addr = 0; tipc_node_put(n); if (!addr) return 0; return tipc_node_suggest_addr(net, addr); } /* Suggest previously used address if peer is known */ n = tipc_node_find_by_id(net, id); if (n) { sugg_addr = n->addr; preliminary = n->preliminary; tipc_node_put(n); if (!preliminary) return sugg_addr; } /* Even this node may be in conflict */ if (tn->trial_addr == addr) return tipc_node_suggest_addr(net, addr); return 0; } void tipc_node_check_dest(struct net *net, u32 addr, u8 *peer_id, struct tipc_bearer *b, u16 capabilities, u32 signature, u32 hash_mixes, struct tipc_media_addr *maddr, bool *respond, bool *dupl_addr) { struct tipc_node *n; struct tipc_link *l; struct tipc_link_entry *le; bool addr_match = false; bool sign_match = false; bool link_up = false; bool link_is_reset = false; bool accept_addr = false; bool reset = false; char *if_name; unsigned long intv; u16 session; *dupl_addr = false; *respond = false; n = tipc_node_create(net, addr, peer_id, capabilities, hash_mixes, false); if (!n) return; tipc_node_write_lock(n); le = &n->links[b->identity]; /* Prepare to validate requesting node's signature and media address */ l = le->link; link_up = l && tipc_link_is_up(l); link_is_reset = l && tipc_link_is_reset(l); addr_match = l && !memcmp(&le->maddr, maddr, sizeof(*maddr)); sign_match = (signature == n->signature); /* These three flags give us eight permutations: */ if (sign_match && addr_match && link_up) { /* All is fine. Ignore requests. */ /* Peer node is not a container/local namespace */ if (!n->peer_hash_mix) n->peer_hash_mix = hash_mixes; } else if (sign_match && addr_match && !link_up) { /* Respond. The link will come up in due time */ *respond = true; } else if (sign_match && !addr_match && link_up) { /* Peer has changed i/f address without rebooting. * If so, the link will reset soon, and the next * discovery will be accepted. So we can ignore it. * It may also be a cloned or malicious peer having * chosen the same node address and signature as an * existing one. * Ignore requests until the link goes down, if ever. */ *dupl_addr = true; } else if (sign_match && !addr_match && !link_up) { /* Peer link has changed i/f address without rebooting. * It may also be a cloned or malicious peer; we can't * distinguish between the two. * The signature is correct, so we must accept. */ accept_addr = true; *respond = true; reset = true; } else if (!sign_match && addr_match && link_up) { /* Peer node rebooted. Two possibilities: * - Delayed re-discovery; this link endpoint has already * reset and re-established contact with the peer, before * receiving a discovery message from that node. * (The peer happened to receive one from this node first). * - The peer came back so fast that our side has not * discovered it yet. Probing from this side will soon * reset the link, since there can be no working link * endpoint at the peer end, and the link will re-establish. * Accept the signature, since it comes from a known peer. */ n->signature = signature; } else if (!sign_match && addr_match && !link_up) { /* The peer node has rebooted. * Accept signature, since it is a known peer. */ n->signature = signature; *respond = true; } else if (!sign_match && !addr_match && link_up) { /* Peer rebooted with new address, or a new/duplicate peer. * Ignore until the link goes down, if ever. */ *dupl_addr = true; } else if (!sign_match && !addr_match && !link_up) { /* Peer rebooted with new address, or it is a new peer. * Accept signature and address. */ n->signature = signature; accept_addr = true; *respond = true; reset = true; } if (!accept_addr) goto exit; /* Now create new link if not already existing */ if (!l) { if (n->link_cnt == 2) goto exit; if_name = strchr(b->name, ':') + 1; get_random_bytes(&session, sizeof(u16)); if (!tipc_link_create(net, if_name, b->identity, b->tolerance, b->net_plane, b->mtu, b->priority, b->min_win, b->max_win, session, tipc_own_addr(net), addr, peer_id, n->capabilities, tipc_bc_sndlink(n->net), n->bc_entry.link, &le->inputq, &n->bc_entry.namedq, &l)) { *respond = false; goto exit; } trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link created!"); tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); if (n->state == NODE_FAILINGOVER) tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); link_is_reset = tipc_link_is_reset(l); le->link = l; n->link_cnt++; tipc_node_calculate_timer(n, l); if (n->link_cnt == 1) { intv = jiffies + msecs_to_jiffies(n->keepalive_intv); if (!mod_timer(&n->timer, intv)) tipc_node_get(n); } } memcpy(&le->maddr, maddr, sizeof(*maddr)); exit: tipc_node_write_unlock(n); if (reset && !link_is_reset) tipc_node_link_down(n, b->identity, false); tipc_node_put(n); } void tipc_node_delete_links(struct net *net, int bearer_id) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_node *n; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_link_down(n, bearer_id, true); } rcu_read_unlock(); } static void tipc_node_reset_links(struct tipc_node *n) { int i; pr_warn("Resetting all links to %x\n", n->addr); trace_tipc_node_reset_links(n, true, " "); for (i = 0; i < MAX_BEARERS; i++) { tipc_node_link_down(n, i, false); } } /* tipc_node_fsm_evt - node finite state machine * Determines when contact is allowed with peer node */ static void tipc_node_fsm_evt(struct tipc_node *n, int evt) { int state = n->state; switch (state) { case SELF_DOWN_PEER_DOWN: switch (evt) { case SELF_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_COMING; break; case PEER_ESTABL_CONTACT_EVT: state = SELF_COMING_PEER_UP; break; case SELF_LOST_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_UP_PEER_UP: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_SYNCH_BEGIN_EVT: state = NODE_SYNCHING; break; case NODE_FAILOVER_BEGIN_EVT: state = NODE_FAILINGOVER; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case NODE_SYNCH_END_EVT: case NODE_FAILOVER_END_EVT: break; default: goto illegal_evt; } break; case SELF_DOWN_PEER_LEAVING: switch (evt) { case PEER_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case SELF_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_UP_PEER_COMING: switch (evt) { case PEER_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_UP; break; case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: case NODE_SYNCH_END_EVT: case NODE_FAILOVER_BEGIN_EVT: break; case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_COMING_PEER_UP: switch (evt) { case SELF_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_UP; break; case PEER_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_LOST_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_LEAVING_PEER_DOWN: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case NODE_FAILINGOVER: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_FAILOVER_END_EVT: state = SELF_UP_PEER_UP; break; case NODE_FAILOVER_BEGIN_EVT: case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_SYNCH_BEGIN_EVT: case NODE_SYNCH_END_EVT: default: goto illegal_evt; } break; case NODE_SYNCHING: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_SYNCH_END_EVT: state = SELF_UP_PEER_UP; break; case NODE_FAILOVER_BEGIN_EVT: state = NODE_FAILINGOVER; break; case NODE_SYNCH_BEGIN_EVT: case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; default: pr_err("Unknown node fsm state %x\n", state); break; } trace_tipc_node_fsm(n->peer_id, n->state, state, evt); n->state = state; return; illegal_evt: pr_err("Illegal node fsm evt %x in state %x\n", evt, state); trace_tipc_node_fsm(n->peer_id, n->state, state, evt); } static void node_lost_contact(struct tipc_node *n, struct sk_buff_head *inputq) { struct tipc_sock_conn *conn, *safe; struct tipc_link *l; struct list_head *conns = &n->conn_sks; struct sk_buff *skb; uint i; pr_debug("Lost contact with %x\n", n->addr); n->delete_at = jiffies + msecs_to_jiffies(NODE_CLEANUP_AFTER); trace_tipc_node_lost_contact(n, true, " "); /* Clean up broadcast state */ tipc_bcast_remove_peer(n->net, n->bc_entry.link); skb_queue_purge(&n->bc_entry.namedq); /* Abort any ongoing link failover */ for (i = 0; i < MAX_BEARERS; i++) { l = n->links[i].link; if (l) tipc_link_fsm_evt(l, LINK_FAILOVER_END_EVT); } /* Notify publications from this node */ n->action_flags |= TIPC_NOTIFY_NODE_DOWN; n->peer_net = NULL; n->peer_hash_mix = 0; /* Notify sockets connected to node */ list_for_each_entry_safe(conn, safe, conns, list) { skb = tipc_msg_create(TIPC_CRITICAL_IMPORTANCE, TIPC_CONN_MSG, SHORT_H_SIZE, 0, tipc_own_addr(n->net), conn->peer_node, conn->port, conn->peer_port, TIPC_ERR_NO_NODE); if (likely(skb)) skb_queue_tail(inputq, skb); list_del(&conn->list); kfree(conn); } } /** * tipc_node_get_linkname - get the name of a link * * @net: the applicable net namespace * @bearer_id: id of the bearer * @addr: peer node address * @linkname: link name output buffer * @len: size of @linkname output buffer * * Return: 0 on success */ int tipc_node_get_linkname(struct net *net, u32 bearer_id, u32 addr, char *linkname, size_t len) { struct tipc_link *link; int err = -EINVAL; struct tipc_node *node = tipc_node_find(net, addr); if (!node) return err; if (bearer_id >= MAX_BEARERS) goto exit; tipc_node_read_lock(node); link = node->links[bearer_id].link; if (link) { strncpy(linkname, tipc_link_name(link), len); err = 0; } tipc_node_read_unlock(node); exit: tipc_node_put(node); return err; } /* Caller should hold node lock for the passed node */ static int __tipc_nl_add_node(struct tipc_nl_msg *msg, struct tipc_node *node) { void *hdr; struct nlattr *attrs; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_NODE_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_NODE); if (!attrs) goto msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_NODE_ADDR, node->addr)) goto attr_msg_full; if (node_is_up(node)) if (nla_put_flag(msg->skb, TIPC_NLA_NODE_UP)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } static void tipc_lxc_xmit(struct net *peer_net, struct sk_buff_head *list) { struct tipc_msg *hdr = buf_msg(skb_peek(list)); struct sk_buff_head inputq; switch (msg_user(hdr)) { case TIPC_LOW_IMPORTANCE: case TIPC_MEDIUM_IMPORTANCE: case TIPC_HIGH_IMPORTANCE: case TIPC_CRITICAL_IMPORTANCE: if (msg_connected(hdr) || msg_named(hdr) || msg_direct(hdr)) { tipc_loopback_trace(peer_net, list); spin_lock_init(&list->lock); tipc_sk_rcv(peer_net, list); return; } if (msg_mcast(hdr)) { tipc_loopback_trace(peer_net, list); skb_queue_head_init(&inputq); tipc_sk_mcast_rcv(peer_net, list, &inputq); __skb_queue_purge(list); skb_queue_purge(&inputq); return; } return; case MSG_FRAGMENTER: if (tipc_msg_assemble(list)) { tipc_loopback_trace(peer_net, list); skb_queue_head_init(&inputq); tipc_sk_mcast_rcv(peer_net, list, &inputq); __skb_queue_purge(list); skb_queue_purge(&inputq); } return; case GROUP_PROTOCOL: case CONN_MANAGER: tipc_loopback_trace(peer_net, list); spin_lock_init(&list->lock); tipc_sk_rcv(peer_net, list); return; case LINK_PROTOCOL: case NAME_DISTRIBUTOR: case TUNNEL_PROTOCOL: case BCAST_PROTOCOL: return; default: return; } } /** * tipc_node_xmit() - general link level function for message sending * @net: the applicable net namespace * @list: chain of buffers containing message * @dnode: address of destination node * @selector: a number used for deterministic link selection * Consumes the buffer chain. * Return: 0 if success, otherwise: -ELINKCONG,-EHOSTUNREACH,-EMSGSIZE,-ENOBUF */ int tipc_node_xmit(struct net *net, struct sk_buff_head *list, u32 dnode, int selector) { struct tipc_link_entry *le = NULL; struct tipc_node *n; struct sk_buff_head xmitq; bool node_up = false; struct net *peer_net; int bearer_id; int rc; if (in_own_node(net, dnode)) { tipc_loopback_trace(net, list); spin_lock_init(&list->lock); tipc_sk_rcv(net, list); return 0; } n = tipc_node_find(net, dnode); if (unlikely(!n)) { __skb_queue_purge(list); return -EHOSTUNREACH; } rcu_read_lock(); tipc_node_read_lock(n); node_up = node_is_up(n); peer_net = n->peer_net; tipc_node_read_unlock(n); if (node_up && peer_net && check_net(peer_net)) { /* xmit inner linux container */ tipc_lxc_xmit(peer_net, list); if (likely(skb_queue_empty(list))) { rcu_read_unlock(); tipc_node_put(n); return 0; } } rcu_read_unlock(); tipc_node_read_lock(n); bearer_id = n->active_links[selector & 1]; if (unlikely(bearer_id == INVALID_BEARER_ID)) { tipc_node_read_unlock(n); tipc_node_put(n); __skb_queue_purge(list); return -EHOSTUNREACH; } __skb_queue_head_init(&xmitq); le = &n->links[bearer_id]; spin_lock_bh(&le->lock); rc = tipc_link_xmit(le->link, list, &xmitq); spin_unlock_bh(&le->lock); tipc_node_read_unlock(n); if (unlikely(rc == -ENOBUFS)) tipc_node_link_down(n, bearer_id, false); else tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); tipc_node_put(n); return rc; } /* tipc_node_xmit_skb(): send single buffer to destination * Buffers sent via this function are generally TIPC_SYSTEM_IMPORTANCE * messages, which will not be rejected * The only exception is datagram messages rerouted after secondary * lookup, which are rare and safe to dispose of anyway. */ int tipc_node_xmit_skb(struct net *net, struct sk_buff *skb, u32 dnode, u32 selector) { struct sk_buff_head head; __skb_queue_head_init(&head); __skb_queue_tail(&head, skb); tipc_node_xmit(net, &head, dnode, selector); return 0; } /* tipc_node_distr_xmit(): send single buffer msgs to individual destinations * Note: this is only for SYSTEM_IMPORTANCE messages, which cannot be rejected */ int tipc_node_distr_xmit(struct net *net, struct sk_buff_head *xmitq) { struct sk_buff *skb; u32 selector, dnode; while ((skb = __skb_dequeue(xmitq))) { selector = msg_origport(buf_msg(skb)); dnode = msg_destnode(buf_msg(skb)); tipc_node_xmit_skb(net, skb, dnode, selector); } return 0; } void tipc_node_broadcast(struct net *net, struct sk_buff *skb, int rc_dests) { struct sk_buff_head xmitq; struct sk_buff *txskb; struct tipc_node *n; u16 dummy; u32 dst; /* Use broadcast if all nodes support it */ if (!rc_dests && tipc_bcast_get_mode(net) != BCLINK_MODE_RCAST) { __skb_queue_head_init(&xmitq); __skb_queue_tail(&xmitq, skb); tipc_bcast_xmit(net, &xmitq, &dummy); return; } /* Otherwise use legacy replicast method */ rcu_read_lock(); list_for_each_entry_rcu(n, tipc_nodes(net), list) { dst = n->addr; if (in_own_node(net, dst)) continue; if (!node_is_up(n)) continue; txskb = pskb_copy(skb, GFP_ATOMIC); if (!txskb) break; msg_set_destnode(buf_msg(txskb), dst); tipc_node_xmit_skb(net, txskb, dst, 0); } rcu_read_unlock(); kfree_skb(skb); } static void tipc_node_mcast_rcv(struct tipc_node *n) { struct tipc_bclink_entry *be = &n->bc_entry; /* 'arrvq' is under inputq2's lock protection */ spin_lock_bh(&be->inputq2.lock); spin_lock_bh(&be->inputq1.lock); skb_queue_splice_tail_init(&be->inputq1, &be->arrvq); spin_unlock_bh(&be->inputq1.lock); spin_unlock_bh(&be->inputq2.lock); tipc_sk_mcast_rcv(n->net, &be->arrvq, &be->inputq2); } static void tipc_node_bc_sync_rcv(struct tipc_node *n, struct tipc_msg *hdr, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_link *ucl; int rc; rc = tipc_bcast_sync_rcv(n->net, n->bc_entry.link, hdr, xmitq); if (rc & TIPC_LINK_DOWN_EVT) { tipc_node_reset_links(n); return; } if (!(rc & TIPC_LINK_SND_STATE)) return; /* If probe message, a STATE response will be sent anyway */ if (msg_probe(hdr)) return; /* Produce a STATE message carrying broadcast NACK */ tipc_node_read_lock(n); ucl = n->links[bearer_id].link; if (ucl) tipc_link_build_state_msg(ucl, xmitq); tipc_node_read_unlock(n); } /** * tipc_node_bc_rcv - process TIPC broadcast packet arriving from off-node * @net: the applicable net namespace * @skb: TIPC packet * @bearer_id: id of bearer message arrived on * * Invoked with no locks held. */ static void tipc_node_bc_rcv(struct net *net, struct sk_buff *skb, int bearer_id) { int rc; struct sk_buff_head xmitq; struct tipc_bclink_entry *be; struct tipc_link_entry *le; struct tipc_msg *hdr = buf_msg(skb); int usr = msg_user(hdr); u32 dnode = msg_destnode(hdr); struct tipc_node *n; __skb_queue_head_init(&xmitq); /* If NACK for other node, let rcv link for that node peek into it */ if ((usr == BCAST_PROTOCOL) && (dnode != tipc_own_addr(net))) n = tipc_node_find(net, dnode); else n = tipc_node_find(net, msg_prevnode(hdr)); if (!n) { kfree_skb(skb); return; } be = &n->bc_entry; le = &n->links[bearer_id]; rc = tipc_bcast_rcv(net, be->link, skb); /* Broadcast ACKs are sent on a unicast link */ if (rc & TIPC_LINK_SND_STATE) { tipc_node_read_lock(n); tipc_link_build_state_msg(le->link, &xmitq); tipc_node_read_unlock(n); } if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); if (!skb_queue_empty(&be->inputq1)) tipc_node_mcast_rcv(n); /* Handle NAME_DISTRIBUTOR messages sent from 1.7 nodes */ if (!skb_queue_empty(&n->bc_entry.namedq)) tipc_named_rcv(net, &n->bc_entry.namedq, &n->bc_entry.named_rcv_nxt, &n->bc_entry.named_open); /* If reassembly or retransmission failure => reset all links to peer */ if (rc & TIPC_LINK_DOWN_EVT) tipc_node_reset_links(n); tipc_node_put(n); } /** * tipc_node_check_state - check and if necessary update node state * @n: target tipc_node * @skb: TIPC packet * @bearer_id: identity of bearer delivering the packet * @xmitq: queue for messages to be xmited on * Return: true if state and msg are ok, otherwise false */ static bool tipc_node_check_state(struct tipc_node *n, struct sk_buff *skb, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_msg *hdr = buf_msg(skb); int usr = msg_user(hdr); int mtyp = msg_type(hdr); u16 oseqno = msg_seqno(hdr); u16 exp_pkts = msg_msgcnt(hdr); u16 rcv_nxt, syncpt, dlv_nxt, inputq_len; int state = n->state; struct tipc_link *l, *tnl, *pl = NULL; struct tipc_media_addr *maddr; int pb_id; if (trace_tipc_node_check_state_enabled()) { trace_tipc_skb_dump(skb, false, "skb for node state check"); trace_tipc_node_check_state(n, true, " "); } l = n->links[bearer_id].link; if (!l) return false; rcv_nxt = tipc_link_rcv_nxt(l); if (likely((state == SELF_UP_PEER_UP) && (usr != TUNNEL_PROTOCOL))) return true; /* Find parallel link, if any */ for (pb_id = 0; pb_id < MAX_BEARERS; pb_id++) { if ((pb_id != bearer_id) && n->links[pb_id].link) { pl = n->links[pb_id].link; break; } } if (!tipc_link_validate_msg(l, hdr)) { trace_tipc_skb_dump(skb, false, "PROTO invalid (2)!"); trace_tipc_link_dump(l, TIPC_DUMP_NONE, "PROTO invalid (2)!"); return false; } /* Check and update node accesibility if applicable */ if (state == SELF_UP_PEER_COMING) { if (!tipc_link_is_up(l)) return true; if (!msg_peer_link_is_up(hdr)) return true; tipc_node_fsm_evt(n, PEER_ESTABL_CONTACT_EVT); } if (state == SELF_DOWN_PEER_LEAVING) { if (msg_peer_node_is_up(hdr)) return false; tipc_node_fsm_evt(n, PEER_LOST_CONTACT_EVT); return true; } if (state == SELF_LEAVING_PEER_DOWN) return false; /* Ignore duplicate packets */ if ((usr != LINK_PROTOCOL) && less(oseqno, rcv_nxt)) return true; /* Initiate or update failover mode if applicable */ if ((usr == TUNNEL_PROTOCOL) && (mtyp == FAILOVER_MSG)) { syncpt = oseqno + exp_pkts - 1; if (pl && !tipc_link_is_reset(pl)) { __tipc_node_link_down(n, &pb_id, xmitq, &maddr); trace_tipc_node_link_down(n, true, "node link down <- failover!"); tipc_skb_queue_splice_tail_init(tipc_link_inputq(pl), tipc_link_inputq(l)); } /* If parallel link was already down, and this happened before * the tunnel link came up, node failover was never started. * Ensure that a FAILOVER_MSG is sent to get peer out of * NODE_FAILINGOVER state, also this node must accept * TUNNEL_MSGs from peer. */ if (n->state != NODE_FAILINGOVER) tipc_node_link_failover(n, pl, l, xmitq); /* If pkts arrive out of order, use lowest calculated syncpt */ if (less(syncpt, n->sync_point)) n->sync_point = syncpt; } /* Open parallel link when tunnel link reaches synch point */ if ((n->state == NODE_FAILINGOVER) && tipc_link_is_up(l)) { if (!more(rcv_nxt, n->sync_point)) return true; tipc_node_fsm_evt(n, NODE_FAILOVER_END_EVT); if (pl) tipc_link_fsm_evt(pl, LINK_FAILOVER_END_EVT); return true; } /* No syncing needed if only one link */ if (!pl || !tipc_link_is_up(pl)) return true; /* Initiate synch mode if applicable */ if ((usr == TUNNEL_PROTOCOL) && (mtyp == SYNCH_MSG) && (oseqno == 1)) { if (n->capabilities & TIPC_TUNNEL_ENHANCED) syncpt = msg_syncpt(hdr); else syncpt = msg_seqno(msg_inner_hdr(hdr)) + exp_pkts - 1; if (!tipc_link_is_up(l)) __tipc_node_link_up(n, bearer_id, xmitq); if (n->state == SELF_UP_PEER_UP) { n->sync_point = syncpt; tipc_link_fsm_evt(l, LINK_SYNCH_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_BEGIN_EVT); } } /* Open tunnel link when parallel link reaches synch point */ if (n->state == NODE_SYNCHING) { if (tipc_link_is_synching(l)) { tnl = l; } else { tnl = pl; pl = l; } inputq_len = skb_queue_len(tipc_link_inputq(pl)); dlv_nxt = tipc_link_rcv_nxt(pl) - inputq_len; if (more(dlv_nxt, n->sync_point)) { tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); return true; } if (l == pl) return true; if ((usr == TUNNEL_PROTOCOL) && (mtyp == SYNCH_MSG)) return true; if (usr == LINK_PROTOCOL) return true; return false; } return true; } /** * tipc_rcv - process TIPC packets/messages arriving from off-node * @net: the applicable net namespace * @skb: TIPC packet * @b: pointer to bearer message arrived on * * Invoked with no locks held. Bearer pointer must point to a valid bearer * structure (i.e. cannot be NULL), but bearer can be inactive. */ void tipc_rcv(struct net *net, struct sk_buff *skb, struct tipc_bearer *b) { struct sk_buff_head xmitq; struct tipc_link_entry *le; struct tipc_msg *hdr; struct tipc_node *n; int bearer_id = b->identity; u32 self = tipc_own_addr(net); int usr, rc = 0; u16 bc_ack; #ifdef CONFIG_TIPC_CRYPTO struct tipc_ehdr *ehdr; /* Check if message must be decrypted first */ if (TIPC_SKB_CB(skb)->decrypted || !tipc_ehdr_validate(skb)) goto rcv; ehdr = (struct tipc_ehdr *)skb->data; if (likely(ehdr->user != LINK_CONFIG)) { n = tipc_node_find(net, ntohl(ehdr->addr)); if (unlikely(!n)) goto discard; } else { n = tipc_node_find_by_id(net, ehdr->id); } skb_dst_force(skb); tipc_crypto_rcv(net, (n) ? n->crypto_rx : NULL, &skb, b); if (!skb) return; rcv: #endif /* Ensure message is well-formed before touching the header */ if (unlikely(!tipc_msg_validate(&skb))) goto discard; __skb_queue_head_init(&xmitq); hdr = buf_msg(skb); usr = msg_user(hdr); bc_ack = msg_bcast_ack(hdr); /* Handle arrival of discovery or broadcast packet */ if (unlikely(msg_non_seq(hdr))) { if (unlikely(usr == LINK_CONFIG)) return tipc_disc_rcv(net, skb, b); else return tipc_node_bc_rcv(net, skb, bearer_id); } /* Discard unicast link messages destined for another node */ if (unlikely(!msg_short(hdr) && (msg_destnode(hdr) != self))) goto discard; /* Locate neighboring node that sent packet */ n = tipc_node_find(net, msg_prevnode(hdr)); if (unlikely(!n)) goto discard; le = &n->links[bearer_id]; /* Ensure broadcast reception is in synch with peer's send state */ if (unlikely(usr == LINK_PROTOCOL)) { if (unlikely(skb_linearize(skb))) { tipc_node_put(n); goto discard; } hdr = buf_msg(skb); tipc_node_bc_sync_rcv(n, hdr, bearer_id, &xmitq); } else if (unlikely(tipc_link_acked(n->bc_entry.link) != bc_ack)) { tipc_bcast_ack_rcv(net, n->bc_entry.link, hdr); } /* Receive packet directly if conditions permit */ tipc_node_read_lock(n); if (likely((n->state == SELF_UP_PEER_UP) && (usr != TUNNEL_PROTOCOL))) { spin_lock_bh(&le->lock); if (le->link) { rc = tipc_link_rcv(le->link, skb, &xmitq); skb = NULL; } spin_unlock_bh(&le->lock); } tipc_node_read_unlock(n); /* Check/update node state before receiving */ if (unlikely(skb)) { if (unlikely(skb_linearize(skb))) goto out_node_put; tipc_node_write_lock(n); if (tipc_node_check_state(n, skb, bearer_id, &xmitq)) { if (le->link) { rc = tipc_link_rcv(le->link, skb, &xmitq); skb = NULL; } } tipc_node_write_unlock(n); } if (unlikely(rc & TIPC_LINK_UP_EVT)) tipc_node_link_up(n, bearer_id, &xmitq); if (unlikely(rc & TIPC_LINK_DOWN_EVT)) tipc_node_link_down(n, bearer_id, false); if (unlikely(!skb_queue_empty(&n->bc_entry.namedq))) tipc_named_rcv(net, &n->bc_entry.namedq, &n->bc_entry.named_rcv_nxt, &n->bc_entry.named_open); if (unlikely(!skb_queue_empty(&n->bc_entry.inputq1))) tipc_node_mcast_rcv(n); if (!skb_queue_empty(&le->inputq)) tipc_sk_rcv(net, &le->inputq); if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); out_node_put: tipc_node_put(n); discard: kfree_skb(skb); } void tipc_node_apply_property(struct net *net, struct tipc_bearer *b, int prop) { struct tipc_net *tn = tipc_net(net); int bearer_id = b->identity; struct sk_buff_head xmitq; struct tipc_link_entry *e; struct tipc_node *n; __skb_queue_head_init(&xmitq); rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_write_lock(n); e = &n->links[bearer_id]; if (e->link) { if (prop == TIPC_NLA_PROP_TOL) tipc_link_set_tolerance(e->link, b->tolerance, &xmitq); else if (prop == TIPC_NLA_PROP_MTU) tipc_link_set_mtu(e->link, b->mtu); /* Update MTU for node link entry */ e->mtu = tipc_link_mss(e->link); } tipc_node_write_unlock(n); tipc_bearer_xmit(net, bearer_id, &xmitq, &e->maddr, NULL); } rcu_read_unlock(); } int tipc_nl_peer_rm(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_net *tn = net_generic(net, tipc_net_id); struct nlattr *attrs[TIPC_NLA_NET_MAX + 1]; struct tipc_node *peer, *temp_node; u8 node_id[NODE_ID_LEN]; u64 *w0 = (u64 *)&node_id[0]; u64 *w1 = (u64 *)&node_id[8]; u32 addr; int err; /* We identify the peer by its net */ if (!info->attrs[TIPC_NLA_NET]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_NET_MAX, info->attrs[TIPC_NLA_NET], tipc_nl_net_policy, info->extack); if (err) return err; /* attrs[TIPC_NLA_NET_NODEID] and attrs[TIPC_NLA_NET_ADDR] are * mutually exclusive cases */ if (attrs[TIPC_NLA_NET_ADDR]) { addr = nla_get_u32(attrs[TIPC_NLA_NET_ADDR]); if (!addr) return -EINVAL; } if (attrs[TIPC_NLA_NET_NODEID]) { if (!attrs[TIPC_NLA_NET_NODEID_W1]) return -EINVAL; *w0 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID]); *w1 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID_W1]); addr = hash128to32(node_id); } if (in_own_node(net, addr)) return -ENOTSUPP; spin_lock_bh(&tn->node_list_lock); peer = tipc_node_find(net, addr); if (!peer) { spin_unlock_bh(&tn->node_list_lock); return -ENXIO; } tipc_node_write_lock(peer); if (peer->state != SELF_DOWN_PEER_DOWN && peer->state != SELF_DOWN_PEER_LEAVING) { tipc_node_write_unlock(peer); err = -EBUSY; goto err_out; } tipc_node_clear_links(peer); tipc_node_write_unlock(peer); tipc_node_delete(peer); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); err = 0; err_out: tipc_node_put(peer); spin_unlock_bh(&tn->node_list_lock); return err; } int tipc_nl_node_dump(struct sk_buff *skb, struct netlink_callback *cb) { int err; struct net *net = sock_net(skb->sk); struct tipc_net *tn = net_generic(net, tipc_net_id); int done = cb->args[0]; int last_addr = cb->args[1]; struct tipc_node *node; struct tipc_nl_msg msg; if (done) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); if (last_addr) { node = tipc_node_find(net, last_addr); if (!node) { rcu_read_unlock(); /* We never set seq or call nl_dump_check_consistent() * this means that setting prev_seq here will cause the * consistence check to fail in the netlink callback * handler. Resulting in the NLMSG_DONE message having * the NLM_F_DUMP_INTR flag set if the node state * changed while we released the lock. */ cb->prev_seq = 1; return -EPIPE; } tipc_node_put(node); } list_for_each_entry_rcu(node, &tn->node_list, list) { if (node->preliminary) continue; if (last_addr) { if (node->addr == last_addr) last_addr = 0; else continue; } tipc_node_read_lock(node); err = __tipc_nl_add_node(&msg, node); if (err) { last_addr = node->addr; tipc_node_read_unlock(node); goto out; } tipc_node_read_unlock(node); } done = 1; out: cb->args[0] = done; cb->args[1] = last_addr; rcu_read_unlock(); return skb->len; } /* tipc_node_find_by_name - locate owner node of link by link's name * @net: the applicable net namespace * @name: pointer to link name string * @bearer_id: pointer to index in 'node->links' array where the link was found. * * Returns pointer to node owning the link, or 0 if no matching link is found. */ static struct tipc_node *tipc_node_find_by_name(struct net *net, const char *link_name, unsigned int *bearer_id) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_link *l; struct tipc_node *n; struct tipc_node *found_node = NULL; int i; *bearer_id = 0; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_read_lock(n); for (i = 0; i < MAX_BEARERS; i++) { l = n->links[i].link; if (l && !strcmp(tipc_link_name(l), link_name)) { *bearer_id = i; found_node = n; break; } } tipc_node_read_unlock(n); if (found_node) break; } rcu_read_unlock(); return found_node; } int tipc_nl_node_set_link(struct sk_buff *skb, struct genl_info *info) { int err; int res = 0; int bearer_id; char *name; struct tipc_link *link; struct tipc_node *node; struct sk_buff_head xmitq; struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct net *net = sock_net(skb->sk); __skb_queue_head_init(&xmitq); if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; name = nla_data(attrs[TIPC_NLA_LINK_NAME]); if (strcmp(name, tipc_bclink_name) == 0) return tipc_nl_bc_link_set(net, attrs); node = tipc_node_find_by_name(net, name, &bearer_id); if (!node) return -EINVAL; tipc_node_read_lock(node); link = node->links[bearer_id].link; if (!link) { res = -EINVAL; goto out; } if (attrs[TIPC_NLA_LINK_PROP]) { struct nlattr *props[TIPC_NLA_PROP_MAX + 1]; err = tipc_nl_parse_link_prop(attrs[TIPC_NLA_LINK_PROP], props); if (err) { res = err; goto out; } if (props[TIPC_NLA_PROP_TOL]) { u32 tol; tol = nla_get_u32(props[TIPC_NLA_PROP_TOL]); tipc_link_set_tolerance(link, tol, &xmitq); } if (props[TIPC_NLA_PROP_PRIO]) { u32 prio; prio = nla_get_u32(props[TIPC_NLA_PROP_PRIO]); tipc_link_set_prio(link, prio, &xmitq); } if (props[TIPC_NLA_PROP_WIN]) { u32 max_win; max_win = nla_get_u32(props[TIPC_NLA_PROP_WIN]); tipc_link_set_queue_limits(link, tipc_link_min_win(link), max_win); } } out: tipc_node_read_unlock(node); tipc_bearer_xmit(net, bearer_id, &xmitq, &node->links[bearer_id].maddr, NULL); return res; } int tipc_nl_node_get_link(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct tipc_nl_msg msg; char *name; int err; msg.portid = info->snd_portid; msg.seq = info->snd_seq; if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; name = nla_data(attrs[TIPC_NLA_LINK_NAME]); msg.skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!msg.skb) return -ENOMEM; if (strcmp(name, tipc_bclink_name) == 0) { err = tipc_nl_add_bc_link(net, &msg, tipc_net(net)->bcl); if (err) goto err_free; } else { int bearer_id; struct tipc_node *node; struct tipc_link *link; node = tipc_node_find_by_name(net, name, &bearer_id); if (!node) { err = -EINVAL; goto err_free; } tipc_node_read_lock(node); link = node->links[bearer_id].link; if (!link) { tipc_node_read_unlock(node); err = -EINVAL; goto err_free; } err = __tipc_nl_add_link(net, &msg, link, 0); tipc_node_read_unlock(node); if (err) goto err_free; } return genlmsg_reply(msg.skb, info); err_free: nlmsg_free(msg.skb); return err; } int tipc_nl_node_reset_link_stats(struct sk_buff *skb, struct genl_info *info) { int err; char *link_name; unsigned int bearer_id; struct tipc_link *link; struct tipc_node *node; struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct net *net = sock_net(skb->sk); struct tipc_net *tn = tipc_net(net); struct tipc_link_entry *le; if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; link_name = nla_data(attrs[TIPC_NLA_LINK_NAME]); err = -EINVAL; if (!strcmp(link_name, tipc_bclink_name)) { err = tipc_bclink_reset_stats(net, tipc_bc_sndlink(net)); if (err) return err; return 0; } else if (strstr(link_name, tipc_bclink_name)) { rcu_read_lock(); list_for_each_entry_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); link = node->bc_entry.link; if (link && !strcmp(link_name, tipc_link_name(link))) { err = tipc_bclink_reset_stats(net, link); tipc_node_read_unlock(node); break; } tipc_node_read_unlock(node); } rcu_read_unlock(); return err; } node = tipc_node_find_by_name(net, link_name, &bearer_id); if (!node) return -EINVAL; le = &node->links[bearer_id]; tipc_node_read_lock(node); spin_lock_bh(&le->lock); link = node->links[bearer_id].link; if (!link) { spin_unlock_bh(&le->lock); tipc_node_read_unlock(node); return -EINVAL; } tipc_link_reset_stats(link); spin_unlock_bh(&le->lock); tipc_node_read_unlock(node); return 0; } /* Caller should hold node lock */ static int __tipc_nl_add_node_links(struct net *net, struct tipc_nl_msg *msg, struct tipc_node *node, u32 *prev_link, bool bc_link) { u32 i; int err; for (i = *prev_link; i < MAX_BEARERS; i++) { *prev_link = i; if (!node->links[i].link) continue; err = __tipc_nl_add_link(net, msg, node->links[i].link, NLM_F_MULTI); if (err) return err; } if (bc_link) { *prev_link = i; err = tipc_nl_add_bc_link(net, msg, node->bc_entry.link); if (err) return err; } *prev_link = 0; return 0; } int tipc_nl_node_dump_link(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nlattr **attrs = genl_dumpit_info(cb)->attrs; struct nlattr *link[TIPC_NLA_LINK_MAX + 1]; struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_node *node; struct tipc_nl_msg msg; u32 prev_node = cb->args[0]; u32 prev_link = cb->args[1]; int done = cb->args[2]; bool bc_link = cb->args[3]; int err; if (done) return 0; if (!prev_node) { /* Check if broadcast-receiver links dumping is needed */ if (attrs && attrs[TIPC_NLA_LINK]) { err = nla_parse_nested_deprecated(link, TIPC_NLA_LINK_MAX, attrs[TIPC_NLA_LINK], tipc_nl_link_policy, NULL); if (unlikely(err)) return err; if (unlikely(!link[TIPC_NLA_LINK_BROADCAST])) return -EINVAL; bc_link = true; } } msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); if (prev_node) { node = tipc_node_find(net, prev_node); if (!node) { /* We never set seq or call nl_dump_check_consistent() * this means that setting prev_seq here will cause the * consistence check to fail in the netlink callback * handler. Resulting in the last NLMSG_DONE message * having the NLM_F_DUMP_INTR flag set. */ cb->prev_seq = 1; goto out; } tipc_node_put(node); list_for_each_entry_continue_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); err = __tipc_nl_add_node_links(net, &msg, node, &prev_link, bc_link); tipc_node_read_unlock(node); if (err) goto out; prev_node = node->addr; } } else { err = tipc_nl_add_bc_link(net, &msg, tn->bcl); if (err) goto out; list_for_each_entry_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); err = __tipc_nl_add_node_links(net, &msg, node, &prev_link, bc_link); tipc_node_read_unlock(node); if (err) goto out; prev_node = node->addr; } } done = 1; out: rcu_read_unlock(); cb->args[0] = prev_node; cb->args[1] = prev_link; cb->args[2] = done; cb->args[3] = bc_link; return skb->len; } int tipc_nl_node_set_monitor(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[TIPC_NLA_MON_MAX + 1]; struct net *net = sock_net(skb->sk); int err; if (!info->attrs[TIPC_NLA_MON]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_MON_MAX, info->attrs[TIPC_NLA_MON], tipc_nl_monitor_policy, info->extack); if (err) return err; if (attrs[TIPC_NLA_MON_ACTIVATION_THRESHOLD]) { u32 val; val = nla_get_u32(attrs[TIPC_NLA_MON_ACTIVATION_THRESHOLD]); err = tipc_nl_monitor_set_threshold(net, val); if (err) return err; } return 0; } static int __tipc_nl_add_monitor_prop(struct net *net, struct tipc_nl_msg *msg) { struct nlattr *attrs; void *hdr; u32 val; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, 0, TIPC_NL_MON_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_MON); if (!attrs) goto msg_full; val = tipc_nl_monitor_get_threshold(net); if (nla_put_u32(msg->skb, TIPC_NLA_MON_ACTIVATION_THRESHOLD, val)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } int tipc_nl_node_get_monitor(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_nl_msg msg; int err; msg.skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!msg.skb) return -ENOMEM; msg.portid = info->snd_portid; msg.seq = info->snd_seq; err = __tipc_nl_add_monitor_prop(net, &msg); if (err) { nlmsg_free(msg.skb); return err; } return genlmsg_reply(msg.skb, info); } int tipc_nl_node_dump_monitor(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); u32 prev_bearer = cb->args[0]; struct tipc_nl_msg msg; int bearer_id; int err; if (prev_bearer == MAX_BEARERS) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rtnl_lock(); for (bearer_id = prev_bearer; bearer_id < MAX_BEARERS; bearer_id++) { err = __tipc_nl_add_monitor(net, &msg, bearer_id); if (err) break; } rtnl_unlock(); cb->args[0] = bearer_id; return skb->len; } int tipc_nl_node_dump_monitor_peer(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); u32 prev_node = cb->args[1]; u32 bearer_id = cb->args[2]; int done = cb->args[0]; struct tipc_nl_msg msg; int err; if (!prev_node) { struct nlattr **attrs = genl_dumpit_info(cb)->attrs; struct nlattr *mon[TIPC_NLA_MON_MAX + 1]; if (!attrs[TIPC_NLA_MON]) return -EINVAL; err = nla_parse_nested_deprecated(mon, TIPC_NLA_MON_MAX, attrs[TIPC_NLA_MON], tipc_nl_monitor_policy, NULL); if (err) return err; if (!mon[TIPC_NLA_MON_REF]) return -EINVAL; bearer_id = nla_get_u32(mon[TIPC_NLA_MON_REF]); if (bearer_id >= MAX_BEARERS) return -EINVAL; } if (done) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rtnl_lock(); err = tipc_nl_add_monitor_peer(net, &msg, bearer_id, &prev_node); if (!err) done = 1; rtnl_unlock(); cb->args[0] = done; cb->args[1] = prev_node; cb->args[2] = bearer_id; return skb->len; } #ifdef CONFIG_TIPC_CRYPTO static int tipc_nl_retrieve_key(struct nlattr **attrs, struct tipc_aead_key **pkey) { struct nlattr *attr = attrs[TIPC_NLA_NODE_KEY]; struct tipc_aead_key *key; if (!attr) return -ENODATA; if (nla_len(attr) < sizeof(*key)) return -EINVAL; key = (struct tipc_aead_key *)nla_data(attr); if (key->keylen > TIPC_AEAD_KEYLEN_MAX || nla_len(attr) < tipc_aead_key_size(key)) return -EINVAL; *pkey = key; return 0; } static int tipc_nl_retrieve_nodeid(struct nlattr **attrs, u8 **node_id) { struct nlattr *attr = attrs[TIPC_NLA_NODE_ID]; if (!attr) return -ENODATA; if (nla_len(attr) < TIPC_NODEID_LEN) return -EINVAL; *node_id = (u8 *)nla_data(attr); return 0; } static int tipc_nl_retrieve_rekeying(struct nlattr **attrs, u32 *intv) { struct nlattr *attr = attrs[TIPC_NLA_NODE_REKEYING]; if (!attr) return -ENODATA; *intv = nla_get_u32(attr); return 0; } static int __tipc_nl_node_set_key(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[TIPC_NLA_NODE_MAX + 1]; struct net *net = sock_net(skb->sk); struct tipc_crypto *tx = tipc_net(net)->crypto_tx, *c = tx; struct tipc_node *n = NULL; struct tipc_aead_key *ukey; bool rekeying = true, master_key = false; u8 *id, *own_id, mode; u32 intv = 0; int rc = 0; if (!info->attrs[TIPC_NLA_NODE]) return -EINVAL; rc = nla_parse_nested(attrs, TIPC_NLA_NODE_MAX, info->attrs[TIPC_NLA_NODE], tipc_nl_node_policy, info->extack); if (rc) return rc; own_id = tipc_own_id(net); if (!own_id) { GENL_SET_ERR_MSG(info, "not found own node identity (set id?)"); return -EPERM; } rc = tipc_nl_retrieve_rekeying(attrs, &intv); if (rc == -ENODATA) rekeying = false; rc = tipc_nl_retrieve_key(attrs, &ukey); if (rc == -ENODATA && rekeying) goto rekeying; else if (rc) return rc; rc = tipc_aead_key_validate(ukey, info); if (rc) return rc; rc = tipc_nl_retrieve_nodeid(attrs, &id); switch (rc) { case -ENODATA: mode = CLUSTER_KEY; master_key = !!(attrs[TIPC_NLA_NODE_KEY_MASTER]); break; case 0: mode = PER_NODE_KEY; if (memcmp(id, own_id, NODE_ID_LEN)) { n = tipc_node_find_by_id(net, id) ?: tipc_node_create(net, 0, id, 0xffffu, 0, true); if (unlikely(!n)) return -ENOMEM; c = n->crypto_rx; } break; default: return rc; } /* Initiate the TX/RX key */ rc = tipc_crypto_key_init(c, ukey, mode, master_key); if (n) tipc_node_put(n); if (unlikely(rc < 0)) { GENL_SET_ERR_MSG(info, "unable to initiate or attach new key"); return rc; } else if (c == tx) { /* Distribute TX key but not master one */ if (!master_key && tipc_crypto_key_distr(tx, rc, NULL)) GENL_SET_ERR_MSG(info, "failed to replicate new key"); rekeying: /* Schedule TX rekeying if needed */ tipc_crypto_rekeying_sched(tx, rekeying, intv); } return 0; } int tipc_nl_node_set_key(struct sk_buff *skb, struct genl_info *info) { int err; rtnl_lock(); err = __tipc_nl_node_set_key(skb, info); rtnl_unlock(); return err; } static int __tipc_nl_node_flush_key(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_net *tn = tipc_net(net); struct tipc_node *n; tipc_crypto_key_flush(tn->crypto_tx); rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) tipc_crypto_key_flush(n->crypto_rx); rcu_read_unlock(); return 0; } int tipc_nl_node_flush_key(struct sk_buff *skb, struct genl_info *info) { int err; rtnl_lock(); err = __tipc_nl_node_flush_key(skb, info); rtnl_unlock(); return err; } #endif /** * tipc_node_dump - dump TIPC node data * @n: tipc node to be dumped * @more: dump more? * - false: dump only tipc node data * - true: dump node link data as well * @buf: returned buffer of dump data in format */ int tipc_node_dump(struct tipc_node *n, bool more, char *buf) { int i = 0; size_t sz = (more) ? NODE_LMAX : NODE_LMIN; if (!n) { i += scnprintf(buf, sz, "node data: (null)\n"); return i; } i += scnprintf(buf, sz, "node data: %x", n->addr); i += scnprintf(buf + i, sz - i, " %x", n->state); i += scnprintf(buf + i, sz - i, " %d", n->active_links[0]); i += scnprintf(buf + i, sz - i, " %d", n->active_links[1]); i += scnprintf(buf + i, sz - i, " %x", n->action_flags); i += scnprintf(buf + i, sz - i, " %u", n->failover_sent); i += scnprintf(buf + i, sz - i, " %u", n->sync_point); i += scnprintf(buf + i, sz - i, " %d", n->link_cnt); i += scnprintf(buf + i, sz - i, " %u", n->working_links); i += scnprintf(buf + i, sz - i, " %x", n->capabilities); i += scnprintf(buf + i, sz - i, " %lu\n", n->keepalive_intv); if (!more) return i; i += scnprintf(buf + i, sz - i, "link_entry[0]:\n"); i += scnprintf(buf + i, sz - i, " mtu: %u\n", n->links[0].mtu); i += scnprintf(buf + i, sz - i, " media: "); i += tipc_media_addr_printf(buf + i, sz - i, &n->links[0].maddr); i += scnprintf(buf + i, sz - i, "\n"); i += tipc_link_dump(n->links[0].link, TIPC_DUMP_NONE, buf + i); i += scnprintf(buf + i, sz - i, " inputq: "); i += tipc_list_dump(&n->links[0].inputq, false, buf + i); i += scnprintf(buf + i, sz - i, "link_entry[1]:\n"); i += scnprintf(buf + i, sz - i, " mtu: %u\n", n->links[1].mtu); i += scnprintf(buf + i, sz - i, " media: "); i += tipc_media_addr_printf(buf + i, sz - i, &n->links[1].maddr); i += scnprintf(buf + i, sz - i, "\n"); i += tipc_link_dump(n->links[1].link, TIPC_DUMP_NONE, buf + i); i += scnprintf(buf + i, sz - i, " inputq: "); i += tipc_list_dump(&n->links[1].inputq, false, buf + i); i += scnprintf(buf + i, sz - i, "bclink:\n "); i += tipc_link_dump(n->bc_entry.link, TIPC_DUMP_NONE, buf + i); return i; } void tipc_node_pre_cleanup_net(struct net *exit_net) { struct tipc_node *n; struct tipc_net *tn; struct net *tmp; rcu_read_lock(); for_each_net_rcu(tmp) { if (tmp == exit_net) continue; tn = tipc_net(tmp); if (!tn) continue; spin_lock_bh(&tn->node_list_lock); list_for_each_entry_rcu(n, &tn->node_list, list) { if (!n->peer_net) continue; if (n->peer_net != exit_net) continue; tipc_node_write_lock(n); n->peer_net = NULL; n->peer_hash_mix = 0; tipc_node_write_unlock_fast(n); break; } spin_unlock_bh(&tn->node_list_lock); } rcu_read_unlock(); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the UDP protocol. * * Version: @(#)udp.h 1.0.2 04/28/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_UDP_H #define _LINUX_UDP_H #include <net/inet_sock.h> #include <linux/skbuff.h> #include <net/netns/hash.h> #include <uapi/linux/udp.h> static inline struct udphdr *udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_transport_header(skb); } static inline struct udphdr *inner_udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_inner_transport_header(skb); } #define UDP_HTABLE_SIZE_MIN (CONFIG_BASE_SMALL ? 128 : 256) static inline u32 udp_hashfn(const struct net *net, u32 num, u32 mask) { return (num + net_hash_mix(net)) & mask; } struct udp_sock { /* inet_sock has to be the first member */ struct inet_sock inet; #define udp_port_hash inet.sk.__sk_common.skc_u16hashes[0] #define udp_portaddr_hash inet.sk.__sk_common.skc_u16hashes[1] #define udp_portaddr_node inet.sk.__sk_common.skc_portaddr_node int pending; /* Any pending frames ? */ unsigned int corkflag; /* Cork is required */ __u8 encap_type; /* Is this an Encapsulation socket? */ unsigned char no_check6_tx:1,/* Send zero UDP6 checksums on TX? */ no_check6_rx:1,/* Allow zero UDP6 checksums on RX? */ encap_enabled:1, /* This socket enabled encap * processing; UDP tunnels and * different encapsulation layer set * this */ gro_enabled:1, /* Request GRO aggregation */ accept_udp_l4:1, accept_udp_fraglist:1; /* * Following member retains the information to create a UDP header * when the socket is uncorked. */ __u16 len; /* total length of pending frames */ __u16 gso_size; /* * Fields specific to UDP-Lite. */ __u16 pcslen; __u16 pcrlen; /* indicator bits used by pcflag: */ #define UDPLITE_BIT 0x1 /* set by udplite proto init function */ #define UDPLITE_SEND_CC 0x2 /* set via udplite setsockopt */ #define UDPLITE_RECV_CC 0x4 /* set via udplite setsocktopt */ __u8 pcflag; /* marks socket as UDP-Lite if > 0 */ __u8 unused[3]; /* * For encapsulation sockets. */ int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); void (*encap_err_rcv)(struct sock *sk, struct sk_buff *skb, unsigned int udp_offset); int (*encap_err_lookup)(struct sock *sk, struct sk_buff *skb); void (*encap_destroy)(struct sock *sk); /* GRO functions for UDP socket */ struct sk_buff * (*gro_receive)(struct sock *sk, struct list_head *head, struct sk_buff *skb); int (*gro_complete)(struct sock *sk, struct sk_buff *skb, int nhoff); /* udp_recvmsg try to use this before splicing sk_receive_queue */ struct sk_buff_head reader_queue ____cacheline_aligned_in_smp; /* This field is dirtied by udp_recvmsg() */ int forward_deficit; }; #define UDP_MAX_SEGMENTS (1 << 7UL) static inline struct udp_sock *udp_sk(const struct sock *sk) { return (struct udp_sock *)sk; } static inline void udp_set_no_check6_tx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_tx = val; } static inline void udp_set_no_check6_rx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_rx = val; } static inline bool udp_get_no_check6_tx(struct sock *sk) { return udp_sk(sk)->no_check6_tx; } static inline bool udp_get_no_check6_rx(struct sock *sk) { return udp_sk(sk)->no_check6_rx; } static inline void udp_cmsg_recv(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int gso_size; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { gso_size = skb_shinfo(skb)->gso_size; put_cmsg(msg, SOL_UDP, UDP_GRO, sizeof(gso_size), &gso_size); } } DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key); #if IS_ENABLED(CONFIG_IPV6) DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key); #endif static inline bool udp_encap_needed(void) { if (static_branch_unlikely(&udp_encap_needed_key)) return true; #if IS_ENABLED(CONFIG_IPV6) if (static_branch_unlikely(&udpv6_encap_needed_key)) return true; #endif return false; } static inline bool udp_unexpected_gso(struct sock *sk, struct sk_buff *skb) { if (!skb_is_gso(skb)) return false; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && !udp_sk(sk)->accept_udp_l4) return true; if (skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST && !udp_sk(sk)->accept_udp_fraglist) return true; /* GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits might still * land in a tunnel as the socket check in udp_gro_receive cannot be * foolproof. */ if (udp_encap_needed() && READ_ONCE(udp_sk(sk)->encap_rcv) && !(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))) return true; return false; } static inline void udp_allow_gso(struct sock *sk) { udp_sk(sk)->accept_udp_l4 = 1; udp_sk(sk)->accept_udp_fraglist = 1; } #define udp_portaddr_for_each_entry(__sk, list) \ hlist_for_each_entry(__sk, list, __sk_common.skc_portaddr_node) #define udp_portaddr_for_each_entry_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, __sk_common.skc_portaddr_node) #define IS_UDPLITE(__sk) (__sk->sk_protocol == IPPROTO_UDPLITE) #endif /* _LINUX_UDP_H */ |
28 30 36 36 30 8 28 26 4 24 24 348 349 350 320 320 313 6 233 39 78 78 6 6 78 78 78 78 78 78 78 77 78 78 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 | // SPDX-License-Identifier: GPL-2.0 /* * event tracer * * Copyright (C) 2008 Red Hat Inc, Steven Rostedt <srostedt@redhat.com> * * - Added format output of fields of the trace point. * This was based off of work by Tom Zanussi <tzanussi@gmail.com>. * */ #define pr_fmt(fmt) fmt #include <linux/workqueue.h> #include <linux/security.h> #include <linux/spinlock.h> #include <linux/kthread.h> #include <linux/tracefs.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/ctype.h> #include <linux/sort.h> #include <linux/slab.h> #include <linux/delay.h> #include <trace/events/sched.h> #include <trace/syscall.h> #include <asm/setup.h> #include "trace_output.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM "TRACE_SYSTEM" DEFINE_MUTEX(event_mutex); LIST_HEAD(ftrace_events); static LIST_HEAD(ftrace_generic_fields); static LIST_HEAD(ftrace_common_fields); static bool eventdir_initialized; static LIST_HEAD(module_strings); struct module_string { struct list_head next; struct module *module; char *str; }; #define GFP_TRACE (GFP_KERNEL | __GFP_ZERO) static struct kmem_cache *field_cachep; static struct kmem_cache *file_cachep; static inline int system_refcount(struct event_subsystem *system) { return system->ref_count; } static int system_refcount_inc(struct event_subsystem *system) { return system->ref_count++; } static int system_refcount_dec(struct event_subsystem *system) { return --system->ref_count; } /* Double loops, do not use break, only goto's work */ #define do_for_each_event_file(tr, file) \ list_for_each_entry(tr, &ftrace_trace_arrays, list) { \ list_for_each_entry(file, &tr->events, list) #define do_for_each_event_file_safe(tr, file) \ list_for_each_entry(tr, &ftrace_trace_arrays, list) { \ struct trace_event_file *___n; \ list_for_each_entry_safe(file, ___n, &tr->events, list) #define while_for_each_event_file() \ } static struct ftrace_event_field * __find_event_field(struct list_head *head, char *name) { struct ftrace_event_field *field; list_for_each_entry(field, head, link) { if (!strcmp(field->name, name)) return field; } return NULL; } struct ftrace_event_field * trace_find_event_field(struct trace_event_call *call, char *name) { struct ftrace_event_field *field; struct list_head *head; head = trace_get_fields(call); field = __find_event_field(head, name); if (field) return field; field = __find_event_field(&ftrace_generic_fields, name); if (field) return field; return __find_event_field(&ftrace_common_fields, name); } static int __trace_define_field(struct list_head *head, const char *type, const char *name, int offset, int size, int is_signed, int filter_type) { struct ftrace_event_field *field; field = kmem_cache_alloc(field_cachep, GFP_TRACE); if (!field) return -ENOMEM; field->name = name; field->type = type; if (filter_type == FILTER_OTHER) field->filter_type = filter_assign_type(type); else field->filter_type = filter_type; field->offset = offset; field->size = size; field->is_signed = is_signed; list_add(&field->link, head); return 0; } int trace_define_field(struct trace_event_call *call, const char *type, const char *name, int offset, int size, int is_signed, int filter_type) { struct list_head *head; if (WARN_ON(!call->class)) return 0; head = trace_get_fields(call); return __trace_define_field(head, type, name, offset, size, is_signed, filter_type); } EXPORT_SYMBOL_GPL(trace_define_field); #define __generic_field(type, item, filter_type) \ ret = __trace_define_field(&ftrace_generic_fields, #type, \ #item, 0, 0, is_signed_type(type), \ filter_type); \ if (ret) \ return ret; #define __common_field(type, item) \ ret = __trace_define_field(&ftrace_common_fields, #type, \ "common_" #item, \ offsetof(typeof(ent), item), \ sizeof(ent.item), \ is_signed_type(type), FILTER_OTHER); \ if (ret) \ return ret; static int trace_define_generic_fields(void) { int ret; __generic_field(int, CPU, FILTER_CPU); __generic_field(int, cpu, FILTER_CPU); __generic_field(int, common_cpu, FILTER_CPU); __generic_field(char *, COMM, FILTER_COMM); __generic_field(char *, comm, FILTER_COMM); return ret; } static int trace_define_common_fields(void) { int ret; struct trace_entry ent; __common_field(unsigned short, type); __common_field(unsigned char, flags); /* Holds both preempt_count and migrate_disable */ __common_field(unsigned char, preempt_count); __common_field(int, pid); return ret; } static void trace_destroy_fields(struct trace_event_call *call) { struct ftrace_event_field *field, *next; struct list_head *head; head = trace_get_fields(call); list_for_each_entry_safe(field, next, head, link) { list_del(&field->link); kmem_cache_free(field_cachep, field); } } /* * run-time version of trace_event_get_offsets_<call>() that returns the last * accessible offset of trace fields excluding __dynamic_array bytes */ int trace_event_get_offsets(struct trace_event_call *call) { struct ftrace_event_field *tail; struct list_head *head; head = trace_get_fields(call); /* * head->next points to the last field with the largest offset, * since it was added last by trace_define_field() */ tail = list_first_entry(head, struct ftrace_event_field, link); return tail->offset + tail->size; } static struct trace_event_fields *find_event_field(const char *fmt, struct trace_event_call *call) { struct trace_event_fields *field = call->class->fields_array; const char *p = fmt; int len; if (!(len = str_has_prefix(fmt, "REC->"))) return NULL; fmt += len; for (p = fmt; *p; p++) { if (!isalnum(*p) && *p != '_') break; } len = p - fmt; for (; field->type; field++) { if (strncmp(field->name, fmt, len) || field->name[len]) continue; return field; } return NULL; } /* * Check if the referenced field is an array and return true, * as arrays are OK to dereference. */ static bool test_field(const char *fmt, struct trace_event_call *call) { struct trace_event_fields *field; field = find_event_field(fmt, call); if (!field) return false; /* This is an array and is OK to dereference. */ return strchr(field->type, '[') != NULL; } /* Look for a string within an argument */ static bool find_print_string(const char *arg, const char *str, const char *end) { const char *r; r = strstr(arg, str); return r && r < end; } /* Return true if the argument pointer is safe */ static bool process_pointer(const char *fmt, int len, struct trace_event_call *call) { const char *r, *e, *a; e = fmt + len; /* Find the REC-> in the argument */ r = strstr(fmt, "REC->"); if (r && r < e) { /* * Addresses of events on the buffer, or an array on the buffer is * OK to dereference. There's ways to fool this, but * this is to catch common mistakes, not malicious code. */ a = strchr(fmt, '&'); if ((a && (a < r)) || test_field(r, call)) return true; } else if (find_print_string(fmt, "__get_dynamic_array(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_dynamic_array(", e)) { return true; } else if (find_print_string(fmt, "__get_dynamic_array_len(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_dynamic_array_len(", e)) { return true; } else if (find_print_string(fmt, "__get_sockaddr(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_sockaddr(", e)) { return true; } return false; } /* Return true if the string is safe */ static bool process_string(const char *fmt, int len, struct trace_event_call *call) { const char *r, *e, *s; e = fmt + len; /* * There are several helper functions that return strings. * If the argument contains a function, then assume its field is valid. * It is considered that the argument has a function if it has: * alphanumeric or '_' before a parenthesis. */ s = fmt; do { int i; r = strstr(s, "("); if (!r || r >= e) break; for (i = 1; r - i >= s; i++) { char ch = *(r - i); if (isspace(ch)) continue; if (isalnum(ch) || ch == '_') return true; /* Anything else, this isn't a function */ break; } /* A function could be wrapped in parethesis, try the next one */ s = r + 1; } while (s < e); /* * Check for arrays. If the argument has: foo[REC->val] * then it is very likely that foo is an array of strings * that are safe to use. */ r = strstr(s, "["); if (r && r < e) { r = strstr(r, "REC->"); if (r && r < e) return true; } /* * If there's any strings in the argument consider this arg OK as it * could be: REC->field ? "foo" : "bar" and we don't want to get into * verifying that logic here. */ if (find_print_string(fmt, "\"", e)) return true; /* Dereferenced strings are also valid like any other pointer */ if (process_pointer(fmt, len, call)) return true; /* Make sure the field is found, and consider it OK for now if it is */ return find_event_field(fmt, call) != NULL; } /* * Examine the print fmt of the event looking for unsafe dereference * pointers using %p* that could be recorded in the trace event and * much later referenced after the pointer was freed. Dereferencing * pointers are OK, if it is dereferenced into the event itself. */ static void test_event_printk(struct trace_event_call *call) { u64 dereference_flags = 0; u64 string_flags = 0; bool first = true; const char *fmt; int parens = 0; char in_quote = 0; int start_arg = 0; int arg = 0; int i, e; fmt = call->print_fmt; if (!fmt) return; for (i = 0; fmt[i]; i++) { switch (fmt[i]) { case '\\': i++; if (!fmt[i]) return; continue; case '"': case '\'': /* * The print fmt starts with a string that * is processed first to find %p* usage, * then after the first string, the print fmt * contains arguments that are used to check * if the dereferenced %p* usage is safe. */ if (first) { if (fmt[i] == '\'') continue; if (in_quote) { arg = 0; first = false; /* * If there was no %p* uses * the fmt is OK. */ if (!dereference_flags) return; } } if (in_quote) { if (in_quote == fmt[i]) in_quote = 0; } else { in_quote = fmt[i]; } continue; case '%': if (!first || !in_quote) continue; i++; if (!fmt[i]) return; switch (fmt[i]) { case '%': continue; case 'p': /* Find dereferencing fields */ switch (fmt[i + 1]) { case 'B': case 'R': case 'r': case 'b': case 'M': case 'm': case 'I': case 'i': case 'E': case 'U': case 'V': case 'N': case 'a': case 'd': case 'D': case 'g': case 't': case 'C': case 'O': case 'f': if (WARN_ONCE(arg == 63, "Too many args for event: %s", trace_event_name(call))) return; dereference_flags |= 1ULL << arg; } break; default: { bool star = false; int j; /* Increment arg if %*s exists. */ for (j = 0; fmt[i + j]; j++) { if (isdigit(fmt[i + j]) || fmt[i + j] == '.') continue; if (fmt[i + j] == '*') { star = true; continue; } if ((fmt[i + j] == 's')) { if (star) arg++; if (WARN_ONCE(arg == 63, "Too many args for event: %s", trace_event_name(call))) return; dereference_flags |= 1ULL << arg; string_flags |= 1ULL << arg; } break; } break; } /* default */ } /* switch */ arg++; continue; case '(': if (in_quote) continue; parens++; continue; case ')': if (in_quote) continue; parens--; if (WARN_ONCE(parens < 0, "Paren mismatch for event: %s\narg='%s'\n%*s", trace_event_name(call), fmt + start_arg, (i - start_arg) + 5, "^")) return; continue; case ',': if (in_quote || parens) continue; e = i; i++; while (isspace(fmt[i])) i++; /* * If start_arg is zero, then this is the start of the * first argument. The processing of the argument happens * when the end of the argument is found, as it needs to * handle paranthesis and such. */ if (!start_arg) { start_arg = i; /* Balance out the i++ in the for loop */ i--; continue; } if (dereference_flags & (1ULL << arg)) { if (string_flags & (1ULL << arg)) { if (process_string(fmt + start_arg, e - start_arg, call)) dereference_flags &= ~(1ULL << arg); } else if (process_pointer(fmt + start_arg, e - start_arg, call)) dereference_flags &= ~(1ULL << arg); } start_arg = i; arg++; /* Balance out the i++ in the for loop */ i--; } } if (dereference_flags & (1ULL << arg)) { if (string_flags & (1ULL << arg)) { if (process_string(fmt + start_arg, i - start_arg, call)) dereference_flags &= ~(1ULL << arg); } else if (process_pointer(fmt + start_arg, i - start_arg, call)) dereference_flags &= ~(1ULL << arg); } /* * If you triggered the below warning, the trace event reported * uses an unsafe dereference pointer %p*. As the data stored * at the trace event time may no longer exist when the trace * event is printed, dereferencing to the original source is * unsafe. The source of the dereference must be copied into the * event itself, and the dereference must access the copy instead. */ if (WARN_ON_ONCE(dereference_flags)) { arg = 1; while (!(dereference_flags & 1)) { dereference_flags >>= 1; arg++; } pr_warn("event %s has unsafe dereference of argument %d\n", trace_event_name(call), arg); pr_warn("print_fmt: %s\n", fmt); } } int trace_event_raw_init(struct trace_event_call *call) { int id; id = register_trace_event(&call->event); if (!id) return -ENODEV; test_event_printk(call); return 0; } EXPORT_SYMBOL_GPL(trace_event_raw_init); bool trace_event_ignore_this_pid(struct trace_event_file *trace_file) { struct trace_array *tr = trace_file->tr; struct trace_array_cpu *data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; pid_list = rcu_dereference_raw(tr->filtered_pids); no_pid_list = rcu_dereference_raw(tr->filtered_no_pids); if (!pid_list && !no_pid_list) return false; data = this_cpu_ptr(tr->array_buffer.data); return data->ignore_pid; } EXPORT_SYMBOL_GPL(trace_event_ignore_this_pid); void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, struct trace_event_file *trace_file, unsigned long len) { struct trace_event_call *event_call = trace_file->event_call; if ((trace_file->flags & EVENT_FILE_FL_PID_FILTER) && trace_event_ignore_this_pid(trace_file)) return NULL; /* * If CONFIG_PREEMPTION is enabled, then the tracepoint itself disables * preemption (adding one to the preempt_count). Since we are * interested in the preempt_count at the time the tracepoint was * hit, we need to subtract one to offset the increment. */ fbuffer->trace_ctx = tracing_gen_ctx_dec(); fbuffer->trace_file = trace_file; fbuffer->event = trace_event_buffer_lock_reserve(&fbuffer->buffer, trace_file, event_call->event.type, len, fbuffer->trace_ctx); if (!fbuffer->event) return NULL; fbuffer->regs = NULL; fbuffer->entry = ring_buffer_event_data(fbuffer->event); return fbuffer->entry; } EXPORT_SYMBOL_GPL(trace_event_buffer_reserve); int trace_event_reg(struct trace_event_call *call, enum trace_reg type, void *data) { struct trace_event_file *file = data; WARN_ON(!(call->flags & TRACE_EVENT_FL_TRACEPOINT)); switch (type) { case TRACE_REG_REGISTER: return tracepoint_probe_register(call->tp, call->class->probe, file); case TRACE_REG_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->probe, file); return 0; #ifdef CONFIG_PERF_EVENTS case TRACE_REG_PERF_REGISTER: return tracepoint_probe_register(call->tp, call->class->perf_probe, call); case TRACE_REG_PERF_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->perf_probe, call); return 0; case TRACE_REG_PERF_OPEN: case TRACE_REG_PERF_CLOSE: case TRACE_REG_PERF_ADD: case TRACE_REG_PERF_DEL: return 0; #endif } return 0; } EXPORT_SYMBOL_GPL(trace_event_reg); void trace_event_enable_cmd_record(bool enable) { struct trace_event_file *file; struct trace_array *tr; lockdep_assert_held(&event_mutex); do_for_each_event_file(tr, file) { if (!(file->flags & EVENT_FILE_FL_ENABLED)) continue; if (enable) { tracing_start_cmdline_record(); set_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } else { tracing_stop_cmdline_record(); clear_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } } while_for_each_event_file(); } void trace_event_enable_tgid_record(bool enable) { struct trace_event_file *file; struct trace_array *tr; lockdep_assert_held(&event_mutex); do_for_each_event_file(tr, file) { if (!(file->flags & EVENT_FILE_FL_ENABLED)) continue; if (enable) { tracing_start_tgid_record(); set_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } else { tracing_stop_tgid_record(); clear_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } } while_for_each_event_file(); } static int __ftrace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable) { struct trace_event_call *call = file->event_call; struct trace_array *tr = file->tr; int ret = 0; int disable; switch (enable) { case 0: /* * When soft_disable is set and enable is cleared, the sm_ref * reference counter is decremented. If it reaches 0, we want * to clear the SOFT_DISABLED flag but leave the event in the * state that it was. That is, if the event was enabled and * SOFT_DISABLED isn't set, then do nothing. But if SOFT_DISABLED * is set we do not want the event to be enabled before we * clear the bit. * * When soft_disable is not set but the SOFT_MODE flag is, * we do nothing. Do not disable the tracepoint, otherwise * "soft enable"s (clearing the SOFT_DISABLED bit) wont work. */ if (soft_disable) { if (atomic_dec_return(&file->sm_ref) > 0) break; disable = file->flags & EVENT_FILE_FL_SOFT_DISABLED; clear_bit(EVENT_FILE_FL_SOFT_MODE_BIT, &file->flags); /* Disable use of trace_buffered_event */ trace_buffered_event_disable(); } else disable = !(file->flags & EVENT_FILE_FL_SOFT_MODE); if (disable && (file->flags & EVENT_FILE_FL_ENABLED)) { clear_bit(EVENT_FILE_FL_ENABLED_BIT, &file->flags); if (file->flags & EVENT_FILE_FL_RECORDED_CMD) { tracing_stop_cmdline_record(); clear_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } if (file->flags & EVENT_FILE_FL_RECORDED_TGID) { tracing_stop_tgid_record(); clear_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } call->class->reg(call, TRACE_REG_UNREGISTER, file); } /* If in SOFT_MODE, just set the SOFT_DISABLE_BIT, else clear it */ if (file->flags & EVENT_FILE_FL_SOFT_MODE) set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); else clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); break; case 1: /* * When soft_disable is set and enable is set, we want to * register the tracepoint for the event, but leave the event * as is. That means, if the event was already enabled, we do * nothing (but set SOFT_MODE). If the event is disabled, we * set SOFT_DISABLED before enabling the event tracepoint, so * it still seems to be disabled. */ if (!soft_disable) clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); else { if (atomic_inc_return(&file->sm_ref) > 1) break; set_bit(EVENT_FILE_FL_SOFT_MODE_BIT, &file->flags); /* Enable use of trace_buffered_event */ trace_buffered_event_enable(); } if (!(file->flags & EVENT_FILE_FL_ENABLED)) { bool cmd = false, tgid = false; /* Keep the event disabled, when going to SOFT_MODE. */ if (soft_disable) set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); if (tr->trace_flags & TRACE_ITER_RECORD_CMD) { cmd = true; tracing_start_cmdline_record(); set_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } if (tr->trace_flags & TRACE_ITER_RECORD_TGID) { tgid = true; tracing_start_tgid_record(); set_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } ret = call->class->reg(call, TRACE_REG_REGISTER, file); if (ret) { if (cmd) tracing_stop_cmdline_record(); if (tgid) tracing_stop_tgid_record(); pr_info("event trace: Could not enable event " "%s\n", trace_event_name(call)); break; } set_bit(EVENT_FILE_FL_ENABLED_BIT, &file->flags); /* WAS_ENABLED gets set but never cleared. */ set_bit(EVENT_FILE_FL_WAS_ENABLED_BIT, &file->flags); } break; } return ret; } int trace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable) { return __ftrace_event_enable_disable(file, enable, soft_disable); } static int ftrace_event_enable_disable(struct trace_event_file *file, int enable) { return __ftrace_event_enable_disable(file, enable, 0); } static void ftrace_clear_events(struct trace_array *tr) { struct trace_event_file *file; mutex_lock(&event_mutex); list_for_each_entry(file, &tr->events, list) { ftrace_event_enable_disable(file, 0); } mutex_unlock(&event_mutex); } static void event_filter_pid_sched_process_exit(void *data, struct task_struct *task) { struct trace_pid_list *pid_list; struct trace_array *tr = data; pid_list = rcu_dereference_raw(tr->filtered_pids); trace_filter_add_remove_task(pid_list, NULL, task); pid_list = rcu_dereference_raw(tr->filtered_no_pids); trace_filter_add_remove_task(pid_list, NULL, task); } static void event_filter_pid_sched_process_fork(void *data, struct task_struct *self, struct task_struct *task) { struct trace_pid_list *pid_list; struct trace_array *tr = data; pid_list = rcu_dereference_sched(tr->filtered_pids); trace_filter_add_remove_task(pid_list, self, task); pid_list = rcu_dereference_sched(tr->filtered_no_pids); trace_filter_add_remove_task(pid_list, self, task); } void trace_event_follow_fork(struct trace_array *tr, bool enable) { if (enable) { register_trace_prio_sched_process_fork(event_filter_pid_sched_process_fork, tr, INT_MIN); register_trace_prio_sched_process_free(event_filter_pid_sched_process_exit, tr, INT_MAX); } else { unregister_trace_sched_process_fork(event_filter_pid_sched_process_fork, tr); unregister_trace_sched_process_free(event_filter_pid_sched_process_exit, tr); } } static void event_filter_pid_sched_switch_probe_pre(void *data, bool preempt, struct task_struct *prev, struct task_struct *next) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; bool ret; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); /* * Sched switch is funny, as we only want to ignore it * in the notrace case if both prev and next should be ignored. */ ret = trace_ignore_this_task(NULL, no_pid_list, prev) && trace_ignore_this_task(NULL, no_pid_list, next); this_cpu_write(tr->array_buffer.data->ignore_pid, ret || (trace_ignore_this_task(pid_list, NULL, prev) && trace_ignore_this_task(pid_list, NULL, next))); } static void event_filter_pid_sched_switch_probe_post(void *data, bool preempt, struct task_struct *prev, struct task_struct *next) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, next)); } static void event_filter_pid_sched_wakeup_probe_pre(void *data, struct task_struct *task) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; /* Nothing to do if we are already tracing */ if (!this_cpu_read(tr->array_buffer.data->ignore_pid)) return; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, task)); } static void event_filter_pid_sched_wakeup_probe_post(void *data, struct task_struct *task) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; /* Nothing to do if we are not tracing */ if (this_cpu_read(tr->array_buffer.data->ignore_pid)) return; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); /* Set tracing if current is enabled */ this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, current)); } static void unregister_pid_events(struct trace_array *tr) { unregister_trace_sched_switch(event_filter_pid_sched_switch_probe_pre, tr); unregister_trace_sched_switch(event_filter_pid_sched_switch_probe_post, tr); unregister_trace_sched_wakeup(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_wakeup(event_filter_pid_sched_wakeup_probe_post, tr); unregister_trace_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_post, tr); unregister_trace_sched_waking(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_waking(event_filter_pid_sched_wakeup_probe_post, tr); } static void __ftrace_clear_event_pids(struct trace_array *tr, int type) { struct trace_pid_list *pid_list; struct trace_pid_list *no_pid_list; struct trace_event_file *file; int cpu; pid_list = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); /* Make sure there's something to do */ if (!pid_type_enabled(type, pid_list, no_pid_list)) return; if (!still_need_pid_events(type, pid_list, no_pid_list)) { unregister_pid_events(tr); list_for_each_entry(file, &tr->events, list) { clear_bit(EVENT_FILE_FL_PID_FILTER_BIT, &file->flags); } for_each_possible_cpu(cpu) per_cpu_ptr(tr->array_buffer.data, cpu)->ignore_pid = false; } if (type & TRACE_PIDS) rcu_assign_pointer(tr->filtered_pids, NULL); if (type & TRACE_NO_PIDS) rcu_assign_pointer(tr->filtered_no_pids, NULL); /* Wait till all users are no longer using pid filtering */ tracepoint_synchronize_unregister(); if ((type & TRACE_PIDS) && pid_list) trace_pid_list_free(pid_list); if ((type & TRACE_NO_PIDS) && no_pid_list) trace_pid_list_free(no_pid_list); } static void ftrace_clear_event_pids(struct trace_array *tr, int type) { mutex_lock(&event_mutex); __ftrace_clear_event_pids(tr, type); mutex_unlock(&event_mutex); } static void __put_system(struct event_subsystem *system) { struct event_filter *filter = system->filter; WARN_ON_ONCE(system_refcount(system) == 0); if (system_refcount_dec(system)) return; list_del(&system->list); if (filter) { kfree(filter->filter_string); kfree(filter); } kfree_const(system->name); kfree(system); } static void __get_system(struct event_subsystem *system) { WARN_ON_ONCE(system_refcount(system) == 0); system_refcount_inc(system); } static void __get_system_dir(struct trace_subsystem_dir *dir) { WARN_ON_ONCE(dir->ref_count == 0); dir->ref_count++; __get_system(dir->subsystem); } static void __put_system_dir(struct trace_subsystem_dir *dir) { WARN_ON_ONCE(dir->ref_count == 0); /* If the subsystem is about to be freed, the dir must be too */ WARN_ON_ONCE(system_refcount(dir->subsystem) == 1 && dir->ref_count != 1); __put_system(dir->subsystem); if (!--dir->ref_count) kfree(dir); } static void put_system(struct trace_subsystem_dir *dir) { mutex_lock(&event_mutex); __put_system_dir(dir); mutex_unlock(&event_mutex); } static void remove_subsystem(struct trace_subsystem_dir *dir) { if (!dir) return; if (!--dir->nr_events) { tracefs_remove(dir->entry); list_del(&dir->list); __put_system_dir(dir); } } void event_file_get(struct trace_event_file *file) { atomic_inc(&file->ref); } void event_file_put(struct trace_event_file *file) { if (WARN_ON_ONCE(!atomic_read(&file->ref))) { if (file->flags & EVENT_FILE_FL_FREED) kmem_cache_free(file_cachep, file); return; } if (atomic_dec_and_test(&file->ref)) { /* Count should only go to zero when it is freed */ if (WARN_ON_ONCE(!(file->flags & EVENT_FILE_FL_FREED))) return; kmem_cache_free(file_cachep, file); } } static void remove_event_file_dir(struct trace_event_file *file) { struct dentry *dir = file->dir; tracefs_remove(dir); list_del(&file->list); remove_subsystem(file->system); free_event_filter(file->filter); file->flags |= EVENT_FILE_FL_FREED; event_file_put(file); } /* * __ftrace_set_clr_event(NULL, NULL, NULL, set) will set/unset all events. */ static int __ftrace_set_clr_event_nolock(struct trace_array *tr, const char *match, const char *sub, const char *event, int set) { struct trace_event_file *file; struct trace_event_call *call; const char *name; int ret = -EINVAL; int eret = 0; list_for_each_entry(file, &tr->events, list) { call = file->event_call; name = trace_event_name(call); if (!name || !call->class || !call->class->reg) continue; if (call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) continue; if (match && strcmp(match, name) != 0 && strcmp(match, call->class->system) != 0) continue; if (sub && strcmp(sub, call->class->system) != 0) continue; if (event && strcmp(event, name) != 0) continue; ret = ftrace_event_enable_disable(file, set); /* * Save the first error and return that. Some events * may still have been enabled, but let the user * know that something went wrong. */ if (ret && !eret) eret = ret; ret = eret; } return ret; } static int __ftrace_set_clr_event(struct trace_array *tr, const char *match, const char *sub, const char *event, int set) { int ret; mutex_lock(&event_mutex); ret = __ftrace_set_clr_event_nolock(tr, match, sub, event, set); mutex_unlock(&event_mutex); return ret; } int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set) { char *event = NULL, *sub = NULL, *match; int ret; if (!tr) return -ENOENT; /* * The buf format can be <subsystem>:<event-name> * *:<event-name> means any event by that name. * :<event-name> is the same. * * <subsystem>:* means all events in that subsystem * <subsystem>: means the same. * * <name> (no ':') means all events in a subsystem with * the name <name> or any event that matches <name> */ match = strsep(&buf, ":"); if (buf) { sub = match; event = buf; match = NULL; if (!strlen(sub) || strcmp(sub, "*") == 0) sub = NULL; if (!strlen(event) || strcmp(event, "*") == 0) event = NULL; } ret = __ftrace_set_clr_event(tr, match, sub, event, set); /* Put back the colon to allow this to be called again */ if (buf) *(buf - 1) = ':'; return ret; } /** * trace_set_clr_event - enable or disable an event * @system: system name to match (NULL for any system) * @event: event name to match (NULL for all events, within system) * @set: 1 to enable, 0 to disable * * This is a way for other parts of the kernel to enable or disable * event recording. * * Returns 0 on success, -EINVAL if the parameters do not match any * registered events. */ int trace_set_clr_event(const char *system, const char *event, int set) { struct trace_array *tr = top_trace_array(); if (!tr) return -ENODEV; return __ftrace_set_clr_event(tr, NULL, system, event, set); } EXPORT_SYMBOL_GPL(trace_set_clr_event); /** * trace_array_set_clr_event - enable or disable an event for a trace array. * @tr: concerned trace array. * @system: system name to match (NULL for any system) * @event: event name to match (NULL for all events, within system) * @enable: true to enable, false to disable * * This is a way for other parts of the kernel to enable or disable * event recording. * * Returns 0 on success, -EINVAL if the parameters do not match any * registered events. */ int trace_array_set_clr_event(struct trace_array *tr, const char *system, const char *event, bool enable) { int set; if (!tr) return -ENOENT; set = (enable == true) ? 1 : 0; return __ftrace_set_clr_event(tr, NULL, system, event, set); } EXPORT_SYMBOL_GPL(trace_array_set_clr_event); /* 128 should be much more than enough */ #define EVENT_BUF_SIZE 127 static ssize_t ftrace_event_write(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_parser parser; struct seq_file *m = file->private_data; struct trace_array *tr = m->private; ssize_t read, ret; if (!cnt) return 0; ret = tracing_update_buffers(); if (ret < 0) return ret; if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1)) return -ENOMEM; read = trace_get_user(&parser, ubuf, cnt, ppos); if (read >= 0 && trace_parser_loaded((&parser))) { int set = 1; if (*parser.buffer == '!') set = 0; ret = ftrace_set_clr_event(tr, parser.buffer + !set, set); if (ret) goto out_put; } ret = read; out_put: trace_parser_put(&parser); return ret; } static void * t_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_file *file = v; struct trace_event_call *call; struct trace_array *tr = m->private; (*pos)++; list_for_each_entry_continue(file, &tr->events, list) { call = file->event_call; /* * The ftrace subsystem is for showing formats only. * They can not be enabled or disabled via the event files. */ if (call->class && call->class->reg && !(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) return file; } return NULL; } static void *t_start(struct seq_file *m, loff_t *pos) { struct trace_event_file *file; struct trace_array *tr = m->private; loff_t l; mutex_lock(&event_mutex); file = list_entry(&tr->events, struct trace_event_file, list); for (l = 0; l <= *pos; ) { file = t_next(m, file, &l); if (!file) break; } return file; } static void * s_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_file *file = v; struct trace_array *tr = m->private; (*pos)++; list_for_each_entry_continue(file, &tr->events, list) { if (file->flags & EVENT_FILE_FL_ENABLED) return file; } return NULL; } static void *s_start(struct seq_file *m, loff_t *pos) { struct trace_event_file *file; struct trace_array *tr = m->private; loff_t l; mutex_lock(&event_mutex); file = list_entry(&tr->events, struct trace_event_file, list); for (l = 0; l <= *pos; ) { file = s_next(m, file, &l); if (!file) break; } return file; } static int t_show(struct seq_file *m, void *v) { struct trace_event_file *file = v; struct trace_event_call *call = file->event_call; if (strcmp(call->class->system, TRACE_SYSTEM) != 0) seq_printf(m, "%s:", call->class->system); seq_printf(m, "%s\n", trace_event_name(call)); return 0; } static void t_stop(struct seq_file *m, void *p) { mutex_unlock(&event_mutex); } static void * __next(struct seq_file *m, void *v, loff_t *pos, int type) { struct trace_array *tr = m->private; struct trace_pid_list *pid_list; if (type == TRACE_PIDS) pid_list = rcu_dereference_sched(tr->filtered_pids); else pid_list = rcu_dereference_sched(tr->filtered_no_pids); return trace_pid_next(pid_list, v, pos); } static void * p_next(struct seq_file *m, void *v, loff_t *pos) { return __next(m, v, pos, TRACE_PIDS); } static void * np_next(struct seq_file *m, void *v, loff_t *pos) { return __next(m, v, pos, TRACE_NO_PIDS); } static void *__start(struct seq_file *m, loff_t *pos, int type) __acquires(RCU) { struct trace_pid_list *pid_list; struct trace_array *tr = m->private; /* * Grab the mutex, to keep calls to p_next() having the same * tr->filtered_pids as p_start() has. * If we just passed the tr->filtered_pids around, then RCU would * have been enough, but doing that makes things more complex. */ mutex_lock(&event_mutex); rcu_read_lock_sched(); if (type == TRACE_PIDS) pid_list = rcu_dereference_sched(tr->filtered_pids); else pid_list = rcu_dereference_sched(tr->filtered_no_pids); if (!pid_list) return NULL; return trace_pid_start(pid_list, pos); } static void *p_start(struct seq_file *m, loff_t *pos) __acquires(RCU) { return __start(m, pos, TRACE_PIDS); } static void *np_start(struct seq_file *m, loff_t *pos) __acquires(RCU) { return __start(m, pos, TRACE_NO_PIDS); } static void p_stop(struct seq_file *m, void *p) __releases(RCU) { rcu_read_unlock_sched(); mutex_unlock(&event_mutex); } static ssize_t event_enable_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; unsigned long flags; char buf[4] = "0"; mutex_lock(&event_mutex); file = event_file_data(filp); if (likely(file)) flags = file->flags; mutex_unlock(&event_mutex); if (!file || flags & EVENT_FILE_FL_FREED) return -ENODEV; if (flags & EVENT_FILE_FL_ENABLED && !(flags & EVENT_FILE_FL_SOFT_DISABLED)) strcpy(buf, "1"); if (flags & EVENT_FILE_FL_SOFT_DISABLED || flags & EVENT_FILE_FL_SOFT_MODE) strcat(buf, "*"); strcat(buf, "\n"); return simple_read_from_buffer(ubuf, cnt, ppos, buf, strlen(buf)); } static ssize_t event_enable_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; unsigned long val; int ret; ret = kstrtoul_from_user(ubuf, cnt, 10, &val); if (ret) return ret; ret = tracing_update_buffers(); if (ret < 0) return ret; switch (val) { case 0: case 1: ret = -ENODEV; mutex_lock(&event_mutex); file = event_file_data(filp); if (likely(file && !(file->flags & EVENT_FILE_FL_FREED))) ret = ftrace_event_enable_disable(file, val); mutex_unlock(&event_mutex); break; default: return -EINVAL; } *ppos += cnt; return ret ? ret : cnt; } static ssize_t system_enable_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { const char set_to_char[4] = { '?', '0', '1', 'X' }; struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; struct trace_event_call *call; struct trace_event_file *file; struct trace_array *tr = dir->tr; char buf[2]; int set = 0; int ret; mutex_lock(&event_mutex); list_for_each_entry(file, &tr->events, list) { call = file->event_call; if ((call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) || !trace_event_name(call) || !call->class || !call->class->reg) continue; if (system && strcmp(call->class->system, system->name) != 0) continue; /* * We need to find out if all the events are set * or if all events or cleared, or if we have * a mixture. */ set |= (1 << !!(file->flags & EVENT_FILE_FL_ENABLED)); /* * If we have a mixture, no need to look further. */ if (set == 3) break; } mutex_unlock(&event_mutex); buf[0] = set_to_char[set]; buf[1] = '\n'; ret = simple_read_from_buffer(ubuf, cnt, ppos, buf, 2); return ret; } static ssize_t system_enable_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; const char *name = NULL; unsigned long val; ssize_t ret; ret = kstrtoul_from_user(ubuf, cnt, 10, &val); if (ret) return ret; ret = tracing_update_buffers(); if (ret < 0) return ret; if (val != 0 && val != 1) return -EINVAL; /* * Opening of "enable" adds a ref count to system, * so the name is safe to use. */ if (system) name = system->name; ret = __ftrace_set_clr_event(dir->tr, NULL, name, NULL, val); if (ret) goto out; ret = cnt; out: *ppos += cnt; return ret; } enum { FORMAT_HEADER = 1, FORMAT_FIELD_SEPERATOR = 2, FORMAT_PRINTFMT = 3, }; static void *f_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_call *call = event_file_data(m->private); struct list_head *common_head = &ftrace_common_fields; struct list_head *head = trace_get_fields(call); struct list_head *node = v; (*pos)++; switch ((unsigned long)v) { case FORMAT_HEADER: node = common_head; break; case FORMAT_FIELD_SEPERATOR: node = head; break; case FORMAT_PRINTFMT: /* all done */ return NULL; } node = node->prev; if (node == common_head) return (void *)FORMAT_FIELD_SEPERATOR; else if (node == head) return (void *)FORMAT_PRINTFMT; else return node; } static int f_show(struct seq_file *m, void *v) { struct trace_event_call *call = event_file_data(m->private); struct ftrace_event_field *field; const char *array_descriptor; switch ((unsigned long)v) { case FORMAT_HEADER: seq_printf(m, "name: %s\n", trace_event_name(call)); seq_printf(m, "ID: %d\n", call->event.type); seq_puts(m, "format:\n"); return 0; case FORMAT_FIELD_SEPERATOR: seq_putc(m, '\n'); return 0; case FORMAT_PRINTFMT: seq_printf(m, "\nprint fmt: %s\n", call->print_fmt); return 0; } field = list_entry(v, struct ftrace_event_field, link); /* * Smartly shows the array type(except dynamic array). * Normal: * field:TYPE VAR * If TYPE := TYPE[LEN], it is shown: * field:TYPE VAR[LEN] */ array_descriptor = strchr(field->type, '['); if (str_has_prefix(field->type, "__data_loc")) array_descriptor = NULL; if (!array_descriptor) seq_printf(m, "\tfield:%s %s;\toffset:%u;\tsize:%u;\tsigned:%d;\n", field->type, field->name, field->offset, field->size, !!field->is_signed); else seq_printf(m, "\tfield:%.*s %s%s;\toffset:%u;\tsize:%u;\tsigned:%d;\n", (int)(array_descriptor - field->type), field->type, field->name, array_descriptor, field->offset, field->size, !!field->is_signed); return 0; } static void *f_start(struct seq_file *m, loff_t *pos) { void *p = (void *)FORMAT_HEADER; loff_t l = 0; /* ->stop() is called even if ->start() fails */ mutex_lock(&event_mutex); if (!event_file_data(m->private)) return ERR_PTR(-ENODEV); while (l < *pos && p) p = f_next(m, p, &l); return p; } static void f_stop(struct seq_file *m, void *p) { mutex_unlock(&event_mutex); } static const struct seq_operations trace_format_seq_ops = { .start = f_start, .next = f_next, .stop = f_stop, .show = f_show, }; static int trace_format_open(struct inode *inode, struct file *file) { struct seq_file *m; int ret; /* Do we want to hide event format files on tracefs lockdown? */ ret = seq_open(file, &trace_format_seq_ops); if (ret < 0) return ret; m = file->private_data; m->private = file; return 0; } #ifdef CONFIG_PERF_EVENTS static ssize_t event_id_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { int id = (long)event_file_data(filp); char buf[32]; int len; if (unlikely(!id)) return -ENODEV; len = sprintf(buf, "%d\n", id); return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); } #endif static ssize_t event_filter_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; struct trace_seq *s; int r = -ENODEV; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); mutex_lock(&event_mutex); file = event_file_data(filp); if (file && !(file->flags & EVENT_FILE_FL_FREED)) print_event_filter(file, s); mutex_unlock(&event_mutex); if (file) r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static ssize_t event_filter_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; char *buf; int err = -ENODEV; if (cnt >= PAGE_SIZE) return -EINVAL; buf = memdup_user_nul(ubuf, cnt); if (IS_ERR(buf)) return PTR_ERR(buf); mutex_lock(&event_mutex); file = event_file_data(filp); if (file) err = apply_event_filter(file, buf); mutex_unlock(&event_mutex); kfree(buf); if (err < 0) return err; *ppos += cnt; return cnt; } static LIST_HEAD(event_subsystems); static int subsystem_open(struct inode *inode, struct file *filp) { struct event_subsystem *system = NULL; struct trace_subsystem_dir *dir = NULL; /* Initialize for gcc */ struct trace_array *tr; int ret; if (tracing_is_disabled()) return -ENODEV; /* Make sure the system still exists */ mutex_lock(&event_mutex); mutex_lock(&trace_types_lock); list_for_each_entry(tr, &ftrace_trace_arrays, list) { list_for_each_entry(dir, &tr->systems, list) { if (dir == inode->i_private) { /* Don't open systems with no events */ if (dir->nr_events) { __get_system_dir(dir); system = dir->subsystem; } goto exit_loop; } } } exit_loop: mutex_unlock(&trace_types_lock); mutex_unlock(&event_mutex); if (!system) return -ENODEV; /* Some versions of gcc think dir can be uninitialized here */ WARN_ON(!dir); /* Still need to increment the ref count of the system */ if (trace_array_get(tr) < 0) { put_system(dir); return -ENODEV; } ret = tracing_open_generic(inode, filp); if (ret < 0) { trace_array_put(tr); put_system(dir); } return ret; } static int system_tr_open(struct inode *inode, struct file *filp) { struct trace_subsystem_dir *dir; struct trace_array *tr = inode->i_private; int ret; /* Make a temporary dir that has no system but points to tr */ dir = kzalloc(sizeof(*dir), GFP_KERNEL); if (!dir) return -ENOMEM; ret = tracing_open_generic_tr(inode, filp); if (ret < 0) { kfree(dir); return ret; } dir->tr = tr; filp->private_data = dir; return 0; } static int subsystem_release(struct inode *inode, struct file *file) { struct trace_subsystem_dir *dir = file->private_data; trace_array_put(dir->tr); /* * If dir->subsystem is NULL, then this is a temporary * descriptor that was made for a trace_array to enable * all subsystems. */ if (dir->subsystem) put_system(dir); else kfree(dir); return 0; } static ssize_t subsystem_filter_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; struct trace_seq *s; int r; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); print_subsystem_event_filter(system, s); r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static ssize_t subsystem_filter_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; char *buf; int err; if (cnt >= PAGE_SIZE) return -EINVAL; buf = memdup_user_nul(ubuf, cnt); if (IS_ERR(buf)) return PTR_ERR(buf); err = apply_subsystem_event_filter(dir, buf); kfree(buf); if (err < 0) return err; *ppos += cnt; return cnt; } static ssize_t show_header(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { int (*func)(struct trace_seq *s) = filp->private_data; struct trace_seq *s; int r; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); func(s); r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static void ignore_task_cpu(void *data) { struct trace_array *tr = data; struct trace_pid_list *pid_list; struct trace_pid_list *no_pid_list; /* * This function is called by on_each_cpu() while the * event_mutex is held. */ pid_list = rcu_dereference_protected(tr->filtered_pids, mutex_is_locked(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, mutex_is_locked(&event_mutex)); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, current)); } static void register_pid_events(struct trace_array *tr) { /* * Register a probe that is called before all other probes * to set ignore_pid if next or prev do not match. * Register a probe this is called after all other probes * to only keep ignore_pid set if next pid matches. */ register_trace_prio_sched_switch(event_filter_pid_sched_switch_probe_pre, tr, INT_MAX); register_trace_prio_sched_switch(event_filter_pid_sched_switch_probe_post, tr, 0); register_trace_prio_sched_wakeup(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_wakeup(event_filter_pid_sched_wakeup_probe_post, tr, 0); register_trace_prio_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_post, tr, 0); register_trace_prio_sched_waking(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_waking(event_filter_pid_sched_wakeup_probe_post, tr, 0); } static ssize_t event_pid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos, int type) { struct seq_file *m = filp->private_data; struct trace_array *tr = m->private; struct trace_pid_list *filtered_pids = NULL; struct trace_pid_list *other_pids = NULL; struct trace_pid_list *pid_list; struct trace_event_file *file; ssize_t ret; if (!cnt) return 0; ret = tracing_update_buffers(); if (ret < 0) return ret; mutex_lock(&event_mutex); if (type == TRACE_PIDS) { filtered_pids = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); other_pids = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); } else { filtered_pids = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); other_pids = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); } ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); if (ret < 0) goto out; if (type == TRACE_PIDS) rcu_assign_pointer(tr->filtered_pids, pid_list); else rcu_assign_pointer(tr->filtered_no_pids, pid_list); list_for_each_entry(file, &tr->events, list) { set_bit(EVENT_FILE_FL_PID_FILTER_BIT, &file->flags); } if (filtered_pids) { tracepoint_synchronize_unregister(); trace_pid_list_free(filtered_pids); } else if (pid_list && !other_pids) { register_pid_events(tr); } /* * Ignoring of pids is done at task switch. But we have to * check for those tasks that are currently running. * Always do this in case a pid was appended or removed. */ on_each_cpu(ignore_task_cpu, tr, 1); out: mutex_unlock(&event_mutex); if (ret > 0) *ppos += ret; return ret; } static ssize_t ftrace_event_pid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return event_pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); } static ssize_t ftrace_event_npid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return event_pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); } static int ftrace_event_avail_open(struct inode *inode, struct file *file); static int ftrace_event_set_open(struct inode *inode, struct file *file); static int ftrace_event_set_pid_open(struct inode *inode, struct file *file); static int ftrace_event_set_npid_open(struct inode *inode, struct file *file); static int ftrace_event_release(struct inode *inode, struct file *file); static const struct seq_operations show_event_seq_ops = { .start = t_start, .next = t_next, .show = t_show, .stop = t_stop, }; static const struct seq_operations show_set_event_seq_ops = { .start = s_start, .next = s_next, .show = t_show, .stop = t_stop, }; static const struct seq_operations show_set_pid_seq_ops = { .start = p_start, .next = p_next, .show = trace_pid_show, .stop = p_stop, }; static const struct seq_operations show_set_no_pid_seq_ops = { .start = np_start, .next = np_next, .show = trace_pid_show, .stop = p_stop, }; static const struct file_operations ftrace_avail_fops = { .open = ftrace_event_avail_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations ftrace_set_event_fops = { .open = ftrace_event_set_open, .read = seq_read, .write = ftrace_event_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_set_event_pid_fops = { .open = ftrace_event_set_pid_open, .read = seq_read, .write = ftrace_event_pid_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_set_event_notrace_pid_fops = { .open = ftrace_event_set_npid_open, .read = seq_read, .write = ftrace_event_npid_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_enable_fops = { .open = tracing_open_file_tr, .read = event_enable_read, .write = event_enable_write, .release = tracing_release_file_tr, .llseek = default_llseek, }; static const struct file_operations ftrace_event_format_fops = { .open = trace_format_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #ifdef CONFIG_PERF_EVENTS static const struct file_operations ftrace_event_id_fops = { .read = event_id_read, .llseek = default_llseek, }; #endif static const struct file_operations ftrace_event_filter_fops = { .open = tracing_open_file_tr, .read = event_filter_read, .write = event_filter_write, .release = tracing_release_file_tr, .llseek = default_llseek, }; static const struct file_operations ftrace_subsystem_filter_fops = { .open = subsystem_open, .read = subsystem_filter_read, .write = subsystem_filter_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_system_enable_fops = { .open = subsystem_open, .read = system_enable_read, .write = system_enable_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_tr_enable_fops = { .open = system_tr_open, .read = system_enable_read, .write = system_enable_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_show_header_fops = { .open = tracing_open_generic, .read = show_header, .llseek = default_llseek, }; static int ftrace_event_open(struct inode *inode, struct file *file, const struct seq_operations *seq_ops) { struct seq_file *m; int ret; ret = security_locked_down(LOCKDOWN_TRACEFS); if (ret) return ret; ret = seq_open(file, seq_ops); if (ret < 0) return ret; m = file->private_data; /* copy tr over to seq ops */ m->private = inode->i_private; return ret; } static int ftrace_event_release(struct inode *inode, struct file *file) { struct trace_array *tr = inode->i_private; trace_array_put(tr); return seq_release(inode, file); } static int ftrace_event_avail_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_event_seq_ops; /* Checks for tracefs lockdown */ return ftrace_event_open(inode, file, seq_ops); } static int ftrace_event_set_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_event_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_events(tr); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static int ftrace_event_set_pid_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_pid_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_event_pids(tr, TRACE_PIDS); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static int ftrace_event_set_npid_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_no_pid_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_event_pids(tr, TRACE_NO_PIDS); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static struct event_subsystem * create_new_subsystem(const char *name) { struct event_subsystem *system; /* need to create new entry */ system = kmalloc(sizeof(*system), GFP_KERNEL); if (!system) return NULL; system->ref_count = 1; /* Only allocate if dynamic (kprobes and modules) */ system->name = kstrdup_const(name, GFP_KERNEL); if (!system->name) goto out_free; system->filter = NULL; system->filter = kzalloc(sizeof(struct event_filter), GFP_KERNEL); if (!system->filter) goto out_free; list_add(&system->list, &event_subsystems); return system; out_free: kfree_const(system->name); kfree(system); return NULL; } static struct dentry * event_subsystem_dir(struct trace_array *tr, const char *name, struct trace_event_file *file, struct dentry *parent) { struct trace_subsystem_dir *dir; struct event_subsystem *system; struct dentry *entry; /* First see if we did not already create this dir */ list_for_each_entry(dir, &tr->systems, list) { system = dir->subsystem; if (strcmp(system->name, name) == 0) { dir->nr_events++; file->system = dir; return dir->entry; } } /* Now see if the system itself exists. */ list_for_each_entry(system, &event_subsystems, list) { if (strcmp(system->name, name) == 0) break; } /* Reset system variable when not found */ if (&system->list == &event_subsystems) system = NULL; dir = kmalloc(sizeof(*dir), GFP_KERNEL); if (!dir) goto out_fail; if (!system) { system = create_new_subsystem(name); if (!system) goto out_free; } else __get_system(system); dir->entry = tracefs_create_dir(name, parent); if (!dir->entry) { pr_warn("Failed to create system directory %s\n", name); __put_system(system); goto out_free; } dir->tr = tr; dir->ref_count = 1; dir->nr_events = 1; dir->subsystem = system; file->system = dir; /* the ftrace system is special, do not create enable or filter files */ if (strcmp(name, "ftrace") != 0) { entry = tracefs_create_file("filter", TRACE_MODE_WRITE, dir->entry, dir, &ftrace_subsystem_filter_fops); if (!entry) { kfree(system->filter); system->filter = NULL; pr_warn("Could not create tracefs '%s/filter' entry\n", name); } trace_create_file("enable", TRACE_MODE_WRITE, dir->entry, dir, &ftrace_system_enable_fops); } list_add(&dir->list, &tr->systems); return dir->entry; out_free: kfree(dir); out_fail: /* Only print this message if failed on memory allocation */ if (!dir || !system) pr_warn("No memory to create event subsystem %s\n", name); return NULL; } static int event_define_fields(struct trace_event_call *call) { struct list_head *head; int ret = 0; /* * Other events may have the same class. Only update * the fields if they are not already defined. */ head = trace_get_fields(call); if (list_empty(head)) { struct trace_event_fields *field = call->class->fields_array; unsigned int offset = sizeof(struct trace_entry); for (; field->type; field++) { if (field->type == TRACE_FUNCTION_TYPE) { field->define_fields(call); break; } offset = ALIGN(offset, field->align); ret = trace_define_field(call, field->type, field->name, offset, field->size, field->is_signed, field->filter_type); if (WARN_ON_ONCE(ret)) { pr_err("error code is %d\n", ret); break; } offset += field->size; } } return ret; } static int event_create_dir(struct dentry *parent, struct trace_event_file *file) { struct trace_event_call *call = file->event_call; struct trace_array *tr = file->tr; struct dentry *d_events; const char *name; int ret; /* * If the trace point header did not define TRACE_SYSTEM * then the system would be called "TRACE_SYSTEM". */ if (strcmp(call->class->system, TRACE_SYSTEM) != 0) { d_events = event_subsystem_dir(tr, call->class->system, file, parent); if (!d_events) return -ENOMEM; } else d_events = parent; name = trace_event_name(call); file->dir = tracefs_create_dir(name, d_events); if (!file->dir) { pr_warn("Could not create tracefs '%s' directory\n", name); return -1; } if (call->class->reg && !(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) trace_create_file("enable", TRACE_MODE_WRITE, file->dir, file, &ftrace_enable_fops); #ifdef CONFIG_PERF_EVENTS if (call->event.type && call->class->reg) trace_create_file("id", TRACE_MODE_READ, file->dir, (void *)(long)call->event.type, &ftrace_event_id_fops); #endif ret = event_define_fields(call); if (ret < 0) { pr_warn("Could not initialize trace point events/%s\n", name); return ret; } /* * Only event directories that can be enabled should have * triggers or filters. */ if (!(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) { trace_create_file("filter", TRACE_MODE_WRITE, file->dir, file, &ftrace_event_filter_fops); trace_create_file("trigger", TRACE_MODE_WRITE, file->dir, file, &event_trigger_fops); } #ifdef CONFIG_HIST_TRIGGERS trace_create_file("hist", TRACE_MODE_READ, file->dir, file, &event_hist_fops); #endif #ifdef CONFIG_HIST_TRIGGERS_DEBUG trace_create_file("hist_debug", TRACE_MODE_READ, file->dir, file, &event_hist_debug_fops); #endif trace_create_file("format", TRACE_MODE_READ, file->dir, call, &ftrace_event_format_fops); #ifdef CONFIG_TRACE_EVENT_INJECT if (call->event.type && call->class->reg) trace_create_file("inject", 0200, file->dir, file, &event_inject_fops); #endif return 0; } static void remove_event_from_tracers(struct trace_event_call *call) { struct trace_event_file *file; struct trace_array *tr; do_for_each_event_file_safe(tr, file) { if (file->event_call != call) continue; remove_event_file_dir(file); /* * The do_for_each_event_file_safe() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); } static void event_remove(struct trace_event_call *call) { struct trace_array *tr; struct trace_event_file *file; do_for_each_event_file(tr, file) { if (file->event_call != call) continue; if (file->flags & EVENT_FILE_FL_WAS_ENABLED) tr->clear_trace = true; ftrace_event_enable_disable(file, 0); /* * The do_for_each_event_file() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); if (call->event.funcs) __unregister_trace_event(&call->event); remove_event_from_tracers(call); list_del(&call->list); } static int event_init(struct trace_event_call *call) { int ret = 0; const char *name; name = trace_event_name(call); if (WARN_ON(!name)) return -EINVAL; if (call->class->raw_init) { ret = call->class->raw_init(call); if (ret < 0 && ret != -ENOSYS) pr_warn("Could not initialize trace events/%s\n", name); } return ret; } static int __register_event(struct trace_event_call *call, struct module *mod) { int ret; ret = event_init(call); if (ret < 0) return ret; list_add(&call->list, &ftrace_events); if (call->flags & TRACE_EVENT_FL_DYNAMIC) atomic_set(&call->refcnt, 0); else call->module = mod; return 0; } static char *eval_replace(char *ptr, struct trace_eval_map *map, int len) { int rlen; int elen; /* Find the length of the eval value as a string */ elen = snprintf(ptr, 0, "%ld", map->eval_value); /* Make sure there's enough room to replace the string with the value */ if (len < elen) return NULL; snprintf(ptr, elen + 1, "%ld", map->eval_value); /* Get the rest of the string of ptr */ rlen = strlen(ptr + len); memmove(ptr + elen, ptr + len, rlen); /* Make sure we end the new string */ ptr[elen + rlen] = 0; return ptr + elen; } static void update_event_printk(struct trace_event_call *call, struct trace_eval_map *map) { char *ptr; int quote = 0; int len = strlen(map->eval_string); for (ptr = call->print_fmt; *ptr; ptr++) { if (*ptr == '\\') { ptr++; /* paranoid */ if (!*ptr) break; continue; } if (*ptr == '"') { quote ^= 1; continue; } if (quote) continue; if (isdigit(*ptr)) { /* skip numbers */ do { ptr++; /* Check for alpha chars like ULL */ } while (isalnum(*ptr)); if (!*ptr) break; /* * A number must have some kind of delimiter after * it, and we can ignore that too. */ continue; } if (isalpha(*ptr) || *ptr == '_') { if (strncmp(map->eval_string, ptr, len) == 0 && !isalnum(ptr[len]) && ptr[len] != '_') { ptr = eval_replace(ptr, map, len); /* enum/sizeof string smaller than value */ if (WARN_ON_ONCE(!ptr)) return; /* * No need to decrement here, as eval_replace() * returns the pointer to the character passed * the eval, and two evals can not be placed * back to back without something in between. * We can skip that something in between. */ continue; } skip_more: do { ptr++; } while (isalnum(*ptr) || *ptr == '_'); if (!*ptr) break; /* * If what comes after this variable is a '.' or * '->' then we can continue to ignore that string. */ if (*ptr == '.' || (ptr[0] == '-' && ptr[1] == '>')) { ptr += *ptr == '.' ? 1 : 2; if (!*ptr) break; goto skip_more; } /* * Once again, we can skip the delimiter that came * after the string. */ continue; } } } static void add_str_to_module(struct module *module, char *str) { struct module_string *modstr; modstr = kmalloc(sizeof(*modstr), GFP_KERNEL); /* * If we failed to allocate memory here, then we'll just * let the str memory leak when the module is removed. * If this fails to allocate, there's worse problems than * a leaked string on module removal. */ if (WARN_ON_ONCE(!modstr)) return; modstr->module = module; modstr->str = str; list_add(&modstr->next, &module_strings); } static void update_event_fields(struct trace_event_call *call, struct trace_eval_map *map) { struct ftrace_event_field *field; struct list_head *head; char *ptr; char *str; int len = strlen(map->eval_string); /* Dynamic events should never have field maps */ if (WARN_ON_ONCE(call->flags & TRACE_EVENT_FL_DYNAMIC)) return; head = trace_get_fields(call); list_for_each_entry(field, head, link) { ptr = strchr(field->type, '['); if (!ptr) continue; ptr++; if (!isalpha(*ptr) && *ptr != '_') continue; if (strncmp(map->eval_string, ptr, len) != 0) continue; str = kstrdup(field->type, GFP_KERNEL); if (WARN_ON_ONCE(!str)) return; ptr = str + (ptr - field->type); ptr = eval_replace(ptr, map, len); /* enum/sizeof string smaller than value */ if (WARN_ON_ONCE(!ptr)) { kfree(str); continue; } /* * If the event is part of a module, then we need to free the string * when the module is removed. Otherwise, it will stay allocated * until a reboot. */ if (call->module) add_str_to_module(call->module, str); field->type = str; } } void trace_event_eval_update(struct trace_eval_map **map, int len) { struct trace_event_call *call, *p; const char *last_system = NULL; bool first = false; int last_i; int i; down_write(&trace_event_sem); list_for_each_entry_safe(call, p, &ftrace_events, list) { /* events are usually grouped together with systems */ if (!last_system || call->class->system != last_system) { first = true; last_i = 0; last_system = call->class->system; } /* * Since calls are grouped by systems, the likelihood that the * next call in the iteration belongs to the same system as the * previous call is high. As an optimization, we skip searching * for a map[] that matches the call's system if the last call * was from the same system. That's what last_i is for. If the * call has the same system as the previous call, then last_i * will be the index of the first map[] that has a matching * system. */ for (i = last_i; i < len; i++) { if (call->class->system == map[i]->system) { /* Save the first system if need be */ if (first) { last_i = i; first = false; } update_event_printk(call, map[i]); update_event_fields(call, map[i]); } } cond_resched(); } up_write(&trace_event_sem); } static struct trace_event_file * trace_create_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; struct trace_event_file *file; file = kmem_cache_alloc(file_cachep, GFP_TRACE); if (!file) return NULL; pid_list = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); if (pid_list || no_pid_list) file->flags |= EVENT_FILE_FL_PID_FILTER; file->event_call = call; file->tr = tr; atomic_set(&file->sm_ref, 0); atomic_set(&file->tm_ref, 0); INIT_LIST_HEAD(&file->triggers); list_add(&file->list, &tr->events); event_file_get(file); return file; } /* Add an event to a trace directory */ static int __trace_add_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_event_file *file; file = trace_create_new_event(call, tr); if (!file) return -ENOMEM; if (eventdir_initialized) return event_create_dir(tr->event_dir, file); else return event_define_fields(call); } /* * Just create a descriptor for early init. A descriptor is required * for enabling events at boot. We want to enable events before * the filesystem is initialized. */ static int __trace_early_add_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_event_file *file; file = trace_create_new_event(call, tr); if (!file) return -ENOMEM; return event_define_fields(call); } struct ftrace_module_file_ops; static void __add_event_to_tracers(struct trace_event_call *call); /* Add an additional event_call dynamically */ int trace_add_event_call(struct trace_event_call *call) { int ret; lockdep_assert_held(&event_mutex); mutex_lock(&trace_types_lock); ret = __register_event(call, NULL); if (ret >= 0) __add_event_to_tracers(call); mutex_unlock(&trace_types_lock); return ret; } /* * Must be called under locking of trace_types_lock, event_mutex and * trace_event_sem. */ static void __trace_remove_event_call(struct trace_event_call *call) { event_remove(call); trace_destroy_fields(call); free_event_filter(call->filter); call->filter = NULL; } static int probe_remove_event_call(struct trace_event_call *call) { struct trace_array *tr; struct trace_event_file *file; #ifdef CONFIG_PERF_EVENTS if (call->perf_refcount) return -EBUSY; #endif do_for_each_event_file(tr, file) { if (file->event_call != call) continue; /* * We can't rely on ftrace_event_enable_disable(enable => 0) * we are going to do, EVENT_FILE_FL_SOFT_MODE can suppress * TRACE_REG_UNREGISTER. */ if (file->flags & EVENT_FILE_FL_ENABLED) goto busy; if (file->flags & EVENT_FILE_FL_WAS_ENABLED) tr->clear_trace = true; /* * The do_for_each_event_file_safe() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); __trace_remove_event_call(call); return 0; busy: /* No need to clear the trace now */ list_for_each_entry(tr, &ftrace_trace_arrays, list) { tr->clear_trace = false; } return -EBUSY; } /* Remove an event_call */ int trace_remove_event_call(struct trace_event_call *call) { int ret; lockdep_assert_held(&event_mutex); mutex_lock(&trace_types_lock); down_write(&trace_event_sem); ret = probe_remove_event_call(call); up_write(&trace_event_sem); mutex_unlock(&trace_types_lock); return ret; } #define for_each_event(event, start, end) \ for (event = start; \ (unsigned long)event < (unsigned long)end; \ event++) #ifdef CONFIG_MODULES static void trace_module_add_events(struct module *mod) { struct trace_event_call **call, **start, **end; if (!mod->num_trace_events) return; /* Don't add infrastructure for mods without tracepoints */ if (trace_module_has_bad_taint(mod)) { pr_err("%s: module has bad taint, not creating trace events\n", mod->name); return; } start = mod->trace_events; end = mod->trace_events + mod->num_trace_events; for_each_event(call, start, end) { __register_event(*call, mod); __add_event_to_tracers(*call); } } static void trace_module_remove_events(struct module *mod) { struct trace_event_call *call, *p; struct module_string *modstr, *m; down_write(&trace_event_sem); list_for_each_entry_safe(call, p, &ftrace_events, list) { if ((call->flags & TRACE_EVENT_FL_DYNAMIC) || !call->module) continue; if (call->module == mod) __trace_remove_event_call(call); } /* Check for any strings allocade for this module */ list_for_each_entry_safe(modstr, m, &module_strings, next) { if (modstr->module != mod) continue; list_del(&modstr->next); kfree(modstr->str); kfree(modstr); } up_write(&trace_event_sem); /* * It is safest to reset the ring buffer if the module being unloaded * registered any events that were used. The only worry is if * a new module gets loaded, and takes on the same id as the events * of this module. When printing out the buffer, traced events left * over from this module may be passed to the new module events and * unexpected results may occur. */ tracing_reset_all_online_cpus_unlocked(); } static int trace_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; mutex_lock(&event_mutex); mutex_lock(&trace_types_lock); switch (val) { case MODULE_STATE_COMING: trace_module_add_events(mod); break; case MODULE_STATE_GOING: trace_module_remove_events(mod); break; } mutex_unlock(&trace_types_lock); mutex_unlock(&event_mutex); return NOTIFY_OK; } static struct notifier_block trace_module_nb = { .notifier_call = trace_module_notify, .priority = 1, /* higher than trace.c module notify */ }; #endif /* CONFIG_MODULES */ /* Create a new event directory structure for a trace directory. */ static void __trace_add_event_dirs(struct trace_array *tr) { struct trace_event_call *call; int ret; list_for_each_entry(call, &ftrace_events, list) { ret = __trace_add_new_event(call, tr); if (ret < 0) pr_warn("Could not create directory for event %s\n", trace_event_name(call)); } } /* Returns any file that matches the system and event */ struct trace_event_file * __find_event_file(struct trace_array *tr, const char *system, const char *event) { struct trace_event_file *file; struct trace_event_call *call; const char *name; list_for_each_entry(file, &tr->events, list) { call = file->event_call; name = trace_event_name(call); if (!name || !call->class) continue; if (strcmp(event, name) == 0 && strcmp(system, call->class->system) == 0) return file; } return NULL; } /* Returns valid trace event files that match system and event */ struct trace_event_file * find_event_file(struct trace_array *tr, const char *system, const char *event) { struct trace_event_file *file; file = __find_event_file(tr, system, event); if (!file || !file->event_call->class->reg || file->event_call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) return NULL; return file; } /** * trace_get_event_file - Find and return a trace event file * @instance: The name of the trace instance containing the event * @system: The name of the system containing the event * @event: The name of the event * * Return a trace event file given the trace instance name, trace * system, and trace event name. If the instance name is NULL, it * refers to the top-level trace array. * * This function will look it up and return it if found, after calling * trace_array_get() to prevent the instance from going away, and * increment the event's module refcount to prevent it from being * removed. * * To release the file, call trace_put_event_file(), which will call * trace_array_put() and decrement the event's module refcount. * * Return: The trace event on success, ERR_PTR otherwise. */ struct trace_event_file *trace_get_event_file(const char *instance, const char *system, const char *event) { struct trace_array *tr = top_trace_array(); struct trace_event_file *file = NULL; int ret = -EINVAL; if (instance) { tr = trace_array_find_get(instance); if (!tr) return ERR_PTR(-ENOENT); } else { ret = trace_array_get(tr); if (ret) return ERR_PTR(ret); } mutex_lock(&event_mutex); file = find_event_file(tr, system, event); if (!file) { trace_array_put(tr); ret = -EINVAL; goto out; } /* Don't let event modules unload while in use */ ret = trace_event_try_get_ref(file->event_call); if (!ret) { trace_array_put(tr); ret = -EBUSY; goto out; } ret = 0; out: mutex_unlock(&event_mutex); if (ret) file = ERR_PTR(ret); return file; } EXPORT_SYMBOL_GPL(trace_get_event_file); /** * trace_put_event_file - Release a file from trace_get_event_file() * @file: The trace event file * * If a file was retrieved using trace_get_event_file(), this should * be called when it's no longer needed. It will cancel the previous * trace_array_get() called by that function, and decrement the * event's module refcount. */ void trace_put_event_file(struct trace_event_file *file) { mutex_lock(&event_mutex); trace_event_put_ref(file->event_call); mutex_unlock(&event_mutex); trace_array_put(file->tr); } EXPORT_SYMBOL_GPL(trace_put_event_file); #ifdef CONFIG_DYNAMIC_FTRACE /* Avoid typos */ #define ENABLE_EVENT_STR "enable_event" #define DISABLE_EVENT_STR "disable_event" struct event_probe_data { struct trace_event_file *file; unsigned long count; int ref; bool enable; }; static void update_event_probe(struct event_probe_data *data) { if (data->enable) clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &data->file->flags); else set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &data->file->flags); } static void event_enable_probe(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (!pdata || !*pdata) return; edata = *pdata; update_event_probe(edata); } static void event_enable_count_probe(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (!pdata || !*pdata) return; edata = *pdata; if (!edata->count) return; /* Skip if the event is in a state we want to switch to */ if (edata->enable == !(edata->file->flags & EVENT_FILE_FL_SOFT_DISABLED)) return; if (edata->count != -1) (edata->count)--; update_event_probe(edata); } static int event_enable_print(struct seq_file *m, unsigned long ip, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (WARN_ON_ONCE(!pdata || !*pdata)) return 0; edata = *pdata; seq_printf(m, "%ps:", (void *)ip); seq_printf(m, "%s:%s:%s", edata->enable ? ENABLE_EVENT_STR : DISABLE_EVENT_STR, edata->file->event_call->class->system, trace_event_name(edata->file->event_call)); if (edata->count == -1) seq_puts(m, ":unlimited\n"); else seq_printf(m, ":count=%ld\n", edata->count); return 0; } static int event_enable_init(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *init_data, void **data) { struct ftrace_func_mapper *mapper = *data; struct event_probe_data *edata = init_data; int ret; if (!mapper) { mapper = allocate_ftrace_func_mapper(); if (!mapper) return -ENODEV; *data = mapper; } ret = ftrace_func_mapper_add_ip(mapper, ip, edata); if (ret < 0) return ret; edata->ref++; return 0; } static int free_probe_data(void *data) { struct event_probe_data *edata = data; edata->ref--; if (!edata->ref) { /* Remove the SOFT_MODE flag */ __ftrace_event_enable_disable(edata->file, 0, 1); trace_event_put_ref(edata->file->event_call); kfree(edata); } return 0; } static void event_enable_free(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; if (!ip) { if (!mapper) return; free_ftrace_func_mapper(mapper, free_probe_data); return; } edata = ftrace_func_mapper_remove_ip(mapper, ip); if (WARN_ON_ONCE(!edata)) return; if (WARN_ON_ONCE(edata->ref <= 0)) return; free_probe_data(edata); } static struct ftrace_probe_ops event_enable_probe_ops = { .func = event_enable_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_enable_count_probe_ops = { .func = event_enable_count_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_disable_probe_ops = { .func = event_enable_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_disable_count_probe_ops = { .func = event_enable_count_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static int event_enable_func(struct trace_array *tr, struct ftrace_hash *hash, char *glob, char *cmd, char *param, int enabled) { struct trace_event_file *file; struct ftrace_probe_ops *ops; struct event_probe_data *data; const char *system; const char *event; char *number; bool enable; int ret; if (!tr) return -ENODEV; /* hash funcs only work with set_ftrace_filter */ if (!enabled || !param) return -EINVAL; system = strsep(¶m, ":"); if (!param) return -EINVAL; event = strsep(¶m, ":"); mutex_lock(&event_mutex); ret = -EINVAL; file = find_event_file(tr, system, event); if (!file) goto out; enable = strcmp(cmd, ENABLE_EVENT_STR) == 0; if (enable) ops = param ? &event_enable_count_probe_ops : &event_enable_probe_ops; else ops = param ? &event_disable_count_probe_ops : &event_disable_probe_ops; if (glob[0] == '!') { ret = unregister_ftrace_function_probe_func(glob+1, tr, ops); goto out; } ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto out; data->enable = enable; data->count = -1; data->file = file; if (!param) goto out_reg; number = strsep(¶m, ":"); ret = -EINVAL; if (!strlen(number)) goto out_free; /* * We use the callback data field (which is a pointer) * as our counter. */ ret = kstrtoul(number, 0, &data->count); if (ret) goto out_free; out_reg: /* Don't let event modules unload while probe registered */ ret = trace_event_try_get_ref(file->event_call); if (!ret) { ret = -EBUSY; goto out_free; } ret = __ftrace_event_enable_disable(file, 1, 1); if (ret < 0) goto out_put; ret = register_ftrace_function_probe(glob, tr, ops, data); /* * The above returns on success the # of functions enabled, * but if it didn't find any functions it returns zero. * Consider no functions a failure too. */ if (!ret) { ret = -ENOENT; goto out_disable; } else if (ret < 0) goto out_disable; /* Just return zero, not the number of enabled functions */ ret = 0; out: mutex_unlock(&event_mutex); return ret; out_disable: __ftrace_event_enable_disable(file, 0, 1); out_put: trace_event_put_ref(file->event_call); out_free: kfree(data); goto out; } static struct ftrace_func_command event_enable_cmd = { .name = ENABLE_EVENT_STR, .func = event_enable_func, }; static struct ftrace_func_command event_disable_cmd = { .name = DISABLE_EVENT_STR, .func = event_enable_func, }; static __init int register_event_cmds(void) { int ret; ret = register_ftrace_command(&event_enable_cmd); if (WARN_ON(ret < 0)) return ret; ret = register_ftrace_command(&event_disable_cmd); if (WARN_ON(ret < 0)) unregister_ftrace_command(&event_enable_cmd); return ret; } #else static inline int register_event_cmds(void) { return 0; } #endif /* CONFIG_DYNAMIC_FTRACE */ /* * The top level array and trace arrays created by boot-time tracing * have already had its trace_event_file descriptors created in order * to allow for early events to be recorded. * This function is called after the tracefs has been initialized, * and we now have to create the files associated to the events. */ static void __trace_early_add_event_dirs(struct trace_array *tr) { struct trace_event_file *file; int ret; list_for_each_entry(file, &tr->events, list) { ret = event_create_dir(tr->event_dir, file); if (ret < 0) pr_warn("Could not create directory for event %s\n", trace_event_name(file->event_call)); } } /* * For early boot up, the top trace array and the trace arrays created * by boot-time tracing require to have a list of events that can be * enabled. This must be done before the filesystem is set up in order * to allow events to be traced early. */ void __trace_early_add_events(struct trace_array *tr) { struct trace_event_call *call; int ret; list_for_each_entry(call, &ftrace_events, list) { /* Early boot up should not have any modules loaded */ if (!(call->flags & TRACE_EVENT_FL_DYNAMIC) && WARN_ON_ONCE(call->module)) continue; ret = __trace_early_add_new_event(call, tr); if (ret < 0) pr_warn("Could not create early event %s\n", trace_event_name(call)); } } /* Remove the event directory structure for a trace directory. */ static void __trace_remove_event_dirs(struct trace_array *tr) { struct trace_event_file *file, *next; list_for_each_entry_safe(file, next, &tr->events, list) remove_event_file_dir(file); } static void __add_event_to_tracers(struct trace_event_call *call) { struct trace_array *tr; list_for_each_entry(tr, &ftrace_trace_arrays, list) __trace_add_new_event(call, tr); } extern struct trace_event_call *__start_ftrace_events[]; extern struct trace_event_call *__stop_ftrace_events[]; static char bootup_event_buf[COMMAND_LINE_SIZE] __initdata; static __init int setup_trace_event(char *str) { strlcpy(bootup_event_buf, str, COMMAND_LINE_SIZE); ring_buffer_expanded = true; disable_tracing_selftest("running event tracing"); return 1; } __setup("trace_event=", setup_trace_event); /* Expects to have event_mutex held when called */ static int create_event_toplevel_files(struct dentry *parent, struct trace_array *tr) { struct dentry *d_events; struct dentry *entry; entry = tracefs_create_file("set_event", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_fops); if (!entry) { pr_warn("Could not create tracefs 'set_event' entry\n"); return -ENOMEM; } d_events = tracefs_create_dir("events", parent); if (!d_events) { pr_warn("Could not create tracefs 'events' directory\n"); return -ENOMEM; } entry = trace_create_file("enable", TRACE_MODE_WRITE, d_events, tr, &ftrace_tr_enable_fops); if (!entry) { pr_warn("Could not create tracefs 'enable' entry\n"); return -ENOMEM; } /* There are not as crucial, just warn if they are not created */ entry = tracefs_create_file("set_event_pid", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_pid_fops); if (!entry) pr_warn("Could not create tracefs 'set_event_pid' entry\n"); entry = tracefs_create_file("set_event_notrace_pid", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_notrace_pid_fops); if (!entry) pr_warn("Could not create tracefs 'set_event_notrace_pid' entry\n"); /* ring buffer internal formats */ entry = trace_create_file("header_page", TRACE_MODE_READ, d_events, ring_buffer_print_page_header, &ftrace_show_header_fops); if (!entry) pr_warn("Could not create tracefs 'header_page' entry\n"); entry = trace_create_file("header_event", TRACE_MODE_READ, d_events, ring_buffer_print_entry_header, &ftrace_show_header_fops); if (!entry) pr_warn("Could not create tracefs 'header_event' entry\n"); tr->event_dir = d_events; return 0; } /** * event_trace_add_tracer - add a instance of a trace_array to events * @parent: The parent dentry to place the files/directories for events in * @tr: The trace array associated with these events * * When a new instance is created, it needs to set up its events * directory, as well as other files associated with events. It also * creates the event hierarchy in the @parent/events directory. * * Returns 0 on success. * * Must be called with event_mutex held. */ int event_trace_add_tracer(struct dentry *parent, struct trace_array *tr) { int ret; lockdep_assert_held(&event_mutex); ret = create_event_toplevel_files(parent, tr); if (ret) goto out; down_write(&trace_event_sem); /* If tr already has the event list, it is initialized in early boot. */ if (unlikely(!list_empty(&tr->events))) __trace_early_add_event_dirs(tr); else __trace_add_event_dirs(tr); up_write(&trace_event_sem); out: return ret; } /* * The top trace array already had its file descriptors created. * Now the files themselves need to be created. */ static __init int early_event_add_tracer(struct dentry *parent, struct trace_array *tr) { int ret; mutex_lock(&event_mutex); ret = create_event_toplevel_files(parent, tr); if (ret) goto out_unlock; down_write(&trace_event_sem); __trace_early_add_event_dirs(tr); up_write(&trace_event_sem); out_unlock: mutex_unlock(&event_mutex); return ret; } /* Must be called with event_mutex held */ int event_trace_del_tracer(struct trace_array *tr) { lockdep_assert_held(&event_mutex); /* Disable any event triggers and associated soft-disabled events */ clear_event_triggers(tr); /* Clear the pid list */ __ftrace_clear_event_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); /* Disable any running events */ __ftrace_set_clr_event_nolock(tr, NULL, NULL, NULL, 0); /* Make sure no more events are being executed */ tracepoint_synchronize_unregister(); down_write(&trace_event_sem); __trace_remove_event_dirs(tr); tracefs_remove(tr->event_dir); up_write(&trace_event_sem); tr->event_dir = NULL; return 0; } static __init int event_trace_memsetup(void) { field_cachep = KMEM_CACHE(ftrace_event_field, SLAB_PANIC); file_cachep = KMEM_CACHE(trace_event_file, SLAB_PANIC); return 0; } static __init void early_enable_events(struct trace_array *tr, bool disable_first) { char *buf = bootup_event_buf; char *token; int ret; while (true) { token = strsep(&buf, ","); if (!token) break; if (*token) { /* Restarting syscalls requires that we stop them first */ if (disable_first) ftrace_set_clr_event(tr, token, 0); ret = ftrace_set_clr_event(tr, token, 1); if (ret) pr_warn("Failed to enable trace event: %s\n", token); } /* Put back the comma to allow this to be called again */ if (buf) *(buf - 1) = ','; } } static __init int event_trace_enable(void) { struct trace_array *tr = top_trace_array(); struct trace_event_call **iter, *call; int ret; if (!tr) return -ENODEV; for_each_event(iter, __start_ftrace_events, __stop_ftrace_events) { call = *iter; ret = event_init(call); if (!ret) list_add(&call->list, &ftrace_events); } /* * We need the top trace array to have a working set of trace * points at early init, before the debug files and directories * are created. Create the file entries now, and attach them * to the actual file dentries later. */ __trace_early_add_events(tr); early_enable_events(tr, false); trace_printk_start_comm(); register_event_cmds(); register_trigger_cmds(); return 0; } /* * event_trace_enable() is called from trace_event_init() first to * initialize events and perhaps start any events that are on the * command line. Unfortunately, there are some events that will not * start this early, like the system call tracepoints that need * to set the %SYSCALL_WORK_SYSCALL_TRACEPOINT flag of pid 1. But * event_trace_enable() is called before pid 1 starts, and this flag * is never set, making the syscall tracepoint never get reached, but * the event is enabled regardless (and not doing anything). */ static __init int event_trace_enable_again(void) { struct trace_array *tr; tr = top_trace_array(); if (!tr) return -ENODEV; early_enable_events(tr, true); return 0; } early_initcall(event_trace_enable_again); /* Init fields which doesn't related to the tracefs */ static __init int event_trace_init_fields(void) { if (trace_define_generic_fields()) pr_warn("tracing: Failed to allocated generic fields"); if (trace_define_common_fields()) pr_warn("tracing: Failed to allocate common fields"); return 0; } __init int event_trace_init(void) { struct trace_array *tr; struct dentry *entry; int ret; tr = top_trace_array(); if (!tr) return -ENODEV; entry = tracefs_create_file("available_events", TRACE_MODE_READ, NULL, tr, &ftrace_avail_fops); if (!entry) pr_warn("Could not create tracefs 'available_events' entry\n"); ret = early_event_add_tracer(NULL, tr); if (ret) return ret; #ifdef CONFIG_MODULES ret = register_module_notifier(&trace_module_nb); if (ret) pr_warn("Failed to register trace events module notifier\n"); #endif eventdir_initialized = true; return 0; } void __init trace_event_init(void) { event_trace_memsetup(); init_ftrace_syscalls(); event_trace_enable(); event_trace_init_fields(); } #ifdef CONFIG_EVENT_TRACE_STARTUP_TEST static DEFINE_SPINLOCK(test_spinlock); static DEFINE_SPINLOCK(test_spinlock_irq); static DEFINE_MUTEX(test_mutex); static __init void test_work(struct work_struct *dummy) { spin_lock(&test_spinlock); spin_lock_irq(&test_spinlock_irq); udelay(1); spin_unlock_irq(&test_spinlock_irq); spin_unlock(&test_spinlock); mutex_lock(&test_mutex); msleep(1); mutex_unlock(&test_mutex); } static __init int event_test_thread(void *unused) { void *test_malloc; test_malloc = kmalloc(1234, GFP_KERNEL); if (!test_malloc) pr_info("failed to kmalloc\n"); schedule_on_each_cpu(test_work); kfree(test_malloc); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); return 0; } /* * Do various things that may trigger events. */ static __init void event_test_stuff(void) { struct task_struct *test_thread; test_thread = kthread_run(event_test_thread, NULL, "test-events"); msleep(1); kthread_stop(test_thread); } /* * For every trace event defined, we will test each trace point separately, * and then by groups, and finally all trace points. */ static __init void event_trace_self_tests(void) { struct trace_subsystem_dir *dir; struct trace_event_file *file; struct trace_event_call *call; struct event_subsystem *system; struct trace_array *tr; int ret; tr = top_trace_array(); if (!tr) return; pr_info("Running tests on trace events:\n"); list_for_each_entry(file, &tr->events, list) { call = file->event_call; /* Only test those that have a probe */ if (!call->class || !call->class->probe) continue; /* * Testing syscall events here is pretty useless, but * we still do it if configured. But this is time consuming. * What we really need is a user thread to perform the * syscalls as we test. */ #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS if (call->class->system && strcmp(call->class->system, "syscalls") == 0) continue; #endif pr_info("Testing event %s: ", trace_event_name(call)); /* * If an event is already enabled, someone is using * it and the self test should not be on. */ if (file->flags & EVENT_FILE_FL_ENABLED) { pr_warn("Enabled event during self test!\n"); WARN_ON_ONCE(1); continue; } ftrace_event_enable_disable(file, 1); event_test_stuff(); ftrace_event_enable_disable(file, 0); pr_cont("OK\n"); } /* Now test at the sub system level */ pr_info("Running tests on trace event systems:\n"); list_for_each_entry(dir, &tr->systems, list) { system = dir->subsystem; /* the ftrace system is special, skip it */ if (strcmp(system->name, "ftrace") == 0) continue; pr_info("Testing event system %s: ", system->name); ret = __ftrace_set_clr_event(tr, NULL, system->name, NULL, 1); if (WARN_ON_ONCE(ret)) { pr_warn("error enabling system %s\n", system->name); continue; } event_test_stuff(); ret = __ftrace_set_clr_event(tr, NULL, system->name, NULL, 0); if (WARN_ON_ONCE(ret)) { pr_warn("error disabling system %s\n", system->name); continue; } pr_cont("OK\n"); } /* Test with all events enabled */ pr_info("Running tests on all trace events:\n"); pr_info("Testing all events: "); ret = __ftrace_set_clr_event(tr, NULL, NULL, NULL, 1); if (WARN_ON_ONCE(ret)) { pr_warn("error enabling all events\n"); return; } event_test_stuff(); /* reset sysname */ ret = __ftrace_set_clr_event(tr, NULL, NULL, NULL, 0); if (WARN_ON_ONCE(ret)) { pr_warn("error disabling all events\n"); return; } pr_cont("OK\n"); } #ifdef CONFIG_FUNCTION_TRACER static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable); static struct trace_event_file event_trace_file __initdata; static void __init function_test_events_call(unsigned long ip, unsigned long parent_ip, struct ftrace_ops *op, struct ftrace_regs *regs) { struct trace_buffer *buffer; struct ring_buffer_event *event; struct ftrace_entry *entry; unsigned int trace_ctx; long disabled; int cpu; trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); cpu = raw_smp_processor_id(); disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); if (disabled != 1) goto out; event = trace_event_buffer_lock_reserve(&buffer, &event_trace_file, TRACE_FN, sizeof(*entry), trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); entry->ip = ip; entry->parent_ip = parent_ip; event_trigger_unlock_commit(&event_trace_file, buffer, event, entry, trace_ctx); out: atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); preempt_enable_notrace(); } static struct ftrace_ops trace_ops __initdata = { .func = function_test_events_call, }; static __init void event_trace_self_test_with_function(void) { int ret; event_trace_file.tr = top_trace_array(); if (WARN_ON(!event_trace_file.tr)) return; ret = register_ftrace_function(&trace_ops); if (WARN_ON(ret < 0)) { pr_info("Failed to enable function tracer for event tests\n"); return; } pr_info("Running tests again, along with the function tracer\n"); event_trace_self_tests(); unregister_ftrace_function(&trace_ops); } #else static __init void event_trace_self_test_with_function(void) { } #endif static __init int event_trace_self_tests_init(void) { if (!tracing_selftest_disabled) { event_trace_self_tests(); event_trace_self_test_with_function(); } return 0; } late_initcall(event_trace_self_tests_init); #endif |
11 56 94 2 2 2 3 3 3 3 149 229 94 14 407 13 405 86 37 258 19 260 235 235 200 111 165 38 102 103 21 21 36 307 23 293 2 53 177 202 200 404 406 149 149 1 149 119 53 96 98 17 5 8 9 12 12 23 23 10 1 6 7 264 177 213 297 127 131 131 131 5 5 1557 1557 25 7 71 31 123 20 35 6 13 222 43 32 207 27 15 151 222 107 77 80 16 175 176 78 90 20 11 67 67 27 27 11 2 94 45 8 2 6 4 4 21 21 9 5 5 10 76 1 1 1 1 2 1 68 1 14 14 11 3 8 10 3 7 6 1 6 113 1 1 1 21 25 84 2 72 74 73 13 15 30 41 4 40 21 1 69 39 39 1 37 25 23 36 11 11 5 5 7 29 31 32 31 11 27 7 5 2 2 4 23 3 24 6 1 25 39 46 1 1 1 44 38 21 4 1 2 1 60 1 1 1 1 1 1 56 51 50 5 46 10 6 34 32 6 25 3 22 15 6 15 10 1 9 142 1 139 20 122 98 91 18 3 4 1 2 112 112 23 23 10 13 68 77 5 70 26 26 29 17 68 32 5 3 2 2 2 4 23 14 5 4 23 23 4 1 3 7 4 3 5 52 1 1 1 46 20 35 21 3 15 10 18 89 1 1 1 87 39 14 22 4 22 22 9 5 9 8 32 32 2 2 25 52 1 1 1 50 1 1 41 14 44 1 1 3 1 38 19 4 3 4 4 5 3 11 8 3 1 1 1 1 8 18 15 1 1 10 3 4 1 3 1 43 25 23 13 5 13 23 25 2 13 28 19 20 16 19 9 7 13 1 11 4 1 6 403 406 406 407 295 409 131 298 133 62 62 76 76 75 13 220 222 222 221 90 13 134 187 267 266 205 190 66 183 13 408 1 408 2 141 267 413 1 2 411 421 423 425 3 2 1 2 412 447 7 1 435 5 2 441 6 3 3 417 3 1 273 189 453 34 5 277 133 8 324 1 1 1 1 1 1 2655 2653 1 1 462 464 330 130 1 181 83 12 84 82 16 1 3 4 4 4 7 15 15 15 15 13 3 1 15 82 2 6 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2018 Facebook */ #include <uapi/linux/btf.h> #include <uapi/linux/bpf.h> #include <uapi/linux/bpf_perf_event.h> #include <uapi/linux/types.h> #include <linux/seq_file.h> #include <linux/compiler.h> #include <linux/ctype.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/anon_inodes.h> #include <linux/file.h> #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/idr.h> #include <linux/sort.h> #include <linux/bpf_verifier.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/skmsg.h> #include <linux/perf_event.h> #include <linux/bsearch.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <net/sock.h> /* BTF (BPF Type Format) is the meta data format which describes * the data types of BPF program/map. Hence, it basically focus * on the C programming language which the modern BPF is primary * using. * * ELF Section: * ~~~~~~~~~~~ * The BTF data is stored under the ".BTF" ELF section * * struct btf_type: * ~~~~~~~~~~~~~~~ * Each 'struct btf_type' object describes a C data type. * Depending on the type it is describing, a 'struct btf_type' * object may be followed by more data. F.e. * To describe an array, 'struct btf_type' is followed by * 'struct btf_array'. * * 'struct btf_type' and any extra data following it are * 4 bytes aligned. * * Type section: * ~~~~~~~~~~~~~ * The BTF type section contains a list of 'struct btf_type' objects. * Each one describes a C type. Recall from the above section * that a 'struct btf_type' object could be immediately followed by extra * data in order to describe some particular C types. * * type_id: * ~~~~~~~ * Each btf_type object is identified by a type_id. The type_id * is implicitly implied by the location of the btf_type object in * the BTF type section. The first one has type_id 1. The second * one has type_id 2...etc. Hence, an earlier btf_type has * a smaller type_id. * * A btf_type object may refer to another btf_type object by using * type_id (i.e. the "type" in the "struct btf_type"). * * NOTE that we cannot assume any reference-order. * A btf_type object can refer to an earlier btf_type object * but it can also refer to a later btf_type object. * * For example, to describe "const void *". A btf_type * object describing "const" may refer to another btf_type * object describing "void *". This type-reference is done * by specifying type_id: * * [1] CONST (anon) type_id=2 * [2] PTR (anon) type_id=0 * * The above is the btf_verifier debug log: * - Each line started with "[?]" is a btf_type object * - [?] is the type_id of the btf_type object. * - CONST/PTR is the BTF_KIND_XXX * - "(anon)" is the name of the type. It just * happens that CONST and PTR has no name. * - type_id=XXX is the 'u32 type' in btf_type * * NOTE: "void" has type_id 0 * * String section: * ~~~~~~~~~~~~~~ * The BTF string section contains the names used by the type section. * Each string is referred by an "offset" from the beginning of the * string section. * * Each string is '\0' terminated. * * The first character in the string section must be '\0' * which is used to mean 'anonymous'. Some btf_type may not * have a name. */ /* BTF verification: * * To verify BTF data, two passes are needed. * * Pass #1 * ~~~~~~~ * The first pass is to collect all btf_type objects to * an array: "btf->types". * * Depending on the C type that a btf_type is describing, * a btf_type may be followed by extra data. We don't know * how many btf_type is there, and more importantly we don't * know where each btf_type is located in the type section. * * Without knowing the location of each type_id, most verifications * cannot be done. e.g. an earlier btf_type may refer to a later * btf_type (recall the "const void *" above), so we cannot * check this type-reference in the first pass. * * In the first pass, it still does some verifications (e.g. * checking the name is a valid offset to the string section). * * Pass #2 * ~~~~~~~ * The main focus is to resolve a btf_type that is referring * to another type. * * We have to ensure the referring type: * 1) does exist in the BTF (i.e. in btf->types[]) * 2) does not cause a loop: * struct A { * struct B b; * }; * * struct B { * struct A a; * }; * * btf_type_needs_resolve() decides if a btf_type needs * to be resolved. * * The needs_resolve type implements the "resolve()" ops which * essentially does a DFS and detects backedge. * * During resolve (or DFS), different C types have different * "RESOLVED" conditions. * * When resolving a BTF_KIND_STRUCT, we need to resolve all its * members because a member is always referring to another * type. A struct's member can be treated as "RESOLVED" if * it is referring to a BTF_KIND_PTR. Otherwise, the * following valid C struct would be rejected: * * struct A { * int m; * struct A *a; * }; * * When resolving a BTF_KIND_PTR, it needs to keep resolving if * it is referring to another BTF_KIND_PTR. Otherwise, we cannot * detect a pointer loop, e.g.: * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + * ^ | * +-----------------------------------------+ * */ #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) #define BITS_ROUNDUP_BYTES(bits) \ (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) #define BTF_INFO_MASK 0x9f00ffff #define BTF_INT_MASK 0x0fffffff #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) /* 16MB for 64k structs and each has 16 members and * a few MB spaces for the string section. * The hard limit is S32_MAX. */ #define BTF_MAX_SIZE (16 * 1024 * 1024) #define for_each_member_from(i, from, struct_type, member) \ for (i = from, member = btf_type_member(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) #define for_each_vsi_from(i, from, struct_type, member) \ for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) DEFINE_IDR(btf_idr); DEFINE_SPINLOCK(btf_idr_lock); struct btf { void *data; struct btf_type **types; u32 *resolved_ids; u32 *resolved_sizes; const char *strings; void *nohdr_data; struct btf_header hdr; u32 nr_types; /* includes VOID for base BTF */ u32 types_size; u32 data_size; refcount_t refcnt; u32 id; struct rcu_head rcu; /* split BTF support */ struct btf *base_btf; u32 start_id; /* first type ID in this BTF (0 for base BTF) */ u32 start_str_off; /* first string offset (0 for base BTF) */ char name[MODULE_NAME_LEN]; bool kernel_btf; }; enum verifier_phase { CHECK_META, CHECK_TYPE, }; struct resolve_vertex { const struct btf_type *t; u32 type_id; u16 next_member; }; enum visit_state { NOT_VISITED, VISITED, RESOLVED, }; enum resolve_mode { RESOLVE_TBD, /* To Be Determined */ RESOLVE_PTR, /* Resolving for Pointer */ RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union * or array */ }; #define MAX_RESOLVE_DEPTH 32 struct btf_sec_info { u32 off; u32 len; }; struct btf_verifier_env { struct btf *btf; u8 *visit_states; struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; struct bpf_verifier_log log; u32 log_type_id; u32 top_stack; enum verifier_phase phase; enum resolve_mode resolve_mode; }; static const char * const btf_kind_str[NR_BTF_KINDS] = { [BTF_KIND_UNKN] = "UNKNOWN", [BTF_KIND_INT] = "INT", [BTF_KIND_PTR] = "PTR", [BTF_KIND_ARRAY] = "ARRAY", [BTF_KIND_STRUCT] = "STRUCT", [BTF_KIND_UNION] = "UNION", [BTF_KIND_ENUM] = "ENUM", [BTF_KIND_FWD] = "FWD", [BTF_KIND_TYPEDEF] = "TYPEDEF", [BTF_KIND_VOLATILE] = "VOLATILE", [BTF_KIND_CONST] = "CONST", [BTF_KIND_RESTRICT] = "RESTRICT", [BTF_KIND_FUNC] = "FUNC", [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", [BTF_KIND_VAR] = "VAR", [BTF_KIND_DATASEC] = "DATASEC", [BTF_KIND_FLOAT] = "FLOAT", }; const char *btf_type_str(const struct btf_type *t) { return btf_kind_str[BTF_INFO_KIND(t->info)]; } /* Chunk size we use in safe copy of data to be shown. */ #define BTF_SHOW_OBJ_SAFE_SIZE 32 /* * This is the maximum size of a base type value (equivalent to a * 128-bit int); if we are at the end of our safe buffer and have * less than 16 bytes space we can't be assured of being able * to copy the next type safely, so in such cases we will initiate * a new copy. */ #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 /* Type name size */ #define BTF_SHOW_NAME_SIZE 80 /* * Common data to all BTF show operations. Private show functions can add * their own data to a structure containing a struct btf_show and consult it * in the show callback. See btf_type_show() below. * * One challenge with showing nested data is we want to skip 0-valued * data, but in order to figure out whether a nested object is all zeros * we need to walk through it. As a result, we need to make two passes * when handling structs, unions and arrays; the first path simply looks * for nonzero data, while the second actually does the display. The first * pass is signalled by show->state.depth_check being set, and if we * encounter a non-zero value we set show->state.depth_to_show to * the depth at which we encountered it. When we have completed the * first pass, we will know if anything needs to be displayed if * depth_to_show > depth. See btf_[struct,array]_show() for the * implementation of this. * * Another problem is we want to ensure the data for display is safe to * access. To support this, the anonymous "struct {} obj" tracks the data * object and our safe copy of it. We copy portions of the data needed * to the object "copy" buffer, but because its size is limited to * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we * traverse larger objects for display. * * The various data type show functions all start with a call to * btf_show_start_type() which returns a pointer to the safe copy * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the * raw data itself). btf_show_obj_safe() is responsible for * using copy_from_kernel_nofault() to update the safe data if necessary * as we traverse the object's data. skbuff-like semantics are * used: * * - obj.head points to the start of the toplevel object for display * - obj.size is the size of the toplevel object * - obj.data points to the current point in the original data at * which our safe data starts. obj.data will advance as we copy * portions of the data. * * In most cases a single copy will suffice, but larger data structures * such as "struct task_struct" will require many copies. The logic in * btf_show_obj_safe() handles the logic that determines if a new * copy_from_kernel_nofault() is needed. */ struct btf_show { u64 flags; void *target; /* target of show operation (seq file, buffer) */ __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); const struct btf *btf; /* below are used during iteration */ struct { u8 depth; u8 depth_to_show; u8 depth_check; u8 array_member:1, array_terminated:1; u16 array_encoding; u32 type_id; int status; /* non-zero for error */ const struct btf_type *type; const struct btf_member *member; char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ } state; struct { u32 size; void *head; void *data; u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; } obj; }; struct btf_kind_operations { s32 (*check_meta)(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left); int (*resolve)(struct btf_verifier_env *env, const struct resolve_vertex *v); int (*check_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); int (*check_kflag_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); void (*log_details)(struct btf_verifier_env *env, const struct btf_type *t); void (*show)(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show); }; static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; static struct btf_type btf_void; static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id); static bool btf_type_is_modifier(const struct btf_type *t) { /* Some of them is not strictly a C modifier * but they are grouped into the same bucket * for BTF concern: * A type (t) that refers to another * type through t->type AND its size cannot * be determined without following the t->type. * * ptr does not fall into this bucket * because its size is always sizeof(void *). */ switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: return true; } return false; } bool btf_type_is_void(const struct btf_type *t) { return t == &btf_void; } static bool btf_type_is_fwd(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; } static bool btf_type_nosize(const struct btf_type *t) { return btf_type_is_void(t) || btf_type_is_fwd(t) || btf_type_is_func(t) || btf_type_is_func_proto(t); } static bool btf_type_nosize_or_null(const struct btf_type *t) { return !t || btf_type_nosize(t); } static bool __btf_type_is_struct(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; } static bool btf_type_is_array(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; } static bool btf_type_is_datasec(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; } u32 btf_nr_types(const struct btf *btf) { u32 total = 0; while (btf) { total += btf->nr_types; btf = btf->base_btf; } return total; } s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) { const struct btf_type *t; const char *tname; u32 i, total; total = btf_nr_types(btf); for (i = 1; i < total; i++) { t = btf_type_by_id(btf, i); if (BTF_INFO_KIND(t->info) != kind) continue; tname = btf_name_by_offset(btf, t->name_off); if (!strcmp(tname, name)) return i; } return -ENOENT; } const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t)) { id = t->type; t = btf_type_by_id(btf, t->type); } if (res_id) *res_id = id; return t; } const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t; t = btf_type_skip_modifiers(btf, id, NULL); if (!btf_type_is_ptr(t)) return NULL; return btf_type_skip_modifiers(btf, t->type, res_id); } const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *ptype; ptype = btf_type_resolve_ptr(btf, id, res_id); if (ptype && btf_type_is_func_proto(ptype)) return ptype; return NULL; } /* Types that act only as a source, not sink or intermediate * type when resolving. */ static bool btf_type_is_resolve_source_only(const struct btf_type *t) { return btf_type_is_var(t) || btf_type_is_datasec(t); } /* What types need to be resolved? * * btf_type_is_modifier() is an obvious one. * * btf_type_is_struct() because its member refers to * another type (through member->type). * * btf_type_is_var() because the variable refers to * another type. btf_type_is_datasec() holds multiple * btf_type_is_var() types that need resolving. * * btf_type_is_array() because its element (array->type) * refers to another type. Array can be thought of a * special case of struct while array just has the same * member-type repeated by array->nelems of times. */ static bool btf_type_needs_resolve(const struct btf_type *t) { return btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_struct(t) || btf_type_is_array(t) || btf_type_is_var(t) || btf_type_is_datasec(t); } /* t->size can be used */ static bool btf_type_has_size(const struct btf_type *t) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_DATASEC: case BTF_KIND_FLOAT: return true; } return false; } static const char *btf_int_encoding_str(u8 encoding) { if (encoding == 0) return "(none)"; else if (encoding == BTF_INT_SIGNED) return "SIGNED"; else if (encoding == BTF_INT_CHAR) return "CHAR"; else if (encoding == BTF_INT_BOOL) return "BOOL"; else return "UNKN"; } static u32 btf_type_int(const struct btf_type *t) { return *(u32 *)(t + 1); } static const struct btf_array *btf_type_array(const struct btf_type *t) { return (const struct btf_array *)(t + 1); } static const struct btf_enum *btf_type_enum(const struct btf_type *t) { return (const struct btf_enum *)(t + 1); } static const struct btf_var *btf_type_var(const struct btf_type *t) { return (const struct btf_var *)(t + 1); } static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) { return kind_ops[BTF_INFO_KIND(t->info)]; } static bool btf_name_offset_valid(const struct btf *btf, u32 offset) { if (!BTF_STR_OFFSET_VALID(offset)) return false; while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; return offset < btf->hdr.str_len; } static bool __btf_name_char_ok(char c, bool first) { if ((first ? !isalpha(c) : !isalnum(c)) && c != '_' && c != '.') return false; return true; } static const char *btf_str_by_offset(const struct btf *btf, u32 offset) { while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; if (offset < btf->hdr.str_len) return &btf->strings[offset]; return NULL; } static bool __btf_name_valid(const struct btf *btf, u32 offset) { /* offset must be valid */ const char *src = btf_str_by_offset(btf, offset); const char *src_limit; if (!__btf_name_char_ok(*src, true)) return false; /* set a limit on identifier length */ src_limit = src + KSYM_NAME_LEN; src++; while (*src && src < src_limit) { if (!__btf_name_char_ok(*src, false)) return false; src++; } return !*src; } static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static bool btf_name_valid_section(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) { const char *name; if (!offset) return "(anon)"; name = btf_str_by_offset(btf, offset); return name ?: "(invalid-name-offset)"; } const char *btf_name_by_offset(const struct btf *btf, u32 offset) { return btf_str_by_offset(btf, offset); } const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; type_id -= btf->start_id; if (type_id >= btf->nr_types) return NULL; return btf->types[type_id]; } /* * Regular int is not a bit field and it must be either * u8/u16/u32/u64 or __int128. */ static bool btf_type_int_is_regular(const struct btf_type *t) { u8 nr_bits, nr_bytes; u32 int_data; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); if (BITS_PER_BYTE_MASKED(nr_bits) || BTF_INT_OFFSET(int_data) || (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && nr_bytes != (2 * sizeof(u64)))) { return false; } return true; } /* * Check that given struct member is a regular int with expected * offset and size. */ bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, const struct btf_member *m, u32 expected_offset, u32 expected_size) { const struct btf_type *t; u32 id, int_data; u8 nr_bits; id = m->type; t = btf_type_id_size(btf, &id, NULL); if (!t || !btf_type_is_int(t)) return false; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); if (btf_type_kflag(s)) { u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); /* if kflag set, int should be a regular int and * bit offset should be at byte boundary. */ return !bitfield_size && BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && BITS_ROUNDUP_BYTES(nr_bits) == expected_size; } if (BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(m->offset) || BITS_ROUNDUP_BYTES(m->offset) != expected_offset || BITS_PER_BYTE_MASKED(nr_bits) || BITS_ROUNDUP_BYTES(nr_bits) != expected_size) return false; return true; } /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, u32 id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t) && BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { t = btf_type_by_id(btf, t->type); } return t; } #define BTF_SHOW_MAX_ITER 10 #define BTF_KIND_BIT(kind) (1ULL << kind) /* * Populate show->state.name with type name information. * Format of type name is * * [.member_name = ] (type_name) */ static const char *btf_show_name(struct btf_show *show) { /* BTF_MAX_ITER array suffixes "[]" */ const char *array_suffixes = "[][][][][][][][][][]"; const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; /* BTF_MAX_ITER pointer suffixes "*" */ const char *ptr_suffixes = "**********"; const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; const char *name = NULL, *prefix = "", *parens = ""; const struct btf_member *m = show->state.member; const struct btf_type *t = show->state.type; const struct btf_array *array; u32 id = show->state.type_id; const char *member = NULL; bool show_member = false; u64 kinds = 0; int i; show->state.name[0] = '\0'; /* * Don't show type name if we're showing an array member; * in that case we show the array type so don't need to repeat * ourselves for each member. */ if (show->state.array_member) return ""; /* Retrieve member name, if any. */ if (m) { member = btf_name_by_offset(show->btf, m->name_off); show_member = strlen(member) > 0; id = m->type; } /* * Start with type_id, as we have resolved the struct btf_type * * via btf_modifier_show() past the parent typedef to the child * struct, int etc it is defined as. In such cases, the type_id * still represents the starting type while the struct btf_type * * in our show->state points at the resolved type of the typedef. */ t = btf_type_by_id(show->btf, id); if (!t) return ""; /* * The goal here is to build up the right number of pointer and * array suffixes while ensuring the type name for a typedef * is represented. Along the way we accumulate a list of * BTF kinds we have encountered, since these will inform later * display; for example, pointer types will not require an * opening "{" for struct, we will just display the pointer value. * * We also want to accumulate the right number of pointer or array * indices in the format string while iterating until we get to * the typedef/pointee/array member target type. * * We start by pointing at the end of pointer and array suffix * strings; as we accumulate pointers and arrays we move the pointer * or array string backwards so it will show the expected number of * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers * and/or arrays and typedefs are supported as a precaution. * * We also want to get typedef name while proceeding to resolve * type it points to so that we can add parentheses if it is a * "typedef struct" etc. */ for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: if (!name) name = btf_name_by_offset(show->btf, t->name_off); kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); id = t->type; break; case BTF_KIND_ARRAY: kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); parens = "["; if (!t) return ""; array = btf_type_array(t); if (array_suffix > array_suffixes) array_suffix -= 2; id = array->type; break; case BTF_KIND_PTR: kinds |= BTF_KIND_BIT(BTF_KIND_PTR); if (ptr_suffix > ptr_suffixes) ptr_suffix -= 1; id = t->type; break; default: id = 0; break; } if (!id) break; t = btf_type_skip_qualifiers(show->btf, id); } /* We may not be able to represent this type; bail to be safe */ if (i == BTF_SHOW_MAX_ITER) return ""; if (!name) name = btf_name_by_offset(show->btf, t->name_off); switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_STRUCT: case BTF_KIND_UNION: prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? "struct" : "union"; /* if it's an array of struct/union, parens is already set */ if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) parens = "{"; break; case BTF_KIND_ENUM: prefix = "enum"; break; default: break; } /* pointer does not require parens */ if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) parens = ""; /* typedef does not require struct/union/enum prefix */ if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) prefix = ""; if (!name) name = ""; /* Even if we don't want type name info, we want parentheses etc */ if (show->flags & BTF_SHOW_NONAME) snprintf(show->state.name, sizeof(show->state.name), "%s", parens); else snprintf(show->state.name, sizeof(show->state.name), "%s%s%s(%s%s%s%s%s%s)%s", /* first 3 strings comprise ".member = " */ show_member ? "." : "", show_member ? member : "", show_member ? " = " : "", /* ...next is our prefix (struct, enum, etc) */ prefix, strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", /* ...this is the type name itself */ name, /* ...suffixed by the appropriate '*', '[]' suffixes */ strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, array_suffix, parens); return show->state.name; } static const char *__btf_show_indent(struct btf_show *show) { const char *indents = " "; const char *indent = &indents[strlen(indents)]; if ((indent - show->state.depth) >= indents) return indent - show->state.depth; return indents; } static const char *btf_show_indent(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); } static const char *btf_show_newline(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; } static const char *btf_show_delim(struct btf_show *show) { if (show->state.depth == 0) return ""; if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) return "|"; return ","; } __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) { va_list args; if (!show->state.depth_check) { va_start(args, fmt); show->showfn(show, fmt, args); va_end(args); } } /* Macros are used here as btf_show_type_value[s]() prepends and appends * format specifiers to the format specifier passed in; these do the work of * adding indentation, delimiters etc while the caller simply has to specify * the type value(s) in the format specifier + value(s). */ #define btf_show_type_value(show, fmt, value) \ do { \ if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ show->state.depth == 0) { \ btf_show(show, "%s%s" fmt "%s%s", \ btf_show_indent(show), \ btf_show_name(show), \ value, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } \ } while (0) #define btf_show_type_values(show, fmt, ...) \ do { \ btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ btf_show_name(show), \ __VA_ARGS__, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } while (0) /* How much is left to copy to safe buffer after @data? */ static int btf_show_obj_size_left(struct btf_show *show, void *data) { return show->obj.head + show->obj.size - data; } /* Is object pointed to by @data of @size already copied to our safe buffer? */ static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) { return data >= show->obj.data && (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); } /* * If object pointed to by @data of @size falls within our safe buffer, return * the equivalent pointer to the same safe data. Assumes * copy_from_kernel_nofault() has already happened and our safe buffer is * populated. */ static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) { if (btf_show_obj_is_safe(show, data, size)) return show->obj.safe + (data - show->obj.data); return NULL; } /* * Return a safe-to-access version of data pointed to by @data. * We do this by copying the relevant amount of information * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). * * If BTF_SHOW_UNSAFE is specified, just return data as-is; no * safe copy is needed. * * Otherwise we need to determine if we have the required amount * of data (determined by the @data pointer and the size of the * largest base type we can encounter (represented by * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures * that we will be able to print some of the current object, * and if more is needed a copy will be triggered. * Some objects such as structs will not fit into the buffer; * in such cases additional copies when we iterate over their * members may be needed. * * btf_show_obj_safe() is used to return a safe buffer for * btf_show_start_type(); this ensures that as we recurse into * nested types we always have safe data for the given type. * This approach is somewhat wasteful; it's possible for example * that when iterating over a large union we'll end up copying the * same data repeatedly, but the goal is safety not performance. * We use stack data as opposed to per-CPU buffers because the * iteration over a type can take some time, and preemption handling * would greatly complicate use of the safe buffer. */ static void *btf_show_obj_safe(struct btf_show *show, const struct btf_type *t, void *data) { const struct btf_type *rt; int size_left, size; void *safe = NULL; if (show->flags & BTF_SHOW_UNSAFE) return data; rt = btf_resolve_size(show->btf, t, &size); if (IS_ERR(rt)) { show->state.status = PTR_ERR(rt); return NULL; } /* * Is this toplevel object? If so, set total object size and * initialize pointers. Otherwise check if we still fall within * our safe object data. */ if (show->state.depth == 0) { show->obj.size = size; show->obj.head = data; } else { /* * If the size of the current object is > our remaining * safe buffer we _may_ need to do a new copy. However * consider the case of a nested struct; it's size pushes * us over the safe buffer limit, but showing any individual * struct members does not. In such cases, we don't need * to initiate a fresh copy yet; however we definitely need * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left * in our buffer, regardless of the current object size. * The logic here is that as we resolve types we will * hit a base type at some point, and we need to be sure * the next chunk of data is safely available to display * that type info safely. We cannot rely on the size of * the current object here because it may be much larger * than our current buffer (e.g. task_struct is 8k). * All we want to do here is ensure that we can print the * next basic type, which we can if either * - the current type size is within the safe buffer; or * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in * the safe buffer. */ safe = __btf_show_obj_safe(show, data, min(size, BTF_SHOW_OBJ_BASE_TYPE_SIZE)); } /* * We need a new copy to our safe object, either because we haven't * yet copied and are initializing safe data, or because the data * we want falls outside the boundaries of the safe object. */ if (!safe) { size_left = btf_show_obj_size_left(show, data); if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) size_left = BTF_SHOW_OBJ_SAFE_SIZE; show->state.status = copy_from_kernel_nofault(show->obj.safe, data, size_left); if (!show->state.status) { show->obj.data = data; safe = show->obj.safe; } } return safe; } /* * Set the type we are starting to show and return a safe data pointer * to be used for showing the associated data. */ static void *btf_show_start_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { show->state.type = t; show->state.type_id = type_id; show->state.name[0] = '\0'; return btf_show_obj_safe(show, t, data); } static void btf_show_end_type(struct btf_show *show) { show->state.type = NULL; show->state.type_id = 0; show->state.name[0] = '\0'; } static void *btf_show_start_aggr_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { void *safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return safe_data; btf_show(show, "%s%s%s", btf_show_indent(show), btf_show_name(show), btf_show_newline(show)); show->state.depth++; return safe_data; } static void btf_show_end_aggr_type(struct btf_show *show, const char *suffix) { show->state.depth--; btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, btf_show_delim(show), btf_show_newline(show)); btf_show_end_type(show); } static void btf_show_start_member(struct btf_show *show, const struct btf_member *m) { show->state.member = m; } static void btf_show_start_array_member(struct btf_show *show) { show->state.array_member = 1; btf_show_start_member(show, NULL); } static void btf_show_end_member(struct btf_show *show) { show->state.member = NULL; } static void btf_show_end_array_member(struct btf_show *show) { show->state.array_member = 0; btf_show_end_member(show); } static void *btf_show_start_array_type(struct btf_show *show, const struct btf_type *t, u32 type_id, u16 array_encoding, void *data) { show->state.array_encoding = array_encoding; show->state.array_terminated = 0; return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_array_type(struct btf_show *show) { show->state.array_encoding = 0; show->state.array_terminated = 0; btf_show_end_aggr_type(show, "]"); } static void *btf_show_start_struct_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_struct_type(struct btf_show *show) { btf_show_end_aggr_type(show, "}"); } __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, const char *fmt, ...) { va_list args; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, const struct btf_type *t, bool log_details, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; u8 kind = BTF_INFO_KIND(t->info); struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; /* btf verifier prints all types it is processing via * btf_verifier_log_type(..., fmt = NULL). * Skip those prints for in-kernel BTF verification. */ if (log->level == BPF_LOG_KERNEL && !fmt) return; __btf_verifier_log(log, "[%u] %s %s%s", env->log_type_id, btf_kind_str[kind], __btf_name_by_offset(btf, t->name_off), log_details ? " " : ""); if (log_details) btf_type_ops(t)->log_details(env, t); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } #define btf_verifier_log_type(env, t, ...) \ __btf_verifier_log_type((env), (t), true, __VA_ARGS__) #define btf_verifier_log_basic(env, t, ...) \ __btf_verifier_log_type((env), (t), false, __VA_ARGS__) __printf(4, 5) static void btf_verifier_log_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL && !fmt) return; /* The CHECK_META phase already did a btf dump. * * If member is logged again, it must hit an error in * parsing this member. It is useful to print out which * struct this member belongs to. */ if (env->phase != CHECK_META) btf_verifier_log_type(env, struct_type, NULL); if (btf_type_kflag(struct_type)) __btf_verifier_log(log, "\t%s type_id=%u bitfield_size=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, BTF_MEMBER_BITFIELD_SIZE(member->offset), BTF_MEMBER_BIT_OFFSET(member->offset)); else __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, member->offset); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } __printf(4, 5) static void btf_verifier_log_vsi(struct btf_verifier_env *env, const struct btf_type *datasec_type, const struct btf_var_secinfo *vsi, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL && !fmt) return; if (env->phase != CHECK_META) btf_verifier_log_type(env, datasec_type, NULL); __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", vsi->type, vsi->offset, vsi->size); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } static void btf_verifier_log_hdr(struct btf_verifier_env *env, u32 btf_data_size) { struct bpf_verifier_log *log = &env->log; const struct btf *btf = env->btf; const struct btf_header *hdr; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL) return; hdr = &btf->hdr; __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); __btf_verifier_log(log, "version: %u\n", hdr->version); __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); } static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) { struct btf *btf = env->btf; if (btf->types_size == btf->nr_types) { /* Expand 'types' array */ struct btf_type **new_types; u32 expand_by, new_size; if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { btf_verifier_log(env, "Exceeded max num of types"); return -E2BIG; } expand_by = max_t(u32, btf->types_size >> 2, 16); new_size = min_t(u32, BTF_MAX_TYPE, btf->types_size + expand_by); new_types = kvcalloc(new_size, sizeof(*new_types), GFP_KERNEL | __GFP_NOWARN); if (!new_types) return -ENOMEM; if (btf->nr_types == 0) { if (!btf->base_btf) { /* lazily init VOID type */ new_types[0] = &btf_void; btf->nr_types++; } } else { memcpy(new_types, btf->types, sizeof(*btf->types) * btf->nr_types); } kvfree(btf->types); btf->types = new_types; btf->types_size = new_size; } btf->types[btf->nr_types++] = t; return 0; } static int btf_alloc_id(struct btf *btf) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&btf_idr_lock); id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); if (id > 0) btf->id = id; spin_unlock_bh(&btf_idr_lock); idr_preload_end(); if (WARN_ON_ONCE(!id)) return -ENOSPC; return id > 0 ? 0 : id; } static void btf_free_id(struct btf *btf) { unsigned long flags; /* * In map-in-map, calling map_delete_elem() on outer * map will call bpf_map_put on the inner map. * It will then eventually call btf_free_id() * on the inner map. Some of the map_delete_elem() * implementation may have irq disabled, so * we need to use the _irqsave() version instead * of the _bh() version. */ spin_lock_irqsave(&btf_idr_lock, flags); idr_remove(&btf_idr, btf->id); spin_unlock_irqrestore(&btf_idr_lock, flags); } static void btf_free(struct btf *btf) { kvfree(btf->types); kvfree(btf->resolved_sizes); kvfree(btf->resolved_ids); kvfree(btf->data); kfree(btf); } static void btf_free_rcu(struct rcu_head *rcu) { struct btf *btf = container_of(rcu, struct btf, rcu); btf_free(btf); } void btf_get(struct btf *btf) { refcount_inc(&btf->refcnt); } void btf_put(struct btf *btf) { if (btf && refcount_dec_and_test(&btf->refcnt)) { btf_free_id(btf); call_rcu(&btf->rcu, btf_free_rcu); } } static int env_resolve_init(struct btf_verifier_env *env) { struct btf *btf = env->btf; u32 nr_types = btf->nr_types; u32 *resolved_sizes = NULL; u32 *resolved_ids = NULL; u8 *visit_states = NULL; resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), GFP_KERNEL | __GFP_NOWARN); if (!resolved_sizes) goto nomem; resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), GFP_KERNEL | __GFP_NOWARN); if (!resolved_ids) goto nomem; visit_states = kvcalloc(nr_types, sizeof(*visit_states), GFP_KERNEL | __GFP_NOWARN); if (!visit_states) goto nomem; btf->resolved_sizes = resolved_sizes; btf->resolved_ids = resolved_ids; env->visit_states = visit_states; return 0; nomem: kvfree(resolved_sizes); kvfree(resolved_ids); kvfree(visit_states); return -ENOMEM; } static void btf_verifier_env_free(struct btf_verifier_env *env) { kvfree(env->visit_states); kfree(env); } static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, const struct btf_type *next_type) { switch (env->resolve_mode) { case RESOLVE_TBD: /* int, enum or void is a sink */ return !btf_type_needs_resolve(next_type); case RESOLVE_PTR: /* int, enum, void, struct, array, func or func_proto is a sink * for ptr */ return !btf_type_is_modifier(next_type) && !btf_type_is_ptr(next_type); case RESOLVE_STRUCT_OR_ARRAY: /* int, enum, void, ptr, func or func_proto is a sink * for struct and array */ return !btf_type_is_modifier(next_type) && !btf_type_is_array(next_type) && !btf_type_is_struct(next_type); default: BUG(); } } static bool env_type_is_resolved(const struct btf_verifier_env *env, u32 type_id) { /* base BTF types should be resolved by now */ if (type_id < env->btf->start_id) return true; return env->visit_states[type_id - env->btf->start_id] == RESOLVED; } static int env_stack_push(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { const struct btf *btf = env->btf; struct resolve_vertex *v; if (env->top_stack == MAX_RESOLVE_DEPTH) return -E2BIG; if (type_id < btf->start_id || env->visit_states[type_id - btf->start_id] != NOT_VISITED) return -EEXIST; env->visit_states[type_id - btf->start_id] = VISITED; v = &env->stack[env->top_stack++]; v->t = t; v->type_id = type_id; v->next_member = 0; if (env->resolve_mode == RESOLVE_TBD) { if (btf_type_is_ptr(t)) env->resolve_mode = RESOLVE_PTR; else if (btf_type_is_struct(t) || btf_type_is_array(t)) env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; } return 0; } static void env_stack_set_next_member(struct btf_verifier_env *env, u16 next_member) { env->stack[env->top_stack - 1].next_member = next_member; } static void env_stack_pop_resolved(struct btf_verifier_env *env, u32 resolved_type_id, u32 resolved_size) { u32 type_id = env->stack[--(env->top_stack)].type_id; struct btf *btf = env->btf; type_id -= btf->start_id; /* adjust to local type id */ btf->resolved_sizes[type_id] = resolved_size; btf->resolved_ids[type_id] = resolved_type_id; env->visit_states[type_id] = RESOLVED; } static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) { return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; } /* Resolve the size of a passed-in "type" * * type: is an array (e.g. u32 array[x][y]) * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, * *type_size: (x * y * sizeof(u32)). Hence, *type_size always * corresponds to the return type. * *elem_type: u32 * *elem_id: id of u32 * *total_nelems: (x * y). Hence, individual elem size is * (*type_size / *total_nelems) * *type_id: id of type if it's changed within the function, 0 if not * * type: is not an array (e.g. const struct X) * return type: type "struct X" * *type_size: sizeof(struct X) * *elem_type: same as return type ("struct X") * *elem_id: 0 * *total_nelems: 1 * *type_id: id of type if it's changed within the function, 0 if not */ static const struct btf_type * __btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size, const struct btf_type **elem_type, u32 *elem_id, u32 *total_nelems, u32 *type_id) { const struct btf_type *array_type = NULL; const struct btf_array *array = NULL; u32 i, size, nelems = 1, id = 0; for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { switch (BTF_INFO_KIND(type->info)) { /* type->size can be used */ case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_FLOAT: size = type->size; goto resolved; case BTF_KIND_PTR: size = sizeof(void *); goto resolved; /* Modifiers */ case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: id = type->type; type = btf_type_by_id(btf, type->type); break; case BTF_KIND_ARRAY: if (!array_type) array_type = type; array = btf_type_array(type); if (nelems && array->nelems > U32_MAX / nelems) return ERR_PTR(-EINVAL); nelems *= array->nelems; type = btf_type_by_id(btf, array->type); break; /* type without size */ default: return ERR_PTR(-EINVAL); } } return ERR_PTR(-EINVAL); resolved: if (nelems && size > U32_MAX / nelems) return ERR_PTR(-EINVAL); *type_size = nelems * size; if (total_nelems) *total_nelems = nelems; if (elem_type) *elem_type = type; if (elem_id) *elem_id = array ? array->type : 0; if (type_id && id) *type_id = id; return array_type ? : type; } const struct btf_type * btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size) { return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); } static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_ids[type_id - btf->start_id]; } /* The input param "type_id" must point to a needs_resolve type */ static const struct btf_type *btf_type_id_resolve(const struct btf *btf, u32 *type_id) { *type_id = btf_resolved_type_id(btf, *type_id); return btf_type_by_id(btf, *type_id); } static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_sizes[type_id - btf->start_id]; } const struct btf_type *btf_type_id_size(const struct btf *btf, u32 *type_id, u32 *ret_size) { const struct btf_type *size_type; u32 size_type_id = *type_id; u32 size = 0; size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; if (btf_type_has_size(size_type)) { size = size_type->size; } else if (btf_type_is_array(size_type)) { size = btf_resolved_type_size(btf, size_type_id); } else if (btf_type_is_ptr(size_type)) { size = sizeof(void *); } else { if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && !btf_type_is_var(size_type))) return NULL; size_type_id = btf_resolved_type_id(btf, size_type_id); size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; else if (btf_type_has_size(size_type)) size = size_type->size; else if (btf_type_is_array(size_type)) size = btf_resolved_type_size(btf, size_type_id); else if (btf_type_is_ptr(size_type)) size = sizeof(void *); else return NULL; } *type_id = size_type_id; if (ret_size) *ret_size = size; return size_type; } static int btf_df_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_member"); return -EINVAL; } static int btf_df_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_kflag_member"); return -EINVAL; } /* Used for ptr, array struct/union and float type members. * int, enum and modifier types have their specific callback functions. */ static int btf_generic_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } /* bitfield size is 0, so member->offset represents bit offset only. * It is safe to call non kflag check_member variants. */ return btf_type_ops(member_type)->check_member(env, struct_type, member, member_type); } static int btf_df_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { btf_verifier_log_basic(env, v->t, "Unsupported resolve"); return -EINVAL; } static void btf_df_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show) { btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); } static int btf_int_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 int_data = btf_type_int(member_type); u32 struct_bits_off = member->offset; u32 struct_size = struct_type->size; u32 nr_copy_bits; u32 bytes_offset; if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { btf_verifier_log_member(env, struct_type, member, "bits_offset exceeds U32_MAX"); return -EINVAL; } struct_bits_off += BTF_INT_OFFSET(int_data); bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = BTF_INT_BITS(int_data) + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_int_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; u32 int_data = btf_type_int(member_type); u32 struct_size = struct_type->size; u32 nr_copy_bits; /* a regular int type is required for the kflag int member */ if (!btf_type_int_is_regular(member_type)) { btf_verifier_log_member(env, struct_type, member, "Invalid member base type"); return -EINVAL; } /* check sanity of bitfield size */ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_int_data_bits = BTF_INT_BITS(int_data); if (!nr_bits) { /* Not a bitfield member, member offset must be at byte * boundary. */ if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Invalid member offset"); return -EINVAL; } nr_bits = nr_int_data_bits; } else if (nr_bits > nr_int_data_bits) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_int_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 int_data, nr_bits, meta_needed = sizeof(int_data); u16 encoding; if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } int_data = btf_type_int(t); if (int_data & ~BTF_INT_MASK) { btf_verifier_log_basic(env, t, "Invalid int_data:%x", int_data); return -EINVAL; } nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); if (nr_bits > BITS_PER_U128) { btf_verifier_log_type(env, t, "nr_bits exceeds %zu", BITS_PER_U128); return -EINVAL; } if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); return -EINVAL; } /* * Only one of the encoding bits is allowed and it * should be sufficient for the pretty print purpose (i.e. decoding). * Multiple bits can be allowed later if it is found * to be insufficient. */ encoding = BTF_INT_ENCODING(int_data); if (encoding && encoding != BTF_INT_SIGNED && encoding != BTF_INT_CHAR && encoding != BTF_INT_BOOL) { btf_verifier_log_type(env, t, "Unsupported encoding"); return -ENOTSUPP; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_int_log(struct btf_verifier_env *env, const struct btf_type *t) { int int_data = btf_type_int(t); btf_verifier_log(env, "size=%u bits_offset=%u nr_bits=%u encoding=%s", t->size, BTF_INT_OFFSET(int_data), BTF_INT_BITS(int_data), btf_int_encoding_str(BTF_INT_ENCODING(int_data))); } static void btf_int128_print(struct btf_show *show, void *data) { /* data points to a __int128 number. * Suppose * int128_num = *(__int128 *)data; * The below formulas shows what upper_num and lower_num represents: * upper_num = int128_num >> 64; * lower_num = int128_num & 0xffffffffFFFFFFFFULL; */ u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = *(u64 *)data; lower_num = *(u64 *)(data + 8); #else upper_num = *(u64 *)(data + 8); lower_num = *(u64 *)data; #endif if (upper_num == 0) btf_show_type_value(show, "0x%llx", lower_num); else btf_show_type_values(show, "0x%llx%016llx", upper_num, lower_num); } static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, u16 right_shift_bits) { u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = print_num[0]; lower_num = print_num[1]; #else upper_num = print_num[1]; lower_num = print_num[0]; #endif /* shake out un-needed bits by shift/or operations */ if (left_shift_bits >= 64) { upper_num = lower_num << (left_shift_bits - 64); lower_num = 0; } else { upper_num = (upper_num << left_shift_bits) | (lower_num >> (64 - left_shift_bits)); lower_num = lower_num << left_shift_bits; } if (right_shift_bits >= 64) { lower_num = upper_num >> (right_shift_bits - 64); upper_num = 0; } else { lower_num = (lower_num >> right_shift_bits) | (upper_num << (64 - right_shift_bits)); upper_num = upper_num >> right_shift_bits; } #ifdef __BIG_ENDIAN_BITFIELD print_num[0] = upper_num; print_num[1] = lower_num; #else print_num[0] = lower_num; print_num[1] = upper_num; #endif } static void btf_bitfield_show(void *data, u8 bits_offset, u8 nr_bits, struct btf_show *show) { u16 left_shift_bits, right_shift_bits; u8 nr_copy_bytes; u8 nr_copy_bits; u64 print_num[2] = {}; nr_copy_bits = nr_bits + bits_offset; nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); memcpy(print_num, data, nr_copy_bytes); #ifdef __BIG_ENDIAN_BITFIELD left_shift_bits = bits_offset; #else left_shift_bits = BITS_PER_U128 - nr_copy_bits; #endif right_shift_bits = BITS_PER_U128 - nr_bits; btf_int128_shift(print_num, left_shift_bits, right_shift_bits); btf_int128_print(show, print_num); } static void btf_int_bits_show(const struct btf *btf, const struct btf_type *t, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 nr_bits = BTF_INT_BITS(int_data); u8 total_bits_offset; /* * bits_offset is at most 7. * BTF_INT_OFFSET() cannot exceed 128 bits. */ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); data += BITS_ROUNDDOWN_BYTES(total_bits_offset); bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); btf_bitfield_show(data, bits_offset, nr_bits, show); } static void btf_int_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 encoding = BTF_INT_ENCODING(int_data); bool sign = encoding & BTF_INT_SIGNED; u8 nr_bits = BTF_INT_BITS(int_data); void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; if (bits_offset || BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(nr_bits)) { btf_int_bits_show(btf, t, safe_data, bits_offset, show); goto out; } switch (nr_bits) { case 128: btf_int128_print(show, safe_data); break; case 64: if (sign) btf_show_type_value(show, "%lld", *(s64 *)safe_data); else btf_show_type_value(show, "%llu", *(u64 *)safe_data); break; case 32: if (sign) btf_show_type_value(show, "%d", *(s32 *)safe_data); else btf_show_type_value(show, "%u", *(u32 *)safe_data); break; case 16: if (sign) btf_show_type_value(show, "%d", *(s16 *)safe_data); else btf_show_type_value(show, "%u", *(u16 *)safe_data); break; case 8: if (show->state.array_encoding == BTF_INT_CHAR) { /* check for null terminator */ if (show->state.array_terminated) break; if (*(char *)data == '\0') { show->state.array_terminated = 1; break; } if (isprint(*(char *)data)) { btf_show_type_value(show, "'%c'", *(char *)safe_data); break; } } if (sign) btf_show_type_value(show, "%d", *(s8 *)safe_data); else btf_show_type_value(show, "%u", *(u8 *)safe_data); break; default: btf_int_bits_show(btf, t, safe_data, bits_offset, show); break; } out: btf_show_end_type(show); } static const struct btf_kind_operations int_ops = { .check_meta = btf_int_check_meta, .resolve = btf_df_resolve, .check_member = btf_int_check_member, .check_kflag_member = btf_int_check_kflag_member, .log_details = btf_int_log, .show = btf_int_show, }; static int btf_modifier_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_member(env, struct_type, &resolved_member, resolved_type); } static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, &resolved_member, resolved_type); } static int btf_ptr_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_size, struct_bits_off, bytes_offset; struct_size = struct_type->size; struct_bits_off = member->offset; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } if (struct_size - bytes_offset < sizeof(void *)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_ref_type_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } /* typedef type must have a valid name, and other ref types, * volatile, const, restrict, should have a null name. */ if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } else { if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_modifier_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *t = v->t; const struct btf_type *next_type; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* Figure out the resolved next_type_id with size. * They will be stored in the current modifier's * resolved_ids and resolved_sizes such that it can * save us a few type-following when we use it later (e.g. in * pretty print). */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); /* "typedef void new_void", "const void"...etc */ if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_var_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } /* We must resolve to something concrete at this point, no * forward types or similar that would resolve to size of * zero is allowed. */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_ptr_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, * the modifier may have stopped resolving when it was resolved * to a ptr (last-resolved-ptr). * * We now need to continue from the last-resolved-ptr to * ensure the last-resolved-ptr will not referring back to * the currenct ptr (t). */ if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static void btf_modifier_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { if (btf->resolved_ids) t = btf_type_id_resolve(btf, &type_id); else t = btf_type_skip_modifiers(btf, type_id, NULL); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_var_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { t = btf_type_id_resolve(btf, &type_id); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ if (show->flags & BTF_SHOW_PTR_RAW) btf_show_type_value(show, "0x%px", *(void **)safe_data); else btf_show_type_value(show, "0x%p", *(void **)safe_data); btf_show_end_type(show); } static void btf_ref_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "type_id=%u", t->type); } static struct btf_kind_operations modifier_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_modifier_resolve, .check_member = btf_modifier_check_member, .check_kflag_member = btf_modifier_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_modifier_show, }; static struct btf_kind_operations ptr_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_ptr_resolve, .check_member = btf_ptr_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_ptr_show, }; static s32 btf_fwd_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (t->type) { btf_verifier_log_type(env, t, "type != 0"); return -EINVAL; } /* fwd type must have a valid name */ if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static void btf_fwd_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); } static struct btf_kind_operations fwd_ops = { .check_meta = btf_fwd_check_meta, .resolve = btf_df_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_fwd_type_log, .show = btf_df_show, }; static int btf_array_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; u32 array_type_id, array_size; struct btf *btf = env->btf; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } array_type_id = member->type; btf_type_id_size(btf, &array_type_id, &array_size); struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < array_size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_array_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_array *array = btf_type_array(t); u32 meta_needed = sizeof(*array); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* array type should not have a name */ if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size) { btf_verifier_log_type(env, t, "size != 0"); return -EINVAL; } /* Array elem type and index type cannot be in type void, * so !array->type and !array->index_type are not allowed. */ if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { btf_verifier_log_type(env, t, "Invalid elem"); return -EINVAL; } if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { btf_verifier_log_type(env, t, "Invalid index"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static int btf_array_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_array *array = btf_type_array(v->t); const struct btf_type *elem_type, *index_type; u32 elem_type_id, index_type_id; struct btf *btf = env->btf; u32 elem_size; /* Check array->index_type */ index_type_id = array->index_type; index_type = btf_type_by_id(btf, index_type_id); if (btf_type_nosize_or_null(index_type) || btf_type_is_resolve_source_only(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } if (!env_type_is_resolve_sink(env, index_type) && !env_type_is_resolved(env, index_type_id)) return env_stack_push(env, index_type, index_type_id); index_type = btf_type_id_size(btf, &index_type_id, NULL); if (!index_type || !btf_type_is_int(index_type) || !btf_type_int_is_regular(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } /* Check array->type */ elem_type_id = array->type; elem_type = btf_type_by_id(btf, elem_type_id); if (btf_type_nosize_or_null(elem_type) || btf_type_is_resolve_source_only(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (!env_type_is_resolve_sink(env, elem_type) && !env_type_is_resolved(env, elem_type_id)) return env_stack_push(env, elem_type, elem_type_id); elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); if (!elem_type) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid array of int"); return -EINVAL; } if (array->nelems && elem_size > U32_MAX / array->nelems) { btf_verifier_log_type(env, v->t, "Array size overflows U32_MAX"); return -EINVAL; } env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); return 0; } static void btf_array_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_array *array = btf_type_array(t); btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", array->type, array->index_type, array->nelems); } static void __btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_array *array = btf_type_array(t); const struct btf_kind_operations *elem_ops; const struct btf_type *elem_type; u32 i, elem_size = 0, elem_type_id; u16 encoding = 0; elem_type_id = array->type; elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); if (elem_type && btf_type_has_size(elem_type)) elem_size = elem_type->size; if (elem_type && btf_type_is_int(elem_type)) { u32 int_type = btf_type_int(elem_type); encoding = BTF_INT_ENCODING(int_type); /* * BTF_INT_CHAR encoding never seems to be set for * char arrays, so if size is 1 and element is * printable as a char, we'll do that. */ if (elem_size == 1) encoding = BTF_INT_CHAR; } if (!btf_show_start_array_type(show, t, type_id, encoding, data)) return; if (!elem_type) goto out; elem_ops = btf_type_ops(elem_type); for (i = 0; i < array->nelems; i++) { btf_show_start_array_member(show); elem_ops->show(btf, elem_type, elem_type_id, data, bits_offset, show); data += elem_size; btf_show_end_array_member(show); if (show->state.array_terminated) break; } out: btf_show_end_array_type(show); } static void btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_array_show(btf, t, type_id, data, bits_offset, show); show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero array member(s). */ } __btf_array_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations array_ops = { .check_meta = btf_array_check_meta, .resolve = btf_array_resolve, .check_member = btf_array_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_array_log, .show = btf_array_show, }; static int btf_struct_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_struct_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; const struct btf_member *member; u32 meta_needed, last_offset; struct btf *btf = env->btf; u32 struct_size = t->size; u32 offset; u16 i; meta_needed = btf_type_vlen(t) * sizeof(*member); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* struct type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); last_offset = 0; for_each_member(i, t, member) { if (!btf_name_offset_valid(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid member name_offset:%u", member->name_off); return -EINVAL; } /* struct member either no name or a valid one */ if (member->name_off && !btf_name_valid_identifier(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid name"); return -EINVAL; } /* A member cannot be in type void */ if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { btf_verifier_log_member(env, t, member, "Invalid type_id"); return -EINVAL; } offset = btf_member_bit_offset(t, member); if (is_union && offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } /* * ">" instead of ">=" because the last member could be * "char a[0];" */ if (last_offset > offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } if (BITS_ROUNDUP_BYTES(offset) > struct_size) { btf_verifier_log_member(env, t, member, "Member bits_offset exceeds its struct size"); return -EINVAL; } btf_verifier_log_member(env, t, member, NULL); last_offset = offset; } return meta_needed; } static int btf_struct_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_member *member; int err; u16 i; /* Before continue resolving the next_member, * ensure the last member is indeed resolved to a * type with size info. */ if (v->next_member) { const struct btf_type *last_member_type; const struct btf_member *last_member; u32 last_member_type_id; last_member = btf_type_member(v->t) + v->next_member - 1; last_member_type_id = last_member->type; if (WARN_ON_ONCE(!env_type_is_resolved(env, last_member_type_id))) return -EINVAL; last_member_type = btf_type_by_id(env->btf, last_member_type_id); if (btf_type_kflag(v->t)) err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, last_member, last_member_type); else err = btf_type_ops(last_member_type)->check_member(env, v->t, last_member, last_member_type); if (err) return err; } for_each_member_from(i, v->next_member, v->t, member) { u32 member_type_id = member->type; const struct btf_type *member_type = btf_type_by_id(env->btf, member_type_id); if (btf_type_nosize_or_null(member_type) || btf_type_is_resolve_source_only(member_type)) { btf_verifier_log_member(env, v->t, member, "Invalid member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, member_type) && !env_type_is_resolved(env, member_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, member_type, member_type_id); } if (btf_type_kflag(v->t)) err = btf_type_ops(member_type)->check_kflag_member(env, v->t, member, member_type); else err = btf_type_ops(member_type)->check_member(env, v->t, member, member_type); if (err) return err; } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_struct_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, const char *name, int sz, int align) { const struct btf_member *member; u32 i, off = -ENOENT; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); if (!__btf_type_is_struct(member_type)) continue; if (member_type->size != sz) continue; if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) continue; if (off != -ENOENT) /* only one such field is allowed */ return -E2BIG; off = btf_member_bit_offset(t, member); if (off % 8) /* valid C code cannot generate such BTF */ return -EINVAL; off /= 8; if (off % align) return -EINVAL; } return off; } static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, const char *name, int sz, int align) { const struct btf_var_secinfo *vsi; u32 i, off = -ENOENT; for_each_vsi(i, t, vsi) { const struct btf_type *var = btf_type_by_id(btf, vsi->type); const struct btf_type *var_type = btf_type_by_id(btf, var->type); if (!__btf_type_is_struct(var_type)) continue; if (var_type->size != sz) continue; if (vsi->size != sz) continue; if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) continue; if (off != -ENOENT) /* only one such field is allowed */ return -E2BIG; off = vsi->offset; if (off % align) return -EINVAL; } return off; } static int btf_find_field(const struct btf *btf, const struct btf_type *t, const char *name, int sz, int align) { if (__btf_type_is_struct(t)) return btf_find_struct_field(btf, t, name, sz, align); else if (btf_type_is_datasec(t)) return btf_find_datasec_var(btf, t, name, sz, align); return -EINVAL; } /* find 'struct bpf_spin_lock' in map value. * return >= 0 offset if found * and < 0 in case of error */ int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) { return btf_find_field(btf, t, "bpf_spin_lock", sizeof(struct bpf_spin_lock), __alignof__(struct bpf_spin_lock)); } int btf_find_timer(const struct btf *btf, const struct btf_type *t) { return btf_find_field(btf, t, "bpf_timer", sizeof(struct bpf_timer), __alignof__(struct bpf_timer)); } static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *member; void *safe_data; u32 i; safe_data = btf_show_start_struct_type(show, t, type_id, data); if (!safe_data) return; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); const struct btf_kind_operations *ops; u32 member_offset, bitfield_size; u32 bytes_offset; u8 bits8_offset; btf_show_start_member(show, member); member_offset = btf_member_bit_offset(t, member); bitfield_size = btf_member_bitfield_size(t, member); bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); bits8_offset = BITS_PER_BYTE_MASKED(member_offset); if (bitfield_size) { safe_data = btf_show_start_type(show, member_type, member->type, data + bytes_offset); if (safe_data) btf_bitfield_show(safe_data, bits8_offset, bitfield_size, show); btf_show_end_type(show); } else { ops = btf_type_ops(member_type); ops->show(btf, member_type, member->type, data + bytes_offset, bits8_offset, show); } btf_show_end_member(show); } btf_show_end_struct_type(show); } static void btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_struct_show(btf, t, type_id, data, bits_offset, show); /* Restore saved member data here */ show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero child values. */ } __btf_struct_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations struct_ops = { .check_meta = btf_struct_check_meta, .resolve = btf_struct_resolve, .check_member = btf_struct_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_struct_log, .show = btf_struct_show, }; static int btf_enum_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_enum_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, bytes_end, struct_size; u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); if (!nr_bits) { if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } nr_bits = int_bitsize; } else if (nr_bits > int_bitsize) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } struct_size = struct_type->size; bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); if (struct_size < bytes_end) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_enum_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_enum *enums = btf_type_enum(t); struct btf *btf = env->btf; u16 i, nr_enums; u32 meta_needed; nr_enums = btf_type_vlen(t); meta_needed = nr_enums * sizeof(*enums); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size > 8 || !is_power_of_2(t->size)) { btf_verifier_log_type(env, t, "Unexpected size"); return -EINVAL; } /* enum type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for (i = 0; i < nr_enums; i++) { if (!btf_name_offset_valid(btf, enums[i].name_off)) { btf_verifier_log(env, "\tInvalid name_offset:%u", enums[i].name_off); return -EINVAL; } /* enum member must have a valid name */ if (!enums[i].name_off || !btf_name_valid_identifier(btf, enums[i].name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (env->log.level == BPF_LOG_KERNEL) continue; btf_verifier_log(env, "\t%s val=%d\n", __btf_name_by_offset(btf, enums[i].name_off), enums[i].val); } return meta_needed; } static void btf_enum_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_enum_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_enum *enums = btf_type_enum(t); u32 i, nr_enums = btf_type_vlen(t); void *safe_data; int v; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; v = *(int *)safe_data; for (i = 0; i < nr_enums; i++) { if (v != enums[i].val) continue; btf_show_type_value(show, "%s", __btf_name_by_offset(btf, enums[i].name_off)); btf_show_end_type(show); return; } btf_show_type_value(show, "%d", v); btf_show_end_type(show); } static struct btf_kind_operations enum_ops = { .check_meta = btf_enum_check_meta, .resolve = btf_df_resolve, .check_member = btf_enum_check_member, .check_kflag_member = btf_enum_check_kflag_member, .log_details = btf_enum_log, .show = btf_enum_show, }; static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_func_proto_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_param *args = (const struct btf_param *)(t + 1); u16 nr_args = btf_type_vlen(t), i; btf_verifier_log(env, "return=%u args=(", t->type); if (!nr_args) { btf_verifier_log(env, "void"); goto done; } if (nr_args == 1 && !args[0].type) { /* Only one vararg */ btf_verifier_log(env, "vararg"); goto done; } btf_verifier_log(env, "%u %s", args[0].type, __btf_name_by_offset(env->btf, args[0].name_off)); for (i = 1; i < nr_args - 1; i++) btf_verifier_log(env, ", %u %s", args[i].type, __btf_name_by_offset(env->btf, args[i].name_off)); if (nr_args > 1) { const struct btf_param *last_arg = &args[nr_args - 1]; if (last_arg->type) btf_verifier_log(env, ", %u %s", last_arg->type, __btf_name_by_offset(env->btf, last_arg->name_off)); else btf_verifier_log(env, ", vararg"); } done: btf_verifier_log(env, ")"); } static struct btf_kind_operations func_proto_ops = { .check_meta = btf_func_proto_check_meta, .resolve = btf_df_resolve, /* * BTF_KIND_FUNC_PROTO cannot be directly referred by * a struct's member. * * It should be a function pointer instead. * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) * * Hence, there is no btf_func_check_member(). */ .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_func_proto_log, .show = btf_df_show, }; static s32 btf_func_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { btf_verifier_log_type(env, t, "Invalid func linkage"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static struct btf_kind_operations func_ops = { .check_meta = btf_func_check_meta, .resolve = btf_df_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_df_show, }; static s32 btf_var_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var *var; u32 meta_needed = sizeof(*var); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !__btf_name_valid(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } /* A var cannot be in type void */ if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } var = btf_type_var(t); if (var->linkage != BTF_VAR_STATIC && var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { btf_verifier_log_type(env, t, "Linkage not supported"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_var *var = btf_type_var(t); btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); } static const struct btf_kind_operations var_ops = { .check_meta = btf_var_check_meta, .resolve = btf_var_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_var_log, .show = btf_var_show, }; static s32 btf_datasec_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var_secinfo *vsi; u64 last_vsi_end_off = 0, sum = 0; u32 i, meta_needed; meta_needed = btf_type_vlen(t) * sizeof(*vsi); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (!t->size) { btf_verifier_log_type(env, t, "size == 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !btf_name_valid_section(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for_each_vsi(i, t, vsi) { /* A var cannot be in type void */ if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { btf_verifier_log_vsi(env, t, vsi, "Invalid type_id"); return -EINVAL; } if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset"); return -EINVAL; } if (!vsi->size || vsi->size > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid size"); return -EINVAL; } last_vsi_end_off = vsi->offset + vsi->size; if (last_vsi_end_off > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset+size"); return -EINVAL; } btf_verifier_log_vsi(env, t, vsi, NULL); sum += vsi->size; } if (t->size < sum) { btf_verifier_log_type(env, t, "Invalid btf_info size"); return -EINVAL; } return meta_needed; } static int btf_datasec_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_var_secinfo *vsi; struct btf *btf = env->btf; u16 i; env->resolve_mode = RESOLVE_TBD; for_each_vsi_from(i, v->next_member, v->t, vsi) { u32 var_type_id = vsi->type, type_id, type_size = 0; const struct btf_type *var_type = btf_type_by_id(env->btf, var_type_id); if (!var_type || !btf_type_is_var(var_type)) { btf_verifier_log_vsi(env, v->t, vsi, "Not a VAR kind member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, var_type) && !env_type_is_resolved(env, var_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, var_type, var_type_id); } type_id = var_type->type; if (!btf_type_id_size(btf, &type_id, &type_size)) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); return -EINVAL; } if (vsi->size < type_size) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); return -EINVAL; } } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_datasec_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_datasec_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_var_secinfo *vsi; const struct btf_type *var; u32 i; if (!btf_show_start_type(show, t, type_id, data)) return; btf_show_type_value(show, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); for_each_vsi(i, t, vsi) { var = btf_type_by_id(btf, vsi->type); if (i) btf_show(show, ","); btf_type_ops(var)->show(btf, var, vsi->type, data + vsi->offset, bits_offset, show); } btf_show_end_type(show); } static const struct btf_kind_operations datasec_ops = { .check_meta = btf_datasec_check_meta, .resolve = btf_datasec_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_datasec_log, .show = btf_datasec_show, }; static s32 btf_float_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && t->size != 16) { btf_verifier_log_type(env, t, "Invalid type_size"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_float_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u64 start_offset_bytes; u64 end_offset_bytes; u64 misalign_bits; u64 align_bytes; u64 align_bits; /* Different architectures have different alignment requirements, so * here we check only for the reasonable minimum. This way we ensure * that types after CO-RE can pass the kernel BTF verifier. */ align_bytes = min_t(u64, sizeof(void *), member_type->size); align_bits = align_bytes * BITS_PER_BYTE; div64_u64_rem(member->offset, align_bits, &misalign_bits); if (misalign_bits) { btf_verifier_log_member(env, struct_type, member, "Member is not properly aligned"); return -EINVAL; } start_offset_bytes = member->offset / BITS_PER_BYTE; end_offset_bytes = start_offset_bytes + member_type->size; if (end_offset_bytes > struct_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static void btf_float_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u", t->size); } static const struct btf_kind_operations float_ops = { .check_meta = btf_float_check_meta, .resolve = btf_df_resolve, .check_member = btf_float_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_float_log, .show = btf_df_show, }; static int btf_func_proto_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *ret_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; int err; btf = env->btf; args = (const struct btf_param *)(t + 1); nr_args = btf_type_vlen(t); /* Check func return type which could be "void" (t->type == 0) */ if (t->type) { u32 ret_type_id = t->type; ret_type = btf_type_by_id(btf, ret_type_id); if (!ret_type) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } if (btf_type_needs_resolve(ret_type) && !env_type_is_resolved(env, ret_type_id)) { err = btf_resolve(env, ret_type, ret_type_id); if (err) return err; } /* Ensure the return type is a type that has a size */ if (!btf_type_id_size(btf, &ret_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } } if (!nr_args) return 0; /* Last func arg type_id could be 0 if it is a vararg */ if (!args[nr_args - 1].type) { if (args[nr_args - 1].name_off) { btf_verifier_log_type(env, t, "Invalid arg#%u", nr_args); return -EINVAL; } nr_args--; } err = 0; for (i = 0; i < nr_args; i++) { const struct btf_type *arg_type; u32 arg_type_id; arg_type_id = args[i].type; arg_type = btf_type_by_id(btf, arg_type_id); if (!arg_type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } if (btf_type_is_resolve_source_only(arg_type)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } if (args[i].name_off && (!btf_name_offset_valid(btf, args[i].name_off) || !btf_name_valid_identifier(btf, args[i].name_off))) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } if (btf_type_needs_resolve(arg_type) && !env_type_is_resolved(env, arg_type_id)) { err = btf_resolve(env, arg_type, arg_type_id); if (err) break; } if (!btf_type_id_size(btf, &arg_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } } return err; } static int btf_func_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *proto_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; btf = env->btf; proto_type = btf_type_by_id(btf, t->type); if (!proto_type || !btf_type_is_func_proto(proto_type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } args = (const struct btf_param *)(proto_type + 1); nr_args = btf_type_vlen(proto_type); for (i = 0; i < nr_args; i++) { if (!args[i].name_off && args[i].type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } } return 0; } static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { [BTF_KIND_INT] = &int_ops, [BTF_KIND_PTR] = &ptr_ops, [BTF_KIND_ARRAY] = &array_ops, [BTF_KIND_STRUCT] = &struct_ops, [BTF_KIND_UNION] = &struct_ops, [BTF_KIND_ENUM] = &enum_ops, [BTF_KIND_FWD] = &fwd_ops, [BTF_KIND_TYPEDEF] = &modifier_ops, [BTF_KIND_VOLATILE] = &modifier_ops, [BTF_KIND_CONST] = &modifier_ops, [BTF_KIND_RESTRICT] = &modifier_ops, [BTF_KIND_FUNC] = &func_ops, [BTF_KIND_FUNC_PROTO] = &func_proto_ops, [BTF_KIND_VAR] = &var_ops, [BTF_KIND_DATASEC] = &datasec_ops, [BTF_KIND_FLOAT] = &float_ops, }; static s32 btf_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 saved_meta_left = meta_left; s32 var_meta_size; if (meta_left < sizeof(*t)) { btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", env->log_type_id, meta_left, sizeof(*t)); return -EINVAL; } meta_left -= sizeof(*t); if (t->info & ~BTF_INFO_MASK) { btf_verifier_log(env, "[%u] Invalid btf_info:%x", env->log_type_id, t->info); return -EINVAL; } if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { btf_verifier_log(env, "[%u] Invalid kind:%u", env->log_type_id, BTF_INFO_KIND(t->info)); return -EINVAL; } if (!btf_name_offset_valid(env->btf, t->name_off)) { btf_verifier_log(env, "[%u] Invalid name_offset:%u", env->log_type_id, t->name_off); return -EINVAL; } var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); if (var_meta_size < 0) return var_meta_size; meta_left -= var_meta_size; return saved_meta_left - meta_left; } static int btf_check_all_metas(struct btf_verifier_env *env) { struct btf *btf = env->btf; struct btf_header *hdr; void *cur, *end; hdr = &btf->hdr; cur = btf->nohdr_data + hdr->type_off; end = cur + hdr->type_len; env->log_type_id = btf->base_btf ? btf->start_id : 1; while (cur < end) { struct btf_type *t = cur; s32 meta_size; meta_size = btf_check_meta(env, t, end - cur); if (meta_size < 0) return meta_size; btf_add_type(env, t); cur += meta_size; env->log_type_id++; } return 0; } static bool btf_resolve_valid(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { struct btf *btf = env->btf; if (!env_type_is_resolved(env, type_id)) return false; if (btf_type_is_struct(t) || btf_type_is_datasec(t)) return !btf_resolved_type_id(btf, type_id) && !btf_resolved_type_size(btf, type_id); if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_var(t)) { t = btf_type_id_resolve(btf, &type_id); return t && !btf_type_is_modifier(t) && !btf_type_is_var(t) && !btf_type_is_datasec(t); } if (btf_type_is_array(t)) { const struct btf_array *array = btf_type_array(t); const struct btf_type *elem_type; u32 elem_type_id = array->type; u32 elem_size; elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); return elem_type && !btf_type_is_modifier(elem_type) && (array->nelems * elem_size == btf_resolved_type_size(btf, type_id)); } return false; } static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { u32 save_log_type_id = env->log_type_id; const struct resolve_vertex *v; int err = 0; env->resolve_mode = RESOLVE_TBD; env_stack_push(env, t, type_id); while (!err && (v = env_stack_peak(env))) { env->log_type_id = v->type_id; err = btf_type_ops(v->t)->resolve(env, v); } env->log_type_id = type_id; if (err == -E2BIG) { btf_verifier_log_type(env, t, "Exceeded max resolving depth:%u", MAX_RESOLVE_DEPTH); } else if (err == -EEXIST) { btf_verifier_log_type(env, t, "Loop detected"); } /* Final sanity check */ if (!err && !btf_resolve_valid(env, t, type_id)) { btf_verifier_log_type(env, t, "Invalid resolve state"); err = -EINVAL; } env->log_type_id = save_log_type_id; return err; } static int btf_check_all_types(struct btf_verifier_env *env) { struct btf *btf = env->btf; const struct btf_type *t; u32 type_id, i; int err; err = env_resolve_init(env); if (err) return err; env->phase++; for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { type_id = btf->start_id + i; t = btf_type_by_id(btf, type_id); env->log_type_id = type_id; if (btf_type_needs_resolve(t) && !env_type_is_resolved(env, type_id)) { err = btf_resolve(env, t, type_id); if (err) return err; } if (btf_type_is_func_proto(t)) { err = btf_func_proto_check(env, t); if (err) return err; } if (btf_type_is_func(t)) { err = btf_func_check(env, t); if (err) return err; } } return 0; } static int btf_parse_type_sec(struct btf_verifier_env *env) { const struct btf_header *hdr = &env->btf->hdr; int err; /* Type section must align to 4 bytes */ if (hdr->type_off & (sizeof(u32) - 1)) { btf_verifier_log(env, "Unaligned type_off"); return -EINVAL; } if (!env->btf->base_btf && !hdr->type_len) { btf_verifier_log(env, "No type found"); return -EINVAL; } err = btf_check_all_metas(env); if (err) return err; return btf_check_all_types(env); } static int btf_parse_str_sec(struct btf_verifier_env *env) { const struct btf_header *hdr; struct btf *btf = env->btf; const char *start, *end; hdr = &btf->hdr; start = btf->nohdr_data + hdr->str_off; end = start + hdr->str_len; if (end != btf->data + btf->data_size) { btf_verifier_log(env, "String section is not at the end"); return -EINVAL; } btf->strings = start; if (btf->base_btf && !hdr->str_len) return 0; if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } if (!btf->base_btf && start[0]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } return 0; } static const size_t btf_sec_info_offset[] = { offsetof(struct btf_header, type_off), offsetof(struct btf_header, str_off), }; static int btf_sec_info_cmp(const void *a, const void *b) { const struct btf_sec_info *x = a; const struct btf_sec_info *y = b; return (int)(x->off - y->off) ? : (int)(x->len - y->len); } static int btf_check_sec_info(struct btf_verifier_env *env, u32 btf_data_size) { struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; u32 total, expected_total, i; const struct btf_header *hdr; const struct btf *btf; btf = env->btf; hdr = &btf->hdr; /* Populate the secs from hdr */ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) secs[i] = *(struct btf_sec_info *)((void *)hdr + btf_sec_info_offset[i]); sort(secs, ARRAY_SIZE(btf_sec_info_offset), sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); /* Check for gaps and overlap among sections */ total = 0; expected_total = btf_data_size - hdr->hdr_len; for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { if (expected_total < secs[i].off) { btf_verifier_log(env, "Invalid section offset"); return -EINVAL; } if (total < secs[i].off) { /* gap */ btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } if (total > secs[i].off) { btf_verifier_log(env, "Section overlap found"); return -EINVAL; } if (expected_total - total < secs[i].len) { btf_verifier_log(env, "Total section length too long"); return -EINVAL; } total += secs[i].len; } /* There is data other than hdr and known sections */ if (expected_total != total) { btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } return 0; } static int btf_parse_hdr(struct btf_verifier_env *env) { u32 hdr_len, hdr_copy, btf_data_size; const struct btf_header *hdr; struct btf *btf; int err; btf = env->btf; btf_data_size = btf->data_size; if (btf_data_size < offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { btf_verifier_log(env, "hdr_len not found"); return -EINVAL; } hdr = btf->data; hdr_len = hdr->hdr_len; if (btf_data_size < hdr_len) { btf_verifier_log(env, "btf_header not found"); return -EINVAL; } /* Ensure the unsupported header fields are zero */ if (hdr_len > sizeof(btf->hdr)) { u8 *expected_zero = btf->data + sizeof(btf->hdr); u8 *end = btf->data + hdr_len; for (; expected_zero < end; expected_zero++) { if (*expected_zero) { btf_verifier_log(env, "Unsupported btf_header"); return -E2BIG; } } } hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); memcpy(&btf->hdr, btf->data, hdr_copy); hdr = &btf->hdr; btf_verifier_log_hdr(env, btf_data_size); if (hdr->magic != BTF_MAGIC) { btf_verifier_log(env, "Invalid magic"); return -EINVAL; } if (hdr->version != BTF_VERSION) { btf_verifier_log(env, "Unsupported version"); return -ENOTSUPP; } if (hdr->flags) { btf_verifier_log(env, "Unsupported flags"); return -ENOTSUPP; } if (!btf->base_btf && btf_data_size == hdr->hdr_len) { btf_verifier_log(env, "No data"); return -EINVAL; } err = btf_check_sec_info(env, btf_data_size); if (err) return err; return 0; } static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, u32 log_level, char __user *log_ubuf, u32 log_size) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL; u8 *data; int err; if (btf_data_size > BTF_MAX_SIZE) return ERR_PTR(-E2BIG); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; if (log_level || log_ubuf || log_size) { /* user requested verbose verifier output * and supplied buffer to store the verification trace */ log->level = log_level; log->ubuf = log_ubuf; log->len_total = log_size; /* log attributes have to be sane */ if (!bpf_verifier_log_attr_valid(log)) { err = -EINVAL; goto errout; } } btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); if (!data) { err = -ENOMEM; goto errout; } btf->data = data; btf->data_size = btf_data_size; if (copy_from_bpfptr(data, btf_data, btf_data_size)) { err = -EFAULT; goto errout; } err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_parse_type_sec(env); if (err) goto errout; if (log->level && bpf_verifier_log_full(log)) { err = -ENOSPC; goto errout; } btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout: btf_verifier_env_free(env); if (btf) btf_free(btf); return ERR_PTR(err); } extern char __weak __start_BTF[]; extern char __weak __stop_BTF[]; extern struct btf *btf_vmlinux; #define BPF_MAP_TYPE(_id, _ops) #define BPF_LINK_TYPE(_id, _name) static union { struct bpf_ctx_convert { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ prog_ctx_type _id##_prog; \ kern_ctx_type _id##_kern; #include <linux/bpf_types.h> #undef BPF_PROG_TYPE } *__t; /* 't' is written once under lock. Read many times. */ const struct btf_type *t; } bpf_ctx_convert; enum { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ __ctx_convert##_id, #include <linux/bpf_types.h> #undef BPF_PROG_TYPE __ctx_convert_unused, /* to avoid empty enum in extreme .config */ }; static u8 bpf_ctx_convert_map[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ [_id] = __ctx_convert##_id, #include <linux/bpf_types.h> #undef BPF_PROG_TYPE 0, /* avoid empty array */ }; #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE static const struct btf_member * btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_type *conv_struct; const struct btf_type *ctx_struct; const struct btf_member *ctx_type; const char *tname, *ctx_tname; conv_struct = bpf_ctx_convert.t; if (!conv_struct) { bpf_log(log, "btf_vmlinux is malformed\n"); return NULL; } t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_struct(t)) { /* Only pointer to struct is supported for now. * That means that BPF_PROG_TYPE_TRACEPOINT with BTF * is not supported yet. * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. */ return NULL; } tname = btf_name_by_offset(btf, t->name_off); if (!tname) { bpf_log(log, "arg#%d struct doesn't have a name\n", arg); return NULL; } /* prog_type is valid bpf program type. No need for bounds check. */ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; /* ctx_struct is a pointer to prog_ctx_type in vmlinux. * Like 'struct __sk_buff' */ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); if (!ctx_struct) /* should not happen */ return NULL; again: ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); if (!ctx_tname) { /* should not happen */ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); return NULL; } /* only compare that prog's ctx type name is the same as * kernel expects. No need to compare field by field. * It's ok for bpf prog to do: * struct __sk_buff {}; * int socket_filter_bpf_prog(struct __sk_buff *skb) * { // no fields of skb are ever used } */ if (strcmp(ctx_tname, tname)) { /* bpf_user_pt_regs_t is a typedef, so resolve it to * underlying struct and check name again */ if (!btf_type_is_modifier(ctx_struct)) return NULL; while (btf_type_is_modifier(ctx_struct)) ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); goto again; } return ctx_type; } static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) #define BPF_LINK_TYPE(_id, _name) #define BPF_MAP_TYPE(_id, _ops) \ [_id] = &_ops, #include <linux/bpf_types.h> #undef BPF_PROG_TYPE #undef BPF_LINK_TYPE #undef BPF_MAP_TYPE }; static int btf_vmlinux_map_ids_init(const struct btf *btf, struct bpf_verifier_log *log) { const struct bpf_map_ops *ops; int i, btf_id; for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { ops = btf_vmlinux_map_ops[i]; if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) continue; if (!ops->map_btf_name || !ops->map_btf_id) { bpf_log(log, "map type %d is misconfigured\n", i); return -EINVAL; } btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, BTF_KIND_STRUCT); if (btf_id < 0) return btf_id; *ops->map_btf_id = btf_id; } return 0; } static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_member *prog_ctx_type, *kern_ctx_type; prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); if (!prog_ctx_type) return -ENOENT; kern_ctx_type = prog_ctx_type + 1; return kern_ctx_type->type; } BTF_ID_LIST(bpf_ctx_convert_btf_id) BTF_ID(struct, bpf_ctx_convert) struct btf *btf_parse_vmlinux(void) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL; int err; env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->data = __start_BTF; btf->data_size = __stop_BTF - __start_BTF; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "vmlinux"); err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; /* btf_parse_vmlinux() runs under bpf_verifier_lock */ bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); /* find bpf map structs for map_ptr access checking */ err = btf_vmlinux_map_ids_init(btf, log); if (err < 0) goto errout; bpf_struct_ops_init(btf, log); refcount_set(&btf->refcnt, 1); err = btf_alloc_id(btf); if (err) goto errout; btf_verifier_env_free(env); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL, *base_btf; int err; base_btf = bpf_get_btf_vmlinux(); if (IS_ERR(base_btf)) return base_btf; if (!base_btf) return ERR_PTR(-EINVAL); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->base_btf = base_btf; btf->start_id = base_btf->nr_types; btf->start_str_off = base_btf->hdr.str_len; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "%s", module_name); btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); if (!btf->data) { err = -ENOMEM; goto errout; } memcpy(btf->data, data, data_size); btf->data_size = data_size; err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->data); kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) { struct bpf_prog *tgt_prog = prog->aux->dst_prog; if (tgt_prog) return tgt_prog->aux->btf; else return prog->aux->attach_btf; } static bool is_string_ptr(struct btf *btf, const struct btf_type *t) { /* t comes in already as a pointer */ t = btf_type_by_id(btf, t->type); /* allow const */ if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) t = btf_type_by_id(btf, t->type); /* char, signed char, unsigned char */ return btf_type_is_int(t) && t->size == 1; } bool btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const struct btf_type *t = prog->aux->attach_func_proto; struct bpf_prog *tgt_prog = prog->aux->dst_prog; struct btf *btf = bpf_prog_get_target_btf(prog); const char *tname = prog->aux->attach_func_name; struct bpf_verifier_log *log = info->log; const struct btf_param *args; u32 nr_args, arg; int i, ret; if (off % 8) { bpf_log(log, "func '%s' offset %d is not multiple of 8\n", tname, off); return false; } arg = off / 8; args = (const struct btf_param *)(t + 1); /* if (t == NULL) Fall back to default BPF prog with * MAX_BPF_FUNC_REG_ARGS u64 arguments. */ nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; if (prog->aux->attach_btf_trace) { /* skip first 'void *__data' argument in btf_trace_##name typedef */ args++; nr_args--; } if (arg > nr_args) { bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } if (arg == nr_args) { switch (prog->expected_attach_type) { case BPF_LSM_MAC: case BPF_TRACE_FEXIT: /* When LSM programs are attached to void LSM hooks * they use FEXIT trampolines and when attached to * int LSM hooks, they use MODIFY_RETURN trampolines. * * While the LSM programs are BPF_MODIFY_RETURN-like * the check: * * if (ret_type != 'int') * return -EINVAL; * * is _not_ done here. This is still safe as LSM hooks * have only void and int return types. */ if (!t) return true; t = btf_type_by_id(btf, t->type); break; case BPF_MODIFY_RETURN: /* For now the BPF_MODIFY_RETURN can only be attached to * functions that return an int. */ if (!t) return false; t = btf_type_skip_modifiers(btf, t->type, NULL); if (!btf_type_is_small_int(t)) { bpf_log(log, "ret type %s not allowed for fmod_ret\n", btf_kind_str[BTF_INFO_KIND(t->info)]); return false; } break; default: bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } } else { if (!t) /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ return true; t = btf_type_by_id(btf, args[arg].type); } /* skip modifiers */ while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_small_int(t) || btf_type_is_enum(t)) /* accessing a scalar */ return true; if (!btf_type_is_ptr(t)) { bpf_log(log, "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", tname, arg, __btf_name_by_offset(btf, t->name_off), btf_kind_str[BTF_INFO_KIND(t->info)]); return false; } /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; u32 type, flag; type = base_type(ctx_arg_info->reg_type); flag = type_flag(ctx_arg_info->reg_type); if (ctx_arg_info->offset == off && type == PTR_TO_BUF && (flag & PTR_MAYBE_NULL)) { info->reg_type = ctx_arg_info->reg_type; return true; } } if (t->type == 0) /* This is a pointer to void. * It is the same as scalar from the verifier safety pov. * No further pointer walking is allowed. */ return true; if (is_string_ptr(btf, t)) return true; /* this is a pointer to another type */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; if (ctx_arg_info->offset == off) { if (!ctx_arg_info->btf_id) { bpf_log(log,"invalid btf_id for context argument offset %u\n", off); return false; } info->reg_type = ctx_arg_info->reg_type; info->btf = btf_vmlinux; info->btf_id = ctx_arg_info->btf_id; return true; } } info->reg_type = PTR_TO_BTF_ID; if (tgt_prog) { enum bpf_prog_type tgt_type; if (tgt_prog->type == BPF_PROG_TYPE_EXT) tgt_type = tgt_prog->aux->saved_dst_prog_type; else tgt_type = tgt_prog->type; ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); if (ret > 0) { info->btf = btf_vmlinux; info->btf_id = ret; return true; } else { return false; } } info->btf = btf; info->btf_id = t->type; t = btf_type_by_id(btf, t->type); /* skip modifiers */ while (btf_type_is_modifier(t)) { info->btf_id = t->type; t = btf_type_by_id(btf, t->type); } if (!btf_type_is_struct(t)) { bpf_log(log, "func '%s' arg%d type %s is not a struct\n", tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); return false; } bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], __btf_name_by_offset(btf, t->name_off)); return true; } enum bpf_struct_walk_result { /* < 0 error */ WALK_SCALAR = 0, WALK_PTR, WALK_STRUCT, }; static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, u32 *next_btf_id) { u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; const struct btf_type *mtype, *elem_type = NULL; const struct btf_member *member; const char *tname, *mname; u32 vlen, elem_id, mid; again: tname = __btf_name_by_offset(btf, t->name_off); if (!btf_type_is_struct(t)) { bpf_log(log, "Type '%s' is not a struct\n", tname); return -EINVAL; } vlen = btf_type_vlen(t); if (off + size > t->size) { /* If the last element is a variable size array, we may * need to relax the rule. */ struct btf_array *array_elem; if (vlen == 0) goto error; member = btf_type_member(t) + vlen - 1; mtype = btf_type_skip_modifiers(btf, member->type, NULL); if (!btf_type_is_array(mtype)) goto error; array_elem = (struct btf_array *)(mtype + 1); if (array_elem->nelems != 0) goto error; moff = btf_member_bit_offset(t, member) / 8; if (off < moff) goto error; /* Only allow structure for now, can be relaxed for * other types later. */ t = btf_type_skip_modifiers(btf, array_elem->type, NULL); if (!btf_type_is_struct(t)) goto error; off = (off - moff) % t->size; goto again; error: bpf_log(log, "access beyond struct %s at off %u size %u\n", tname, off, size); return -EACCES; } for_each_member(i, t, member) { /* offset of the field in bytes */ moff = btf_member_bit_offset(t, member) / 8; if (off + size <= moff) /* won't find anything, field is already too far */ break; if (btf_member_bitfield_size(t, member)) { u32 end_bit = btf_member_bit_offset(t, member) + btf_member_bitfield_size(t, member); /* off <= moff instead of off == moff because clang * does not generate a BTF member for anonymous * bitfield like the ":16" here: * struct { * int :16; * int x:8; * }; */ if (off <= moff && BITS_ROUNDUP_BYTES(end_bit) <= off + size) return WALK_SCALAR; /* off may be accessing a following member * * or * * Doing partial access at either end of this * bitfield. Continue on this case also to * treat it as not accessing this bitfield * and eventually error out as field not * found to keep it simple. * It could be relaxed if there was a legit * partial access case later. */ continue; } /* In case of "off" is pointing to holes of a struct */ if (off < moff) break; /* type of the field */ mid = member->type; mtype = btf_type_by_id(btf, member->type); mname = __btf_name_by_offset(btf, member->name_off); mtype = __btf_resolve_size(btf, mtype, &msize, &elem_type, &elem_id, &total_nelems, &mid); if (IS_ERR(mtype)) { bpf_log(log, "field %s doesn't have size\n", mname); return -EFAULT; } mtrue_end = moff + msize; if (off >= mtrue_end) /* no overlap with member, keep iterating */ continue; if (btf_type_is_array(mtype)) { u32 elem_idx; /* __btf_resolve_size() above helps to * linearize a multi-dimensional array. * * The logic here is treating an array * in a struct as the following way: * * struct outer { * struct inner array[2][2]; * }; * * looks like: * * struct outer { * struct inner array_elem0; * struct inner array_elem1; * struct inner array_elem2; * struct inner array_elem3; * }; * * When accessing outer->array[1][0], it moves * moff to "array_elem2", set mtype to * "struct inner", and msize also becomes * sizeof(struct inner). Then most of the * remaining logic will fall through without * caring the current member is an array or * not. * * Unlike mtype/msize/moff, mtrue_end does not * change. The naming difference ("_true") tells * that it is not always corresponding to * the current mtype/msize/moff. * It is the true end of the current * member (i.e. array in this case). That * will allow an int array to be accessed like * a scratch space, * i.e. allow access beyond the size of * the array's element as long as it is * within the mtrue_end boundary. */ /* skip empty array */ if (moff == mtrue_end) continue; msize /= total_nelems; elem_idx = (off - moff) / msize; moff += elem_idx * msize; mtype = elem_type; mid = elem_id; } /* the 'off' we're looking for is either equal to start * of this field or inside of this struct */ if (btf_type_is_struct(mtype)) { /* our field must be inside that union or struct */ t = mtype; /* return if the offset matches the member offset */ if (off == moff) { *next_btf_id = mid; return WALK_STRUCT; } /* adjust offset we're looking for */ off -= moff; goto again; } if (btf_type_is_ptr(mtype)) { const struct btf_type *stype; u32 id; if (msize != size || off != moff) { bpf_log(log, "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", mname, moff, tname, off, size); return -EACCES; } stype = btf_type_skip_modifiers(btf, mtype->type, &id); if (btf_type_is_struct(stype)) { *next_btf_id = id; return WALK_PTR; } } /* Allow more flexible access within an int as long as * it is within mtrue_end. * Since mtrue_end could be the end of an array, * that also allows using an array of int as a scratch * space. e.g. skb->cb[]. */ if (off + size > mtrue_end) { bpf_log(log, "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", mname, mtrue_end, tname, off, size); return -EACCES; } return WALK_SCALAR; } bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); return -EINVAL; } int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, enum bpf_access_type atype __maybe_unused, u32 *next_btf_id) { int err; u32 id; do { err = btf_struct_walk(log, btf, t, off, size, &id); switch (err) { case WALK_PTR: /* If we found the pointer or scalar on t+off, * we're done. */ *next_btf_id = id; return PTR_TO_BTF_ID; case WALK_SCALAR: return SCALAR_VALUE; case WALK_STRUCT: /* We found nested struct, so continue the search * by diving in it. At this point the offset is * aligned with the new type, so set it to 0. */ t = btf_type_by_id(btf, id); off = 0; break; default: /* It's either error or unknown return value.. * scream and leave. */ if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) return -EINVAL; return err; } } while (t); return -EINVAL; } /* Check that two BTF types, each specified as an BTF object + id, are exactly * the same. Trivial ID check is not enough due to module BTFs, because we can * end up with two different module BTFs, but IDs point to the common type in * vmlinux BTF. */ static bool btf_types_are_same(const struct btf *btf1, u32 id1, const struct btf *btf2, u32 id2) { if (id1 != id2) return false; if (btf1 == btf2) return true; return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); } bool btf_struct_ids_match(struct bpf_verifier_log *log, const struct btf *btf, u32 id, int off, const struct btf *need_btf, u32 need_type_id) { const struct btf_type *type; int err; /* Are we already done? */ if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) return true; again: type = btf_type_by_id(btf, id); if (!type) return false; err = btf_struct_walk(log, btf, type, off, 1, &id); if (err != WALK_STRUCT) return false; /* We found nested struct object. If it matches * the requested ID, we're done. Otherwise let's * continue the search with offset 0 in the new * type. */ if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { off = 0; goto again; } return true; } static int __get_type_size(struct btf *btf, u32 btf_id, const struct btf_type **bad_type) { const struct btf_type *t; if (!btf_id) /* void */ return 0; t = btf_type_by_id(btf, btf_id); while (t && btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!t) { *bad_type = btf_type_by_id(btf, 0); return -EINVAL; } if (btf_type_is_ptr(t)) /* kernel size of pointer. Not BPF's size of pointer*/ return sizeof(void *); if (btf_type_is_int(t) || btf_type_is_enum(t)) return t->size; *bad_type = t; return -EINVAL; } int btf_distill_func_proto(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *func, const char *tname, struct btf_func_model *m) { const struct btf_param *args; const struct btf_type *t; u32 i, nargs; int ret; if (!func) { /* BTF function prototype doesn't match the verifier types. * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. */ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) m->arg_size[i] = 8; m->ret_size = 8; m->nr_args = MAX_BPF_FUNC_REG_ARGS; return 0; } args = (const struct btf_param *)(func + 1); nargs = btf_type_vlen(func); if (nargs >= MAX_BPF_FUNC_ARGS) { bpf_log(log, "The function %s has %d arguments. Too many.\n", tname, nargs); return -EINVAL; } ret = __get_type_size(btf, func->type, &t); if (ret < 0) { bpf_log(log, "The function %s return type %s is unsupported.\n", tname, btf_kind_str[BTF_INFO_KIND(t->info)]); return -EINVAL; } m->ret_size = ret; for (i = 0; i < nargs; i++) { if (i == nargs - 1 && args[i].type == 0) { bpf_log(log, "The function %s with variable args is unsupported.\n", tname); return -EINVAL; } ret = __get_type_size(btf, args[i].type, &t); if (ret < 0) { bpf_log(log, "The function %s arg%d type %s is unsupported.\n", tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); return -EINVAL; } if (ret == 0) { bpf_log(log, "The function %s has malformed void argument.\n", tname); return -EINVAL; } m->arg_size[i] = ret; } m->nr_args = nargs; return 0; } /* Compare BTFs of two functions assuming only scalars and pointers to context. * t1 points to BTF_KIND_FUNC in btf1 * t2 points to BTF_KIND_FUNC in btf2 * Returns: * EINVAL - function prototype mismatch * EFAULT - verifier bug * 0 - 99% match. The last 1% is validated by the verifier. */ static int btf_check_func_type_match(struct bpf_verifier_log *log, struct btf *btf1, const struct btf_type *t1, struct btf *btf2, const struct btf_type *t2) { const struct btf_param *args1, *args2; const char *fn1, *fn2, *s1, *s2; u32 nargs1, nargs2, i; fn1 = btf_name_by_offset(btf1, t1->name_off); fn2 = btf_name_by_offset(btf2, t2->name_off); if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn1); return -EINVAL; } if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn2); return -EINVAL; } t1 = btf_type_by_id(btf1, t1->type); if (!t1 || !btf_type_is_func_proto(t1)) return -EFAULT; t2 = btf_type_by_id(btf2, t2->type); if (!t2 || !btf_type_is_func_proto(t2)) return -EFAULT; args1 = (const struct btf_param *)(t1 + 1); nargs1 = btf_type_vlen(t1); args2 = (const struct btf_param *)(t2 + 1); nargs2 = btf_type_vlen(t2); if (nargs1 != nargs2) { bpf_log(log, "%s() has %d args while %s() has %d args\n", fn1, nargs1, fn2, nargs2); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (t1->info != t2->info) { bpf_log(log, "Return type %s of %s() doesn't match type %s of %s()\n", btf_type_str(t1), fn1, btf_type_str(t2), fn2); return -EINVAL; } for (i = 0; i < nargs1; i++) { t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); if (t1->info != t2->info) { bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", i, fn1, btf_type_str(t1), fn2, btf_type_str(t2)); return -EINVAL; } if (btf_type_has_size(t1) && t1->size != t2->size) { bpf_log(log, "arg%d in %s() has size %d while %s() has %d\n", i, fn1, t1->size, fn2, t2->size); return -EINVAL; } /* global functions are validated with scalars and pointers * to context only. And only global functions can be replaced. * Hence type check only those types. */ if (btf_type_is_int(t1) || btf_type_is_enum(t1)) continue; if (!btf_type_is_ptr(t1)) { bpf_log(log, "arg%d in %s() has unrecognized type\n", i, fn1); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (!btf_type_is_struct(t1)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn1); return -EINVAL; } if (!btf_type_is_struct(t2)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn2); return -EINVAL; } /* This is an optional check to make program writing easier. * Compare names of structs and report an error to the user. * btf_prepare_func_args() already checked that t2 struct * is a context type. btf_prepare_func_args() will check * later that t1 struct is a context type as well. */ s1 = btf_name_by_offset(btf1, t1->name_off); s2 = btf_name_by_offset(btf2, t2->name_off); if (strcmp(s1, s2)) { bpf_log(log, "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", i, fn1, s1, fn2, s2); return -EINVAL; } } return 0; } /* Compare BTFs of given program with BTF of target program */ int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, struct btf *btf2, const struct btf_type *t2) { struct btf *btf1 = prog->aux->btf; const struct btf_type *t1; u32 btf_id = 0; if (!prog->aux->func_info) { bpf_log(log, "Program extension requires BTF\n"); return -EINVAL; } btf_id = prog->aux->func_info[0].type_id; if (!btf_id) return -EFAULT; t1 = btf_type_by_id(btf1, btf_id); if (!t1 || !btf_type_is_func(t1)) return -EFAULT; return btf_check_func_type_match(log, btf1, t1, btf2, t2); } static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { #ifdef CONFIG_NET [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], #endif }; /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int rec) { const struct btf_type *member_type; const struct btf_member *member; u32 i; if (!btf_type_is_struct(t)) return false; for_each_member(i, t, member) { const struct btf_array *array; member_type = btf_type_skip_modifiers(btf, member->type, NULL); if (btf_type_is_struct(member_type)) { if (rec >= 3) { bpf_log(log, "max struct nesting depth exceeded\n"); return false; } if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) return false; continue; } if (btf_type_is_array(member_type)) { array = btf_type_array(member_type); if (!array->nelems) return false; member_type = btf_type_skip_modifiers(btf, array->type, NULL); if (!btf_type_is_scalar(member_type)) return false; continue; } if (!btf_type_is_scalar(member_type)) return false; } return true; } static int btf_check_func_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs, bool ptr_to_mem_ok) { enum bpf_prog_type prog_type = env->prog->type == BPF_PROG_TYPE_EXT ? env->prog->aux->dst_prog->type : env->prog->type; struct bpf_verifier_log *log = &env->log; bool is_kfunc = btf_is_kernel(btf); const char *func_name, *ref_tname; const struct btf_type *t, *ref_t; const struct btf_param *args; u32 i, nargs, ref_id; t = btf_type_by_id(btf, func_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info or in add_kfunc_call(). */ bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", func_id); return -EFAULT; } func_name = btf_name_by_offset(btf, t->name_off); t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid BTF of func %s\n", func_name); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } /* check that BTF function arguments match actual types that the * verifier sees. */ for (i = 0; i < nargs; i++) { u32 regno = i + 1; struct bpf_reg_state *reg = ®s[regno]; t = btf_type_skip_modifiers(btf, args[i].type, NULL); if (btf_type_is_scalar(t)) { if (reg->type == SCALAR_VALUE) continue; bpf_log(log, "R%d is not a scalar\n", regno); return -EINVAL; } if (!btf_type_is_ptr(t)) { bpf_log(log, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); return -EINVAL; } ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); ref_tname = btf_name_by_offset(btf, ref_t->name_off); if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { /* If function expects ctx type in BTF check that caller * is passing PTR_TO_CTX. */ if (reg->type != PTR_TO_CTX) { bpf_log(log, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); return -EINVAL; } if (check_ptr_off_reg(env, reg, regno)) return -EINVAL; } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { const struct btf_type *reg_ref_t; const struct btf *reg_btf; const char *reg_ref_tname; u32 reg_ref_id; if (!btf_type_is_struct(ref_t)) { bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", func_name, i, btf_type_str(ref_t), ref_tname); return -EINVAL; } if (reg->type == PTR_TO_BTF_ID) { reg_btf = reg->btf; reg_ref_id = reg->btf_id; } else { reg_btf = btf_vmlinux; reg_ref_id = *reg2btf_ids[base_type(reg->type)]; } reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, reg->off, btf, ref_id)) { bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", func_name, i, btf_type_str(ref_t), ref_tname, regno, btf_type_str(reg_ref_t), reg_ref_tname); return -EINVAL; } } else if (ptr_to_mem_ok) { const struct btf_type *resolve_ret; u32 type_size; if (is_kfunc) { /* Permit pointer to mem, but only when argument * type is pointer to scalar, or struct composed * (recursively) of scalars. */ if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(log, btf, ref_t, 0)) { bpf_log(log, "arg#%d pointer type %s %s must point to scalar or struct with scalar\n", i, btf_type_str(ref_t), ref_tname); return -EINVAL; } } resolve_ret = btf_resolve_size(btf, ref_t, &type_size); if (IS_ERR(resolve_ret)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); return -EINVAL; } if (check_mem_reg(env, reg, regno, type_size)) return -EINVAL; } else { bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, is_kfunc ? "kernel " : "", func_name, func_id); return -EINVAL; } } return 0; } /* Compare BTF of a function with given bpf_reg_state. * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - there is a type mismatch or BTF is not available. * 0 - BTF matches with what bpf_reg_state expects. * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. */ int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_prog *prog = env->prog; struct btf *btf = prog->aux->btf; bool is_global; u32 btf_id; int err; if (!prog->aux->func_info) return -EINVAL; btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) return -EFAULT; if (prog->aux->func_info_aux[subprog].unreliable) return -EINVAL; is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function. * In such cases mark the function as unreliable from BTF point of view. */ if (err) prog->aux->func_info_aux[subprog].unreliable = true; return err; } int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs) { return btf_check_func_arg_match(env, btf, func_id, regs, true); } /* Convert BTF of a function into bpf_reg_state if possible * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - cannot convert BTF. * 0 - Successfully converted BTF into bpf_reg_state * (either PTR_TO_CTX or SCALAR_VALUE). */ int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_verifier_log *log = &env->log; struct bpf_prog *prog = env->prog; enum bpf_prog_type prog_type = prog->type; struct btf *btf = prog->aux->btf; const struct btf_param *args; const struct btf_type *t, *ref_t; u32 i, nargs, btf_id; const char *tname; if (!prog->aux->func_info || prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { bpf_log(log, "Verifier bug\n"); return -EFAULT; } btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) { bpf_log(log, "Global functions need valid BTF\n"); return -EFAULT; } t = btf_type_by_id(btf, btf_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info */ bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", subprog); return -EFAULT; } tname = btf_name_by_offset(btf, t->name_off); if (log->level & BPF_LOG_LEVEL) bpf_log(log, "Validating %s() func#%d...\n", tname, subprog); if (prog->aux->func_info_aux[subprog].unreliable) { bpf_log(log, "Verifier bug in function %s()\n", tname); return -EFAULT; } if (prog_type == BPF_PROG_TYPE_EXT) prog_type = prog->aux->dst_prog->type; t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid type of function %s()\n", tname); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", tname, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } /* check that function returns int */ t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { bpf_log(log, "Global function %s() doesn't return scalar. Only those are supported.\n", tname); return -EINVAL; } /* Convert BTF function arguments into verifier types. * Only PTR_TO_CTX and SCALAR are supported atm. */ for (i = 0; i < nargs; i++) { struct bpf_reg_state *reg = ®s[i + 1]; t = btf_type_by_id(btf, args[i].type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_int(t) || btf_type_is_enum(t)) { reg->type = SCALAR_VALUE; continue; } if (btf_type_is_ptr(t)) { if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { reg->type = PTR_TO_CTX; continue; } t = btf_type_skip_modifiers(btf, t->type, NULL); ref_t = btf_resolve_size(btf, t, ®->mem_size); if (IS_ERR(ref_t)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), PTR_ERR(ref_t)); return -EINVAL; } reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; reg->id = ++env->id_gen; continue; } bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); return -EINVAL; } return 0; } static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, struct btf_show *show) { const struct btf_type *t = btf_type_by_id(btf, type_id); show->btf = btf; memset(&show->state, 0, sizeof(show->state)); memset(&show->obj, 0, sizeof(show->obj)); btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); } __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, va_list args) { seq_vprintf((struct seq_file *)show->target, fmt, args); } int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m, u64 flags) { struct btf_show sseq; sseq.target = m; sseq.showfn = btf_seq_show; sseq.flags = flags; btf_type_show(btf, type_id, obj, &sseq); return sseq.state.status; } void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m) { (void) btf_type_seq_show_flags(btf, type_id, obj, m, BTF_SHOW_NONAME | BTF_SHOW_COMPACT | BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); } struct btf_show_snprintf { struct btf_show show; int len_left; /* space left in string */ int len; /* length we would have written */ }; __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, va_list args) { struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; int len; len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); if (len < 0) { ssnprintf->len_left = 0; ssnprintf->len = len; } else if (len > ssnprintf->len_left) { /* no space, drive on to get length we would have written */ ssnprintf->len_left = 0; ssnprintf->len += len; } else { ssnprintf->len_left -= len; ssnprintf->len += len; show->target += len; } } int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, char *buf, int len, u64 flags) { struct btf_show_snprintf ssnprintf; ssnprintf.show.target = buf; ssnprintf.show.flags = flags; ssnprintf.show.showfn = btf_snprintf_show; ssnprintf.len_left = len; ssnprintf.len = 0; btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); /* If we encontered an error, return it. */ if (ssnprintf.show.state.status) return ssnprintf.show.state.status; /* Otherwise return length we would have written */ return ssnprintf.len; } #ifdef CONFIG_PROC_FS static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) { const struct btf *btf = filp->private_data; seq_printf(m, "btf_id:\t%u\n", btf->id); } #endif static int btf_release(struct inode *inode, struct file *filp) { btf_put(filp->private_data); return 0; } const struct file_operations btf_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_btf_show_fdinfo, #endif .release = btf_release, }; static int __btf_new_fd(struct btf *btf) { return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); } int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) { struct btf *btf; int ret; btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), attr->btf_size, attr->btf_log_level, u64_to_user_ptr(attr->btf_log_buf), attr->btf_log_size); if (IS_ERR(btf)) return PTR_ERR(btf); ret = btf_alloc_id(btf); if (ret) { btf_free(btf); return ret; } /* * The BTF ID is published to the userspace. * All BTF free must go through call_rcu() from * now on (i.e. free by calling btf_put()). */ ret = __btf_new_fd(btf); if (ret < 0) btf_put(btf); return ret; } struct btf *btf_get_by_fd(int fd) { struct btf *btf; struct fd f; f = fdget(fd); if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &btf_fops) { fdput(f); return ERR_PTR(-EINVAL); } btf = f.file->private_data; refcount_inc(&btf->refcnt); fdput(f); return btf; } int btf_get_info_by_fd(const struct btf *btf, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_btf_info __user *uinfo; struct bpf_btf_info info; u32 info_copy, btf_copy; void __user *ubtf; char __user *uname; u32 uinfo_len, uname_len, name_len; int ret = 0; uinfo = u64_to_user_ptr(attr->info.info); uinfo_len = attr->info.info_len; info_copy = min_t(u32, uinfo_len, sizeof(info)); memset(&info, 0, sizeof(info)); if (copy_from_user(&info, uinfo, info_copy)) return -EFAULT; info.id = btf->id; ubtf = u64_to_user_ptr(info.btf); btf_copy = min_t(u32, btf->data_size, info.btf_size); if (copy_to_user(ubtf, btf->data, btf_copy)) return -EFAULT; info.btf_size = btf->data_size; info.kernel_btf = btf->kernel_btf; uname = u64_to_user_ptr(info.name); uname_len = info.name_len; if (!uname ^ !uname_len) return -EINVAL; name_len = strlen(btf->name); info.name_len = name_len; if (uname) { if (uname_len >= name_len + 1) { if (copy_to_user(uname, btf->name, name_len + 1)) return -EFAULT; } else { char zero = '\0'; if (copy_to_user(uname, btf->name, uname_len - 1)) return -EFAULT; if (put_user(zero, uname + uname_len - 1)) return -EFAULT; /* let user-space know about too short buffer */ ret = -ENOSPC; } } if (copy_to_user(uinfo, &info, info_copy) || put_user(info_copy, &uattr->info.info_len)) return -EFAULT; return ret; } int btf_get_fd_by_id(u32 id) { struct btf *btf; int fd; rcu_read_lock(); btf = idr_find(&btf_idr, id); if (!btf || !refcount_inc_not_zero(&btf->refcnt)) btf = ERR_PTR(-ENOENT); rcu_read_unlock(); if (IS_ERR(btf)) return PTR_ERR(btf); fd = __btf_new_fd(btf); if (fd < 0) btf_put(btf); return fd; } u32 btf_obj_id(const struct btf *btf) { return btf->id; } bool btf_is_kernel(const struct btf *btf) { return btf->kernel_btf; } bool btf_is_module(const struct btf *btf) { return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; } static int btf_id_cmp_func(const void *a, const void *b) { const int *pa = a, *pb = b; return *pa - *pb; } bool btf_id_set_contains(const struct btf_id_set *set, u32 id) { return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; } enum { BTF_MODULE_F_LIVE = (1 << 0), }; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module { struct list_head list; struct module *module; struct btf *btf; struct bin_attribute *sysfs_attr; int flags; }; static LIST_HEAD(btf_modules); static DEFINE_MUTEX(btf_module_mutex); static ssize_t btf_module_read(struct file *file, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len) { const struct btf *btf = bin_attr->private; memcpy(buf, btf->data + off, len); return len; } static int btf_module_notify(struct notifier_block *nb, unsigned long op, void *module) { struct btf_module *btf_mod, *tmp; struct module *mod = module; struct btf *btf; int err = 0; if (mod->btf_data_size == 0 || (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && op != MODULE_STATE_GOING)) goto out; switch (op) { case MODULE_STATE_COMING: btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); if (!btf_mod) { err = -ENOMEM; goto out; } btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); if (IS_ERR(btf)) { pr_warn("failed to validate module [%s] BTF: %ld\n", mod->name, PTR_ERR(btf)); kfree(btf_mod); err = PTR_ERR(btf); goto out; } err = btf_alloc_id(btf); if (err) { btf_free(btf); kfree(btf_mod); goto out; } mutex_lock(&btf_module_mutex); btf_mod->module = module; btf_mod->btf = btf; list_add(&btf_mod->list, &btf_modules); mutex_unlock(&btf_module_mutex); if (IS_ENABLED(CONFIG_SYSFS)) { struct bin_attribute *attr; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) goto out; sysfs_bin_attr_init(attr); attr->attr.name = btf->name; attr->attr.mode = 0444; attr->size = btf->data_size; attr->private = btf; attr->read = btf_module_read; err = sysfs_create_bin_file(btf_kobj, attr); if (err) { pr_warn("failed to register module [%s] BTF in sysfs: %d\n", mod->name, err); kfree(attr); err = 0; goto out; } btf_mod->sysfs_attr = attr; } break; case MODULE_STATE_LIVE: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; btf_mod->flags |= BTF_MODULE_F_LIVE; break; } mutex_unlock(&btf_module_mutex); break; case MODULE_STATE_GOING: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; list_del(&btf_mod->list); if (btf_mod->sysfs_attr) sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); btf_put(btf_mod->btf); kfree(btf_mod->sysfs_attr); kfree(btf_mod); break; } mutex_unlock(&btf_module_mutex); break; } out: return notifier_from_errno(err); } static struct notifier_block btf_module_nb = { .notifier_call = btf_module_notify, }; static int __init btf_module_init(void) { register_module_notifier(&btf_module_nb); return 0; } fs_initcall(btf_module_init); #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct module *btf_try_get_module(const struct btf *btf) { struct module *res = NULL; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module *btf_mod, *tmp; mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->btf != btf) continue; /* We must only consider module whose __init routine has * finished, hence we must check for BTF_MODULE_F_LIVE flag, * which is set from the notifier callback for * MODULE_STATE_LIVE. */ if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) res = btf_mod->module; break; } mutex_unlock(&btf_module_mutex); #endif return res; } BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) { struct btf *btf; long ret; if (flags) return -EINVAL; if (name_sz <= 1 || name[name_sz - 1]) return -EINVAL; btf = bpf_get_btf_vmlinux(); if (IS_ERR(btf)) return PTR_ERR(btf); ret = btf_find_by_name_kind(btf, name, kind); /* ret is never zero, since btf_find_by_name_kind returns * positive btf_id or negative error. */ if (ret < 0) { struct btf *mod_btf; int id; /* If name is not found in vmlinux's BTF then search in module's BTFs */ spin_lock_bh(&btf_idr_lock); idr_for_each_entry(&btf_idr, mod_btf, id) { if (!btf_is_module(mod_btf)) continue; /* linear search could be slow hence unlock/lock * the IDR to avoiding holding it for too long */ btf_get(mod_btf); spin_unlock_bh(&btf_idr_lock); ret = btf_find_by_name_kind(mod_btf, name, kind); if (ret > 0) { int btf_obj_fd; btf_obj_fd = __btf_new_fd(mod_btf); if (btf_obj_fd < 0) { btf_put(mod_btf); return btf_obj_fd; } return ret | (((u64)btf_obj_fd) << 32); } spin_lock_bh(&btf_idr_lock); btf_put(mod_btf); } spin_unlock_bh(&btf_idr_lock); } return ret; } const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { .func = bpf_btf_find_by_name_kind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BTF_ID_LIST_GLOBAL_SINGLE(btf_task_struct_ids, struct, task_struct) |
28 2973 2972 7 2952 23 2932 2947 15 1044 2 1 26 13 37 37 5 6 26 5 2936 1079 1948 33 1050 1049 1045 4 11 2933 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/realpath.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/magic.h> #include <linux/proc_fs.h> /** * tomoyo_encode2 - Encode binary string to ascii string. * * @str: String in binary format. * @str_len: Size of @str in byte. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode2(const char *str, int str_len) { int i; int len = 0; const char *p = str; char *cp; char *cp0; if (!p) return NULL; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') len += 2; else if (c > ' ' && c < 127) len++; else len += 4; } len++; /* Reserve space for appending "/". */ cp = kzalloc(len + 10, GFP_NOFS); if (!cp) return NULL; cp0 = cp; p = str; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') { *cp++ = '\\'; *cp++ = '\\'; } else if (c > ' ' && c < 127) { *cp++ = c; } else { *cp++ = '\\'; *cp++ = (c >> 6) + '0'; *cp++ = ((c >> 3) & 7) + '0'; *cp++ = (c & 7) + '0'; } } return cp0; } /** * tomoyo_encode - Encode binary string to ascii string. * * @str: String in binary format. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode(const char *str) { return str ? tomoyo_encode2(str, strlen(str)) : NULL; } /** * tomoyo_get_absolute_path - Get the path of a dentry but ignores chroot'ed root. * * @path: Pointer to "struct path". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_absolute_path(const struct path *path, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { /* go to whatever namespace root we are under */ pos = d_absolute_path(path, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(path->dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_dentry_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_dentry_path(struct dentry *dentry, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { pos = dentry_path_raw(dentry, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_local_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. */ static char *tomoyo_get_local_path(struct dentry *dentry, char * const buffer, const int buflen) { struct super_block *sb = dentry->d_sb; char *pos = tomoyo_get_dentry_path(dentry, buffer, buflen); if (IS_ERR(pos)) return pos; /* Convert from $PID to self if $PID is current thread. */ if (sb->s_magic == PROC_SUPER_MAGIC && *pos == '/') { char *ep; const pid_t pid = (pid_t) simple_strtoul(pos + 1, &ep, 10); struct pid_namespace *proc_pidns = proc_pid_ns(sb); if (*ep == '/' && pid && pid == task_tgid_nr_ns(current, proc_pidns)) { pos = ep - 5; if (pos < buffer) goto out; memmove(pos, "/self", 5); } goto prepend_filesystem_name; } /* Use filesystem name for unnamed devices. */ if (!MAJOR(sb->s_dev)) goto prepend_filesystem_name; { struct inode *inode = d_backing_inode(sb->s_root); /* * Use filesystem name if filesystem does not support rename() * operation. */ if (!inode->i_op->rename) goto prepend_filesystem_name; } /* Prepend device name. */ { char name[64]; int name_len; const dev_t dev = sb->s_dev; name[sizeof(name) - 1] = '\0'; snprintf(name, sizeof(name) - 1, "dev(%u,%u):", MAJOR(dev), MINOR(dev)); name_len = strlen(name); pos -= name_len; if (pos < buffer) goto out; memmove(pos, name, name_len); return pos; } /* Prepend filesystem name. */ prepend_filesystem_name: { const char *name = sb->s_type->name; const int name_len = strlen(name); pos -= name_len + 1; if (pos < buffer) goto out; memmove(pos, name, name_len); pos[name_len] = ':'; } return pos; out: return ERR_PTR(-ENOMEM); } /** * tomoyo_realpath_from_path - Returns realpath(3) of the given pathname but ignores chroot'ed root. * * @path: Pointer to "struct path". * * Returns the realpath of the given @path on success, NULL otherwise. * * If dentry is a directory, trailing '/' is appended. * Characters out of 0x20 < c < 0x7F range are converted to * \ooo style octal string. * Character \ is converted to \\ string. * * These functions use kzalloc(), so the caller must call kfree() * if these functions didn't return NULL. */ char *tomoyo_realpath_from_path(const struct path *path) { char *buf = NULL; char *name = NULL; unsigned int buf_len = PAGE_SIZE / 2; struct dentry *dentry = path->dentry; struct super_block *sb; if (!dentry) return NULL; sb = dentry->d_sb; while (1) { char *pos; struct inode *inode; buf_len <<= 1; kfree(buf); buf = kmalloc(buf_len, GFP_NOFS); if (!buf) break; /* To make sure that pos is '\0' terminated. */ buf[buf_len - 1] = '\0'; /* For "pipe:[\$]" and "socket:[\$]". */ if (dentry->d_op && dentry->d_op->d_dname) { pos = dentry->d_op->d_dname(dentry, buf, buf_len - 1); goto encode; } inode = d_backing_inode(sb->s_root); /* * Get local name for filesystems without rename() operation * or dentry without vfsmount. */ if (!path->mnt || (!inode->i_op->rename && !(sb->s_type->fs_flags & FS_REQUIRES_DEV))) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); /* Get absolute name for the rest. */ else { pos = tomoyo_get_absolute_path(path, buf, buf_len - 1); /* * Fall back to local name if absolute name is not * available. */ if (pos == ERR_PTR(-EINVAL)) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); } encode: if (IS_ERR(pos)) continue; name = tomoyo_encode(pos); break; } kfree(buf); if (!name) tomoyo_warn_oom(__func__); return name; } /** * tomoyo_realpath_nofollow - Get realpath of a pathname. * * @pathname: The pathname to solve. * * Returns the realpath of @pathname on success, NULL otherwise. */ char *tomoyo_realpath_nofollow(const char *pathname) { struct path path; if (pathname && kern_path(pathname, 0, &path) == 0) { char *buf = tomoyo_realpath_from_path(&path); path_put(&path); return buf; } return NULL; } |
283 10 69 66 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * net busy poll support * Copyright(c) 2013 Intel Corporation. * * Author: Eliezer Tamir * * Contact Information: * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> */ #ifndef _LINUX_NET_BUSY_POLL_H #define _LINUX_NET_BUSY_POLL_H #include <linux/netdevice.h> #include <linux/sched/clock.h> #include <linux/sched/signal.h> #include <net/ip.h> /* 0 - Reserved to indicate value not set * 1..NR_CPUS - Reserved for sender_cpu * NR_CPUS+1..~0 - Region available for NAPI IDs */ #define MIN_NAPI_ID ((unsigned int)(NR_CPUS + 1)) #define BUSY_POLL_BUDGET 8 #ifdef CONFIG_NET_RX_BUSY_POLL struct napi_struct; extern unsigned int sysctl_net_busy_read __read_mostly; extern unsigned int sysctl_net_busy_poll __read_mostly; static inline bool net_busy_loop_on(void) { return READ_ONCE(sysctl_net_busy_poll); } static inline bool sk_can_busy_loop(const struct sock *sk) { return READ_ONCE(sk->sk_ll_usec) && !signal_pending(current); } bool sk_busy_loop_end(void *p, unsigned long start_time); void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg, bool prefer_busy_poll, u16 budget); #else /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long net_busy_loop_on(void) { return 0; } static inline bool sk_can_busy_loop(struct sock *sk) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long busy_loop_current_time(void) { #ifdef CONFIG_NET_RX_BUSY_POLL return (unsigned long)(ktime_get_ns() >> 10); #else return 0; #endif } /* in poll/select we use the global sysctl_net_ll_poll value */ static inline bool busy_loop_timeout(unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sysctl_net_busy_poll); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline bool sk_busy_loop_timeout(struct sock *sk, unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sk->sk_ll_usec); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline void sk_busy_loop(struct sock *sk, int nonblock) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int napi_id = READ_ONCE(sk->sk_napi_id); if (napi_id >= MIN_NAPI_ID) napi_busy_loop(napi_id, nonblock ? NULL : sk_busy_loop_end, sk, READ_ONCE(sk->sk_prefer_busy_poll), READ_ONCE(sk->sk_busy_poll_budget) ?: BUSY_POLL_BUDGET); #endif } /* used in the NIC receive handler to mark the skb */ static inline void skb_mark_napi_id(struct sk_buff *skb, struct napi_struct *napi) { #ifdef CONFIG_NET_RX_BUSY_POLL /* If the skb was already marked with a valid NAPI ID, avoid overwriting * it. */ if (skb->napi_id < MIN_NAPI_ID) skb->napi_id = napi->napi_id; #endif } /* used in the protocol hanlder to propagate the napi_id to the socket */ static inline void sk_mark_napi_id(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_set(sk, skb); } static inline void __sk_mark_napi_id_once(struct sock *sk, unsigned int napi_id) { #ifdef CONFIG_NET_RX_BUSY_POLL if (!READ_ONCE(sk->sk_napi_id)) WRITE_ONCE(sk->sk_napi_id, napi_id); #endif } /* variant used for unconnected sockets */ static inline void sk_mark_napi_id_once(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL __sk_mark_napi_id_once(sk, skb->napi_id); #endif } static inline void sk_mark_napi_id_once_xdp(struct sock *sk, const struct xdp_buff *xdp) { #ifdef CONFIG_NET_RX_BUSY_POLL __sk_mark_napi_id_once(sk, xdp->rxq->napi_id); #endif } #endif /* _LINUX_NET_BUSY_POLL_H */ |
98 98 188 34 226 133 133 21 21 21 3 17 17 17 21 7 7 7 7 1 1 7 21 20 21 21 20 134 111 112 110 26 26 25 21 8 107 107 79 12 27 21 21 18 6 12 55 36 21 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 | /* * net/tipc/msg.c: TIPC message header routines * * Copyright (c) 2000-2006, 2014-2015, Ericsson AB * Copyright (c) 2005, 2010-2011, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <net/sock.h> #include "core.h" #include "msg.h" #include "addr.h" #include "name_table.h" #include "crypto.h" #define BUF_ALIGN(x) ALIGN(x, 4) #define MAX_FORWARD_SIZE 1024 #ifdef CONFIG_TIPC_CRYPTO #define BUF_HEADROOM ALIGN(((LL_MAX_HEADER + 48) + EHDR_MAX_SIZE), 16) #define BUF_OVERHEAD (BUF_HEADROOM + TIPC_AES_GCM_TAG_SIZE) #else #define BUF_HEADROOM (LL_MAX_HEADER + 48) #define BUF_OVERHEAD BUF_HEADROOM #endif const int one_page_mtu = PAGE_SIZE - SKB_DATA_ALIGN(BUF_OVERHEAD) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); /** * tipc_buf_acquire - creates a TIPC message buffer * @size: message size (including TIPC header) * @gfp: memory allocation flags * * Return: a new buffer with data pointers set to the specified size. * * NOTE: * Headroom is reserved to allow prepending of a data link header. * There may also be unrequested tailroom present at the buffer's end. */ struct sk_buff *tipc_buf_acquire(u32 size, gfp_t gfp) { struct sk_buff *skb; skb = alloc_skb_fclone(BUF_OVERHEAD + size, gfp); if (skb) { skb_reserve(skb, BUF_HEADROOM); skb_put(skb, size); skb->next = NULL; } return skb; } void tipc_msg_init(u32 own_node, struct tipc_msg *m, u32 user, u32 type, u32 hsize, u32 dnode) { memset(m, 0, hsize); msg_set_version(m); msg_set_user(m, user); msg_set_hdr_sz(m, hsize); msg_set_size(m, hsize); msg_set_prevnode(m, own_node); msg_set_type(m, type); if (hsize > SHORT_H_SIZE) { msg_set_orignode(m, own_node); msg_set_destnode(m, dnode); } } struct sk_buff *tipc_msg_create(uint user, uint type, uint hdr_sz, uint data_sz, u32 dnode, u32 onode, u32 dport, u32 oport, int errcode) { struct tipc_msg *msg; struct sk_buff *buf; buf = tipc_buf_acquire(hdr_sz + data_sz, GFP_ATOMIC); if (unlikely(!buf)) return NULL; msg = buf_msg(buf); tipc_msg_init(onode, msg, user, type, hdr_sz, dnode); msg_set_size(msg, hdr_sz + data_sz); msg_set_origport(msg, oport); msg_set_destport(msg, dport); msg_set_errcode(msg, errcode); return buf; } /* tipc_buf_append(): Append a buffer to the fragment list of another buffer * @*headbuf: in: NULL for first frag, otherwise value returned from prev call * out: set when successful non-complete reassembly, otherwise NULL * @*buf: in: the buffer to append. Always defined * out: head buf after successful complete reassembly, otherwise NULL * Returns 1 when reassembly complete, otherwise 0 */ int tipc_buf_append(struct sk_buff **headbuf, struct sk_buff **buf) { struct sk_buff *head = *headbuf; struct sk_buff *frag = *buf; struct sk_buff *tail = NULL; struct tipc_msg *msg; u32 fragid; int delta; bool headstolen; if (!frag) goto err; msg = buf_msg(frag); fragid = msg_type(msg); frag->next = NULL; skb_pull(frag, msg_hdr_sz(msg)); if (fragid == FIRST_FRAGMENT) { if (unlikely(head)) goto err; if (skb_has_frag_list(frag) && __skb_linearize(frag)) goto err; *buf = NULL; frag = skb_unshare(frag, GFP_ATOMIC); if (unlikely(!frag)) goto err; head = *headbuf = frag; TIPC_SKB_CB(head)->tail = NULL; return 0; } if (!head) goto err; /* Either the input skb ownership is transferred to headskb * or the input skb is freed, clear the reference to avoid * bad access on error path. */ *buf = NULL; if (skb_try_coalesce(head, frag, &headstolen, &delta)) { kfree_skb_partial(frag, headstolen); } else { tail = TIPC_SKB_CB(head)->tail; if (!skb_has_frag_list(head)) skb_shinfo(head)->frag_list = frag; else tail->next = frag; head->truesize += frag->truesize; head->data_len += frag->len; head->len += frag->len; TIPC_SKB_CB(head)->tail = frag; } if (fragid == LAST_FRAGMENT) { TIPC_SKB_CB(head)->validated = 0; if (unlikely(!tipc_msg_validate(&head))) goto err; *buf = head; TIPC_SKB_CB(head)->tail = NULL; *headbuf = NULL; return 1; } return 0; err: kfree_skb(*buf); kfree_skb(*headbuf); *buf = *headbuf = NULL; return 0; } /** * tipc_msg_append(): Append data to tail of an existing buffer queue * @_hdr: header to be used * @m: the data to be appended * @mss: max allowable size of buffer * @dlen: size of data to be appended * @txq: queue to append to * * Return: the number of 1k blocks appended or errno value */ int tipc_msg_append(struct tipc_msg *_hdr, struct msghdr *m, int dlen, int mss, struct sk_buff_head *txq) { struct sk_buff *skb; int accounted, total, curr; int mlen, cpy, rem = dlen; struct tipc_msg *hdr; skb = skb_peek_tail(txq); accounted = skb ? msg_blocks(buf_msg(skb)) : 0; total = accounted; do { if (!skb || skb->len >= mss) { skb = tipc_buf_acquire(mss, GFP_KERNEL); if (unlikely(!skb)) return -ENOMEM; skb_orphan(skb); skb_trim(skb, MIN_H_SIZE); hdr = buf_msg(skb); skb_copy_to_linear_data(skb, _hdr, MIN_H_SIZE); msg_set_hdr_sz(hdr, MIN_H_SIZE); msg_set_size(hdr, MIN_H_SIZE); __skb_queue_tail(txq, skb); total += 1; } hdr = buf_msg(skb); curr = msg_blocks(hdr); mlen = msg_size(hdr); cpy = min_t(size_t, rem, mss - mlen); if (cpy != copy_from_iter(skb->data + mlen, cpy, &m->msg_iter)) return -EFAULT; msg_set_size(hdr, mlen + cpy); skb_put(skb, cpy); rem -= cpy; total += msg_blocks(hdr) - curr; } while (rem > 0); return total - accounted; } /* tipc_msg_validate - validate basic format of received message * * This routine ensures a TIPC message has an acceptable header, and at least * as much data as the header indicates it should. The routine also ensures * that the entire message header is stored in the main fragment of the message * buffer, to simplify future access to message header fields. * * Note: Having extra info present in the message header or data areas is OK. * TIPC will ignore the excess, under the assumption that it is optional info * introduced by a later release of the protocol. */ bool tipc_msg_validate(struct sk_buff **_skb) { struct sk_buff *skb = *_skb; struct tipc_msg *hdr; int msz, hsz; /* Ensure that flow control ratio condition is satisfied */ if (unlikely(skb->truesize / buf_roundup_len(skb) >= 4)) { skb = skb_copy_expand(skb, BUF_HEADROOM, 0, GFP_ATOMIC); if (!skb) return false; kfree_skb(*_skb); *_skb = skb; } if (unlikely(TIPC_SKB_CB(skb)->validated)) return true; if (unlikely(!pskb_may_pull(skb, MIN_H_SIZE))) return false; hsz = msg_hdr_sz(buf_msg(skb)); if (unlikely(hsz < MIN_H_SIZE) || (hsz > MAX_H_SIZE)) return false; if (unlikely(!pskb_may_pull(skb, hsz))) return false; hdr = buf_msg(skb); if (unlikely(msg_version(hdr) != TIPC_VERSION)) return false; msz = msg_size(hdr); if (unlikely(msz < hsz)) return false; if (unlikely((msz - hsz) > TIPC_MAX_USER_MSG_SIZE)) return false; if (unlikely(skb->len < msz)) return false; TIPC_SKB_CB(skb)->validated = 1; return true; } /** * tipc_msg_fragment - build a fragment skb list for TIPC message * * @skb: TIPC message skb * @hdr: internal msg header to be put on the top of the fragments * @pktmax: max size of a fragment incl. the header * @frags: returned fragment skb list * * Return: 0 if the fragmentation is successful, otherwise: -EINVAL * or -ENOMEM */ int tipc_msg_fragment(struct sk_buff *skb, const struct tipc_msg *hdr, int pktmax, struct sk_buff_head *frags) { int pktno, nof_fragms, dsz, dmax, eat; struct tipc_msg *_hdr; struct sk_buff *_skb; u8 *data; /* Non-linear buffer? */ if (skb_linearize(skb)) return -ENOMEM; data = (u8 *)skb->data; dsz = msg_size(buf_msg(skb)); dmax = pktmax - INT_H_SIZE; if (dsz <= dmax || !dmax) return -EINVAL; nof_fragms = dsz / dmax + 1; for (pktno = 1; pktno <= nof_fragms; pktno++) { if (pktno < nof_fragms) eat = dmax; else eat = dsz % dmax; /* Allocate a new fragment */ _skb = tipc_buf_acquire(INT_H_SIZE + eat, GFP_ATOMIC); if (!_skb) goto error; skb_orphan(_skb); __skb_queue_tail(frags, _skb); /* Copy header & data to the fragment */ skb_copy_to_linear_data(_skb, hdr, INT_H_SIZE); skb_copy_to_linear_data_offset(_skb, INT_H_SIZE, data, eat); data += eat; /* Update the fragment's header */ _hdr = buf_msg(_skb); msg_set_fragm_no(_hdr, pktno); msg_set_nof_fragms(_hdr, nof_fragms); msg_set_size(_hdr, INT_H_SIZE + eat); } return 0; error: __skb_queue_purge(frags); __skb_queue_head_init(frags); return -ENOMEM; } /** * tipc_msg_build - create buffer chain containing specified header and data * @mhdr: Message header, to be prepended to data * @m: User message * @offset: buffer offset for fragmented messages (FIXME) * @dsz: Total length of user data * @pktmax: Max packet size that can be used * @list: Buffer or chain of buffers to be returned to caller * * Note that the recursive call we are making here is safe, since it can * logically go only one further level down. * * Return: message data size or errno: -ENOMEM, -EFAULT */ int tipc_msg_build(struct tipc_msg *mhdr, struct msghdr *m, int offset, int dsz, int pktmax, struct sk_buff_head *list) { int mhsz = msg_hdr_sz(mhdr); struct tipc_msg pkthdr; int msz = mhsz + dsz; int pktrem = pktmax; struct sk_buff *skb; int drem = dsz; int pktno = 1; char *pktpos; int pktsz; int rc; msg_set_size(mhdr, msz); /* No fragmentation needed? */ if (likely(msz <= pktmax)) { skb = tipc_buf_acquire(msz, GFP_KERNEL); /* Fall back to smaller MTU if node local message */ if (unlikely(!skb)) { if (pktmax != MAX_MSG_SIZE) return -ENOMEM; rc = tipc_msg_build(mhdr, m, offset, dsz, one_page_mtu, list); if (rc != dsz) return rc; if (tipc_msg_assemble(list)) return dsz; return -ENOMEM; } skb_orphan(skb); __skb_queue_tail(list, skb); skb_copy_to_linear_data(skb, mhdr, mhsz); pktpos = skb->data + mhsz; if (copy_from_iter_full(pktpos, dsz, &m->msg_iter)) return dsz; rc = -EFAULT; goto error; } /* Prepare reusable fragment header */ tipc_msg_init(msg_prevnode(mhdr), &pkthdr, MSG_FRAGMENTER, FIRST_FRAGMENT, INT_H_SIZE, msg_destnode(mhdr)); msg_set_size(&pkthdr, pktmax); msg_set_fragm_no(&pkthdr, pktno); msg_set_importance(&pkthdr, msg_importance(mhdr)); /* Prepare first fragment */ skb = tipc_buf_acquire(pktmax, GFP_KERNEL); if (!skb) return -ENOMEM; skb_orphan(skb); __skb_queue_tail(list, skb); pktpos = skb->data; skb_copy_to_linear_data(skb, &pkthdr, INT_H_SIZE); pktpos += INT_H_SIZE; pktrem -= INT_H_SIZE; skb_copy_to_linear_data_offset(skb, INT_H_SIZE, mhdr, mhsz); pktpos += mhsz; pktrem -= mhsz; do { if (drem < pktrem) pktrem = drem; if (!copy_from_iter_full(pktpos, pktrem, &m->msg_iter)) { rc = -EFAULT; goto error; } drem -= pktrem; if (!drem) break; /* Prepare new fragment: */ if (drem < (pktmax - INT_H_SIZE)) pktsz = drem + INT_H_SIZE; else pktsz = pktmax; skb = tipc_buf_acquire(pktsz, GFP_KERNEL); if (!skb) { rc = -ENOMEM; goto error; } skb_orphan(skb); __skb_queue_tail(list, skb); msg_set_type(&pkthdr, FRAGMENT); msg_set_size(&pkthdr, pktsz); msg_set_fragm_no(&pkthdr, ++pktno); skb_copy_to_linear_data(skb, &pkthdr, INT_H_SIZE); pktpos = skb->data + INT_H_SIZE; pktrem = pktsz - INT_H_SIZE; } while (1); msg_set_type(buf_msg(skb), LAST_FRAGMENT); return dsz; error: __skb_queue_purge(list); __skb_queue_head_init(list); return rc; } /** * tipc_msg_bundle - Append contents of a buffer to tail of an existing one * @bskb: the bundle buffer to append to * @msg: message to be appended * @max: max allowable size for the bundle buffer * * Return: "true" if bundling has been performed, otherwise "false" */ static bool tipc_msg_bundle(struct sk_buff *bskb, struct tipc_msg *msg, u32 max) { struct tipc_msg *bmsg = buf_msg(bskb); u32 msz, bsz, offset, pad; msz = msg_size(msg); bsz = msg_size(bmsg); offset = BUF_ALIGN(bsz); pad = offset - bsz; if (unlikely(skb_tailroom(bskb) < (pad + msz))) return false; if (unlikely(max < (offset + msz))) return false; skb_put(bskb, pad + msz); skb_copy_to_linear_data_offset(bskb, offset, msg, msz); msg_set_size(bmsg, offset + msz); msg_set_msgcnt(bmsg, msg_msgcnt(bmsg) + 1); return true; } /** * tipc_msg_try_bundle - Try to bundle a new message to the last one * @tskb: the last/target message to which the new one will be appended * @skb: the new message skb pointer * @mss: max message size (header inclusive) * @dnode: destination node for the message * @new_bundle: if this call made a new bundle or not * * Return: "true" if the new message skb is potential for bundling this time or * later, in the case a bundling has been done this time, the skb is consumed * (the skb pointer = NULL). * Otherwise, "false" if the skb cannot be bundled at all. */ bool tipc_msg_try_bundle(struct sk_buff *tskb, struct sk_buff **skb, u32 mss, u32 dnode, bool *new_bundle) { struct tipc_msg *msg, *inner, *outer; u32 tsz; /* First, check if the new buffer is suitable for bundling */ msg = buf_msg(*skb); if (msg_user(msg) == MSG_FRAGMENTER) return false; if (msg_user(msg) == TUNNEL_PROTOCOL) return false; if (msg_user(msg) == BCAST_PROTOCOL) return false; if (mss <= INT_H_SIZE + msg_size(msg)) return false; /* Ok, but the last/target buffer can be empty? */ if (unlikely(!tskb)) return true; /* Is it a bundle already? Try to bundle the new message to it */ if (msg_user(buf_msg(tskb)) == MSG_BUNDLER) { *new_bundle = false; goto bundle; } /* Make a new bundle of the two messages if possible */ tsz = msg_size(buf_msg(tskb)); if (unlikely(mss < BUF_ALIGN(INT_H_SIZE + tsz) + msg_size(msg))) return true; if (unlikely(pskb_expand_head(tskb, INT_H_SIZE, mss - tsz - INT_H_SIZE, GFP_ATOMIC))) return true; inner = buf_msg(tskb); skb_push(tskb, INT_H_SIZE); outer = buf_msg(tskb); tipc_msg_init(msg_prevnode(inner), outer, MSG_BUNDLER, 0, INT_H_SIZE, dnode); msg_set_importance(outer, msg_importance(inner)); msg_set_size(outer, INT_H_SIZE + tsz); msg_set_msgcnt(outer, 1); *new_bundle = true; bundle: if (likely(tipc_msg_bundle(tskb, msg, mss))) { consume_skb(*skb); *skb = NULL; } return true; } /** * tipc_msg_extract(): extract bundled inner packet from buffer * @skb: buffer to be extracted from. * @iskb: extracted inner buffer, to be returned * @pos: position in outer message of msg to be extracted. * Returns position of next msg. * Consumes outer buffer when last packet extracted * Return: true when there is an extracted buffer, otherwise false */ bool tipc_msg_extract(struct sk_buff *skb, struct sk_buff **iskb, int *pos) { struct tipc_msg *hdr, *ihdr; int imsz; *iskb = NULL; if (unlikely(skb_linearize(skb))) goto none; hdr = buf_msg(skb); if (unlikely(*pos > (msg_data_sz(hdr) - MIN_H_SIZE))) goto none; ihdr = (struct tipc_msg *)(msg_data(hdr) + *pos); imsz = msg_size(ihdr); if ((*pos + imsz) > msg_data_sz(hdr)) goto none; *iskb = tipc_buf_acquire(imsz, GFP_ATOMIC); if (!*iskb) goto none; skb_copy_to_linear_data(*iskb, ihdr, imsz); if (unlikely(!tipc_msg_validate(iskb))) goto none; *pos += BUF_ALIGN(imsz); return true; none: kfree_skb(skb); kfree_skb(*iskb); *iskb = NULL; return false; } /** * tipc_msg_reverse(): swap source and destination addresses and add error code * @own_node: originating node id for reversed message * @skb: buffer containing message to be reversed; will be consumed * @err: error code to be set in message, if any * Replaces consumed buffer with new one when successful * Return: true if success, otherwise false */ bool tipc_msg_reverse(u32 own_node, struct sk_buff **skb, int err) { struct sk_buff *_skb = *skb; struct tipc_msg *_hdr, *hdr; int hlen, dlen; if (skb_linearize(_skb)) goto exit; _hdr = buf_msg(_skb); dlen = min_t(uint, msg_data_sz(_hdr), MAX_FORWARD_SIZE); hlen = msg_hdr_sz(_hdr); if (msg_dest_droppable(_hdr)) goto exit; if (msg_errcode(_hdr)) goto exit; /* Never return SHORT header */ if (hlen == SHORT_H_SIZE) hlen = BASIC_H_SIZE; /* Don't return data along with SYN+, - sender has a clone */ if (msg_is_syn(_hdr) && err == TIPC_ERR_OVERLOAD) dlen = 0; /* Allocate new buffer to return */ *skb = tipc_buf_acquire(hlen + dlen, GFP_ATOMIC); if (!*skb) goto exit; memcpy((*skb)->data, _skb->data, msg_hdr_sz(_hdr)); memcpy((*skb)->data + hlen, msg_data(_hdr), dlen); /* Build reverse header in new buffer */ hdr = buf_msg(*skb); msg_set_hdr_sz(hdr, hlen); msg_set_errcode(hdr, err); msg_set_non_seq(hdr, 0); msg_set_origport(hdr, msg_destport(_hdr)); msg_set_destport(hdr, msg_origport(_hdr)); msg_set_destnode(hdr, msg_prevnode(_hdr)); msg_set_prevnode(hdr, own_node); msg_set_orignode(hdr, own_node); msg_set_size(hdr, hlen + dlen); skb_orphan(_skb); kfree_skb(_skb); return true; exit: kfree_skb(_skb); *skb = NULL; return false; } bool tipc_msg_skb_clone(struct sk_buff_head *msg, struct sk_buff_head *cpy) { struct sk_buff *skb, *_skb; skb_queue_walk(msg, skb) { _skb = skb_clone(skb, GFP_ATOMIC); if (!_skb) { __skb_queue_purge(cpy); pr_err_ratelimited("Failed to clone buffer chain\n"); return false; } __skb_queue_tail(cpy, _skb); } return true; } /** * tipc_msg_lookup_dest(): try to find new destination for named message * @net: pointer to associated network namespace * @skb: the buffer containing the message. * @err: error code to be used by caller if lookup fails * Does not consume buffer * Return: true if a destination is found, false otherwise */ bool tipc_msg_lookup_dest(struct net *net, struct sk_buff *skb, int *err) { struct tipc_msg *msg = buf_msg(skb); u32 scope = msg_lookup_scope(msg); u32 self = tipc_own_addr(net); u32 inst = msg_nameinst(msg); struct tipc_socket_addr sk; struct tipc_uaddr ua; if (!msg_isdata(msg)) return false; if (!msg_named(msg)) return false; if (msg_errcode(msg)) return false; *err = TIPC_ERR_NO_NAME; if (skb_linearize(skb)) return false; msg = buf_msg(skb); if (msg_reroute_cnt(msg)) return false; tipc_uaddr(&ua, TIPC_SERVICE_RANGE, scope, msg_nametype(msg), inst, inst); sk.node = tipc_scope2node(net, scope); if (!tipc_nametbl_lookup_anycast(net, &ua, &sk)) return false; msg_incr_reroute_cnt(msg); if (sk.node != self) msg_set_prevnode(msg, self); msg_set_destnode(msg, sk.node); msg_set_destport(msg, sk.ref); *err = TIPC_OK; return true; } /* tipc_msg_assemble() - assemble chain of fragments into one message */ bool tipc_msg_assemble(struct sk_buff_head *list) { struct sk_buff *skb, *tmp = NULL; if (skb_queue_len(list) == 1) return true; while ((skb = __skb_dequeue(list))) { skb->next = NULL; if (tipc_buf_append(&tmp, &skb)) { __skb_queue_tail(list, skb); return true; } if (!tmp) break; } __skb_queue_purge(list); __skb_queue_head_init(list); pr_warn("Failed do assemble buffer\n"); return false; } /* tipc_msg_reassemble() - clone a buffer chain of fragments and * reassemble the clones into one message */ bool tipc_msg_reassemble(struct sk_buff_head *list, struct sk_buff_head *rcvq) { struct sk_buff *skb, *_skb; struct sk_buff *frag = NULL; struct sk_buff *head = NULL; int hdr_len; /* Copy header if single buffer */ if (skb_queue_len(list) == 1) { skb = skb_peek(list); hdr_len = skb_headroom(skb) + msg_hdr_sz(buf_msg(skb)); _skb = __pskb_copy(skb, hdr_len, GFP_ATOMIC); if (!_skb) return false; __skb_queue_tail(rcvq, _skb); return true; } /* Clone all fragments and reassemble */ skb_queue_walk(list, skb) { frag = skb_clone(skb, GFP_ATOMIC); if (!frag) goto error; frag->next = NULL; if (tipc_buf_append(&head, &frag)) break; if (!head) goto error; } __skb_queue_tail(rcvq, frag); return true; error: pr_warn("Failed do clone local mcast rcv buffer\n"); kfree_skb(head); return false; } bool tipc_msg_pskb_copy(u32 dst, struct sk_buff_head *msg, struct sk_buff_head *cpy) { struct sk_buff *skb, *_skb; skb_queue_walk(msg, skb) { _skb = pskb_copy(skb, GFP_ATOMIC); if (!_skb) { __skb_queue_purge(cpy); return false; } msg_set_destnode(buf_msg(_skb), dst); __skb_queue_tail(cpy, _skb); } return true; } /* tipc_skb_queue_sorted(); sort pkt into list according to sequence number * @list: list to be appended to * @seqno: sequence number of buffer to add * @skb: buffer to add */ bool __tipc_skb_queue_sorted(struct sk_buff_head *list, u16 seqno, struct sk_buff *skb) { struct sk_buff *_skb, *tmp; if (skb_queue_empty(list) || less(seqno, buf_seqno(skb_peek(list)))) { __skb_queue_head(list, skb); return true; } if (more(seqno, buf_seqno(skb_peek_tail(list)))) { __skb_queue_tail(list, skb); return true; } skb_queue_walk_safe(list, _skb, tmp) { if (more(seqno, buf_seqno(_skb))) continue; if (seqno == buf_seqno(_skb)) break; __skb_queue_before(list, _skb, skb); return true; } kfree_skb(skb); return false; } void tipc_skb_reject(struct net *net, int err, struct sk_buff *skb, struct sk_buff_head *xmitq) { if (tipc_msg_reverse(tipc_own_addr(net), &skb, err)) __skb_queue_tail(xmitq, skb); } |
2 2 2 2 2 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | // SPDX-License-Identifier: GPL-2.0-or-later /* * AEAD: Authenticated Encryption with Associated Data * * This file provides API support for AEAD algorithms. * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/internal/aead.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/cryptouser.h> #include <net/netlink.h> #include "internal.h" static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_aead_alignmask(tfm); int ret; u8 *buffer, *alignbuffer; unsigned long absize; absize = keylen + alignmask; buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); ret = crypto_aead_alg(tfm)->setkey(tfm, alignbuffer, keylen); kfree_sensitive(buffer); return ret; } int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_aead_alignmask(tfm); int err; if ((unsigned long)key & alignmask) err = setkey_unaligned(tfm, key, keylen); else err = crypto_aead_alg(tfm)->setkey(tfm, key, keylen); if (unlikely(err)) { crypto_aead_set_flags(tfm, CRYPTO_TFM_NEED_KEY); return err; } crypto_aead_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); return 0; } EXPORT_SYMBOL_GPL(crypto_aead_setkey); int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { int err; if ((!authsize && crypto_aead_maxauthsize(tfm)) || authsize > crypto_aead_maxauthsize(tfm)) return -EINVAL; if (crypto_aead_alg(tfm)->setauthsize) { err = crypto_aead_alg(tfm)->setauthsize(tfm, authsize); if (err) return err; } tfm->authsize = authsize; return 0; } EXPORT_SYMBOL_GPL(crypto_aead_setauthsize); int crypto_aead_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_alg *alg = aead->base.__crt_alg; unsigned int cryptlen = req->cryptlen; int ret; crypto_stats_get(alg); if (crypto_aead_get_flags(aead) & CRYPTO_TFM_NEED_KEY) ret = -ENOKEY; else ret = crypto_aead_alg(aead)->encrypt(req); crypto_stats_aead_encrypt(cryptlen, alg, ret); return ret; } EXPORT_SYMBOL_GPL(crypto_aead_encrypt); int crypto_aead_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_alg *alg = aead->base.__crt_alg; unsigned int cryptlen = req->cryptlen; int ret; crypto_stats_get(alg); if (crypto_aead_get_flags(aead) & CRYPTO_TFM_NEED_KEY) ret = -ENOKEY; else if (req->cryptlen < crypto_aead_authsize(aead)) ret = -EINVAL; else ret = crypto_aead_alg(aead)->decrypt(req); crypto_stats_aead_decrypt(cryptlen, alg, ret); return ret; } EXPORT_SYMBOL_GPL(crypto_aead_decrypt); static void crypto_aead_exit_tfm(struct crypto_tfm *tfm) { struct crypto_aead *aead = __crypto_aead_cast(tfm); struct aead_alg *alg = crypto_aead_alg(aead); alg->exit(aead); } static int crypto_aead_init_tfm(struct crypto_tfm *tfm) { struct crypto_aead *aead = __crypto_aead_cast(tfm); struct aead_alg *alg = crypto_aead_alg(aead); crypto_aead_set_flags(aead, CRYPTO_TFM_NEED_KEY); aead->authsize = alg->maxauthsize; if (alg->exit) aead->base.exit = crypto_aead_exit_tfm; if (alg->init) return alg->init(aead); return 0; } #ifdef CONFIG_NET static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg) { struct crypto_report_aead raead; struct aead_alg *aead = container_of(alg, struct aead_alg, base); memset(&raead, 0, sizeof(raead)); strscpy(raead.type, "aead", sizeof(raead.type)); strscpy(raead.geniv, "<none>", sizeof(raead.geniv)); raead.blocksize = alg->cra_blocksize; raead.maxauthsize = aead->maxauthsize; raead.ivsize = aead->ivsize; return nla_put(skb, CRYPTOCFGA_REPORT_AEAD, sizeof(raead), &raead); } #else static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg) { return -ENOSYS; } #endif static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg) { struct aead_alg *aead = container_of(alg, struct aead_alg, base); seq_printf(m, "type : aead\n"); seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "ivsize : %u\n", aead->ivsize); seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize); seq_printf(m, "geniv : <none>\n"); } static void crypto_aead_free_instance(struct crypto_instance *inst) { struct aead_instance *aead = aead_instance(inst); aead->free(aead); } static const struct crypto_type crypto_aead_type = { .extsize = crypto_alg_extsize, .init_tfm = crypto_aead_init_tfm, .free = crypto_aead_free_instance, #ifdef CONFIG_PROC_FS .show = crypto_aead_show, #endif .report = crypto_aead_report, .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_MASK, .type = CRYPTO_ALG_TYPE_AEAD, .tfmsize = offsetof(struct crypto_aead, base), }; int crypto_grab_aead(struct crypto_aead_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { spawn->base.frontend = &crypto_aead_type; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } EXPORT_SYMBOL_GPL(crypto_grab_aead); struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_aead_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_aead); static int aead_prepare_alg(struct aead_alg *alg) { struct crypto_alg *base = &alg->base; if (max3(alg->maxauthsize, alg->ivsize, alg->chunksize) > PAGE_SIZE / 8) return -EINVAL; if (!alg->chunksize) alg->chunksize = base->cra_blocksize; base->cra_type = &crypto_aead_type; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; base->cra_flags |= CRYPTO_ALG_TYPE_AEAD; return 0; } int crypto_register_aead(struct aead_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = aead_prepare_alg(alg); if (err) return err; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_aead); void crypto_unregister_aead(struct aead_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_aead); int crypto_register_aeads(struct aead_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_aead(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_aead(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_aeads); void crypto_unregister_aeads(struct aead_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_aead(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_aeads); int aead_register_instance(struct crypto_template *tmpl, struct aead_instance *inst) { int err; if (WARN_ON(!inst->free)) return -EINVAL; err = aead_prepare_alg(&inst->alg); if (err) return err; return crypto_register_instance(tmpl, aead_crypto_instance(inst)); } EXPORT_SYMBOL_GPL(aead_register_instance); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)"); |
4112 4117 4114 4114 4113 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LOCAL_LOCK_H # error "Do not include directly, include linux/local_lock.h" #endif #include <linux/percpu-defs.h> #include <linux/lockdep.h> #ifndef CONFIG_PREEMPT_RT typedef struct { #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; struct task_struct *owner; #endif } local_lock_t; #ifdef CONFIG_DEBUG_LOCK_ALLOC # define LOCAL_LOCK_DEBUG_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_CONFIG, \ .lock_type = LD_LOCK_PERCPU, \ }, \ .owner = NULL, static inline void local_lock_acquire(local_lock_t *l) { lock_map_acquire(&l->dep_map); DEBUG_LOCKS_WARN_ON(l->owner); l->owner = current; } static inline void local_lock_release(local_lock_t *l) { DEBUG_LOCKS_WARN_ON(l->owner != current); l->owner = NULL; lock_map_release(&l->dep_map); } static inline void local_lock_debug_init(local_lock_t *l) { l->owner = NULL; } #else /* CONFIG_DEBUG_LOCK_ALLOC */ # define LOCAL_LOCK_DEBUG_INIT(lockname) static inline void local_lock_acquire(local_lock_t *l) { } static inline void local_lock_release(local_lock_t *l) { } static inline void local_lock_debug_init(local_lock_t *l) { } #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) } #define __local_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ debug_check_no_locks_freed((void *)lock, sizeof(*lock));\ lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \ 0, LD_WAIT_CONFIG, LD_WAIT_INV, \ LD_LOCK_PERCPU); \ local_lock_debug_init(lock); \ } while (0) #define __local_lock(lock) \ do { \ preempt_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irq(lock) \ do { \ local_irq_disable(); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_lock_irqsave(lock, flags) \ do { \ local_irq_save(flags); \ local_lock_acquire(this_cpu_ptr(lock)); \ } while (0) #define __local_unlock(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ preempt_enable(); \ } while (0) #define __local_unlock_irq(lock) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_enable(); \ } while (0) #define __local_unlock_irqrestore(lock, flags) \ do { \ local_lock_release(this_cpu_ptr(lock)); \ local_irq_restore(flags); \ } while (0) #else /* !CONFIG_PREEMPT_RT */ /* * On PREEMPT_RT local_lock maps to a per CPU spinlock, which protects the * critical section while staying preemptible. */ typedef spinlock_t local_lock_t; #define INIT_LOCAL_LOCK(lockname) __LOCAL_SPIN_LOCK_UNLOCKED((lockname)) #define __local_lock_init(l) \ do { \ local_spin_lock_init((l)); \ } while (0) #define __local_lock(__lock) \ do { \ migrate_disable(); \ spin_lock(this_cpu_ptr((__lock))); \ } while (0) #define __local_lock_irq(lock) __local_lock(lock) #define __local_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ flags = 0; \ __local_lock(lock); \ } while (0) #define __local_unlock(__lock) \ do { \ spin_unlock(this_cpu_ptr((__lock))); \ migrate_enable(); \ } while (0) #define __local_unlock_irq(lock) __local_unlock(lock) #define __local_unlock_irqrestore(lock, flags) __local_unlock(lock) #endif /* CONFIG_PREEMPT_RT */ |
48 237 4 237 233 232 230 221 49 49 49 51 48 3 3 3 48 48 3 3 3 3 3 3 48 48 48 48 48 48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. * Authors: David Chinner and Glauber Costa * * Generic LRU infrastructure */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/list_lru.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/memcontrol.h> #include "slab.h" #ifdef CONFIG_MEMCG_KMEM static LIST_HEAD(list_lrus); static DEFINE_MUTEX(list_lrus_mutex); static void list_lru_register(struct list_lru *lru) { mutex_lock(&list_lrus_mutex); list_add(&lru->list, &list_lrus); mutex_unlock(&list_lrus_mutex); } static void list_lru_unregister(struct list_lru *lru) { mutex_lock(&list_lrus_mutex); list_del(&lru->list); mutex_unlock(&list_lrus_mutex); } static int lru_shrinker_id(struct list_lru *lru) { return lru->shrinker_id; } static inline bool list_lru_memcg_aware(struct list_lru *lru) { return lru->memcg_aware; } static inline struct list_lru_one * list_lru_from_memcg_idx(struct list_lru_node *nlru, int idx) { struct list_lru_memcg *memcg_lrus; /* * Either lock or RCU protects the array of per cgroup lists * from relocation (see memcg_update_list_lru_node). */ memcg_lrus = rcu_dereference_check(nlru->memcg_lrus, lockdep_is_held(&nlru->lock)); if (memcg_lrus && idx >= 0) return memcg_lrus->lru[idx]; return &nlru->lru; } static inline struct list_lru_one * list_lru_from_kmem(struct list_lru_node *nlru, void *ptr, struct mem_cgroup **memcg_ptr) { struct list_lru_one *l = &nlru->lru; struct mem_cgroup *memcg = NULL; if (!nlru->memcg_lrus) goto out; memcg = mem_cgroup_from_obj(ptr); if (!memcg) goto out; l = list_lru_from_memcg_idx(nlru, memcg_cache_id(memcg)); out: if (memcg_ptr) *memcg_ptr = memcg; return l; } #else static void list_lru_register(struct list_lru *lru) { } static void list_lru_unregister(struct list_lru *lru) { } static int lru_shrinker_id(struct list_lru *lru) { return -1; } static inline bool list_lru_memcg_aware(struct list_lru *lru) { return false; } static inline struct list_lru_one * list_lru_from_memcg_idx(struct list_lru_node *nlru, int idx) { return &nlru->lru; } static inline struct list_lru_one * list_lru_from_kmem(struct list_lru_node *nlru, void *ptr, struct mem_cgroup **memcg_ptr) { if (memcg_ptr) *memcg_ptr = NULL; return &nlru->lru; } #endif /* CONFIG_MEMCG_KMEM */ bool list_lru_add(struct list_lru *lru, struct list_head *item) { int nid = page_to_nid(virt_to_page(item)); struct list_lru_node *nlru = &lru->node[nid]; struct mem_cgroup *memcg; struct list_lru_one *l; spin_lock(&nlru->lock); if (list_empty(item)) { l = list_lru_from_kmem(nlru, item, &memcg); list_add_tail(item, &l->list); /* Set shrinker bit if the first element was added */ if (!l->nr_items++) set_shrinker_bit(memcg, nid, lru_shrinker_id(lru)); nlru->nr_items++; spin_unlock(&nlru->lock); return true; } spin_unlock(&nlru->lock); return false; } EXPORT_SYMBOL_GPL(list_lru_add); bool list_lru_del(struct list_lru *lru, struct list_head *item) { int nid = page_to_nid(virt_to_page(item)); struct list_lru_node *nlru = &lru->node[nid]; struct list_lru_one *l; spin_lock(&nlru->lock); if (!list_empty(item)) { l = list_lru_from_kmem(nlru, item, NULL); list_del_init(item); l->nr_items--; nlru->nr_items--; spin_unlock(&nlru->lock); return true; } spin_unlock(&nlru->lock); return false; } EXPORT_SYMBOL_GPL(list_lru_del); void list_lru_isolate(struct list_lru_one *list, struct list_head *item) { list_del_init(item); list->nr_items--; } EXPORT_SYMBOL_GPL(list_lru_isolate); void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, struct list_head *head) { list_move(item, head); list->nr_items--; } EXPORT_SYMBOL_GPL(list_lru_isolate_move); unsigned long list_lru_count_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg) { struct list_lru_node *nlru = &lru->node[nid]; struct list_lru_one *l; unsigned long count; rcu_read_lock(); l = list_lru_from_memcg_idx(nlru, memcg_cache_id(memcg)); count = READ_ONCE(l->nr_items); rcu_read_unlock(); return count; } EXPORT_SYMBOL_GPL(list_lru_count_one); unsigned long list_lru_count_node(struct list_lru *lru, int nid) { struct list_lru_node *nlru; nlru = &lru->node[nid]; return nlru->nr_items; } EXPORT_SYMBOL_GPL(list_lru_count_node); static unsigned long __list_lru_walk_one(struct list_lru_node *nlru, int memcg_idx, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { struct list_lru_one *l; struct list_head *item, *n; unsigned long isolated = 0; l = list_lru_from_memcg_idx(nlru, memcg_idx); restart: list_for_each_safe(item, n, &l->list) { enum lru_status ret; /* * decrement nr_to_walk first so that we don't livelock if we * get stuck on large numbers of LRU_RETRY items */ if (!*nr_to_walk) break; --*nr_to_walk; ret = isolate(item, l, &nlru->lock, cb_arg); switch (ret) { case LRU_REMOVED_RETRY: assert_spin_locked(&nlru->lock); fallthrough; case LRU_REMOVED: isolated++; nlru->nr_items--; /* * If the lru lock has been dropped, our list * traversal is now invalid and so we have to * restart from scratch. */ if (ret == LRU_REMOVED_RETRY) goto restart; break; case LRU_ROTATE: list_move_tail(item, &l->list); break; case LRU_SKIP: break; case LRU_RETRY: /* * The lru lock has been dropped, our list traversal is * now invalid and so we have to restart from scratch. */ assert_spin_locked(&nlru->lock); goto restart; default: BUG(); } } return isolated; } unsigned long list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { struct list_lru_node *nlru = &lru->node[nid]; unsigned long ret; spin_lock(&nlru->lock); ret = __list_lru_walk_one(nlru, memcg_cache_id(memcg), isolate, cb_arg, nr_to_walk); spin_unlock(&nlru->lock); return ret; } EXPORT_SYMBOL_GPL(list_lru_walk_one); unsigned long list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { struct list_lru_node *nlru = &lru->node[nid]; unsigned long ret; spin_lock_irq(&nlru->lock); ret = __list_lru_walk_one(nlru, memcg_cache_id(memcg), isolate, cb_arg, nr_to_walk); spin_unlock_irq(&nlru->lock); return ret; } unsigned long list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk) { long isolated = 0; int memcg_idx; isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg, nr_to_walk); if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) { for_each_memcg_cache_index(memcg_idx) { struct list_lru_node *nlru = &lru->node[nid]; spin_lock(&nlru->lock); isolated += __list_lru_walk_one(nlru, memcg_idx, isolate, cb_arg, nr_to_walk); spin_unlock(&nlru->lock); if (*nr_to_walk <= 0) break; } } return isolated; } EXPORT_SYMBOL_GPL(list_lru_walk_node); static void init_one_lru(struct list_lru_one *l) { INIT_LIST_HEAD(&l->list); l->nr_items = 0; } #ifdef CONFIG_MEMCG_KMEM static void __memcg_destroy_list_lru_node(struct list_lru_memcg *memcg_lrus, int begin, int end) { int i; for (i = begin; i < end; i++) kfree(memcg_lrus->lru[i]); } static int __memcg_init_list_lru_node(struct list_lru_memcg *memcg_lrus, int begin, int end) { int i; for (i = begin; i < end; i++) { struct list_lru_one *l; l = kmalloc(sizeof(struct list_lru_one), GFP_KERNEL); if (!l) goto fail; init_one_lru(l); memcg_lrus->lru[i] = l; } return 0; fail: __memcg_destroy_list_lru_node(memcg_lrus, begin, i); return -ENOMEM; } static int memcg_init_list_lru_node(struct list_lru_node *nlru) { struct list_lru_memcg *memcg_lrus; int size = memcg_nr_cache_ids; memcg_lrus = kvmalloc(sizeof(*memcg_lrus) + size * sizeof(void *), GFP_KERNEL); if (!memcg_lrus) return -ENOMEM; if (__memcg_init_list_lru_node(memcg_lrus, 0, size)) { kvfree(memcg_lrus); return -ENOMEM; } RCU_INIT_POINTER(nlru->memcg_lrus, memcg_lrus); return 0; } static void memcg_destroy_list_lru_node(struct list_lru_node *nlru) { struct list_lru_memcg *memcg_lrus; /* * This is called when shrinker has already been unregistered, * and nobody can use it. So, there is no need to use kvfree_rcu(). */ memcg_lrus = rcu_dereference_protected(nlru->memcg_lrus, true); __memcg_destroy_list_lru_node(memcg_lrus, 0, memcg_nr_cache_ids); kvfree(memcg_lrus); } static int memcg_update_list_lru_node(struct list_lru_node *nlru, int old_size, int new_size) { struct list_lru_memcg *old, *new; BUG_ON(old_size > new_size); old = rcu_dereference_protected(nlru->memcg_lrus, lockdep_is_held(&list_lrus_mutex)); new = kvmalloc(sizeof(*new) + new_size * sizeof(void *), GFP_KERNEL); if (!new) return -ENOMEM; if (__memcg_init_list_lru_node(new, old_size, new_size)) { kvfree(new); return -ENOMEM; } memcpy(&new->lru, &old->lru, old_size * sizeof(void *)); /* * The locking below allows readers that hold nlru->lock avoid taking * rcu_read_lock (see list_lru_from_memcg_idx). * * Since list_lru_{add,del} may be called under an IRQ-safe lock, * we have to use IRQ-safe primitives here to avoid deadlock. */ spin_lock_irq(&nlru->lock); rcu_assign_pointer(nlru->memcg_lrus, new); spin_unlock_irq(&nlru->lock); kvfree_rcu(old, rcu); return 0; } static void memcg_cancel_update_list_lru_node(struct list_lru_node *nlru, int old_size, int new_size) { struct list_lru_memcg *memcg_lrus; memcg_lrus = rcu_dereference_protected(nlru->memcg_lrus, lockdep_is_held(&list_lrus_mutex)); /* do not bother shrinking the array back to the old size, because we * cannot handle allocation failures here */ __memcg_destroy_list_lru_node(memcg_lrus, old_size, new_size); } static int memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) { int i; lru->memcg_aware = memcg_aware; if (!memcg_aware) return 0; for_each_node(i) { if (memcg_init_list_lru_node(&lru->node[i])) goto fail; } return 0; fail: for (i = i - 1; i >= 0; i--) { if (!lru->node[i].memcg_lrus) continue; memcg_destroy_list_lru_node(&lru->node[i]); } return -ENOMEM; } static void memcg_destroy_list_lru(struct list_lru *lru) { int i; if (!list_lru_memcg_aware(lru)) return; for_each_node(i) memcg_destroy_list_lru_node(&lru->node[i]); } static int memcg_update_list_lru(struct list_lru *lru, int old_size, int new_size) { int i; if (!list_lru_memcg_aware(lru)) return 0; for_each_node(i) { if (memcg_update_list_lru_node(&lru->node[i], old_size, new_size)) goto fail; } return 0; fail: for (i = i - 1; i >= 0; i--) { if (!lru->node[i].memcg_lrus) continue; memcg_cancel_update_list_lru_node(&lru->node[i], old_size, new_size); } return -ENOMEM; } static void memcg_cancel_update_list_lru(struct list_lru *lru, int old_size, int new_size) { int i; if (!list_lru_memcg_aware(lru)) return; for_each_node(i) memcg_cancel_update_list_lru_node(&lru->node[i], old_size, new_size); } int memcg_update_all_list_lrus(int new_size) { int ret = 0; struct list_lru *lru; int old_size = memcg_nr_cache_ids; mutex_lock(&list_lrus_mutex); list_for_each_entry(lru, &list_lrus, list) { ret = memcg_update_list_lru(lru, old_size, new_size); if (ret) goto fail; } out: mutex_unlock(&list_lrus_mutex); return ret; fail: list_for_each_entry_continue_reverse(lru, &list_lrus, list) memcg_cancel_update_list_lru(lru, old_size, new_size); goto out; } static void memcg_drain_list_lru_node(struct list_lru *lru, int nid, int src_idx, struct mem_cgroup *dst_memcg) { struct list_lru_node *nlru = &lru->node[nid]; int dst_idx = dst_memcg->kmemcg_id; struct list_lru_one *src, *dst; /* * Since list_lru_{add,del} may be called under an IRQ-safe lock, * we have to use IRQ-safe primitives here to avoid deadlock. */ spin_lock_irq(&nlru->lock); src = list_lru_from_memcg_idx(nlru, src_idx); dst = list_lru_from_memcg_idx(nlru, dst_idx); list_splice_init(&src->list, &dst->list); if (src->nr_items) { dst->nr_items += src->nr_items; set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru)); src->nr_items = 0; } spin_unlock_irq(&nlru->lock); } static void memcg_drain_list_lru(struct list_lru *lru, int src_idx, struct mem_cgroup *dst_memcg) { int i; if (!list_lru_memcg_aware(lru)) return; for_each_node(i) memcg_drain_list_lru_node(lru, i, src_idx, dst_memcg); } void memcg_drain_all_list_lrus(int src_idx, struct mem_cgroup *dst_memcg) { struct list_lru *lru; mutex_lock(&list_lrus_mutex); list_for_each_entry(lru, &list_lrus, list) memcg_drain_list_lru(lru, src_idx, dst_memcg); mutex_unlock(&list_lrus_mutex); } #else static int memcg_init_list_lru(struct list_lru *lru, bool memcg_aware) { return 0; } static void memcg_destroy_list_lru(struct list_lru *lru) { } #endif /* CONFIG_MEMCG_KMEM */ int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct lock_class_key *key, struct shrinker *shrinker) { int i; int err = -ENOMEM; #ifdef CONFIG_MEMCG_KMEM if (shrinker) lru->shrinker_id = shrinker->id; else lru->shrinker_id = -1; #endif memcg_get_cache_ids(); lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL); if (!lru->node) goto out; for_each_node(i) { spin_lock_init(&lru->node[i].lock); if (key) lockdep_set_class(&lru->node[i].lock, key); init_one_lru(&lru->node[i].lru); } err = memcg_init_list_lru(lru, memcg_aware); if (err) { kfree(lru->node); /* Do this so a list_lru_destroy() doesn't crash: */ lru->node = NULL; goto out; } list_lru_register(lru); out: memcg_put_cache_ids(); return err; } EXPORT_SYMBOL_GPL(__list_lru_init); void list_lru_destroy(struct list_lru *lru) { /* Already destroyed or not yet initialized? */ if (!lru->node) return; memcg_get_cache_ids(); list_lru_unregister(lru); memcg_destroy_list_lru(lru); kfree(lru->node); lru->node = NULL; #ifdef CONFIG_MEMCG_KMEM lru->shrinker_id = -1; #endif memcg_put_cache_ids(); } EXPORT_SYMBOL_GPL(list_lru_destroy); |
250 250 249 250 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 | // SPDX-License-Identifier: GPL-2.0-only /* * fs/userfaultfd.c * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * Copyright (C) 2008-2009 Red Hat, Inc. * Copyright (C) 2015 Red Hat, Inc. * * Some part derived from fs/eventfd.c (anon inode setup) and * mm/ksm.c (mm hashing). */ #include <linux/list.h> #include <linux/hashtable.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/mm.h> #include <linux/mmu_notifier.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/file.h> #include <linux/bug.h> #include <linux/anon_inodes.h> #include <linux/syscalls.h> #include <linux/userfaultfd_k.h> #include <linux/mempolicy.h> #include <linux/ioctl.h> #include <linux/security.h> #include <linux/hugetlb.h> int sysctl_unprivileged_userfaultfd __read_mostly; static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; /* * Start with fault_pending_wqh and fault_wqh so they're more likely * to be in the same cacheline. * * Locking order: * fd_wqh.lock * fault_pending_wqh.lock * fault_wqh.lock * event_wqh.lock * * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's * also taken in IRQ context. */ struct userfaultfd_ctx { /* waitqueue head for the pending (i.e. not read) userfaults */ wait_queue_head_t fault_pending_wqh; /* waitqueue head for the userfaults */ wait_queue_head_t fault_wqh; /* waitqueue head for the pseudo fd to wakeup poll/read */ wait_queue_head_t fd_wqh; /* waitqueue head for events */ wait_queue_head_t event_wqh; /* a refile sequence protected by fault_pending_wqh lock */ seqcount_spinlock_t refile_seq; /* pseudo fd refcounting */ refcount_t refcount; /* userfaultfd syscall flags */ unsigned int flags; /* features requested from the userspace */ unsigned int features; /* released */ bool released; /* memory mappings are changing because of non-cooperative event */ atomic_t mmap_changing; /* mm with one ore more vmas attached to this userfaultfd_ctx */ struct mm_struct *mm; }; struct userfaultfd_fork_ctx { struct userfaultfd_ctx *orig; struct userfaultfd_ctx *new; struct list_head list; }; struct userfaultfd_unmap_ctx { struct userfaultfd_ctx *ctx; unsigned long start; unsigned long end; struct list_head list; }; struct userfaultfd_wait_queue { struct uffd_msg msg; wait_queue_entry_t wq; struct userfaultfd_ctx *ctx; bool waken; }; struct userfaultfd_wake_range { unsigned long start; unsigned long len; }; /* internal indication that UFFD_API ioctl was successfully executed */ #define UFFD_FEATURE_INITIALIZED (1u << 31) static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) { return ctx->features & UFFD_FEATURE_INITIALIZED; } static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, int wake_flags, void *key) { struct userfaultfd_wake_range *range = key; int ret; struct userfaultfd_wait_queue *uwq; unsigned long start, len; uwq = container_of(wq, struct userfaultfd_wait_queue, wq); ret = 0; /* len == 0 means wake all */ start = range->start; len = range->len; if (len && (start > uwq->msg.arg.pagefault.address || start + len <= uwq->msg.arg.pagefault.address)) goto out; WRITE_ONCE(uwq->waken, true); /* * The Program-Order guarantees provided by the scheduler * ensure uwq->waken is visible before the task is woken. */ ret = wake_up_state(wq->private, mode); if (ret) { /* * Wake only once, autoremove behavior. * * After the effect of list_del_init is visible to the other * CPUs, the waitqueue may disappear from under us, see the * !list_empty_careful() in handle_userfault(). * * try_to_wake_up() has an implicit smp_mb(), and the * wq->private is read before calling the extern function * "wake_up_state" (which in turns calls try_to_wake_up). */ list_del_init(&wq->entry); } out: return ret; } /** * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to the userfaultfd context. */ static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) { refcount_inc(&ctx->refcount); } /** * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to userfaultfd context. * * The userfaultfd context reference must have been previously acquired either * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). */ static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) { if (refcount_dec_and_test(&ctx->refcount)) { VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); mmdrop(ctx->mm); kmem_cache_free(userfaultfd_ctx_cachep, ctx); } } static inline void msg_init(struct uffd_msg *msg) { BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); /* * Must use memset to zero out the paddings or kernel data is * leaked to userland. */ memset(msg, 0, sizeof(struct uffd_msg)); } static inline struct uffd_msg userfault_msg(unsigned long address, unsigned int flags, unsigned long reason, unsigned int features) { struct uffd_msg msg; msg_init(&msg); msg.event = UFFD_EVENT_PAGEFAULT; msg.arg.pagefault.address = address; /* * These flags indicate why the userfault occurred: * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. * - Neither of these flags being set indicates a MISSING fault. * * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write * fault. Otherwise, it was a read fault. */ if (flags & FAULT_FLAG_WRITE) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; if (reason & VM_UFFD_WP) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; if (reason & VM_UFFD_MINOR) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; if (features & UFFD_FEATURE_THREAD_ID) msg.arg.pagefault.feat.ptid = task_pid_vnr(current); return msg; } #ifdef CONFIG_HUGETLB_PAGE /* * Same functionality as userfaultfd_must_wait below with modifications for * hugepmd ranges. */ static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_area_struct *vma, unsigned long address, unsigned long flags, unsigned long reason) { struct mm_struct *mm = ctx->mm; pte_t *ptep, pte; bool ret = true; mmap_assert_locked(mm); ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); if (!ptep) goto out; ret = false; pte = huge_ptep_get(ptep); /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. */ if (huge_pte_none(pte)) ret = true; if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) ret = true; out: return ret; } #else static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_area_struct *vma, unsigned long address, unsigned long flags, unsigned long reason) { return false; /* should never get here */ } #endif /* CONFIG_HUGETLB_PAGE */ /* * Verify the pagetables are still not ok after having reigstered into * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any * userfault that has already been resolved, if userfaultfd_read and * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different * threads. */ static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, unsigned long address, unsigned long flags, unsigned long reason) { struct mm_struct *mm = ctx->mm; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd, _pmd; pte_t *pte; bool ret = true; mmap_assert_locked(mm); pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) goto out; pud = pud_offset(p4d, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); /* * READ_ONCE must function as a barrier with narrower scope * and it must be equivalent to: * _pmd = *pmd; barrier(); * * This is to deal with the instability (as in * pmd_trans_unstable) of the pmd. */ _pmd = READ_ONCE(*pmd); if (pmd_none(_pmd)) goto out; ret = false; if (!pmd_present(_pmd)) goto out; if (pmd_trans_huge(_pmd)) { if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) ret = true; goto out; } /* * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it * and use the standard pte_offset_map() instead of parsing _pmd. */ pte = pte_offset_map(pmd, address); /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. */ if (pte_none(*pte)) ret = true; if (!pte_write(*pte) && (reason & VM_UFFD_WP)) ret = true; pte_unmap(pte); out: return ret; } static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) { if (flags & FAULT_FLAG_INTERRUPTIBLE) return TASK_INTERRUPTIBLE; if (flags & FAULT_FLAG_KILLABLE) return TASK_KILLABLE; return TASK_UNINTERRUPTIBLE; } /* * The locking rules involved in returning VM_FAULT_RETRY depending on * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" * recommendation in __lock_page_or_retry is not an understatement. * * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is * not set. * * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not * set, VM_FAULT_RETRY can still be returned if and only if there are * fatal_signal_pending()s, and the mmap_lock must be released before * returning it. */ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) { struct mm_struct *mm = vmf->vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue uwq; vm_fault_t ret = VM_FAULT_SIGBUS; bool must_wait; unsigned int blocking_state; /* * We don't do userfault handling for the final child pid update. * * We also don't do userfault handling during * coredumping. hugetlbfs has the special * follow_hugetlb_page() to skip missing pages in the * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with * the no_page_table() helper in follow_page_mask(), but the * shmem_vm_ops->fault method is invoked even during * coredumping without mmap_lock and it ends up here. */ if (current->flags & (PF_EXITING|PF_DUMPCORE)) goto out; /* * Coredumping runs without mmap_lock so we can only check that * the mmap_lock is held, if PF_DUMPCORE was not set. */ mmap_assert_locked(mm); ctx = vmf->vma->vm_userfaultfd_ctx.ctx; if (!ctx) goto out; BUG_ON(ctx->mm != mm); /* Any unrecognized flag is a bug. */ VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); /* 0 or > 1 flags set is a bug; we expect exactly 1. */ VM_BUG_ON(!reason || (reason & (reason - 1))); if (ctx->features & UFFD_FEATURE_SIGBUS) goto out; if ((vmf->flags & FAULT_FLAG_USER) == 0 && ctx->flags & UFFD_USER_MODE_ONLY) { printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " "sysctl knob to 1 if kernel faults must be handled " "without obtaining CAP_SYS_PTRACE capability\n"); goto out; } /* * If it's already released don't get it. This avoids to loop * in __get_user_pages if userfaultfd_release waits on the * caller of handle_userfault to release the mmap_lock. */ if (unlikely(READ_ONCE(ctx->released))) { /* * Don't return VM_FAULT_SIGBUS in this case, so a non * cooperative manager can close the uffd after the * last UFFDIO_COPY, without risking to trigger an * involuntary SIGBUS if the process was starting the * userfaultfd while the userfaultfd was still armed * (but after the last UFFDIO_COPY). If the uffd * wasn't already closed when the userfault reached * this point, that would normally be solved by * userfaultfd_must_wait returning 'false'. * * If we were to return VM_FAULT_SIGBUS here, the non * cooperative manager would be instead forced to * always call UFFDIO_UNREGISTER before it can safely * close the uffd. */ ret = VM_FAULT_NOPAGE; goto out; } /* * Check that we can return VM_FAULT_RETRY. * * NOTE: it should become possible to return VM_FAULT_RETRY * even if FAULT_FLAG_TRIED is set without leading to gup() * -EBUSY failures, if the userfaultfd is to be extended for * VM_UFFD_WP tracking and we intend to arm the userfault * without first stopping userland access to the memory. For * VM_UFFD_MISSING userfaults this is enough for now. */ if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { /* * Validate the invariant that nowait must allow retry * to be sure not to return SIGBUS erroneously on * nowait invocations. */ BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); #ifdef CONFIG_DEBUG_VM if (printk_ratelimit()) { printk(KERN_WARNING "FAULT_FLAG_ALLOW_RETRY missing %x\n", vmf->flags); dump_stack(); } #endif goto out; } /* * Handle nowait, not much to do other than tell it to retry * and wait. */ ret = VM_FAULT_RETRY; if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) goto out; /* take the reference before dropping the mmap_lock */ userfaultfd_ctx_get(ctx); init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); uwq.wq.private = current; uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, ctx->features); uwq.ctx = ctx; uwq.waken = false; blocking_state = userfaultfd_get_blocking_state(vmf->flags); spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); /* * The smp_mb() after __set_current_state prevents the reads * following the spin_unlock to happen before the list_add in * __add_wait_queue. */ set_current_state(blocking_state); spin_unlock_irq(&ctx->fault_pending_wqh.lock); if (!is_vm_hugetlb_page(vmf->vma)) must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, reason); else must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, vmf->address, vmf->flags, reason); mmap_read_unlock(mm); if (likely(must_wait && !READ_ONCE(ctx->released))) { wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); } __set_current_state(TASK_RUNNING); /* * Here we race with the list_del; list_add in * userfaultfd_ctx_read(), however because we don't ever run * list_del_init() to refile across the two lists, the prev * and next pointers will never point to self. list_add also * would never let any of the two pointers to point to * self. So list_empty_careful won't risk to see both pointers * pointing to self at any time during the list refile. The * only case where list_del_init() is called is the full * removal in the wake function and there we don't re-list_add * and it's fine not to block on the spinlock. The uwq on this * kernel stack can be released after the list_del_init. */ if (!list_empty_careful(&uwq.wq.entry)) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * No need of list_del_init(), the uwq on the stack * will be freed shortly anyway. */ list_del(&uwq.wq.entry); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ userfaultfd_ctx_put(ctx); out: return ret; } static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { struct userfaultfd_ctx *release_new_ctx; if (WARN_ON_ONCE(current->flags & PF_EXITING)) goto out; ewq->ctx = ctx; init_waitqueue_entry(&ewq->wq, current); release_new_ctx = NULL; spin_lock_irq(&ctx->event_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->event_wqh, &ewq->wq); for (;;) { set_current_state(TASK_KILLABLE); if (ewq->msg.event == 0) break; if (READ_ONCE(ctx->released) || fatal_signal_pending(current)) { /* * &ewq->wq may be queued in fork_event, but * __remove_wait_queue ignores the head * parameter. It would be a problem if it * didn't. */ __remove_wait_queue(&ctx->event_wqh, &ewq->wq); if (ewq->msg.event == UFFD_EVENT_FORK) { struct userfaultfd_ctx *new; new = (struct userfaultfd_ctx *) (unsigned long) ewq->msg.arg.reserved.reserved1; release_new_ctx = new; } break; } spin_unlock_irq(&ctx->event_wqh.lock); wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); spin_lock_irq(&ctx->event_wqh.lock); } __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->event_wqh.lock); if (release_new_ctx) { struct vm_area_struct *vma; struct mm_struct *mm = release_new_ctx->mm; /* the various vma->vm_userfaultfd_ctx still points to it */ mmap_write_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~__VM_UFFD_FLAGS; } mmap_write_unlock(mm); userfaultfd_ctx_put(release_new_ctx); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ out: atomic_dec(&ctx->mmap_changing); VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); userfaultfd_ctx_put(ctx); } static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { ewq->msg.event = 0; wake_up_locked(&ctx->event_wqh); __remove_wait_queue(&ctx->event_wqh, &ewq->wq); } int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) { struct userfaultfd_ctx *ctx = NULL, *octx; struct userfaultfd_fork_ctx *fctx; octx = vma->vm_userfaultfd_ctx.ctx; if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~__VM_UFFD_FLAGS; return 0; } list_for_each_entry(fctx, fcs, list) if (fctx->orig == octx) { ctx = fctx->new; break; } if (!ctx) { fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); if (!fctx) return -ENOMEM; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) { kfree(fctx); return -ENOMEM; } refcount_set(&ctx->refcount, 1); ctx->flags = octx->flags; ctx->features = octx->features; ctx->released = false; atomic_set(&ctx->mmap_changing, 0); ctx->mm = vma->vm_mm; mmgrab(ctx->mm); userfaultfd_ctx_get(octx); atomic_inc(&octx->mmap_changing); fctx->orig = octx; fctx->new = ctx; list_add_tail(&fctx->list, fcs); } vma->vm_userfaultfd_ctx.ctx = ctx; return 0; } static void dup_fctx(struct userfaultfd_fork_ctx *fctx) { struct userfaultfd_ctx *ctx = fctx->orig; struct userfaultfd_wait_queue ewq; msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_FORK; ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; userfaultfd_event_wait_completion(ctx, &ewq); } void dup_userfaultfd_complete(struct list_head *fcs) { struct userfaultfd_fork_ctx *fctx, *n; list_for_each_entry_safe(fctx, n, fcs, list) { dup_fctx(fctx); list_del(&fctx->list); kfree(fctx); } } void mremap_userfaultfd_prep(struct vm_area_struct *vma, struct vm_userfaultfd_ctx *vm_ctx) { struct userfaultfd_ctx *ctx; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx) return; if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { vm_ctx->ctx = ctx; userfaultfd_ctx_get(ctx); atomic_inc(&ctx->mmap_changing); } else { /* Drop uffd context if remap feature not enabled */ vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~__VM_UFFD_FLAGS; } } void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, unsigned long from, unsigned long to, unsigned long len) { struct userfaultfd_ctx *ctx = vm_ctx->ctx; struct userfaultfd_wait_queue ewq; if (!ctx) return; if (to & ~PAGE_MASK) { userfaultfd_ctx_put(ctx); return; } msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMAP; ewq.msg.arg.remap.from = from; ewq.msg.arg.remap.to = to; ewq.msg.arg.remap.len = len; userfaultfd_event_wait_completion(ctx, &ewq); } bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue ewq; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) return true; userfaultfd_ctx_get(ctx); atomic_inc(&ctx->mmap_changing); mmap_read_unlock(mm); msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMOVE; ewq.msg.arg.remove.start = start; ewq.msg.arg.remove.end = end; userfaultfd_event_wait_completion(ctx, &ewq); return false; } static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, unsigned long start, unsigned long end) { struct userfaultfd_unmap_ctx *unmap_ctx; list_for_each_entry(unmap_ctx, unmaps, list) if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && unmap_ctx->end == end) return true; return false; } int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *unmaps) { for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { struct userfaultfd_unmap_ctx *unmap_ctx; struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || has_unmap_ctx(ctx, unmaps, start, end)) continue; unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); if (!unmap_ctx) return -ENOMEM; userfaultfd_ctx_get(ctx); atomic_inc(&ctx->mmap_changing); unmap_ctx->ctx = ctx; unmap_ctx->start = start; unmap_ctx->end = end; list_add_tail(&unmap_ctx->list, unmaps); } return 0; } void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) { struct userfaultfd_unmap_ctx *ctx, *n; struct userfaultfd_wait_queue ewq; list_for_each_entry_safe(ctx, n, uf, list) { msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_UNMAP; ewq.msg.arg.remove.start = ctx->start; ewq.msg.arg.remove.end = ctx->end; userfaultfd_event_wait_completion(ctx->ctx, &ewq); list_del(&ctx->list); kfree(ctx); } } static int userfaultfd_release(struct inode *inode, struct file *file) { struct userfaultfd_ctx *ctx = file->private_data; struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev; /* len == 0 means wake all */ struct userfaultfd_wake_range range = { .len = 0, }; unsigned long new_flags; WRITE_ONCE(ctx->released, true); if (!mmget_not_zero(mm)) goto wakeup; /* * Flush page faults out of all CPUs. NOTE: all page faults * must be retried without returning VM_FAULT_SIGBUS if * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx * changes while handle_userfault released the mmap_lock. So * it's critical that released is set to true (above), before * taking the mmap_lock for writing. */ mmap_write_lock(mm); prev = NULL; for (vma = mm->mmap; vma; vma = vma->vm_next) { cond_resched(); BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ !!(vma->vm_flags & __VM_UFFD_FLAGS)); if (vma->vm_userfaultfd_ctx.ctx != ctx) { prev = vma; continue; } new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), NULL_VM_UFFD_CTX); if (prev) vma = prev; else prev = vma; vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; } mmap_write_unlock(mm); mmput(mm); wakeup: /* * After no new page faults can wait on this fault_*wqh, flush * the last page faults that may have been already waiting on * the fault_*wqh. */ spin_lock_irq(&ctx->fault_pending_wqh.lock); __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* Flush pending events that may still wait on event_wqh */ wake_up_all(&ctx->event_wqh); wake_up_poll(&ctx->fd_wqh, EPOLLHUP); userfaultfd_ctx_put(ctx); return 0; } /* fault_pending_wqh.lock must be hold by the caller */ static inline struct userfaultfd_wait_queue *find_userfault_in( wait_queue_head_t *wqh) { wait_queue_entry_t *wq; struct userfaultfd_wait_queue *uwq; lockdep_assert_held(&wqh->lock); uwq = NULL; if (!waitqueue_active(wqh)) goto out; /* walk in reverse to provide FIFO behavior to read userfaults */ wq = list_last_entry(&wqh->head, typeof(*wq), entry); uwq = container_of(wq, struct userfaultfd_wait_queue, wq); out: return uwq; } static inline struct userfaultfd_wait_queue *find_userfault( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->fault_pending_wqh); } static inline struct userfaultfd_wait_queue *find_userfault_evt( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->event_wqh); } static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) { struct userfaultfd_ctx *ctx = file->private_data; __poll_t ret; poll_wait(file, &ctx->fd_wqh, wait); if (!userfaultfd_is_initialized(ctx)) return EPOLLERR; /* * poll() never guarantees that read won't block. * userfaults can be waken before they're read(). */ if (unlikely(!(file->f_flags & O_NONBLOCK))) return EPOLLERR; /* * lockless access to see if there are pending faults * __pollwait last action is the add_wait_queue but * the spin_unlock would allow the waitqueue_active to * pass above the actual list_add inside * add_wait_queue critical section. So use a full * memory barrier to serialize the list_add write of * add_wait_queue() with the waitqueue_active read * below. */ ret = 0; smp_mb(); if (waitqueue_active(&ctx->fault_pending_wqh)) ret = EPOLLIN; else if (waitqueue_active(&ctx->event_wqh)) ret = EPOLLIN; return ret; } static const struct file_operations userfaultfd_fops; static int resolve_userfault_fork(struct userfaultfd_ctx *new, struct inode *inode, struct uffd_msg *msg) { int fd; fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); if (fd < 0) return fd; msg->arg.reserved.reserved1 = 0; msg->arg.fork.ufd = fd; return 0; } static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, struct uffd_msg *msg, struct inode *inode) { ssize_t ret; DECLARE_WAITQUEUE(wait, current); struct userfaultfd_wait_queue *uwq; /* * Handling fork event requires sleeping operations, so * we drop the event_wqh lock, then do these ops, then * lock it back and wake up the waiter. While the lock is * dropped the ewq may go away so we keep track of it * carefully. */ LIST_HEAD(fork_event); struct userfaultfd_ctx *fork_nctx = NULL; /* always take the fd_wqh lock before the fault_pending_wqh lock */ spin_lock_irq(&ctx->fd_wqh.lock); __add_wait_queue(&ctx->fd_wqh, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&ctx->fault_pending_wqh.lock); uwq = find_userfault(ctx); if (uwq) { /* * Use a seqcount to repeat the lockless check * in wake_userfault() to avoid missing * wakeups because during the refile both * waitqueue could become empty if this is the * only userfault. */ write_seqcount_begin(&ctx->refile_seq); /* * The fault_pending_wqh.lock prevents the uwq * to disappear from under us. * * Refile this userfault from * fault_pending_wqh to fault_wqh, it's not * pending anymore after we read it. * * Use list_del() by hand (as * userfaultfd_wake_function also uses * list_del_init() by hand) to be sure nobody * changes __remove_wait_queue() to use * list_del_init() in turn breaking the * !list_empty_careful() check in * handle_userfault(). The uwq->wq.head list * must never be empty at any time during the * refile, or the waitqueue could disappear * from under us. The "wait_queue_head_t" * parameter of __remove_wait_queue() is unused * anyway. */ list_del(&uwq->wq.entry); add_wait_queue(&ctx->fault_wqh, &uwq->wq); write_seqcount_end(&ctx->refile_seq); /* careful to always initialize msg if ret == 0 */ *msg = uwq->msg; spin_unlock(&ctx->fault_pending_wqh.lock); ret = 0; break; } spin_unlock(&ctx->fault_pending_wqh.lock); spin_lock(&ctx->event_wqh.lock); uwq = find_userfault_evt(ctx); if (uwq) { *msg = uwq->msg; if (uwq->msg.event == UFFD_EVENT_FORK) { fork_nctx = (struct userfaultfd_ctx *) (unsigned long) uwq->msg.arg.reserved.reserved1; list_move(&uwq->wq.entry, &fork_event); /* * fork_nctx can be freed as soon as * we drop the lock, unless we take a * reference on it. */ userfaultfd_ctx_get(fork_nctx); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } userfaultfd_event_complete(ctx, uwq); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } spin_unlock(&ctx->event_wqh.lock); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } if (no_wait) { ret = -EAGAIN; break; } spin_unlock_irq(&ctx->fd_wqh.lock); schedule(); spin_lock_irq(&ctx->fd_wqh.lock); } __remove_wait_queue(&ctx->fd_wqh, &wait); __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->fd_wqh.lock); if (!ret && msg->event == UFFD_EVENT_FORK) { ret = resolve_userfault_fork(fork_nctx, inode, msg); spin_lock_irq(&ctx->event_wqh.lock); if (!list_empty(&fork_event)) { /* * The fork thread didn't abort, so we can * drop the temporary refcount. */ userfaultfd_ctx_put(fork_nctx); uwq = list_first_entry(&fork_event, typeof(*uwq), wq.entry); /* * If fork_event list wasn't empty and in turn * the event wasn't already released by fork * (the event is allocated on fork kernel * stack), put the event back to its place in * the event_wq. fork_event head will be freed * as soon as we return so the event cannot * stay queued there no matter the current * "ret" value. */ list_del(&uwq->wq.entry); __add_wait_queue(&ctx->event_wqh, &uwq->wq); /* * Leave the event in the waitqueue and report * error to userland if we failed to resolve * the userfault fork. */ if (likely(!ret)) userfaultfd_event_complete(ctx, uwq); } else { /* * Here the fork thread aborted and the * refcount from the fork thread on fork_nctx * has already been released. We still hold * the reference we took before releasing the * lock above. If resolve_userfault_fork * failed we've to drop it because the * fork_nctx has to be freed in such case. If * it succeeded we'll hold it because the new * uffd references it. */ if (ret) userfaultfd_ctx_put(fork_nctx); } spin_unlock_irq(&ctx->event_wqh.lock); } return ret; } static ssize_t userfaultfd_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct userfaultfd_ctx *ctx = file->private_data; ssize_t _ret, ret = 0; struct uffd_msg msg; int no_wait = file->f_flags & O_NONBLOCK; struct inode *inode = file_inode(file); if (!userfaultfd_is_initialized(ctx)) return -EINVAL; for (;;) { if (count < sizeof(msg)) return ret ? ret : -EINVAL; _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); if (_ret < 0) return ret ? ret : _ret; if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) return ret ? ret : -EFAULT; ret += sizeof(msg); buf += sizeof(msg); count -= sizeof(msg); /* * Allow to read more than one fault at time but only * block if waiting for the very first one. */ no_wait = O_NONBLOCK; } } static void __wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* wake all in the range and autoremove */ if (waitqueue_active(&ctx->fault_pending_wqh)) __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, range); if (waitqueue_active(&ctx->fault_wqh)) __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { unsigned seq; bool need_wakeup; /* * To be sure waitqueue_active() is not reordered by the CPU * before the pagetable update, use an explicit SMP memory * barrier here. PT lock release or mmap_read_unlock(mm) still * have release semantics that can allow the * waitqueue_active() to be reordered before the pte update. */ smp_mb(); /* * Use waitqueue_active because it's very frequent to * change the address space atomically even if there are no * userfaults yet. So we take the spinlock only when we're * sure we've userfaults to wake. */ do { seq = read_seqcount_begin(&ctx->refile_seq); need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || waitqueue_active(&ctx->fault_wqh); cond_resched(); } while (read_seqcount_retry(&ctx->refile_seq, seq)); if (need_wakeup) __wake_userfault(ctx, range); } static __always_inline int validate_range(struct mm_struct *mm, __u64 start, __u64 len) { __u64 task_size = mm->task_size; if (start & ~PAGE_MASK) return -EINVAL; if (len & ~PAGE_MASK) return -EINVAL; if (!len) return -EINVAL; if (start < mmap_min_addr) return -EINVAL; if (start >= task_size) return -EINVAL; if (len > task_size - start) return -EINVAL; return 0; } static inline bool vma_can_userfault(struct vm_area_struct *vma, unsigned long vm_flags) { /* FIXME: add WP support to hugetlbfs and shmem */ if (vm_flags & VM_UFFD_WP) { if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) return false; } if (vm_flags & VM_UFFD_MINOR) { if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma))) return false; } return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || vma_is_shmem(vma); } static int userfaultfd_register(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev, *cur; int ret; struct uffdio_register uffdio_register; struct uffdio_register __user *user_uffdio_register; unsigned long vm_flags, new_flags; bool found; bool basic_ioctls; unsigned long start, end, vma_end; user_uffdio_register = (struct uffdio_register __user *) arg; ret = -EFAULT; if (copy_from_user(&uffdio_register, user_uffdio_register, sizeof(uffdio_register)-sizeof(__u64))) goto out; ret = -EINVAL; if (!uffdio_register.mode) goto out; if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) goto out; vm_flags = 0; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) vm_flags |= VM_UFFD_MISSING; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP goto out; #endif vm_flags |= VM_UFFD_WP; } if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR goto out; #endif vm_flags |= VM_UFFD_MINOR; } ret = validate_range(mm, uffdio_register.range.start, uffdio_register.range.len); if (ret) goto out; start = uffdio_register.range.start; end = start + uffdio_register.range.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; mmap_write_lock(mm); vma = find_vma_prev(mm, start, &prev); if (!vma) goto out_unlock; /* check that there's at least one vma in the range */ ret = -EINVAL; if (vma->vm_start >= end) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; basic_ioctls = false; for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & __VM_UFFD_FLAGS)); /* check not compatible vmas */ ret = -EINVAL; if (!vma_can_userfault(cur, vm_flags)) goto out_unlock; /* * UFFDIO_COPY will fill file holes even without * PROT_WRITE. This check enforces that if this is a * MAP_SHARED, the process has write permission to the backing * file. If VM_MAYWRITE is set it also enforces that on a * MAP_SHARED vma: there is no F_WRITE_SEAL and no further * F_WRITE_SEAL can be taken until the vma is destroyed. */ ret = -EPERM; if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) goto out_unlock; /* * If this vma contains ending address, and huge pages * check alignment. */ if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && end > cur->vm_start) { unsigned long vma_hpagesize = vma_kernel_pagesize(cur); ret = -EINVAL; if (end & (vma_hpagesize - 1)) goto out_unlock; } if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) goto out_unlock; /* * Check that this vma isn't already owned by a * different userfaultfd. We can't allow more than one * userfaultfd to own a single vma simultaneously or we * wouldn't know which one to deliver the userfaults to. */ ret = -EBUSY; if (cur->vm_userfaultfd_ctx.ctx && cur->vm_userfaultfd_ctx.ctx != ctx) goto out_unlock; /* * Note vmas containing huge pages */ if (is_vm_hugetlb_page(cur)) basic_ioctls = true; found = true; } BUG_ON(!found); if (vma->vm_start < start) prev = vma; ret = 0; do { cond_resched(); BUG_ON(!vma_can_userfault(vma, vm_flags)); BUG_ON(vma->vm_userfaultfd_ctx.ctx && vma->vm_userfaultfd_ctx.ctx != ctx); WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); /* * Nothing to do: this vma is already registered into this * userfaultfd and with the right tracking mode too. */ if (vma->vm_userfaultfd_ctx.ctx == ctx && (vma->vm_flags & vm_flags) == vm_flags) goto skip; if (vma->vm_start > start) start = vma->vm_start; vma_end = min(end, vma->vm_end); new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; prev = vma_merge(mm, prev, start, vma_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), ((struct vm_userfaultfd_ctx){ ctx })); if (prev) { vma = prev; goto next; } if (vma->vm_start < start) { ret = split_vma(mm, vma, start, 1); if (ret) break; } if (vma->vm_end > end) { ret = split_vma(mm, vma, end, 0); if (ret) break; } next: /* * In the vma_merge() successful mprotect-like case 8: * the next vma was merged into the current one and * the current one has not been updated yet. */ vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx.ctx = ctx; if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) hugetlb_unshare_all_pmds(vma); skip: prev = vma; start = vma->vm_end; vma = vma->vm_next; } while (vma && vma->vm_start < end); out_unlock: mmap_write_unlock(mm); mmput(mm); if (!ret) { __u64 ioctls_out; ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : UFFD_API_RANGE_IOCTLS; /* * Declare the WP ioctl only if the WP mode is * specified and all checks passed with the range */ if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); /* CONTINUE ioctl is only supported for MINOR ranges. */ if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); /* * Now that we scanned all vmas we can already tell * userland which ioctls methods are guaranteed to * succeed on this range. */ if (put_user(ioctls_out, &user_uffdio_register->ioctls)) ret = -EFAULT; } out: return ret; } static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev, *cur; int ret; struct uffdio_range uffdio_unregister; unsigned long new_flags; bool found; unsigned long start, end, vma_end; const void __user *buf = (void __user *)arg; ret = -EFAULT; if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) goto out; ret = validate_range(mm, uffdio_unregister.start, uffdio_unregister.len); if (ret) goto out; start = uffdio_unregister.start; end = start + uffdio_unregister.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; mmap_write_lock(mm); vma = find_vma_prev(mm, start, &prev); if (!vma) goto out_unlock; /* check that there's at least one vma in the range */ ret = -EINVAL; if (vma->vm_start >= end) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; ret = -EINVAL; for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & __VM_UFFD_FLAGS)); /* * Check not compatible vmas, not strictly required * here as not compatible vmas cannot have an * userfaultfd_ctx registered on them, but this * provides for more strict behavior to notice * unregistration errors. */ if (!vma_can_userfault(cur, cur->vm_flags)) goto out_unlock; found = true; } BUG_ON(!found); if (vma->vm_start < start) prev = vma; ret = 0; do { cond_resched(); BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); /* * Nothing to do: this vma is already registered into this * userfaultfd and with the right tracking mode too. */ if (!vma->vm_userfaultfd_ctx.ctx) goto skip; WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); if (vma->vm_start > start) start = vma->vm_start; vma_end = min(end, vma->vm_end); if (userfaultfd_missing(vma)) { /* * Wake any concurrent pending userfault while * we unregister, so they will not hang * permanently and it avoids userland to call * UFFDIO_WAKE explicitly. */ struct userfaultfd_wake_range range; range.start = start; range.len = vma_end - start; wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); } new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; prev = vma_merge(mm, prev, start, vma_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), NULL_VM_UFFD_CTX); if (prev) { vma = prev; goto next; } if (vma->vm_start < start) { ret = split_vma(mm, vma, start, 1); if (ret) break; } if (vma->vm_end > end) { ret = split_vma(mm, vma, end, 0); if (ret) break; } next: /* * In the vma_merge() successful mprotect-like case 8: * the next vma was merged into the current one and * the current one has not been updated yet. */ vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; skip: prev = vma; start = vma->vm_end; vma = vma->vm_next; } while (vma && vma->vm_start < end); out_unlock: mmap_write_unlock(mm); mmput(mm); out: return ret; } /* * userfaultfd_wake may be used in combination with the * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. */ static int userfaultfd_wake(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_range uffdio_wake; struct userfaultfd_wake_range range; const void __user *buf = (void __user *)arg; ret = -EFAULT; if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) goto out; ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); if (ret) goto out; range.start = uffdio_wake.start; range.len = uffdio_wake.len; /* * len == 0 means wake all and we don't want to wake all here, * so check it again to be sure. */ VM_BUG_ON(!range.len); wake_userfault(ctx, &range); ret = 0; out: return ret; } static int userfaultfd_copy(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_copy uffdio_copy; struct uffdio_copy __user *user_uffdio_copy; struct userfaultfd_wake_range range; user_uffdio_copy = (struct uffdio_copy __user *) arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_copy, user_uffdio_copy, /* don't copy "copy" last field */ sizeof(uffdio_copy)-sizeof(__s64))) goto out; ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); if (ret) goto out; /* * double check for wraparound just in case. copy_from_user() * will later check uffdio_copy.src + uffdio_copy.len to fit * in the userland range. */ ret = -EINVAL; if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) goto out; if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) goto out; if (mmget_not_zero(ctx->mm)) { ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, uffdio_copy.len, &ctx->mmap_changing, uffdio_copy.mode); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_copy->copy))) return -EFAULT; if (ret < 0) goto out; BUG_ON(!ret); /* len == 0 would wake all */ range.len = ret; if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { range.start = uffdio_copy.dst; wake_userfault(ctx, &range); } ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_zeropage uffdio_zeropage; struct uffdio_zeropage __user *user_uffdio_zeropage; struct userfaultfd_wake_range range; user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, /* don't copy "zeropage" last field */ sizeof(uffdio_zeropage)-sizeof(__s64))) goto out; ret = validate_range(ctx->mm, uffdio_zeropage.range.start, uffdio_zeropage.range.len); if (ret) goto out; ret = -EINVAL; if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) goto out; if (mmget_not_zero(ctx->mm)) { ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, uffdio_zeropage.range.len, &ctx->mmap_changing); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { range.start = uffdio_zeropage.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_writeprotect uffdio_wp; struct uffdio_writeprotect __user *user_uffdio_wp; struct userfaultfd_wake_range range; bool mode_wp, mode_dontwake; if (atomic_read(&ctx->mmap_changing)) return -EAGAIN; user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; if (copy_from_user(&uffdio_wp, user_uffdio_wp, sizeof(struct uffdio_writeprotect))) return -EFAULT; ret = validate_range(ctx->mm, uffdio_wp.range.start, uffdio_wp.range.len); if (ret) return ret; if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | UFFDIO_WRITEPROTECT_MODE_WP)) return -EINVAL; mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; if (mode_wp && mode_dontwake) return -EINVAL; if (mmget_not_zero(ctx->mm)) { ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, uffdio_wp.range.len, mode_wp, &ctx->mmap_changing); mmput(ctx->mm); } else { return -ESRCH; } if (ret) return ret; if (!mode_wp && !mode_dontwake) { range.start = uffdio_wp.range.start; range.len = uffdio_wp.range.len; wake_userfault(ctx, &range); } return ret; } static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_continue uffdio_continue; struct uffdio_continue __user *user_uffdio_continue; struct userfaultfd_wake_range range; user_uffdio_continue = (struct uffdio_continue __user *)arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_continue, user_uffdio_continue, /* don't copy the output fields */ sizeof(uffdio_continue) - (sizeof(__s64)))) goto out; ret = validate_range(ctx->mm, uffdio_continue.range.start, uffdio_continue.range.len); if (ret) goto out; ret = -EINVAL; /* double check for wraparound just in case. */ if (uffdio_continue.range.start + uffdio_continue.range.len <= uffdio_continue.range.start) { goto out; } if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) goto out; if (mmget_not_zero(ctx->mm)) { ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, uffdio_continue.range.len, &ctx->mmap_changing); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { range.start = uffdio_continue.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; out: return ret; } static inline unsigned int uffd_ctx_features(__u64 user_features) { /* * For the current set of features the bits just coincide. Set * UFFD_FEATURE_INITIALIZED to mark the features as enabled. */ return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; } /* * userland asks for a certain API version and we return which bits * and ioctl commands are implemented in this kernel for such API * version or -EINVAL if unknown. */ static int userfaultfd_api(struct userfaultfd_ctx *ctx, unsigned long arg) { struct uffdio_api uffdio_api; void __user *buf = (void __user *)arg; unsigned int ctx_features; int ret; __u64 features; ret = -EFAULT; if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) goto out; features = uffdio_api.features; ret = -EINVAL; if (uffdio_api.api != UFFD_API) goto err_out; ret = -EPERM; if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) goto err_out; /* report all available features and ioctls to userland */ uffdio_api.features = UFFD_API_FEATURES; #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR uffdio_api.features &= ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); #endif #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; #endif ret = -EINVAL; if (features & ~uffdio_api.features) goto err_out; uffdio_api.ioctls = UFFD_API_IOCTLS; ret = -EFAULT; if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) goto out; /* only enable the requested features for this uffd context */ ctx_features = uffd_ctx_features(features); ret = -EINVAL; if (cmpxchg(&ctx->features, 0, ctx_features) != 0) goto err_out; ret = 0; out: return ret; err_out: memset(&uffdio_api, 0, sizeof(uffdio_api)); if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) ret = -EFAULT; goto out; } static long userfaultfd_ioctl(struct file *file, unsigned cmd, unsigned long arg) { int ret = -EINVAL; struct userfaultfd_ctx *ctx = file->private_data; if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) return -EINVAL; switch(cmd) { case UFFDIO_API: ret = userfaultfd_api(ctx, arg); break; case UFFDIO_REGISTER: ret = userfaultfd_register(ctx, arg); break; case UFFDIO_UNREGISTER: ret = userfaultfd_unregister(ctx, arg); break; case UFFDIO_WAKE: ret = userfaultfd_wake(ctx, arg); break; case UFFDIO_COPY: ret = userfaultfd_copy(ctx, arg); break; case UFFDIO_ZEROPAGE: ret = userfaultfd_zeropage(ctx, arg); break; case UFFDIO_WRITEPROTECT: ret = userfaultfd_writeprotect(ctx, arg); break; case UFFDIO_CONTINUE: ret = userfaultfd_continue(ctx, arg); break; } return ret; } #ifdef CONFIG_PROC_FS static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) { struct userfaultfd_ctx *ctx = f->private_data; wait_queue_entry_t *wq; unsigned long pending = 0, total = 0; spin_lock_irq(&ctx->fault_pending_wqh.lock); list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { pending++; total++; } list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { total++; } spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* * If more protocols will be added, there will be all shown * separated by a space. Like this: * protocols: aa:... bb:... */ seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", pending, total, UFFD_API, ctx->features, UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); } #endif static const struct file_operations userfaultfd_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = userfaultfd_show_fdinfo, #endif .release = userfaultfd_release, .poll = userfaultfd_poll, .read = userfaultfd_read, .unlocked_ioctl = userfaultfd_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static void init_once_userfaultfd_ctx(void *mem) { struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; init_waitqueue_head(&ctx->fault_pending_wqh); init_waitqueue_head(&ctx->fault_wqh); init_waitqueue_head(&ctx->event_wqh); init_waitqueue_head(&ctx->fd_wqh); seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); } SYSCALL_DEFINE1(userfaultfd, int, flags) { struct userfaultfd_ctx *ctx; int fd; if (!sysctl_unprivileged_userfaultfd && (flags & UFFD_USER_MODE_ONLY) == 0 && !capable(CAP_SYS_PTRACE)) { printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " "sysctl knob to 1 if kernel faults must be handled " "without obtaining CAP_SYS_PTRACE capability\n"); return -EPERM; } BUG_ON(!current->mm); /* Check the UFFD_* constants for consistency. */ BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) return -EINVAL; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) return -ENOMEM; refcount_set(&ctx->refcount, 1); ctx->flags = flags; ctx->features = 0; ctx->released = false; atomic_set(&ctx->mmap_changing, 0); ctx->mm = current->mm; /* prevent the mm struct to be freed */ mmgrab(ctx->mm); fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); if (fd < 0) { mmdrop(ctx->mm); kmem_cache_free(userfaultfd_ctx_cachep, ctx); } return fd; } static int __init userfaultfd_init(void) { userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", sizeof(struct userfaultfd_ctx), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, init_once_userfaultfd_ctx); return 0; } __initcall(userfaultfd_init); |
45 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 | /* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/module.h> #include <net/tcp.h> #include <net/inet_common.h> #include <linux/highmem.h> #include <linux/netdevice.h> #include <linux/sched/signal.h> #include <linux/inetdevice.h> #include <linux/inet_diag.h> #include <net/snmp.h> #include <net/tls.h> #include <net/tls_toe.h> MODULE_AUTHOR("Mellanox Technologies"); MODULE_DESCRIPTION("Transport Layer Security Support"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS_TCP_ULP("tls"); enum { TLSV4, TLSV6, TLS_NUM_PROTS, }; static const struct proto *saved_tcpv6_prot; static DEFINE_MUTEX(tcpv6_prot_mutex); static const struct proto *saved_tcpv4_prot; static DEFINE_MUTEX(tcpv4_prot_mutex); static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto *base); void update_sk_prot(struct sock *sk, struct tls_context *ctx) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; WRITE_ONCE(sk->sk_prot, &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); WRITE_ONCE(sk->sk_socket->ops, &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); } int wait_on_pending_writer(struct sock *sk, long *timeo) { int rc = 0; DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); while (1) { if (!*timeo) { rc = -EAGAIN; break; } if (signal_pending(current)) { rc = sock_intr_errno(*timeo); break; } if (sk_wait_event(sk, timeo, !READ_ONCE(sk->sk_write_pending), &wait)) break; } remove_wait_queue(sk_sleep(sk), &wait); return rc; } int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags) { int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; int ret = 0; struct page *p; size_t size; int offset = first_offset; size = sg->length - offset; offset += sg->offset; ctx->in_tcp_sendpages = true; while (1) { if (sg_is_last(sg)) sendpage_flags = flags; /* is sending application-limited? */ tcp_rate_check_app_limited(sk); p = sg_page(sg); retry: ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); if (ret != size) { if (ret > 0) { offset += ret; size -= ret; goto retry; } offset -= sg->offset; ctx->partially_sent_offset = offset; ctx->partially_sent_record = (void *)sg; ctx->in_tcp_sendpages = false; return ret; } put_page(p); sk_mem_uncharge(sk, sg->length); sg = sg_next(sg); if (!sg) break; offset = sg->offset; size = sg->length; } ctx->in_tcp_sendpages = false; return 0; } static int tls_handle_open_record(struct sock *sk, int flags) { struct tls_context *ctx = tls_get_ctx(sk); if (tls_is_pending_open_record(ctx)) return ctx->push_pending_record(sk, flags); return 0; } int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type) { struct cmsghdr *cmsg; int rc = -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_TLS) continue; switch (cmsg->cmsg_type) { case TLS_SET_RECORD_TYPE: if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) return -EINVAL; if (msg->msg_flags & MSG_MORE) return -EINVAL; rc = tls_handle_open_record(sk, msg->msg_flags); if (rc) return rc; *record_type = *(unsigned char *)CMSG_DATA(cmsg); rc = 0; break; default: return -EINVAL; } } return rc; } int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags) { struct scatterlist *sg; u16 offset; sg = ctx->partially_sent_record; offset = ctx->partially_sent_offset; ctx->partially_sent_record = NULL; return tls_push_sg(sk, ctx, sg, offset, flags); } void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) { struct scatterlist *sg; for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { put_page(sg_page(sg)); sk_mem_uncharge(sk, sg->length); } ctx->partially_sent_record = NULL; } static void tls_write_space(struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); /* If in_tcp_sendpages call lower protocol write space handler * to ensure we wake up any waiting operations there. For example * if do_tcp_sendpages where to call sk_wait_event. */ if (ctx->in_tcp_sendpages) { ctx->sk_write_space(sk); return; } #ifdef CONFIG_TLS_DEVICE if (ctx->tx_conf == TLS_HW) tls_device_write_space(sk, ctx); else #endif tls_sw_write_space(sk, ctx); ctx->sk_write_space(sk); } /** * tls_ctx_free() - free TLS ULP context * @sk: socket to with @ctx is attached * @ctx: TLS context structure * * Free TLS context. If @sk is %NULL caller guarantees that the socket * to which @ctx was attached has no outstanding references. */ void tls_ctx_free(struct sock *sk, struct tls_context *ctx) { if (!ctx) return; memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); mutex_destroy(&ctx->tx_lock); if (sk) kfree_rcu(ctx, rcu); else kfree(ctx); } static void tls_sk_proto_cleanup(struct sock *sk, struct tls_context *ctx, long timeo) { if (unlikely(sk->sk_write_pending) && !wait_on_pending_writer(sk, &timeo)) tls_handle_open_record(sk, 0); /* We need these for tls_sw_fallback handling of other packets */ if (ctx->tx_conf == TLS_SW) { kfree(ctx->tx.rec_seq); kfree(ctx->tx.iv); tls_sw_release_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); } else if (ctx->tx_conf == TLS_HW) { tls_device_free_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } if (ctx->rx_conf == TLS_SW) { tls_sw_release_resources_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); } else if (ctx->rx_conf == TLS_HW) { tls_device_offload_cleanup_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } } static void tls_sk_proto_close(struct sock *sk, long timeout) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx = tls_get_ctx(sk); long timeo = sock_sndtimeo(sk, 0); bool free_ctx; if (ctx->tx_conf == TLS_SW) tls_sw_cancel_work_tx(ctx); lock_sock(sk); free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) tls_sk_proto_cleanup(sk, ctx, timeo); write_lock_bh(&sk->sk_callback_lock); if (free_ctx) rcu_assign_pointer(icsk->icsk_ulp_data, NULL); WRITE_ONCE(sk->sk_prot, ctx->sk_proto); if (sk->sk_write_space == tls_write_space) sk->sk_write_space = ctx->sk_write_space; write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); if (ctx->tx_conf == TLS_SW) tls_sw_free_ctx_tx(ctx); if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) tls_sw_strparser_done(ctx); if (ctx->rx_conf == TLS_SW) tls_sw_free_ctx_rx(ctx); ctx->sk_proto->close(sk, timeout); if (free_ctx) tls_ctx_free(sk, ctx); } static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, int __user *optlen, int tx) { int rc = 0; struct tls_context *ctx = tls_get_ctx(sk); struct tls_crypto_info *crypto_info; struct cipher_context *cctx; int len; if (get_user(len, optlen)) return -EFAULT; if (!optval || (len < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (!ctx) { rc = -EBUSY; goto out; } /* get user crypto info */ if (tx) { crypto_info = &ctx->crypto_send.info; cctx = &ctx->tx; } else { crypto_info = &ctx->crypto_recv.info; cctx = &ctx->rx; } if (!TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } if (len == sizeof(*crypto_info)) { if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) rc = -EFAULT; goto out; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { struct tls12_crypto_info_aes_gcm_128 * crypto_info_aes_gcm_128 = container_of(crypto_info, struct tls12_crypto_info_aes_gcm_128, info); if (len != sizeof(*crypto_info_aes_gcm_128)) { rc = -EINVAL; goto out; } memcpy(crypto_info_aes_gcm_128->iv, cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); if (copy_to_user(optval, crypto_info_aes_gcm_128, sizeof(*crypto_info_aes_gcm_128))) rc = -EFAULT; break; } case TLS_CIPHER_AES_GCM_256: { struct tls12_crypto_info_aes_gcm_256 * crypto_info_aes_gcm_256 = container_of(crypto_info, struct tls12_crypto_info_aes_gcm_256, info); if (len != sizeof(*crypto_info_aes_gcm_256)) { rc = -EINVAL; goto out; } memcpy(crypto_info_aes_gcm_256->iv, cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, TLS_CIPHER_AES_GCM_256_IV_SIZE); memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); if (copy_to_user(optval, crypto_info_aes_gcm_256, sizeof(*crypto_info_aes_gcm_256))) rc = -EFAULT; break; } default: rc = -EINVAL; } out: return rc; } static int do_tls_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int rc = 0; lock_sock(sk); switch (optname) { case TLS_TX: case TLS_RX: rc = do_tls_getsockopt_conf(sk, optval, optlen, optname == TLS_TX); break; default: rc = -ENOPROTOOPT; break; } release_sock(sk); return rc; } static int tls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->getsockopt(sk, level, optname, optval, optlen); return do_tls_getsockopt(sk, optname, optval, optlen); } static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, unsigned int optlen, int tx) { struct tls_crypto_info *crypto_info; struct tls_crypto_info *alt_crypto_info; struct tls_context *ctx = tls_get_ctx(sk); size_t optsize; int rc = 0; int conf; if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (tx) { crypto_info = &ctx->crypto_send.info; alt_crypto_info = &ctx->crypto_recv.info; } else { crypto_info = &ctx->crypto_recv.info; alt_crypto_info = &ctx->crypto_send.info; } /* Currently we don't support set crypto info more than one time */ if (TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } /* check version */ if (crypto_info->version != TLS_1_2_VERSION && crypto_info->version != TLS_1_3_VERSION) { rc = -EINVAL; goto err_crypto_info; } /* Ensure that TLS version and ciphers are same in both directions */ if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { if (alt_crypto_info->version != crypto_info->version || alt_crypto_info->cipher_type != crypto_info->cipher_type) { rc = -EINVAL; goto err_crypto_info; } } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); break; case TLS_CIPHER_AES_GCM_256: { optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); break; } case TLS_CIPHER_AES_CCM_128: optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); break; case TLS_CIPHER_CHACHA20_POLY1305: optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); break; default: rc = -EINVAL; goto err_crypto_info; } if (optlen != optsize) { rc = -EINVAL; goto err_crypto_info; } rc = copy_from_sockptr_offset(crypto_info + 1, optval, sizeof(*crypto_info), optlen - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } if (tx) { rc = tls_set_device_offload(sk, ctx); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } else { rc = tls_set_sw_offload(sk, ctx, 1); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); conf = TLS_SW; } } else { rc = tls_set_device_offload_rx(sk, ctx); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } else { rc = tls_set_sw_offload(sk, ctx, 0); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); conf = TLS_SW; } tls_sw_strparser_arm(sk, ctx); } if (tx) ctx->tx_conf = conf; else ctx->rx_conf = conf; update_sk_prot(sk, ctx); if (tx) { ctx->sk_write_space = sk->sk_write_space; sk->sk_write_space = tls_write_space; } goto out; err_crypto_info: memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); out: return rc; } static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { int rc = 0; switch (optname) { case TLS_TX: case TLS_RX: lock_sock(sk); rc = do_tls_setsockopt_conf(sk, optval, optlen, optname == TLS_TX); release_sock(sk); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->setsockopt(sk, level, optname, optval, optlen); return do_tls_setsockopt(sk, optname, optval, optlen); } struct tls_context *tls_ctx_create(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx; ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); if (!ctx) return NULL; mutex_init(&ctx->tx_lock); ctx->sk_proto = READ_ONCE(sk->sk_prot); ctx->sk = sk; /* Release semantic of rcu_assign_pointer() ensures that * ctx->sk_proto is visible before changing sk->sk_prot in * update_sk_prot(), and prevents reading uninitialized value in * tls_{getsockopt, setsockopt}. Note that we do not need a * read barrier in tls_{getsockopt,setsockopt} as there is an * address dependency between sk->sk_proto->{getsockopt,setsockopt} * and ctx->sk_proto. */ rcu_assign_pointer(icsk->icsk_ulp_data, ctx); return ctx; } static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto_ops *base) { ops[TLS_BASE][TLS_BASE] = *base; ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; #ifdef CONFIG_TLS_DEVICE ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; #endif #ifdef CONFIG_TLS_TOE ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; #endif } static void tls_build_proto(struct sock *sk) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; struct proto *prot = READ_ONCE(sk->sk_prot); /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ if (ip_ver == TLSV6 && unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { mutex_lock(&tcpv6_prot_mutex); if (likely(prot != saved_tcpv6_prot)) { build_protos(tls_prots[TLSV6], prot); build_proto_ops(tls_proto_ops[TLSV6], sk->sk_socket->ops); smp_store_release(&saved_tcpv6_prot, prot); } mutex_unlock(&tcpv6_prot_mutex); } if (ip_ver == TLSV4 && unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { mutex_lock(&tcpv4_prot_mutex); if (likely(prot != saved_tcpv4_prot)) { build_protos(tls_prots[TLSV4], prot); build_proto_ops(tls_proto_ops[TLSV4], sk->sk_socket->ops); smp_store_release(&saved_tcpv4_prot, prot); } mutex_unlock(&tcpv4_prot_mutex); } } static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto *base) { prot[TLS_BASE][TLS_BASE] = *base; prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; #ifdef CONFIG_TLS_DEVICE prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; #endif #ifdef CONFIG_TLS_TOE prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; #endif } static int tls_init(struct sock *sk) { struct tls_context *ctx; int rc = 0; tls_build_proto(sk); #ifdef CONFIG_TLS_TOE if (tls_toe_bypass(sk)) return 0; #endif /* The TLS ulp is currently supported only for TCP sockets * in ESTABLISHED state. * Supporting sockets in LISTEN state will require us * to modify the accept implementation to clone rather then * share the ulp context. */ if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; /* allocate tls context */ write_lock_bh(&sk->sk_callback_lock); ctx = tls_ctx_create(sk); if (!ctx) { rc = -ENOMEM; goto out; } ctx->tx_conf = TLS_BASE; ctx->rx_conf = TLS_BASE; update_sk_prot(sk, ctx); out: write_unlock_bh(&sk->sk_callback_lock); return rc; } static void tls_update(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)) { struct tls_context *ctx; WARN_ON_ONCE(sk->sk_prot == p); ctx = tls_get_ctx(sk); if (likely(ctx)) { ctx->sk_write_space = write_space; ctx->sk_proto = p; } else { /* Pairs with lockless read in sk_clone_lock(). */ WRITE_ONCE(sk->sk_prot, p); sk->sk_write_space = write_space; } } static int tls_get_info(struct sock *sk, struct sk_buff *skb) { u16 version, cipher_type; struct tls_context *ctx; struct nlattr *start; int err; start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); if (!start) return -EMSGSIZE; rcu_read_lock(); ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); if (!ctx) { err = 0; goto nla_failure; } version = ctx->prot_info.version; if (version) { err = nla_put_u16(skb, TLS_INFO_VERSION, version); if (err) goto nla_failure; } cipher_type = ctx->prot_info.cipher_type; if (cipher_type) { err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); if (err) goto nla_failure; } err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); if (err) goto nla_failure; err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); if (err) goto nla_failure; rcu_read_unlock(); nla_nest_end(skb, start); return 0; nla_failure: rcu_read_unlock(); nla_nest_cancel(skb, start); return err; } static size_t tls_get_info_size(const struct sock *sk) { size_t size = 0; size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 0; return size; } static int __net_init tls_init_net(struct net *net) { int err; net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); if (!net->mib.tls_statistics) return -ENOMEM; err = tls_proc_init(net); if (err) goto err_free_stats; return 0; err_free_stats: free_percpu(net->mib.tls_statistics); return err; } static void __net_exit tls_exit_net(struct net *net) { tls_proc_fini(net); free_percpu(net->mib.tls_statistics); } static struct pernet_operations tls_proc_ops = { .init = tls_init_net, .exit = tls_exit_net, }; static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { .name = "tls", .owner = THIS_MODULE, .init = tls_init, .update = tls_update, .get_info = tls_get_info, .get_info_size = tls_get_info_size, }; static int __init tls_register(void) { int err; err = register_pernet_subsys(&tls_proc_ops); if (err) return err; err = tls_device_init(); if (err) { unregister_pernet_subsys(&tls_proc_ops); return err; } tcp_register_ulp(&tcp_tls_ulp_ops); return 0; } static void __exit tls_unregister(void) { tcp_unregister_ulp(&tcp_tls_ulp_ops); tls_device_cleanup(); unregister_pernet_subsys(&tls_proc_ops); } module_init(tls_register); module_exit(tls_unregister); |
4 4 9 9 3 3 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner */ #include "gateway_client.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/kernel.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/udp.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "hard-interface.h" #include "log.h" #include "netlink.h" #include "originator.h" #include "routing.h" #include "soft-interface.h" #include "translation-table.h" /* These are the offsets of the "hw type" and "hw address length" in the dhcp * packet starting at the beginning of the dhcp header */ #define BATADV_DHCP_HTYPE_OFFSET 1 #define BATADV_DHCP_HLEN_OFFSET 2 /* Value of htype representing Ethernet */ #define BATADV_DHCP_HTYPE_ETHERNET 0x01 /* This is the offset of the "chaddr" field in the dhcp packet starting at the * beginning of the dhcp header */ #define BATADV_DHCP_CHADDR_OFFSET 28 /** * batadv_gw_node_release() - release gw_node from lists and queue for free * after rcu grace period * @ref: kref pointer of the gw_node */ void batadv_gw_node_release(struct kref *ref) { struct batadv_gw_node *gw_node; gw_node = container_of(ref, struct batadv_gw_node, refcount); batadv_orig_node_put(gw_node->orig_node); kfree_rcu(gw_node, rcu); } /** * batadv_gw_get_selected_gw_node() - Get currently selected gateway * @bat_priv: the bat priv with all the soft interface information * * Return: selected gateway (with increased refcnt), NULL on errors */ struct batadv_gw_node * batadv_gw_get_selected_gw_node(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; rcu_read_lock(); gw_node = rcu_dereference(bat_priv->gw.curr_gw); if (!gw_node) goto out; if (!kref_get_unless_zero(&gw_node->refcount)) gw_node = NULL; out: rcu_read_unlock(); return gw_node; } /** * batadv_gw_get_selected_orig() - Get originator of currently selected gateway * @bat_priv: the bat priv with all the soft interface information * * Return: orig_node of selected gateway (with increased refcnt), NULL on errors */ struct batadv_orig_node * batadv_gw_get_selected_orig(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; struct batadv_orig_node *orig_node = NULL; gw_node = batadv_gw_get_selected_gw_node(bat_priv); if (!gw_node) goto out; rcu_read_lock(); orig_node = gw_node->orig_node; if (!orig_node) goto unlock; if (!kref_get_unless_zero(&orig_node->refcount)) orig_node = NULL; unlock: rcu_read_unlock(); out: batadv_gw_node_put(gw_node); return orig_node; } static void batadv_gw_select(struct batadv_priv *bat_priv, struct batadv_gw_node *new_gw_node) { struct batadv_gw_node *curr_gw_node; spin_lock_bh(&bat_priv->gw.list_lock); if (new_gw_node) kref_get(&new_gw_node->refcount); curr_gw_node = rcu_replace_pointer(bat_priv->gw.curr_gw, new_gw_node, true); batadv_gw_node_put(curr_gw_node); spin_unlock_bh(&bat_priv->gw.list_lock); } /** * batadv_gw_reselect() - force a gateway reselection * @bat_priv: the bat priv with all the soft interface information * * Set a flag to remind the GW component to perform a new gateway reselection. * However this function does not ensure that the current gateway is going to be * deselected. The reselection mechanism may elect the same gateway once again. * * This means that invoking batadv_gw_reselect() does not guarantee a gateway * change and therefore a uevent is not necessarily expected. */ void batadv_gw_reselect(struct batadv_priv *bat_priv) { atomic_set(&bat_priv->gw.reselect, 1); } /** * batadv_gw_check_client_stop() - check if client mode has been switched off * @bat_priv: the bat priv with all the soft interface information * * This function assumes the caller has checked that the gw state *is actually * changing*. This function is not supposed to be called when there is no state * change. */ void batadv_gw_check_client_stop(struct batadv_priv *bat_priv) { struct batadv_gw_node *curr_gw; if (atomic_read(&bat_priv->gw.mode) != BATADV_GW_MODE_CLIENT) return; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!curr_gw) return; /* deselect the current gateway so that next time that client mode is * enabled a proper GW_ADD event can be sent */ batadv_gw_select(bat_priv, NULL); /* if batman-adv is switching the gw client mode off and a gateway was * already selected, send a DEL uevent */ batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_DEL, NULL); batadv_gw_node_put(curr_gw); } /** * batadv_gw_election() - Elect the best gateway * @bat_priv: the bat priv with all the soft interface information */ void batadv_gw_election(struct batadv_priv *bat_priv) { struct batadv_gw_node *curr_gw = NULL; struct batadv_gw_node *next_gw = NULL; struct batadv_neigh_node *router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; char gw_addr[18] = { '\0' }; if (atomic_read(&bat_priv->gw.mode) != BATADV_GW_MODE_CLIENT) goto out; if (!bat_priv->algo_ops->gw.get_best_gw_node) goto out; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!batadv_atomic_dec_not_zero(&bat_priv->gw.reselect) && curr_gw) goto out; /* if gw.reselect is set to 1 it means that a previous call to * gw.is_eligible() said that we have a new best GW, therefore it can * now be picked from the list and selected */ next_gw = bat_priv->algo_ops->gw.get_best_gw_node(bat_priv); if (curr_gw == next_gw) goto out; if (next_gw) { sprintf(gw_addr, "%pM", next_gw->orig_node->orig); router = batadv_orig_router_get(next_gw->orig_node, BATADV_IF_DEFAULT); if (!router) { batadv_gw_reselect(bat_priv); goto out; } router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) { batadv_gw_reselect(bat_priv); goto out; } } if (curr_gw && !next_gw) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Removing selected gateway - no gateway in range\n"); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_DEL, NULL); } else if (!curr_gw && next_gw) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Adding route to gateway %pM (bandwidth: %u.%u/%u.%u MBit, tq: %i)\n", next_gw->orig_node->orig, next_gw->bandwidth_down / 10, next_gw->bandwidth_down % 10, next_gw->bandwidth_up / 10, next_gw->bandwidth_up % 10, router_ifinfo->bat_iv.tq_avg); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_ADD, gw_addr); } else { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Changing route to gateway %pM (bandwidth: %u.%u/%u.%u MBit, tq: %i)\n", next_gw->orig_node->orig, next_gw->bandwidth_down / 10, next_gw->bandwidth_down % 10, next_gw->bandwidth_up / 10, next_gw->bandwidth_up % 10, router_ifinfo->bat_iv.tq_avg); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_CHANGE, gw_addr); } batadv_gw_select(bat_priv, next_gw); out: batadv_gw_node_put(curr_gw); batadv_gw_node_put(next_gw); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(router_ifinfo); } /** * batadv_gw_check_election() - Elect orig node as best gateway when eligible * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked */ void batadv_gw_check_election(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_orig_node *curr_gw_orig; /* abort immediately if the routing algorithm does not support gateway * election */ if (!bat_priv->algo_ops->gw.is_eligible) return; curr_gw_orig = batadv_gw_get_selected_orig(bat_priv); if (!curr_gw_orig) goto reselect; /* this node already is the gateway */ if (curr_gw_orig == orig_node) goto out; if (!bat_priv->algo_ops->gw.is_eligible(bat_priv, curr_gw_orig, orig_node)) goto out; reselect: batadv_gw_reselect(bat_priv); out: batadv_orig_node_put(curr_gw_orig); } /** * batadv_gw_node_add() - add gateway node to list of available gateways * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * @gateway: announced bandwidth information * * Has to be called with the appropriate locks being acquired * (gw.list_lock). */ static void batadv_gw_node_add(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway) { struct batadv_gw_node *gw_node; lockdep_assert_held(&bat_priv->gw.list_lock); if (gateway->bandwidth_down == 0) return; gw_node = kzalloc(sizeof(*gw_node), GFP_ATOMIC); if (!gw_node) return; kref_init(&gw_node->refcount); INIT_HLIST_NODE(&gw_node->list); kref_get(&orig_node->refcount); gw_node->orig_node = orig_node; gw_node->bandwidth_down = ntohl(gateway->bandwidth_down); gw_node->bandwidth_up = ntohl(gateway->bandwidth_up); kref_get(&gw_node->refcount); hlist_add_head_rcu(&gw_node->list, &bat_priv->gw.gateway_list); bat_priv->gw.generation++; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Found new gateway %pM -> gw bandwidth: %u.%u/%u.%u MBit\n", orig_node->orig, ntohl(gateway->bandwidth_down) / 10, ntohl(gateway->bandwidth_down) % 10, ntohl(gateway->bandwidth_up) / 10, ntohl(gateway->bandwidth_up) % 10); /* don't return reference to new gw_node */ batadv_gw_node_put(gw_node); } /** * batadv_gw_node_get() - retrieve gateway node from list of available gateways * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * * Return: gateway node if found or NULL otherwise. */ struct batadv_gw_node *batadv_gw_node_get(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_gw_node *gw_node_tmp, *gw_node = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(gw_node_tmp, &bat_priv->gw.gateway_list, list) { if (gw_node_tmp->orig_node != orig_node) continue; if (!kref_get_unless_zero(&gw_node_tmp->refcount)) continue; gw_node = gw_node_tmp; break; } rcu_read_unlock(); return gw_node; } /** * batadv_gw_node_update() - update list of available gateways with changed * bandwidth information * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * @gateway: announced bandwidth information */ void batadv_gw_node_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway) { struct batadv_gw_node *gw_node, *curr_gw = NULL; spin_lock_bh(&bat_priv->gw.list_lock); gw_node = batadv_gw_node_get(bat_priv, orig_node); if (!gw_node) { batadv_gw_node_add(bat_priv, orig_node, gateway); spin_unlock_bh(&bat_priv->gw.list_lock); goto out; } spin_unlock_bh(&bat_priv->gw.list_lock); if (gw_node->bandwidth_down == ntohl(gateway->bandwidth_down) && gw_node->bandwidth_up == ntohl(gateway->bandwidth_up)) goto out; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Gateway bandwidth of originator %pM changed from %u.%u/%u.%u MBit to %u.%u/%u.%u MBit\n", orig_node->orig, gw_node->bandwidth_down / 10, gw_node->bandwidth_down % 10, gw_node->bandwidth_up / 10, gw_node->bandwidth_up % 10, ntohl(gateway->bandwidth_down) / 10, ntohl(gateway->bandwidth_down) % 10, ntohl(gateway->bandwidth_up) / 10, ntohl(gateway->bandwidth_up) % 10); gw_node->bandwidth_down = ntohl(gateway->bandwidth_down); gw_node->bandwidth_up = ntohl(gateway->bandwidth_up); if (ntohl(gateway->bandwidth_down) == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Gateway %pM removed from gateway list\n", orig_node->orig); /* Note: We don't need a NULL check here, since curr_gw never * gets dereferenced. */ spin_lock_bh(&bat_priv->gw.list_lock); if (!hlist_unhashed(&gw_node->list)) { hlist_del_init_rcu(&gw_node->list); batadv_gw_node_put(gw_node); bat_priv->gw.generation++; } spin_unlock_bh(&bat_priv->gw.list_lock); curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (gw_node == curr_gw) batadv_gw_reselect(bat_priv); batadv_gw_node_put(curr_gw); } out: batadv_gw_node_put(gw_node); } /** * batadv_gw_node_delete() - Remove orig_node from gateway list * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is currently in process of being removed */ void batadv_gw_node_delete(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_tvlv_gateway_data gateway; gateway.bandwidth_down = 0; gateway.bandwidth_up = 0; batadv_gw_node_update(bat_priv, orig_node, &gateway); } /** * batadv_gw_node_free() - Free gateway information from soft interface * @bat_priv: the bat priv with all the soft interface information */ void batadv_gw_node_free(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; struct hlist_node *node_tmp; spin_lock_bh(&bat_priv->gw.list_lock); hlist_for_each_entry_safe(gw_node, node_tmp, &bat_priv->gw.gateway_list, list) { hlist_del_init_rcu(&gw_node->list); batadv_gw_node_put(gw_node); bat_priv->gw.generation++; } spin_unlock_bh(&bat_priv->gw.list_lock); } /** * batadv_gw_dump() - Dump gateways into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * * Return: Error code, or length of message */ int batadv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct batadv_hard_iface *primary_if = NULL; struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_priv *bat_priv; int ifindex; int ret; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } if (!bat_priv->algo_ops->gw.dump) { ret = -EOPNOTSUPP; goto out; } bat_priv->algo_ops->gw.dump(msg, cb, bat_priv); ret = msg->len; out: batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } /** * batadv_gw_dhcp_recipient_get() - check if a packet is a DHCP message * @skb: the packet to check * @header_len: a pointer to the batman-adv header size * @chaddr: buffer where the client address will be stored. Valid * only if the function returns BATADV_DHCP_TO_CLIENT * * This function may re-allocate the data buffer of the skb passed as argument. * * Return: * - BATADV_DHCP_NO if the packet is not a dhcp message or if there was an error * while parsing it * - BATADV_DHCP_TO_SERVER if this is a message going to the DHCP server * - BATADV_DHCP_TO_CLIENT if this is a message going to a DHCP client */ enum batadv_dhcp_recipient batadv_gw_dhcp_recipient_get(struct sk_buff *skb, unsigned int *header_len, u8 *chaddr) { enum batadv_dhcp_recipient ret = BATADV_DHCP_NO; struct ethhdr *ethhdr; struct iphdr *iphdr; struct ipv6hdr *ipv6hdr; struct udphdr *udphdr; struct vlan_ethhdr *vhdr; int chaddr_offset; __be16 proto; u8 *p; /* check for ethernet header */ if (!pskb_may_pull(skb, *header_len + ETH_HLEN)) return BATADV_DHCP_NO; ethhdr = eth_hdr(skb); proto = ethhdr->h_proto; *header_len += ETH_HLEN; /* check for initial vlan header */ if (proto == htons(ETH_P_8021Q)) { if (!pskb_may_pull(skb, *header_len + VLAN_HLEN)) return BATADV_DHCP_NO; vhdr = vlan_eth_hdr(skb); proto = vhdr->h_vlan_encapsulated_proto; *header_len += VLAN_HLEN; } /* check for ip header */ switch (proto) { case htons(ETH_P_IP): if (!pskb_may_pull(skb, *header_len + sizeof(*iphdr))) return BATADV_DHCP_NO; iphdr = (struct iphdr *)(skb->data + *header_len); *header_len += iphdr->ihl * 4; /* check for udp header */ if (iphdr->protocol != IPPROTO_UDP) return BATADV_DHCP_NO; break; case htons(ETH_P_IPV6): if (!pskb_may_pull(skb, *header_len + sizeof(*ipv6hdr))) return BATADV_DHCP_NO; ipv6hdr = (struct ipv6hdr *)(skb->data + *header_len); *header_len += sizeof(*ipv6hdr); /* check for udp header */ if (ipv6hdr->nexthdr != IPPROTO_UDP) return BATADV_DHCP_NO; break; default: return BATADV_DHCP_NO; } if (!pskb_may_pull(skb, *header_len + sizeof(*udphdr))) return BATADV_DHCP_NO; udphdr = (struct udphdr *)(skb->data + *header_len); *header_len += sizeof(*udphdr); /* check for bootp port */ switch (proto) { case htons(ETH_P_IP): if (udphdr->dest == htons(67)) ret = BATADV_DHCP_TO_SERVER; else if (udphdr->source == htons(67)) ret = BATADV_DHCP_TO_CLIENT; break; case htons(ETH_P_IPV6): if (udphdr->dest == htons(547)) ret = BATADV_DHCP_TO_SERVER; else if (udphdr->source == htons(547)) ret = BATADV_DHCP_TO_CLIENT; break; } chaddr_offset = *header_len + BATADV_DHCP_CHADDR_OFFSET; /* store the client address if the message is going to a client */ if (ret == BATADV_DHCP_TO_CLIENT) { if (!pskb_may_pull(skb, chaddr_offset + ETH_ALEN)) return BATADV_DHCP_NO; /* check if the DHCP packet carries an Ethernet DHCP */ p = skb->data + *header_len + BATADV_DHCP_HTYPE_OFFSET; if (*p != BATADV_DHCP_HTYPE_ETHERNET) return BATADV_DHCP_NO; /* check if the DHCP packet carries a valid Ethernet address */ p = skb->data + *header_len + BATADV_DHCP_HLEN_OFFSET; if (*p != ETH_ALEN) return BATADV_DHCP_NO; ether_addr_copy(chaddr, skb->data + chaddr_offset); } return ret; } /** * batadv_gw_out_of_range() - check if the dhcp request destination is the best * gateway * @bat_priv: the bat priv with all the soft interface information * @skb: the outgoing packet * * Check if the skb is a DHCP request and if it is sent to the current best GW * server. Due to topology changes it may be the case that the GW server * previously selected is not the best one anymore. * * This call might reallocate skb data. * Must be invoked only when the DHCP packet is going TO a DHCP SERVER. * * Return: true if the packet destination is unicast and it is not the best gw, * false otherwise. */ bool batadv_gw_out_of_range(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct batadv_neigh_node *neigh_curr = NULL; struct batadv_neigh_node *neigh_old = NULL; struct batadv_orig_node *orig_dst_node = NULL; struct batadv_gw_node *gw_node = NULL; struct batadv_gw_node *curr_gw = NULL; struct batadv_neigh_ifinfo *curr_ifinfo, *old_ifinfo; struct ethhdr *ethhdr = (struct ethhdr *)skb->data; bool out_of_range = false; u8 curr_tq_avg; unsigned short vid; vid = batadv_get_vid(skb, 0); if (is_multicast_ether_addr(ethhdr->h_dest)) goto out; orig_dst_node = batadv_transtable_search(bat_priv, ethhdr->h_source, ethhdr->h_dest, vid); if (!orig_dst_node) goto out; gw_node = batadv_gw_node_get(bat_priv, orig_dst_node); if (!gw_node) goto out; switch (atomic_read(&bat_priv->gw.mode)) { case BATADV_GW_MODE_SERVER: /* If we are a GW then we are our best GW. We can artificially * set the tq towards ourself as the maximum value */ curr_tq_avg = BATADV_TQ_MAX_VALUE; break; case BATADV_GW_MODE_CLIENT: curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!curr_gw) goto out; /* packet is going to our gateway */ if (curr_gw->orig_node == orig_dst_node) goto out; /* If the dhcp packet has been sent to a different gw, * we have to evaluate whether the old gw is still * reliable enough */ neigh_curr = batadv_find_router(bat_priv, curr_gw->orig_node, NULL); if (!neigh_curr) goto out; curr_ifinfo = batadv_neigh_ifinfo_get(neigh_curr, BATADV_IF_DEFAULT); if (!curr_ifinfo) goto out; curr_tq_avg = curr_ifinfo->bat_iv.tq_avg; batadv_neigh_ifinfo_put(curr_ifinfo); break; case BATADV_GW_MODE_OFF: default: goto out; } neigh_old = batadv_find_router(bat_priv, orig_dst_node, NULL); if (!neigh_old) goto out; old_ifinfo = batadv_neigh_ifinfo_get(neigh_old, BATADV_IF_DEFAULT); if (!old_ifinfo) goto out; if ((curr_tq_avg - old_ifinfo->bat_iv.tq_avg) > BATADV_GW_THRESHOLD) out_of_range = true; batadv_neigh_ifinfo_put(old_ifinfo); out: batadv_orig_node_put(orig_dst_node); batadv_gw_node_put(curr_gw); batadv_gw_node_put(gw_node); batadv_neigh_node_put(neigh_old); batadv_neigh_node_put(neigh_curr); return out_of_range; } |
817 313 313 6 6 6 6 833 978 981 966 16 679 292 831 833 832 780 53 829 232 233 153 233 5 49 140 140 141 142 944 39 774 208 86 170 980 882 100 938 49 982 982 774 208 820 158 928 51 1083 1089 944 130 169 231 40 150 978 982 776 207 1591 894 1130 443 869 1601 1165 1584 955 261 26 26 26 26 178 4 4 4 4 4 4 42 42 50 50 50 49 49 50 50 50 2 2 50 50 50 50 49 50 96 47 50 3528 155 3446 35 3525 140 566 107 3010 3010 3525 3522 3525 412 3464 3455 10 3287 283 3463 3144 403 3441 107 3461 297 2513 92 919 368 3409 3273 3288 3281 3281 3284 3282 3257 3282 48 48 205 710 712 710 153 475 570 150 497 643 640 641 643 166 364 641 8 8 533 531 532 532 433 435 454 456 457 1 1 456 458 457 456 454 457 456 530 123 432 344 228 228 227 124 433 345 228 246 247 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 286 100 163 178 42 42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 | // SPDX-License-Identifier: GPL-2.0-only /* * fs/dcache.c * * Complete reimplementation * (C) 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ /* * Notes on the allocation strategy: * * The dcache is a master of the icache - whenever a dcache entry * exists, the inode will always exist. "iput()" is done either when * the dcache entry is deleted or garbage collected. */ #include <linux/ratelimit.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/fscrypt.h> #include <linux/fsnotify.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/cache.h> #include <linux/export.h> #include <linux/security.h> #include <linux/seqlock.h> #include <linux/memblock.h> #include <linux/bit_spinlock.h> #include <linux/rculist_bl.h> #include <linux/list_lru.h> #include "internal.h" #include "mount.h" /* * Usage: * dcache->d_inode->i_lock protects: * - i_dentry, d_u.d_alias, d_inode of aliases * dcache_hash_bucket lock protects: * - the dcache hash table * s_roots bl list spinlock protects: * - the s_roots list (see __d_drop) * dentry->d_sb->s_dentry_lru_lock protects: * - the dcache lru lists and counters * d_lock protects: * - d_flags * - d_name * - d_lru * - d_count * - d_unhashed() * - d_parent and d_subdirs * - childrens' d_child and d_parent * - d_u.d_alias, d_inode * * Ordering: * dentry->d_inode->i_lock * dentry->d_lock * dentry->d_sb->s_dentry_lru_lock * dcache_hash_bucket lock * s_roots lock * * If there is an ancestor relationship: * dentry->d_parent->...->d_parent->d_lock * ... * dentry->d_parent->d_lock * dentry->d_lock * * If no ancestor relationship: * arbitrary, since it's serialized on rename_lock */ int sysctl_vfs_cache_pressure __read_mostly = 100; EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); EXPORT_SYMBOL(rename_lock); static struct kmem_cache *dentry_cache __read_mostly; const struct qstr empty_name = QSTR_INIT("", 0); EXPORT_SYMBOL(empty_name); const struct qstr slash_name = QSTR_INIT("/", 1); EXPORT_SYMBOL(slash_name); const struct qstr dotdot_name = QSTR_INIT("..", 2); EXPORT_SYMBOL(dotdot_name); /* * This is the single most critical data structure when it comes * to the dcache: the hashtable for lookups. Somebody should try * to make this good - I've just made it work. * * This hash-function tries to avoid losing too many bits of hash * information, yet avoid using a prime hash-size or similar. */ static unsigned int d_hash_shift __read_mostly; static struct hlist_bl_head *dentry_hashtable __read_mostly; static inline struct hlist_bl_head *d_hash(unsigned int hash) { return dentry_hashtable + (hash >> d_hash_shift); } #define IN_LOOKUP_SHIFT 10 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, unsigned int hash) { hash += (unsigned long) parent / L1_CACHE_BYTES; return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); } /* Statistics gathering. */ struct dentry_stat_t dentry_stat = { .age_limit = 45, }; static DEFINE_PER_CPU(long, nr_dentry); static DEFINE_PER_CPU(long, nr_dentry_unused); static DEFINE_PER_CPU(long, nr_dentry_negative); #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) /* * Here we resort to our own counters instead of using generic per-cpu counters * for consistency with what the vfs inode code does. We are expected to harvest * better code and performance by having our own specialized counters. * * Please note that the loop is done over all possible CPUs, not over all online * CPUs. The reason for this is that we don't want to play games with CPUs going * on and off. If one of them goes off, we will just keep their counters. * * glommer: See cffbc8a for details, and if you ever intend to change this, * please update all vfs counters to match. */ static long get_nr_dentry(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_dentry, i); return sum < 0 ? 0 : sum; } static long get_nr_dentry_unused(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_dentry_unused, i); return sum < 0 ? 0 : sum; } static long get_nr_dentry_negative(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_dentry_negative, i); return sum < 0 ? 0 : sum; } int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { dentry_stat.nr_dentry = get_nr_dentry(); dentry_stat.nr_unused = get_nr_dentry_unused(); dentry_stat.nr_negative = get_nr_dentry_negative(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #endif /* * Compare 2 name strings, return 0 if they match, otherwise non-zero. * The strings are both count bytes long, and count is non-zero. */ #ifdef CONFIG_DCACHE_WORD_ACCESS #include <asm/word-at-a-time.h> /* * NOTE! 'cs' and 'scount' come from a dentry, so it has a * aligned allocation for this particular component. We don't * strictly need the load_unaligned_zeropad() safety, but it * doesn't hurt either. * * In contrast, 'ct' and 'tcount' can be from a pathname, and do * need the careful unaligned handling. */ static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { unsigned long a,b,mask; for (;;) { a = read_word_at_a_time(cs); b = load_unaligned_zeropad(ct); if (tcount < sizeof(unsigned long)) break; if (unlikely(a != b)) return 1; cs += sizeof(unsigned long); ct += sizeof(unsigned long); tcount -= sizeof(unsigned long); if (!tcount) return 0; } mask = bytemask_from_count(tcount); return unlikely(!!((a ^ b) & mask)); } #else static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { do { if (*cs != *ct) return 1; cs++; ct++; tcount--; } while (tcount); return 0; } #endif static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) { /* * Be careful about RCU walk racing with rename: * use 'READ_ONCE' to fetch the name pointer. * * NOTE! Even if a rename will mean that the length * was not loaded atomically, we don't care. The * RCU walk will check the sequence count eventually, * and catch it. And we won't overrun the buffer, * because we're reading the name pointer atomically, * and a dentry name is guaranteed to be properly * terminated with a NUL byte. * * End result: even if 'len' is wrong, we'll exit * early because the data cannot match (there can * be no NUL in the ct/tcount data) */ const unsigned char *cs = READ_ONCE(dentry->d_name.name); return dentry_string_cmp(cs, ct, tcount); } struct external_name { union { atomic_t count; struct rcu_head head; } u; unsigned char name[]; }; static inline struct external_name *external_name(struct dentry *dentry) { return container_of(dentry->d_name.name, struct external_name, name[0]); } static void __d_free(struct rcu_head *head) { struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); kmem_cache_free(dentry_cache, dentry); } static void __d_free_external(struct rcu_head *head) { struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); kfree(external_name(dentry)); kmem_cache_free(dentry_cache, dentry); } static inline int dname_external(const struct dentry *dentry) { return dentry->d_name.name != dentry->d_iname; } void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) { spin_lock(&dentry->d_lock); name->name = dentry->d_name; if (unlikely(dname_external(dentry))) { atomic_inc(&external_name(dentry)->u.count); } else { memcpy(name->inline_name, dentry->d_iname, dentry->d_name.len + 1); name->name.name = name->inline_name; } spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(take_dentry_name_snapshot); void release_dentry_name_snapshot(struct name_snapshot *name) { if (unlikely(name->name.name != name->inline_name)) { struct external_name *p; p = container_of(name->name.name, struct external_name, name[0]); if (unlikely(atomic_dec_and_test(&p->u.count))) kfree_rcu(p, u.head); } } EXPORT_SYMBOL(release_dentry_name_snapshot); static inline void __d_set_inode_and_type(struct dentry *dentry, struct inode *inode, unsigned type_flags) { unsigned flags; dentry->d_inode = inode; flags = READ_ONCE(dentry->d_flags); flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); flags |= type_flags; smp_store_release(&dentry->d_flags, flags); } static inline void __d_clear_type_and_inode(struct dentry *dentry) { unsigned flags = READ_ONCE(dentry->d_flags); flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); WRITE_ONCE(dentry->d_flags, flags); dentry->d_inode = NULL; /* * The negative counter only tracks dentries on the LRU. Don't inc if * d_lru is on another list. */ if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) this_cpu_inc(nr_dentry_negative); } static void dentry_free(struct dentry *dentry) { WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); if (unlikely(dname_external(dentry))) { struct external_name *p = external_name(dentry); if (likely(atomic_dec_and_test(&p->u.count))) { call_rcu(&dentry->d_u.d_rcu, __d_free_external); return; } } /* if dentry was never visible to RCU, immediate free is OK */ if (dentry->d_flags & DCACHE_NORCU) __d_free(&dentry->d_u.d_rcu); else call_rcu(&dentry->d_u.d_rcu, __d_free); } /* * Release the dentry's inode, using the filesystem * d_iput() operation if defined. */ static void dentry_unlink_inode(struct dentry * dentry) __releases(dentry->d_lock) __releases(dentry->d_inode->i_lock) { struct inode *inode = dentry->d_inode; raw_write_seqcount_begin(&dentry->d_seq); __d_clear_type_and_inode(dentry); hlist_del_init(&dentry->d_u.d_alias); raw_write_seqcount_end(&dentry->d_seq); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); if (!inode->i_nlink) fsnotify_inoderemove(inode); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } /* * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry * is in use - which includes both the "real" per-superblock * LRU list _and_ the DCACHE_SHRINK_LIST use. * * The DCACHE_SHRINK_LIST bit is set whenever the dentry is * on the shrink list (ie not on the superblock LRU list). * * The per-cpu "nr_dentry_unused" counters are updated with * the DCACHE_LRU_LIST bit. * * The per-cpu "nr_dentry_negative" counters are only updated * when deleted from or added to the per-superblock LRU list, not * from/to the shrink list. That is to avoid an unneeded dec/inc * pair when moving from LRU to shrink list in select_collect(). * * These helper functions make sure we always follow the * rules. d_lock must be held by the caller. */ #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) static void d_lru_add(struct dentry *dentry) { D_FLAG_VERIFY(dentry, 0); dentry->d_flags |= DCACHE_LRU_LIST; this_cpu_inc(nr_dentry_unused); if (d_is_negative(dentry)) this_cpu_inc(nr_dentry_negative); WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); } static void d_lru_del(struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags &= ~DCACHE_LRU_LIST; this_cpu_dec(nr_dentry_unused); if (d_is_negative(dentry)) this_cpu_dec(nr_dentry_negative); WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); } static void d_shrink_del(struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); list_del_init(&dentry->d_lru); dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); this_cpu_dec(nr_dentry_unused); } static void d_shrink_add(struct dentry *dentry, struct list_head *list) { D_FLAG_VERIFY(dentry, 0); list_add(&dentry->d_lru, list); dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; this_cpu_inc(nr_dentry_unused); } /* * These can only be called under the global LRU lock, ie during the * callback for freeing the LRU list. "isolate" removes it from the * LRU lists entirely, while shrink_move moves it to the indicated * private list. */ static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags &= ~DCACHE_LRU_LIST; this_cpu_dec(nr_dentry_unused); if (d_is_negative(dentry)) this_cpu_dec(nr_dentry_negative); list_lru_isolate(lru, &dentry->d_lru); } static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, struct list_head *list) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags |= DCACHE_SHRINK_LIST; if (d_is_negative(dentry)) this_cpu_dec(nr_dentry_negative); list_lru_isolate_move(lru, &dentry->d_lru, list); } static void ___d_drop(struct dentry *dentry) { struct hlist_bl_head *b; /* * Hashed dentries are normally on the dentry hashtable, * with the exception of those newly allocated by * d_obtain_root, which are always IS_ROOT: */ if (unlikely(IS_ROOT(dentry))) b = &dentry->d_sb->s_roots; else b = d_hash(dentry->d_name.hash); hlist_bl_lock(b); __hlist_bl_del(&dentry->d_hash); hlist_bl_unlock(b); } void __d_drop(struct dentry *dentry) { if (!d_unhashed(dentry)) { ___d_drop(dentry); dentry->d_hash.pprev = NULL; write_seqcount_invalidate(&dentry->d_seq); } } EXPORT_SYMBOL(__d_drop); /** * d_drop - drop a dentry * @dentry: dentry to drop * * d_drop() unhashes the entry from the parent dentry hashes, so that it won't * be found through a VFS lookup any more. Note that this is different from * deleting the dentry - d_delete will try to mark the dentry negative if * possible, giving a successful _negative_ lookup, while d_drop will * just make the cache lookup fail. * * d_drop() is used mainly for stuff that wants to invalidate a dentry for some * reason (NFS timeouts or autofs deletes). * * __d_drop requires dentry->d_lock * * ___d_drop doesn't mark dentry as "unhashed" * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). */ void d_drop(struct dentry *dentry) { spin_lock(&dentry->d_lock); __d_drop(dentry); spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(d_drop); static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) { struct dentry *next; /* * Inform d_walk() and shrink_dentry_list() that we are no longer * attached to the dentry tree */ dentry->d_flags |= DCACHE_DENTRY_KILLED; if (unlikely(list_empty(&dentry->d_child))) return; __list_del_entry(&dentry->d_child); /* * Cursors can move around the list of children. While we'd been * a normal list member, it didn't matter - ->d_child.next would've * been updated. However, from now on it won't be and for the * things like d_walk() it might end up with a nasty surprise. * Normally d_walk() doesn't care about cursors moving around - * ->d_lock on parent prevents that and since a cursor has no children * of its own, we get through it without ever unlocking the parent. * There is one exception, though - if we ascend from a child that * gets killed as soon as we unlock it, the next sibling is found * using the value left in its ->d_child.next. And if _that_ * pointed to a cursor, and cursor got moved (e.g. by lseek()) * before d_walk() regains parent->d_lock, we'll end up skipping * everything the cursor had been moved past. * * Solution: make sure that the pointer left behind in ->d_child.next * points to something that won't be moving around. I.e. skip the * cursors. */ while (dentry->d_child.next != &parent->d_subdirs) { next = list_entry(dentry->d_child.next, struct dentry, d_child); if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) break; dentry->d_child.next = next->d_child.next; } } static void __dentry_kill(struct dentry *dentry) { struct dentry *parent = NULL; bool can_free = true; if (!IS_ROOT(dentry)) parent = dentry->d_parent; /* * The dentry is now unrecoverably dead to the world. */ lockref_mark_dead(&dentry->d_lockref); /* * inform the fs via d_prune that this dentry is about to be * unhashed and destroyed. */ if (dentry->d_flags & DCACHE_OP_PRUNE) dentry->d_op->d_prune(dentry); if (dentry->d_flags & DCACHE_LRU_LIST) { if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) d_lru_del(dentry); } /* if it was on the hash then remove it */ __d_drop(dentry); dentry_unlist(dentry, parent); if (parent) spin_unlock(&parent->d_lock); if (dentry->d_inode) dentry_unlink_inode(dentry); else spin_unlock(&dentry->d_lock); this_cpu_dec(nr_dentry); if (dentry->d_op && dentry->d_op->d_release) dentry->d_op->d_release(dentry); spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_SHRINK_LIST) { dentry->d_flags |= DCACHE_MAY_FREE; can_free = false; } spin_unlock(&dentry->d_lock); if (likely(can_free)) dentry_free(dentry); cond_resched(); } static struct dentry *__lock_parent(struct dentry *dentry) { struct dentry *parent; rcu_read_lock(); spin_unlock(&dentry->d_lock); again: parent = READ_ONCE(dentry->d_parent); spin_lock(&parent->d_lock); /* * We can't blindly lock dentry until we are sure * that we won't violate the locking order. * Any changes of dentry->d_parent must have * been done with parent->d_lock held, so * spin_lock() above is enough of a barrier * for checking if it's still our child. */ if (unlikely(parent != dentry->d_parent)) { spin_unlock(&parent->d_lock); goto again; } rcu_read_unlock(); if (parent != dentry) spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); else parent = NULL; return parent; } static inline struct dentry *lock_parent(struct dentry *dentry) { struct dentry *parent = dentry->d_parent; if (IS_ROOT(dentry)) return NULL; if (likely(spin_trylock(&parent->d_lock))) return parent; return __lock_parent(dentry); } static inline bool retain_dentry(struct dentry *dentry) { WARN_ON(d_in_lookup(dentry)); /* Unreachable? Get rid of it */ if (unlikely(d_unhashed(dentry))) return false; if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) return false; if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { if (dentry->d_op->d_delete(dentry)) return false; } if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) return false; /* retain; LRU fodder */ dentry->d_lockref.count--; if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) d_lru_add(dentry); else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) dentry->d_flags |= DCACHE_REFERENCED; return true; } void d_mark_dontcache(struct inode *inode) { struct dentry *de; spin_lock(&inode->i_lock); hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { spin_lock(&de->d_lock); de->d_flags |= DCACHE_DONTCACHE; spin_unlock(&de->d_lock); } inode->i_state |= I_DONTCACHE; spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(d_mark_dontcache); /* * Finish off a dentry we've decided to kill. * dentry->d_lock must be held, returns with it unlocked. * Returns dentry requiring refcount drop, or NULL if we're done. */ static struct dentry *dentry_kill(struct dentry *dentry) __releases(dentry->d_lock) { struct inode *inode = dentry->d_inode; struct dentry *parent = NULL; if (inode && unlikely(!spin_trylock(&inode->i_lock))) goto slow_positive; if (!IS_ROOT(dentry)) { parent = dentry->d_parent; if (unlikely(!spin_trylock(&parent->d_lock))) { parent = __lock_parent(dentry); if (likely(inode || !dentry->d_inode)) goto got_locks; /* negative that became positive */ if (parent) spin_unlock(&parent->d_lock); inode = dentry->d_inode; goto slow_positive; } } __dentry_kill(dentry); return parent; slow_positive: spin_unlock(&dentry->d_lock); spin_lock(&inode->i_lock); spin_lock(&dentry->d_lock); parent = lock_parent(dentry); got_locks: if (unlikely(dentry->d_lockref.count != 1)) { dentry->d_lockref.count--; } else if (likely(!retain_dentry(dentry))) { __dentry_kill(dentry); return parent; } /* we are keeping it, after all */ if (inode) spin_unlock(&inode->i_lock); if (parent) spin_unlock(&parent->d_lock); spin_unlock(&dentry->d_lock); return NULL; } /* * Try to do a lockless dput(), and return whether that was successful. * * If unsuccessful, we return false, having already taken the dentry lock. * * The caller needs to hold the RCU read lock, so that the dentry is * guaranteed to stay around even if the refcount goes down to zero! */ static inline bool fast_dput(struct dentry *dentry) { int ret; unsigned int d_flags; /* * If we have a d_op->d_delete() operation, we sould not * let the dentry count go to zero, so use "put_or_lock". */ if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) return lockref_put_or_lock(&dentry->d_lockref); /* * .. otherwise, we can try to just decrement the * lockref optimistically. */ ret = lockref_put_return(&dentry->d_lockref); /* * If the lockref_put_return() failed due to the lock being held * by somebody else, the fast path has failed. We will need to * get the lock, and then check the count again. */ if (unlikely(ret < 0)) { spin_lock(&dentry->d_lock); if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { spin_unlock(&dentry->d_lock); return true; } dentry->d_lockref.count--; goto locked; } /* * If we weren't the last ref, we're done. */ if (ret) return true; /* * Careful, careful. The reference count went down * to zero, but we don't hold the dentry lock, so * somebody else could get it again, and do another * dput(), and we need to not race with that. * * However, there is a very special and common case * where we don't care, because there is nothing to * do: the dentry is still hashed, it does not have * a 'delete' op, and it's referenced and already on * the LRU list. * * NOTE! Since we aren't locked, these values are * not "stable". However, it is sufficient that at * some point after we dropped the reference the * dentry was hashed and the flags had the proper * value. Other dentry users may have re-gotten * a reference to the dentry and change that, but * our work is done - we can leave the dentry * around with a zero refcount. * * Nevertheless, there are two cases that we should kill * the dentry anyway. * 1. free disconnected dentries as soon as their refcount * reached zero. * 2. free dentries if they should not be cached. */ smp_rmb(); d_flags = READ_ONCE(dentry->d_flags); d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED | DCACHE_DONTCACHE; /* Nothing to do? Dropping the reference was all we needed? */ if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) return true; /* * Not the fast normal case? Get the lock. We've already decremented * the refcount, but we'll need to re-check the situation after * getting the lock. */ spin_lock(&dentry->d_lock); /* * Did somebody else grab a reference to it in the meantime, and * we're no longer the last user after all? Alternatively, somebody * else could have killed it and marked it dead. Either way, we * don't need to do anything else. */ locked: if (dentry->d_lockref.count) { spin_unlock(&dentry->d_lock); return true; } /* * Re-get the reference we optimistically dropped. We hold the * lock, and we just tested that it was zero, so we can just * set it to 1. */ dentry->d_lockref.count = 1; return false; } /* * This is dput * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ /* * dput - release a dentry * @dentry: dentry to release * * Release a dentry. This will drop the usage count and if appropriate * call the dentry unlink method as well as removing it from the queues and * releasing its resources. If the parent dentries were scheduled for release * they too may now get deleted. */ void dput(struct dentry *dentry) { while (dentry) { might_sleep(); rcu_read_lock(); if (likely(fast_dput(dentry))) { rcu_read_unlock(); return; } /* Slow case: now with the dentry lock held */ rcu_read_unlock(); if (likely(retain_dentry(dentry))) { spin_unlock(&dentry->d_lock); return; } dentry = dentry_kill(dentry); } } EXPORT_SYMBOL(dput); static void __dput_to_list(struct dentry *dentry, struct list_head *list) __must_hold(&dentry->d_lock) { if (dentry->d_flags & DCACHE_SHRINK_LIST) { /* let the owner of the list it's on deal with it */ --dentry->d_lockref.count; } else { if (dentry->d_flags & DCACHE_LRU_LIST) d_lru_del(dentry); if (!--dentry->d_lockref.count) d_shrink_add(dentry, list); } } void dput_to_list(struct dentry *dentry, struct list_head *list) { rcu_read_lock(); if (likely(fast_dput(dentry))) { rcu_read_unlock(); return; } rcu_read_unlock(); if (!retain_dentry(dentry)) __dput_to_list(dentry, list); spin_unlock(&dentry->d_lock); } /* This must be called with d_lock held */ static inline void __dget_dlock(struct dentry *dentry) { dentry->d_lockref.count++; } static inline void __dget(struct dentry *dentry) { lockref_get(&dentry->d_lockref); } struct dentry *dget_parent(struct dentry *dentry) { int gotref; struct dentry *ret; unsigned seq; /* * Do optimistic parent lookup without any * locking. */ rcu_read_lock(); seq = raw_seqcount_begin(&dentry->d_seq); ret = READ_ONCE(dentry->d_parent); gotref = lockref_get_not_zero(&ret->d_lockref); rcu_read_unlock(); if (likely(gotref)) { if (!read_seqcount_retry(&dentry->d_seq, seq)) return ret; dput(ret); } repeat: /* * Don't need rcu_dereference because we re-check it was correct under * the lock. */ rcu_read_lock(); ret = dentry->d_parent; spin_lock(&ret->d_lock); if (unlikely(ret != dentry->d_parent)) { spin_unlock(&ret->d_lock); rcu_read_unlock(); goto repeat; } rcu_read_unlock(); BUG_ON(!ret->d_lockref.count); ret->d_lockref.count++; spin_unlock(&ret->d_lock); return ret; } EXPORT_SYMBOL(dget_parent); static struct dentry * __d_find_any_alias(struct inode *inode) { struct dentry *alias; if (hlist_empty(&inode->i_dentry)) return NULL; alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); __dget(alias); return alias; } /** * d_find_any_alias - find any alias for a given inode * @inode: inode to find an alias for * * If any aliases exist for the given inode, take and return a * reference for one of them. If no aliases exist, return %NULL. */ struct dentry *d_find_any_alias(struct inode *inode) { struct dentry *de; spin_lock(&inode->i_lock); de = __d_find_any_alias(inode); spin_unlock(&inode->i_lock); return de; } EXPORT_SYMBOL(d_find_any_alias); static struct dentry *__d_find_alias(struct inode *inode) { struct dentry *alias; if (S_ISDIR(inode->i_mode)) return __d_find_any_alias(inode); hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { spin_lock(&alias->d_lock); if (!d_unhashed(alias)) { __dget_dlock(alias); spin_unlock(&alias->d_lock); return alias; } spin_unlock(&alias->d_lock); } return NULL; } /** * d_find_alias - grab a hashed alias of inode * @inode: inode in question * * If inode has a hashed alias, or is a directory and has any alias, * acquire the reference to alias and return it. Otherwise return NULL. * Notice that if inode is a directory there can be only one alias and * it can be unhashed only if it has no children, or if it is the root * of a filesystem, or if the directory was renamed and d_revalidate * was the first vfs operation to notice. * * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer * any other hashed alias over that one. */ struct dentry *d_find_alias(struct inode *inode) { struct dentry *de = NULL; if (!hlist_empty(&inode->i_dentry)) { spin_lock(&inode->i_lock); de = __d_find_alias(inode); spin_unlock(&inode->i_lock); } return de; } EXPORT_SYMBOL(d_find_alias); /* * Caller MUST be holding rcu_read_lock() and be guaranteed * that inode won't get freed until rcu_read_unlock(). */ struct dentry *d_find_alias_rcu(struct inode *inode) { struct hlist_head *l = &inode->i_dentry; struct dentry *de = NULL; spin_lock(&inode->i_lock); // ->i_dentry and ->i_rcu are colocated, but the latter won't be // used without having I_FREEING set, which means no aliases left if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { if (S_ISDIR(inode->i_mode)) { de = hlist_entry(l->first, struct dentry, d_u.d_alias); } else { hlist_for_each_entry(de, l, d_u.d_alias) if (!d_unhashed(de)) break; } } spin_unlock(&inode->i_lock); return de; } /* * Try to kill dentries associated with this inode. * WARNING: you must own a reference to inode. */ void d_prune_aliases(struct inode *inode) { struct dentry *dentry; restart: spin_lock(&inode->i_lock); hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { spin_lock(&dentry->d_lock); if (!dentry->d_lockref.count) { struct dentry *parent = lock_parent(dentry); if (likely(!dentry->d_lockref.count)) { __dentry_kill(dentry); dput(parent); goto restart; } if (parent) spin_unlock(&parent->d_lock); } spin_unlock(&dentry->d_lock); } spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(d_prune_aliases); /* * Lock a dentry from shrink list. * Called under rcu_read_lock() and dentry->d_lock; the former * guarantees that nothing we access will be freed under us. * Note that dentry is *not* protected from concurrent dentry_kill(), * d_delete(), etc. * * Return false if dentry has been disrupted or grabbed, leaving * the caller to kick it off-list. Otherwise, return true and have * that dentry's inode and parent both locked. */ static bool shrink_lock_dentry(struct dentry *dentry) { struct inode *inode; struct dentry *parent; if (dentry->d_lockref.count) return false; inode = dentry->d_inode; if (inode && unlikely(!spin_trylock(&inode->i_lock))) { spin_unlock(&dentry->d_lock); spin_lock(&inode->i_lock); spin_lock(&dentry->d_lock); if (unlikely(dentry->d_lockref.count)) goto out; /* changed inode means that somebody had grabbed it */ if (unlikely(inode != dentry->d_inode)) goto out; } parent = dentry->d_parent; if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) return true; spin_unlock(&dentry->d_lock); spin_lock(&parent->d_lock); if (unlikely(parent != dentry->d_parent)) { spin_unlock(&parent->d_lock); spin_lock(&dentry->d_lock); goto out; } spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); if (likely(!dentry->d_lockref.count)) return true; spin_unlock(&parent->d_lock); out: if (inode) spin_unlock(&inode->i_lock); return false; } void shrink_dentry_list(struct list_head *list) { while (!list_empty(list)) { struct dentry *dentry, *parent; dentry = list_entry(list->prev, struct dentry, d_lru); spin_lock(&dentry->d_lock); rcu_read_lock(); if (!shrink_lock_dentry(dentry)) { bool can_free = false; rcu_read_unlock(); d_shrink_del(dentry); if (dentry->d_lockref.count < 0) can_free = dentry->d_flags & DCACHE_MAY_FREE; spin_unlock(&dentry->d_lock); if (can_free) dentry_free(dentry); continue; } rcu_read_unlock(); d_shrink_del(dentry); parent = dentry->d_parent; if (parent != dentry) __dput_to_list(parent, list); __dentry_kill(dentry); } } static enum lru_status dentry_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct dentry *dentry = container_of(item, struct dentry, d_lru); /* * we are inverting the lru lock/dentry->d_lock here, * so use a trylock. If we fail to get the lock, just skip * it */ if (!spin_trylock(&dentry->d_lock)) return LRU_SKIP; /* * Referenced dentries are still in use. If they have active * counts, just remove them from the LRU. Otherwise give them * another pass through the LRU. */ if (dentry->d_lockref.count) { d_lru_isolate(lru, dentry); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } if (dentry->d_flags & DCACHE_REFERENCED) { dentry->d_flags &= ~DCACHE_REFERENCED; spin_unlock(&dentry->d_lock); /* * The list move itself will be made by the common LRU code. At * this point, we've dropped the dentry->d_lock but keep the * lru lock. This is safe to do, since every list movement is * protected by the lru lock even if both locks are held. * * This is guaranteed by the fact that all LRU management * functions are intermediated by the LRU API calls like * list_lru_add and list_lru_del. List movement in this file * only ever occur through this functions or through callbacks * like this one, that are called from the LRU API. * * The only exceptions to this are functions like * shrink_dentry_list, and code that first checks for the * DCACHE_SHRINK_LIST flag. Those are guaranteed to be * operating only with stack provided lists after they are * properly isolated from the main list. It is thus, always a * local access. */ return LRU_ROTATE; } d_lru_shrink_move(lru, dentry, freeable); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } /** * prune_dcache_sb - shrink the dcache * @sb: superblock * @sc: shrink control, passed to list_lru_shrink_walk() * * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This * is done when we need more memory and called from the superblock shrinker * function. * * This function may fail to free any resources if all the dentries are in * use. */ long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) { LIST_HEAD(dispose); long freed; freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, dentry_lru_isolate, &dispose); shrink_dentry_list(&dispose); return freed; } static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct dentry *dentry = container_of(item, struct dentry, d_lru); /* * we are inverting the lru lock/dentry->d_lock here, * so use a trylock. If we fail to get the lock, just skip * it */ if (!spin_trylock(&dentry->d_lock)) return LRU_SKIP; d_lru_shrink_move(lru, dentry, freeable); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } /** * shrink_dcache_sb - shrink dcache for a superblock * @sb: superblock * * Shrink the dcache for the specified super block. This is used to free * the dcache before unmounting a file system. */ void shrink_dcache_sb(struct super_block *sb) { do { LIST_HEAD(dispose); list_lru_walk(&sb->s_dentry_lru, dentry_lru_isolate_shrink, &dispose, 1024); shrink_dentry_list(&dispose); } while (list_lru_count(&sb->s_dentry_lru) > 0); } EXPORT_SYMBOL(shrink_dcache_sb); /** * enum d_walk_ret - action to talke during tree walk * @D_WALK_CONTINUE: contrinue walk * @D_WALK_QUIT: quit walk * @D_WALK_NORETRY: quit when retry is needed * @D_WALK_SKIP: skip this dentry and its children */ enum d_walk_ret { D_WALK_CONTINUE, D_WALK_QUIT, D_WALK_NORETRY, D_WALK_SKIP, }; /** * d_walk - walk the dentry tree * @parent: start of walk * @data: data passed to @enter() and @finish() * @enter: callback when first entering the dentry * * The @enter() callbacks are called with d_lock held. */ static void d_walk(struct dentry *parent, void *data, enum d_walk_ret (*enter)(void *, struct dentry *)) { struct dentry *this_parent; struct list_head *next; unsigned seq = 0; enum d_walk_ret ret; bool retry = true; again: read_seqbegin_or_lock(&rename_lock, &seq); this_parent = parent; spin_lock(&this_parent->d_lock); ret = enter(data, this_parent); switch (ret) { case D_WALK_CONTINUE: break; case D_WALK_QUIT: case D_WALK_SKIP: goto out_unlock; case D_WALK_NORETRY: retry = false; break; } repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) continue; spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); ret = enter(data, dentry); switch (ret) { case D_WALK_CONTINUE: break; case D_WALK_QUIT: spin_unlock(&dentry->d_lock); goto out_unlock; case D_WALK_NORETRY: retry = false; break; case D_WALK_SKIP: spin_unlock(&dentry->d_lock); continue; } if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&this_parent->d_lock); spin_release(&dentry->d_lock.dep_map, _RET_IP_); this_parent = dentry; spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); goto repeat; } spin_unlock(&dentry->d_lock); } /* * All done at this level ... ascend and resume the search. */ rcu_read_lock(); ascend: if (this_parent != parent) { struct dentry *child = this_parent; this_parent = child->d_parent; spin_unlock(&child->d_lock); spin_lock(&this_parent->d_lock); /* might go back up the wrong parent if we have had a rename. */ if (need_seqretry(&rename_lock, seq)) goto rename_retry; /* go into the first sibling still alive */ do { next = child->d_child.next; if (next == &this_parent->d_subdirs) goto ascend; child = list_entry(next, struct dentry, d_child); } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); rcu_read_unlock(); goto resume; } if (need_seqretry(&rename_lock, seq)) goto rename_retry; rcu_read_unlock(); out_unlock: spin_unlock(&this_parent->d_lock); done_seqretry(&rename_lock, seq); return; rename_retry: spin_unlock(&this_parent->d_lock); rcu_read_unlock(); BUG_ON(seq & 1); if (!retry) return; seq = 1; goto again; } struct check_mount { struct vfsmount *mnt; unsigned int mounted; }; static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) { struct check_mount *info = data; struct path path = { .mnt = info->mnt, .dentry = dentry }; if (likely(!d_mountpoint(dentry))) return D_WALK_CONTINUE; if (__path_is_mountpoint(&path)) { info->mounted = 1; return D_WALK_QUIT; } return D_WALK_CONTINUE; } /** * path_has_submounts - check for mounts over a dentry in the * current namespace. * @parent: path to check. * * Return true if the parent or its subdirectories contain * a mount point in the current namespace. */ int path_has_submounts(const struct path *parent) { struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; read_seqlock_excl(&mount_lock); d_walk(parent->dentry, &data, path_check_mount); read_sequnlock_excl(&mount_lock); return data.mounted; } EXPORT_SYMBOL(path_has_submounts); /* * Called by mount code to set a mountpoint and check if the mountpoint is * reachable (e.g. NFS can unhash a directory dentry and then the complete * subtree can become unreachable). * * Only one of d_invalidate() and d_set_mounted() must succeed. For * this reason take rename_lock and d_lock on dentry and ancestors. */ int d_set_mounted(struct dentry *dentry) { struct dentry *p; int ret = -ENOENT; write_seqlock(&rename_lock); for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { /* Need exclusion wrt. d_invalidate() */ spin_lock(&p->d_lock); if (unlikely(d_unhashed(p))) { spin_unlock(&p->d_lock); goto out; } spin_unlock(&p->d_lock); } spin_lock(&dentry->d_lock); if (!d_unlinked(dentry)) { ret = -EBUSY; if (!d_mountpoint(dentry)) { dentry->d_flags |= DCACHE_MOUNTED; ret = 0; } } spin_unlock(&dentry->d_lock); out: write_sequnlock(&rename_lock); return ret; } /* * Search the dentry child list of the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_subdirs list is non-empty and continue * searching. * * It returns zero iff there are no unused children, * otherwise it returns the number of children moved to * the end of the unused list. This may not be the total * number of unused children, because select_parent can * drop the lock and return early due to latency * constraints. */ struct select_data { struct dentry *start; union { long found; struct dentry *victim; }; struct list_head dispose; }; static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) { struct select_data *data = _data; enum d_walk_ret ret = D_WALK_CONTINUE; if (data->start == dentry) goto out; if (dentry->d_flags & DCACHE_SHRINK_LIST) { data->found++; } else { if (dentry->d_flags & DCACHE_LRU_LIST) d_lru_del(dentry); if (!dentry->d_lockref.count) { d_shrink_add(dentry, &data->dispose); data->found++; } } /* * We can return to the caller if we have found some (this * ensures forward progress). We'll be coming back to find * the rest. */ if (!list_empty(&data->dispose)) ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; out: return ret; } static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) { struct select_data *data = _data; enum d_walk_ret ret = D_WALK_CONTINUE; if (data->start == dentry) goto out; if (dentry->d_flags & DCACHE_SHRINK_LIST) { if (!dentry->d_lockref.count) { rcu_read_lock(); data->victim = dentry; return D_WALK_QUIT; } } else { if (dentry->d_flags & DCACHE_LRU_LIST) d_lru_del(dentry); if (!dentry->d_lockref.count) d_shrink_add(dentry, &data->dispose); } /* * We can return to the caller if we have found some (this * ensures forward progress). We'll be coming back to find * the rest. */ if (!list_empty(&data->dispose)) ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; out: return ret; } /** * shrink_dcache_parent - prune dcache * @parent: parent of entries to prune * * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry *parent) { for (;;) { struct select_data data = {.start = parent}; INIT_LIST_HEAD(&data.dispose); d_walk(parent, &data, select_collect); if (!list_empty(&data.dispose)) { shrink_dentry_list(&data.dispose); continue; } cond_resched(); if (!data.found) break; data.victim = NULL; d_walk(parent, &data, select_collect2); if (data.victim) { struct dentry *parent; spin_lock(&data.victim->d_lock); if (!shrink_lock_dentry(data.victim)) { spin_unlock(&data.victim->d_lock); rcu_read_unlock(); } else { rcu_read_unlock(); parent = data.victim->d_parent; if (parent != data.victim) __dput_to_list(parent, &data.dispose); __dentry_kill(data.victim); } } if (!list_empty(&data.dispose)) shrink_dentry_list(&data.dispose); } } EXPORT_SYMBOL(shrink_dcache_parent); static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) { /* it has busy descendents; complain about those instead */ if (!list_empty(&dentry->d_subdirs)) return D_WALK_CONTINUE; /* root with refcount 1 is fine */ if (dentry == _data && dentry->d_lockref.count == 1) return D_WALK_CONTINUE; printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " " still in use (%d) [unmount of %s %s]\n", dentry, dentry->d_inode ? dentry->d_inode->i_ino : 0UL, dentry, dentry->d_lockref.count, dentry->d_sb->s_type->name, dentry->d_sb->s_id); WARN_ON(1); return D_WALK_CONTINUE; } static void do_one_tree(struct dentry *dentry) { shrink_dcache_parent(dentry); d_walk(dentry, dentry, umount_check); d_drop(dentry); dput(dentry); } /* * destroy the dentries attached to a superblock on unmounting */ void shrink_dcache_for_umount(struct super_block *sb) { struct dentry *dentry; WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); dentry = sb->s_root; sb->s_root = NULL; do_one_tree(dentry); while (!hlist_bl_empty(&sb->s_roots)) { dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); do_one_tree(dentry); } } static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) { struct dentry **victim = _data; if (d_mountpoint(dentry)) { __dget_dlock(dentry); *victim = dentry; return D_WALK_QUIT; } return D_WALK_CONTINUE; } /** * d_invalidate - detach submounts, prune dcache, and drop * @dentry: dentry to invalidate (aka detach, prune and drop) */ void d_invalidate(struct dentry *dentry) { bool had_submounts = false; spin_lock(&dentry->d_lock); if (d_unhashed(dentry)) { spin_unlock(&dentry->d_lock); return; } __d_drop(dentry); spin_unlock(&dentry->d_lock); /* Negative dentries can be dropped without further checks */ if (!dentry->d_inode) return; shrink_dcache_parent(dentry); for (;;) { struct dentry *victim = NULL; d_walk(dentry, &victim, find_submount); if (!victim) { if (had_submounts) shrink_dcache_parent(dentry); return; } had_submounts = true; detach_mounts(victim); dput(victim); } } EXPORT_SYMBOL(d_invalidate); /** * __d_alloc - allocate a dcache entry * @sb: filesystem it will belong to * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) { struct dentry *dentry; char *dname; int err; dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); if (!dentry) return NULL; /* * We guarantee that the inline name is always NUL-terminated. * This way the memcpy() done by the name switching in rename * will still always have a NUL at the end, even if we might * be overwriting an internal NUL character */ dentry->d_iname[DNAME_INLINE_LEN-1] = 0; if (unlikely(!name)) { name = &slash_name; dname = dentry->d_iname; } else if (name->len > DNAME_INLINE_LEN-1) { size_t size = offsetof(struct external_name, name[1]); struct external_name *p = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT | __GFP_RECLAIMABLE); if (!p) { kmem_cache_free(dentry_cache, dentry); return NULL; } atomic_set(&p->u.count, 1); dname = p->name; } else { dname = dentry->d_iname; } dentry->d_name.len = name->len; dentry->d_name.hash = name->hash; memcpy(dname, name->name, name->len); dname[name->len] = 0; /* Make sure we always see the terminating NUL character */ smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ dentry->d_lockref.count = 1; dentry->d_flags = 0; spin_lock_init(&dentry->d_lock); seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); dentry->d_inode = NULL; dentry->d_parent = dentry; dentry->d_sb = sb; dentry->d_op = NULL; dentry->d_fsdata = NULL; INIT_HLIST_BL_NODE(&dentry->d_hash); INIT_LIST_HEAD(&dentry->d_lru); INIT_LIST_HEAD(&dentry->d_subdirs); INIT_HLIST_NODE(&dentry->d_u.d_alias); INIT_LIST_HEAD(&dentry->d_child); d_set_d_op(dentry, dentry->d_sb->s_d_op); if (dentry->d_op && dentry->d_op->d_init) { err = dentry->d_op->d_init(dentry); if (err) { if (dname_external(dentry)) kfree(external_name(dentry)); kmem_cache_free(dentry_cache, dentry); return NULL; } } this_cpu_inc(nr_dentry); return dentry; } /** * d_alloc - allocate a dcache entry * @parent: parent of entry to allocate * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) { struct dentry *dentry = __d_alloc(parent->d_sb, name); if (!dentry) return NULL; spin_lock(&parent->d_lock); /* * don't need child lock because it is not subject * to concurrency here */ __dget_dlock(parent); dentry->d_parent = parent; list_add(&dentry->d_child, &parent->d_subdirs); spin_unlock(&parent->d_lock); return dentry; } EXPORT_SYMBOL(d_alloc); struct dentry *d_alloc_anon(struct super_block *sb) { return __d_alloc(sb, NULL); } EXPORT_SYMBOL(d_alloc_anon); struct dentry *d_alloc_cursor(struct dentry * parent) { struct dentry *dentry = d_alloc_anon(parent->d_sb); if (dentry) { dentry->d_flags |= DCACHE_DENTRY_CURSOR; dentry->d_parent = dget(parent); } return dentry; } /** * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) * @sb: the superblock * @name: qstr of the name * * For a filesystem that just pins its dentries in memory and never * performs lookups at all, return an unhashed IS_ROOT dentry. * This is used for pipes, sockets et.al. - the stuff that should * never be anyone's children or parents. Unlike all other * dentries, these will not have RCU delay between dropping the * last reference and freeing them. * * The only user is alloc_file_pseudo() and that's what should * be considered a public interface. Don't use directly. */ struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) { struct dentry *dentry = __d_alloc(sb, name); if (likely(dentry)) dentry->d_flags |= DCACHE_NORCU; return dentry; } struct dentry *d_alloc_name(struct dentry *parent, const char *name) { struct qstr q; q.name = name; q.hash_len = hashlen_string(parent, name); return d_alloc(parent, &q); } EXPORT_SYMBOL(d_alloc_name); void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) { WARN_ON_ONCE(dentry->d_op); WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_REAL)); dentry->d_op = op; if (!op) return; if (op->d_hash) dentry->d_flags |= DCACHE_OP_HASH; if (op->d_compare) dentry->d_flags |= DCACHE_OP_COMPARE; if (op->d_revalidate) dentry->d_flags |= DCACHE_OP_REVALIDATE; if (op->d_weak_revalidate) dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; if (op->d_delete) dentry->d_flags |= DCACHE_OP_DELETE; if (op->d_prune) dentry->d_flags |= DCACHE_OP_PRUNE; if (op->d_real) dentry->d_flags |= DCACHE_OP_REAL; } EXPORT_SYMBOL(d_set_d_op); /* * d_set_fallthru - Mark a dentry as falling through to a lower layer * @dentry - The dentry to mark * * Mark a dentry as falling through to the lower layer (as set with * d_pin_lower()). This flag may be recorded on the medium. */ void d_set_fallthru(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_FALLTHRU; spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(d_set_fallthru); static unsigned d_flags_for_inode(struct inode *inode) { unsigned add_flags = DCACHE_REGULAR_TYPE; if (!inode) return DCACHE_MISS_TYPE; if (S_ISDIR(inode->i_mode)) { add_flags = DCACHE_DIRECTORY_TYPE; if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { if (unlikely(!inode->i_op->lookup)) add_flags = DCACHE_AUTODIR_TYPE; else inode->i_opflags |= IOP_LOOKUP; } goto type_determined; } if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { if (unlikely(inode->i_op->get_link)) { add_flags = DCACHE_SYMLINK_TYPE; goto type_determined; } inode->i_opflags |= IOP_NOFOLLOW; } if (unlikely(!S_ISREG(inode->i_mode))) add_flags = DCACHE_SPECIAL_TYPE; type_determined: if (unlikely(IS_AUTOMOUNT(inode))) add_flags |= DCACHE_NEED_AUTOMOUNT; return add_flags; } static void __d_instantiate(struct dentry *dentry, struct inode *inode) { unsigned add_flags = d_flags_for_inode(inode); WARN_ON(d_in_lookup(dentry)); spin_lock(&dentry->d_lock); /* * The negative counter only tracks dentries on the LRU. Don't dec if * d_lru is on another list. */ if ((dentry->d_flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) this_cpu_dec(nr_dentry_negative); hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); raw_write_seqcount_begin(&dentry->d_seq); __d_set_inode_and_type(dentry, inode, add_flags); raw_write_seqcount_end(&dentry->d_seq); fsnotify_update_flags(dentry); spin_unlock(&dentry->d_lock); } /** * d_instantiate - fill in inode information for a dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ void d_instantiate(struct dentry *entry, struct inode * inode) { BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); if (inode) { security_d_instantiate(entry, inode); spin_lock(&inode->i_lock); __d_instantiate(entry, inode); spin_unlock(&inode->i_lock); } } EXPORT_SYMBOL(d_instantiate); /* * This should be equivalent to d_instantiate() + unlock_new_inode(), * with lockdep-related part of unlock_new_inode() done before * anything else. Use that instead of open-coding d_instantiate()/ * unlock_new_inode() combinations. */ void d_instantiate_new(struct dentry *entry, struct inode *inode) { BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); BUG_ON(!inode); lockdep_annotate_inode_mutex_key(inode); security_d_instantiate(entry, inode); spin_lock(&inode->i_lock); __d_instantiate(entry, inode); WARN_ON(!(inode->i_state & I_NEW)); inode->i_state &= ~I_NEW & ~I_CREATING; smp_mb(); wake_up_bit(&inode->i_state, __I_NEW); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(d_instantiate_new); struct dentry *d_make_root(struct inode *root_inode) { struct dentry *res = NULL; if (root_inode) { res = d_alloc_anon(root_inode->i_sb); if (res) d_instantiate(res, root_inode); else iput(root_inode); } return res; } EXPORT_SYMBOL(d_make_root); static struct dentry *__d_instantiate_anon(struct dentry *dentry, struct inode *inode, bool disconnected) { struct dentry *res; unsigned add_flags; security_d_instantiate(dentry, inode); spin_lock(&inode->i_lock); res = __d_find_any_alias(inode); if (res) { spin_unlock(&inode->i_lock); dput(dentry); goto out_iput; } /* attach a disconnected dentry */ add_flags = d_flags_for_inode(inode); if (disconnected) add_flags |= DCACHE_DISCONNECTED; spin_lock(&dentry->d_lock); __d_set_inode_and_type(dentry, inode, add_flags); hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); if (!disconnected) { hlist_bl_lock(&dentry->d_sb->s_roots); hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); hlist_bl_unlock(&dentry->d_sb->s_roots); } spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); return dentry; out_iput: iput(inode); return res; } struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) { return __d_instantiate_anon(dentry, inode, true); } EXPORT_SYMBOL(d_instantiate_anon); static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) { struct dentry *tmp; struct dentry *res; if (!inode) return ERR_PTR(-ESTALE); if (IS_ERR(inode)) return ERR_CAST(inode); res = d_find_any_alias(inode); if (res) goto out_iput; tmp = d_alloc_anon(inode->i_sb); if (!tmp) { res = ERR_PTR(-ENOMEM); goto out_iput; } return __d_instantiate_anon(tmp, inode, disconnected); out_iput: iput(inode); return res; } /** * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain a dentry for an inode resulting from NFS filehandle conversion or * similar open by handle operations. The returned dentry may be anonymous, * or may have a full name (if the inode was already in the cache). * * When called on a directory inode, we must ensure that the inode only ever * has one dentry. If a dentry is found, that is returned instead of * allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is released. * To make it easier to use in export operations a %NULL or IS_ERR inode may * be passed in and the error will be propagated to the return value, * with a %NULL @inode replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_alias(struct inode *inode) { return __d_obtain_alias(inode, true); } EXPORT_SYMBOL(d_obtain_alias); /** * d_obtain_root - find or allocate a dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain an IS_ROOT dentry for the root of a filesystem. * * We must ensure that directory inodes only ever have one dentry. If a * dentry is found, that is returned instead of allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is * released. A %NULL or IS_ERR inode may be passed in and will be the * error will be propagate to the return value, with a %NULL @inode * replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_root(struct inode *inode) { return __d_obtain_alias(inode, false); } EXPORT_SYMBOL(d_obtain_root); /** * d_add_ci - lookup or allocate new dentry with case-exact name * @inode: the inode case-insensitive lookup has found * @dentry: the negative dentry that was passed to the parent's lookup func * @name: the case-exact name to be associated with the returned dentry * * This is to avoid filling the dcache with case-insensitive names to the * same inode, only the actual correct case is stored in the dcache for * case-insensitive filesystems. * * For a case-insensitive lookup match and if the case-exact dentry * already exists in the dcache, use it and return it. * * If no entry exists with the exact case name, allocate new dentry with * the exact case, and return the spliced entry. */ struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, struct qstr *name) { struct dentry *found, *res; /* * First check if a dentry matching the name already exists, * if not go ahead and create it now. */ found = d_hash_and_lookup(dentry->d_parent, name); if (found) { iput(inode); return found; } if (d_in_lookup(dentry)) { found = d_alloc_parallel(dentry->d_parent, name, dentry->d_wait); if (IS_ERR(found) || !d_in_lookup(found)) { iput(inode); return found; } } else { found = d_alloc(dentry->d_parent, name); if (!found) { iput(inode); return ERR_PTR(-ENOMEM); } } res = d_splice_alias(inode, found); if (res) { dput(found); return res; } return found; } EXPORT_SYMBOL(d_add_ci); static inline bool d_same_name(const struct dentry *dentry, const struct dentry *parent, const struct qstr *name) { if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { if (dentry->d_name.len != name->len) return false; return dentry_cmp(dentry, name->name, name->len) == 0; } return parent->d_op->d_compare(dentry, dentry->d_name.len, dentry->d_name.name, name) == 0; } /** * __d_lookup_rcu - search for a dentry (racy, store-free) * @parent: parent dentry * @name: qstr of name we wish to find * @seqp: returns d_seq value at the point where the dentry was found * Returns: dentry, or NULL * * __d_lookup_rcu is the dcache lookup function for rcu-walk name * resolution (store-free path walking) design described in * Documentation/filesystems/path-lookup.txt. * * This is not to be used outside core vfs. * * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock * held, and rcu_read_lock held. The returned dentry must not be stored into * without taking d_lock and checking d_seq sequence count against @seq * returned here. * * A refcount may be taken on the found dentry with the d_rcu_to_refcount * function. * * Alternatively, __d_lookup_rcu may be called again to look up the child of * the returned dentry, so long as its parent's seqlock is checked after the * child is looked up. Thus, an interlocking stepping of sequence lock checks * is formed, giving integrity down the path walk. * * NOTE! The caller *has* to check the resulting dentry against the sequence * number we've returned before using any of the resulting dentry state! */ struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seqp) { u64 hashlen = name->hash_len; const unsigned char *str = name->name; struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); struct hlist_bl_node *node; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Carefully use d_seq when comparing a candidate dentry, to avoid * races with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { unsigned seq; seqretry: /* * The dentry sequence count protects us from concurrent * renames, and thus protects parent and name fields. * * The caller must perform a seqcount check in order * to do anything useful with the returned dentry. * * NOTE! We do a "raw" seqcount_begin here. That means that * we don't wait for the sequence count to stabilize if it * is in the middle of a sequence change. If we do the slow * dentry compare, we will do seqretries until it is stable, * and if we end up with a successful lookup, we actually * want to exit RCU lookup anyway. * * Note that raw_seqcount_begin still *does* smp_rmb(), so * we are still guaranteed NUL-termination of ->d_name.name. */ seq = raw_seqcount_begin(&dentry->d_seq); if (dentry->d_parent != parent) continue; if (d_unhashed(dentry)) continue; if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { int tlen; const char *tname; if (dentry->d_name.hash != hashlen_hash(hashlen)) continue; tlen = dentry->d_name.len; tname = dentry->d_name.name; /* we want a consistent (name,len) pair */ if (read_seqcount_retry(&dentry->d_seq, seq)) { cpu_relax(); goto seqretry; } if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) continue; } else { if (dentry->d_name.hash_len != hashlen) continue; if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) continue; } *seqp = seq; return dentry; } return NULL; } /** * d_lookup - search for a dentry * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * d_lookup searches the children of the parent dentry for the name in * question. If the dentry is found its reference count is incremented and the * dentry is returned. The caller must use dput to free the entry when it has * finished using it. %NULL is returned if the dentry does not exist. */ struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) { struct dentry *dentry; unsigned seq; do { seq = read_seqbegin(&rename_lock); dentry = __d_lookup(parent, name); if (dentry) break; } while (read_seqretry(&rename_lock, seq)); return dentry; } EXPORT_SYMBOL(d_lookup); /** * __d_lookup - search for a dentry (racy) * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * __d_lookup is like d_lookup, however it may (rarely) return a * false-negative result due to unrelated rename activity. * * __d_lookup is slightly faster by avoiding rename_lock read seqlock, * however it must be used carefully, eg. with a following d_lookup in * the case of failure. * * __d_lookup callers must be commented. */ struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) { unsigned int hash = name->hash; struct hlist_bl_head *b = d_hash(hash); struct hlist_bl_node *node; struct dentry *found = NULL; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Take d_lock when comparing a candidate dentry, to avoid races * with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ rcu_read_lock(); hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { if (dentry->d_name.hash != hash) continue; spin_lock(&dentry->d_lock); if (dentry->d_parent != parent) goto next; if (d_unhashed(dentry)) goto next; if (!d_same_name(dentry, parent, name)) goto next; dentry->d_lockref.count++; found = dentry; spin_unlock(&dentry->d_lock); break; next: spin_unlock(&dentry->d_lock); } rcu_read_unlock(); return found; } /** * d_hash_and_lookup - hash the qstr then search for a dentry * @dir: Directory to search in * @name: qstr of name we wish to find * * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) */ struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) { /* * Check for a fs-specific hash function. Note that we must * calculate the standard hash first, as the d_op->d_hash() * routine may choose to leave the hash value unchanged. */ name->hash = full_name_hash(dir, name->name, name->len); if (dir->d_flags & DCACHE_OP_HASH) { int err = dir->d_op->d_hash(dir, name); if (unlikely(err < 0)) return ERR_PTR(err); } return d_lookup(dir, name); } EXPORT_SYMBOL(d_hash_and_lookup); /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ /** * d_delete - delete a dentry * @dentry: The dentry to delete * * Turn the dentry into a negative dentry if possible, otherwise * remove it from the hash queues so it can be deleted later */ void d_delete(struct dentry * dentry) { struct inode *inode = dentry->d_inode; spin_lock(&inode->i_lock); spin_lock(&dentry->d_lock); /* * Are we the only user? */ if (dentry->d_lockref.count == 1) { dentry->d_flags &= ~DCACHE_CANT_MOUNT; dentry_unlink_inode(dentry); } else { __d_drop(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); } } EXPORT_SYMBOL(d_delete); static void __d_rehash(struct dentry *entry) { struct hlist_bl_head *b = d_hash(entry->d_name.hash); hlist_bl_lock(b); hlist_bl_add_head_rcu(&entry->d_hash, b); hlist_bl_unlock(b); } /** * d_rehash - add an entry back to the hash * @entry: dentry to add to the hash * * Adds a dentry to the hash according to its name. */ void d_rehash(struct dentry * entry) { spin_lock(&entry->d_lock); __d_rehash(entry); spin_unlock(&entry->d_lock); } EXPORT_SYMBOL(d_rehash); static inline unsigned start_dir_add(struct inode *dir) { for (;;) { unsigned n = dir->i_dir_seq; if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) return n; cpu_relax(); } } static inline void end_dir_add(struct inode *dir, unsigned n) { smp_store_release(&dir->i_dir_seq, n + 2); } static void d_wait_lookup(struct dentry *dentry) { if (d_in_lookup(dentry)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(dentry->d_wait, &wait); do { set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock(&dentry->d_lock); schedule(); spin_lock(&dentry->d_lock); } while (d_in_lookup(dentry)); } } struct dentry *d_alloc_parallel(struct dentry *parent, const struct qstr *name, wait_queue_head_t *wq) { unsigned int hash = name->hash; struct hlist_bl_head *b = in_lookup_hash(parent, hash); struct hlist_bl_node *node; struct dentry *new = d_alloc(parent, name); struct dentry *dentry; unsigned seq, r_seq, d_seq; if (unlikely(!new)) return ERR_PTR(-ENOMEM); retry: rcu_read_lock(); seq = smp_load_acquire(&parent->d_inode->i_dir_seq); r_seq = read_seqbegin(&rename_lock); dentry = __d_lookup_rcu(parent, name, &d_seq); if (unlikely(dentry)) { if (!lockref_get_not_dead(&dentry->d_lockref)) { rcu_read_unlock(); goto retry; } if (read_seqcount_retry(&dentry->d_seq, d_seq)) { rcu_read_unlock(); dput(dentry); goto retry; } rcu_read_unlock(); dput(new); return dentry; } if (unlikely(read_seqretry(&rename_lock, r_seq))) { rcu_read_unlock(); goto retry; } if (unlikely(seq & 1)) { rcu_read_unlock(); goto retry; } hlist_bl_lock(b); if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { hlist_bl_unlock(b); rcu_read_unlock(); goto retry; } /* * No changes for the parent since the beginning of d_lookup(). * Since all removals from the chain happen with hlist_bl_lock(), * any potential in-lookup matches are going to stay here until * we unlock the chain. All fields are stable in everything * we encounter. */ hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { if (dentry->d_name.hash != hash) continue; if (dentry->d_parent != parent) continue; if (!d_same_name(dentry, parent, name)) continue; hlist_bl_unlock(b); /* now we can try to grab a reference */ if (!lockref_get_not_dead(&dentry->d_lockref)) { rcu_read_unlock(); goto retry; } rcu_read_unlock(); /* * somebody is likely to be still doing lookup for it; * wait for them to finish */ spin_lock(&dentry->d_lock); d_wait_lookup(dentry); /* * it's not in-lookup anymore; in principle we should repeat * everything from dcache lookup, but it's likely to be what * d_lookup() would've found anyway. If it is, just return it; * otherwise we really have to repeat the whole thing. */ if (unlikely(dentry->d_name.hash != hash)) goto mismatch; if (unlikely(dentry->d_parent != parent)) goto mismatch; if (unlikely(d_unhashed(dentry))) goto mismatch; if (unlikely(!d_same_name(dentry, parent, name))) goto mismatch; /* OK, it *is* a hashed match; return it */ spin_unlock(&dentry->d_lock); dput(new); return dentry; } rcu_read_unlock(); /* we can't take ->d_lock here; it's OK, though. */ new->d_flags |= DCACHE_PAR_LOOKUP; new->d_wait = wq; hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); hlist_bl_unlock(b); return new; mismatch: spin_unlock(&dentry->d_lock); dput(dentry); goto retry; } EXPORT_SYMBOL(d_alloc_parallel); void __d_lookup_done(struct dentry *dentry) { struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); hlist_bl_lock(b); dentry->d_flags &= ~DCACHE_PAR_LOOKUP; __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); wake_up_all(dentry->d_wait); dentry->d_wait = NULL; hlist_bl_unlock(b); INIT_HLIST_NODE(&dentry->d_u.d_alias); INIT_LIST_HEAD(&dentry->d_lru); } EXPORT_SYMBOL(__d_lookup_done); /* inode->i_lock held if inode is non-NULL */ static inline void __d_add(struct dentry *dentry, struct inode *inode) { struct inode *dir = NULL; unsigned n; spin_lock(&dentry->d_lock); if (unlikely(d_in_lookup(dentry))) { dir = dentry->d_parent->d_inode; n = start_dir_add(dir); __d_lookup_done(dentry); } if (inode) { unsigned add_flags = d_flags_for_inode(inode); hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); raw_write_seqcount_begin(&dentry->d_seq); __d_set_inode_and_type(dentry, inode, add_flags); raw_write_seqcount_end(&dentry->d_seq); fsnotify_update_flags(dentry); } __d_rehash(dentry); if (dir) end_dir_add(dir, n); spin_unlock(&dentry->d_lock); if (inode) spin_unlock(&inode->i_lock); } /** * d_add - add dentry to hash queues * @entry: dentry to add * @inode: The inode to attach to this dentry * * This adds the entry to the hash queues and initializes @inode. * The entry was actually filled in earlier during d_alloc(). */ void d_add(struct dentry *entry, struct inode *inode) { if (inode) { security_d_instantiate(entry, inode); spin_lock(&inode->i_lock); } __d_add(entry, inode); } EXPORT_SYMBOL(d_add); /** * d_exact_alias - find and hash an exact unhashed alias * @entry: dentry to add * @inode: The inode to go with this dentry * * If an unhashed dentry with the same name/parent and desired * inode already exists, hash and return it. Otherwise, return * NULL. * * Parent directory should be locked. */ struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) { struct dentry *alias; unsigned int hash = entry->d_name.hash; spin_lock(&inode->i_lock); hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { /* * Don't need alias->d_lock here, because aliases with * d_parent == entry->d_parent are not subject to name or * parent changes, because the parent inode i_mutex is held. */ if (alias->d_name.hash != hash) continue; if (alias->d_parent != entry->d_parent) continue; if (!d_same_name(alias, entry->d_parent, &entry->d_name)) continue; spin_lock(&alias->d_lock); if (!d_unhashed(alias)) { spin_unlock(&alias->d_lock); alias = NULL; } else { __dget_dlock(alias); __d_rehash(alias); spin_unlock(&alias->d_lock); } spin_unlock(&inode->i_lock); return alias; } spin_unlock(&inode->i_lock); return NULL; } EXPORT_SYMBOL(d_exact_alias); static void swap_names(struct dentry *dentry, struct dentry *target) { if (unlikely(dname_external(target))) { if (unlikely(dname_external(dentry))) { /* * Both external: swap the pointers */ swap(target->d_name.name, dentry->d_name.name); } else { /* * dentry:internal, target:external. Steal target's * storage and make target internal. */ memcpy(target->d_iname, dentry->d_name.name, dentry->d_name.len + 1); dentry->d_name.name = target->d_name.name; target->d_name.name = target->d_iname; } } else { if (unlikely(dname_external(dentry))) { /* * dentry:external, target:internal. Give dentry's * storage to target and make dentry internal */ memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); target->d_name.name = dentry->d_name.name; dentry->d_name.name = dentry->d_iname; } else { /* * Both are internal. */ unsigned int i; BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { swap(((long *) &dentry->d_iname)[i], ((long *) &target->d_iname)[i]); } } } swap(dentry->d_name.hash_len, target->d_name.hash_len); } static void copy_name(struct dentry *dentry, struct dentry *target) { struct external_name *old_name = NULL; if (unlikely(dname_external(dentry))) old_name = external_name(dentry); if (unlikely(dname_external(target))) { atomic_inc(&external_name(target)->u.count); dentry->d_name = target->d_name; } else { memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); dentry->d_name.name = dentry->d_iname; dentry->d_name.hash_len = target->d_name.hash_len; } if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) kfree_rcu(old_name, u.head); } /* * __d_move - move a dentry * @dentry: entry to move * @target: new dentry * @exchange: exchange the two dentries * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. Caller must hold * rename_lock, the i_mutex of the source and target directories, * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). */ static void __d_move(struct dentry *dentry, struct dentry *target, bool exchange) { struct dentry *old_parent, *p; struct inode *dir = NULL; unsigned n; WARN_ON(!dentry->d_inode); if (WARN_ON(dentry == target)) return; BUG_ON(d_ancestor(target, dentry)); old_parent = dentry->d_parent; p = d_ancestor(old_parent, target); if (IS_ROOT(dentry)) { BUG_ON(p); spin_lock(&target->d_parent->d_lock); } else if (!p) { /* target is not a descendent of dentry->d_parent */ spin_lock(&target->d_parent->d_lock); spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); } else { BUG_ON(p == dentry); spin_lock(&old_parent->d_lock); if (p != target) spin_lock_nested(&target->d_parent->d_lock, DENTRY_D_LOCK_NESTED); } spin_lock_nested(&dentry->d_lock, 2); spin_lock_nested(&target->d_lock, 3); if (unlikely(d_in_lookup(target))) { dir = target->d_parent->d_inode; n = start_dir_add(dir); __d_lookup_done(target); } write_seqcount_begin(&dentry->d_seq); write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); /* unhash both */ if (!d_unhashed(dentry)) ___d_drop(dentry); if (!d_unhashed(target)) ___d_drop(target); /* ... and switch them in the tree */ dentry->d_parent = target->d_parent; if (!exchange) { copy_name(dentry, target); target->d_hash.pprev = NULL; dentry->d_parent->d_lockref.count++; if (dentry != old_parent) /* wasn't IS_ROOT */ WARN_ON(!--old_parent->d_lockref.count); } else { target->d_parent = old_parent; swap_names(dentry, target); list_move(&target->d_child, &target->d_parent->d_subdirs); __d_rehash(target); fsnotify_update_flags(target); } list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); __d_rehash(dentry); fsnotify_update_flags(dentry); fscrypt_handle_d_move(dentry); write_seqcount_end(&target->d_seq); write_seqcount_end(&dentry->d_seq); if (dir) end_dir_add(dir, n); if (dentry->d_parent != old_parent) spin_unlock(&dentry->d_parent->d_lock); if (dentry != old_parent) spin_unlock(&old_parent->d_lock); spin_unlock(&target->d_lock); spin_unlock(&dentry->d_lock); } /* * d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. See the locking * requirements for __d_move. */ void d_move(struct dentry *dentry, struct dentry *target) { write_seqlock(&rename_lock); __d_move(dentry, target, false); write_sequnlock(&rename_lock); } EXPORT_SYMBOL(d_move); /* * d_exchange - exchange two dentries * @dentry1: first dentry * @dentry2: second dentry */ void d_exchange(struct dentry *dentry1, struct dentry *dentry2) { write_seqlock(&rename_lock); WARN_ON(!dentry1->d_inode); WARN_ON(!dentry2->d_inode); WARN_ON(IS_ROOT(dentry1)); WARN_ON(IS_ROOT(dentry2)); __d_move(dentry1, dentry2, true); write_sequnlock(&rename_lock); } /** * d_ancestor - search for an ancestor * @p1: ancestor dentry * @p2: child dentry * * Returns the ancestor dentry of p2 which is a child of p1, if p1 is * an ancestor of p2, else NULL. */ struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) { struct dentry *p; for (p = p2; !IS_ROOT(p); p = p->d_parent) { if (p->d_parent == p1) return p; } return NULL; } /* * This helper attempts to cope with remotely renamed directories * * It assumes that the caller is already holding * dentry->d_parent->d_inode->i_mutex, and rename_lock * * Note: If ever the locking in lock_rename() changes, then please * remember to update this too... */ static int __d_unalias(struct inode *inode, struct dentry *dentry, struct dentry *alias) { struct mutex *m1 = NULL; struct rw_semaphore *m2 = NULL; int ret = -ESTALE; /* If alias and dentry share a parent, then no extra locks required */ if (alias->d_parent == dentry->d_parent) goto out_unalias; /* See lock_rename() */ if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) goto out_err; m1 = &dentry->d_sb->s_vfs_rename_mutex; if (!inode_trylock_shared(alias->d_parent->d_inode)) goto out_err; m2 = &alias->d_parent->d_inode->i_rwsem; out_unalias: __d_move(alias, dentry, false); ret = 0; out_err: if (m2) up_read(m2); if (m1) mutex_unlock(m1); return ret; } /** * d_splice_alias - splice a disconnected dentry into the tree if one exists * @inode: the inode which may have a disconnected dentry * @dentry: a negative dentry which we want to point to the inode. * * If inode is a directory and has an IS_ROOT alias, then d_move that in * place of the given dentry and return it, else simply d_add the inode * to the dentry and return NULL. * * If a non-IS_ROOT directory is found, the filesystem is corrupt, and * we should error out: directories can't have multiple aliases. * * This is needed in the lookup routine of any filesystem that is exportable * (via knfsd) so that we can build dcache paths to directories effectively. * * If a dentry was found and moved, then it is returned. Otherwise NULL * is returned. This matches the expected return value of ->lookup. * * Cluster filesystems may call this function with a negative, hashed dentry. * In that case, we know that the inode will be a regular file, and also this * will only occur during atomic_open. So we need to check for the dentry * being already hashed only in the final case. */ struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) { if (IS_ERR(inode)) return ERR_CAST(inode); BUG_ON(!d_unhashed(dentry)); if (!inode) goto out; security_d_instantiate(dentry, inode); spin_lock(&inode->i_lock); if (S_ISDIR(inode->i_mode)) { struct dentry *new = __d_find_any_alias(inode); if (unlikely(new)) { /* The reference to new ensures it remains an alias */ spin_unlock(&inode->i_lock); write_seqlock(&rename_lock); if (unlikely(d_ancestor(new, dentry))) { write_sequnlock(&rename_lock); dput(new); new = ERR_PTR(-ELOOP); pr_warn_ratelimited( "VFS: Lookup of '%s' in %s %s" " would have caused loop\n", dentry->d_name.name, inode->i_sb->s_type->name, inode->i_sb->s_id); } else if (!IS_ROOT(new)) { struct dentry *old_parent = dget(new->d_parent); int err = __d_unalias(inode, dentry, new); write_sequnlock(&rename_lock); if (err) { dput(new); new = ERR_PTR(err); } dput(old_parent); } else { __d_move(new, dentry, false); write_sequnlock(&rename_lock); } iput(inode); return new; } } out: __d_add(dentry, inode); return NULL; } EXPORT_SYMBOL(d_splice_alias); /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ /** * is_subdir - is new dentry a subdirectory of old_dentry * @new_dentry: new dentry * @old_dentry: old dentry * * Returns true if new_dentry is a subdirectory of the parent (at any depth). * Returns false otherwise. * Caller must ensure that "new_dentry" is pinned before calling is_subdir() */ bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) { bool subdir; unsigned seq; if (new_dentry == old_dentry) return true; /* Access d_parent under rcu as d_move() may change it. */ rcu_read_lock(); seq = read_seqbegin(&rename_lock); subdir = d_ancestor(old_dentry, new_dentry); /* Try lockless once... */ if (read_seqretry(&rename_lock, seq)) { /* ...else acquire lock for progress even on deep chains. */ read_seqlock_excl(&rename_lock); subdir = d_ancestor(old_dentry, new_dentry); read_sequnlock_excl(&rename_lock); } rcu_read_unlock(); return subdir; } EXPORT_SYMBOL(is_subdir); static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) { struct dentry *root = data; if (dentry != root) { if (d_unhashed(dentry) || !dentry->d_inode) return D_WALK_SKIP; if (!(dentry->d_flags & DCACHE_GENOCIDE)) { dentry->d_flags |= DCACHE_GENOCIDE; dentry->d_lockref.count--; } } return D_WALK_CONTINUE; } void d_genocide(struct dentry *parent) { d_walk(parent, parent, d_genocide_kill); } EXPORT_SYMBOL(d_genocide); void d_tmpfile(struct dentry *dentry, struct inode *inode) { inode_dec_link_count(inode); BUG_ON(dentry->d_name.name != dentry->d_iname || !hlist_unhashed(&dentry->d_u.d_alias) || !d_unlinked(dentry)); spin_lock(&dentry->d_parent->d_lock); spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", (unsigned long long)inode->i_ino); spin_unlock(&dentry->d_lock); spin_unlock(&dentry->d_parent->d_lock); d_instantiate(dentry, inode); } EXPORT_SYMBOL(d_tmpfile); static __initdata unsigned long dhash_entries; static int __init set_dhash_entries(char *str) { if (!str) return 0; dhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("dhash_entries=", set_dhash_entries); static void __init dcache_init_early(void) { /* If hashes are distributed across NUMA nodes, defer * hash allocation until vmalloc space is available. */ if (hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, HASH_EARLY | HASH_ZERO, &d_hash_shift, NULL, 0, 0); d_hash_shift = 32 - d_hash_shift; } static void __init dcache_init(void) { /* * A constructor could be added for stable state like the lists, * but it is probably not worth it because of the cache nature * of the dcache. */ dentry_cache = KMEM_CACHE_USERCOPY(dentry, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, d_iname); /* Hash may have been set up in dcache_init_early */ if (!hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, HASH_ZERO, &d_hash_shift, NULL, 0, 0); d_hash_shift = 32 - d_hash_shift; } /* SLAB cache for __getname() consumers */ struct kmem_cache *names_cachep __read_mostly; EXPORT_SYMBOL(names_cachep); void __init vfs_caches_init_early(void) { int i; for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); dcache_init_early(); inode_init_early(); } void __init vfs_caches_init(void) { names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); dcache_init(); inode_init(); files_init(); files_maxfiles_init(); mnt_init(); bdev_cache_init(); chrdev_init(); } |
4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef RQ_QOS_H #define RQ_QOS_H #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/blk_types.h> #include <linux/atomic.h> #include <linux/wait.h> #include <linux/blk-mq.h> #include "blk-mq-debugfs.h" struct blk_mq_debugfs_attr; enum rq_qos_id { RQ_QOS_WBT, RQ_QOS_LATENCY, RQ_QOS_COST, RQ_QOS_IOPRIO, }; struct rq_wait { wait_queue_head_t wait; atomic_t inflight; }; struct rq_qos { struct rq_qos_ops *ops; struct request_queue *q; enum rq_qos_id id; struct rq_qos *next; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *debugfs_dir; #endif }; struct rq_qos_ops { void (*throttle)(struct rq_qos *, struct bio *); void (*track)(struct rq_qos *, struct request *, struct bio *); void (*merge)(struct rq_qos *, struct request *, struct bio *); void (*issue)(struct rq_qos *, struct request *); void (*requeue)(struct rq_qos *, struct request *); void (*done)(struct rq_qos *, struct request *); void (*done_bio)(struct rq_qos *, struct bio *); void (*cleanup)(struct rq_qos *, struct bio *); void (*queue_depth_changed)(struct rq_qos *); void (*exit)(struct rq_qos *); const struct blk_mq_debugfs_attr *debugfs_attrs; }; struct rq_depth { unsigned int max_depth; int scale_step; bool scaled_max; unsigned int queue_depth; unsigned int default_depth; }; static inline struct rq_qos *rq_qos_id(struct request_queue *q, enum rq_qos_id id) { struct rq_qos *rqos; for (rqos = q->rq_qos; rqos; rqos = rqos->next) { if (rqos->id == id) break; } return rqos; } static inline struct rq_qos *wbt_rq_qos(struct request_queue *q) { return rq_qos_id(q, RQ_QOS_WBT); } static inline struct rq_qos *blkcg_rq_qos(struct request_queue *q) { return rq_qos_id(q, RQ_QOS_LATENCY); } static inline void rq_wait_init(struct rq_wait *rq_wait) { atomic_set(&rq_wait->inflight, 0); init_waitqueue_head(&rq_wait->wait); } static inline int rq_qos_add(struct request_queue *q, struct rq_qos *rqos) { /* * No IO can be in-flight when adding rqos, so freeze queue, which * is fine since we only support rq_qos for blk-mq queue. * * Reuse ->queue_lock for protecting against other concurrent * rq_qos adding/deleting */ blk_mq_freeze_queue(q); spin_lock_irq(&q->queue_lock); if (rq_qos_id(q, rqos->id)) goto ebusy; rqos->next = q->rq_qos; q->rq_qos = rqos; spin_unlock_irq(&q->queue_lock); blk_mq_unfreeze_queue(q); if (rqos->ops->debugfs_attrs) blk_mq_debugfs_register_rqos(rqos); return 0; ebusy: spin_unlock_irq(&q->queue_lock); blk_mq_unfreeze_queue(q); return -EBUSY; } static inline void rq_qos_del(struct request_queue *q, struct rq_qos *rqos) { struct rq_qos **cur; /* * See comment in rq_qos_add() about freezing queue & using * ->queue_lock. */ blk_mq_freeze_queue(q); spin_lock_irq(&q->queue_lock); for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) { if (*cur == rqos) { *cur = rqos->next; break; } } spin_unlock_irq(&q->queue_lock); blk_mq_unfreeze_queue(q); blk_mq_debugfs_unregister_rqos(rqos); } typedef bool (acquire_inflight_cb_t)(struct rq_wait *rqw, void *private_data); typedef void (cleanup_cb_t)(struct rq_wait *rqw, void *private_data); void rq_qos_wait(struct rq_wait *rqw, void *private_data, acquire_inflight_cb_t *acquire_inflight_cb, cleanup_cb_t *cleanup_cb); bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit); bool rq_depth_scale_up(struct rq_depth *rqd); bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle); bool rq_depth_calc_max_depth(struct rq_depth *rqd); void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio); void __rq_qos_done(struct rq_qos *rqos, struct request *rq); void __rq_qos_issue(struct rq_qos *rqos, struct request *rq); void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq); void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio); void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio); void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio); void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio); void __rq_qos_queue_depth_changed(struct rq_qos *rqos); static inline void rq_qos_cleanup(struct request_queue *q, struct bio *bio) { if (q->rq_qos) __rq_qos_cleanup(q->rq_qos, bio); } static inline void rq_qos_done(struct request_queue *q, struct request *rq) { if (q->rq_qos) __rq_qos_done(q->rq_qos, rq); } static inline void rq_qos_issue(struct request_queue *q, struct request *rq) { if (q->rq_qos) __rq_qos_issue(q->rq_qos, rq); } static inline void rq_qos_requeue(struct request_queue *q, struct request *rq) { if (q->rq_qos) __rq_qos_requeue(q->rq_qos, rq); } static inline void rq_qos_done_bio(struct bio *bio) { if (bio->bi_bdev && (bio_flagged(bio, BIO_QOS_THROTTLED) || bio_flagged(bio, BIO_QOS_MERGED))) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); if (q->rq_qos) __rq_qos_done_bio(q->rq_qos, bio); } } static inline void rq_qos_throttle(struct request_queue *q, struct bio *bio) { if (q->rq_qos) { bio_set_flag(bio, BIO_QOS_THROTTLED); __rq_qos_throttle(q->rq_qos, bio); } } static inline void rq_qos_track(struct request_queue *q, struct request *rq, struct bio *bio) { if (q->rq_qos) __rq_qos_track(q->rq_qos, rq, bio); } static inline void rq_qos_merge(struct request_queue *q, struct request *rq, struct bio *bio) { if (q->rq_qos) { bio_set_flag(bio, BIO_QOS_MERGED); __rq_qos_merge(q->rq_qos, rq, bio); } } static inline void rq_qos_queue_depth_changed(struct request_queue *q) { if (q->rq_qos) __rq_qos_queue_depth_changed(q->rq_qos); } void rq_qos_exit(struct request_queue *); #endif |
4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_H #define BLK_MQ_H #include <linux/blkdev.h> #include <linux/sbitmap.h> #include <linux/srcu.h> #include <linux/lockdep.h> struct blk_mq_tags; struct blk_flush_queue; /** * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware * block device */ struct blk_mq_hw_ctx { struct { /** @lock: Protects the dispatch list. */ spinlock_t lock; /** * @dispatch: Used for requests that are ready to be * dispatched to the hardware but for some reason (e.g. lack of * resources) could not be sent to the hardware. As soon as the * driver can send new requests, requests at this list will * be sent first for a fairer dispatch. */ struct list_head dispatch; /** * @state: BLK_MQ_S_* flags. Defines the state of the hw * queue (active, scheduled to restart, stopped). */ unsigned long state; } ____cacheline_aligned_in_smp; /** * @run_work: Used for scheduling a hardware queue run at a later time. */ struct delayed_work run_work; /** @cpumask: Map of available CPUs where this hctx can run. */ cpumask_var_t cpumask; /** * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU * selection from @cpumask. */ int next_cpu; /** * @next_cpu_batch: Counter of how many works left in the batch before * changing to the next CPU. */ int next_cpu_batch; /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ unsigned long flags; /** * @sched_data: Pointer owned by the IO scheduler attached to a request * queue. It's up to the IO scheduler how to use this pointer. */ void *sched_data; /** * @queue: Pointer to the request queue that owns this hardware context. */ struct request_queue *queue; /** @fq: Queue of requests that need to perform a flush operation. */ struct blk_flush_queue *fq; /** * @driver_data: Pointer to data owned by the block driver that created * this hctx */ void *driver_data; /** * @ctx_map: Bitmap for each software queue. If bit is on, there is a * pending request in that software queue. */ struct sbitmap ctx_map; /** * @dispatch_from: Software queue to be used when no scheduler was * selected. */ struct blk_mq_ctx *dispatch_from; /** * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to * decide if the hw_queue is busy using Exponential Weighted Moving * Average algorithm. */ unsigned int dispatch_busy; /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ unsigned short type; /** @nr_ctx: Number of software queues. */ unsigned short nr_ctx; /** @ctxs: Array of software queues. */ struct blk_mq_ctx **ctxs; /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ spinlock_t dispatch_wait_lock; /** * @dispatch_wait: Waitqueue to put requests when there is no tag * available at the moment, to wait for another try in the future. */ wait_queue_entry_t dispatch_wait; /** * @wait_index: Index of next available dispatch_wait queue to insert * requests. */ atomic_t wait_index; /** * @tags: Tags owned by the block driver. A tag at this set is only * assigned when a request is dispatched from a hardware queue. */ struct blk_mq_tags *tags; /** * @sched_tags: Tags owned by I/O scheduler. If there is an I/O * scheduler associated with a request queue, a tag is assigned when * that request is allocated. Else, this member is not used. */ struct blk_mq_tags *sched_tags; /** @queued: Number of queued requests. */ unsigned long queued; /** @run: Number of dispatched requests. */ unsigned long run; #define BLK_MQ_MAX_DISPATCH_ORDER 7 /** @dispatched: Number of dispatch requests by queue. */ unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; /** @numa_node: NUMA node the storage adapter has been connected to. */ unsigned int numa_node; /** @queue_num: Index of this hardware queue. */ unsigned int queue_num; /** * @nr_active: Number of active requests. Only used when a tag set is * shared across request queues. */ atomic_t nr_active; /** @cpuhp_online: List to store request if CPU is going to die */ struct hlist_node cpuhp_online; /** @cpuhp_dead: List to store request if some CPU die. */ struct hlist_node cpuhp_dead; /** @kobj: Kernel object for sysfs. */ struct kobject kobj; /** @poll_considered: Count times blk_poll() was called. */ unsigned long poll_considered; /** @poll_invoked: Count how many requests blk_poll() polled. */ unsigned long poll_invoked; /** @poll_success: Count how many polled requests were completed. */ unsigned long poll_success; #ifdef CONFIG_BLK_DEBUG_FS /** * @debugfs_dir: debugfs directory for this hardware queue. Named * as cpu<cpu_number>. */ struct dentry *debugfs_dir; /** @sched_debugfs_dir: debugfs directory for the scheduler. */ struct dentry *sched_debugfs_dir; #endif /** * @hctx_list: if this hctx is not in use, this is an entry in * q->unused_hctx_list. */ struct list_head hctx_list; /** * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also * blk_mq_hw_ctx_size(). */ struct srcu_struct srcu[]; }; /** * struct blk_mq_queue_map - Map software queues to hardware queues * @mq_map: CPU ID to hardware queue index map. This is an array * with nr_cpu_ids elements. Each element has a value in the range * [@queue_offset, @queue_offset + @nr_queues). * @nr_queues: Number of hardware queues to map CPU IDs onto. * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe * driver to map each hardware queue type (enum hctx_type) onto a distinct * set of hardware queues. */ struct blk_mq_queue_map { unsigned int *mq_map; unsigned int nr_queues; unsigned int queue_offset; }; /** * enum hctx_type - Type of hardware queue * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. * @HCTX_TYPE_READ: Just for READ I/O. * @HCTX_TYPE_POLL: Polled I/O of any kind. * @HCTX_MAX_TYPES: Number of types of hctx. */ enum hctx_type { HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL, HCTX_MAX_TYPES, }; /** * struct blk_mq_tag_set - tag set that can be shared between request queues * @map: One or more ctx -> hctx mappings. One map exists for each * hardware queue type (enum hctx_type) that the driver wishes * to support. There are no restrictions on maps being of the * same size, and it's perfectly legal to share maps between * types. * @nr_maps: Number of elements in the @map array. A number in the range * [1, HCTX_MAX_TYPES]. * @ops: Pointers to functions that implement block driver behavior. * @nr_hw_queues: Number of hardware queues supported by the block driver that * owns this data structure. * @queue_depth: Number of tags per hardware queue, reserved tags included. * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag * allocations. * @cmd_size: Number of additional bytes to allocate per request. The block * driver owns these additional bytes. * @numa_node: NUMA node the storage adapter has been connected to. * @timeout: Request processing timeout in jiffies. * @flags: Zero or more BLK_MQ_F_* flags. * @driver_data: Pointer to data owned by the block driver that created this * tag set. * @active_queues_shared_sbitmap: * number of active request queues per tag set. * @__bitmap_tags: A shared tags sbitmap, used over all hctx's * @__breserved_tags: * A shared reserved tags sbitmap, used over all hctx's * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues * elements. * @tag_list_lock: Serializes tag_list accesses. * @tag_list: List of the request queues that use this tag set. See also * request_queue.tag_set_list. */ struct blk_mq_tag_set { struct blk_mq_queue_map map[HCTX_MAX_TYPES]; unsigned int nr_maps; const struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; unsigned int reserved_tags; unsigned int cmd_size; int numa_node; unsigned int timeout; unsigned int flags; void *driver_data; atomic_t active_queues_shared_sbitmap; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct blk_mq_tags **tags; struct mutex tag_list_lock; struct list_head tag_list; }; /** * struct blk_mq_queue_data - Data about a request inserted in a queue * * @rq: Request pointer. * @last: If it is the last request in the queue. */ struct blk_mq_queue_data { struct request *rq; bool last; }; typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, bool); typedef bool (busy_tag_iter_fn)(struct request *, void *, bool); /** * struct blk_mq_ops - Callback functions that implements block driver * behaviour. */ struct blk_mq_ops { /** * @queue_rq: Queue a new request from block IO. */ blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *); /** * @commit_rqs: If a driver uses bd->last to judge when to submit * requests to hardware, it must define this function. In case of errors * that make us stop issuing further requests, this hook serves the * purpose of kicking the hardware (which the last request otherwise * would have done). */ void (*commit_rqs)(struct blk_mq_hw_ctx *); /** * @get_budget: Reserve budget before queue request, once .queue_rq is * run, it is driver's responsibility to release the * reserved budget. Also we have to handle failure case * of .get_budget for avoiding I/O deadlock. */ int (*get_budget)(struct request_queue *); /** * @put_budget: Release the reserved budget. */ void (*put_budget)(struct request_queue *, int); /** * @set_rq_budget_token: store rq's budget token */ void (*set_rq_budget_token)(struct request *, int); /** * @get_rq_budget_token: retrieve rq's budget token */ int (*get_rq_budget_token)(struct request *); /** * @timeout: Called on request timeout. */ enum blk_eh_timer_return (*timeout)(struct request *, bool); /** * @poll: Called to poll for completion of a specific tag. */ int (*poll)(struct blk_mq_hw_ctx *); /** * @complete: Mark the request as complete. */ void (*complete)(struct request *); /** * @init_hctx: Called when the block layer side of a hardware queue has * been set up, allowing the driver to allocate/init matching * structures. */ int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); /** * @exit_hctx: Ditto for exit/teardown. */ void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); /** * @init_request: Called for every command allocated by the block layer * to allow the driver to set up driver specific data. * * Tag greater than or equal to queue_depth is for setting up * flush request. */ int (*init_request)(struct blk_mq_tag_set *set, struct request *, unsigned int, unsigned int); /** * @exit_request: Ditto for exit/teardown. */ void (*exit_request)(struct blk_mq_tag_set *set, struct request *, unsigned int); /** * @initialize_rq_fn: Called from inside blk_get_request(). */ void (*initialize_rq_fn)(struct request *rq); /** * @cleanup_rq: Called before freeing one request which isn't completed * yet, and usually for freeing the driver private data. */ void (*cleanup_rq)(struct request *); /** * @busy: If set, returns whether or not this queue currently is busy. */ bool (*busy)(struct request_queue *); /** * @map_queues: This allows drivers specify their own queue mapping by * overriding the setup-time function that builds the mq_map. */ int (*map_queues)(struct blk_mq_tag_set *set); #ifdef CONFIG_BLK_DEBUG_FS /** * @show_rq: Used by the debugfs implementation to show driver-specific * information about a request. */ void (*show_rq)(struct seq_file *m, struct request *rq); #endif }; enum { BLK_MQ_F_SHOULD_MERGE = 1 << 0, BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, /* * Set when this device requires underlying blk-mq device for * completing IO: */ BLK_MQ_F_STACKING = 1 << 2, BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, BLK_MQ_F_BLOCKING = 1 << 5, /* Do not allow an I/O scheduler to be configured. */ BLK_MQ_F_NO_SCHED = 1 << 6, /* * Select 'none' during queue registration in case of a single hwq * or shared hwqs instead of 'mq-deadline'. */ BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7, BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, BLK_MQ_F_ALLOC_POLICY_BITS = 1, BLK_MQ_S_STOPPED = 0, BLK_MQ_S_TAG_ACTIVE = 1, BLK_MQ_S_SCHED_RESTART = 2, /* hw queue is inactive after all its CPUs become offline */ BLK_MQ_S_INACTIVE = 3, BLK_MQ_MAX_DEPTH = 10240, BLK_MQ_CPU_WORK_BATCH = 8, }; #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ << BLK_MQ_F_ALLOC_POLICY_START_BIT) struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, struct lock_class_key *lkclass); #define blk_mq_alloc_disk(set, queuedata) \ ({ \ static struct lock_class_key __key; \ \ __blk_mq_alloc_disk(set, queuedata, &__key); \ }) struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q); void blk_mq_unregister_dev(struct device *, struct request_queue *); int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int queue_depth, unsigned int set_flags); void blk_mq_free_tag_set(struct blk_mq_tag_set *set); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_free_request(struct request *rq); bool blk_mq_queue_inflight(struct request_queue *q); enum { /* return when out of requests */ BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), /* allocate from reserved pool */ BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), /* set RQF_PM */ BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2), }; struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx); struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); enum { BLK_MQ_UNIQUE_TAG_BITS = 16, BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, }; u32 blk_mq_unique_tag(struct request *rq); static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) { return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; } static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) { return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; } /** * blk_mq_rq_state() - read the current MQ_RQ_* state of a request * @rq: target request. */ static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) { return READ_ONCE(rq->state); } static inline int blk_mq_request_started(struct request *rq) { return blk_mq_rq_state(rq) != MQ_RQ_IDLE; } static inline int blk_mq_request_completed(struct request *rq) { return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; } /* * * Set the state to complete when completing a request from inside ->queue_rq. * This is used by drivers that want to ensure special complete actions that * need access to the request are called on failure, e.g. by nvme for * multipathing. */ static inline void blk_mq_set_request_complete(struct request *rq) { WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); } void blk_mq_start_request(struct request *rq); void blk_mq_end_request(struct request *rq, blk_status_t error); void __blk_mq_end_request(struct request *rq, blk_status_t error); void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); void blk_mq_kick_requeue_list(struct request_queue *q); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); void blk_mq_complete_request(struct request *rq); bool blk_mq_complete_request_remote(struct request *rq); bool blk_mq_queue_stopped(struct request_queue *q); void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_stop_hw_queues(struct request_queue *q); void blk_mq_start_hw_queues(struct request_queue *q); void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); void blk_mq_quiesce_queue(struct request_queue *q); void blk_mq_unquiesce_queue(struct request_queue *q); void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_run_hw_queues(struct request_queue *q, bool async); void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv); void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); void blk_mq_freeze_queue(struct request_queue *q); void blk_mq_unfreeze_queue(struct request_queue *q); void blk_freeze_queue_start(struct request_queue *q); void blk_mq_freeze_queue_wait(struct request_queue *q); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout); int blk_mq_map_queues(struct blk_mq_queue_map *qmap); void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); void blk_mq_quiesce_queue_nowait(struct request_queue *q); unsigned int blk_mq_rq_cpu(struct request *rq); bool __blk_should_fake_timeout(struct request_queue *q); static inline bool blk_should_fake_timeout(struct request_queue *q) { if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) return __blk_should_fake_timeout(q); return false; } /** * blk_mq_rq_from_pdu - cast a PDU to a request * @pdu: the PDU (Protocol Data Unit) to be casted * * Return: request * * Driver command data is immediately after the request. So subtract request * size to get back to the original request. */ static inline struct request *blk_mq_rq_from_pdu(void *pdu) { return pdu - sizeof(struct request); } /** * blk_mq_rq_to_pdu - cast a request to a PDU * @rq: the request to be casted * * Return: pointer to the PDU * * Driver command data is immediately after the request. So add request to get * the PDU. */ static inline void *blk_mq_rq_to_pdu(struct request *rq) { return rq + 1; } #define queue_for_each_hw_ctx(q, hctx, i) \ for ((i) = 0; (i) < (q)->nr_hw_queues && \ ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) #define hctx_for_each_ctx(hctx, ctx, i) \ for ((i) = 0; (i) < (hctx)->nr_ctx && \ ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag != -1) return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT); return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) | BLK_QC_T_INTERNAL; } static inline void blk_mq_cleanup_rq(struct request *rq) { if (rq->q->mq_ops->cleanup_rq) rq->q->mq_ops->cleanup_rq(rq); } static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, unsigned int nr_segs) { rq->nr_phys_segments = nr_segs; rq->__data_len = bio->bi_iter.bi_size; rq->bio = rq->biotail = bio; rq->ioprio = bio_prio(bio); if (bio->bi_bdev) rq->rq_disk = bio->bi_bdev->bd_disk; } blk_qc_t blk_mq_submit_bio(struct bio *bio); void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, struct lock_class_key *key); #endif |
473 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | // SPDX-License-Identifier: GPL-2.0-only /* * IPv6 raw table, a port of the IPv4 raw table to IPv6 * * Copyright (C) 2003 Jozsef Kadlecsik <kadlec@netfilter.org> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> #define RAW_VALID_HOOKS ((1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_OUT)) static bool raw_before_defrag __read_mostly; MODULE_PARM_DESC(raw_before_defrag, "Enable raw table before defrag"); module_param(raw_before_defrag, bool, 0000); static const struct xt_table packet_raw = { .name = "raw", .valid_hooks = RAW_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_RAW, }; static const struct xt_table packet_raw_before_defrag = { .name = "raw", .valid_hooks = RAW_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_RAW_BEFORE_DEFRAG, }; /* The work comes in here from netfilter.c. */ static unsigned int ip6table_raw_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return ip6t_do_table(skb, state, priv); } static struct nf_hook_ops *rawtable_ops __read_mostly; static int ip6table_raw_table_init(struct net *net) { struct ip6t_replace *repl; const struct xt_table *table = &packet_raw; int ret; if (raw_before_defrag) table = &packet_raw_before_defrag; repl = ip6t_alloc_initial_table(table); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, table, repl, rawtable_ops); kfree(repl); return ret; } static void __net_exit ip6table_raw_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "raw"); } static void __net_exit ip6table_raw_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "raw"); } static struct pernet_operations ip6table_raw_net_ops = { .pre_exit = ip6table_raw_net_pre_exit, .exit = ip6table_raw_net_exit, }; static int __init ip6table_raw_init(void) { const struct xt_table *table = &packet_raw; int ret; if (raw_before_defrag) { table = &packet_raw_before_defrag; pr_info("Enabling raw table before defrag\n"); } ret = xt_register_template(table, ip6table_raw_table_init); if (ret < 0) return ret; /* Register hooks */ rawtable_ops = xt_hook_ops_alloc(table, ip6table_raw_hook); if (IS_ERR(rawtable_ops)) { xt_unregister_template(table); return PTR_ERR(rawtable_ops); } ret = register_pernet_subsys(&ip6table_raw_net_ops); if (ret < 0) { kfree(rawtable_ops); xt_unregister_template(table); return ret; } return ret; } static void __exit ip6table_raw_fini(void) { unregister_pernet_subsys(&ip6table_raw_net_ops); xt_unregister_template(&packet_raw); kfree(rawtable_ops); } module_init(ip6table_raw_init); module_exit(ip6table_raw_fini); MODULE_LICENSE("GPL"); |
3 5 5 5 5 5 5 5 4 2 2 2 3 2 18 2 5 987 980 20 2 983 10 189 30 986 946 137 50 2 26 2 2 12 3 1 66 3 38 1 7 38 7 38 13 1 1 4 4 17 1 16 12 2 1 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | // SPDX-License-Identifier: GPL-2.0-or-later /* * INET 802.1Q VLAN * Ethernet-type device handling. * * Authors: Ben Greear <greearb@candelatech.com> * Please send support related email to: netdev@vger.kernel.org * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html * * Fixes: * Fix for packet capture - Nick Eggleston <nick@dccinc.com>; * Add HW acceleration hooks - David S. Miller <davem@redhat.com>; * Correct all the locking - David S. Miller <davem@redhat.com>; * Use hash table for VLAN groups - David S. Miller <davem@redhat.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rculist.h> #include <net/p8022.h> #include <net/arp.h> #include <linux/rtnetlink.h> #include <linux/notifier.h> #include <net/rtnetlink.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <linux/uaccess.h> #include <linux/if_vlan.h> #include "vlan.h" #include "vlanproc.h" #define DRV_VERSION "1.8" /* Global VLAN variables */ unsigned int vlan_net_id __read_mostly; const char vlan_fullname[] = "802.1Q VLAN Support"; const char vlan_version[] = DRV_VERSION; /* End of global variables definitions. */ static int vlan_group_prealloc_vid(struct vlan_group *vg, __be16 vlan_proto, u16 vlan_id) { struct net_device **array; unsigned int vidx; unsigned int size; int pidx; ASSERT_RTNL(); pidx = vlan_proto_idx(vlan_proto); if (pidx < 0) return -EINVAL; vidx = vlan_id / VLAN_GROUP_ARRAY_PART_LEN; array = vg->vlan_devices_arrays[pidx][vidx]; if (array != NULL) return 0; size = sizeof(struct net_device *) * VLAN_GROUP_ARRAY_PART_LEN; array = kzalloc(size, GFP_KERNEL_ACCOUNT); if (array == NULL) return -ENOBUFS; /* paired with smp_rmb() in __vlan_group_get_device() */ smp_wmb(); vg->vlan_devices_arrays[pidx][vidx] = array; return 0; } static void vlan_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev, struct vlan_dev_priv *vlan) { if (!(vlan->flags & VLAN_FLAG_BRIDGE_BINDING)) netif_stacked_transfer_operstate(rootdev, dev); } void unregister_vlan_dev(struct net_device *dev, struct list_head *head) { struct vlan_dev_priv *vlan = vlan_dev_priv(dev); struct net_device *real_dev = vlan->real_dev; struct vlan_info *vlan_info; struct vlan_group *grp; u16 vlan_id = vlan->vlan_id; ASSERT_RTNL(); vlan_info = rtnl_dereference(real_dev->vlan_info); BUG_ON(!vlan_info); grp = &vlan_info->grp; grp->nr_vlan_devs--; if (vlan->flags & VLAN_FLAG_MVRP) vlan_mvrp_request_leave(dev); if (vlan->flags & VLAN_FLAG_GVRP) vlan_gvrp_request_leave(dev); vlan_group_set_device(grp, vlan->vlan_proto, vlan_id, NULL); netdev_upper_dev_unlink(real_dev, dev); /* Because unregister_netdevice_queue() makes sure at least one rcu * grace period is respected before device freeing, * we dont need to call synchronize_net() here. */ unregister_netdevice_queue(dev, head); if (grp->nr_vlan_devs == 0) { vlan_mvrp_uninit_applicant(real_dev); vlan_gvrp_uninit_applicant(real_dev); } vlan_vid_del(real_dev, vlan->vlan_proto, vlan_id); } int vlan_check_real_dev(struct net_device *real_dev, __be16 protocol, u16 vlan_id, struct netlink_ext_ack *extack) { const char *name = real_dev->name; if (real_dev->features & NETIF_F_VLAN_CHALLENGED) { pr_info("VLANs not supported on %s\n", name); NL_SET_ERR_MSG_MOD(extack, "VLANs not supported on device"); return -EOPNOTSUPP; } if (vlan_find_dev(real_dev, protocol, vlan_id) != NULL) { NL_SET_ERR_MSG_MOD(extack, "VLAN device already exists"); return -EEXIST; } return 0; } int register_vlan_dev(struct net_device *dev, struct netlink_ext_ack *extack) { struct vlan_dev_priv *vlan = vlan_dev_priv(dev); struct net_device *real_dev = vlan->real_dev; u16 vlan_id = vlan->vlan_id; struct vlan_info *vlan_info; struct vlan_group *grp; int err; err = vlan_vid_add(real_dev, vlan->vlan_proto, vlan_id); if (err) return err; vlan_info = rtnl_dereference(real_dev->vlan_info); /* vlan_info should be there now. vlan_vid_add took care of it */ BUG_ON(!vlan_info); grp = &vlan_info->grp; if (grp->nr_vlan_devs == 0) { err = vlan_gvrp_init_applicant(real_dev); if (err < 0) goto out_vid_del; err = vlan_mvrp_init_applicant(real_dev); if (err < 0) goto out_uninit_gvrp; } err = vlan_group_prealloc_vid(grp, vlan->vlan_proto, vlan_id); if (err < 0) goto out_uninit_mvrp; err = register_netdevice(dev); if (err < 0) goto out_uninit_mvrp; err = netdev_upper_dev_link(real_dev, dev, extack); if (err) goto out_unregister_netdev; vlan_stacked_transfer_operstate(real_dev, dev, vlan); linkwatch_fire_event(dev); /* _MUST_ call rfc2863_policy() */ /* So, got the sucker initialized, now lets place * it into our local structure. */ vlan_group_set_device(grp, vlan->vlan_proto, vlan_id, dev); grp->nr_vlan_devs++; return 0; out_unregister_netdev: unregister_netdevice(dev); out_uninit_mvrp: if (grp->nr_vlan_devs == 0) vlan_mvrp_uninit_applicant(real_dev); out_uninit_gvrp: if (grp->nr_vlan_devs == 0) vlan_gvrp_uninit_applicant(real_dev); out_vid_del: vlan_vid_del(real_dev, vlan->vlan_proto, vlan_id); return err; } /* Attach a VLAN device to a mac address (ie Ethernet Card). * Returns 0 if the device was created or a negative error code otherwise. */ static int register_vlan_device(struct net_device *real_dev, u16 vlan_id) { struct net_device *new_dev; struct vlan_dev_priv *vlan; struct net *net = dev_net(real_dev); struct vlan_net *vn = net_generic(net, vlan_net_id); char name[IFNAMSIZ]; int err; if (vlan_id >= VLAN_VID_MASK) return -ERANGE; err = vlan_check_real_dev(real_dev, htons(ETH_P_8021Q), vlan_id, NULL); if (err < 0) return err; /* Gotta set up the fields for the device. */ switch (vn->name_type) { case VLAN_NAME_TYPE_RAW_PLUS_VID: /* name will look like: eth1.0005 */ snprintf(name, IFNAMSIZ, "%s.%.4i", real_dev->name, vlan_id); break; case VLAN_NAME_TYPE_PLUS_VID_NO_PAD: /* Put our vlan.VID in the name. * Name will look like: vlan5 */ snprintf(name, IFNAMSIZ, "vlan%i", vlan_id); break; case VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD: /* Put our vlan.VID in the name. * Name will look like: eth0.5 */ snprintf(name, IFNAMSIZ, "%s.%i", real_dev->name, vlan_id); break; case VLAN_NAME_TYPE_PLUS_VID: /* Put our vlan.VID in the name. * Name will look like: vlan0005 */ default: snprintf(name, IFNAMSIZ, "vlan%.4i", vlan_id); } new_dev = alloc_netdev(sizeof(struct vlan_dev_priv), name, NET_NAME_UNKNOWN, vlan_setup); if (new_dev == NULL) return -ENOBUFS; dev_net_set(new_dev, net); /* need 4 bytes for extra VLAN header info, * hope the underlying device can handle it. */ new_dev->mtu = real_dev->mtu; vlan = vlan_dev_priv(new_dev); vlan->vlan_proto = htons(ETH_P_8021Q); vlan->vlan_id = vlan_id; vlan->real_dev = real_dev; vlan->dent = NULL; vlan->flags = VLAN_FLAG_REORDER_HDR; new_dev->rtnl_link_ops = &vlan_link_ops; err = register_vlan_dev(new_dev, NULL); if (err < 0) goto out_free_newdev; return 0; out_free_newdev: free_netdev(new_dev); return err; } static void vlan_sync_address(struct net_device *dev, struct net_device *vlandev) { struct vlan_dev_priv *vlan = vlan_dev_priv(vlandev); /* May be called without an actual change */ if (ether_addr_equal(vlan->real_dev_addr, dev->dev_addr)) return; /* vlan continues to inherit address of lower device */ if (vlan_dev_inherit_address(vlandev, dev)) goto out; /* vlan address was different from the old address and is equal to * the new address */ if (!ether_addr_equal(vlandev->dev_addr, vlan->real_dev_addr) && ether_addr_equal(vlandev->dev_addr, dev->dev_addr)) dev_uc_del(dev, vlandev->dev_addr); /* vlan address was equal to the old address and is different from * the new address */ if (ether_addr_equal(vlandev->dev_addr, vlan->real_dev_addr) && !ether_addr_equal(vlandev->dev_addr, dev->dev_addr)) dev_uc_add(dev, vlandev->dev_addr); out: ether_addr_copy(vlan->real_dev_addr, dev->dev_addr); } static void vlan_transfer_features(struct net_device *dev, struct net_device *vlandev) { struct vlan_dev_priv *vlan = vlan_dev_priv(vlandev); vlandev->gso_max_size = dev->gso_max_size; vlandev->gso_max_segs = dev->gso_max_segs; if (vlan_hw_offload_capable(dev->features, vlan->vlan_proto)) vlandev->hard_header_len = dev->hard_header_len; else vlandev->hard_header_len = dev->hard_header_len + VLAN_HLEN; #if IS_ENABLED(CONFIG_FCOE) vlandev->fcoe_ddp_xid = dev->fcoe_ddp_xid; #endif vlandev->priv_flags &= ~IFF_XMIT_DST_RELEASE; vlandev->priv_flags |= (vlan->real_dev->priv_flags & IFF_XMIT_DST_RELEASE); vlandev->hw_enc_features = vlan_tnl_features(vlan->real_dev); netdev_update_features(vlandev); } static int __vlan_device_event(struct net_device *dev, unsigned long event) { int err = 0; switch (event) { case NETDEV_CHANGENAME: vlan_proc_rem_dev(dev); err = vlan_proc_add_dev(dev); break; case NETDEV_REGISTER: err = vlan_proc_add_dev(dev); break; case NETDEV_UNREGISTER: vlan_proc_rem_dev(dev); break; } return err; } static int vlan_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct netlink_ext_ack *extack = netdev_notifier_info_to_extack(ptr); struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct vlan_group *grp; struct vlan_info *vlan_info; int i, flgs; struct net_device *vlandev; struct vlan_dev_priv *vlan; bool last = false; LIST_HEAD(list); int err; if (is_vlan_dev(dev)) { int err = __vlan_device_event(dev, event); if (err) return notifier_from_errno(err); } if ((event == NETDEV_UP) && (dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) { pr_info("adding VLAN 0 to HW filter on device %s\n", dev->name); vlan_vid_add(dev, htons(ETH_P_8021Q), 0); } if (event == NETDEV_DOWN && (dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) vlan_vid_del(dev, htons(ETH_P_8021Q), 0); vlan_info = rtnl_dereference(dev->vlan_info); if (!vlan_info) goto out; grp = &vlan_info->grp; /* It is OK that we do not hold the group lock right now, * as we run under the RTNL lock. */ switch (event) { case NETDEV_CHANGE: /* Propagate real device state to vlan devices */ vlan_group_for_each_dev(grp, i, vlandev) vlan_stacked_transfer_operstate(dev, vlandev, vlan_dev_priv(vlandev)); break; case NETDEV_CHANGEADDR: /* Adjust unicast filters on underlying device */ vlan_group_for_each_dev(grp, i, vlandev) { flgs = vlandev->flags; if (!(flgs & IFF_UP)) continue; vlan_sync_address(dev, vlandev); } break; case NETDEV_CHANGEMTU: vlan_group_for_each_dev(grp, i, vlandev) { if (vlandev->mtu <= dev->mtu) continue; dev_set_mtu(vlandev, dev->mtu); } break; case NETDEV_FEAT_CHANGE: /* Propagate device features to underlying device */ vlan_group_for_each_dev(grp, i, vlandev) vlan_transfer_features(dev, vlandev); break; case NETDEV_DOWN: { struct net_device *tmp; LIST_HEAD(close_list); /* Put all VLANs for this dev in the down state too. */ vlan_group_for_each_dev(grp, i, vlandev) { flgs = vlandev->flags; if (!(flgs & IFF_UP)) continue; vlan = vlan_dev_priv(vlandev); if (!(vlan->flags & VLAN_FLAG_LOOSE_BINDING)) list_add(&vlandev->close_list, &close_list); } dev_close_many(&close_list, false); list_for_each_entry_safe(vlandev, tmp, &close_list, close_list) { vlan_stacked_transfer_operstate(dev, vlandev, vlan_dev_priv(vlandev)); list_del_init(&vlandev->close_list); } list_del(&close_list); break; } case NETDEV_UP: /* Put all VLANs for this dev in the up state too. */ vlan_group_for_each_dev(grp, i, vlandev) { flgs = dev_get_flags(vlandev); if (flgs & IFF_UP) continue; vlan = vlan_dev_priv(vlandev); if (!(vlan->flags & VLAN_FLAG_LOOSE_BINDING)) dev_change_flags(vlandev, flgs | IFF_UP, extack); vlan_stacked_transfer_operstate(dev, vlandev, vlan); } break; case NETDEV_UNREGISTER: /* twiddle thumbs on netns device moves */ if (dev->reg_state != NETREG_UNREGISTERING) break; vlan_group_for_each_dev(grp, i, vlandev) { /* removal of last vid destroys vlan_info, abort * afterwards */ if (vlan_info->nr_vids == 1) last = true; unregister_vlan_dev(vlandev, &list); if (last) break; } unregister_netdevice_many(&list); break; case NETDEV_PRE_TYPE_CHANGE: /* Forbid underlaying device to change its type. */ if (vlan_uses_dev(dev)) return NOTIFY_BAD; break; case NETDEV_NOTIFY_PEERS: case NETDEV_BONDING_FAILOVER: case NETDEV_RESEND_IGMP: /* Propagate to vlan devices */ vlan_group_for_each_dev(grp, i, vlandev) call_netdevice_notifiers(event, vlandev); break; case NETDEV_CVLAN_FILTER_PUSH_INFO: err = vlan_filter_push_vids(vlan_info, htons(ETH_P_8021Q)); if (err) return notifier_from_errno(err); break; case NETDEV_CVLAN_FILTER_DROP_INFO: vlan_filter_drop_vids(vlan_info, htons(ETH_P_8021Q)); break; case NETDEV_SVLAN_FILTER_PUSH_INFO: err = vlan_filter_push_vids(vlan_info, htons(ETH_P_8021AD)); if (err) return notifier_from_errno(err); break; case NETDEV_SVLAN_FILTER_DROP_INFO: vlan_filter_drop_vids(vlan_info, htons(ETH_P_8021AD)); break; } out: return NOTIFY_DONE; } static struct notifier_block vlan_notifier_block __read_mostly = { .notifier_call = vlan_device_event, }; /* * VLAN IOCTL handler. * o execute requested action or pass command to the device driver * arg is really a struct vlan_ioctl_args __user *. */ static int vlan_ioctl_handler(struct net *net, void __user *arg) { int err; struct vlan_ioctl_args args; struct net_device *dev = NULL; if (copy_from_user(&args, arg, sizeof(struct vlan_ioctl_args))) return -EFAULT; /* Null terminate this sucker, just in case. */ args.device1[sizeof(args.device1) - 1] = 0; args.u.device2[sizeof(args.u.device2) - 1] = 0; rtnl_lock(); switch (args.cmd) { case SET_VLAN_INGRESS_PRIORITY_CMD: case SET_VLAN_EGRESS_PRIORITY_CMD: case SET_VLAN_FLAG_CMD: case ADD_VLAN_CMD: case DEL_VLAN_CMD: case GET_VLAN_REALDEV_NAME_CMD: case GET_VLAN_VID_CMD: err = -ENODEV; dev = __dev_get_by_name(net, args.device1); if (!dev) goto out; err = -EINVAL; if (args.cmd != ADD_VLAN_CMD && !is_vlan_dev(dev)) goto out; } switch (args.cmd) { case SET_VLAN_INGRESS_PRIORITY_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; vlan_dev_set_ingress_priority(dev, args.u.skb_priority, args.vlan_qos); err = 0; break; case SET_VLAN_EGRESS_PRIORITY_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = vlan_dev_set_egress_priority(dev, args.u.skb_priority, args.vlan_qos); break; case SET_VLAN_FLAG_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = vlan_dev_change_flags(dev, args.vlan_qos ? args.u.flag : 0, args.u.flag); break; case SET_VLAN_NAME_TYPE_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; if (args.u.name_type < VLAN_NAME_TYPE_HIGHEST) { struct vlan_net *vn; vn = net_generic(net, vlan_net_id); vn->name_type = args.u.name_type; err = 0; } else { err = -EINVAL; } break; case ADD_VLAN_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = register_vlan_device(dev, args.u.VID); break; case DEL_VLAN_CMD: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; unregister_vlan_dev(dev, NULL); err = 0; break; case GET_VLAN_REALDEV_NAME_CMD: err = 0; vlan_dev_get_realdev_name(dev, args.u.device2, sizeof(args.u.device2)); if (copy_to_user(arg, &args, sizeof(struct vlan_ioctl_args))) err = -EFAULT; break; case GET_VLAN_VID_CMD: err = 0; args.u.VID = vlan_dev_vlan_id(dev); if (copy_to_user(arg, &args, sizeof(struct vlan_ioctl_args))) err = -EFAULT; break; default: err = -EOPNOTSUPP; break; } out: rtnl_unlock(); return err; } static int __net_init vlan_init_net(struct net *net) { struct vlan_net *vn = net_generic(net, vlan_net_id); int err; vn->name_type = VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD; err = vlan_proc_init(net); return err; } static void __net_exit vlan_exit_net(struct net *net) { vlan_proc_cleanup(net); } static struct pernet_operations vlan_net_ops = { .init = vlan_init_net, .exit = vlan_exit_net, .id = &vlan_net_id, .size = sizeof(struct vlan_net), }; static int __init vlan_proto_init(void) { int err; pr_info("%s v%s\n", vlan_fullname, vlan_version); err = register_pernet_subsys(&vlan_net_ops); if (err < 0) goto err0; err = register_netdevice_notifier(&vlan_notifier_block); if (err < 0) goto err2; err = vlan_gvrp_init(); if (err < 0) goto err3; err = vlan_mvrp_init(); if (err < 0) goto err4; err = vlan_netlink_init(); if (err < 0) goto err5; vlan_ioctl_set(vlan_ioctl_handler); return 0; err5: vlan_mvrp_uninit(); err4: vlan_gvrp_uninit(); err3: unregister_netdevice_notifier(&vlan_notifier_block); err2: unregister_pernet_subsys(&vlan_net_ops); err0: return err; } static void __exit vlan_cleanup_module(void) { vlan_ioctl_set(NULL); vlan_netlink_fini(); unregister_netdevice_notifier(&vlan_notifier_block); unregister_pernet_subsys(&vlan_net_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ vlan_mvrp_uninit(); vlan_gvrp_uninit(); } module_init(vlan_proto_init); module_exit(vlan_cleanup_module); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); |
22 18 18 17 17 17 17 16 17 1 17 17 5 3 2 2 6 6 6 6 17 17 1 1 1 1 17 18 12 5 1 1 2 5 5 5 5 4 2 5 5 5 5 5 5 5 7 2 5 5 5 5 5 3 3 3 3 18 18 16 9 17 17 18 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Simon Wunderlich */ #include "bridge_loop_avoidance.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/compiler.h> #include <linux/crc16.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/workqueue.h> #include <net/arp.h> #include <net/genetlink.h> #include <net/netlink.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "hard-interface.h" #include "hash.h" #include "log.h" #include "netlink.h" #include "originator.h" #include "soft-interface.h" #include "translation-table.h" static const u8 batadv_announce_mac[4] = {0x43, 0x05, 0x43, 0x05}; static void batadv_bla_periodic_work(struct work_struct *work); static void batadv_bla_send_announce(struct batadv_priv *bat_priv, struct batadv_bla_backbone_gw *backbone_gw); /** * batadv_choose_claim() - choose the right bucket for a claim. * @data: data to hash * @size: size of the hash table * * Return: the hash index of the claim */ static inline u32 batadv_choose_claim(const void *data, u32 size) { struct batadv_bla_claim *claim = (struct batadv_bla_claim *)data; u32 hash = 0; hash = jhash(&claim->addr, sizeof(claim->addr), hash); hash = jhash(&claim->vid, sizeof(claim->vid), hash); return hash % size; } /** * batadv_choose_backbone_gw() - choose the right bucket for a backbone gateway. * @data: data to hash * @size: size of the hash table * * Return: the hash index of the backbone gateway */ static inline u32 batadv_choose_backbone_gw(const void *data, u32 size) { const struct batadv_bla_backbone_gw *gw; u32 hash = 0; gw = (struct batadv_bla_backbone_gw *)data; hash = jhash(&gw->orig, sizeof(gw->orig), hash); hash = jhash(&gw->vid, sizeof(gw->vid), hash); return hash % size; } /** * batadv_compare_backbone_gw() - compare address and vid of two backbone gws * @node: list node of the first entry to compare * @data2: pointer to the second backbone gateway * * Return: true if the backbones have the same data, false otherwise */ static bool batadv_compare_backbone_gw(const struct hlist_node *node, const void *data2) { const void *data1 = container_of(node, struct batadv_bla_backbone_gw, hash_entry); const struct batadv_bla_backbone_gw *gw1 = data1; const struct batadv_bla_backbone_gw *gw2 = data2; if (!batadv_compare_eth(gw1->orig, gw2->orig)) return false; if (gw1->vid != gw2->vid) return false; return true; } /** * batadv_compare_claim() - compare address and vid of two claims * @node: list node of the first entry to compare * @data2: pointer to the second claims * * Return: true if the claim have the same data, 0 otherwise */ static bool batadv_compare_claim(const struct hlist_node *node, const void *data2) { const void *data1 = container_of(node, struct batadv_bla_claim, hash_entry); const struct batadv_bla_claim *cl1 = data1; const struct batadv_bla_claim *cl2 = data2; if (!batadv_compare_eth(cl1->addr, cl2->addr)) return false; if (cl1->vid != cl2->vid) return false; return true; } /** * batadv_backbone_gw_release() - release backbone gw from lists and queue for * free after rcu grace period * @ref: kref pointer of the backbone gw */ static void batadv_backbone_gw_release(struct kref *ref) { struct batadv_bla_backbone_gw *backbone_gw; backbone_gw = container_of(ref, struct batadv_bla_backbone_gw, refcount); kfree_rcu(backbone_gw, rcu); } /** * batadv_backbone_gw_put() - decrement the backbone gw refcounter and possibly * release it * @backbone_gw: backbone gateway to be free'd */ static void batadv_backbone_gw_put(struct batadv_bla_backbone_gw *backbone_gw) { if (!backbone_gw) return; kref_put(&backbone_gw->refcount, batadv_backbone_gw_release); } /** * batadv_claim_release() - release claim from lists and queue for free after * rcu grace period * @ref: kref pointer of the claim */ static void batadv_claim_release(struct kref *ref) { struct batadv_bla_claim *claim; struct batadv_bla_backbone_gw *old_backbone_gw; claim = container_of(ref, struct batadv_bla_claim, refcount); spin_lock_bh(&claim->backbone_lock); old_backbone_gw = claim->backbone_gw; claim->backbone_gw = NULL; spin_unlock_bh(&claim->backbone_lock); spin_lock_bh(&old_backbone_gw->crc_lock); old_backbone_gw->crc ^= crc16(0, claim->addr, ETH_ALEN); spin_unlock_bh(&old_backbone_gw->crc_lock); batadv_backbone_gw_put(old_backbone_gw); kfree_rcu(claim, rcu); } /** * batadv_claim_put() - decrement the claim refcounter and possibly release it * @claim: claim to be free'd */ static void batadv_claim_put(struct batadv_bla_claim *claim) { if (!claim) return; kref_put(&claim->refcount, batadv_claim_release); } /** * batadv_claim_hash_find() - looks for a claim in the claim hash * @bat_priv: the bat priv with all the soft interface information * @data: search data (may be local/static data) * * Return: claim if found or NULL otherwise. */ static struct batadv_bla_claim * batadv_claim_hash_find(struct batadv_priv *bat_priv, struct batadv_bla_claim *data) { struct batadv_hashtable *hash = bat_priv->bla.claim_hash; struct hlist_head *head; struct batadv_bla_claim *claim; struct batadv_bla_claim *claim_tmp = NULL; int index; if (!hash) return NULL; index = batadv_choose_claim(data, hash->size); head = &hash->table[index]; rcu_read_lock(); hlist_for_each_entry_rcu(claim, head, hash_entry) { if (!batadv_compare_claim(&claim->hash_entry, data)) continue; if (!kref_get_unless_zero(&claim->refcount)) continue; claim_tmp = claim; break; } rcu_read_unlock(); return claim_tmp; } /** * batadv_backbone_hash_find() - looks for a backbone gateway in the hash * @bat_priv: the bat priv with all the soft interface information * @addr: the address of the originator * @vid: the VLAN ID * * Return: backbone gateway if found or NULL otherwise */ static struct batadv_bla_backbone_gw * batadv_backbone_hash_find(struct batadv_priv *bat_priv, u8 *addr, unsigned short vid) { struct batadv_hashtable *hash = bat_priv->bla.backbone_hash; struct hlist_head *head; struct batadv_bla_backbone_gw search_entry, *backbone_gw; struct batadv_bla_backbone_gw *backbone_gw_tmp = NULL; int index; if (!hash) return NULL; ether_addr_copy(search_entry.orig, addr); search_entry.vid = vid; index = batadv_choose_backbone_gw(&search_entry, hash->size); head = &hash->table[index]; rcu_read_lock(); hlist_for_each_entry_rcu(backbone_gw, head, hash_entry) { if (!batadv_compare_backbone_gw(&backbone_gw->hash_entry, &search_entry)) continue; if (!kref_get_unless_zero(&backbone_gw->refcount)) continue; backbone_gw_tmp = backbone_gw; break; } rcu_read_unlock(); return backbone_gw_tmp; } /** * batadv_bla_del_backbone_claims() - delete all claims for a backbone * @backbone_gw: backbone gateway where the claims should be removed */ static void batadv_bla_del_backbone_claims(struct batadv_bla_backbone_gw *backbone_gw) { struct batadv_hashtable *hash; struct hlist_node *node_tmp; struct hlist_head *head; struct batadv_bla_claim *claim; int i; spinlock_t *list_lock; /* protects write access to the hash lists */ hash = backbone_gw->bat_priv->bla.claim_hash; if (!hash) return; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; list_lock = &hash->list_locks[i]; spin_lock_bh(list_lock); hlist_for_each_entry_safe(claim, node_tmp, head, hash_entry) { if (claim->backbone_gw != backbone_gw) continue; batadv_claim_put(claim); hlist_del_rcu(&claim->hash_entry); } spin_unlock_bh(list_lock); } /* all claims gone, initialize CRC */ spin_lock_bh(&backbone_gw->crc_lock); backbone_gw->crc = BATADV_BLA_CRC_INIT; spin_unlock_bh(&backbone_gw->crc_lock); } /** * batadv_bla_send_claim() - sends a claim frame according to the provided info * @bat_priv: the bat priv with all the soft interface information * @mac: the mac address to be announced within the claim * @vid: the VLAN ID * @claimtype: the type of the claim (CLAIM, UNCLAIM, ANNOUNCE, ...) */ static void batadv_bla_send_claim(struct batadv_priv *bat_priv, u8 *mac, unsigned short vid, int claimtype) { struct sk_buff *skb; struct ethhdr *ethhdr; struct batadv_hard_iface *primary_if; struct net_device *soft_iface; u8 *hw_src; struct batadv_bla_claim_dst local_claim_dest; __be32 zeroip = 0; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) return; memcpy(&local_claim_dest, &bat_priv->bla.claim_dest, sizeof(local_claim_dest)); local_claim_dest.type = claimtype; soft_iface = primary_if->soft_iface; skb = arp_create(ARPOP_REPLY, ETH_P_ARP, /* IP DST: 0.0.0.0 */ zeroip, primary_if->soft_iface, /* IP SRC: 0.0.0.0 */ zeroip, /* Ethernet DST: Broadcast */ NULL, /* Ethernet SRC/HW SRC: originator mac */ primary_if->net_dev->dev_addr, /* HW DST: FF:43:05:XX:YY:YY * with XX = claim type * and YY:YY = group id */ (u8 *)&local_claim_dest); if (!skb) goto out; ethhdr = (struct ethhdr *)skb->data; hw_src = (u8 *)ethhdr + ETH_HLEN + sizeof(struct arphdr); /* now we pretend that the client would have sent this ... */ switch (claimtype) { case BATADV_CLAIM_TYPE_CLAIM: /* normal claim frame * set Ethernet SRC to the clients mac */ ether_addr_copy(ethhdr->h_source, mac); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): CLAIM %pM on vid %d\n", __func__, mac, batadv_print_vid(vid)); break; case BATADV_CLAIM_TYPE_UNCLAIM: /* unclaim frame * set HW SRC to the clients mac */ ether_addr_copy(hw_src, mac); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): UNCLAIM %pM on vid %d\n", __func__, mac, batadv_print_vid(vid)); break; case BATADV_CLAIM_TYPE_ANNOUNCE: /* announcement frame * set HW SRC to the special mac containing the crc */ ether_addr_copy(hw_src, mac); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): ANNOUNCE of %pM on vid %d\n", __func__, ethhdr->h_source, batadv_print_vid(vid)); break; case BATADV_CLAIM_TYPE_REQUEST: /* request frame * set HW SRC and header destination to the receiving backbone * gws mac */ ether_addr_copy(hw_src, mac); ether_addr_copy(ethhdr->h_dest, mac); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): REQUEST of %pM to %pM on vid %d\n", __func__, ethhdr->h_source, ethhdr->h_dest, batadv_print_vid(vid)); break; case BATADV_CLAIM_TYPE_LOOPDETECT: ether_addr_copy(ethhdr->h_source, mac); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): LOOPDETECT of %pM to %pM on vid %d\n", __func__, ethhdr->h_source, ethhdr->h_dest, batadv_print_vid(vid)); break; } if (vid & BATADV_VLAN_HAS_TAG) { skb = vlan_insert_tag(skb, htons(ETH_P_8021Q), vid & VLAN_VID_MASK); if (!skb) goto out; } skb_reset_mac_header(skb); skb->protocol = eth_type_trans(skb, soft_iface); batadv_inc_counter(bat_priv, BATADV_CNT_RX); batadv_add_counter(bat_priv, BATADV_CNT_RX_BYTES, skb->len + ETH_HLEN); netif_rx_any_context(skb); out: batadv_hardif_put(primary_if); } /** * batadv_bla_loopdetect_report() - worker for reporting the loop * @work: work queue item * * Throws an uevent, as the loopdetect check function can't do that itself * since the kernel may sleep while throwing uevents. */ static void batadv_bla_loopdetect_report(struct work_struct *work) { struct batadv_bla_backbone_gw *backbone_gw; struct batadv_priv *bat_priv; char vid_str[6] = { '\0' }; backbone_gw = container_of(work, struct batadv_bla_backbone_gw, report_work); bat_priv = backbone_gw->bat_priv; batadv_info(bat_priv->soft_iface, "Possible loop on VLAN %d detected which can't be handled by BLA - please check your network setup!\n", batadv_print_vid(backbone_gw->vid)); snprintf(vid_str, sizeof(vid_str), "%d", batadv_print_vid(backbone_gw->vid)); vid_str[sizeof(vid_str) - 1] = 0; batadv_throw_uevent(bat_priv, BATADV_UEV_BLA, BATADV_UEV_LOOPDETECT, vid_str); batadv_backbone_gw_put(backbone_gw); } /** * batadv_bla_get_backbone_gw() - finds or creates a backbone gateway * @bat_priv: the bat priv with all the soft interface information * @orig: the mac address of the originator * @vid: the VLAN ID * @own_backbone: set if the requested backbone is local * * Return: the (possibly created) backbone gateway or NULL on error */ static struct batadv_bla_backbone_gw * batadv_bla_get_backbone_gw(struct batadv_priv *bat_priv, u8 *orig, unsigned short vid, bool own_backbone) { struct batadv_bla_backbone_gw *entry; struct batadv_orig_node *orig_node; int hash_added; entry = batadv_backbone_hash_find(bat_priv, orig, vid); if (entry) return entry; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): not found (%pM, %d), creating new entry\n", __func__, orig, batadv_print_vid(vid)); entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return NULL; entry->vid = vid; entry->lasttime = jiffies; entry->crc = BATADV_BLA_CRC_INIT; entry->bat_priv = bat_priv; spin_lock_init(&entry->crc_lock); atomic_set(&entry->request_sent, 0); atomic_set(&entry->wait_periods, 0); ether_addr_copy(entry->orig, orig); INIT_WORK(&entry->report_work, batadv_bla_loopdetect_report); kref_init(&entry->refcount); kref_get(&entry->refcount); hash_added = batadv_hash_add(bat_priv->bla.backbone_hash, batadv_compare_backbone_gw, batadv_choose_backbone_gw, entry, &entry->hash_entry); if (unlikely(hash_added != 0)) { /* hash failed, free the structure */ kfree(entry); return NULL; } /* this is a gateway now, remove any TT entry on this VLAN */ orig_node = batadv_orig_hash_find(bat_priv, orig); if (orig_node) { batadv_tt_global_del_orig(bat_priv, orig_node, vid, "became a backbone gateway"); batadv_orig_node_put(orig_node); } if (own_backbone) { batadv_bla_send_announce(bat_priv, entry); /* this will be decreased in the worker thread */ atomic_inc(&entry->request_sent); atomic_set(&entry->wait_periods, BATADV_BLA_WAIT_PERIODS); atomic_inc(&bat_priv->bla.num_requests); } return entry; } /** * batadv_bla_update_own_backbone_gw() - updates the own backbone gw for a VLAN * @bat_priv: the bat priv with all the soft interface information * @primary_if: the selected primary interface * @vid: VLAN identifier * * update or add the own backbone gw to make sure we announce * where we receive other backbone gws */ static void batadv_bla_update_own_backbone_gw(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, unsigned short vid) { struct batadv_bla_backbone_gw *backbone_gw; backbone_gw = batadv_bla_get_backbone_gw(bat_priv, primary_if->net_dev->dev_addr, vid, true); if (unlikely(!backbone_gw)) return; backbone_gw->lasttime = jiffies; batadv_backbone_gw_put(backbone_gw); } /** * batadv_bla_answer_request() - answer a bla request by sending own claims * @bat_priv: the bat priv with all the soft interface information * @primary_if: interface where the request came on * @vid: the vid where the request came on * * Repeat all of our own claims, and finally send an ANNOUNCE frame * to allow the requester another check if the CRC is correct now. */ static void batadv_bla_answer_request(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, unsigned short vid) { struct hlist_head *head; struct batadv_hashtable *hash; struct batadv_bla_claim *claim; struct batadv_bla_backbone_gw *backbone_gw; int i; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): received a claim request, send all of our own claims again\n", __func__); backbone_gw = batadv_backbone_hash_find(bat_priv, primary_if->net_dev->dev_addr, vid); if (!backbone_gw) return; hash = bat_priv->bla.claim_hash; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(claim, head, hash_entry) { /* only own claims are interesting */ if (claim->backbone_gw != backbone_gw) continue; batadv_bla_send_claim(bat_priv, claim->addr, claim->vid, BATADV_CLAIM_TYPE_CLAIM); } rcu_read_unlock(); } /* finally, send an announcement frame */ batadv_bla_send_announce(bat_priv, backbone_gw); batadv_backbone_gw_put(backbone_gw); } /** * batadv_bla_send_request() - send a request to repeat claims * @backbone_gw: the backbone gateway from whom we are out of sync * * When the crc is wrong, ask the backbone gateway for a full table update. * After the request, it will repeat all of his own claims and finally * send an announcement claim with which we can check again. */ static void batadv_bla_send_request(struct batadv_bla_backbone_gw *backbone_gw) { /* first, remove all old entries */ batadv_bla_del_backbone_claims(backbone_gw); batadv_dbg(BATADV_DBG_BLA, backbone_gw->bat_priv, "Sending REQUEST to %pM\n", backbone_gw->orig); /* send request */ batadv_bla_send_claim(backbone_gw->bat_priv, backbone_gw->orig, backbone_gw->vid, BATADV_CLAIM_TYPE_REQUEST); /* no local broadcasts should be sent or received, for now. */ if (!atomic_read(&backbone_gw->request_sent)) { atomic_inc(&backbone_gw->bat_priv->bla.num_requests); atomic_set(&backbone_gw->request_sent, 1); } } /** * batadv_bla_send_announce() - Send an announcement frame * @bat_priv: the bat priv with all the soft interface information * @backbone_gw: our backbone gateway which should be announced */ static void batadv_bla_send_announce(struct batadv_priv *bat_priv, struct batadv_bla_backbone_gw *backbone_gw) { u8 mac[ETH_ALEN]; __be16 crc; memcpy(mac, batadv_announce_mac, 4); spin_lock_bh(&backbone_gw->crc_lock); crc = htons(backbone_gw->crc); spin_unlock_bh(&backbone_gw->crc_lock); memcpy(&mac[4], &crc, 2); batadv_bla_send_claim(bat_priv, mac, backbone_gw->vid, BATADV_CLAIM_TYPE_ANNOUNCE); } /** * batadv_bla_add_claim() - Adds a claim in the claim hash * @bat_priv: the bat priv with all the soft interface information * @mac: the mac address of the claim * @vid: the VLAN ID of the frame * @backbone_gw: the backbone gateway which claims it */ static void batadv_bla_add_claim(struct batadv_priv *bat_priv, const u8 *mac, const unsigned short vid, struct batadv_bla_backbone_gw *backbone_gw) { struct batadv_bla_backbone_gw *old_backbone_gw; struct batadv_bla_claim *claim; struct batadv_bla_claim search_claim; bool remove_crc = false; int hash_added; ether_addr_copy(search_claim.addr, mac); search_claim.vid = vid; claim = batadv_claim_hash_find(bat_priv, &search_claim); /* create a new claim entry if it does not exist yet. */ if (!claim) { claim = kzalloc(sizeof(*claim), GFP_ATOMIC); if (!claim) return; ether_addr_copy(claim->addr, mac); spin_lock_init(&claim->backbone_lock); claim->vid = vid; claim->lasttime = jiffies; kref_get(&backbone_gw->refcount); claim->backbone_gw = backbone_gw; kref_init(&claim->refcount); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): adding new entry %pM, vid %d to hash ...\n", __func__, mac, batadv_print_vid(vid)); kref_get(&claim->refcount); hash_added = batadv_hash_add(bat_priv->bla.claim_hash, batadv_compare_claim, batadv_choose_claim, claim, &claim->hash_entry); if (unlikely(hash_added != 0)) { /* only local changes happened. */ kfree(claim); return; } } else { claim->lasttime = jiffies; if (claim->backbone_gw == backbone_gw) /* no need to register a new backbone */ goto claim_free_ref; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): changing ownership for %pM, vid %d to gw %pM\n", __func__, mac, batadv_print_vid(vid), backbone_gw->orig); remove_crc = true; } /* replace backbone_gw atomically and adjust reference counters */ spin_lock_bh(&claim->backbone_lock); old_backbone_gw = claim->backbone_gw; kref_get(&backbone_gw->refcount); claim->backbone_gw = backbone_gw; spin_unlock_bh(&claim->backbone_lock); if (remove_crc) { /* remove claim address from old backbone_gw */ spin_lock_bh(&old_backbone_gw->crc_lock); old_backbone_gw->crc ^= crc16(0, claim->addr, ETH_ALEN); spin_unlock_bh(&old_backbone_gw->crc_lock); } batadv_backbone_gw_put(old_backbone_gw); /* add claim address to new backbone_gw */ spin_lock_bh(&backbone_gw->crc_lock); backbone_gw->crc ^= crc16(0, claim->addr, ETH_ALEN); spin_unlock_bh(&backbone_gw->crc_lock); backbone_gw->lasttime = jiffies; claim_free_ref: batadv_claim_put(claim); } /** * batadv_bla_claim_get_backbone_gw() - Get valid reference for backbone_gw of * claim * @claim: claim whose backbone_gw should be returned * * Return: valid reference to claim::backbone_gw */ static struct batadv_bla_backbone_gw * batadv_bla_claim_get_backbone_gw(struct batadv_bla_claim *claim) { struct batadv_bla_backbone_gw *backbone_gw; spin_lock_bh(&claim->backbone_lock); backbone_gw = claim->backbone_gw; kref_get(&backbone_gw->refcount); spin_unlock_bh(&claim->backbone_lock); return backbone_gw; } /** * batadv_bla_del_claim() - delete a claim from the claim hash * @bat_priv: the bat priv with all the soft interface information * @mac: mac address of the claim to be removed * @vid: VLAN id for the claim to be removed */ static void batadv_bla_del_claim(struct batadv_priv *bat_priv, const u8 *mac, const unsigned short vid) { struct batadv_bla_claim search_claim, *claim; struct batadv_bla_claim *claim_removed_entry; struct hlist_node *claim_removed_node; ether_addr_copy(search_claim.addr, mac); search_claim.vid = vid; claim = batadv_claim_hash_find(bat_priv, &search_claim); if (!claim) return; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): %pM, vid %d\n", __func__, mac, batadv_print_vid(vid)); claim_removed_node = batadv_hash_remove(bat_priv->bla.claim_hash, batadv_compare_claim, batadv_choose_claim, claim); if (!claim_removed_node) goto free_claim; /* reference from the hash is gone */ claim_removed_entry = hlist_entry(claim_removed_node, struct batadv_bla_claim, hash_entry); batadv_claim_put(claim_removed_entry); free_claim: /* don't need the reference from hash_find() anymore */ batadv_claim_put(claim); } /** * batadv_handle_announce() - check for ANNOUNCE frame * @bat_priv: the bat priv with all the soft interface information * @an_addr: announcement mac address (ARP Sender HW address) * @backbone_addr: originator address of the sender (Ethernet source MAC) * @vid: the VLAN ID of the frame * * Return: true if handled */ static bool batadv_handle_announce(struct batadv_priv *bat_priv, u8 *an_addr, u8 *backbone_addr, unsigned short vid) { struct batadv_bla_backbone_gw *backbone_gw; u16 backbone_crc, crc; if (memcmp(an_addr, batadv_announce_mac, 4) != 0) return false; backbone_gw = batadv_bla_get_backbone_gw(bat_priv, backbone_addr, vid, false); if (unlikely(!backbone_gw)) return true; /* handle as ANNOUNCE frame */ backbone_gw->lasttime = jiffies; crc = ntohs(*((__force __be16 *)(&an_addr[4]))); batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): ANNOUNCE vid %d (sent by %pM)... CRC = %#.4x\n", __func__, batadv_print_vid(vid), backbone_gw->orig, crc); spin_lock_bh(&backbone_gw->crc_lock); backbone_crc = backbone_gw->crc; spin_unlock_bh(&backbone_gw->crc_lock); if (backbone_crc != crc) { batadv_dbg(BATADV_DBG_BLA, backbone_gw->bat_priv, "%s(): CRC FAILED for %pM/%d (my = %#.4x, sent = %#.4x)\n", __func__, backbone_gw->orig, batadv_print_vid(backbone_gw->vid), backbone_crc, crc); batadv_bla_send_request(backbone_gw); } else { /* if we have sent a request and the crc was OK, * we can allow traffic again. */ if (atomic_read(&backbone_gw->request_sent)) { atomic_dec(&backbone_gw->bat_priv->bla.num_requests); atomic_set(&backbone_gw->request_sent, 0); } } batadv_backbone_gw_put(backbone_gw); return true; } /** * batadv_handle_request() - check for REQUEST frame * @bat_priv: the bat priv with all the soft interface information * @primary_if: the primary hard interface of this batman soft interface * @backbone_addr: backbone address to be requested (ARP sender HW MAC) * @ethhdr: ethernet header of a packet * @vid: the VLAN ID of the frame * * Return: true if handled */ static bool batadv_handle_request(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, u8 *backbone_addr, struct ethhdr *ethhdr, unsigned short vid) { /* check for REQUEST frame */ if (!batadv_compare_eth(backbone_addr, ethhdr->h_dest)) return false; /* sanity check, this should not happen on a normal switch, * we ignore it in this case. */ if (!batadv_compare_eth(ethhdr->h_dest, primary_if->net_dev->dev_addr)) return true; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): REQUEST vid %d (sent by %pM)...\n", __func__, batadv_print_vid(vid), ethhdr->h_source); batadv_bla_answer_request(bat_priv, primary_if, vid); return true; } /** * batadv_handle_unclaim() - check for UNCLAIM frame * @bat_priv: the bat priv with all the soft interface information * @primary_if: the primary hard interface of this batman soft interface * @backbone_addr: originator address of the backbone (Ethernet source) * @claim_addr: Client to be unclaimed (ARP sender HW MAC) * @vid: the VLAN ID of the frame * * Return: true if handled */ static bool batadv_handle_unclaim(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, u8 *backbone_addr, u8 *claim_addr, unsigned short vid) { struct batadv_bla_backbone_gw *backbone_gw; /* unclaim in any case if it is our own */ if (primary_if && batadv_compare_eth(backbone_addr, primary_if->net_dev->dev_addr)) batadv_bla_send_claim(bat_priv, claim_addr, vid, BATADV_CLAIM_TYPE_UNCLAIM); backbone_gw = batadv_backbone_hash_find(bat_priv, backbone_addr, vid); if (!backbone_gw) return true; /* this must be an UNCLAIM frame */ batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): UNCLAIM %pM on vid %d (sent by %pM)...\n", __func__, claim_addr, batadv_print_vid(vid), backbone_gw->orig); batadv_bla_del_claim(bat_priv, claim_addr, vid); batadv_backbone_gw_put(backbone_gw); return true; } /** * batadv_handle_claim() - check for CLAIM frame * @bat_priv: the bat priv with all the soft interface information * @primary_if: the primary hard interface of this batman soft interface * @backbone_addr: originator address of the backbone (Ethernet Source) * @claim_addr: client mac address to be claimed (ARP sender HW MAC) * @vid: the VLAN ID of the frame * * Return: true if handled */ static bool batadv_handle_claim(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, u8 *backbone_addr, u8 *claim_addr, unsigned short vid) { struct batadv_bla_backbone_gw *backbone_gw; /* register the gateway if not yet available, and add the claim. */ backbone_gw = batadv_bla_get_backbone_gw(bat_priv, backbone_addr, vid, false); if (unlikely(!backbone_gw)) return true; /* this must be a CLAIM frame */ batadv_bla_add_claim(bat_priv, claim_addr, vid, backbone_gw); if (batadv_compare_eth(backbone_addr, primary_if->net_dev->dev_addr)) batadv_bla_send_claim(bat_priv, claim_addr, vid, BATADV_CLAIM_TYPE_CLAIM); /* TODO: we could call something like tt_local_del() here. */ batadv_backbone_gw_put(backbone_gw); return true; } /** * batadv_check_claim_group() - check for claim group membership * @bat_priv: the bat priv with all the soft interface information * @primary_if: the primary interface of this batman interface * @hw_src: the Hardware source in the ARP Header * @hw_dst: the Hardware destination in the ARP Header * @ethhdr: pointer to the Ethernet header of the claim frame * * checks if it is a claim packet and if it's on the same group. * This function also applies the group ID of the sender * if it is in the same mesh. * * Return: * 2 - if it is a claim packet and on the same group * 1 - if is a claim packet from another group * 0 - if it is not a claim packet */ static int batadv_check_claim_group(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, u8 *hw_src, u8 *hw_dst, struct ethhdr *ethhdr) { u8 *backbone_addr; struct batadv_orig_node *orig_node; struct batadv_bla_claim_dst *bla_dst, *bla_dst_own; bla_dst = (struct batadv_bla_claim_dst *)hw_dst; bla_dst_own = &bat_priv->bla.claim_dest; /* if announcement packet, use the source, * otherwise assume it is in the hw_src */ switch (bla_dst->type) { case BATADV_CLAIM_TYPE_CLAIM: backbone_addr = hw_src; break; case BATADV_CLAIM_TYPE_REQUEST: case BATADV_CLAIM_TYPE_ANNOUNCE: case BATADV_CLAIM_TYPE_UNCLAIM: backbone_addr = ethhdr->h_source; break; default: return 0; } /* don't accept claim frames from ourselves */ if (batadv_compare_eth(backbone_addr, primary_if->net_dev->dev_addr)) return 0; /* if its already the same group, it is fine. */ if (bla_dst->group == bla_dst_own->group) return 2; /* lets see if this originator is in our mesh */ orig_node = batadv_orig_hash_find(bat_priv, backbone_addr); /* don't accept claims from gateways which are not in * the same mesh or group. */ if (!orig_node) return 1; /* if our mesh friends mac is bigger, use it for ourselves. */ if (ntohs(bla_dst->group) > ntohs(bla_dst_own->group)) { batadv_dbg(BATADV_DBG_BLA, bat_priv, "taking other backbones claim group: %#.4x\n", ntohs(bla_dst->group)); bla_dst_own->group = bla_dst->group; } batadv_orig_node_put(orig_node); return 2; } /** * batadv_bla_process_claim() - Check if this is a claim frame, and process it * @bat_priv: the bat priv with all the soft interface information * @primary_if: the primary hard interface of this batman soft interface * @skb: the frame to be checked * * Return: true if it was a claim frame, otherwise return false to * tell the callee that it can use the frame on its own. */ static bool batadv_bla_process_claim(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, struct sk_buff *skb) { struct batadv_bla_claim_dst *bla_dst, *bla_dst_own; u8 *hw_src, *hw_dst; struct vlan_hdr *vhdr, vhdr_buf; struct ethhdr *ethhdr; struct arphdr *arphdr; unsigned short vid; int vlan_depth = 0; __be16 proto; int headlen; int ret; vid = batadv_get_vid(skb, 0); ethhdr = eth_hdr(skb); proto = ethhdr->h_proto; headlen = ETH_HLEN; if (vid & BATADV_VLAN_HAS_TAG) { /* Traverse the VLAN/Ethertypes. * * At this point it is known that the first protocol is a VLAN * header, so start checking at the encapsulated protocol. * * The depth of the VLAN headers is recorded to drop BLA claim * frames encapsulated into multiple VLAN headers (QinQ). */ do { vhdr = skb_header_pointer(skb, headlen, VLAN_HLEN, &vhdr_buf); if (!vhdr) return false; proto = vhdr->h_vlan_encapsulated_proto; headlen += VLAN_HLEN; vlan_depth++; } while (proto == htons(ETH_P_8021Q)); } if (proto != htons(ETH_P_ARP)) return false; /* not a claim frame */ /* this must be a ARP frame. check if it is a claim. */ if (unlikely(!pskb_may_pull(skb, headlen + arp_hdr_len(skb->dev)))) return false; /* pskb_may_pull() may have modified the pointers, get ethhdr again */ ethhdr = eth_hdr(skb); arphdr = (struct arphdr *)((u8 *)ethhdr + headlen); /* Check whether the ARP frame carries a valid * IP information */ if (arphdr->ar_hrd != htons(ARPHRD_ETHER)) return false; if (arphdr->ar_pro != htons(ETH_P_IP)) return false; if (arphdr->ar_hln != ETH_ALEN) return false; if (arphdr->ar_pln != 4) return false; hw_src = (u8 *)arphdr + sizeof(struct arphdr); hw_dst = hw_src + ETH_ALEN + 4; bla_dst = (struct batadv_bla_claim_dst *)hw_dst; bla_dst_own = &bat_priv->bla.claim_dest; /* check if it is a claim frame in general */ if (memcmp(bla_dst->magic, bla_dst_own->magic, sizeof(bla_dst->magic)) != 0) return false; /* check if there is a claim frame encapsulated deeper in (QinQ) and * drop that, as this is not supported by BLA but should also not be * sent via the mesh. */ if (vlan_depth > 1) return true; /* Let the loopdetect frames on the mesh in any case. */ if (bla_dst->type == BATADV_CLAIM_TYPE_LOOPDETECT) return false; /* check if it is a claim frame. */ ret = batadv_check_claim_group(bat_priv, primary_if, hw_src, hw_dst, ethhdr); if (ret == 1) batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): received a claim frame from another group. From: %pM on vid %d ...(hw_src %pM, hw_dst %pM)\n", __func__, ethhdr->h_source, batadv_print_vid(vid), hw_src, hw_dst); if (ret < 2) return !!ret; /* become a backbone gw ourselves on this vlan if not happened yet */ batadv_bla_update_own_backbone_gw(bat_priv, primary_if, vid); /* check for the different types of claim frames ... */ switch (bla_dst->type) { case BATADV_CLAIM_TYPE_CLAIM: if (batadv_handle_claim(bat_priv, primary_if, hw_src, ethhdr->h_source, vid)) return true; break; case BATADV_CLAIM_TYPE_UNCLAIM: if (batadv_handle_unclaim(bat_priv, primary_if, ethhdr->h_source, hw_src, vid)) return true; break; case BATADV_CLAIM_TYPE_ANNOUNCE: if (batadv_handle_announce(bat_priv, hw_src, ethhdr->h_source, vid)) return true; break; case BATADV_CLAIM_TYPE_REQUEST: if (batadv_handle_request(bat_priv, primary_if, hw_src, ethhdr, vid)) return true; break; } batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): ERROR - this looks like a claim frame, but is useless. eth src %pM on vid %d ...(hw_src %pM, hw_dst %pM)\n", __func__, ethhdr->h_source, batadv_print_vid(vid), hw_src, hw_dst); return true; } /** * batadv_bla_purge_backbone_gw() - Remove backbone gateways after a timeout or * immediately * @bat_priv: the bat priv with all the soft interface information * @now: whether the whole hash shall be wiped now * * Check when we last heard from other nodes, and remove them in case of * a time out, or clean all backbone gws if now is set. */ static void batadv_bla_purge_backbone_gw(struct batadv_priv *bat_priv, int now) { struct batadv_bla_backbone_gw *backbone_gw; struct hlist_node *node_tmp; struct hlist_head *head; struct batadv_hashtable *hash; spinlock_t *list_lock; /* protects write access to the hash lists */ int i; hash = bat_priv->bla.backbone_hash; if (!hash) return; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; list_lock = &hash->list_locks[i]; spin_lock_bh(list_lock); hlist_for_each_entry_safe(backbone_gw, node_tmp, head, hash_entry) { if (now) goto purge_now; if (!batadv_has_timed_out(backbone_gw->lasttime, BATADV_BLA_BACKBONE_TIMEOUT)) continue; batadv_dbg(BATADV_DBG_BLA, backbone_gw->bat_priv, "%s(): backbone gw %pM timed out\n", __func__, backbone_gw->orig); purge_now: /* don't wait for the pending request anymore */ if (atomic_read(&backbone_gw->request_sent)) atomic_dec(&bat_priv->bla.num_requests); batadv_bla_del_backbone_claims(backbone_gw); hlist_del_rcu(&backbone_gw->hash_entry); batadv_backbone_gw_put(backbone_gw); } spin_unlock_bh(list_lock); } } /** * batadv_bla_purge_claims() - Remove claims after a timeout or immediately * @bat_priv: the bat priv with all the soft interface information * @primary_if: the selected primary interface, may be NULL if now is set * @now: whether the whole hash shall be wiped now * * Check when we heard last time from our own claims, and remove them in case of * a time out, or clean all claims if now is set */ static void batadv_bla_purge_claims(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, int now) { struct batadv_bla_backbone_gw *backbone_gw; struct batadv_bla_claim *claim; struct hlist_head *head; struct batadv_hashtable *hash; int i; hash = bat_priv->bla.claim_hash; if (!hash) return; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(claim, head, hash_entry) { backbone_gw = batadv_bla_claim_get_backbone_gw(claim); if (now) goto purge_now; if (!batadv_compare_eth(backbone_gw->orig, primary_if->net_dev->dev_addr)) goto skip; if (!batadv_has_timed_out(claim->lasttime, BATADV_BLA_CLAIM_TIMEOUT)) goto skip; batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): timed out.\n", __func__); purge_now: batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): %pM, vid %d\n", __func__, claim->addr, claim->vid); batadv_handle_unclaim(bat_priv, primary_if, backbone_gw->orig, claim->addr, claim->vid); skip: batadv_backbone_gw_put(backbone_gw); } rcu_read_unlock(); } } /** * batadv_bla_update_orig_address() - Update the backbone gateways when the own * originator address changes * @bat_priv: the bat priv with all the soft interface information * @primary_if: the new selected primary_if * @oldif: the old primary interface, may be NULL */ void batadv_bla_update_orig_address(struct batadv_priv *bat_priv, struct batadv_hard_iface *primary_if, struct batadv_hard_iface *oldif) { struct batadv_bla_backbone_gw *backbone_gw; struct hlist_head *head; struct batadv_hashtable *hash; __be16 group; int i; /* reset bridge loop avoidance group id */ group = htons(crc16(0, primary_if->net_dev->dev_addr, ETH_ALEN)); bat_priv->bla.claim_dest.group = group; /* purge everything when bridge loop avoidance is turned off */ if (!atomic_read(&bat_priv->bridge_loop_avoidance)) oldif = NULL; if (!oldif) { batadv_bla_purge_claims(bat_priv, NULL, 1); batadv_bla_purge_backbone_gw(bat_priv, 1); return; } hash = bat_priv->bla.backbone_hash; if (!hash) return; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(backbone_gw, head, hash_entry) { /* own orig still holds the old value. */ if (!batadv_compare_eth(backbone_gw->orig, oldif->net_dev->dev_addr)) continue; ether_addr_copy(backbone_gw->orig, primary_if->net_dev->dev_addr); /* send an announce frame so others will ask for our * claims and update their tables. */ batadv_bla_send_announce(bat_priv, backbone_gw); } rcu_read_unlock(); } } /** * batadv_bla_send_loopdetect() - send a loopdetect frame * @bat_priv: the bat priv with all the soft interface information * @backbone_gw: the backbone gateway for which a loop should be detected * * To detect loops that the bridge loop avoidance can't handle, send a loop * detection packet on the backbone. Unlike other BLA frames, this frame will * be allowed on the mesh by other nodes. If it is received on the mesh, this * indicates that there is a loop. */ static void batadv_bla_send_loopdetect(struct batadv_priv *bat_priv, struct batadv_bla_backbone_gw *backbone_gw) { batadv_dbg(BATADV_DBG_BLA, bat_priv, "Send loopdetect frame for vid %d\n", backbone_gw->vid); batadv_bla_send_claim(bat_priv, bat_priv->bla.loopdetect_addr, backbone_gw->vid, BATADV_CLAIM_TYPE_LOOPDETECT); } /** * batadv_bla_status_update() - purge bla interfaces if necessary * @net_dev: the soft interface net device */ void batadv_bla_status_update(struct net_device *net_dev) { struct batadv_priv *bat_priv = netdev_priv(net_dev); struct batadv_hard_iface *primary_if; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) return; /* this function already purges everything when bla is disabled, * so just call that one. */ batadv_bla_update_orig_address(bat_priv, primary_if, primary_if); batadv_hardif_put(primary_if); } /** * batadv_bla_periodic_work() - performs periodic bla work * @work: kernel work struct * * periodic work to do: * * purge structures when they are too old * * send announcements */ static void batadv_bla_periodic_work(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_priv *bat_priv; struct batadv_priv_bla *priv_bla; struct hlist_head *head; struct batadv_bla_backbone_gw *backbone_gw; struct batadv_hashtable *hash; struct batadv_hard_iface *primary_if; bool send_loopdetect = false; int i; delayed_work = to_delayed_work(work); priv_bla = container_of(delayed_work, struct batadv_priv_bla, work); bat_priv = container_of(priv_bla, struct batadv_priv, bla); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) goto out; batadv_bla_purge_claims(bat_priv, primary_if, 0); batadv_bla_purge_backbone_gw(bat_priv, 0); if (!atomic_read(&bat_priv->bridge_loop_avoidance)) goto out; if (atomic_dec_and_test(&bat_priv->bla.loopdetect_next)) { /* set a new random mac address for the next bridge loop * detection frames. Set the locally administered bit to avoid * collisions with users mac addresses. */ eth_random_addr(bat_priv->bla.loopdetect_addr); bat_priv->bla.loopdetect_addr[0] = 0xba; bat_priv->bla.loopdetect_addr[1] = 0xbe; bat_priv->bla.loopdetect_lasttime = jiffies; atomic_set(&bat_priv->bla.loopdetect_next, BATADV_BLA_LOOPDETECT_PERIODS); /* mark for sending loop detect on all VLANs */ send_loopdetect = true; } hash = bat_priv->bla.backbone_hash; if (!hash) goto out; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(backbone_gw, head, hash_entry) { if (!batadv_compare_eth(backbone_gw->orig, primary_if->net_dev->dev_addr)) continue; backbone_gw->lasttime = jiffies; batadv_bla_send_announce(bat_priv, backbone_gw); if (send_loopdetect) batadv_bla_send_loopdetect(bat_priv, backbone_gw); /* request_sent is only set after creation to avoid * problems when we are not yet known as backbone gw * in the backbone. * * We can reset this now after we waited some periods * to give bridge forward delays and bla group forming * some grace time. */ if (atomic_read(&backbone_gw->request_sent) == 0) continue; if (!atomic_dec_and_test(&backbone_gw->wait_periods)) continue; atomic_dec(&backbone_gw->bat_priv->bla.num_requests); atomic_set(&backbone_gw->request_sent, 0); } rcu_read_unlock(); } out: batadv_hardif_put(primary_if); queue_delayed_work(batadv_event_workqueue, &bat_priv->bla.work, msecs_to_jiffies(BATADV_BLA_PERIOD_LENGTH)); } /* The hash for claim and backbone hash receive the same key because they * are getting initialized by hash_new with the same key. Reinitializing * them with to different keys to allow nested locking without generating * lockdep warnings */ static struct lock_class_key batadv_claim_hash_lock_class_key; static struct lock_class_key batadv_backbone_hash_lock_class_key; /** * batadv_bla_init() - initialize all bla structures * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success, < 0 on error. */ int batadv_bla_init(struct batadv_priv *bat_priv) { int i; u8 claim_dest[ETH_ALEN] = {0xff, 0x43, 0x05, 0x00, 0x00, 0x00}; struct batadv_hard_iface *primary_if; u16 crc; unsigned long entrytime; spin_lock_init(&bat_priv->bla.bcast_duplist_lock); batadv_dbg(BATADV_DBG_BLA, bat_priv, "bla hash registering\n"); /* setting claim destination address */ memcpy(&bat_priv->bla.claim_dest.magic, claim_dest, 3); bat_priv->bla.claim_dest.type = 0; primary_if = batadv_primary_if_get_selected(bat_priv); if (primary_if) { crc = crc16(0, primary_if->net_dev->dev_addr, ETH_ALEN); bat_priv->bla.claim_dest.group = htons(crc); batadv_hardif_put(primary_if); } else { bat_priv->bla.claim_dest.group = 0; /* will be set later */ } /* initialize the duplicate list */ entrytime = jiffies - msecs_to_jiffies(BATADV_DUPLIST_TIMEOUT); for (i = 0; i < BATADV_DUPLIST_SIZE; i++) bat_priv->bla.bcast_duplist[i].entrytime = entrytime; bat_priv->bla.bcast_duplist_curr = 0; atomic_set(&bat_priv->bla.loopdetect_next, BATADV_BLA_LOOPDETECT_PERIODS); if (bat_priv->bla.claim_hash) return 0; bat_priv->bla.claim_hash = batadv_hash_new(128); if (!bat_priv->bla.claim_hash) return -ENOMEM; bat_priv->bla.backbone_hash = batadv_hash_new(32); if (!bat_priv->bla.backbone_hash) { batadv_hash_destroy(bat_priv->bla.claim_hash); return -ENOMEM; } batadv_hash_set_lock_class(bat_priv->bla.claim_hash, &batadv_claim_hash_lock_class_key); batadv_hash_set_lock_class(bat_priv->bla.backbone_hash, &batadv_backbone_hash_lock_class_key); batadv_dbg(BATADV_DBG_BLA, bat_priv, "bla hashes initialized\n"); INIT_DELAYED_WORK(&bat_priv->bla.work, batadv_bla_periodic_work); queue_delayed_work(batadv_event_workqueue, &bat_priv->bla.work, msecs_to_jiffies(BATADV_BLA_PERIOD_LENGTH)); return 0; } /** * batadv_bla_check_duplist() - Check if a frame is in the broadcast dup. * @bat_priv: the bat priv with all the soft interface information * @skb: contains the multicast packet to be checked * @payload_ptr: pointer to position inside the head buffer of the skb * marking the start of the data to be CRC'ed * @orig: originator mac address, NULL if unknown * * Check if it is on our broadcast list. Another gateway might have sent the * same packet because it is connected to the same backbone, so we have to * remove this duplicate. * * This is performed by checking the CRC, which will tell us * with a good chance that it is the same packet. If it is furthermore * sent by another host, drop it. We allow equal packets from * the same host however as this might be intended. * * Return: true if a packet is in the duplicate list, false otherwise. */ static bool batadv_bla_check_duplist(struct batadv_priv *bat_priv, struct sk_buff *skb, u8 *payload_ptr, const u8 *orig) { struct batadv_bcast_duplist_entry *entry; bool ret = false; int i, curr; __be32 crc; /* calculate the crc ... */ crc = batadv_skb_crc32(skb, payload_ptr); spin_lock_bh(&bat_priv->bla.bcast_duplist_lock); for (i = 0; i < BATADV_DUPLIST_SIZE; i++) { curr = (bat_priv->bla.bcast_duplist_curr + i); curr %= BATADV_DUPLIST_SIZE; entry = &bat_priv->bla.bcast_duplist[curr]; /* we can stop searching if the entry is too old ; * later entries will be even older */ if (batadv_has_timed_out(entry->entrytime, BATADV_DUPLIST_TIMEOUT)) break; if (entry->crc != crc) continue; /* are the originators both known and not anonymous? */ if (orig && !is_zero_ether_addr(orig) && !is_zero_ether_addr(entry->orig)) { /* If known, check if the new frame came from * the same originator: * We are safe to take identical frames from the * same orig, if known, as multiplications in * the mesh are detected via the (orig, seqno) pair. * So we can be a bit more liberal here and allow * identical frames from the same orig which the source * host might have sent multiple times on purpose. */ if (batadv_compare_eth(entry->orig, orig)) continue; } /* this entry seems to match: same crc, not too old, * and from another gw. therefore return true to forbid it. */ ret = true; goto out; } /* not found, add a new entry (overwrite the oldest entry) * and allow it, its the first occurrence. */ curr = (bat_priv->bla.bcast_duplist_curr + BATADV_DUPLIST_SIZE - 1); curr %= BATADV_DUPLIST_SIZE; entry = &bat_priv->bla.bcast_duplist[curr]; entry->crc = crc; entry->entrytime = jiffies; /* known originator */ if (orig) ether_addr_copy(entry->orig, orig); /* anonymous originator */ else eth_zero_addr(entry->orig); bat_priv->bla.bcast_duplist_curr = curr; out: spin_unlock_bh(&bat_priv->bla.bcast_duplist_lock); return ret; } /** * batadv_bla_check_ucast_duplist() - Check if a frame is in the broadcast dup. * @bat_priv: the bat priv with all the soft interface information * @skb: contains the multicast packet to be checked, decapsulated from a * unicast_packet * * Check if it is on our broadcast list. Another gateway might have sent the * same packet because it is connected to the same backbone, so we have to * remove this duplicate. * * Return: true if a packet is in the duplicate list, false otherwise. */ static bool batadv_bla_check_ucast_duplist(struct batadv_priv *bat_priv, struct sk_buff *skb) { return batadv_bla_check_duplist(bat_priv, skb, (u8 *)skb->data, NULL); } /** * batadv_bla_check_bcast_duplist() - Check if a frame is in the broadcast dup. * @bat_priv: the bat priv with all the soft interface information * @skb: contains the bcast_packet to be checked * * Check if it is on our broadcast list. Another gateway might have sent the * same packet because it is connected to the same backbone, so we have to * remove this duplicate. * * Return: true if a packet is in the duplicate list, false otherwise. */ bool batadv_bla_check_bcast_duplist(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct batadv_bcast_packet *bcast_packet; u8 *payload_ptr; bcast_packet = (struct batadv_bcast_packet *)skb->data; payload_ptr = (u8 *)(bcast_packet + 1); return batadv_bla_check_duplist(bat_priv, skb, payload_ptr, bcast_packet->orig); } /** * batadv_bla_is_backbone_gw_orig() - Check if the originator is a gateway for * the VLAN identified by vid. * @bat_priv: the bat priv with all the soft interface information * @orig: originator mac address * @vid: VLAN identifier * * Return: true if orig is a backbone for this vid, false otherwise. */ bool batadv_bla_is_backbone_gw_orig(struct batadv_priv *bat_priv, u8 *orig, unsigned short vid) { struct batadv_hashtable *hash = bat_priv->bla.backbone_hash; struct hlist_head *head; struct batadv_bla_backbone_gw *backbone_gw; int i; if (!atomic_read(&bat_priv->bridge_loop_avoidance)) return false; if (!hash) return false; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(backbone_gw, head, hash_entry) { if (batadv_compare_eth(backbone_gw->orig, orig) && backbone_gw->vid == vid) { rcu_read_unlock(); return true; } } rcu_read_unlock(); } return false; } /** * batadv_bla_is_backbone_gw() - check if originator is a backbone gw for a VLAN * @skb: the frame to be checked * @orig_node: the orig_node of the frame * @hdr_size: maximum length of the frame * * Return: true if the orig_node is also a gateway on the soft interface, * otherwise it returns false. */ bool batadv_bla_is_backbone_gw(struct sk_buff *skb, struct batadv_orig_node *orig_node, int hdr_size) { struct batadv_bla_backbone_gw *backbone_gw; unsigned short vid; if (!atomic_read(&orig_node->bat_priv->bridge_loop_avoidance)) return false; /* first, find out the vid. */ if (!pskb_may_pull(skb, hdr_size + ETH_HLEN)) return false; vid = batadv_get_vid(skb, hdr_size); /* see if this originator is a backbone gw for this VLAN */ backbone_gw = batadv_backbone_hash_find(orig_node->bat_priv, orig_node->orig, vid); if (!backbone_gw) return false; batadv_backbone_gw_put(backbone_gw); return true; } /** * batadv_bla_free() - free all bla structures * @bat_priv: the bat priv with all the soft interface information * * for softinterface free or module unload */ void batadv_bla_free(struct batadv_priv *bat_priv) { struct batadv_hard_iface *primary_if; cancel_delayed_work_sync(&bat_priv->bla.work); primary_if = batadv_primary_if_get_selected(bat_priv); if (bat_priv->bla.claim_hash) { batadv_bla_purge_claims(bat_priv, primary_if, 1); batadv_hash_destroy(bat_priv->bla.claim_hash); bat_priv->bla.claim_hash = NULL; } if (bat_priv->bla.backbone_hash) { batadv_bla_purge_backbone_gw(bat_priv, 1); batadv_hash_destroy(bat_priv->bla.backbone_hash); bat_priv->bla.backbone_hash = NULL; } batadv_hardif_put(primary_if); } /** * batadv_bla_loopdetect_check() - check and handle a detected loop * @bat_priv: the bat priv with all the soft interface information * @skb: the packet to check * @primary_if: interface where the request came on * @vid: the VLAN ID of the frame * * Checks if this packet is a loop detect frame which has been sent by us, * throws an uevent and logs the event if that is the case. * * Return: true if it is a loop detect frame which is to be dropped, false * otherwise. */ static bool batadv_bla_loopdetect_check(struct batadv_priv *bat_priv, struct sk_buff *skb, struct batadv_hard_iface *primary_if, unsigned short vid) { struct batadv_bla_backbone_gw *backbone_gw; struct ethhdr *ethhdr; bool ret; ethhdr = eth_hdr(skb); /* Only check for the MAC address and skip more checks here for * performance reasons - this function is on the hotpath, after all. */ if (!batadv_compare_eth(ethhdr->h_source, bat_priv->bla.loopdetect_addr)) return false; /* If the packet came too late, don't forward it on the mesh * but don't consider that as loop. It might be a coincidence. */ if (batadv_has_timed_out(bat_priv->bla.loopdetect_lasttime, BATADV_BLA_LOOPDETECT_TIMEOUT)) return true; backbone_gw = batadv_bla_get_backbone_gw(bat_priv, primary_if->net_dev->dev_addr, vid, true); if (unlikely(!backbone_gw)) return true; ret = queue_work(batadv_event_workqueue, &backbone_gw->report_work); /* backbone_gw is unreferenced in the report work function * if queue_work() call was successful */ if (!ret) batadv_backbone_gw_put(backbone_gw); return true; } /** * batadv_bla_rx() - check packets coming from the mesh. * @bat_priv: the bat priv with all the soft interface information * @skb: the frame to be checked * @vid: the VLAN ID of the frame * @packet_type: the batman packet type this frame came in * * batadv_bla_rx avoidance checks if: * * we have to race for a claim * * if the frame is allowed on the LAN * * In these cases, the skb is further handled by this function * * Return: true if handled, otherwise it returns false and the caller shall * further process the skb. */ bool batadv_bla_rx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int packet_type) { struct batadv_bla_backbone_gw *backbone_gw; struct ethhdr *ethhdr; struct batadv_bla_claim search_claim, *claim = NULL; struct batadv_hard_iface *primary_if; bool own_claim; bool ret; ethhdr = eth_hdr(skb); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) goto handled; if (!atomic_read(&bat_priv->bridge_loop_avoidance)) goto allow; if (batadv_bla_loopdetect_check(bat_priv, skb, primary_if, vid)) goto handled; if (unlikely(atomic_read(&bat_priv->bla.num_requests))) /* don't allow multicast packets while requests are in flight */ if (is_multicast_ether_addr(ethhdr->h_dest)) /* Both broadcast flooding or multicast-via-unicasts * delivery might send to multiple backbone gateways * sharing the same LAN and therefore need to coordinate * which backbone gateway forwards into the LAN, * by claiming the payload source address. * * Broadcast flooding and multicast-via-unicasts * delivery use the following two batman packet types. * Note: explicitly exclude BATADV_UNICAST_4ADDR, * as the DHCP gateway feature will send explicitly * to only one BLA gateway, so the claiming process * should be avoided there. */ if (packet_type == BATADV_BCAST || packet_type == BATADV_UNICAST) goto handled; /* potential duplicates from foreign BLA backbone gateways via * multicast-in-unicast packets */ if (is_multicast_ether_addr(ethhdr->h_dest) && packet_type == BATADV_UNICAST && batadv_bla_check_ucast_duplist(bat_priv, skb)) goto handled; ether_addr_copy(search_claim.addr, ethhdr->h_source); search_claim.vid = vid; claim = batadv_claim_hash_find(bat_priv, &search_claim); if (!claim) { /* possible optimization: race for a claim */ /* No claim exists yet, claim it for us! */ batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): Unclaimed MAC %pM found. Claim it. Local: %s\n", __func__, ethhdr->h_source, batadv_is_my_client(bat_priv, ethhdr->h_source, vid) ? "yes" : "no"); batadv_handle_claim(bat_priv, primary_if, primary_if->net_dev->dev_addr, ethhdr->h_source, vid); goto allow; } /* if it is our own claim ... */ backbone_gw = batadv_bla_claim_get_backbone_gw(claim); own_claim = batadv_compare_eth(backbone_gw->orig, primary_if->net_dev->dev_addr); batadv_backbone_gw_put(backbone_gw); if (own_claim) { /* ... allow it in any case */ claim->lasttime = jiffies; goto allow; } /* if it is a multicast ... */ if (is_multicast_ether_addr(ethhdr->h_dest) && (packet_type == BATADV_BCAST || packet_type == BATADV_UNICAST)) { /* ... drop it. the responsible gateway is in charge. * * We need to check packet type because with the gateway * feature, broadcasts (like DHCP requests) may be sent * using a unicast 4 address packet type. See comment above. */ goto handled; } else { /* seems the client considers us as its best gateway. * send a claim and update the claim table * immediately. */ batadv_handle_claim(bat_priv, primary_if, primary_if->net_dev->dev_addr, ethhdr->h_source, vid); goto allow; } allow: batadv_bla_update_own_backbone_gw(bat_priv, primary_if, vid); ret = false; goto out; handled: kfree_skb(skb); ret = true; out: batadv_hardif_put(primary_if); batadv_claim_put(claim); return ret; } /** * batadv_bla_tx() - check packets going into the mesh * @bat_priv: the bat priv with all the soft interface information * @skb: the frame to be checked * @vid: the VLAN ID of the frame * * batadv_bla_tx checks if: * * a claim was received which has to be processed * * the frame is allowed on the mesh * * in these cases, the skb is further handled by this function. * * This call might reallocate skb data. * * Return: true if handled, otherwise it returns false and the caller shall * further process the skb. */ bool batadv_bla_tx(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { struct ethhdr *ethhdr; struct batadv_bla_claim search_claim, *claim = NULL; struct batadv_bla_backbone_gw *backbone_gw; struct batadv_hard_iface *primary_if; bool client_roamed; bool ret = false; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) goto out; if (!atomic_read(&bat_priv->bridge_loop_avoidance)) goto allow; if (batadv_bla_process_claim(bat_priv, primary_if, skb)) goto handled; ethhdr = eth_hdr(skb); if (unlikely(atomic_read(&bat_priv->bla.num_requests))) /* don't allow broadcasts while requests are in flight */ if (is_multicast_ether_addr(ethhdr->h_dest)) goto handled; ether_addr_copy(search_claim.addr, ethhdr->h_source); search_claim.vid = vid; claim = batadv_claim_hash_find(bat_priv, &search_claim); /* if no claim exists, allow it. */ if (!claim) goto allow; /* check if we are responsible. */ backbone_gw = batadv_bla_claim_get_backbone_gw(claim); client_roamed = batadv_compare_eth(backbone_gw->orig, primary_if->net_dev->dev_addr); batadv_backbone_gw_put(backbone_gw); if (client_roamed) { /* if yes, the client has roamed and we have * to unclaim it. */ if (batadv_has_timed_out(claim->lasttime, 100)) { /* only unclaim if the last claim entry is * older than 100 ms to make sure we really * have a roaming client here. */ batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): Roaming client %pM detected. Unclaim it.\n", __func__, ethhdr->h_source); batadv_handle_unclaim(bat_priv, primary_if, primary_if->net_dev->dev_addr, ethhdr->h_source, vid); goto allow; } else { batadv_dbg(BATADV_DBG_BLA, bat_priv, "%s(): Race for claim %pM detected. Drop packet.\n", __func__, ethhdr->h_source); goto handled; } } /* check if it is a multicast/broadcast frame */ if (is_multicast_ether_addr(ethhdr->h_dest)) { /* drop it. the responsible gateway has forwarded it into * the backbone network. */ goto handled; } else { /* we must allow it. at least if we are * responsible for the DESTINATION. */ goto allow; } allow: batadv_bla_update_own_backbone_gw(bat_priv, primary_if, vid); ret = false; goto out; handled: ret = true; out: batadv_hardif_put(primary_if); batadv_claim_put(claim); return ret; } /** * batadv_bla_claim_dump_entry() - dump one entry of the claim table * to a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @primary_if: primary interface * @claim: entry to dump * * Return: 0 or error code. */ static int batadv_bla_claim_dump_entry(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_hard_iface *primary_if, struct batadv_bla_claim *claim) { u8 *primary_addr = primary_if->net_dev->dev_addr; u16 backbone_crc; bool is_own; void *hdr; int ret = -EINVAL; hdr = genlmsg_put(msg, portid, cb->nlh->nlmsg_seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_BLA_CLAIM); if (!hdr) { ret = -ENOBUFS; goto out; } genl_dump_check_consistent(cb, hdr); is_own = batadv_compare_eth(claim->backbone_gw->orig, primary_addr); spin_lock_bh(&claim->backbone_gw->crc_lock); backbone_crc = claim->backbone_gw->crc; spin_unlock_bh(&claim->backbone_gw->crc_lock); if (is_own) if (nla_put_flag(msg, BATADV_ATTR_BLA_OWN)) { genlmsg_cancel(msg, hdr); goto out; } if (nla_put(msg, BATADV_ATTR_BLA_ADDRESS, ETH_ALEN, claim->addr) || nla_put_u16(msg, BATADV_ATTR_BLA_VID, claim->vid) || nla_put(msg, BATADV_ATTR_BLA_BACKBONE, ETH_ALEN, claim->backbone_gw->orig) || nla_put_u16(msg, BATADV_ATTR_BLA_CRC, backbone_crc)) { genlmsg_cancel(msg, hdr); goto out; } genlmsg_end(msg, hdr); ret = 0; out: return ret; } /** * batadv_bla_claim_dump_bucket() - dump one bucket of the claim table * to a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @primary_if: primary interface * @hash: hash to dump * @bucket: bucket index to dump * @idx_skip: How many entries to skip * * Return: always 0. */ static int batadv_bla_claim_dump_bucket(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_hard_iface *primary_if, struct batadv_hashtable *hash, unsigned int bucket, int *idx_skip) { struct batadv_bla_claim *claim; int idx = 0; int ret = 0; spin_lock_bh(&hash->list_locks[bucket]); cb->seq = atomic_read(&hash->generation) << 1 | 1; hlist_for_each_entry(claim, &hash->table[bucket], hash_entry) { if (idx++ < *idx_skip) continue; ret = batadv_bla_claim_dump_entry(msg, portid, cb, primary_if, claim); if (ret) { *idx_skip = idx - 1; goto unlock; } } *idx_skip = 0; unlock: spin_unlock_bh(&hash->list_locks[bucket]); return ret; } /** * batadv_bla_claim_dump() - dump claim table to a netlink socket * @msg: buffer for the message * @cb: callback structure containing arguments * * Return: message length. */ int batadv_bla_claim_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct batadv_hard_iface *primary_if = NULL; int portid = NETLINK_CB(cb->skb).portid; struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_hashtable *hash; struct batadv_priv *bat_priv; int bucket = cb->args[0]; int idx = cb->args[1]; int ifindex; int ret = 0; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); hash = bat_priv->bla.claim_hash; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } while (bucket < hash->size) { if (batadv_bla_claim_dump_bucket(msg, portid, cb, primary_if, hash, bucket, &idx)) break; bucket++; } cb->args[0] = bucket; cb->args[1] = idx; ret = msg->len; out: batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } /** * batadv_bla_backbone_dump_entry() - dump one entry of the backbone table to a * netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @primary_if: primary interface * @backbone_gw: entry to dump * * Return: 0 or error code. */ static int batadv_bla_backbone_dump_entry(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_hard_iface *primary_if, struct batadv_bla_backbone_gw *backbone_gw) { u8 *primary_addr = primary_if->net_dev->dev_addr; u16 backbone_crc; bool is_own; int msecs; void *hdr; int ret = -EINVAL; hdr = genlmsg_put(msg, portid, cb->nlh->nlmsg_seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_BLA_BACKBONE); if (!hdr) { ret = -ENOBUFS; goto out; } genl_dump_check_consistent(cb, hdr); is_own = batadv_compare_eth(backbone_gw->orig, primary_addr); spin_lock_bh(&backbone_gw->crc_lock); backbone_crc = backbone_gw->crc; spin_unlock_bh(&backbone_gw->crc_lock); msecs = jiffies_to_msecs(jiffies - backbone_gw->lasttime); if (is_own) if (nla_put_flag(msg, BATADV_ATTR_BLA_OWN)) { genlmsg_cancel(msg, hdr); goto out; } if (nla_put(msg, BATADV_ATTR_BLA_BACKBONE, ETH_ALEN, backbone_gw->orig) || nla_put_u16(msg, BATADV_ATTR_BLA_VID, backbone_gw->vid) || nla_put_u16(msg, BATADV_ATTR_BLA_CRC, backbone_crc) || nla_put_u32(msg, BATADV_ATTR_LAST_SEEN_MSECS, msecs)) { genlmsg_cancel(msg, hdr); goto out; } genlmsg_end(msg, hdr); ret = 0; out: return ret; } /** * batadv_bla_backbone_dump_bucket() - dump one bucket of the backbone table to * a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @primary_if: primary interface * @hash: hash to dump * @bucket: bucket index to dump * @idx_skip: How many entries to skip * * Return: always 0. */ static int batadv_bla_backbone_dump_bucket(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_hard_iface *primary_if, struct batadv_hashtable *hash, unsigned int bucket, int *idx_skip) { struct batadv_bla_backbone_gw *backbone_gw; int idx = 0; int ret = 0; spin_lock_bh(&hash->list_locks[bucket]); cb->seq = atomic_read(&hash->generation) << 1 | 1; hlist_for_each_entry(backbone_gw, &hash->table[bucket], hash_entry) { if (idx++ < *idx_skip) continue; ret = batadv_bla_backbone_dump_entry(msg, portid, cb, primary_if, backbone_gw); if (ret) { *idx_skip = idx - 1; goto unlock; } } *idx_skip = 0; unlock: spin_unlock_bh(&hash->list_locks[bucket]); return ret; } /** * batadv_bla_backbone_dump() - dump backbone table to a netlink socket * @msg: buffer for the message * @cb: callback structure containing arguments * * Return: message length. */ int batadv_bla_backbone_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct batadv_hard_iface *primary_if = NULL; int portid = NETLINK_CB(cb->skb).portid; struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_hashtable *hash; struct batadv_priv *bat_priv; int bucket = cb->args[0]; int idx = cb->args[1]; int ifindex; int ret = 0; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); hash = bat_priv->bla.backbone_hash; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } while (bucket < hash->size) { if (batadv_bla_backbone_dump_bucket(msg, portid, cb, primary_if, hash, bucket, &idx)) break; bucket++; } cb->args[0] = bucket; cb->args[1] = idx; ret = msg->len; out: batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } #ifdef CONFIG_BATMAN_ADV_DAT /** * batadv_bla_check_claim() - check if address is claimed * * @bat_priv: the bat priv with all the soft interface information * @addr: mac address of which the claim status is checked * @vid: the VLAN ID * * addr is checked if this address is claimed by the local device itself. * * Return: true if bla is disabled or the mac is claimed by the device, * false if the device addr is already claimed by another gateway */ bool batadv_bla_check_claim(struct batadv_priv *bat_priv, u8 *addr, unsigned short vid) { struct batadv_bla_claim search_claim; struct batadv_bla_claim *claim = NULL; struct batadv_hard_iface *primary_if = NULL; bool ret = true; if (!atomic_read(&bat_priv->bridge_loop_avoidance)) return ret; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) return ret; /* First look if the mac address is claimed */ ether_addr_copy(search_claim.addr, addr); search_claim.vid = vid; claim = batadv_claim_hash_find(bat_priv, &search_claim); /* If there is a claim and we are not owner of the claim, * return false. */ if (claim) { if (!batadv_compare_eth(claim->backbone_gw->orig, primary_if->net_dev->dev_addr)) ret = false; batadv_claim_put(claim); } batadv_hardif_put(primary_if); return ret; } #endif |
5 5 5 2 3 5 2 3 5 5 5 1 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | // SPDX-License-Identifier: GPL-2.0-only #include "netlink.h" #include "common.h" #include "bitset.h" /* LINKMODES_GET */ struct linkmodes_req_info { struct ethnl_req_info base; }; struct linkmodes_reply_data { struct ethnl_reply_data base; struct ethtool_link_ksettings ksettings; struct ethtool_link_settings *lsettings; bool peer_empty; }; #define LINKMODES_REPDATA(__reply_base) \ container_of(__reply_base, struct linkmodes_reply_data, base) const struct nla_policy ethnl_linkmodes_get_policy[] = { [ETHTOOL_A_LINKMODES_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), }; static int linkmodes_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, struct genl_info *info) { struct linkmodes_reply_data *data = LINKMODES_REPDATA(reply_base); struct net_device *dev = reply_base->dev; int ret; data->lsettings = &data->ksettings.base; ret = ethnl_ops_begin(dev); if (ret < 0) return ret; ret = __ethtool_get_link_ksettings(dev, &data->ksettings); if (ret < 0 && info) { GENL_SET_ERR_MSG(info, "failed to retrieve link settings"); goto out; } if (!dev->ethtool_ops->cap_link_lanes_supported) data->ksettings.lanes = 0; data->peer_empty = bitmap_empty(data->ksettings.link_modes.lp_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); out: ethnl_ops_complete(dev); return ret; } static int linkmodes_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { const struct linkmodes_reply_data *data = LINKMODES_REPDATA(reply_base); const struct ethtool_link_ksettings *ksettings = &data->ksettings; const struct ethtool_link_settings *lsettings = &ksettings->base; bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; int len, ret; len = nla_total_size(sizeof(u8)) /* LINKMODES_AUTONEG */ + nla_total_size(sizeof(u32)) /* LINKMODES_SPEED */ + nla_total_size(sizeof(u32)) /* LINKMODES_LANES */ + nla_total_size(sizeof(u8)) /* LINKMODES_DUPLEX */ + 0; ret = ethnl_bitset_size(ksettings->link_modes.advertising, ksettings->link_modes.supported, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; len += ret; if (!data->peer_empty) { ret = ethnl_bitset_size(ksettings->link_modes.lp_advertising, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return ret; len += ret; } if (lsettings->master_slave_cfg != MASTER_SLAVE_CFG_UNSUPPORTED) len += nla_total_size(sizeof(u8)); if (lsettings->master_slave_state != MASTER_SLAVE_STATE_UNSUPPORTED) len += nla_total_size(sizeof(u8)); return len; } static int linkmodes_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { const struct linkmodes_reply_data *data = LINKMODES_REPDATA(reply_base); const struct ethtool_link_ksettings *ksettings = &data->ksettings; const struct ethtool_link_settings *lsettings = &ksettings->base; bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; int ret; if (nla_put_u8(skb, ETHTOOL_A_LINKMODES_AUTONEG, lsettings->autoneg)) return -EMSGSIZE; ret = ethnl_put_bitset(skb, ETHTOOL_A_LINKMODES_OURS, ksettings->link_modes.advertising, ksettings->link_modes.supported, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return -EMSGSIZE; if (!data->peer_empty) { ret = ethnl_put_bitset(skb, ETHTOOL_A_LINKMODES_PEER, ksettings->link_modes.lp_advertising, NULL, __ETHTOOL_LINK_MODE_MASK_NBITS, link_mode_names, compact); if (ret < 0) return -EMSGSIZE; } if (nla_put_u32(skb, ETHTOOL_A_LINKMODES_SPEED, lsettings->speed) || nla_put_u8(skb, ETHTOOL_A_LINKMODES_DUPLEX, lsettings->duplex)) return -EMSGSIZE; if (ksettings->lanes && nla_put_u32(skb, ETHTOOL_A_LINKMODES_LANES, ksettings->lanes)) return -EMSGSIZE; if (lsettings->master_slave_cfg != MASTER_SLAVE_CFG_UNSUPPORTED && nla_put_u8(skb, ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG, lsettings->master_slave_cfg)) return -EMSGSIZE; if (lsettings->master_slave_state != MASTER_SLAVE_STATE_UNSUPPORTED && nla_put_u8(skb, ETHTOOL_A_LINKMODES_MASTER_SLAVE_STATE, lsettings->master_slave_state)) return -EMSGSIZE; return 0; } const struct ethnl_request_ops ethnl_linkmodes_request_ops = { .request_cmd = ETHTOOL_MSG_LINKMODES_GET, .reply_cmd = ETHTOOL_MSG_LINKMODES_GET_REPLY, .hdr_attr = ETHTOOL_A_LINKMODES_HEADER, .req_info_size = sizeof(struct linkmodes_req_info), .reply_data_size = sizeof(struct linkmodes_reply_data), .prepare_data = linkmodes_prepare_data, .reply_size = linkmodes_reply_size, .fill_reply = linkmodes_fill_reply, }; /* LINKMODES_SET */ const struct nla_policy ethnl_linkmodes_set_policy[] = { [ETHTOOL_A_LINKMODES_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_LINKMODES_AUTONEG] = { .type = NLA_U8 }, [ETHTOOL_A_LINKMODES_OURS] = { .type = NLA_NESTED }, [ETHTOOL_A_LINKMODES_SPEED] = { .type = NLA_U32 }, [ETHTOOL_A_LINKMODES_DUPLEX] = { .type = NLA_U8 }, [ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG] = { .type = NLA_U8 }, [ETHTOOL_A_LINKMODES_LANES] = NLA_POLICY_RANGE(NLA_U32, 1, 8), }; /* Set advertised link modes to all supported modes matching requested speed, * lanes and duplex values. Called when autonegotiation is on, speed, lanes or * duplex is requested but no link mode change. This is done in userspace with * ioctl() interface, move it into kernel for netlink. * Returns true if advertised modes bitmap was modified. */ static bool ethnl_auto_linkmodes(struct ethtool_link_ksettings *ksettings, bool req_speed, bool req_lanes, bool req_duplex) { unsigned long *advertising = ksettings->link_modes.advertising; unsigned long *supported = ksettings->link_modes.supported; DECLARE_BITMAP(old_adv, __ETHTOOL_LINK_MODE_MASK_NBITS); unsigned int i; bitmap_copy(old_adv, advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); for (i = 0; i < __ETHTOOL_LINK_MODE_MASK_NBITS; i++) { const struct link_mode_info *info = &link_mode_params[i]; if (info->speed == SPEED_UNKNOWN) continue; if (test_bit(i, supported) && (!req_speed || info->speed == ksettings->base.speed) && (!req_lanes || info->lanes == ksettings->lanes) && (!req_duplex || info->duplex == ksettings->base.duplex)) set_bit(i, advertising); else clear_bit(i, advertising); } return !bitmap_equal(old_adv, advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); } static bool ethnl_validate_master_slave_cfg(u8 cfg) { switch (cfg) { case MASTER_SLAVE_CFG_MASTER_PREFERRED: case MASTER_SLAVE_CFG_SLAVE_PREFERRED: case MASTER_SLAVE_CFG_MASTER_FORCE: case MASTER_SLAVE_CFG_SLAVE_FORCE: return true; } return false; } static int ethnl_check_linkmodes(struct genl_info *info, struct nlattr **tb) { const struct nlattr *master_slave_cfg, *lanes_cfg; master_slave_cfg = tb[ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG]; if (master_slave_cfg && !ethnl_validate_master_slave_cfg(nla_get_u8(master_slave_cfg))) { NL_SET_ERR_MSG_ATTR(info->extack, master_slave_cfg, "master/slave value is invalid"); return -EOPNOTSUPP; } lanes_cfg = tb[ETHTOOL_A_LINKMODES_LANES]; if (lanes_cfg && !is_power_of_2(nla_get_u32(lanes_cfg))) { NL_SET_ERR_MSG_ATTR(info->extack, lanes_cfg, "lanes value is invalid"); return -EINVAL; } return 0; } static int ethnl_update_linkmodes(struct genl_info *info, struct nlattr **tb, struct ethtool_link_ksettings *ksettings, bool *mod, const struct net_device *dev) { struct ethtool_link_settings *lsettings = &ksettings->base; bool req_speed, req_lanes, req_duplex; const struct nlattr *master_slave_cfg, *lanes_cfg; int ret; master_slave_cfg = tb[ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG]; if (master_slave_cfg) { if (lsettings->master_slave_cfg == MASTER_SLAVE_CFG_UNSUPPORTED) { NL_SET_ERR_MSG_ATTR(info->extack, master_slave_cfg, "master/slave configuration not supported by device"); return -EOPNOTSUPP; } } *mod = false; req_speed = tb[ETHTOOL_A_LINKMODES_SPEED]; req_lanes = tb[ETHTOOL_A_LINKMODES_LANES]; req_duplex = tb[ETHTOOL_A_LINKMODES_DUPLEX]; ethnl_update_u8(&lsettings->autoneg, tb[ETHTOOL_A_LINKMODES_AUTONEG], mod); lanes_cfg = tb[ETHTOOL_A_LINKMODES_LANES]; if (lanes_cfg) { /* If autoneg is off and lanes parameter is not supported by the * driver, return an error. */ if (!lsettings->autoneg && !dev->ethtool_ops->cap_link_lanes_supported) { NL_SET_ERR_MSG_ATTR(info->extack, lanes_cfg, "lanes configuration not supported by device"); return -EOPNOTSUPP; } } else if (!lsettings->autoneg && ksettings->lanes) { /* If autoneg is off and lanes parameter is not passed from user but * it was defined previously then set the lanes parameter to 0. */ ksettings->lanes = 0; *mod = true; } ret = ethnl_update_bitset(ksettings->link_modes.advertising, __ETHTOOL_LINK_MODE_MASK_NBITS, tb[ETHTOOL_A_LINKMODES_OURS], link_mode_names, info->extack, mod); if (ret < 0) return ret; ethnl_update_u32(&lsettings->speed, tb[ETHTOOL_A_LINKMODES_SPEED], mod); ethnl_update_u32(&ksettings->lanes, lanes_cfg, mod); ethnl_update_u8(&lsettings->duplex, tb[ETHTOOL_A_LINKMODES_DUPLEX], mod); ethnl_update_u8(&lsettings->master_slave_cfg, master_slave_cfg, mod); if (!tb[ETHTOOL_A_LINKMODES_OURS] && lsettings->autoneg && (req_speed || req_lanes || req_duplex) && ethnl_auto_linkmodes(ksettings, req_speed, req_lanes, req_duplex)) *mod = true; return 0; } int ethnl_set_linkmodes(struct sk_buff *skb, struct genl_info *info) { struct ethtool_link_ksettings ksettings = {}; struct ethnl_req_info req_info = {}; struct nlattr **tb = info->attrs; struct net_device *dev; bool mod = false; int ret; ret = ethnl_check_linkmodes(info, tb); if (ret < 0) return ret; ret = ethnl_parse_header_dev_get(&req_info, tb[ETHTOOL_A_LINKMODES_HEADER], genl_info_net(info), info->extack, true); if (ret < 0) return ret; dev = req_info.dev; ret = -EOPNOTSUPP; if (!dev->ethtool_ops->get_link_ksettings || !dev->ethtool_ops->set_link_ksettings) goto out_dev; rtnl_lock(); ret = ethnl_ops_begin(dev); if (ret < 0) goto out_rtnl; ret = __ethtool_get_link_ksettings(dev, &ksettings); if (ret < 0) { GENL_SET_ERR_MSG(info, "failed to retrieve link settings"); goto out_ops; } ret = ethnl_update_linkmodes(info, tb, &ksettings, &mod, dev); if (ret < 0) goto out_ops; if (mod) { ret = dev->ethtool_ops->set_link_ksettings(dev, &ksettings); if (ret < 0) GENL_SET_ERR_MSG(info, "link settings update failed"); else ethtool_notify(dev, ETHTOOL_MSG_LINKMODES_NTF, NULL); } out_ops: ethnl_ops_complete(dev); out_rtnl: rtnl_unlock(); out_dev: dev_put(dev); return ret; } |
1 2 2 80 2 2 2 2 2 3 3 3 3 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Synchronous Cryptographic Hash operations. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/scatterwalk.h> #include <crypto/internal/hash.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/cryptouser.h> #include <net/netlink.h> #include <linux/compiler.h> #include "internal.h" static const struct crypto_type crypto_shash_type; static int shash_no_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { return -ENOSYS; } /* * Check whether an shash algorithm has a setkey function. * * For CFI compatibility, this must not be an inline function. This is because * when CFI is enabled, modules won't get the same address for shash_no_setkey * (if it were exported, which inlining would require) as the core kernel will. */ bool crypto_shash_alg_has_setkey(struct shash_alg *alg) { return alg->setkey != shash_no_setkey; } EXPORT_SYMBOL_GPL(crypto_shash_alg_has_setkey); static int shash_setkey_unaligned(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); unsigned long absize; u8 *buffer, *alignbuffer; int err; absize = keylen + (alignmask & ~(crypto_tfm_ctx_alignment() - 1)); buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); err = shash->setkey(tfm, alignbuffer, keylen); kfree_sensitive(buffer); return err; } static void shash_set_needkey(struct crypto_shash *tfm, struct shash_alg *alg) { if (crypto_shash_alg_needs_key(alg)) crypto_shash_set_flags(tfm, CRYPTO_TFM_NEED_KEY); } int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); int err; if ((unsigned long)key & alignmask) err = shash_setkey_unaligned(tfm, key, keylen); else err = shash->setkey(tfm, key, keylen); if (unlikely(err)) { shash_set_needkey(tfm, shash); return err; } crypto_shash_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); return 0; } EXPORT_SYMBOL_GPL(crypto_shash_setkey); static int shash_update_unaligned(struct shash_desc *desc, const u8 *data, unsigned int len) { struct crypto_shash *tfm = desc->tfm; struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); unsigned int unaligned_len = alignmask + 1 - ((unsigned long)data & alignmask); /* * We cannot count on __aligned() working for large values: * https://patchwork.kernel.org/patch/9507697/ */ u8 ubuf[MAX_ALGAPI_ALIGNMASK * 2]; u8 *buf = PTR_ALIGN(&ubuf[0], alignmask + 1); int err; if (WARN_ON(buf + unaligned_len > ubuf + sizeof(ubuf))) return -EINVAL; if (unaligned_len > len) unaligned_len = len; memcpy(buf, data, unaligned_len); err = shash->update(desc, buf, unaligned_len); memset(buf, 0, unaligned_len); return err ?: shash->update(desc, data + unaligned_len, len - unaligned_len); } int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct crypto_shash *tfm = desc->tfm; struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); if ((unsigned long)data & alignmask) return shash_update_unaligned(desc, data, len); return shash->update(desc, data, len); } EXPORT_SYMBOL_GPL(crypto_shash_update); static int shash_final_unaligned(struct shash_desc *desc, u8 *out) { struct crypto_shash *tfm = desc->tfm; unsigned long alignmask = crypto_shash_alignmask(tfm); struct shash_alg *shash = crypto_shash_alg(tfm); unsigned int ds = crypto_shash_digestsize(tfm); /* * We cannot count on __aligned() working for large values: * https://patchwork.kernel.org/patch/9507697/ */ u8 ubuf[MAX_ALGAPI_ALIGNMASK + HASH_MAX_DIGESTSIZE]; u8 *buf = PTR_ALIGN(&ubuf[0], alignmask + 1); int err; if (WARN_ON(buf + ds > ubuf + sizeof(ubuf))) return -EINVAL; err = shash->final(desc, buf); if (err) goto out; memcpy(out, buf, ds); out: memset(buf, 0, ds); return err; } int crypto_shash_final(struct shash_desc *desc, u8 *out) { struct crypto_shash *tfm = desc->tfm; struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); if ((unsigned long)out & alignmask) return shash_final_unaligned(desc, out); return shash->final(desc, out); } EXPORT_SYMBOL_GPL(crypto_shash_final); static int shash_finup_unaligned(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return crypto_shash_update(desc, data, len) ?: crypto_shash_final(desc, out); } int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct crypto_shash *tfm = desc->tfm; struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); if (((unsigned long)data | (unsigned long)out) & alignmask) return shash_finup_unaligned(desc, data, len, out); return shash->finup(desc, data, len, out); } EXPORT_SYMBOL_GPL(crypto_shash_finup); static int shash_digest_unaligned(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { return crypto_shash_init(desc) ?: crypto_shash_finup(desc, data, len, out); } int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct crypto_shash *tfm = desc->tfm; struct shash_alg *shash = crypto_shash_alg(tfm); unsigned long alignmask = crypto_shash_alignmask(tfm); if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; if (((unsigned long)data | (unsigned long)out) & alignmask) return shash_digest_unaligned(desc, data, len, out); return shash->digest(desc, data, len, out); } EXPORT_SYMBOL_GPL(crypto_shash_digest); int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, unsigned int len, u8 *out) { SHASH_DESC_ON_STACK(desc, tfm); int err; desc->tfm = tfm; err = crypto_shash_digest(desc, data, len, out); shash_desc_zero(desc); return err; } EXPORT_SYMBOL_GPL(crypto_shash_tfm_digest); static int shash_default_export(struct shash_desc *desc, void *out) { memcpy(out, shash_desc_ctx(desc), crypto_shash_descsize(desc->tfm)); return 0; } static int shash_default_import(struct shash_desc *desc, const void *in) { memcpy(shash_desc_ctx(desc), in, crypto_shash_descsize(desc->tfm)); return 0; } static int shash_async_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct crypto_shash **ctx = crypto_ahash_ctx(tfm); return crypto_shash_setkey(*ctx, key, keylen); } static int shash_async_init(struct ahash_request *req) { struct crypto_shash **ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct shash_desc *desc = ahash_request_ctx(req); desc->tfm = *ctx; return crypto_shash_init(desc); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc) { struct crypto_hash_walk walk; int nbytes; for (nbytes = crypto_hash_walk_first(req, &walk); nbytes > 0; nbytes = crypto_hash_walk_done(&walk, nbytes)) nbytes = crypto_shash_update(desc, walk.data, nbytes); return nbytes; } EXPORT_SYMBOL_GPL(shash_ahash_update); static int shash_async_update(struct ahash_request *req) { return shash_ahash_update(req, ahash_request_ctx(req)); } static int shash_async_final(struct ahash_request *req) { return crypto_shash_final(ahash_request_ctx(req), req->result); } int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc) { struct crypto_hash_walk walk; int nbytes; nbytes = crypto_hash_walk_first(req, &walk); if (!nbytes) return crypto_shash_final(desc, req->result); do { nbytes = crypto_hash_walk_last(&walk) ? crypto_shash_finup(desc, walk.data, nbytes, req->result) : crypto_shash_update(desc, walk.data, nbytes); nbytes = crypto_hash_walk_done(&walk, nbytes); } while (nbytes > 0); return nbytes; } EXPORT_SYMBOL_GPL(shash_ahash_finup); static int shash_async_finup(struct ahash_request *req) { struct crypto_shash **ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct shash_desc *desc = ahash_request_ctx(req); desc->tfm = *ctx; return shash_ahash_finup(req, desc); } int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc) { unsigned int nbytes = req->nbytes; struct scatterlist *sg; unsigned int offset; int err; if (nbytes && (sg = req->src, offset = sg->offset, nbytes <= min(sg->length, ((unsigned int)(PAGE_SIZE)) - offset))) { void *data; data = kmap_atomic(sg_page(sg)); err = crypto_shash_digest(desc, data + offset, nbytes, req->result); kunmap_atomic(data); } else err = crypto_shash_init(desc) ?: shash_ahash_finup(req, desc); return err; } EXPORT_SYMBOL_GPL(shash_ahash_digest); static int shash_async_digest(struct ahash_request *req) { struct crypto_shash **ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct shash_desc *desc = ahash_request_ctx(req); desc->tfm = *ctx; return shash_ahash_digest(req, desc); } static int shash_async_export(struct ahash_request *req, void *out) { return crypto_shash_export(ahash_request_ctx(req), out); } static int shash_async_import(struct ahash_request *req, const void *in) { struct crypto_shash **ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct shash_desc *desc = ahash_request_ctx(req); desc->tfm = *ctx; return crypto_shash_import(desc, in); } static void crypto_exit_shash_ops_async(struct crypto_tfm *tfm) { struct crypto_shash **ctx = crypto_tfm_ctx(tfm); crypto_free_shash(*ctx); } int crypto_init_shash_ops_async(struct crypto_tfm *tfm) { struct crypto_alg *calg = tfm->__crt_alg; struct shash_alg *alg = __crypto_shash_alg(calg); struct crypto_ahash *crt = __crypto_ahash_cast(tfm); struct crypto_shash **ctx = crypto_tfm_ctx(tfm); struct crypto_shash *shash; if (!crypto_mod_get(calg)) return -EAGAIN; shash = crypto_create_tfm(calg, &crypto_shash_type); if (IS_ERR(shash)) { crypto_mod_put(calg); return PTR_ERR(shash); } *ctx = shash; tfm->exit = crypto_exit_shash_ops_async; crt->init = shash_async_init; crt->update = shash_async_update; crt->final = shash_async_final; crt->finup = shash_async_finup; crt->digest = shash_async_digest; if (crypto_shash_alg_has_setkey(alg)) crt->setkey = shash_async_setkey; crypto_ahash_set_flags(crt, crypto_shash_get_flags(shash) & CRYPTO_TFM_NEED_KEY); crt->export = shash_async_export; crt->import = shash_async_import; crt->reqsize = sizeof(struct shash_desc) + crypto_shash_descsize(shash); return 0; } static void crypto_shash_exit_tfm(struct crypto_tfm *tfm) { struct crypto_shash *hash = __crypto_shash_cast(tfm); struct shash_alg *alg = crypto_shash_alg(hash); alg->exit_tfm(hash); } static int crypto_shash_init_tfm(struct crypto_tfm *tfm) { struct crypto_shash *hash = __crypto_shash_cast(tfm); struct shash_alg *alg = crypto_shash_alg(hash); int err; hash->descsize = alg->descsize; shash_set_needkey(hash, alg); if (alg->exit_tfm) tfm->exit = crypto_shash_exit_tfm; if (!alg->init_tfm) return 0; err = alg->init_tfm(hash); if (err) return err; /* ->init_tfm() may have increased the descsize. */ if (WARN_ON_ONCE(hash->descsize > HASH_MAX_DESCSIZE)) { if (alg->exit_tfm) alg->exit_tfm(hash); return -EINVAL; } return 0; } static void crypto_shash_free_instance(struct crypto_instance *inst) { struct shash_instance *shash = shash_instance(inst); shash->free(shash); } #ifdef CONFIG_NET static int crypto_shash_report(struct sk_buff *skb, struct crypto_alg *alg) { struct crypto_report_hash rhash; struct shash_alg *salg = __crypto_shash_alg(alg); memset(&rhash, 0, sizeof(rhash)); strscpy(rhash.type, "shash", sizeof(rhash.type)); rhash.blocksize = alg->cra_blocksize; rhash.digestsize = salg->digestsize; return nla_put(skb, CRYPTOCFGA_REPORT_HASH, sizeof(rhash), &rhash); } #else static int crypto_shash_report(struct sk_buff *skb, struct crypto_alg *alg) { return -ENOSYS; } #endif static void crypto_shash_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_shash_show(struct seq_file *m, struct crypto_alg *alg) { struct shash_alg *salg = __crypto_shash_alg(alg); seq_printf(m, "type : shash\n"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "digestsize : %u\n", salg->digestsize); } static const struct crypto_type crypto_shash_type = { .extsize = crypto_alg_extsize, .init_tfm = crypto_shash_init_tfm, .free = crypto_shash_free_instance, #ifdef CONFIG_PROC_FS .show = crypto_shash_show, #endif .report = crypto_shash_report, .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_MASK, .type = CRYPTO_ALG_TYPE_SHASH, .tfmsize = offsetof(struct crypto_shash, base), }; int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { spawn->base.frontend = &crypto_shash_type; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } EXPORT_SYMBOL_GPL(crypto_grab_shash); struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_shash_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_shash); static int shash_prepare_alg(struct shash_alg *alg) { struct crypto_alg *base = &alg->base; if (alg->digestsize > HASH_MAX_DIGESTSIZE || alg->descsize > HASH_MAX_DESCSIZE || alg->statesize > HASH_MAX_STATESIZE) return -EINVAL; if ((alg->export && !alg->import) || (alg->import && !alg->export)) return -EINVAL; base->cra_type = &crypto_shash_type; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; base->cra_flags |= CRYPTO_ALG_TYPE_SHASH; if (!alg->finup) alg->finup = shash_finup_unaligned; if (!alg->digest) alg->digest = shash_digest_unaligned; if (!alg->export) { alg->export = shash_default_export; alg->import = shash_default_import; alg->statesize = alg->descsize; } if (!alg->setkey) alg->setkey = shash_no_setkey; return 0; } int crypto_register_shash(struct shash_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = shash_prepare_alg(alg); if (err) return err; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_shash); void crypto_unregister_shash(struct shash_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_shash); int crypto_register_shashes(struct shash_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_shash(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_shash(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_shashes); void crypto_unregister_shashes(struct shash_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_shash(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_shashes); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst) { int err; if (WARN_ON(!inst->free)) return -EINVAL; err = shash_prepare_alg(&inst->alg); if (err) return err; return crypto_register_instance(tmpl, shash_crypto_instance(inst)); } EXPORT_SYMBOL_GPL(shash_register_instance); void shash_free_singlespawn_instance(struct shash_instance *inst) { crypto_drop_spawn(shash_instance_ctx(inst)); kfree(inst); } EXPORT_SYMBOL_GPL(shash_free_singlespawn_instance); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Synchronous cryptographic hash type"); |
1 1 1 1 2 2 3 3 3 9 9 9 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner, Simon Wunderlich */ #include "originator.h" #include "main.h" #include <linux/atomic.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_vlan.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/workqueue.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "bat_algo.h" #include "distributed-arp-table.h" #include "fragmentation.h" #include "gateway_client.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "multicast.h" #include "netlink.h" #include "network-coding.h" #include "routing.h" #include "soft-interface.h" #include "translation-table.h" /* hash class keys */ static struct lock_class_key batadv_orig_hash_lock_class_key; /** * batadv_orig_hash_find() - Find and return originator from orig_hash * @bat_priv: the bat priv with all the soft interface information * @data: mac address of the originator * * Return: orig_node (with increased refcnt), NULL on errors */ struct batadv_orig_node * batadv_orig_hash_find(struct batadv_priv *bat_priv, const void *data) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; struct batadv_orig_node *orig_node, *orig_node_tmp = NULL; int index; if (!hash) return NULL; index = batadv_choose_orig(data, hash->size); head = &hash->table[index]; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) { if (!batadv_compare_eth(orig_node, data)) continue; if (!kref_get_unless_zero(&orig_node->refcount)) continue; orig_node_tmp = orig_node; break; } rcu_read_unlock(); return orig_node_tmp; } static void batadv_purge_orig(struct work_struct *work); /** * batadv_compare_orig() - comparing function used in the originator hash table * @node: node in the local table * @data2: second object to compare the node to * * Return: true if they are the same originator */ bool batadv_compare_orig(const struct hlist_node *node, const void *data2) { const void *data1 = container_of(node, struct batadv_orig_node, hash_entry); return batadv_compare_eth(data1, data2); } /** * batadv_orig_node_vlan_get() - get an orig_node_vlan object * @orig_node: the originator serving the VLAN * @vid: the VLAN identifier * * Return: the vlan object identified by vid and belonging to orig_node or NULL * if it does not exist. */ struct batadv_orig_node_vlan * batadv_orig_node_vlan_get(struct batadv_orig_node *orig_node, unsigned short vid) { struct batadv_orig_node_vlan *vlan = NULL, *tmp; rcu_read_lock(); hlist_for_each_entry_rcu(tmp, &orig_node->vlan_list, list) { if (tmp->vid != vid) continue; if (!kref_get_unless_zero(&tmp->refcount)) continue; vlan = tmp; break; } rcu_read_unlock(); return vlan; } /** * batadv_vlan_id_valid() - check if vlan id is in valid batman-adv encoding * @vid: the VLAN identifier * * Return: true when either no vlan is set or if VLAN is in correct range, * false otherwise */ static bool batadv_vlan_id_valid(unsigned short vid) { unsigned short non_vlan = vid & ~(BATADV_VLAN_HAS_TAG | VLAN_VID_MASK); if (vid == 0) return true; if (!(vid & BATADV_VLAN_HAS_TAG)) return false; if (non_vlan) return false; return true; } /** * batadv_orig_node_vlan_new() - search and possibly create an orig_node_vlan * object * @orig_node: the originator serving the VLAN * @vid: the VLAN identifier * * Return: NULL in case of failure or the vlan object identified by vid and * belonging to orig_node otherwise. The object is created and added to the list * if it does not exist. * * The object is returned with refcounter increased by 1. */ struct batadv_orig_node_vlan * batadv_orig_node_vlan_new(struct batadv_orig_node *orig_node, unsigned short vid) { struct batadv_orig_node_vlan *vlan; if (!batadv_vlan_id_valid(vid)) return NULL; spin_lock_bh(&orig_node->vlan_list_lock); /* first look if an object for this vid already exists */ vlan = batadv_orig_node_vlan_get(orig_node, vid); if (vlan) goto out; vlan = kzalloc(sizeof(*vlan), GFP_ATOMIC); if (!vlan) goto out; kref_init(&vlan->refcount); vlan->vid = vid; kref_get(&vlan->refcount); hlist_add_head_rcu(&vlan->list, &orig_node->vlan_list); out: spin_unlock_bh(&orig_node->vlan_list_lock); return vlan; } /** * batadv_orig_node_vlan_release() - release originator-vlan object from lists * and queue for free after rcu grace period * @ref: kref pointer of the originator-vlan object */ void batadv_orig_node_vlan_release(struct kref *ref) { struct batadv_orig_node_vlan *orig_vlan; orig_vlan = container_of(ref, struct batadv_orig_node_vlan, refcount); kfree_rcu(orig_vlan, rcu); } /** * batadv_originator_init() - Initialize all originator structures * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or negative error number in case of failure */ int batadv_originator_init(struct batadv_priv *bat_priv) { if (bat_priv->orig_hash) return 0; bat_priv->orig_hash = batadv_hash_new(1024); if (!bat_priv->orig_hash) goto err; batadv_hash_set_lock_class(bat_priv->orig_hash, &batadv_orig_hash_lock_class_key); INIT_DELAYED_WORK(&bat_priv->orig_work, batadv_purge_orig); queue_delayed_work(batadv_event_workqueue, &bat_priv->orig_work, msecs_to_jiffies(BATADV_ORIG_WORK_PERIOD)); return 0; err: return -ENOMEM; } /** * batadv_neigh_ifinfo_release() - release neigh_ifinfo from lists and queue for * free after rcu grace period * @ref: kref pointer of the neigh_ifinfo */ void batadv_neigh_ifinfo_release(struct kref *ref) { struct batadv_neigh_ifinfo *neigh_ifinfo; neigh_ifinfo = container_of(ref, struct batadv_neigh_ifinfo, refcount); if (neigh_ifinfo->if_outgoing != BATADV_IF_DEFAULT) batadv_hardif_put(neigh_ifinfo->if_outgoing); kfree_rcu(neigh_ifinfo, rcu); } /** * batadv_hardif_neigh_release() - release hardif neigh node from lists and * queue for free after rcu grace period * @ref: kref pointer of the neigh_node */ void batadv_hardif_neigh_release(struct kref *ref) { struct batadv_hardif_neigh_node *hardif_neigh; hardif_neigh = container_of(ref, struct batadv_hardif_neigh_node, refcount); spin_lock_bh(&hardif_neigh->if_incoming->neigh_list_lock); hlist_del_init_rcu(&hardif_neigh->list); spin_unlock_bh(&hardif_neigh->if_incoming->neigh_list_lock); batadv_hardif_put(hardif_neigh->if_incoming); kfree_rcu(hardif_neigh, rcu); } /** * batadv_neigh_node_release() - release neigh_node from lists and queue for * free after rcu grace period * @ref: kref pointer of the neigh_node */ void batadv_neigh_node_release(struct kref *ref) { struct hlist_node *node_tmp; struct batadv_neigh_node *neigh_node; struct batadv_neigh_ifinfo *neigh_ifinfo; neigh_node = container_of(ref, struct batadv_neigh_node, refcount); hlist_for_each_entry_safe(neigh_ifinfo, node_tmp, &neigh_node->ifinfo_list, list) { batadv_neigh_ifinfo_put(neigh_ifinfo); } batadv_hardif_neigh_put(neigh_node->hardif_neigh); batadv_hardif_put(neigh_node->if_incoming); kfree_rcu(neigh_node, rcu); } /** * batadv_orig_router_get() - router to the originator depending on iface * @orig_node: the orig node for the router * @if_outgoing: the interface where the payload packet has been received or * the OGM should be sent to * * Return: the neighbor which should be the router for this orig_node/iface. * * The object is returned with refcounter increased by 1. */ struct batadv_neigh_node * batadv_orig_router_get(struct batadv_orig_node *orig_node, const struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_node *router = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(orig_ifinfo, &orig_node->ifinfo_list, list) { if (orig_ifinfo->if_outgoing != if_outgoing) continue; router = rcu_dereference(orig_ifinfo->router); break; } if (router && !kref_get_unless_zero(&router->refcount)) router = NULL; rcu_read_unlock(); return router; } /** * batadv_orig_ifinfo_get() - find the ifinfo from an orig_node * @orig_node: the orig node to be queried * @if_outgoing: the interface for which the ifinfo should be acquired * * Return: the requested orig_ifinfo or NULL if not found. * * The object is returned with refcounter increased by 1. */ struct batadv_orig_ifinfo * batadv_orig_ifinfo_get(struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *tmp, *orig_ifinfo = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(tmp, &orig_node->ifinfo_list, list) { if (tmp->if_outgoing != if_outgoing) continue; if (!kref_get_unless_zero(&tmp->refcount)) continue; orig_ifinfo = tmp; break; } rcu_read_unlock(); return orig_ifinfo; } /** * batadv_orig_ifinfo_new() - search and possibly create an orig_ifinfo object * @orig_node: the orig node to be queried * @if_outgoing: the interface for which the ifinfo should be acquired * * Return: NULL in case of failure or the orig_ifinfo object for the if_outgoing * interface otherwise. The object is created and added to the list * if it does not exist. * * The object is returned with refcounter increased by 1. */ struct batadv_orig_ifinfo * batadv_orig_ifinfo_new(struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; unsigned long reset_time; spin_lock_bh(&orig_node->neigh_list_lock); orig_ifinfo = batadv_orig_ifinfo_get(orig_node, if_outgoing); if (orig_ifinfo) goto out; orig_ifinfo = kzalloc(sizeof(*orig_ifinfo), GFP_ATOMIC); if (!orig_ifinfo) goto out; if (if_outgoing != BATADV_IF_DEFAULT) kref_get(&if_outgoing->refcount); reset_time = jiffies - 1; reset_time -= msecs_to_jiffies(BATADV_RESET_PROTECTION_MS); orig_ifinfo->batman_seqno_reset = reset_time; orig_ifinfo->if_outgoing = if_outgoing; INIT_HLIST_NODE(&orig_ifinfo->list); kref_init(&orig_ifinfo->refcount); kref_get(&orig_ifinfo->refcount); hlist_add_head_rcu(&orig_ifinfo->list, &orig_node->ifinfo_list); out: spin_unlock_bh(&orig_node->neigh_list_lock); return orig_ifinfo; } /** * batadv_neigh_ifinfo_get() - find the ifinfo from an neigh_node * @neigh: the neigh node to be queried * @if_outgoing: the interface for which the ifinfo should be acquired * * The object is returned with refcounter increased by 1. * * Return: the requested neigh_ifinfo or NULL if not found */ struct batadv_neigh_ifinfo * batadv_neigh_ifinfo_get(struct batadv_neigh_node *neigh, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL, *tmp_neigh_ifinfo; rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_ifinfo, &neigh->ifinfo_list, list) { if (tmp_neigh_ifinfo->if_outgoing != if_outgoing) continue; if (!kref_get_unless_zero(&tmp_neigh_ifinfo->refcount)) continue; neigh_ifinfo = tmp_neigh_ifinfo; break; } rcu_read_unlock(); return neigh_ifinfo; } /** * batadv_neigh_ifinfo_new() - search and possibly create an neigh_ifinfo object * @neigh: the neigh node to be queried * @if_outgoing: the interface for which the ifinfo should be acquired * * Return: NULL in case of failure or the neigh_ifinfo object for the * if_outgoing interface otherwise. The object is created and added to the list * if it does not exist. * * The object is returned with refcounter increased by 1. */ struct batadv_neigh_ifinfo * batadv_neigh_ifinfo_new(struct batadv_neigh_node *neigh, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_ifinfo *neigh_ifinfo; spin_lock_bh(&neigh->ifinfo_lock); neigh_ifinfo = batadv_neigh_ifinfo_get(neigh, if_outgoing); if (neigh_ifinfo) goto out; neigh_ifinfo = kzalloc(sizeof(*neigh_ifinfo), GFP_ATOMIC); if (!neigh_ifinfo) goto out; if (if_outgoing) kref_get(&if_outgoing->refcount); INIT_HLIST_NODE(&neigh_ifinfo->list); kref_init(&neigh_ifinfo->refcount); neigh_ifinfo->if_outgoing = if_outgoing; kref_get(&neigh_ifinfo->refcount); hlist_add_head_rcu(&neigh_ifinfo->list, &neigh->ifinfo_list); out: spin_unlock_bh(&neigh->ifinfo_lock); return neigh_ifinfo; } /** * batadv_neigh_node_get() - retrieve a neighbour from the list * @orig_node: originator which the neighbour belongs to * @hard_iface: the interface where this neighbour is connected to * @addr: the address of the neighbour * * Looks for and possibly returns a neighbour belonging to this originator list * which is connected through the provided hard interface. * * Return: neighbor when found. Otherwise NULL */ static struct batadv_neigh_node * batadv_neigh_node_get(const struct batadv_orig_node *orig_node, const struct batadv_hard_iface *hard_iface, const u8 *addr) { struct batadv_neigh_node *tmp_neigh_node, *res = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_node, &orig_node->neigh_list, list) { if (!batadv_compare_eth(tmp_neigh_node->addr, addr)) continue; if (tmp_neigh_node->if_incoming != hard_iface) continue; if (!kref_get_unless_zero(&tmp_neigh_node->refcount)) continue; res = tmp_neigh_node; break; } rcu_read_unlock(); return res; } /** * batadv_hardif_neigh_create() - create a hardif neighbour node * @hard_iface: the interface this neighbour is connected to * @neigh_addr: the interface address of the neighbour to retrieve * @orig_node: originator object representing the neighbour * * Return: the hardif neighbour node if found or created or NULL otherwise. */ static struct batadv_hardif_neigh_node * batadv_hardif_neigh_create(struct batadv_hard_iface *hard_iface, const u8 *neigh_addr, struct batadv_orig_node *orig_node) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); struct batadv_hardif_neigh_node *hardif_neigh; spin_lock_bh(&hard_iface->neigh_list_lock); /* check if neighbor hasn't been added in the meantime */ hardif_neigh = batadv_hardif_neigh_get(hard_iface, neigh_addr); if (hardif_neigh) goto out; hardif_neigh = kzalloc(sizeof(*hardif_neigh), GFP_ATOMIC); if (!hardif_neigh) goto out; kref_get(&hard_iface->refcount); INIT_HLIST_NODE(&hardif_neigh->list); ether_addr_copy(hardif_neigh->addr, neigh_addr); ether_addr_copy(hardif_neigh->orig, orig_node->orig); hardif_neigh->if_incoming = hard_iface; hardif_neigh->last_seen = jiffies; kref_init(&hardif_neigh->refcount); if (bat_priv->algo_ops->neigh.hardif_init) bat_priv->algo_ops->neigh.hardif_init(hardif_neigh); hlist_add_head_rcu(&hardif_neigh->list, &hard_iface->neigh_list); out: spin_unlock_bh(&hard_iface->neigh_list_lock); return hardif_neigh; } /** * batadv_hardif_neigh_get_or_create() - retrieve or create a hardif neighbour * node * @hard_iface: the interface this neighbour is connected to * @neigh_addr: the interface address of the neighbour to retrieve * @orig_node: originator object representing the neighbour * * Return: the hardif neighbour node if found or created or NULL otherwise. */ static struct batadv_hardif_neigh_node * batadv_hardif_neigh_get_or_create(struct batadv_hard_iface *hard_iface, const u8 *neigh_addr, struct batadv_orig_node *orig_node) { struct batadv_hardif_neigh_node *hardif_neigh; /* first check without locking to avoid the overhead */ hardif_neigh = batadv_hardif_neigh_get(hard_iface, neigh_addr); if (hardif_neigh) return hardif_neigh; return batadv_hardif_neigh_create(hard_iface, neigh_addr, orig_node); } /** * batadv_hardif_neigh_get() - retrieve a hardif neighbour from the list * @hard_iface: the interface where this neighbour is connected to * @neigh_addr: the address of the neighbour * * Looks for and possibly returns a neighbour belonging to this hard interface. * * Return: neighbor when found. Otherwise NULL */ struct batadv_hardif_neigh_node * batadv_hardif_neigh_get(const struct batadv_hard_iface *hard_iface, const u8 *neigh_addr) { struct batadv_hardif_neigh_node *tmp_hardif_neigh, *hardif_neigh = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(tmp_hardif_neigh, &hard_iface->neigh_list, list) { if (!batadv_compare_eth(tmp_hardif_neigh->addr, neigh_addr)) continue; if (!kref_get_unless_zero(&tmp_hardif_neigh->refcount)) continue; hardif_neigh = tmp_hardif_neigh; break; } rcu_read_unlock(); return hardif_neigh; } /** * batadv_neigh_node_create() - create a neigh node object * @orig_node: originator object representing the neighbour * @hard_iface: the interface where the neighbour is connected to * @neigh_addr: the mac address of the neighbour interface * * Allocates a new neigh_node object and initialises all the generic fields. * * Return: the neighbour node if found or created or NULL otherwise. */ static struct batadv_neigh_node * batadv_neigh_node_create(struct batadv_orig_node *orig_node, struct batadv_hard_iface *hard_iface, const u8 *neigh_addr) { struct batadv_neigh_node *neigh_node; struct batadv_hardif_neigh_node *hardif_neigh = NULL; spin_lock_bh(&orig_node->neigh_list_lock); neigh_node = batadv_neigh_node_get(orig_node, hard_iface, neigh_addr); if (neigh_node) goto out; hardif_neigh = batadv_hardif_neigh_get_or_create(hard_iface, neigh_addr, orig_node); if (!hardif_neigh) goto out; neigh_node = kzalloc(sizeof(*neigh_node), GFP_ATOMIC); if (!neigh_node) goto out; INIT_HLIST_NODE(&neigh_node->list); INIT_HLIST_HEAD(&neigh_node->ifinfo_list); spin_lock_init(&neigh_node->ifinfo_lock); kref_get(&hard_iface->refcount); ether_addr_copy(neigh_node->addr, neigh_addr); neigh_node->if_incoming = hard_iface; neigh_node->orig_node = orig_node; neigh_node->last_seen = jiffies; /* increment unique neighbor refcount */ kref_get(&hardif_neigh->refcount); neigh_node->hardif_neigh = hardif_neigh; /* extra reference for return */ kref_init(&neigh_node->refcount); kref_get(&neigh_node->refcount); hlist_add_head_rcu(&neigh_node->list, &orig_node->neigh_list); batadv_dbg(BATADV_DBG_BATMAN, orig_node->bat_priv, "Creating new neighbor %pM for orig_node %pM on interface %s\n", neigh_addr, orig_node->orig, hard_iface->net_dev->name); out: spin_unlock_bh(&orig_node->neigh_list_lock); batadv_hardif_neigh_put(hardif_neigh); return neigh_node; } /** * batadv_neigh_node_get_or_create() - retrieve or create a neigh node object * @orig_node: originator object representing the neighbour * @hard_iface: the interface where the neighbour is connected to * @neigh_addr: the mac address of the neighbour interface * * Return: the neighbour node if found or created or NULL otherwise. */ struct batadv_neigh_node * batadv_neigh_node_get_or_create(struct batadv_orig_node *orig_node, struct batadv_hard_iface *hard_iface, const u8 *neigh_addr) { struct batadv_neigh_node *neigh_node; /* first check without locking to avoid the overhead */ neigh_node = batadv_neigh_node_get(orig_node, hard_iface, neigh_addr); if (neigh_node) return neigh_node; return batadv_neigh_node_create(orig_node, hard_iface, neigh_addr); } /** * batadv_hardif_neigh_dump() - Dump to netlink the neighbor infos for a * specific outgoing interface * @msg: message to dump into * @cb: parameters for the dump * * Return: 0 or error value */ int batadv_hardif_neigh_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct net_device *hard_iface = NULL; struct batadv_hard_iface *hardif = BATADV_IF_DEFAULT; struct batadv_priv *bat_priv; struct batadv_hard_iface *primary_if = NULL; int ret; int ifindex, hard_ifindex; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } hard_ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_HARD_IFINDEX); if (hard_ifindex) { hard_iface = dev_get_by_index(net, hard_ifindex); if (hard_iface) hardif = batadv_hardif_get_by_netdev(hard_iface); if (!hardif) { ret = -ENODEV; goto out; } if (hardif->soft_iface != soft_iface) { ret = -ENOENT; goto out; } } if (!bat_priv->algo_ops->neigh.dump) { ret = -EOPNOTSUPP; goto out; } bat_priv->algo_ops->neigh.dump(msg, cb, bat_priv, hardif); ret = msg->len; out: batadv_hardif_put(hardif); dev_put(hard_iface); batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } /** * batadv_orig_ifinfo_release() - release orig_ifinfo from lists and queue for * free after rcu grace period * @ref: kref pointer of the orig_ifinfo */ void batadv_orig_ifinfo_release(struct kref *ref) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_node *router; orig_ifinfo = container_of(ref, struct batadv_orig_ifinfo, refcount); if (orig_ifinfo->if_outgoing != BATADV_IF_DEFAULT) batadv_hardif_put(orig_ifinfo->if_outgoing); /* this is the last reference to this object */ router = rcu_dereference_protected(orig_ifinfo->router, true); batadv_neigh_node_put(router); kfree_rcu(orig_ifinfo, rcu); } /** * batadv_orig_node_free_rcu() - free the orig_node * @rcu: rcu pointer of the orig_node */ static void batadv_orig_node_free_rcu(struct rcu_head *rcu) { struct batadv_orig_node *orig_node; orig_node = container_of(rcu, struct batadv_orig_node, rcu); batadv_mcast_purge_orig(orig_node); batadv_frag_purge_orig(orig_node, NULL); kfree(orig_node->tt_buff); kfree(orig_node); } /** * batadv_orig_node_release() - release orig_node from lists and queue for * free after rcu grace period * @ref: kref pointer of the orig_node */ void batadv_orig_node_release(struct kref *ref) { struct hlist_node *node_tmp; struct batadv_neigh_node *neigh_node; struct batadv_orig_node *orig_node; struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_orig_node_vlan *vlan; struct batadv_orig_ifinfo *last_candidate; orig_node = container_of(ref, struct batadv_orig_node, refcount); spin_lock_bh(&orig_node->neigh_list_lock); /* for all neighbors towards this originator ... */ hlist_for_each_entry_safe(neigh_node, node_tmp, &orig_node->neigh_list, list) { hlist_del_rcu(&neigh_node->list); batadv_neigh_node_put(neigh_node); } hlist_for_each_entry_safe(orig_ifinfo, node_tmp, &orig_node->ifinfo_list, list) { hlist_del_rcu(&orig_ifinfo->list); batadv_orig_ifinfo_put(orig_ifinfo); } last_candidate = orig_node->last_bonding_candidate; orig_node->last_bonding_candidate = NULL; spin_unlock_bh(&orig_node->neigh_list_lock); batadv_orig_ifinfo_put(last_candidate); spin_lock_bh(&orig_node->vlan_list_lock); hlist_for_each_entry_safe(vlan, node_tmp, &orig_node->vlan_list, list) { hlist_del_rcu(&vlan->list); batadv_orig_node_vlan_put(vlan); } spin_unlock_bh(&orig_node->vlan_list_lock); /* Free nc_nodes */ batadv_nc_purge_orig(orig_node->bat_priv, orig_node, NULL); call_rcu(&orig_node->rcu, batadv_orig_node_free_rcu); } /** * batadv_originator_free() - Free all originator structures * @bat_priv: the bat priv with all the soft interface information */ void batadv_originator_free(struct batadv_priv *bat_priv) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_node *node_tmp; struct hlist_head *head; spinlock_t *list_lock; /* spinlock to protect write access */ struct batadv_orig_node *orig_node; u32 i; if (!hash) return; cancel_delayed_work_sync(&bat_priv->orig_work); bat_priv->orig_hash = NULL; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; list_lock = &hash->list_locks[i]; spin_lock_bh(list_lock); hlist_for_each_entry_safe(orig_node, node_tmp, head, hash_entry) { hlist_del_rcu(&orig_node->hash_entry); batadv_orig_node_put(orig_node); } spin_unlock_bh(list_lock); } batadv_hash_destroy(hash); } /** * batadv_orig_node_new() - creates a new orig_node * @bat_priv: the bat priv with all the soft interface information * @addr: the mac address of the originator * * Creates a new originator object and initialises all the generic fields. * The new object is not added to the originator list. * * Return: the newly created object or NULL on failure. */ struct batadv_orig_node *batadv_orig_node_new(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; struct batadv_orig_node_vlan *vlan; unsigned long reset_time; int i; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Creating new originator: %pM\n", addr); orig_node = kzalloc(sizeof(*orig_node), GFP_ATOMIC); if (!orig_node) return NULL; INIT_HLIST_HEAD(&orig_node->neigh_list); INIT_HLIST_HEAD(&orig_node->vlan_list); INIT_HLIST_HEAD(&orig_node->ifinfo_list); spin_lock_init(&orig_node->bcast_seqno_lock); spin_lock_init(&orig_node->neigh_list_lock); spin_lock_init(&orig_node->tt_buff_lock); spin_lock_init(&orig_node->tt_lock); spin_lock_init(&orig_node->vlan_list_lock); batadv_nc_init_orig(orig_node); /* extra reference for return */ kref_init(&orig_node->refcount); orig_node->bat_priv = bat_priv; ether_addr_copy(orig_node->orig, addr); batadv_dat_init_orig_node_addr(orig_node); atomic_set(&orig_node->last_ttvn, 0); orig_node->tt_buff = NULL; orig_node->tt_buff_len = 0; orig_node->last_seen = jiffies; reset_time = jiffies - 1 - msecs_to_jiffies(BATADV_RESET_PROTECTION_MS); orig_node->bcast_seqno_reset = reset_time; #ifdef CONFIG_BATMAN_ADV_MCAST orig_node->mcast_flags = BATADV_MCAST_WANT_NO_RTR4; orig_node->mcast_flags |= BATADV_MCAST_WANT_NO_RTR6; INIT_HLIST_NODE(&orig_node->mcast_want_all_unsnoopables_node); INIT_HLIST_NODE(&orig_node->mcast_want_all_ipv4_node); INIT_HLIST_NODE(&orig_node->mcast_want_all_ipv6_node); spin_lock_init(&orig_node->mcast_handler_lock); #endif /* create a vlan object for the "untagged" LAN */ vlan = batadv_orig_node_vlan_new(orig_node, BATADV_NO_FLAGS); if (!vlan) goto free_orig_node; /* batadv_orig_node_vlan_new() increases the refcounter. * Immediately release vlan since it is not needed anymore in this * context */ batadv_orig_node_vlan_put(vlan); for (i = 0; i < BATADV_FRAG_BUFFER_COUNT; i++) { INIT_HLIST_HEAD(&orig_node->fragments[i].fragment_list); spin_lock_init(&orig_node->fragments[i].lock); orig_node->fragments[i].size = 0; } return orig_node; free_orig_node: kfree(orig_node); return NULL; } /** * batadv_purge_neigh_ifinfo() - purge obsolete ifinfo entries from neighbor * @bat_priv: the bat priv with all the soft interface information * @neigh: orig node which is to be checked */ static void batadv_purge_neigh_ifinfo(struct batadv_priv *bat_priv, struct batadv_neigh_node *neigh) { struct batadv_neigh_ifinfo *neigh_ifinfo; struct batadv_hard_iface *if_outgoing; struct hlist_node *node_tmp; spin_lock_bh(&neigh->ifinfo_lock); /* for all ifinfo objects for this neighinator */ hlist_for_each_entry_safe(neigh_ifinfo, node_tmp, &neigh->ifinfo_list, list) { if_outgoing = neigh_ifinfo->if_outgoing; /* always keep the default interface */ if (if_outgoing == BATADV_IF_DEFAULT) continue; /* don't purge if the interface is not (going) down */ if (if_outgoing->if_status != BATADV_IF_INACTIVE && if_outgoing->if_status != BATADV_IF_NOT_IN_USE && if_outgoing->if_status != BATADV_IF_TO_BE_REMOVED) continue; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "neighbor/ifinfo purge: neighbor %pM, iface: %s\n", neigh->addr, if_outgoing->net_dev->name); hlist_del_rcu(&neigh_ifinfo->list); batadv_neigh_ifinfo_put(neigh_ifinfo); } spin_unlock_bh(&neigh->ifinfo_lock); } /** * batadv_purge_orig_ifinfo() - purge obsolete ifinfo entries from originator * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked * * Return: true if any ifinfo entry was purged, false otherwise. */ static bool batadv_purge_orig_ifinfo(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_hard_iface *if_outgoing; struct hlist_node *node_tmp; bool ifinfo_purged = false; spin_lock_bh(&orig_node->neigh_list_lock); /* for all ifinfo objects for this originator */ hlist_for_each_entry_safe(orig_ifinfo, node_tmp, &orig_node->ifinfo_list, list) { if_outgoing = orig_ifinfo->if_outgoing; /* always keep the default interface */ if (if_outgoing == BATADV_IF_DEFAULT) continue; /* don't purge if the interface is not (going) down */ if (if_outgoing->if_status != BATADV_IF_INACTIVE && if_outgoing->if_status != BATADV_IF_NOT_IN_USE && if_outgoing->if_status != BATADV_IF_TO_BE_REMOVED) continue; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "router/ifinfo purge: originator %pM, iface: %s\n", orig_node->orig, if_outgoing->net_dev->name); ifinfo_purged = true; hlist_del_rcu(&orig_ifinfo->list); batadv_orig_ifinfo_put(orig_ifinfo); if (orig_node->last_bonding_candidate == orig_ifinfo) { orig_node->last_bonding_candidate = NULL; batadv_orig_ifinfo_put(orig_ifinfo); } } spin_unlock_bh(&orig_node->neigh_list_lock); return ifinfo_purged; } /** * batadv_purge_orig_neighbors() - purges neighbors from originator * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked * * Return: true if any neighbor was purged, false otherwise */ static bool batadv_purge_orig_neighbors(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct hlist_node *node_tmp; struct batadv_neigh_node *neigh_node; bool neigh_purged = false; unsigned long last_seen; struct batadv_hard_iface *if_incoming; spin_lock_bh(&orig_node->neigh_list_lock); /* for all neighbors towards this originator ... */ hlist_for_each_entry_safe(neigh_node, node_tmp, &orig_node->neigh_list, list) { last_seen = neigh_node->last_seen; if_incoming = neigh_node->if_incoming; if (batadv_has_timed_out(last_seen, BATADV_PURGE_TIMEOUT) || if_incoming->if_status == BATADV_IF_INACTIVE || if_incoming->if_status == BATADV_IF_NOT_IN_USE || if_incoming->if_status == BATADV_IF_TO_BE_REMOVED) { if (if_incoming->if_status == BATADV_IF_INACTIVE || if_incoming->if_status == BATADV_IF_NOT_IN_USE || if_incoming->if_status == BATADV_IF_TO_BE_REMOVED) batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "neighbor purge: originator %pM, neighbor: %pM, iface: %s\n", orig_node->orig, neigh_node->addr, if_incoming->net_dev->name); else batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "neighbor timeout: originator %pM, neighbor: %pM, last_seen: %u\n", orig_node->orig, neigh_node->addr, jiffies_to_msecs(last_seen)); neigh_purged = true; hlist_del_rcu(&neigh_node->list); batadv_neigh_node_put(neigh_node); } else { /* only necessary if not the whole neighbor is to be * deleted, but some interface has been removed. */ batadv_purge_neigh_ifinfo(bat_priv, neigh_node); } } spin_unlock_bh(&orig_node->neigh_list_lock); return neigh_purged; } /** * batadv_find_best_neighbor() - finds the best neighbor after purging * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked * @if_outgoing: the interface for which the metric should be compared * * Return: the current best neighbor, with refcount increased. */ static struct batadv_neigh_node * batadv_find_best_neighbor(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_node *best = NULL, *neigh; struct batadv_algo_ops *bao = bat_priv->algo_ops; rcu_read_lock(); hlist_for_each_entry_rcu(neigh, &orig_node->neigh_list, list) { if (best && (bao->neigh.cmp(neigh, if_outgoing, best, if_outgoing) <= 0)) continue; if (!kref_get_unless_zero(&neigh->refcount)) continue; batadv_neigh_node_put(best); best = neigh; } rcu_read_unlock(); return best; } /** * batadv_purge_orig_node() - purges obsolete information from an orig_node * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked * * This function checks if the orig_node or substructures of it have become * obsolete, and purges this information if that's the case. * * Return: true if the orig_node is to be removed, false otherwise. */ static bool batadv_purge_orig_node(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_neigh_node *best_neigh_node; struct batadv_hard_iface *hard_iface; bool changed_ifinfo, changed_neigh; if (batadv_has_timed_out(orig_node->last_seen, 2 * BATADV_PURGE_TIMEOUT)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Originator timeout: originator %pM, last_seen %u\n", orig_node->orig, jiffies_to_msecs(orig_node->last_seen)); return true; } changed_ifinfo = batadv_purge_orig_ifinfo(bat_priv, orig_node); changed_neigh = batadv_purge_orig_neighbors(bat_priv, orig_node); if (!changed_ifinfo && !changed_neigh) return false; /* first for NULL ... */ best_neigh_node = batadv_find_best_neighbor(bat_priv, orig_node, BATADV_IF_DEFAULT); batadv_update_route(bat_priv, orig_node, BATADV_IF_DEFAULT, best_neigh_node); batadv_neigh_node_put(best_neigh_node); /* ... then for all other interfaces. */ rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; best_neigh_node = batadv_find_best_neighbor(bat_priv, orig_node, hard_iface); batadv_update_route(bat_priv, orig_node, hard_iface, best_neigh_node); batadv_neigh_node_put(best_neigh_node); batadv_hardif_put(hard_iface); } rcu_read_unlock(); return false; } /** * batadv_purge_orig_ref() - Purge all outdated originators * @bat_priv: the bat priv with all the soft interface information */ void batadv_purge_orig_ref(struct batadv_priv *bat_priv) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_node *node_tmp; struct hlist_head *head; spinlock_t *list_lock; /* spinlock to protect write access */ struct batadv_orig_node *orig_node; u32 i; if (!hash) return; /* for all origins... */ for (i = 0; i < hash->size; i++) { head = &hash->table[i]; if (hlist_empty(head)) continue; list_lock = &hash->list_locks[i]; spin_lock_bh(list_lock); hlist_for_each_entry_safe(orig_node, node_tmp, head, hash_entry) { if (batadv_purge_orig_node(bat_priv, orig_node)) { batadv_gw_node_delete(bat_priv, orig_node); hlist_del_rcu(&orig_node->hash_entry); batadv_tt_global_del_orig(orig_node->bat_priv, orig_node, -1, "originator timed out"); batadv_orig_node_put(orig_node); continue; } batadv_frag_purge_orig(orig_node, batadv_frag_check_entry); } spin_unlock_bh(list_lock); } batadv_gw_election(bat_priv); } static void batadv_purge_orig(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_priv *bat_priv; delayed_work = to_delayed_work(work); bat_priv = container_of(delayed_work, struct batadv_priv, orig_work); batadv_purge_orig_ref(bat_priv); queue_delayed_work(batadv_event_workqueue, &bat_priv->orig_work, msecs_to_jiffies(BATADV_ORIG_WORK_PERIOD)); } /** * batadv_orig_dump() - Dump to netlink the originator infos for a specific * outgoing interface * @msg: message to dump into * @cb: parameters for the dump * * Return: 0 or error value */ int batadv_orig_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct net_device *hard_iface = NULL; struct batadv_hard_iface *hardif = BATADV_IF_DEFAULT; struct batadv_priv *bat_priv; struct batadv_hard_iface *primary_if = NULL; int ret; int ifindex, hard_ifindex; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } hard_ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_HARD_IFINDEX); if (hard_ifindex) { hard_iface = dev_get_by_index(net, hard_ifindex); if (hard_iface) hardif = batadv_hardif_get_by_netdev(hard_iface); if (!hardif) { ret = -ENODEV; goto out; } if (hardif->soft_iface != soft_iface) { ret = -ENOENT; goto out; } } if (!bat_priv->algo_ops->orig.dump) { ret = -EOPNOTSUPP; goto out; } bat_priv->algo_ops->orig.dump(msg, cb, bat_priv, hardif); ret = msg->len; out: batadv_hardif_put(hardif); dev_put(hard_iface); batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } |
19 45 123 165 7 2 1 4 152 1 111 123 122 122 122 122 46 76 1 1 121 3 119 80 13 68 148 1 2 145 5 4 1 1 6 3 3 1 2 113 18 96 10 1 9 9 9 9 22 19 2 4 12 5 7 1 1 1 5 5 12 1 1 1 10 10 10 10 73 5 5 34 15 19 11 2 8 1 10 3 6 1 45 2 1 43 22 6 1 5 1 1 3 5 43 2 2 16 14 24 8 26 2 8 18 6 16 4 14 1 9 1 11 22 6 22 11 9 1 2 21 21 21 13 1 1 12 3 13 1 12 7 7 7 10 14 3 2 10 3 11 2 9 9 8 9 6 3 3 6 2 1 1 4 4 4 11 2 1 8 5 4 5 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016,2017 Facebook */ #include <linux/bpf.h> #include <linux/btf.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/filter.h> #include <linux/perf_event.h> #include <uapi/linux/btf.h> #include <linux/rcupdate_trace.h> #include "map_in_map.h" #define ARRAY_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) static void bpf_array_free_percpu(struct bpf_array *array) { int i; for (i = 0; i < array->map.max_entries; i++) { free_percpu(array->pptrs[i]); cond_resched(); } } static int bpf_array_alloc_percpu(struct bpf_array *array) { void __percpu *ptr; int i; for (i = 0; i < array->map.max_entries; i++) { ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, GFP_USER | __GFP_NOWARN); if (!ptr) { bpf_array_free_percpu(array); return -ENOMEM; } array->pptrs[i] = ptr; cond_resched(); } return 0; } /* Called from syscall */ int array_map_alloc_check(union bpf_attr *attr) { bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; int numa_node = bpf_map_attr_numa_node(attr); /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size == 0 || attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || !bpf_map_flags_access_ok(attr->map_flags) || (percpu && numa_node != NUMA_NO_NODE)) return -EINVAL; if (attr->map_type != BPF_MAP_TYPE_ARRAY && attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) return -EINVAL; if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && attr->map_flags & BPF_F_PRESERVE_ELEMS) return -EINVAL; if (attr->value_size > KMALLOC_MAX_SIZE) /* if value_size is bigger, the user space won't be able to * access the elements. */ return -E2BIG; /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) return -E2BIG; return 0; } static struct bpf_map *array_map_alloc(union bpf_attr *attr) { bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; int numa_node = bpf_map_attr_numa_node(attr); u32 elem_size, index_mask, max_entries; bool bypass_spec_v1 = bpf_bypass_spec_v1(); u64 array_size, mask64; struct bpf_array *array; elem_size = round_up(attr->value_size, 8); max_entries = attr->max_entries; /* On 32 bit archs roundup_pow_of_two() with max_entries that has * upper most bit set in u32 space is undefined behavior due to * resulting 1U << 32, so do it manually here in u64 space. */ mask64 = fls_long(max_entries - 1); mask64 = 1ULL << mask64; mask64 -= 1; index_mask = mask64; if (!bypass_spec_v1) { /* round up array size to nearest power of 2, * since cpu will speculate within index_mask limits */ max_entries = index_mask + 1; /* Check for overflows. */ if (max_entries < attr->max_entries) return ERR_PTR(-E2BIG); } array_size = sizeof(*array); if (percpu) { array_size += (u64) max_entries * sizeof(void *); } else { /* rely on vmalloc() to return page-aligned memory and * ensure array->value is exactly page-aligned */ if (attr->map_flags & BPF_F_MMAPABLE) { array_size = PAGE_ALIGN(array_size); array_size += PAGE_ALIGN((u64) max_entries * elem_size); } else { array_size += (u64) max_entries * elem_size; } } /* allocate all map elements and zero-initialize them */ if (attr->map_flags & BPF_F_MMAPABLE) { void *data; /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ data = bpf_map_area_mmapable_alloc(array_size, numa_node); if (!data) return ERR_PTR(-ENOMEM); array = data + PAGE_ALIGN(sizeof(struct bpf_array)) - offsetof(struct bpf_array, value); } else { array = bpf_map_area_alloc(array_size, numa_node); } if (!array) return ERR_PTR(-ENOMEM); array->index_mask = index_mask; array->map.bypass_spec_v1 = bypass_spec_v1; /* copy mandatory map attributes */ bpf_map_init_from_attr(&array->map, attr); array->elem_size = elem_size; if (percpu && bpf_array_alloc_percpu(array)) { bpf_map_area_free(array); return ERR_PTR(-ENOMEM); } return &array->map; } /* Called from syscall or from eBPF program */ static void *array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return array->value + array->elem_size * (index & array->index_mask); } static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) { struct bpf_array *array = container_of(map, struct bpf_array, map); if (map->max_entries != 1) return -ENOTSUPP; if (off >= map->value_size) return -EINVAL; *imm = (unsigned long)array->value; return 0; } static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, u32 *off) { struct bpf_array *array = container_of(map, struct bpf_array, map); u64 base = (unsigned long)array->value; u64 range = array->elem_size; if (map->max_entries != 1) return -ENOTSUPP; if (imm < base || imm >= base + range) return -ENOENT; *off = imm - base; return 0; } /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_insn *insn = insn_buf; u32 elem_size = round_up(map->value_size, 8); const int ret = BPF_REG_0; const int map_ptr = BPF_REG_1; const int index = BPF_REG_2; if (map->map_flags & BPF_F_INNER_MAP) return -EOPNOTSUPP; *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); if (!map->bypass_spec_v1) { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); } else { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); } if (is_power_of_2(elem_size)) { *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); } else { *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); } *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); *insn++ = BPF_MOV64_IMM(ret, 0); return insn - insn_buf; } /* Called from eBPF program */ static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return this_cpu_ptr(array->pptrs[index & array->index_mask]); } int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(index >= array->map.max_entries)) return -ENOENT; /* per_cpu areas are zero-filled and bpf programs can only * access 'value_size' of them, so copying rounded areas * will not leak any kernel data */ size = round_up(map->value_size, 8); rcu_read_lock(); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall */ static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = (u32 *)next_key; if (index >= array->map.max_entries) { *next = 0; return 0; } if (index == array->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } static void check_and_free_timer_in_array(struct bpf_array *arr, void *val) { if (unlikely(map_value_has_timer(&arr->map))) bpf_timer_cancel_and_free(val + arr->map.timer_off); } /* Called from syscall or from eBPF program */ static int array_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; char *val; if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags & BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; if (unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) return -EINVAL; if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), value, map->value_size); } else { val = array->value + array->elem_size * (index & array->index_mask); if (map_flags & BPF_F_LOCK) copy_map_value_locked(map, val, value, false); else copy_map_value(map, val, value); check_and_free_timer_in_array(array, val); } return 0; } int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; /* the user space will provide round_up(value_size, 8) bytes that * will be copied into per-cpu area. bpf programs can only access * value_size of it. During lookup the same extra bytes will be * returned or zeros which were zero-filled by percpu_alloc, * so no kernel data leaks possible */ size = round_up(map->value_size, 8); rcu_read_lock(); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall or from eBPF program */ static int array_map_delete_elem(struct bpf_map *map, void *key) { return -EINVAL; } static void *array_map_vmalloc_addr(struct bpf_array *array) { return (void *)round_down((unsigned long)array, PAGE_SIZE); } static void array_map_free_timers(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; if (likely(!map_value_has_timer(map))) return; for (i = 0; i < array->map.max_entries; i++) bpf_timer_cancel_and_free(array->value + array->elem_size * i + map->timer_off); } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) bpf_array_free_percpu(array); if (array->map.map_flags & BPF_F_MMAPABLE) bpf_map_area_free(array_map_vmalloc_addr(array)); else bpf_map_area_free(array); } static void array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void *value; rcu_read_lock(); value = array_map_lookup_elem(map, key); if (!value) { rcu_read_unlock(); return; } if (map->btf_key_type_id) seq_printf(m, "%u: ", *(u32 *)key); btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); seq_puts(m, "\n"); rcu_read_unlock(); } static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu; rcu_read_lock(); seq_printf(m, "%u: {\n", *(u32 *)key); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { seq_printf(m, "\tcpu%d: ", cpu); btf_type_seq_show(map->btf, map->btf_value_type_id, per_cpu_ptr(pptr, cpu), m); seq_puts(m, "\n"); } seq_puts(m, "}\n"); rcu_read_unlock(); } static int array_map_check_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type) { u32 int_data; /* One exception for keyless BTF: .bss/.data/.rodata map */ if (btf_type_is_void(key_type)) { if (map->map_type != BPF_MAP_TYPE_ARRAY || map->max_entries != 1) return -EINVAL; if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) return -EINVAL; return 0; } if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) return -EINVAL; int_data = *(u32 *)(key_type + 1); /* bpf array can only take a u32 key. This check makes sure * that the btf matches the attr used during map_create. */ if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) return -EINVAL; return 0; } static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_array *array = container_of(map, struct bpf_array, map); pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; if (!(map->map_flags & BPF_F_MMAPABLE)) return -EINVAL; if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) return -EINVAL; return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), vma->vm_pgoff + pgoff); } static bool array_map_meta_equal(const struct bpf_map *meta0, const struct bpf_map *meta1) { if (!bpf_map_meta_equal(meta0, meta1)) return false; return meta0->map_flags & BPF_F_INNER_MAP ? true : meta0->max_entries == meta1->max_entries; } struct bpf_iter_seq_array_map_info { struct bpf_map *map; void *percpu_value_buf; u32 index; }; static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_map *map = info->map; struct bpf_array *array; u32 index; if (info->index >= map->max_entries) return NULL; if (*pos == 0) ++*pos; array = container_of(map, struct bpf_array, map); index = info->index & array->index_mask; if (info->percpu_value_buf) return array->pptrs[index]; return array->value + array->elem_size * index; } static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_map *map = info->map; struct bpf_array *array; u32 index; ++*pos; ++info->index; if (info->index >= map->max_entries) return NULL; array = container_of(map, struct bpf_array, map); index = info->index & array->index_mask; if (info->percpu_value_buf) return array->pptrs[index]; return array->value + array->elem_size * index; } static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_iter__bpf_map_elem ctx = {}; struct bpf_map *map = info->map; struct bpf_iter_meta meta; struct bpf_prog *prog; int off = 0, cpu = 0; void __percpu **pptr; u32 size; meta.seq = seq; prog = bpf_iter_get_info(&meta, v == NULL); if (!prog) return 0; ctx.meta = &meta; ctx.map = info->map; if (v) { ctx.key = &info->index; if (!info->percpu_value_buf) { ctx.value = v; } else { pptr = v; size = round_up(map->value_size, 8); for_each_possible_cpu(cpu) { bpf_long_memcpy(info->percpu_value_buf + off, per_cpu_ptr(pptr, cpu), size); off += size; } ctx.value = info->percpu_value_buf; } } return bpf_iter_run_prog(prog, &ctx); } static int bpf_array_map_seq_show(struct seq_file *seq, void *v) { return __bpf_array_map_seq_show(seq, v); } static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) { if (!v) (void)__bpf_array_map_seq_show(seq, NULL); } static int bpf_iter_init_array_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_array_map_info *seq_info = priv_data; struct bpf_map *map = aux->map; void *value_buf; u32 buf_size; if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { buf_size = round_up(map->value_size, 8) * num_possible_cpus(); value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); if (!value_buf) return -ENOMEM; seq_info->percpu_value_buf = value_buf; } /* bpf_iter_attach_map() acquires a map uref, and the uref may be * released before or in the middle of iterating map elements, so * acquire an extra map uref for iterator. */ bpf_map_inc_with_uref(map); seq_info->map = map; return 0; } static void bpf_iter_fini_array_map(void *priv_data) { struct bpf_iter_seq_array_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); kfree(seq_info->percpu_value_buf); } static const struct seq_operations bpf_array_map_seq_ops = { .start = bpf_array_map_seq_start, .next = bpf_array_map_seq_next, .stop = bpf_array_map_seq_stop, .show = bpf_array_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_array_map_seq_ops, .init_seq_private = bpf_iter_init_array_map, .fini_seq_private = bpf_iter_fini_array_map, .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), }; static int bpf_for_each_array_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags) { u32 i, key, num_elems = 0; struct bpf_array *array; bool is_percpu; u64 ret = 0; void *val; if (flags != 0) return -EINVAL; is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; array = container_of(map, struct bpf_array, map); if (is_percpu) migrate_disable(); for (i = 0; i < map->max_entries; i++) { if (is_percpu) val = this_cpu_ptr(array->pptrs[i]); else val = array->value + array->elem_size * i; num_elems++; key = i; ret = BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)&key, (u64)(long)val, (u64)(long)callback_ctx, 0); /* return value: 0 - continue, 1 - stop and return */ if (ret) break; } if (is_percpu) migrate_enable(); return num_elems; } static int array_map_btf_id; const struct bpf_map_ops array_map_ops = { .map_meta_equal = array_map_meta_equal, .map_alloc_check = array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_release_uref = array_map_free_timers, .map_lookup_elem = array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, .map_gen_lookup = array_map_gen_lookup, .map_direct_value_addr = array_map_direct_value_addr, .map_direct_value_meta = array_map_direct_value_meta, .map_mmap = array_map_mmap, .map_seq_show_elem = array_map_seq_show_elem, .map_check_btf = array_map_check_btf, .map_lookup_batch = generic_map_lookup_batch, .map_update_batch = generic_map_update_batch, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_array_elem, .map_btf_name = "bpf_array", .map_btf_id = &array_map_btf_id, .iter_seq_info = &iter_seq_info, }; static int percpu_array_map_btf_id; const struct bpf_map_ops percpu_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = percpu_array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, .map_seq_show_elem = percpu_array_map_seq_show_elem, .map_check_btf = array_map_check_btf, .map_lookup_batch = generic_map_lookup_batch, .map_update_batch = generic_map_update_batch, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_array_elem, .map_btf_name = "bpf_array", .map_btf_id = &percpu_array_map_btf_id, .iter_seq_info = &iter_seq_info, }; static int fd_array_map_alloc_check(union bpf_attr *attr) { /* only file descriptors can be stored in this type of map */ if (attr->value_size != sizeof(u32)) return -EINVAL; /* Program read-only/write-only not supported for special maps yet. */ if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) return -EINVAL; return array_map_alloc_check(attr); } static void fd_array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; /* make sure it's empty */ for (i = 0; i < array->map.max_entries; i++) BUG_ON(array->ptrs[i] != NULL); bpf_map_area_free(array); } static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-EOPNOTSUPP); } /* only called from syscall */ int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) { void **elem, *ptr; int ret = 0; if (!map->ops->map_fd_sys_lookup_elem) return -ENOTSUPP; rcu_read_lock(); elem = array_map_lookup_elem(map, key); if (elem && (ptr = READ_ONCE(*elem))) *value = map->ops->map_fd_sys_lookup_elem(ptr); else ret = -ENOENT; rcu_read_unlock(); return ret; } /* only called from syscall */ int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *new_ptr, *old_ptr; u32 index = *(u32 *)key, ufd; if (map_flags != BPF_ANY) return -EINVAL; if (index >= array->map.max_entries) return -E2BIG; ufd = *(u32 *)value; new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); if (IS_ERR(new_ptr)) return PTR_ERR(new_ptr); if (map->ops->map_poke_run) { mutex_lock(&array->aux->poke_mutex); old_ptr = xchg(array->ptrs + index, new_ptr); map->ops->map_poke_run(map, index, old_ptr, new_ptr); mutex_unlock(&array->aux->poke_mutex); } else { old_ptr = xchg(array->ptrs + index, new_ptr); } if (old_ptr) map->ops->map_fd_put_ptr(map, old_ptr, true); return 0; } static int fd_array_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *old_ptr; u32 index = *(u32 *)key; if (index >= array->map.max_entries) return -E2BIG; if (map->ops->map_poke_run) { mutex_lock(&array->aux->poke_mutex); old_ptr = xchg(array->ptrs + index, NULL); map->ops->map_poke_run(map, index, old_ptr, NULL); mutex_unlock(&array->aux->poke_mutex); } else { old_ptr = xchg(array->ptrs + index, NULL); } if (old_ptr) { map->ops->map_fd_put_ptr(map, old_ptr, true); return 0; } else { return -ENOENT; } } static void *prog_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_prog *prog = bpf_prog_get(fd); if (IS_ERR(prog)) return prog; if (!bpf_prog_array_compatible(array, prog)) { bpf_prog_put(prog); return ERR_PTR(-EINVAL); } return prog; } static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) { /* bpf_prog is freed after one RCU or tasks trace grace period */ bpf_prog_put(ptr); } static u32 prog_fd_array_sys_lookup_elem(void *ptr) { return ((struct bpf_prog *)ptr)->aux->id; } /* decrement refcnt of all bpf_progs that are stored in this map */ static void bpf_fd_array_map_clear(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; for (i = 0; i < array->map.max_entries; i++) fd_array_map_delete_elem(map, &i); } static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void **elem, *ptr; u32 prog_id; rcu_read_lock(); elem = array_map_lookup_elem(map, key); if (elem) { ptr = READ_ONCE(*elem); if (ptr) { seq_printf(m, "%u: ", *(u32 *)key); prog_id = prog_fd_array_sys_lookup_elem(ptr); btf_type_seq_show(map->btf, map->btf_value_type_id, &prog_id, m); seq_puts(m, "\n"); } } rcu_read_unlock(); } struct prog_poke_elem { struct list_head list; struct bpf_prog_aux *aux; }; static int prog_array_map_poke_track(struct bpf_map *map, struct bpf_prog_aux *prog_aux) { struct prog_poke_elem *elem; struct bpf_array_aux *aux; int ret = 0; aux = container_of(map, struct bpf_array, map)->aux; mutex_lock(&aux->poke_mutex); list_for_each_entry(elem, &aux->poke_progs, list) { if (elem->aux == prog_aux) goto out; } elem = kmalloc(sizeof(*elem), GFP_KERNEL); if (!elem) { ret = -ENOMEM; goto out; } INIT_LIST_HEAD(&elem->list); /* We must track the program's aux info at this point in time * since the program pointer itself may not be stable yet, see * also comment in prog_array_map_poke_run(). */ elem->aux = prog_aux; list_add_tail(&elem->list, &aux->poke_progs); out: mutex_unlock(&aux->poke_mutex); return ret; } static void prog_array_map_poke_untrack(struct bpf_map *map, struct bpf_prog_aux *prog_aux) { struct prog_poke_elem *elem, *tmp; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; mutex_lock(&aux->poke_mutex); list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { if (elem->aux == prog_aux) { list_del_init(&elem->list); kfree(elem); break; } } mutex_unlock(&aux->poke_mutex); } void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old) { WARN_ON_ONCE(1); } static void prog_array_map_poke_run(struct bpf_map *map, u32 key, struct bpf_prog *old, struct bpf_prog *new) { struct prog_poke_elem *elem; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); list_for_each_entry(elem, &aux->poke_progs, list) { struct bpf_jit_poke_descriptor *poke; int i; for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; /* Few things to be aware of: * * 1) We can only ever access aux in this context, but * not aux->prog since it might not be stable yet and * there could be danger of use after free otherwise. * 2) Initially when we start tracking aux, the program * is not JITed yet and also does not have a kallsyms * entry. We skip these as poke->tailcall_target_stable * is not active yet. The JIT will do the final fixup * before setting it stable. The various * poke->tailcall_target_stable are successively * activated, so tail call updates can arrive from here * while JIT is still finishing its final fixup for * non-activated poke entries. * 3) Also programs reaching refcount of zero while patching * is in progress is okay since we're protected under * poke_mutex and untrack the programs before the JIT * buffer is freed. */ if (!READ_ONCE(poke->tailcall_target_stable)) continue; if (poke->reason != BPF_POKE_REASON_TAIL_CALL) continue; if (poke->tail_call.map != map || poke->tail_call.key != key) continue; bpf_arch_poke_desc_update(poke, new, old); } } } static void prog_array_map_clear_deferred(struct work_struct *work) { struct bpf_map *map = container_of(work, struct bpf_array_aux, work)->map; bpf_fd_array_map_clear(map); bpf_map_put(map); } static void prog_array_map_clear(struct bpf_map *map) { struct bpf_array_aux *aux = container_of(map, struct bpf_array, map)->aux; bpf_map_inc(map); schedule_work(&aux->work); } static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) { struct bpf_array_aux *aux; struct bpf_map *map; aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); if (!aux) return ERR_PTR(-ENOMEM); INIT_WORK(&aux->work, prog_array_map_clear_deferred); INIT_LIST_HEAD(&aux->poke_progs); mutex_init(&aux->poke_mutex); spin_lock_init(&aux->owner.lock); map = array_map_alloc(attr); if (IS_ERR(map)) { kfree(aux); return map; } container_of(map, struct bpf_array, map)->aux = aux; aux->map = map; return map; } static void prog_array_map_free(struct bpf_map *map) { struct prog_poke_elem *elem, *tmp; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { list_del_init(&elem->list); kfree(elem); } kfree(aux); fd_array_map_free(map); } /* prog_array->aux->{type,jited} is a runtime binding. * Doing static check alone in the verifier is not enough. * Thus, prog_array_map cannot be used as an inner_map * and map_meta_equal is not implemented. */ static int prog_array_map_btf_id; const struct bpf_map_ops prog_array_map_ops = { .map_alloc_check = fd_array_map_alloc_check, .map_alloc = prog_array_map_alloc, .map_free = prog_array_map_free, .map_poke_track = prog_array_map_poke_track, .map_poke_untrack = prog_array_map_poke_untrack, .map_poke_run = prog_array_map_poke_run, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = prog_fd_array_get_ptr, .map_fd_put_ptr = prog_fd_array_put_ptr, .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, .map_release_uref = prog_array_map_clear, .map_seq_show_elem = prog_array_map_seq_show_elem, .map_btf_name = "bpf_array", .map_btf_id = &prog_array_map_btf_id, }; static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, struct file *map_file) { struct bpf_event_entry *ee; ee = kzalloc(sizeof(*ee), GFP_ATOMIC); if (ee) { ee->event = perf_file->private_data; ee->perf_file = perf_file; ee->map_file = map_file; } return ee; } static void __bpf_event_entry_free(struct rcu_head *rcu) { struct bpf_event_entry *ee; ee = container_of(rcu, struct bpf_event_entry, rcu); fput(ee->perf_file); kfree(ee); } static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) { call_rcu(&ee->rcu, __bpf_event_entry_free); } static void *perf_event_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { struct bpf_event_entry *ee; struct perf_event *event; struct file *perf_file; u64 value; perf_file = perf_event_get(fd); if (IS_ERR(perf_file)) return perf_file; ee = ERR_PTR(-EOPNOTSUPP); event = perf_file->private_data; if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) goto err_out; ee = bpf_event_entry_gen(perf_file, map_file); if (ee) return ee; ee = ERR_PTR(-ENOMEM); err_out: fput(perf_file); return ee; } static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) { /* bpf_perf_event is freed after one RCU grace period */ bpf_event_entry_free_rcu(ptr); } static void perf_event_fd_array_release(struct bpf_map *map, struct file *map_file) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_event_entry *ee; int i; if (map->map_flags & BPF_F_PRESERVE_ELEMS) return; rcu_read_lock(); for (i = 0; i < array->map.max_entries; i++) { ee = READ_ONCE(array->ptrs[i]); if (ee && ee->map_file == map_file) fd_array_map_delete_elem(map, &i); } rcu_read_unlock(); } static void perf_event_fd_array_map_free(struct bpf_map *map) { if (map->map_flags & BPF_F_PRESERVE_ELEMS) bpf_fd_array_map_clear(map); fd_array_map_free(map); } static int perf_event_array_map_btf_id; const struct bpf_map_ops perf_event_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = perf_event_fd_array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = perf_event_fd_array_get_ptr, .map_fd_put_ptr = perf_event_fd_array_put_ptr, .map_release = perf_event_fd_array_release, .map_check_btf = map_check_no_btf, .map_btf_name = "bpf_array", .map_btf_id = &perf_event_array_map_btf_id, }; #ifdef CONFIG_CGROUPS static void *cgroup_fd_array_get_ptr(struct bpf_map *map, struct file *map_file /* not used */, int fd) { return cgroup_get_from_fd(fd); } static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) { /* cgroup_put free cgrp after a rcu grace period */ cgroup_put(ptr); } static void cgroup_fd_array_free(struct bpf_map *map) { bpf_fd_array_map_clear(map); fd_array_map_free(map); } static int cgroup_array_map_btf_id; const struct bpf_map_ops cgroup_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = cgroup_fd_array_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = cgroup_fd_array_get_ptr, .map_fd_put_ptr = cgroup_fd_array_put_ptr, .map_check_btf = map_check_no_btf, .map_btf_name = "bpf_array", .map_btf_id = &cgroup_array_map_btf_id, }; #endif static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) { struct bpf_map *map, *inner_map_meta; inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); if (IS_ERR(inner_map_meta)) return inner_map_meta; map = array_map_alloc(attr); if (IS_ERR(map)) { bpf_map_meta_free(inner_map_meta); return map; } map->inner_map_meta = inner_map_meta; return map; } static void array_of_map_free(struct bpf_map *map) { /* map->inner_map_meta is only accessed by syscall which * is protected by fdget/fdput. */ bpf_map_meta_free(map->inner_map_meta); bpf_fd_array_map_clear(map); fd_array_map_free(map); } static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_map **inner_map = array_map_lookup_elem(map, key); if (!inner_map) return NULL; return READ_ONCE(*inner_map); } static int array_of_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 elem_size = round_up(map->value_size, 8); struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; const int map_ptr = BPF_REG_1; const int index = BPF_REG_2; *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); if (!map->bypass_spec_v1) { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); } else { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); } if (is_power_of_2(elem_size)) *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); else *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); *insn++ = BPF_MOV64_IMM(ret, 0); return insn - insn_buf; } static int array_of_maps_map_btf_id; const struct bpf_map_ops array_of_maps_map_ops = { .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_of_map_alloc, .map_free = array_of_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = array_of_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = bpf_map_fd_get_ptr, .map_fd_put_ptr = bpf_map_fd_put_ptr, .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, .map_gen_lookup = array_of_map_gen_lookup, .map_check_btf = map_check_no_btf, .map_btf_name = "bpf_array", .map_btf_id = &array_of_maps_map_btf_id, }; |
323 27 321 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 | /* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mutex.h> #include <linux/inetdevice.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/module.h> #include <net/arp.h> #include <net/neighbour.h> #include <net/route.h> #include <net/netevent.h> #include <net/ipv6_stubs.h> #include <net/ip6_route.h> #include <rdma/ib_addr.h> #include <rdma/ib_cache.h> #include <rdma/ib_sa.h> #include <rdma/ib.h> #include <rdma/rdma_netlink.h> #include <net/netlink.h> #include "core_priv.h" struct addr_req { struct list_head list; struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; struct rdma_dev_addr *addr; void *context; void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context); unsigned long timeout; struct delayed_work work; bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ int status; u32 seq; }; static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); static DEFINE_SPINLOCK(lock); static LIST_HEAD(req_list); static struct workqueue_struct *addr_wq; static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, .len = sizeof(struct rdma_nla_ls_gid), .validation_type = NLA_VALIDATE_MIN, .min = sizeof(struct rdma_nla_ls_gid)}, }; static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) { struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; int ret; if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) return false; ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), nlmsg_len(nlh), ib_nl_addr_policy, NULL); if (ret) return false; return true; } static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) { const struct nlattr *head, *curr; union ib_gid gid; struct addr_req *req; int len, rem; int found = 0; head = (const struct nlattr *)nlmsg_data(nlh); len = nlmsg_len(nlh); nla_for_each_attr(curr, head, len, rem) { if (curr->nla_type == LS_NLA_TYPE_DGID) memcpy(&gid, nla_data(curr), nla_len(curr)); } spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) { if (nlh->nlmsg_seq != req->seq) continue; /* We set the DGID part, the rest was set earlier */ rdma_addr_set_dgid(req->addr, &gid); req->status = 0; found = 1; break; } spin_unlock_bh(&lock); if (!found) pr_info("Couldn't find request waiting for DGID: %pI6\n", &gid); } int ib_nl_handle_ip_res_resp(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { if ((nlh->nlmsg_flags & NLM_F_REQUEST) || !(NETLINK_CB(skb).sk)) return -EPERM; if (ib_nl_is_good_ip_resp(nlh)) ib_nl_process_good_ip_rsep(nlh); return 0; } static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { struct sk_buff *skb = NULL; struct nlmsghdr *nlh; struct rdma_ls_ip_resolve_header *header; void *data; size_t size; int attrtype; int len; if (family == AF_INET) { size = sizeof(struct in_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; } else { size = sizeof(struct in6_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; } len = nla_total_size(sizeof(size)); len += NLMSG_ALIGN(sizeof(*header)); skb = nlmsg_new(len, GFP_KERNEL); if (!skb) return -ENOMEM; data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); if (!data) { nlmsg_free(skb); return -ENODATA; } /* Construct the family header first */ header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); header->ifindex = dev_addr->bound_dev_if; nla_put(skb, attrtype, size, daddr); /* Repair the nlmsg header length */ nlmsg_end(skb, nlh); rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); /* Make the request retry, so when we get the response from userspace * we will have something. */ return -ENODATA; } int rdma_addr_size(const struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_IB: return sizeof(struct sockaddr_ib); default: return 0; } } EXPORT_SYMBOL(rdma_addr_size); int rdma_addr_size_in6(struct sockaddr_in6 *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_in6); int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_kss); /** * rdma_copy_src_l2_addr - Copy netdevice source addresses * @dev_addr: Destination address pointer where to copy the addresses * @dev: Netdevice whose source addresses to copy * * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. * This includes unicast address, broadcast address, device type and * interface index. */ void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct net_device *dev) { dev_addr->dev_type = dev->type; memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); dev_addr->bound_dev_if = dev->ifindex; } EXPORT_SYMBOL(rdma_copy_src_l2_addr); static struct net_device * rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) { struct net_device *dev = NULL; int ret = -EADDRNOTAVAIL; switch (src_in->sa_family) { case AF_INET: dev = __ip_dev_find(net, ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, false); if (dev) ret = 0; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: for_each_netdev_rcu(net, dev) { if (ipv6_chk_addr(net, &((const struct sockaddr_in6 *)src_in)->sin6_addr, dev, 1)) { ret = 0; break; } } break; #endif } return ret ? ERR_PTR(ret) : dev; } int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { struct net_device *dev; if (dev_addr->bound_dev_if) { dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!dev) return -ENODEV; rdma_copy_src_l2_addr(dev_addr, dev); dev_put(dev); return 0; } rcu_read_lock(); dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); if (!IS_ERR(dev)) rdma_copy_src_l2_addr(dev_addr, dev); rcu_read_unlock(); return PTR_ERR_OR_ZERO(dev); } EXPORT_SYMBOL(rdma_translate_ip); static void set_timeout(struct addr_req *req, unsigned long time) { unsigned long delay; delay = time - jiffies; if ((long)delay < 0) delay = 0; mod_delayed_work(addr_wq, &req->work, delay); } static void queue_req(struct addr_req *req) { spin_lock_bh(&lock); list_add_tail(&req->list, &req_list); set_timeout(req, req->timeout); spin_unlock_bh(&lock); } static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) return -EADDRNOTAVAIL; return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); } static int dst_fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const void *daddr) { struct neighbour *n; int ret = 0; n = dst_neigh_lookup(dst, daddr); if (!n) return -ENODATA; if (!(n->nud_state & NUD_VALID)) { neigh_event_send(n, NULL); ret = -ENODATA; } else { neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); } neigh_release(n); return ret; } static bool has_gateway(const struct dst_entry *dst, sa_family_t family) { struct rtable *rt; struct rt6_info *rt6; if (family == AF_INET) { rt = container_of(dst, struct rtable, dst); return rt->rt_uses_gateway; } rt6 = container_of(dst, struct rt6_info, dst); return rt6->rt6i_flags & RTF_GATEWAY; } static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, u32 seq) { const struct sockaddr_in *dst_in4 = (const struct sockaddr_in *)dst_in; const struct sockaddr_in6 *dst_in6 = (const struct sockaddr_in6 *)dst_in; const void *daddr = (dst_in->sa_family == AF_INET) ? (const void *)&dst_in4->sin_addr.s_addr : (const void *)&dst_in6->sin6_addr; sa_family_t family = dst_in->sa_family; might_sleep(); /* If we have a gateway in IB mode then it must be an IB network */ if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) return ib_nl_fetch_ha(dev_addr, daddr, seq, family); else return dst_fetch_ha(dst, dev_addr, daddr); } static int addr4_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct rtable **prt) { struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; const struct sockaddr_in *dst_in = (const struct sockaddr_in *)dst_sock; __be32 src_ip = src_in->sin_addr.s_addr; __be32 dst_ip = dst_in->sin_addr.s_addr; struct rtable *rt; struct flowi4 fl4; int ret; memset(&fl4, 0, sizeof(fl4)); fl4.daddr = dst_ip; fl4.saddr = src_ip; fl4.flowi4_oif = addr->bound_dev_if; rt = ip_route_output_key(addr->net, &fl4); ret = PTR_ERR_OR_ZERO(rt); if (ret) return ret; src_in->sin_addr.s_addr = fl4.saddr; addr->hoplimit = ip4_dst_hoplimit(&rt->dst); *prt = rt; return 0; } #if IS_ENABLED(CONFIG_IPV6) static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; const struct sockaddr_in6 *dst_in = (const struct sockaddr_in6 *)dst_sock; struct flowi6 fl6; struct dst_entry *dst; memset(&fl6, 0, sizeof fl6); fl6.daddr = dst_in->sin6_addr; fl6.saddr = src_in->sin6_addr; fl6.flowi6_oif = addr->bound_dev_if; dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); if (IS_ERR(dst)) return PTR_ERR(dst); if (ipv6_addr_any(&src_in->sin6_addr)) src_in->sin6_addr = fl6.saddr; addr->hoplimit = ip6_dst_hoplimit(dst); *pdst = dst; return 0; } #else static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { return -EADDRNOTAVAIL; } #endif static int addr_resolve_neigh(const struct dst_entry *dst, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, unsigned int ndev_flags, u32 seq) { int ret = 0; if (ndev_flags & IFF_LOOPBACK) { memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); } else { if (!(ndev_flags & IFF_NOARP)) { /* If the device doesn't do ARP internally */ ret = fetch_ha(dst, addr, dst_in, seq); } } return ret; } static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, const struct dst_entry *dst, const struct net_device *ndev) { int ret = 0; if (dst->dev->flags & IFF_LOOPBACK) ret = rdma_translate_ip(dst_in, dev_addr); else rdma_copy_src_l2_addr(dev_addr, dst->dev); /* * If there's a gateway and type of device not ARPHRD_INFINIBAND, * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the * network type accordingly. */ if (has_gateway(dst, dst_in->sa_family) && ndev->type != ARPHRD_INFINIBAND) dev_addr->network = dst_in->sa_family == AF_INET ? RDMA_NETWORK_IPV4 : RDMA_NETWORK_IPV6; else dev_addr->network = RDMA_NETWORK_IB; return ret; } static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, unsigned int *ndev_flags, const struct sockaddr *dst_in, const struct dst_entry *dst) { struct net_device *ndev = READ_ONCE(dst->dev); *ndev_flags = ndev->flags; /* A physical device must be the RDMA device to use */ if (ndev->flags & IFF_LOOPBACK) { /* * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or * loopback IP address. So if route is resolved to loopback * interface, translate that to a real ndev based on non * loopback IP address. */ ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); if (IS_ERR(ndev)) return -ENODEV; } return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); } static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) { struct net_device *ndev; ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); if (IS_ERR(ndev)) return PTR_ERR(ndev); /* * Since we are holding the rcu, reading net and ifindex * are safe without any additional reference; because * change_net_namespace() in net/core/dev.c does rcu sync * after it changes the state to IFF_DOWN and before * updating netdev fields {net, ifindex}. */ addr->net = dev_net(ndev); addr->bound_dev_if = ndev->ifindex; return 0; } static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) { addr->net = &init_net; addr->bound_dev_if = 0; } static int addr_resolve(struct sockaddr *src_in, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, bool resolve_neigh, bool resolve_by_gid_attr, u32 seq) { struct dst_entry *dst = NULL; unsigned int ndev_flags = 0; struct rtable *rt = NULL; int ret; if (!addr->net) { pr_warn_ratelimited("%s: missing namespace\n", __func__); return -EINVAL; } rcu_read_lock(); if (resolve_by_gid_attr) { if (!addr->sgid_attr) { rcu_read_unlock(); pr_warn_ratelimited("%s: missing gid_attr\n", __func__); return -EINVAL; } /* * If the request is for a specific gid attribute of the * rdma_dev_addr, derive net from the netdevice of the * GID attribute. */ ret = set_addr_netns_by_gid_rcu(addr); if (ret) { rcu_read_unlock(); return ret; } } if (src_in->sa_family == AF_INET) { ret = addr4_resolve(src_in, dst_in, addr, &rt); dst = &rt->dst; } else { ret = addr6_resolve(src_in, dst_in, addr, &dst); } if (ret) { rcu_read_unlock(); goto done; } ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); rcu_read_unlock(); /* * Resolve neighbor destination address if requested and * only if src addr translation didn't fail. */ if (!ret && resolve_neigh) ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); if (src_in->sa_family == AF_INET) ip_rt_put(rt); else dst_release(dst); done: /* * Clear the addr net to go back to its original state, only if it was * derived from GID attribute in this context. */ if (resolve_by_gid_attr) rdma_addr_set_net_defaults(addr); return ret; } static void process_one_req(struct work_struct *_work) { struct addr_req *req; struct sockaddr *src_in, *dst_in; req = container_of(_work, struct addr_req, work.work); if (req->status == -ENODATA) { src_in = (struct sockaddr *)&req->src_addr; dst_in = (struct sockaddr *)&req->dst_addr; req->status = addr_resolve(src_in, dst_in, req->addr, true, req->resolve_by_gid_attr, req->seq); if (req->status && time_after_eq(jiffies, req->timeout)) { req->status = -ETIMEDOUT; } else if (req->status == -ENODATA) { /* requeue the work for retrying again */ spin_lock_bh(&lock); if (!list_empty(&req->list)) set_timeout(req, req->timeout); spin_unlock_bh(&lock); return; } } req->callback(req->status, (struct sockaddr *)&req->src_addr, req->addr, req->context); req->callback = NULL; spin_lock_bh(&lock); /* * Although the work will normally have been canceled by the workqueue, * it can still be requeued as long as it is on the req_list. */ cancel_delayed_work(&req->work); if (!list_empty(&req->list)) { list_del_init(&req->list); kfree(req); } spin_unlock_bh(&lock); } int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr, unsigned long timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), bool resolve_by_gid_attr, void *context) { struct sockaddr *src_in, *dst_in; struct addr_req *req; int ret = 0; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) { ret = -EINVAL; goto err; } memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); req->addr = addr; req->callback = callback; req->context = context; req->resolve_by_gid_attr = resolve_by_gid_attr; INIT_DELAYED_WORK(&req->work, process_one_req); req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); req->status = addr_resolve(src_in, dst_in, addr, true, req->resolve_by_gid_attr, req->seq); switch (req->status) { case 0: req->timeout = jiffies; queue_req(req); break; case -ENODATA: req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; queue_req(req); break; default: ret = req->status; goto err; } return ret; err: kfree(req); return ret; } EXPORT_SYMBOL(rdma_resolve_ip); int roce_resolve_route_from_path(struct sa_path_rec *rec, const struct ib_gid_attr *attr) { union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid, dgid; struct rdma_dev_addr dev_addr = {}; int ret; might_sleep(); if (rec->roce.route_resolved) return 0; rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) return -EINVAL; if (!attr || !attr->ndev) return -EINVAL; dev_addr.net = &init_net; dev_addr.sgid_attr = attr; ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, &dev_addr, false, true, 0); if (ret) return ret; if ((dev_addr.network == RDMA_NETWORK_IPV4 || dev_addr.network == RDMA_NETWORK_IPV6) && rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) return -EINVAL; rec->roce.route_resolved = true; return 0; } /** * rdma_addr_cancel - Cancel resolve ip request * @addr: Pointer to address structure given previously * during rdma_resolve_ip(). * rdma_addr_cancel() is synchronous function which cancels any pending * request if there is any. */ void rdma_addr_cancel(struct rdma_dev_addr *addr) { struct addr_req *req, *temp_req; struct addr_req *found = NULL; spin_lock_bh(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->addr == addr) { /* * Removing from the list means we take ownership of * the req */ list_del_init(&req->list); found = req; break; } } spin_unlock_bh(&lock); if (!found) return; /* * sync canceling the work after removing it from the req_list * guarentees no work is running and none will be started. */ cancel_delayed_work_sync(&found->work); kfree(found); } EXPORT_SYMBOL(rdma_addr_cancel); struct resolve_cb_context { struct completion comp; int status; }; static void resolve_cb(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context) { ((struct resolve_cb_context *)context)->status = status; complete(&((struct resolve_cb_context *)context)->comp); } int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *dmac, const struct ib_gid_attr *sgid_attr, int *hoplimit) { struct rdma_dev_addr dev_addr; struct resolve_cb_context ctx; union { struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid_addr, dgid_addr; int ret; rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); memset(&dev_addr, 0, sizeof(dev_addr)); dev_addr.net = &init_net; dev_addr.sgid_attr = sgid_attr; init_completion(&ctx.comp); ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, (struct sockaddr *)&dgid_addr, &dev_addr, 1000, resolve_cb, true, &ctx); if (ret) return ret; wait_for_completion(&ctx.comp); ret = ctx.status; if (ret) return ret; memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); *hoplimit = dev_addr.hoplimit; return 0; } static int netevent_callback(struct notifier_block *self, unsigned long event, void *ctx) { struct addr_req *req; if (event == NETEVENT_NEIGH_UPDATE) { struct neighbour *neigh = ctx; if (neigh->nud_state & NUD_VALID) { spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) set_timeout(req, jiffies); spin_unlock_bh(&lock); } } return 0; } static struct notifier_block nb = { .notifier_call = netevent_callback }; int addr_init(void) { addr_wq = alloc_ordered_workqueue("ib_addr", 0); if (!addr_wq) return -ENOMEM; register_netevent_notifier(&nb); return 0; } void addr_cleanup(void) { unregister_netevent_notifier(&nb); destroy_workqueue(addr_wq); WARN_ON(!list_empty(&req_list)); } |
3088 1084 2662 728 74 394 541 3 24 3 3 2196 919 19 19 47 106 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_H #define _LINUX_RCULIST_H #ifdef __KERNEL__ /* * RCU-protected list version */ #include <linux/list.h> #include <linux/rcupdate.h> /* * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers * @list: list to be initialized * * You should instead use INIT_LIST_HEAD() for normal initialization and * cleanup tasks, when readers have no access to the list being initialized. * However, if the list being initialized is visible to readers, you * need to keep the compiler from being too mischievous. */ static inline void INIT_LIST_HEAD_RCU(struct list_head *list) { WRITE_ONCE(list->next, list); WRITE_ONCE(list->prev, list); } /* * return the ->next pointer of a list_head in an rcu safe * way, we must not access it directly */ #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) /** * list_tail_rcu - returns the prev pointer of the head of the list * @head: the head of the list * * Note: This should only be used with the list header, and even then * only if list_del() and similar primitives are not also used on the * list header. */ #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) /* * Check during list traversal that we are within an RCU reader */ #define check_arg_count_one(dummy) #ifdef CONFIG_PROVE_RCU_LIST #define __list_check_rcu(dummy, cond, extra...) \ ({ \ check_arg_count_one(extra); \ RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ "RCU-list traversed in non-reader section!"); \ }) #define __list_check_srcu(cond) \ ({ \ RCU_LOCKDEP_WARN(!(cond), \ "RCU-list traversed without holding the required lock!");\ }) #else #define __list_check_rcu(dummy, cond, extra...) \ ({ check_arg_count_one(extra); }) #define __list_check_srcu(cond) ({ }) #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add_rcu(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; new->next = next; new->prev = prev; rcu_assign_pointer(list_next_rcu(prev), new); next->prev = new; } /** * list_add_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head, head->next); } /** * list_add_tail_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_tail_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_tail_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head->prev, head); } /** * list_del_rcu - deletes entry from list without re-initialization * @entry: the element to delete from the list. * * Note: list_empty() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_del_rcu() * or list_add_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). * * Note that the caller is not permitted to immediately free * the newly deleted entry. Instead, either synchronize_rcu() * or call_rcu() must be used to defer freeing until an RCU * grace period has elapsed. */ static inline void list_del_rcu(struct list_head *entry) { __list_del_entry(entry); entry->prev = LIST_POISON2; } /** * hlist_del_init_rcu - deletes entry from hash list with re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on the node return true after this. It is * useful for RCU based read lockfree traversal if the writer side * must know if the list entry is still hashed or already unhashed. * * In particular, it means that we can not poison the forward pointers * that may still be used for walking the hash list and we can only * zero the pprev pointer so list_unhashed() will return true after * this. * * The caller must take whatever precautions are necessary (such as * holding appropriate locks) to avoid racing with another * list-mutation primitive, such as hlist_add_head_rcu() or * hlist_del_rcu(), running on this same list. However, it is * perfectly legal to run concurrently with the _rcu list-traversal * primitives, such as hlist_for_each_entry_rcu(). */ static inline void hlist_del_init_rcu(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); WRITE_ONCE(n->pprev, NULL); } } /** * list_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. * Note: @old should not be empty. */ static inline void list_replace_rcu(struct list_head *old, struct list_head *new) { new->next = old->next; new->prev = old->prev; rcu_assign_pointer(list_next_rcu(new->prev), new); new->next->prev = new; old->prev = LIST_POISON2; } /** * __list_splice_init_rcu - join an RCU-protected list into an existing list. * @list: the RCU-protected list to splice * @prev: points to the last element of the existing list * @next: points to the first element of the existing list * @sync: synchronize_rcu, synchronize_rcu_expedited, ... * * The list pointed to by @prev and @next can be RCU-read traversed * concurrently with this function. * * Note that this function blocks. * * Important note: the caller must take whatever action is necessary to prevent * any other updates to the existing list. In principle, it is possible to * modify the list as soon as sync() begins execution. If this sort of thing * becomes necessary, an alternative version based on call_rcu() could be * created. But only if -really- needed -- there is no shortage of RCU API * members. */ static inline void __list_splice_init_rcu(struct list_head *list, struct list_head *prev, struct list_head *next, void (*sync)(void)) { struct list_head *first = list->next; struct list_head *last = list->prev; /* * "first" and "last" tracking list, so initialize it. RCU readers * have access to this list, so we must use INIT_LIST_HEAD_RCU() * instead of INIT_LIST_HEAD(). */ INIT_LIST_HEAD_RCU(list); /* * At this point, the list body still points to the source list. * Wait for any readers to finish using the list before splicing * the list body into the new list. Any new readers will see * an empty list. */ sync(); ASSERT_EXCLUSIVE_ACCESS(*first); ASSERT_EXCLUSIVE_ACCESS(*last); /* * Readers are finished with the source list, so perform splice. * The order is important if the new list is global and accessible * to concurrent RCU readers. Note that RCU readers are not * permitted to traverse the prev pointers without excluding * this function. */ last->next = next; rcu_assign_pointer(list_next_rcu(prev), first); first->prev = prev; next->prev = last; } /** * list_splice_init_rcu - splice an RCU-protected list into an existing list, * designed for stacks. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head, head->next, sync); } /** * list_splice_tail_init_rcu - splice an RCU-protected list into an existing * list, designed for queues. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_tail_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head->prev, head, sync); } /** * list_entry_rcu - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_entry_rcu(ptr, type, member) \ container_of(READ_ONCE(ptr), type, member) /* * Where are list_empty_rcu() and list_first_entry_rcu()? * * They do not exist because they would lead to subtle race conditions: * * if (!list_empty_rcu(mylist)) { * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); * do_something(bar); * } * * The list might be non-empty when list_empty_rcu() checks it, but it * might have become empty by the time that list_first_entry_rcu() rereads * the ->next pointer, which would result in a SEGV. * * When not using RCU, it is OK for list_first_entry() to re-read that * pointer because both functions should be protected by some lock that * blocks writers. * * When using RCU, list_empty() uses READ_ONCE() to fetch the * RCU-protected ->next pointer and then compares it to the address of the * list head. However, it neither dereferences this pointer nor provides * this pointer to its caller. Thus, READ_ONCE() suffices (that is, * rcu_dereference() is not needed), which means that list_empty() can be * used anywhere you would want to use list_empty_rcu(). Just don't * expect anything useful to happen if you do a subsequent lockless * call to list_first_entry_rcu()!!! * * See list_first_or_null_rcu for an alternative. */ /** * list_first_or_null_rcu - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_first_or_null_rcu(ptr, type, member) \ ({ \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ }) /** * list_next_or_null_rcu - get the first element from a list * @head: the head for the list. * @ptr: the list head to take the next element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the ptr is at the end of the list, NULL is returned. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_next_or_null_rcu(head, ptr, type, member) \ ({ \ struct list_head *__head = (head); \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__next != __head) ? list_entry_rcu(__next, type, \ member) : NULL; \ }) /** * list_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define list_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define list_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_entry_lockless - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_entry_lockless(ptr, type, member) \ container_of((typeof(ptr))READ_ONCE(ptr), type, member) /** * list_for_each_entry_lockless - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_for_each_entry_lockless(pos, head, member) \ for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_continue_rcu - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position which must have been in the list when the RCU read * lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_from_rcu() except * this starts after the given position and that one starts at the given * position. */ #define list_for_each_entry_continue_rcu(pos, head, member) \ for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_from_rcu - iterate over a list from current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_node within the struct. * * Iterate over the tail of a list starting from a given position, * which must have been in the list when the RCU read lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_continue_rcu() except * this starts from the given position and that one starts from the position * after the given position. */ #define list_for_each_entry_from_rcu(pos, head, member) \ for (; &(pos)->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) /** * hlist_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry(). */ static inline void hlist_del_rcu(struct hlist_node *n) { __hlist_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. */ static inline void hlist_replace_rcu(struct hlist_node *old, struct hlist_node *new) { struct hlist_node *next = old->next; new->next = next; WRITE_ONCE(new->pprev, old->pprev); rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); if (next) WRITE_ONCE(new->next->pprev, &new->next); WRITE_ONCE(old->pprev, LIST_POISON2); } /** * hlists_swap_heads_rcu - swap the lists the hlist heads point to * @left: The hlist head on the left * @right: The hlist head on the right * * The lists start out as [@left ][node1 ... ] and * [@right ][node2 ... ] * The lists end up as [@left ][node2 ... ] * [@right ][node1 ... ] */ static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) { struct hlist_node *node1 = left->first; struct hlist_node *node2 = right->first; rcu_assign_pointer(left->first, node2); rcu_assign_pointer(right->first, node1); WRITE_ONCE(node2->pprev, &left->first); WRITE_ONCE(node1->pprev, &right->first); } /* * return the first or the next element in an RCU protected hlist */ #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) /** * hlist_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_head_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); rcu_assign_pointer(hlist_first_rcu(h), n); if (first) WRITE_ONCE(first->pprev, &n->next); } /** * hlist_add_tail_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_tail_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *i, *last = NULL; /* Note: write side code, so rcu accessors are not needed. */ for (i = h->first; i; i = i->next) last = i; if (last) { n->next = last->next; WRITE_ONCE(n->pprev, &last->next); rcu_assign_pointer(hlist_next_rcu(last), n); } else { hlist_add_head_rcu(n, h); } } /** * hlist_add_before_rcu * @n: the new element to add to the hash list. * @next: the existing element to add the new element before. * * Description: * Adds the specified element to the specified hlist * before the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_before_rcu(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); n->next = next; rcu_assign_pointer(hlist_pprev_rcu(n), n); WRITE_ONCE(next->pprev, &n->next); } /** * hlist_add_behind_rcu * @n: the new element to add to the hash list. * @prev: the existing element to add the new element after. * * Description: * Adds the specified element to the specified hlist * after the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_behind_rcu(struct hlist_node *n, struct hlist_node *prev) { n->next = prev->next; WRITE_ONCE(n->pprev, &prev->next); rcu_assign_pointer(hlist_next_rcu(prev), n); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } #define __hlist_for_each_rcu(pos, head) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos; \ pos = rcu_dereference(hlist_next_rcu(pos))) /** * hlist_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define hlist_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). * * This is the same as hlist_for_each_entry_rcu() except that it does * not do any RCU debugging or tracing. */ #define hlist_for_each_entry_rcu_notrace(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu_bh(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu_bh(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from_rcu(pos, member) \ for (; pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) #endif /* __KERNEL__ */ #endif |
427 427 187 187 186 1024 3141 187 71 69 71 71 63 71 16 68 70 8 71 71 70 71 71 71 71 71 71 71 71 471 469 22 22 249 249 250 249 503 481 250 252 272 250 250 250 250 250 249 249 250 249 250 248 248 250 248 250 249 250 248 250 250 248 250 250 250 250 250 249 250 250 250 249 246 249 250 250 250 250 248 250 74 75 75 74 72 75 75 75 75 75 74 75 75 75 75 74 75 75 75 75 67 75 75 7 75 75 75 75 75 75 75 75 71 74 74 75 71 654 656 654 656 656 656 4307 4305 4309 1503 4310 4310 4316 4307 4299 4303 1506 4316 4307 4310 4304 4305 4305 4316 4309 4309 4316 4303 4316 4308 4306 1504 200 3112 40 95 95 434 432 239 200 433 433 7 200 238 434 433 431 237 200 200 433 237 200 200 484 484 238 250 251 94 95 94 200 32 33 32 2818 2077 1 2084 775 773 774 776 2 776 2 8 8 8 40 40 40 40 23 17 40 40 8 40 40 8 249 2716 2831 40 484 2 2 479 4 3142 3144 3145 3146 3149 3148 3146 3157 8 8 3150 3150 3141 3157 2936 264 3158 2933 264 264 3150 248 250 363 366 365 1 11 11 11 11 11 16119 396 16107 483 483 69 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NUMA unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif #ifndef arch_wants_old_prefaulted_pte static inline bool arch_wants_old_prefaulted_pte(void) { /* * Transitioning a PTE from 'old' to 'young' can be expensive on * some architectures, even if it's performed in hardware. By * default, "false" means prefaulted entries will be 'young'. */ return false; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif static void restore_exclusive_pte(struct vm_area_struct *vma, struct page *page, unsigned long address, pte_t *ptep) { pte_t pte; swp_entry_t entry; pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); if (pte_swp_soft_dirty(*ptep)) pte = pte_mksoft_dirty(pte); entry = pte_to_swp_entry(*ptep); if (pte_swp_uffd_wp(*ptep)) pte = pte_mkuffd_wp(pte); else if (is_writable_device_exclusive_entry(entry)) pte = maybe_mkwrite(pte_mkdirty(pte), vma); set_pte_at(vma->vm_mm, address, ptep, pte); /* * No need to take a page reference as one was already * created when the swap entry was made. */ if (PageAnon(page)) page_add_anon_rmap(page, vma, address, false); else /* * Currently device exclusive access only supports anonymous * memory so the entry shouldn't point to a filebacked page. */ WARN_ON_ONCE(!PageAnon(page)); if (vma->vm_flags & VM_LOCKED) mlock_vma_page(page); /* * No need to invalidate - it was non-present before. However * secondary CPUs may have mappings that need invalidating. */ update_mmu_cache(vma, address, ptep); } /* * Tries to restore an exclusive pte if the page lock can be acquired without * sleeping. */ static int try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr) { swp_entry_t entry = pte_to_swp_entry(*src_pte); struct page *page = pfn_swap_entry_to_page(entry); if (trylock_page(page)) { restore_exclusive_pte(vma, page, addr, src_pte); unlock_page(page); return 0; } return -EBUSY; } /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return -EIO; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = pfn_swap_entry_to_page(entry); rss[mm_counter(page)]++; if (is_writable_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ entry = make_readable_migration_entry( swp_offset(entry)); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = pfn_swap_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_writable_device_private_entry(entry) && is_cow_mapping(vm_flags)) { entry = make_readable_device_private_entry( swp_offset(entry)); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_exclusive_entry(entry)) { /* * Make device exclusive entries present by restoring the * original entry then copying as for a present pte. Device * exclusive entries currently only support private writable * (ie. COW) mappings. */ VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); if (try_restore_exclusive_pte(src_pte, src_vma, addr)) return -EBUSY; return -ENOENT; } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct page *new_page; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!page_needs_cow_for_dma(src_vma, page))) return 1; /* * The vma->anon_vma of the child process may be NULL * because the entire vma does not contain anonymous pages. * A BUG will occur when the copy_present_page() passes * a copy of a non-anonymous page of that vma to the * page_add_new_anon_rmap() to set up new anonymous rmap. * Return 1 if the page is not an anonymous page. */ if (!PageAnon(page)) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { ret = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (ret == -EIO) { entry = pte_to_swp_entry(*src_pte); break; } else if (ret == -EBUSY) { break; } else if (!ret) { progress += 8; continue; } /* * Device exclusive entry restored, continue by copying * the now present pte. */ WARN_ON_ONCE(ret != -ENOENT); } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (ret == -EIO) { VM_WARN_ON_ONCE(!entry.val); if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret == -EBUSY) { goto out; } else if (ret == -EAGAIN) { prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; } else if (ret) { VM_WARN_ON_ONCE(1); } /* We've captured and resolved the error. Reset, try again. */ ret = 0; if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } /* Whether we should zap all COWed (private) pages too */ static inline bool should_zap_cows(struct zap_details *details) { /* By default, zap all pages */ if (!details) return true; /* Or, we zap COWed pages only if the caller wants to */ return !details->check_mapping; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry) || is_device_exclusive_entry(entry)) { struct page *page = pfn_swap_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; if (is_device_private_entry(entry)) page_remove_rmap(page, false); put_page(page); continue; } if (!non_swap_entry(entry)) { /* Genuine swap entry, hence a private anon page */ if (!should_zap_cows(details)) continue; rss[MM_SWAPENTS]--; } else if (is_migration_entry(entry)) { struct page *page; page = pfn_swap_entry_to_page(entry); if (details && details->check_mapping && details->check_mapping != page_rmapping(page)) continue; rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pgd++, addr = next, addr != end); return 0; } /* * Variant of remap_pfn_range that does not call track_pfn_remap. The caller * must have pre-validated the caching bits of the pgprot_t. */ int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); if (!error) return 0; /* * A partial pfn range mapping is dangerous: it does not * maintain page reference counts, and callers may free * pages due to the error. So zap it early. */ zap_page_range_single(vma, addr, size, NULL); return error; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { int err; err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); if (err) untrack_pfn(vma, pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte, *mapped_pte; int err = 0; spinlock_t *ptl; if (create) { mapped_pte = pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { mapped_pte = pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(mapped_pte, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (pmd_none(*pmd) && !create) continue; if (WARN_ON_ONCE(pmd_leaf(*pmd))) return -EINVAL; if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { if (!create) continue; pmd_clear_bad(pmd); } err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (pud_none(*pud) && !create) continue; if (WARN_ON_ONCE(pud_leaf(*pud))) return -EINVAL; if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { if (!create) continue; pud_clear_bad(pud); } err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (p4d_none(*p4d) && !create) continue; if (WARN_ON_ONCE(p4d_leaf(*p4d))) return -EINVAL; if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { if (!create) continue; p4d_clear_bad(p4d); } err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none(*pgd) && !create) continue; if (WARN_ON_ONCE(pgd_leaf(*pgd))) return -EINVAL; if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { if (!create) continue; pgd_clear_bad(pgd); } err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } /* * Return: * 0: copied succeeded * -EHWPOISON: copy failed due to hwpoison in source page * -EAGAIN: copied failed (some other reason) */ static inline int cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { int ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { if (copy_mc_user_highpage(dst, src, addr, vma)) { memory_failure_queue(page_to_pfn(src), 0); return -EHWPOISON; } return 0; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = -EAGAIN; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = -EAGAIN; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = 0; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; int ret; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; ret = cow_user_page(new_page, old_page, vmf); if (ret) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. * The -EHWPOISON case will not be retried. */ put_page(new_page); if (old_page) put_page(old_page); return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry, to keep TLBs on different CPUs in * sync. This code used to set the new PTE then flush TLBs, but * that left a window where the new PTE could be loaded into * some TLBs while the old PTE remains in others. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } if (page_copied) free_swap_cache(old_page); put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } EXPORT_SYMBOL_GPL(unmap_mapping_pages); /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * Restore a potential device exclusive pte to a working pte entry */ static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) { struct page *page = vmf->page; struct vm_area_struct *vma = vmf->vma; struct mmu_notifier_range range; /* * We need a reference to lock the page because we don't hold * the PTL so a racing thread can remove the device-exclusive * entry and unmap it. If the page is free the entry must * have been removed already. If it happens to have already * been re-allocated after being freed all we do is lock and * unlock it. */ if (!get_page_unless_zero(page)) return 0; if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { put_page(page); return VM_FAULT_RETRY; } mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, vma->vm_mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); mmu_notifier_invalidate_range_start(&range); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) restore_exclusive_pte(vma, page, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); unlock_page(page); put_page(page); mmu_notifier_invalidate_range_end(&range); return 0; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; struct swap_info_struct *si = NULL; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_exclusive_entry(entry)) { vmf->page = pfn_swap_entry_to_page(entry); ret = remove_device_exclusive_entry(vmf); } else if (is_device_private_entry(entry)) { vmf->page = pfn_swap_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } /* Prevent swapoff from happening to us. */ si = get_swap_device(entry); if (unlikely(!si)) goto out; delayacct_set_flag(current, DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { __SetPageLocked(page); __SetPageSwapBacked(page); if (mem_cgroup_swapin_charge_page(page, vma->vm_mm, GFP_KERNEL, entry)) { ret = VM_FAULT_OOM; goto out_page; } mem_cgroup_swapin_uncharge_swap(entry); shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); /* To provide entry to swap_readpage() */ set_page_private(page, entry.val); swap_readpage(page, true); set_page_private(page, 0); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: if (si) put_swap_device(si); return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } if (si) put_swap_device(si); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See comment in handle_pte_fault() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { struct page *page = vmf->page; vm_fault_t poisonret = VM_FAULT_HWPOISON; if (ret & VM_FAULT_LOCKED) { if (page_mapped(page)) unmap_mapping_pages(page_mapping(page), page->index, 1, false); /* Retry if a clean page was removed from the cache. */ if (invalidate_inode_page(page)) poisonret = VM_FAULT_NOPAGE; unlock_page(page); } put_page(page); vmf->page = NULL; return poisonret; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Just backoff if any subpage of a THP is corrupted otherwise * the corrupted page may mapped by PMD silently to escape the * check. This kind of THP just can be PTE mapped. Access to * the corrupted subpage should trigger SIGBUS as expected. */ if (unlikely(PageHasHWPoisoned(page))) return ret; /* * Archs like ppc64 need additional space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { return VM_FAULT_FALLBACK; } #endif void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; bool prefault = vmf->address != addr; pte_t entry; flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); if (prefault && arch_wants_old_prefaulted_pte()) entry = pte_mkold(entry); else entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, addr, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, addr, vmf->pte, entry); } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vma->vm_flags & VM_SHARED)) { ret = check_stable_address_space(vma->vm_mm); if (ret) return ret; } if (pmd_none(*vmf->pmd)) { if (PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (likely(pmd_none(*vmf->pmd))) { mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } spin_unlock(vmf->ptl); } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } } /* * See comment in handle_pte_fault() for how this scenario happens, we * need to return NOPAGE so that we drop this page. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); ret = 0; /* Re-check under ptl */ if (likely(pte_none(*vmf->pte))) do_set_pte(vmf, page, vmf->address); else ret = VM_FAULT_NOPAGE; update_mmu_tlb(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; address = max(address & mask, vmf->vma->vm_start); off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { if (likely(!userfaultfd_minor(vmf->vma))) { ret = do_fault_around(vmf); if (ret) return ret; } } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* Get the normal PTE */ old_pte = ptep_get(vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); page = vm_normal_page(vma, vmf->address, pte); if (!page) goto out_map; /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) goto out_map; /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!was_writable) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out_map; } pte_unmap_unlock(vmf->pte, vmf->ptl); /* Migrate to the requested node */ if (migrate_misplaced_page(page, vma, target_nid)) { page_nid = target_nid; flags |= TNF_MIGRATED; task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } flags |= TNF_MIGRATE_FAIL; vmf->pte = pte_offset_map(vmf->pmd, vmf->address); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } out_map: /* * Make it present again, depending on how arch implements * non-accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead * of pmd_trans_huge() to ensure the pmd didn't become * pmd_trans_huge under us and then back to pmd_none, as a * result of MADV_DONTNEED running immediately after a huge pmd * fault in a different thread of this mm, in turn leading to a * misleading pmd_trans_huge() retval. All we have to ensure is * that it is a regular pmd that we can walk with * pte_offset_map() and we can do that through an atomic read * in C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { vmf.orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(vmf.orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(vmf.orig_pmd)); if (is_pmd_migration_entry(vmf.orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf); if (dirty && !pmd_write(vmf.orig_pmd)) { ret = wp_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accounting * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accounting. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; /* Never return PFNs of anon folios in COW mappings. */ if (vm_normal_page(vma, address, pte)) goto unlock; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } /** * generic_access_phys - generic implementation for iomem mmap access * @vma: the vma to access * @addr: userspace address, not relative offset within @vma * @buf: buffer to read/write * @len: length of transfer * @write: set to FOLL_WRITE when writing, otherwise reading * * This is a generic implementation for &vm_operations_struct.access for an * iomem mapping. This callback is used by access_process_vm() when the @vma is * not page based. */ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; pte_t *ptep, pte; spinlock_t *ptl; int offset = offset_in_page(addr); int ret = -EINVAL; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return -EINVAL; retry: if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) return -EINVAL; pte = *ptep; pte_unmap_unlock(ptep, ptl); prot = pgprot_val(pte_pgprot(pte)); phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; if ((write & FOLL_WRITE) && !pte_write(pte)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) goto out_unmap; if (!pte_same(pte, *ptep)) { pte_unmap_unlock(ptep, ptl); iounmap(maddr); goto retry; } if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); ret = len; pte_unmap_unlock(ptep, ptl); out_unmap: iounmap(maddr); return ret; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. */ int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = vma_lookup(mm, addr); if (!vma) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(¤t->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; flush_dcache_page(subpage); cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif |
1274 1273 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Derived from arch/ppc/mm/extable.c and arch/i386/mm/extable.c. * * Copyright (C) 2004 Paul Mackerras, IBM Corp. */ #include <linux/bsearch.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/uaccess.h> #include <linux/extable.h> #ifndef ARCH_HAS_RELATIVE_EXTABLE #define ex_to_insn(x) ((x)->insn) #else static inline unsigned long ex_to_insn(const struct exception_table_entry *x) { return (unsigned long)&x->insn + x->insn; } #endif #ifndef ARCH_HAS_RELATIVE_EXTABLE #define swap_ex NULL #else static void swap_ex(void *a, void *b, int size) { struct exception_table_entry *x = a, *y = b, tmp; int delta = b - a; tmp = *x; x->insn = y->insn + delta; y->insn = tmp.insn - delta; #ifdef swap_ex_entry_fixup swap_ex_entry_fixup(x, y, tmp, delta); #else x->fixup = y->fixup + delta; y->fixup = tmp.fixup - delta; #endif } #endif /* ARCH_HAS_RELATIVE_EXTABLE */ /* * The exception table needs to be sorted so that the binary * search that we use to find entries in it works properly. * This is used both for the kernel exception table and for * the exception tables of modules that get loaded. */ static int cmp_ex_sort(const void *a, const void *b) { const struct exception_table_entry *x = a, *y = b; /* avoid overflow */ if (ex_to_insn(x) > ex_to_insn(y)) return 1; if (ex_to_insn(x) < ex_to_insn(y)) return -1; return 0; } void sort_extable(struct exception_table_entry *start, struct exception_table_entry *finish) { sort(start, finish - start, sizeof(struct exception_table_entry), cmp_ex_sort, swap_ex); } #ifdef CONFIG_MODULES /* * If the exception table is sorted, any referring to the module init * will be at the beginning or the end. */ void trim_init_extable(struct module *m) { /*trim the beginning*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[0]), m)) { m->extable++; m->num_exentries--; } /*trim the end*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[m->num_exentries - 1]), m)) m->num_exentries--; } #endif /* CONFIG_MODULES */ static int cmp_ex_search(const void *key, const void *elt) { const struct exception_table_entry *_elt = elt; unsigned long _key = *(unsigned long *)key; /* avoid overflow */ if (_key > ex_to_insn(_elt)) return 1; if (_key < ex_to_insn(_elt)) return -1; return 0; } /* * Search one exception table for an entry corresponding to the * given instruction address, and return the address of the entry, * or NULL if none is found. * We use a binary search, and thus we assume that the table is * already sorted. */ const struct exception_table_entry * search_extable(const struct exception_table_entry *base, const size_t num, unsigned long value) { return bsearch(&value, base, num, sizeof(struct exception_table_entry), cmp_ex_search); } |
45 45 45 45 45 45 45 45 45 45 8 8 25 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 | // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <crypto/algapi.h> #include <crypto/sha2.h> #include <net/sock.h> #include <net/inet_common.h> #include <net/inet_hashtables.h> #include <net/protocol.h> #include <net/tcp.h> #if IS_ENABLED(CONFIG_MPTCP_IPV6) #include <net/ip6_route.h> #include <net/transp_v6.h> #endif #include <net/mptcp.h> #include <uapi/linux/mptcp.h> #include "protocol.h" #include "mib.h" #include <trace/events/mptcp.h> static void mptcp_subflow_ops_undo_override(struct sock *ssk); static void SUBFLOW_REQ_INC_STATS(struct request_sock *req, enum linux_mptcp_mib_field field) { MPTCP_INC_STATS(sock_net(req_to_sk(req)), field); } static void subflow_req_destructor(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); pr_debug("subflow_req=%p\n", subflow_req); if (subflow_req->msk) sock_put((struct sock *)subflow_req->msk); mptcp_token_destroy_request(req); } static void subflow_generate_hmac(u64 key1, u64 key2, u32 nonce1, u32 nonce2, void *hmac) { u8 msg[8]; put_unaligned_be32(nonce1, &msg[0]); put_unaligned_be32(nonce2, &msg[4]); mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac); } static bool mptcp_can_accept_new_subflow(const struct mptcp_sock *msk) { return mptcp_is_fully_established((void *)msk) && READ_ONCE(msk->pm.accept_subflow); } /* validate received token and create truncated hmac and nonce for SYN-ACK */ static void subflow_req_create_thmac(struct mptcp_subflow_request_sock *subflow_req) { struct mptcp_sock *msk = subflow_req->msk; u8 hmac[SHA256_DIGEST_SIZE]; get_random_bytes(&subflow_req->local_nonce, sizeof(u32)); subflow_generate_hmac(msk->local_key, msk->remote_key, subflow_req->local_nonce, subflow_req->remote_nonce, hmac); subflow_req->thmac = get_unaligned_be64(hmac); } static struct mptcp_sock *subflow_token_join_request(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_sock *msk; int local_id; msk = mptcp_token_get_sock(sock_net(req_to_sk(req)), subflow_req->token); if (!msk) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINNOTOKEN); return NULL; } local_id = mptcp_pm_get_local_id(msk, (struct sock_common *)req); if (local_id < 0) { sock_put((struct sock *)msk); return NULL; } subflow_req->local_id = local_id; subflow_req->request_bkup = mptcp_pm_is_backup(msk, (struct sock_common *)req); return msk; } static void subflow_init_req(struct request_sock *req, const struct sock *sk_listener) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); subflow_req->mp_capable = 0; subflow_req->mp_join = 0; subflow_req->csum_reqd = mptcp_is_checksum_enabled(sock_net(sk_listener)); subflow_req->allow_join_id0 = mptcp_allow_join_id0(sock_net(sk_listener)); subflow_req->msk = NULL; mptcp_token_init_request(req); } static bool subflow_use_different_sport(struct mptcp_sock *msk, const struct sock *sk) { return inet_sk(sk)->inet_sport != inet_sk((struct sock *)msk)->inet_sport; } static void subflow_add_reset_reason(struct sk_buff *skb, u8 reason) { struct mptcp_ext *mpext = skb_ext_add(skb, SKB_EXT_MPTCP); if (mpext) { memset(mpext, 0, sizeof(*mpext)); mpext->reset_reason = reason; } } static int subflow_reset_req_endp(struct request_sock *req, struct sk_buff *skb) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEENDPATTEMPT); subflow_add_reset_reason(skb, MPTCP_RST_EPROHIBIT); return -EPERM; } /* Init mptcp request socket. * * Returns an error code if a JOIN has failed and a TCP reset * should be sent. */ static int subflow_check_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener); struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_options_received mp_opt; bool opt_mp_capable, opt_mp_join; pr_debug("subflow_req=%p, listener=%p\n", subflow_req, listener); #ifdef CONFIG_TCP_MD5SIG /* no MPTCP if MD5SIG is enabled on this socket or we may run out of * TCP option space. */ if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info)) return -EINVAL; #endif mptcp_get_options(skb, &mp_opt); opt_mp_capable = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPC); opt_mp_join = !!(mp_opt.suboptions & OPTION_MPTCP_MPJ_SYN); if (opt_mp_capable) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEPASSIVE); if (unlikely(listener->pm_listener)) return subflow_reset_req_endp(req, skb); if (opt_mp_join) return 0; } else if (opt_mp_join) { SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNRX); if (mp_opt.backup) SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNBACKUPRX); } else if (unlikely(listener->pm_listener)) { return subflow_reset_req_endp(req, skb); } if (opt_mp_capable && listener->request_mptcp) { int err, retries = MPTCP_TOKEN_MAX_RETRIES; subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq; again: do { get_random_bytes(&subflow_req->local_key, sizeof(subflow_req->local_key)); } while (subflow_req->local_key == 0); if (unlikely(req->syncookie)) { |