52 54 54 52 52 203 203 2119 2119 887 889 860 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005-2010 IBM Corporation * * Author: * Mimi Zohar <zohar@us.ibm.com> * Kylene Hall <kjhall@us.ibm.com> * * File: evm_main.c * implements evm_inode_setxattr, evm_inode_post_setxattr, * evm_inode_removexattr, evm_verifyxattr, and evm_inode_set_acl. */ #define pr_fmt(fmt) "EVM: "fmt #include <linux/init.h> #include <linux/audit.h> #include <linux/xattr.h> #include <linux/integrity.h> #include <linux/evm.h> #include <linux/magic.h> #include <linux/posix_acl_xattr.h> #include <linux/lsm_hooks.h> #include <crypto/hash.h> #include <crypto/hash_info.h> #include <crypto/utils.h> #include "evm.h" int evm_initialized; static const char * const integrity_status_msg[] = { "pass", "pass_immutable", "fail", "fail_immutable", "no_label", "no_xattrs", "unknown" }; int evm_hmac_attrs; static struct xattr_list evm_config_default_xattrnames[] = { { .name = XATTR_NAME_SELINUX, .enabled = IS_ENABLED(CONFIG_SECURITY_SELINUX) }, { .name = XATTR_NAME_SMACK, .enabled = IS_ENABLED(CONFIG_SECURITY_SMACK) }, { .name = XATTR_NAME_SMACKEXEC, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_SMACKTRANSMUTE, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_SMACKMMAP, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_APPARMOR, .enabled = IS_ENABLED(CONFIG_SECURITY_APPARMOR) }, { .name = XATTR_NAME_IMA, .enabled = IS_ENABLED(CONFIG_IMA_APPRAISE) }, { .name = XATTR_NAME_CAPS, .enabled = true }, }; LIST_HEAD(evm_config_xattrnames); static int evm_fixmode __ro_after_init; static int __init evm_set_fixmode(char *str) { if (strncmp(str, "fix", 3) == 0) evm_fixmode = 1; else pr_err("invalid \"%s\" mode", str); return 1; } __setup("evm=", evm_set_fixmode); static void __init evm_init_config(void) { int i, xattrs; xattrs = ARRAY_SIZE(evm_config_default_xattrnames); pr_info("Initialising EVM extended attributes:\n"); for (i = 0; i < xattrs; i++) { pr_info("%s%s\n", evm_config_default_xattrnames[i].name, !evm_config_default_xattrnames[i].enabled ? " (disabled)" : ""); list_add_tail(&evm_config_default_xattrnames[i].list, &evm_config_xattrnames); } #ifdef CONFIG_EVM_ATTR_FSUUID evm_hmac_attrs |= EVM_ATTR_FSUUID; #endif pr_info("HMAC attrs: 0x%x\n", evm_hmac_attrs); } static bool evm_key_loaded(void) { return (bool)(evm_initialized & EVM_KEY_MASK); } /* * This function determines whether or not it is safe to ignore verification * errors, based on the ability of EVM to calculate HMACs. If the HMAC key * is not loaded, and it cannot be loaded in the future due to the * EVM_SETUP_COMPLETE initialization flag, allowing an operation despite the * attrs/xattrs being found invalid will not make them valid. */ static bool evm_hmac_disabled(void) { if (evm_initialized & EVM_INIT_HMAC) return false; if (!(evm_initialized & EVM_SETUP_COMPLETE)) return false; return true; } static int evm_find_protected_xattrs(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); struct xattr_list *xattr; int error; int count = 0; if (!(inode->i_opflags & IOP_XATTR)) return -EOPNOTSUPP; list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { error = __vfs_getxattr(dentry, inode, xattr->name, NULL, 0); if (error < 0) { if (error == -ENODATA) continue; return error; } count++; } return count; } static int is_unsupported_hmac_fs(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); if (inode->i_sb->s_iflags & SB_I_EVM_HMAC_UNSUPPORTED) { pr_info_once("%s not supported\n", inode->i_sb->s_type->name); return 1; } return 0; } /* * evm_verify_hmac - calculate and compare the HMAC with the EVM xattr * * Compute the HMAC on the dentry's protected set of extended attributes * and compare it against the stored security.evm xattr. * * For performance: * - use the previoulsy retrieved xattr value and length to calculate the * HMAC.) * - cache the verification result in the iint, when available. * * Returns integrity status */ static enum integrity_status evm_verify_hmac(struct dentry *dentry, const char *xattr_name, char *xattr_value, size_t xattr_value_len) { struct evm_ima_xattr_data *xattr_data = NULL; struct signature_v2_hdr *hdr; enum integrity_status evm_status = INTEGRITY_PASS; struct evm_digest digest; struct inode *inode = d_backing_inode(dentry); struct evm_iint_cache *iint = evm_iint_inode(inode); int rc, xattr_len, evm_immutable = 0; if (iint && (iint->evm_status == INTEGRITY_PASS || iint->evm_status == INTEGRITY_PASS_IMMUTABLE)) return iint->evm_status; /* * On unsupported filesystems without EVM_INIT_X509 enabled, skip * signature verification. */ if (!(evm_initialized & EVM_INIT_X509) && is_unsupported_hmac_fs(dentry)) return INTEGRITY_UNKNOWN; /* if status is not PASS, try to check again - against -ENOMEM */ /* first need to know the sig type */ rc = vfs_getxattr_alloc(&nop_mnt_idmap, dentry, XATTR_NAME_EVM, (char **)&xattr_data, 0, GFP_NOFS); if (rc <= 0) { evm_status = INTEGRITY_FAIL; if (rc == -ENODATA) { rc = evm_find_protected_xattrs(dentry); if (rc > 0) evm_status = INTEGRITY_NOLABEL; else if (rc == 0) evm_status = INTEGRITY_NOXATTRS; /* new file */ } else if (rc == -EOPNOTSUPP) { evm_status = INTEGRITY_UNKNOWN; } goto out; } xattr_len = rc; /* check value type */ switch (xattr_data->type) { case EVM_XATTR_HMAC: if (xattr_len != sizeof(struct evm_xattr)) { evm_status = INTEGRITY_FAIL; goto out; } digest.hdr.algo = HASH_ALGO_SHA1; rc = evm_calc_hmac(dentry, xattr_name, xattr_value, xattr_value_len, &digest, iint); if (rc) break; rc = crypto_memneq(xattr_data->data, digest.digest, SHA1_DIGEST_SIZE); if (rc) rc = -EINVAL; break; case EVM_XATTR_PORTABLE_DIGSIG: evm_immutable = 1; fallthrough; case EVM_IMA_XATTR_DIGSIG: /* accept xattr with non-empty signature field */ if (xattr_len <= sizeof(struct signature_v2_hdr)) { evm_status = INTEGRITY_FAIL; goto out; } hdr = (struct signature_v2_hdr *)xattr_data; digest.hdr.algo = hdr->hash_algo; rc = evm_calc_hash(dentry, xattr_name, xattr_value, xattr_value_len, xattr_data->type, &digest, iint); if (rc) break; rc = integrity_digsig_verify(INTEGRITY_KEYRING_EVM, (const char *)xattr_data, xattr_len, digest.digest, digest.hdr.length); if (!rc) { if (xattr_data->type == EVM_XATTR_PORTABLE_DIGSIG) { if (iint) iint->flags |= EVM_IMMUTABLE_DIGSIG; evm_status = INTEGRITY_PASS_IMMUTABLE; } else if (!IS_RDONLY(inode) && !(inode->i_sb->s_readonly_remount) && !IS_IMMUTABLE(inode) && !is_unsupported_hmac_fs(dentry)) { evm_update_evmxattr(dentry, xattr_name, xattr_value, xattr_value_len); } } break; default: rc = -EINVAL; break; } if (rc) { if (rc == -ENODATA) evm_status = INTEGRITY_NOXATTRS; else if (evm_immutable) evm_status = INTEGRITY_FAIL_IMMUTABLE; else evm_status = INTEGRITY_FAIL; } pr_debug("digest: (%d) [%*phN]\n", digest.hdr.length, digest.hdr.length, digest.digest); out: if (iint) iint->evm_status = evm_status; kfree(xattr_data); return evm_status; } static int evm_protected_xattr_common(const char *req_xattr_name, bool all_xattrs) { int namelen; int found = 0; struct xattr_list *xattr; namelen = strlen(req_xattr_name); list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { if (!all_xattrs && !xattr->enabled) continue; if ((strlen(xattr->name) == namelen) && (strncmp(req_xattr_name, xattr->name, namelen) == 0)) { found = 1; break; } if (strncmp(req_xattr_name, xattr->name + XATTR_SECURITY_PREFIX_LEN, strlen(req_xattr_name)) == 0) { found = 1; break; } } return found; } int evm_protected_xattr(const char *req_xattr_name) { return evm_protected_xattr_common(req_xattr_name, false); } int evm_protected_xattr_if_enabled(const char *req_xattr_name) { return evm_protected_xattr_common(req_xattr_name, true); } /** * evm_read_protected_xattrs - read EVM protected xattr names, lengths, values * @dentry: dentry of the read xattrs * @buffer: buffer xattr names, lengths or values are copied to * @buffer_size: size of buffer * @type: n: names, l: lengths, v: values * @canonical_fmt: data format (true: little endian, false: native format) * * Read protected xattr names (separated by |), lengths (u32) or values for a * given dentry and return the total size of copied data. If buffer is NULL, * just return the total size. * * Returns the total size on success, a negative value on error. */ int evm_read_protected_xattrs(struct dentry *dentry, u8 *buffer, int buffer_size, char type, bool canonical_fmt) { struct xattr_list *xattr; int rc, size, total_size = 0; list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { rc = __vfs_getxattr(dentry, d_backing_inode(dentry), xattr->name, NULL, 0); if (rc < 0 && rc == -ENODATA) continue; else if (rc < 0) return rc; switch (type) { case 'n': size = strlen(xattr->name) + 1; if (buffer) { if (total_size) *(buffer + total_size - 1) = '|'; memcpy(buffer + total_size, xattr->name, size); } break; case 'l': size = sizeof(u32); if (buffer) { if (canonical_fmt) rc = (__force int)cpu_to_le32(rc); *(u32 *)(buffer + total_size) = rc; } break; case 'v': size = rc; if (buffer) { rc = __vfs_getxattr(dentry, d_backing_inode(dentry), xattr->name, buffer + total_size, buffer_size - total_size); if (rc < 0) return rc; } break; default: return -EINVAL; } total_size += size; } return total_size; } /** * evm_verifyxattr - verify the integrity of the requested xattr * @dentry: object of the verify xattr * @xattr_name: requested xattr * @xattr_value: requested xattr value * @xattr_value_len: requested xattr value length * * Calculate the HMAC for the given dentry and verify it against the stored * security.evm xattr. For performance, use the xattr value and length * previously retrieved to calculate the HMAC. * * Returns the xattr integrity status. * * This function requires the caller to lock the inode's i_mutex before it * is executed. */ enum integrity_status evm_verifyxattr(struct dentry *dentry, const char *xattr_name, void *xattr_value, size_t xattr_value_len) { if (!evm_key_loaded() || !evm_protected_xattr(xattr_name)) return INTEGRITY_UNKNOWN; return evm_verify_hmac(dentry, xattr_name, xattr_value, xattr_value_len); } EXPORT_SYMBOL_GPL(evm_verifyxattr); /* * evm_verify_current_integrity - verify the dentry's metadata integrity * @dentry: pointer to the affected dentry * * Verify and return the dentry's metadata integrity. The exceptions are * before EVM is initialized or in 'fix' mode. */ static enum integrity_status evm_verify_current_integrity(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); if (!evm_key_loaded() || !S_ISREG(inode->i_mode) || evm_fixmode) return INTEGRITY_PASS; return evm_verify_hmac(dentry, NULL, NULL, 0); } /* * evm_xattr_change - check if passed xattr value differs from current value * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: requested xattr * @xattr_value: requested xattr value * @xattr_value_len: requested xattr value length * * Check if passed xattr value differs from current value. * * Returns 1 if passed xattr value differs from current value, 0 otherwise. */ static int evm_xattr_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len) { char *xattr_data = NULL; int rc = 0; rc = vfs_getxattr_alloc(&nop_mnt_idmap, dentry, xattr_name, &xattr_data, 0, GFP_NOFS); if (rc < 0) { rc = 1; goto out; } if (rc == xattr_value_len) rc = !!memcmp(xattr_value, xattr_data, rc); else rc = 1; out: kfree(xattr_data); return rc; } /* * evm_protect_xattr - protect the EVM extended attribute * * Prevent security.evm from being modified or removed without the * necessary permissions or when the existing value is invalid. * * The posix xattr acls are 'system' prefixed, which normally would not * affect security.evm. An interesting side affect of writing posix xattr * acls is their modifying of the i_mode, which is included in security.evm. * For posix xattr acls only, permit security.evm, even if it currently * doesn't exist, to be updated unless the EVM signature is immutable. */ static int evm_protect_xattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len) { enum integrity_status evm_status; if (strcmp(xattr_name, XATTR_NAME_EVM) == 0) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (is_unsupported_hmac_fs(dentry)) return -EPERM; } else if (!evm_protected_xattr(xattr_name)) { if (!posix_xattr_acl(xattr_name)) return 0; if (is_unsupported_hmac_fs(dentry)) return 0; evm_status = evm_verify_current_integrity(dentry); if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS)) return 0; goto out; } else if (is_unsupported_hmac_fs(dentry)) return 0; evm_status = evm_verify_current_integrity(dentry); if (evm_status == INTEGRITY_NOXATTRS) { struct evm_iint_cache *iint; /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled()) return 0; iint = evm_iint_inode(d_backing_inode(dentry)); if (iint && (iint->flags & EVM_NEW_FILE)) return 0; /* exception for pseudo filesystems */ if (dentry->d_sb->s_magic == TMPFS_MAGIC || dentry->d_sb->s_magic == SYSFS_MAGIC) return 0; integrity_audit_msg(AUDIT_INTEGRITY_METADATA, dentry->d_inode, dentry->d_name.name, "update_metadata", integrity_status_msg[evm_status], -EPERM, 0); } out: /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN)) return 0; /* * Writing other xattrs is safe for portable signatures, as portable * signatures are immutable and can never be updated. */ if (evm_status == INTEGRITY_FAIL_IMMUTABLE) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_xattr_change(idmap, dentry, xattr_name, xattr_value, xattr_value_len)) return 0; if (evm_status != INTEGRITY_PASS && evm_status != INTEGRITY_PASS_IMMUTABLE) integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return evm_status == INTEGRITY_PASS ? 0 : -EPERM; } /** * evm_inode_setxattr - protect the EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * @xattr_value: pointer to the new extended attribute value * @xattr_value_len: pointer to the new extended attribute value length * @flags: flags to pass into filesystem operations * * Before allowing the 'security.evm' protected xattr to be updated, * verify the existing value is valid. As only the kernel should have * access to the EVM encrypted key needed to calculate the HMAC, prevent * userspace from writing HMAC value. Writing 'security.evm' requires * requires CAP_SYS_ADMIN privileges. */ static int evm_inode_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len, int flags) { const struct evm_ima_xattr_data *xattr_data = xattr_value; /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; if (strcmp(xattr_name, XATTR_NAME_EVM) == 0) { if (!xattr_value_len) return -EINVAL; if (xattr_data->type != EVM_IMA_XATTR_DIGSIG && xattr_data->type != EVM_XATTR_PORTABLE_DIGSIG) return -EPERM; } return evm_protect_xattr(idmap, dentry, xattr_name, xattr_value, xattr_value_len); } /** * evm_inode_removexattr - protect the EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * * Removing 'security.evm' requires CAP_SYS_ADMIN privileges and that * the current value is valid. */ static int evm_inode_removexattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name) { /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; return evm_protect_xattr(idmap, dentry, xattr_name, NULL, 0); } #ifdef CONFIG_FS_POSIX_ACL static int evm_inode_set_acl_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct posix_acl *kacl) { int rc; umode_t mode; struct inode *inode = d_backing_inode(dentry); if (!kacl) return 1; rc = posix_acl_update_mode(idmap, inode, &mode, &kacl); if (rc || (inode->i_mode != mode)) return 1; return 0; } #else static inline int evm_inode_set_acl_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct posix_acl *kacl) { return 0; } #endif /** * evm_inode_set_acl - protect the EVM extended attribute from posix acls * @idmap: idmap of the idmapped mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * @kacl: pointer to the posix acls * * Prevent modifying posix acls causing the EVM HMAC to be re-calculated * and 'security.evm' xattr updated, unless the existing 'security.evm' is * valid. * * Return: zero on success, -EPERM on failure. */ static int evm_inode_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { enum integrity_status evm_status; /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; evm_status = evm_verify_current_integrity(dentry); if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS)) return 0; /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN)) return 0; /* * Writing other xattrs is safe for portable signatures, as portable * signatures are immutable and can never be updated. */ if (evm_status == INTEGRITY_FAIL_IMMUTABLE) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_inode_set_acl_change(idmap, dentry, acl_name, kacl)) return 0; if (evm_status != INTEGRITY_PASS_IMMUTABLE) integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return -EPERM; } /** * evm_inode_remove_acl - Protect the EVM extended attribute from posix acls * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * * Prevent removing posix acls causing the EVM HMAC to be re-calculated * and 'security.evm' xattr updated, unless the existing 'security.evm' is * valid. * * Return: zero on success, -EPERM on failure. */ static int evm_inode_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { return evm_inode_set_acl(idmap, dentry, acl_name, NULL); } static void evm_reset_status(struct inode *inode) { struct evm_iint_cache *iint; iint = evm_iint_inode(inode); if (iint) iint->evm_status = INTEGRITY_UNKNOWN; } /** * evm_metadata_changed: Detect changes to the metadata * @inode: a file's inode * @metadata_inode: metadata inode * * On a stacked filesystem detect whether the metadata has changed. If this is * the case reset the evm_status associated with the inode that represents the * file. */ bool evm_metadata_changed(struct inode *inode, struct inode *metadata_inode) { struct evm_iint_cache *iint = evm_iint_inode(inode); bool ret = false; if (iint) { ret = (!IS_I_VERSION(metadata_inode) || integrity_inode_attrs_changed(&iint->metadata_inode, metadata_inode)); if (ret) iint->evm_status = INTEGRITY_UNKNOWN; } return ret; } /** * evm_revalidate_status - report whether EVM status re-validation is necessary * @xattr_name: pointer to the affected extended attribute name * * Report whether callers of evm_verifyxattr() should re-validate the * EVM status. * * Return true if re-validation is necessary, false otherwise. */ bool evm_revalidate_status(const char *xattr_name) { if (!evm_key_loaded()) return false; /* evm_inode_post_setattr() passes NULL */ if (!xattr_name) return true; if (!evm_protected_xattr(xattr_name) && !posix_xattr_acl(xattr_name) && strcmp(xattr_name, XATTR_NAME_EVM)) return false; return true; } /** * evm_inode_post_setxattr - update 'security.evm' to reflect the changes * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * @xattr_value: pointer to the new extended attribute value * @xattr_value_len: pointer to the new extended attribute value length * @flags: flags to pass into filesystem operations * * Update the HMAC stored in 'security.evm' to reflect the change. * * No need to take the i_mutex lock here, as this function is called from * __vfs_setxattr_noperm(). The caller of which has taken the inode's * i_mutex lock. */ static void evm_inode_post_setxattr(struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len, int flags) { if (!evm_revalidate_status(xattr_name)) return; evm_reset_status(dentry->d_inode); if (!strcmp(xattr_name, XATTR_NAME_EVM)) return; if (!(evm_initialized & EVM_INIT_HMAC)) return; if (is_unsupported_hmac_fs(dentry)) return; evm_update_evmxattr(dentry, xattr_name, xattr_value, xattr_value_len); } /** * evm_inode_post_set_acl - Update the EVM extended attribute from posix acls * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * @kacl: pointer to the posix acls * * Update the 'security.evm' xattr with the EVM HMAC re-calculated after setting * posix acls. */ static void evm_inode_post_set_acl(struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { return evm_inode_post_setxattr(dentry, acl_name, NULL, 0, 0); } /** * evm_inode_post_removexattr - update 'security.evm' after removing the xattr * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * * Update the HMAC stored in 'security.evm' to reflect removal of the xattr. * * No need to take the i_mutex lock here, as this function is called from * vfs_removexattr() which takes the i_mutex. */ static void evm_inode_post_removexattr(struct dentry *dentry, const char *xattr_name) { if (!evm_revalidate_status(xattr_name)) return; evm_reset_status(dentry->d_inode); if (!strcmp(xattr_name, XATTR_NAME_EVM)) return; if (!(evm_initialized & EVM_INIT_HMAC)) return; evm_update_evmxattr(dentry, xattr_name, NULL, 0); } /** * evm_inode_post_remove_acl - Update the EVM extended attribute from posix acls * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * * Update the 'security.evm' xattr with the EVM HMAC re-calculated after * removing posix acls. */ static inline void evm_inode_post_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { evm_inode_post_removexattr(dentry, acl_name); } static int evm_attr_change(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_backing_inode(dentry); unsigned int ia_valid = attr->ia_valid; if (!i_uid_needs_update(idmap, attr, inode) && !i_gid_needs_update(idmap, attr, inode) && (!(ia_valid & ATTR_MODE) || attr->ia_mode == inode->i_mode)) return 0; return 1; } /** * evm_inode_setattr - prevent updating an invalid EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @attr: iattr structure containing the new file attributes * * Permit update of file attributes when files have a valid EVM signature, * except in the case of them having an immutable portable signature. */ static int evm_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { unsigned int ia_valid = attr->ia_valid; enum integrity_status evm_status; /* Policy permits modification of the protected attrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; if (is_unsupported_hmac_fs(dentry)) return 0; if (!(ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID))) return 0; evm_status = evm_verify_current_integrity(dentry); /* * Writing attrs is safe for portable signatures, as portable signatures * are immutable and can never be updated. */ if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS) || (evm_status == INTEGRITY_FAIL_IMMUTABLE) || (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN))) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_attr_change(idmap, dentry, attr)) return 0; integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return -EPERM; } /** * evm_inode_post_setattr - update 'security.evm' after modifying metadata * @idmap: idmap of the idmapped mount * @dentry: pointer to the affected dentry * @ia_valid: for the UID and GID status * * For now, update the HMAC stored in 'security.evm' to reflect UID/GID * changes. * * This function is called from notify_change(), which expects the caller * to lock the inode's i_mutex. */ static void evm_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, int ia_valid) { if (!evm_revalidate_status(NULL)) return; evm_reset_status(dentry->d_inode); if (!(evm_initialized & EVM_INIT_HMAC)) return; if (is_unsupported_hmac_fs(dentry)) return; if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) evm_update_evmxattr(dentry, NULL, NULL, 0); } static int evm_inode_copy_up_xattr(struct dentry *src, const char *name) { struct evm_ima_xattr_data *xattr_data = NULL; int rc; if (strcmp(name, XATTR_NAME_EVM) != 0) return -EOPNOTSUPP; /* first need to know the sig type */ rc = vfs_getxattr_alloc(&nop_mnt_idmap, src, XATTR_NAME_EVM, (char **)&xattr_data, 0, GFP_NOFS); if (rc <= 0) return -EPERM; if (rc < offsetof(struct evm_ima_xattr_data, type) + sizeof(xattr_data->type)) return -EPERM; switch (xattr_data->type) { case EVM_XATTR_PORTABLE_DIGSIG: rc = 0; /* allow copy-up */ break; case EVM_XATTR_HMAC: case EVM_IMA_XATTR_DIGSIG: default: rc = -ECANCELED; /* discard */ } kfree(xattr_data); return rc; } /* * evm_inode_init_security - initializes security.evm HMAC value */ int evm_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct xattr *xattrs, int *xattr_count) { struct evm_xattr *xattr_data; struct xattr *xattr, *evm_xattr; bool evm_protected_xattrs = false; int rc; if (!(evm_initialized & EVM_INIT_HMAC) || !xattrs) return 0; /* * security_inode_init_security() makes sure that the xattrs array is * contiguous, there is enough space for security.evm, and that there is * a terminator at the end of the array. */ for (xattr = xattrs; xattr->name; xattr++) { if (evm_protected_xattr(xattr->name)) evm_protected_xattrs = true; } /* EVM xattr not needed. */ if (!evm_protected_xattrs) return 0; evm_xattr = lsm_get_xattr_slot(xattrs, xattr_count); /* * Array terminator (xattr name = NULL) must be the first non-filled * xattr slot. */ WARN_ONCE(evm_xattr != xattr, "%s: xattrs terminator is not the first non-filled slot\n", __func__); xattr_data = kzalloc(sizeof(*xattr_data), GFP_NOFS); if (!xattr_data) return -ENOMEM; xattr_data->data.type = EVM_XATTR_HMAC; rc = evm_init_hmac(inode, xattrs, xattr_data->digest); if (rc < 0) goto out; evm_xattr->value = xattr_data; evm_xattr->value_len = sizeof(*xattr_data); evm_xattr->name = XATTR_EVM_SUFFIX; return 0; out: kfree(xattr_data); return rc; } EXPORT_SYMBOL_GPL(evm_inode_init_security); static int evm_inode_alloc_security(struct inode *inode) { struct evm_iint_cache *iint = evm_iint_inode(inode); /* Called by security_inode_alloc(), it cannot be NULL. */ iint->flags = 0UL; iint->evm_status = INTEGRITY_UNKNOWN; return 0; } static void evm_file_release(struct file *file) { struct inode *inode = file_inode(file); struct evm_iint_cache *iint = evm_iint_inode(inode); fmode_t mode = file->f_mode; if (!S_ISREG(inode->i_mode) || !(mode & FMODE_WRITE)) return; if (iint && iint->flags & EVM_NEW_FILE && atomic_read(&inode->i_writecount) == 1) iint->flags &= ~EVM_NEW_FILE; } static void evm_post_path_mknod(struct mnt_idmap *idmap, struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); struct evm_iint_cache *iint = evm_iint_inode(inode); if (!S_ISREG(inode->i_mode)) return; if (iint) iint->flags |= EVM_NEW_FILE; } #ifdef CONFIG_EVM_LOAD_X509 void __init evm_load_x509(void) { int rc; rc = integrity_load_x509(INTEGRITY_KEYRING_EVM, CONFIG_EVM_X509_PATH); if (!rc) evm_initialized |= EVM_INIT_X509; } #endif static int __init init_evm(void) { int error; struct list_head *pos, *q; evm_init_config(); error = integrity_init_keyring(INTEGRITY_KEYRING_EVM); if (error) goto error; error = evm_init_secfs(); if (error < 0) { pr_info("Error registering secfs\n"); goto error; } error: if (error != 0) { if (!list_empty(&evm_config_xattrnames)) { list_for_each_safe(pos, q, &evm_config_xattrnames) list_del(pos); } } return error; } static struct security_hook_list evm_hooks[] __ro_after_init = { LSM_HOOK_INIT(inode_setattr, evm_inode_setattr), LSM_HOOK_INIT(inode_post_setattr, evm_inode_post_setattr), LSM_HOOK_INIT(inode_copy_up_xattr, evm_inode_copy_up_xattr), LSM_HOOK_INIT(inode_setxattr, evm_inode_setxattr), LSM_HOOK_INIT(inode_post_setxattr, evm_inode_post_setxattr), LSM_HOOK_INIT(inode_set_acl, evm_inode_set_acl), LSM_HOOK_INIT(inode_post_set_acl, evm_inode_post_set_acl), LSM_HOOK_INIT(inode_remove_acl, evm_inode_remove_acl), LSM_HOOK_INIT(inode_post_remove_acl, evm_inode_post_remove_acl), LSM_HOOK_INIT(inode_removexattr, evm_inode_removexattr), LSM_HOOK_INIT(inode_post_removexattr, evm_inode_post_removexattr), LSM_HOOK_INIT(inode_init_security, evm_inode_init_security), LSM_HOOK_INIT(inode_alloc_security, evm_inode_alloc_security), LSM_HOOK_INIT(file_release, evm_file_release), LSM_HOOK_INIT(path_post_mknod, evm_post_path_mknod), }; static const struct lsm_id evm_lsmid = { .name = "evm", .id = LSM_ID_EVM, }; static int __init init_evm_lsm(void) { security_add_hooks(evm_hooks, ARRAY_SIZE(evm_hooks), &evm_lsmid); return 0; } struct lsm_blob_sizes evm_blob_sizes __ro_after_init = { .lbs_inode = sizeof(struct evm_iint_cache), .lbs_xattr_count = 1, }; DEFINE_LSM(evm) = { .name = "evm", .init = init_evm_lsm, .order = LSM_ORDER_LAST, .blobs = &evm_blob_sizes, }; late_initcall(init_evm); |
1 22 50 4 48 45 23 23 1 22 20 43 43 40 10 10 5 5 5 5 3 1 1 1 127 7 15 5 6 1 10 7 17 86 103 103 103 103 3 1 1 1 10 7 5 36 11 2 1 2 3 1 1 1 3 6 5 2 6 15 15 2 22 2 8 4 1 17 21 17 4 30 30 2 2 3 3 15 15 2 3 1037 1034 308 115 140 140 15 22 22 22 1 140 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io */ /* Devmaps primary use is as a backend map for XDP BPF helper call * bpf_redirect_map(). Because XDP is mostly concerned with performance we * spent some effort to ensure the datapath with redirect maps does not use * any locking. This is a quick note on the details. * * We have three possible paths to get into the devmap control plane bpf * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall * will invoke an update, delete, or lookup operation. To ensure updates and * deletes appear atomic from the datapath side xchg() is used to modify the * netdev_map array. Then because the datapath does a lookup into the netdev_map * array (read-only) from an RCU critical section we use call_rcu() to wait for * an rcu grace period before free'ing the old data structures. This ensures the * datapath always has a valid copy. However, the datapath does a "flush" * operation that pushes any pending packets in the driver outside the RCU * critical section. Each bpf_dtab_netdev tracks these pending operations using * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until * this list is empty, indicating outstanding flush operations have completed. * * BPF syscalls may race with BPF program calls on any of the update, delete * or lookup operations. As noted above the xchg() operation also keep the * netdev_map consistent in this case. From the devmap side BPF programs * calling into these operations are the same as multiple user space threads * making system calls. * * Finally, any of the above may race with a netdev_unregister notifier. The * unregister notifier must search for net devices in the map structure that * contain a reference to the net device and remove them. This is a two step * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) * check to see if the ifindex is the same as the net_device being removed. * When removing the dev a cmpxchg() is used to ensure the correct dev is * removed, in the case of a concurrent update or delete operation it is * possible that the initially referenced dev is no longer in the map. As the * notifier hook walks the map we know that new dev references can not be * added by the user because core infrastructure ensures dev_get_by_index() * calls will fail at this point. * * The devmap_hash type is a map type which interprets keys as ifindexes and * indexes these using a hashmap. This allows maps that use ifindex as key to be * densely packed instead of having holes in the lookup array for unused * ifindexes. The setup and packet enqueue/send code is shared between the two * types of devmap; only the lookup and insertion is different. */ #include <linux/bpf.h> #include <net/xdp.h> #include <linux/filter.h> #include <trace/events/xdp.h> #include <linux/btf_ids.h> #define DEV_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) struct xdp_dev_bulk_queue { struct xdp_frame *q[DEV_MAP_BULK_SIZE]; struct list_head flush_node; struct net_device *dev; struct net_device *dev_rx; struct bpf_prog *xdp_prog; unsigned int count; }; struct bpf_dtab_netdev { struct net_device *dev; /* must be first member, due to tracepoint */ struct hlist_node index_hlist; struct bpf_prog *xdp_prog; struct rcu_head rcu; unsigned int idx; struct bpf_devmap_val val; }; struct bpf_dtab { struct bpf_map map; struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ struct list_head list; /* these are only used for DEVMAP_HASH type maps */ struct hlist_head *dev_index_head; spinlock_t index_lock; unsigned int items; u32 n_buckets; }; static DEFINE_SPINLOCK(dev_map_lock); static LIST_HEAD(dev_map_list); static struct hlist_head *dev_map_create_hash(unsigned int entries, int numa_node) { int i; struct hlist_head *hash; hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); if (hash != NULL) for (i = 0; i < entries; i++) INIT_HLIST_HEAD(&hash[i]); return hash; } static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, int idx) { return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; } static int dev_map_alloc_check(union bpf_attr *attr) { u32 valsize = attr->value_size; /* check sanity of attributes. 2 value sizes supported: * 4 bytes: ifindex * 8 bytes: ifindex + prog fd */ if (attr->max_entries == 0 || attr->key_size != 4 || (valsize != offsetofend(struct bpf_devmap_val, ifindex) && valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || attr->map_flags & ~DEV_CREATE_FLAG_MASK) return -EINVAL; if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { /* Hash table size must be power of 2; roundup_pow_of_two() * can overflow into UB on 32-bit arches */ if (attr->max_entries > 1UL << 31) return -EINVAL; } return 0; } static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) { /* Lookup returns a pointer straight to dev->ifindex, so make sure the * verifier prevents writes from the BPF side */ attr->map_flags |= BPF_F_RDONLY_PROG; bpf_map_init_from_attr(&dtab->map, attr); if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { /* Hash table size must be power of 2 */ dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, dtab->map.numa_node); if (!dtab->dev_index_head) return -ENOMEM; spin_lock_init(&dtab->index_lock); } else { dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *), dtab->map.numa_node); if (!dtab->netdev_map) return -ENOMEM; } return 0; } static struct bpf_map *dev_map_alloc(union bpf_attr *attr) { struct bpf_dtab *dtab; int err; dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); if (!dtab) return ERR_PTR(-ENOMEM); err = dev_map_init_map(dtab, attr); if (err) { bpf_map_area_free(dtab); return ERR_PTR(err); } spin_lock(&dev_map_lock); list_add_tail_rcu(&dtab->list, &dev_map_list); spin_unlock(&dev_map_lock); return &dtab->map; } static void dev_map_free(struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 i; /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the programs (can be more than one that used this map) were * disconnected from events. The following synchronize_rcu() guarantees * both rcu read critical sections complete and waits for * preempt-disable regions (NAPI being the relevant context here) so we * are certain there will be no further reads against the netdev_map and * all flush operations are complete. Flush operations can only be done * from NAPI context for this reason. */ spin_lock(&dev_map_lock); list_del_rcu(&dtab->list); spin_unlock(&dev_map_lock); /* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map() * during NAPI callback and cleared after the XDP redirect. There is no * explicit RCU read section which protects bpf_redirect_info->map but * local_bh_disable() also marks the beginning an RCU section. This * makes the complete softirq callback RCU protected. Thus after * following synchronize_rcu() there no bpf_redirect_info->map == map * assignment. */ synchronize_rcu(); /* Make sure prior __dev_map_entry_free() have completed. */ rcu_barrier(); if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { for (i = 0; i < dtab->n_buckets; i++) { struct bpf_dtab_netdev *dev; struct hlist_head *head; struct hlist_node *next; head = dev_map_index_hash(dtab, i); hlist_for_each_entry_safe(dev, next, head, index_hlist) { hlist_del_rcu(&dev->index_hlist); if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } } bpf_map_area_free(dtab->dev_index_head); } else { for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev; dev = rcu_dereference_raw(dtab->netdev_map[i]); if (!dev) continue; if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } bpf_map_area_free(dtab->netdev_map); } bpf_map_area_free(dtab); } static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = next_key; if (index >= dtab->map.max_entries) { *next = 0; return 0; } if (index == dtab->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or * by local_bh_disable() (from XDP calls inside NAPI). The * rcu_read_lock_bh_held() below makes lockdep accept both. */ static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct hlist_head *head = dev_map_index_hash(dtab, key); struct bpf_dtab_netdev *dev; hlist_for_each_entry_rcu(dev, head, index_hlist, lockdep_is_held(&dtab->index_lock)) if (dev->idx == key) return dev; return NULL; } static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 idx, *next = next_key; struct bpf_dtab_netdev *dev, *next_dev; struct hlist_head *head; int i = 0; if (!key) goto find_first; idx = *(u32 *)key; dev = __dev_map_hash_lookup_elem(map, idx); if (!dev) goto find_first; next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), struct bpf_dtab_netdev, index_hlist); if (next_dev) { *next = next_dev->idx; return 0; } i = idx & (dtab->n_buckets - 1); i++; find_first: for (; i < dtab->n_buckets; i++) { head = dev_map_index_hash(dtab, i); next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), struct bpf_dtab_netdev, index_hlist); if (next_dev) { *next = next_dev->idx; return 0; } } return -ENOENT; } static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, struct xdp_frame **frames, int n, struct net_device *tx_dev, struct net_device *rx_dev) { struct xdp_txq_info txq = { .dev = tx_dev }; struct xdp_rxq_info rxq = { .dev = rx_dev }; struct xdp_buff xdp; int i, nframes = 0; for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; u32 act; int err; xdp_convert_frame_to_buff(xdpf, &xdp); xdp.txq = &txq; xdp.rxq = &rxq; act = bpf_prog_run_xdp(xdp_prog, &xdp); switch (act) { case XDP_PASS: err = xdp_update_frame_from_buff(&xdp, xdpf); if (unlikely(err < 0)) xdp_return_frame_rx_napi(xdpf); else frames[nframes++] = xdpf; break; default: bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(tx_dev, xdp_prog, act); fallthrough; case XDP_DROP: xdp_return_frame_rx_napi(xdpf); break; } } return nframes; /* sent frames count */ } static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) { struct net_device *dev = bq->dev; unsigned int cnt = bq->count; int sent = 0, err = 0; int to_send = cnt; int i; if (unlikely(!cnt)) return; for (i = 0; i < cnt; i++) { struct xdp_frame *xdpf = bq->q[i]; prefetch(xdpf); } if (bq->xdp_prog) { to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx); if (!to_send) goto out; } sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); if (sent < 0) { /* If ndo_xdp_xmit fails with an errno, no frames have * been xmit'ed. */ err = sent; sent = 0; } /* If not all frames have been transmitted, it is our * responsibility to free them */ for (i = sent; unlikely(i < to_send); i++) xdp_return_frame_rx_napi(bq->q[i]); out: bq->count = 0; trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); } /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the * driver before returning from its napi->poll() routine. See the comment above * xdp_do_flush() in filter.c. */ void __dev_flush(struct list_head *flush_list) { struct xdp_dev_bulk_queue *bq, *tmp; list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { bq_xmit_all(bq, XDP_XMIT_FLUSH); bq->dev_rx = NULL; bq->xdp_prog = NULL; __list_del_clearprev(&bq->flush_node); } } /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or * by local_bh_disable() (from XDP calls inside NAPI). The * rcu_read_lock_bh_held() below makes lockdep accept both. */ static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *obj; if (key >= map->max_entries) return NULL; obj = rcu_dereference_check(dtab->netdev_map[key], rcu_read_lock_bh_held()); return obj; } /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu * variable access, and map elements stick around. See comment above * xdp_do_flush() in filter.c. */ static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_prog *xdp_prog) { struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) bq_xmit_all(bq, 0); /* Ingress dev_rx will be the same for all xdp_frame's in * bulk_queue, because bq stored per-CPU and must be flushed * from net_device drivers NAPI func end. * * Do the same with xdp_prog and flush_list since these fields * are only ever modified together. */ if (!bq->dev_rx) { struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list(); bq->dev_rx = dev_rx; bq->xdp_prog = xdp_prog; list_add(&bq->flush_node, flush_list); } bq->q[bq->count++] = xdpf; } static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_prog *xdp_prog) { int err; if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) return -EOPNOTSUPP; if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && xdp_frame_has_frags(xdpf))) return -EOPNOTSUPP; err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); if (unlikely(err)) return err; bq_enqueue(dev, xdpf, dev_rx, xdp_prog); return 0; } static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) { struct xdp_txq_info txq = { .dev = dst->dev }; struct xdp_buff xdp; u32 act; if (!dst->xdp_prog) return XDP_PASS; __skb_pull(skb, skb->mac_len); xdp.txq = &txq; act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); switch (act) { case XDP_PASS: __skb_push(skb, skb->mac_len); break; default: bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(dst->dev, dst->xdp_prog, act); fallthrough; case XDP_DROP: kfree_skb(skb); break; } return act; } int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx) { return __xdp_enqueue(dev, xdpf, dev_rx, NULL); } int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, struct net_device *dev_rx) { struct net_device *dev = dst->dev; return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); } static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) { if (!obj) return false; if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) return false; if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && xdp_frame_has_frags(xdpf))) return false; if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) return false; return true; } static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, struct net_device *dev_rx, struct xdp_frame *xdpf) { struct xdp_frame *nxdpf; nxdpf = xdpf_clone(xdpf); if (!nxdpf) return -ENOMEM; bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); return 0; } static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) { while (num_excluded--) { if (ifindex == excluded[num_excluded]) return true; } return false; } /* Get ifindex of each upper device. 'indexes' must be able to hold at * least MAX_NEST_DEV elements. * Returns the number of ifindexes added. */ static int get_upper_ifindexes(struct net_device *dev, int *indexes) { struct net_device *upper; struct list_head *iter; int n = 0; netdev_for_each_upper_dev_rcu(dev, upper, iter) { indexes[n++] = upper->ifindex; } return n; } int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_map *map, bool exclude_ingress) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dst, *last_dst = NULL; int excluded_devices[1+MAX_NEST_DEV]; struct hlist_head *head; int num_excluded = 0; unsigned int i; int err; if (exclude_ingress) { num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); excluded_devices[num_excluded++] = dev_rx->ifindex; } if (map->map_type == BPF_MAP_TYPE_DEVMAP) { for (i = 0; i < map->max_entries; i++) { dst = rcu_dereference_check(dtab->netdev_map[i], rcu_read_lock_bh_held()); if (!is_valid_dst(dst, xdpf)) continue; if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) continue; /* we only need n-1 clones; last_dst enqueued below */ if (!last_dst) { last_dst = dst; continue; } err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); if (err) return err; last_dst = dst; } } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ for (i = 0; i < dtab->n_buckets; i++) { head = dev_map_index_hash(dtab, i); hlist_for_each_entry_rcu(dst, head, index_hlist, lockdep_is_held(&dtab->index_lock)) { if (!is_valid_dst(dst, xdpf)) continue; if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) continue; /* we only need n-1 clones; last_dst enqueued below */ if (!last_dst) { last_dst = dst; continue; } err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); if (err) return err; last_dst = dst; } } } /* consume the last copy of the frame */ if (last_dst) bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); else xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ return 0; } int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, const struct bpf_prog *xdp_prog) { int err; err = xdp_ok_fwd_dev(dst->dev, skb->len); if (unlikely(err)) return err; /* Redirect has already succeeded semantically at this point, so we just * return 0 even if packet is dropped. Helper below takes care of * freeing skb. */ if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) return 0; skb->dev = dst->dev; generic_xdp_tx(skb, xdp_prog); return 0; } static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, struct sk_buff *skb, const struct bpf_prog *xdp_prog) { struct sk_buff *nskb; int err; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return -ENOMEM; err = dev_map_generic_redirect(dst, nskb, xdp_prog); if (unlikely(err)) { consume_skb(nskb); return err; } return 0; } int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, const struct bpf_prog *xdp_prog, struct bpf_map *map, bool exclude_ingress) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dst, *last_dst = NULL; int excluded_devices[1+MAX_NEST_DEV]; struct hlist_head *head; struct hlist_node *next; int num_excluded = 0; unsigned int i; int err; if (exclude_ingress) { num_excluded = get_upper_ifindexes(dev, excluded_devices); excluded_devices[num_excluded++] = dev->ifindex; } if (map->map_type == BPF_MAP_TYPE_DEVMAP) { for (i = 0; i < map->max_entries; i++) { dst = rcu_dereference_check(dtab->netdev_map[i], rcu_read_lock_bh_held()); if (!dst) continue; if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) continue; /* we only need n-1 clones; last_dst enqueued below */ if (!last_dst) { last_dst = dst; continue; } err = dev_map_redirect_clone(last_dst, skb, xdp_prog); if (err) return err; last_dst = dst; } } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ for (i = 0; i < dtab->n_buckets; i++) { head = dev_map_index_hash(dtab, i); hlist_for_each_entry_safe(dst, next, head, index_hlist) { if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) continue; /* we only need n-1 clones; last_dst enqueued below */ if (!last_dst) { last_dst = dst; continue; } err = dev_map_redirect_clone(last_dst, skb, xdp_prog); if (err) return err; last_dst = dst; } } } /* consume the first skb and return */ if (last_dst) return dev_map_generic_redirect(last_dst, skb, xdp_prog); /* dtab is empty */ consume_skb(skb); return 0; } static void *dev_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); return obj ? &obj->val : NULL; } static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, *(u32 *)key); return obj ? &obj->val : NULL; } static void __dev_map_entry_free(struct rcu_head *rcu) { struct bpf_dtab_netdev *dev; dev = container_of(rcu, struct bpf_dtab_netdev, rcu); if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } static long dev_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; u32 k = *(u32 *)key; if (k >= map->max_entries) return -EINVAL; old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); if (old_dev) { call_rcu(&old_dev->rcu, __dev_map_entry_free); atomic_dec((atomic_t *)&dtab->items); } return 0; } static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; u32 k = *(u32 *)key; unsigned long flags; int ret = -ENOENT; spin_lock_irqsave(&dtab->index_lock, flags); old_dev = __dev_map_hash_lookup_elem(map, k); if (old_dev) { dtab->items--; hlist_del_init_rcu(&old_dev->index_hlist); call_rcu(&old_dev->rcu, __dev_map_entry_free); ret = 0; } spin_unlock_irqrestore(&dtab->index_lock, flags); return ret; } static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, struct bpf_dtab *dtab, struct bpf_devmap_val *val, unsigned int idx) { struct bpf_prog *prog = NULL; struct bpf_dtab_netdev *dev; dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), GFP_NOWAIT | __GFP_NOWARN, dtab->map.numa_node); if (!dev) return ERR_PTR(-ENOMEM); dev->dev = dev_get_by_index(net, val->ifindex); if (!dev->dev) goto err_out; if (val->bpf_prog.fd > 0) { prog = bpf_prog_get_type_dev(val->bpf_prog.fd, BPF_PROG_TYPE_XDP, false); if (IS_ERR(prog)) goto err_put_dev; if (prog->expected_attach_type != BPF_XDP_DEVMAP || !bpf_prog_map_compatible(&dtab->map, prog)) goto err_put_prog; } dev->idx = idx; if (prog) { dev->xdp_prog = prog; dev->val.bpf_prog.id = prog->aux->id; } else { dev->xdp_prog = NULL; dev->val.bpf_prog.id = 0; } dev->val.ifindex = val->ifindex; return dev; err_put_prog: bpf_prog_put(prog); err_put_dev: dev_put(dev->dev); err_out: kfree(dev); return ERR_PTR(-EINVAL); } static long __dev_map_update_elem(struct net *net, struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev, *old_dev; struct bpf_devmap_val val = {}; u32 i = *(u32 *)key; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= dtab->map.max_entries)) return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) return -EEXIST; /* already verified value_size <= sizeof val */ memcpy(&val, value, map->value_size); if (!val.ifindex) { dev = NULL; /* can not specify fd if ifindex is 0 */ if (val.bpf_prog.fd > 0) return -EINVAL; } else { dev = __dev_map_alloc_node(net, dtab, &val, i); if (IS_ERR(dev)) return PTR_ERR(dev); } /* Use call_rcu() here to ensure rcu critical sections have completed * Remembering the driver side flush operation will happen before the * net device is removed. */ old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); else atomic_inc((atomic_t *)&dtab->items); return 0; } static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __dev_map_update_elem(current->nsproxy->net_ns, map, key, value, map_flags); } static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev, *old_dev; struct bpf_devmap_val val = {}; u32 idx = *(u32 *)key; unsigned long flags; int err = -EEXIST; /* already verified value_size <= sizeof val */ memcpy(&val, value, map->value_size); if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) return -EINVAL; spin_lock_irqsave(&dtab->index_lock, flags); old_dev = __dev_map_hash_lookup_elem(map, idx); if (old_dev && (map_flags & BPF_NOEXIST)) goto out_err; dev = __dev_map_alloc_node(net, dtab, &val, idx); if (IS_ERR(dev)) { err = PTR_ERR(dev); goto out_err; } if (old_dev) { hlist_del_rcu(&old_dev->index_hlist); } else { if (dtab->items >= dtab->map.max_entries) { spin_unlock_irqrestore(&dtab->index_lock, flags); call_rcu(&dev->rcu, __dev_map_entry_free); return -E2BIG; } dtab->items++; } hlist_add_head_rcu(&dev->index_hlist, dev_map_index_hash(dtab, idx)); spin_unlock_irqrestore(&dtab->index_lock, flags); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; out_err: spin_unlock_irqrestore(&dtab->index_lock, flags); return err; } static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __dev_map_hash_update_elem(current->nsproxy->net_ns, map, key, value, map_flags); } static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) { return __bpf_xdp_redirect_map(map, ifindex, flags, BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, __dev_map_lookup_elem); } static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) { return __bpf_xdp_redirect_map(map, ifindex, flags, BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, __dev_map_hash_lookup_elem); } static u64 dev_map_mem_usage(const struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u64 usage = sizeof(struct bpf_dtab); if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); else usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); usage += atomic_read((atomic_t *)&dtab->items) * (u64)sizeof(struct bpf_dtab_netdev); return usage; } BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) const struct bpf_map_ops dev_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = dev_map_alloc_check, .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_get_next_key, .map_lookup_elem = dev_map_lookup_elem, .map_update_elem = dev_map_update_elem, .map_delete_elem = dev_map_delete_elem, .map_check_btf = map_check_no_btf, .map_mem_usage = dev_map_mem_usage, .map_btf_id = &dev_map_btf_ids[0], .map_redirect = dev_map_redirect, }; const struct bpf_map_ops dev_map_hash_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = dev_map_alloc_check, .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_hash_get_next_key, .map_lookup_elem = dev_map_hash_lookup_elem, .map_update_elem = dev_map_hash_update_elem, .map_delete_elem = dev_map_hash_delete_elem, .map_check_btf = map_check_no_btf, .map_mem_usage = dev_map_mem_usage, .map_btf_id = &dev_map_btf_ids[0], .map_redirect = dev_hash_map_redirect, }; static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, struct net_device *netdev) { unsigned long flags; u32 i; spin_lock_irqsave(&dtab->index_lock, flags); for (i = 0; i < dtab->n_buckets; i++) { struct bpf_dtab_netdev *dev; struct hlist_head *head; struct hlist_node *next; head = dev_map_index_hash(dtab, i); hlist_for_each_entry_safe(dev, next, head, index_hlist) { if (netdev != dev->dev) continue; dtab->items--; hlist_del_rcu(&dev->index_hlist); call_rcu(&dev->rcu, __dev_map_entry_free); } } spin_unlock_irqrestore(&dtab->index_lock, flags); } static int dev_map_notification(struct notifier_block *notifier, ulong event, void *ptr) { struct net_device *netdev = netdev_notifier_info_to_dev(ptr); struct bpf_dtab *dtab; int i, cpu; switch (event) { case NETDEV_REGISTER: if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) break; /* will be freed in free_netdev() */ netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); if (!netdev->xdp_bulkq) return NOTIFY_BAD; for_each_possible_cpu(cpu) per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; break; case NETDEV_UNREGISTER: /* This rcu_read_lock/unlock pair is needed because * dev_map_list is an RCU list AND to ensure a delete * operation does not free a netdev_map entry while we * are comparing it against the netdev being unregistered. */ rcu_read_lock(); list_for_each_entry_rcu(dtab, &dev_map_list, list) { if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { dev_map_hash_remove_netdev(dtab, netdev); continue; } for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev, *odev; dev = rcu_dereference(dtab->netdev_map[i]); if (!dev || netdev != dev->dev) continue; odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); if (dev == odev) { call_rcu(&dev->rcu, __dev_map_entry_free); atomic_dec((atomic_t *)&dtab->items); } } } rcu_read_unlock(); break; default: break; } return NOTIFY_OK; } static struct notifier_block dev_map_notifier = { .notifier_call = dev_map_notification, }; static int __init dev_map_init(void) { /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != offsetof(struct _bpf_dtab_netdev, dev)); register_netdevice_notifier(&dev_map_notifier); return 0; } subsys_initcall(dev_map_init); |
129 122 1649 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_H #define _IPV6_H #include <uapi/linux/ipv6.h> #include <linux/cache.h> #define ipv6_optlen(p) (((p)->hdrlen+1) << 3) #define ipv6_authlen(p) (((p)->hdrlen+2) << 2) /* * This structure contains configuration options per IPv6 link. */ struct ipv6_devconf { /* RX & TX fastpath fields. */ __cacheline_group_begin(ipv6_devconf_read_txrx); __s32 disable_ipv6; __s32 hop_limit; __s32 mtu6; __s32 forwarding; __s32 disable_policy; __s32 proxy_ndp; __cacheline_group_end(ipv6_devconf_read_txrx); __s32 accept_ra; __s32 accept_redirects; __s32 autoconf; __s32 dad_transmits; __s32 rtr_solicits; __s32 rtr_solicit_interval; __s32 rtr_solicit_max_interval; __s32 rtr_solicit_delay; __s32 force_mld_version; __s32 mldv1_unsolicited_report_interval; __s32 mldv2_unsolicited_report_interval; __s32 use_tempaddr; __s32 temp_valid_lft; __s32 temp_prefered_lft; __s32 regen_min_advance; __s32 regen_max_retry; __s32 max_desync_factor; __s32 max_addresses; __s32 accept_ra_defrtr; __u32 ra_defrtr_metric; __s32 accept_ra_min_hop_limit; __s32 accept_ra_min_lft; __s32 accept_ra_pinfo; __s32 ignore_routes_with_linkdown; #ifdef CONFIG_IPV6_ROUTER_PREF __s32 accept_ra_rtr_pref; __s32 rtr_probe_interval; #ifdef CONFIG_IPV6_ROUTE_INFO __s32 accept_ra_rt_info_min_plen; __s32 accept_ra_rt_info_max_plen; #endif #endif __s32 accept_source_route; __s32 accept_ra_from_local; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD __s32 optimistic_dad; __s32 use_optimistic; #endif #ifdef CONFIG_IPV6_MROUTE atomic_t mc_forwarding; #endif __s32 drop_unicast_in_l2_multicast; __s32 accept_dad; __s32 force_tllao; __s32 ndisc_notify; __s32 suppress_frag_ndisc; __s32 accept_ra_mtu; __s32 drop_unsolicited_na; __s32 accept_untracked_na; struct ipv6_stable_secret { bool initialized; struct in6_addr secret; } stable_secret; __s32 use_oif_addrs_only; __s32 keep_addr_on_down; __s32 seg6_enabled; #ifdef CONFIG_IPV6_SEG6_HMAC __s32 seg6_require_hmac; #endif __u32 enhanced_dad; __u32 addr_gen_mode; __s32 ndisc_tclass; __s32 rpl_seg_enabled; __u32 ioam6_id; __u32 ioam6_id_wide; __u8 ioam6_enabled; __u8 ndisc_evict_nocarrier; __u8 ra_honor_pio_life; __u8 ra_honor_pio_pflag; struct ctl_table_header *sysctl_header; }; struct ipv6_params { __s32 disable_ipv6; __s32 autoconf; }; extern struct ipv6_params ipv6_defaults; #include <linux/tcp.h> #include <linux/udp.h> #include <net/inet_sock.h> static inline struct ipv6hdr *ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_network_header(skb); } static inline struct ipv6hdr *inner_ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_inner_network_header(skb); } static inline struct ipv6hdr *ipipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_transport_header(skb); } static inline unsigned int ipv6_transport_len(const struct sk_buff *skb) { return ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr) - skb_network_header_len(skb); } /* This structure contains results of exthdrs parsing as offsets from skb->nh. */ struct inet6_skb_parm { int iif; __be16 ra; __u16 dst0; __u16 srcrt; __u16 dst1; __u16 lastopt; __u16 nhoff; __u16 flags; #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) __u16 dsthao; #endif __u16 frag_max_size; __u16 srhoff; #define IP6SKB_XFRM_TRANSFORMED 1 #define IP6SKB_FORWARDED 2 #define IP6SKB_REROUTED 4 #define IP6SKB_ROUTERALERT 8 #define IP6SKB_FRAGMENTED 16 #define IP6SKB_HOPBYHOP 32 #define IP6SKB_L3SLAVE 64 #define IP6SKB_JUMBOGRAM 128 #define IP6SKB_SEG6 256 #define IP6SKB_FAKEJUMBO 512 #define IP6SKB_MULTIPATH 1024 }; #if defined(CONFIG_NET_L3_MASTER_DEV) static inline bool ipv6_l3mdev_skb(__u16 flags) { return flags & IP6SKB_L3SLAVE; } #else static inline bool ipv6_l3mdev_skb(__u16 flags) { return false; } #endif #define IP6CB(skb) ((struct inet6_skb_parm*)((skb)->cb)) #define IP6CBMTU(skb) ((struct ip6_mtuinfo *)((skb)->cb)) static inline int inet6_iif(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(IP6CB(skb)->flags); return l3_slave ? skb->skb_iif : IP6CB(skb)->iif; } static inline bool inet6_is_jumbogram(const struct sk_buff *skb) { return !!(IP6CB(skb)->flags & IP6SKB_JUMBOGRAM); } /* can not be used in TCP layer after tcp_v6_fill_cb */ static inline int inet6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(IP6CB(skb)->flags)) return IP6CB(skb)->iif; #endif return 0; } struct tcp6_request_sock { struct tcp_request_sock tcp6rsk_tcp; }; struct ipv6_mc_socklist; struct ipv6_ac_socklist; struct ipv6_fl_socklist; struct inet6_cork { struct ipv6_txoptions *opt; u8 hop_limit; u8 tclass; }; /* struct ipv6_pinfo - ipv6 private area */ struct ipv6_pinfo { struct in6_addr saddr; struct in6_pktinfo sticky_pktinfo; const struct in6_addr *daddr_cache; #ifdef CONFIG_IPV6_SUBTREES const struct in6_addr *saddr_cache; #endif __be32 flow_label; __u32 frag_size; s16 hop_limit; u8 mcast_hops; int ucast_oif; int mcast_oif; /* pktoption flags */ union { struct { __u16 srcrt:1, osrcrt:1, rxinfo:1, rxoinfo:1, rxhlim:1, rxohlim:1, hopopts:1, ohopopts:1, dstopts:1, odstopts:1, rxflow:1, rxtclass:1, rxpmtu:1, rxorigdstaddr:1, recvfragsize:1; /* 1 bits hole */ } bits; __u16 all; } rxopt; /* sockopt flags */ __u8 srcprefs; /* 001: prefer temporary address * 010: prefer public address * 100: prefer care-of address */ __u8 pmtudisc; __u8 min_hopcount; __u8 tclass; __be32 rcv_flowinfo; __u32 dst_cookie; struct ipv6_mc_socklist __rcu *ipv6_mc_list; struct ipv6_ac_socklist *ipv6_ac_list; struct ipv6_fl_socklist __rcu *ipv6_fl_list; struct ipv6_txoptions __rcu *opt; struct sk_buff *pktoptions; struct sk_buff *rxpmtu; struct inet6_cork cork; }; /* We currently use available bits from inet_sk(sk)->inet_flags, * this could change in the future. */ #define inet6_test_bit(nr, sk) \ test_bit(INET_FLAGS_##nr, &inet_sk(sk)->inet_flags) #define inet6_set_bit(nr, sk) \ set_bit(INET_FLAGS_##nr, &inet_sk(sk)->inet_flags) #define inet6_clear_bit(nr, sk) \ clear_bit(INET_FLAGS_##nr, &inet_sk(sk)->inet_flags) #define inet6_assign_bit(nr, sk, val) \ assign_bit(INET_FLAGS_##nr, &inet_sk(sk)->inet_flags, val) /* WARNING: don't change the layout of the members in {raw,udp,tcp}6_sock! */ struct raw6_sock { /* inet_sock has to be the first member of raw6_sock */ struct inet_sock inet; __u32 checksum; /* perform checksum */ __u32 offset; /* checksum offset */ struct icmp6_filter filter; __u32 ip6mr_table; struct ipv6_pinfo inet6; }; struct udp6_sock { struct udp_sock udp; struct ipv6_pinfo inet6; }; struct tcp6_sock { struct tcp_sock tcp; struct ipv6_pinfo inet6; }; extern int inet6_sk_rebuild_header(struct sock *sk); struct tcp6_timewait_sock { struct tcp_timewait_sock tcp6tw_tcp; }; #if IS_ENABLED(CONFIG_IPV6) bool ipv6_mod_enabled(void); static inline struct ipv6_pinfo *inet6_sk(const struct sock *__sk) { return sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL; } #define raw6_sk(ptr) container_of_const(ptr, struct raw6_sock, inet.sk) #define ipv6_only_sock(sk) (sk->sk_ipv6only) #define ipv6_sk_rxinfo(sk) ((sk)->sk_family == PF_INET6 && \ inet6_sk(sk)->rxopt.bits.rxinfo) static inline const struct in6_addr *inet6_rcv_saddr(const struct sock *sk) { if (sk->sk_family == AF_INET6) return &sk->sk_v6_rcv_saddr; return NULL; } static inline int inet_v6_ipv6only(const struct sock *sk) { /* ipv6only field is at same position for timewait and other sockets */ return ipv6_only_sock(sk); } #else #define ipv6_only_sock(sk) 0 #define ipv6_sk_rxinfo(sk) 0 static inline bool ipv6_mod_enabled(void) { return false; } static inline struct ipv6_pinfo * inet6_sk(const struct sock *__sk) { return NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return NULL; } #define inet6_rcv_saddr(__sk) NULL #define inet_v6_ipv6only(__sk) 0 #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _IPV6_H */ |
38 38 38 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Sysfs attributes of bridge ports * Linux ethernet bridge * * Authors: * Stephen Hemminger <shemminger@osdl.org> */ #include <linux/capability.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/if_bridge.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/sched/signal.h> #include "br_private.h" /* IMPORTANT: new bridge port options must be added with netlink support only * please do not add new sysfs entries */ struct brport_attribute { struct attribute attr; ssize_t (*show)(struct net_bridge_port *, char *); int (*store)(struct net_bridge_port *, unsigned long); int (*store_raw)(struct net_bridge_port *, char *); }; #define BRPORT_ATTR_RAW(_name, _mode, _show, _store) \ const struct brport_attribute brport_attr_##_name = { \ .attr = {.name = __stringify(_name), \ .mode = _mode }, \ .show = _show, \ .store_raw = _store, \ }; #define BRPORT_ATTR(_name, _mode, _show, _store) \ const struct brport_attribute brport_attr_##_name = { \ .attr = {.name = __stringify(_name), \ .mode = _mode }, \ .show = _show, \ .store = _store, \ }; #define BRPORT_ATTR_FLAG(_name, _mask) \ static ssize_t show_##_name(struct net_bridge_port *p, char *buf) \ { \ return sprintf(buf, "%d\n", !!(p->flags & _mask)); \ } \ static int store_##_name(struct net_bridge_port *p, unsigned long v) \ { \ return store_flag(p, v, _mask); \ } \ static BRPORT_ATTR(_name, 0644, \ show_##_name, store_##_name) static int store_flag(struct net_bridge_port *p, unsigned long v, unsigned long mask) { struct netlink_ext_ack extack = {0}; unsigned long flags = p->flags; int err; if (v) flags |= mask; else flags &= ~mask; if (flags != p->flags) { err = br_switchdev_set_port_flag(p, flags, mask, &extack); if (err) { netdev_err(p->dev, "%s\n", extack._msg); return err; } p->flags = flags; br_port_flags_change(p, mask); } return 0; } static ssize_t show_path_cost(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->path_cost); } static BRPORT_ATTR(path_cost, 0644, show_path_cost, br_stp_set_path_cost); static ssize_t show_priority(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->priority); } static BRPORT_ATTR(priority, 0644, show_priority, br_stp_set_port_priority); static ssize_t show_designated_root(struct net_bridge_port *p, char *buf) { return br_show_bridge_id(buf, &p->designated_root); } static BRPORT_ATTR(designated_root, 0444, show_designated_root, NULL); static ssize_t show_designated_bridge(struct net_bridge_port *p, char *buf) { return br_show_bridge_id(buf, &p->designated_bridge); } static BRPORT_ATTR(designated_bridge, 0444, show_designated_bridge, NULL); static ssize_t show_designated_port(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->designated_port); } static BRPORT_ATTR(designated_port, 0444, show_designated_port, NULL); static ssize_t show_designated_cost(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->designated_cost); } static BRPORT_ATTR(designated_cost, 0444, show_designated_cost, NULL); static ssize_t show_port_id(struct net_bridge_port *p, char *buf) { return sprintf(buf, "0x%x\n", p->port_id); } static BRPORT_ATTR(port_id, 0444, show_port_id, NULL); static ssize_t show_port_no(struct net_bridge_port *p, char *buf) { return sprintf(buf, "0x%x\n", p->port_no); } static BRPORT_ATTR(port_no, 0444, show_port_no, NULL); static ssize_t show_change_ack(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->topology_change_ack); } static BRPORT_ATTR(change_ack, 0444, show_change_ack, NULL); static ssize_t show_config_pending(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->config_pending); } static BRPORT_ATTR(config_pending, 0444, show_config_pending, NULL); static ssize_t show_port_state(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->state); } static BRPORT_ATTR(state, 0444, show_port_state, NULL); static ssize_t show_message_age_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->message_age_timer)); } static BRPORT_ATTR(message_age_timer, 0444, show_message_age_timer, NULL); static ssize_t show_forward_delay_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->forward_delay_timer)); } static BRPORT_ATTR(forward_delay_timer, 0444, show_forward_delay_timer, NULL); static ssize_t show_hold_timer(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%ld\n", br_timer_value(&p->hold_timer)); } static BRPORT_ATTR(hold_timer, 0444, show_hold_timer, NULL); static int store_flush(struct net_bridge_port *p, unsigned long v) { br_fdb_delete_by_port(p->br, p, 0, 0); // Don't delete local entry return 0; } static BRPORT_ATTR(flush, 0200, NULL, store_flush); static ssize_t show_group_fwd_mask(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%#x\n", p->group_fwd_mask); } static int store_group_fwd_mask(struct net_bridge_port *p, unsigned long v) { if (v & BR_GROUPFWD_MACPAUSE) return -EINVAL; p->group_fwd_mask = v; return 0; } static BRPORT_ATTR(group_fwd_mask, 0644, show_group_fwd_mask, store_group_fwd_mask); static ssize_t show_backup_port(struct net_bridge_port *p, char *buf) { struct net_bridge_port *backup_p; int ret = 0; rcu_read_lock(); backup_p = rcu_dereference(p->backup_port); if (backup_p) ret = sprintf(buf, "%s\n", backup_p->dev->name); rcu_read_unlock(); return ret; } static int store_backup_port(struct net_bridge_port *p, char *buf) { struct net_device *backup_dev = NULL; char *nl = strchr(buf, '\n'); if (nl) *nl = '\0'; if (strlen(buf) > 0) { backup_dev = __dev_get_by_name(dev_net(p->dev), buf); if (!backup_dev) return -ENOENT; } return nbp_backup_change(p, backup_dev); } static BRPORT_ATTR_RAW(backup_port, 0644, show_backup_port, store_backup_port); BRPORT_ATTR_FLAG(hairpin_mode, BR_HAIRPIN_MODE); BRPORT_ATTR_FLAG(bpdu_guard, BR_BPDU_GUARD); BRPORT_ATTR_FLAG(root_block, BR_ROOT_BLOCK); BRPORT_ATTR_FLAG(learning, BR_LEARNING); BRPORT_ATTR_FLAG(unicast_flood, BR_FLOOD); BRPORT_ATTR_FLAG(proxyarp, BR_PROXYARP); BRPORT_ATTR_FLAG(proxyarp_wifi, BR_PROXYARP_WIFI); BRPORT_ATTR_FLAG(multicast_flood, BR_MCAST_FLOOD); BRPORT_ATTR_FLAG(broadcast_flood, BR_BCAST_FLOOD); BRPORT_ATTR_FLAG(neigh_suppress, BR_NEIGH_SUPPRESS); BRPORT_ATTR_FLAG(isolated, BR_ISOLATED); #ifdef CONFIG_BRIDGE_IGMP_SNOOPING static ssize_t show_multicast_router(struct net_bridge_port *p, char *buf) { return sprintf(buf, "%d\n", p->multicast_ctx.multicast_router); } static int store_multicast_router(struct net_bridge_port *p, unsigned long v) { return br_multicast_set_port_router(&p->multicast_ctx, v); } static BRPORT_ATTR(multicast_router, 0644, show_multicast_router, store_multicast_router); BRPORT_ATTR_FLAG(multicast_fast_leave, BR_MULTICAST_FAST_LEAVE); BRPORT_ATTR_FLAG(multicast_to_unicast, BR_MULTICAST_TO_UNICAST); #endif static const struct brport_attribute *brport_attrs[] = { &brport_attr_path_cost, &brport_attr_priority, &brport_attr_port_id, &brport_attr_port_no, &brport_attr_designated_root, &brport_attr_designated_bridge, &brport_attr_designated_port, &brport_attr_designated_cost, &brport_attr_state, &brport_attr_change_ack, &brport_attr_config_pending, &brport_attr_message_age_timer, &brport_attr_forward_delay_timer, &brport_attr_hold_timer, &brport_attr_flush, &brport_attr_hairpin_mode, &brport_attr_bpdu_guard, &brport_attr_root_block, &brport_attr_learning, &brport_attr_unicast_flood, #ifdef CONFIG_BRIDGE_IGMP_SNOOPING &brport_attr_multicast_router, &brport_attr_multicast_fast_leave, &brport_attr_multicast_to_unicast, #endif &brport_attr_proxyarp, &brport_attr_proxyarp_wifi, &brport_attr_multicast_flood, &brport_attr_broadcast_flood, &brport_attr_group_fwd_mask, &brport_attr_neigh_suppress, &brport_attr_isolated, &brport_attr_backup_port, NULL }; #define to_brport_attr(_at) container_of(_at, struct brport_attribute, attr) static ssize_t brport_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct brport_attribute *brport_attr = to_brport_attr(attr); struct net_bridge_port *p = kobj_to_brport(kobj); if (!brport_attr->show) return -EINVAL; return brport_attr->show(p, buf); } static ssize_t brport_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct brport_attribute *brport_attr = to_brport_attr(attr); struct net_bridge_port *p = kobj_to_brport(kobj); ssize_t ret = -EINVAL; unsigned long val; char *endp; if (!ns_capable(dev_net(p->dev)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (!rtnl_trylock()) return restart_syscall(); if (brport_attr->store_raw) { char *buf_copy; buf_copy = kstrndup(buf, count, GFP_KERNEL); if (!buf_copy) { ret = -ENOMEM; goto out_unlock; } spin_lock_bh(&p->br->lock); ret = brport_attr->store_raw(p, buf_copy); spin_unlock_bh(&p->br->lock); kfree(buf_copy); } else if (brport_attr->store) { val = simple_strtoul(buf, &endp, 0); if (endp == buf) goto out_unlock; spin_lock_bh(&p->br->lock); ret = brport_attr->store(p, val); spin_unlock_bh(&p->br->lock); } if (!ret) { br_ifinfo_notify(RTM_NEWLINK, NULL, p); ret = count; } out_unlock: rtnl_unlock(); return ret; } const struct sysfs_ops brport_sysfs_ops = { .show = brport_show, .store = brport_store, }; /* * Add sysfs entries to ethernet device added to a bridge. * Creates a brport subdirectory with bridge attributes. * Puts symlink in bridge's brif subdirectory */ int br_sysfs_addif(struct net_bridge_port *p) { struct net_bridge *br = p->br; const struct brport_attribute **a; int err; err = sysfs_create_link(&p->kobj, &br->dev->dev.kobj, SYSFS_BRIDGE_PORT_LINK); if (err) return err; for (a = brport_attrs; *a; ++a) { err = sysfs_create_file(&p->kobj, &((*a)->attr)); if (err) return err; } strscpy(p->sysfs_name, p->dev->name, IFNAMSIZ); return sysfs_create_link(br->ifobj, &p->kobj, p->sysfs_name); } /* Rename bridge's brif symlink */ int br_sysfs_renameif(struct net_bridge_port *p) { struct net_bridge *br = p->br; int err; /* If a rename fails, the rollback will cause another * rename call with the existing name. */ if (!strncmp(p->sysfs_name, p->dev->name, IFNAMSIZ)) return 0; err = sysfs_rename_link(br->ifobj, &p->kobj, p->sysfs_name, p->dev->name); if (err) netdev_notice(br->dev, "unable to rename link %s to %s", p->sysfs_name, p->dev->name); else strscpy(p->sysfs_name, p->dev->name, IFNAMSIZ); return err; } |
950 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib #if !defined(_TRACE_FIB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <net/ip_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib_table_lookup, TP_PROTO(u32 tb_id, const struct flowi4 *flp, const struct fib_nh_common *nhc, int err), TP_ARGS(tb_id, flp, nhc, err), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( u8, proto ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 4 ) __array( __u8, dst, 4 ) __array( __u8, gw4, 4 ) __array( __u8, gw6, 16 ) __field( u16, sport ) __field( u16, dport ) __array(char, name, IFNAMSIZ ) ), TP_fast_assign( struct net_device *dev; struct in6_addr *in6; __be32 *p32; __entry->tb_id = tb_id; __entry->err = err; __entry->oif = flp->flowi4_oif; __entry->iif = flp->flowi4_iif; __entry->tos = flp->flowi4_tos; __entry->scope = flp->flowi4_scope; __entry->flags = flp->flowi4_flags; p32 = (__be32 *) __entry->src; *p32 = flp->saddr; p32 = (__be32 *) __entry->dst; *p32 = flp->daddr; __entry->proto = flp->flowi4_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl4_sport); __entry->dport = ntohs(flp->fl4_dport); } else { __entry->sport = 0; __entry->dport = 0; } dev = nhc ? nhc->nhc_dev : NULL; strscpy(__entry->name, dev ? dev->name : "-", IFNAMSIZ); if (nhc) { if (nhc->nhc_gw_family == AF_INET) { p32 = (__be32 *) __entry->gw4; *p32 = nhc->nhc_gw.ipv4; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6addr_any; } else if (nhc->nhc_gw_family == AF_INET6) { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = nhc->nhc_gw.ipv6; } } else { p32 = (__be32 *) __entry->gw4; *p32 = 0; in6 = (struct in6_addr *)__entry->gw6; *in6 = in6addr_any; } ), TP_printk("table %u oif %d iif %d proto %u %pI4/%u -> %pI4/%u tos %d scope %d flags %x ==> dev %s gw %pI4/%pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __entry->name, __entry->gw4, __entry->gw6, __entry->err) ); #endif /* _TRACE_FIB_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
14 21 21 21 21 21 22 1 18 3 3 1 16 17 1 1 1 3 3 3 58 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* af_can.c - Protocol family CAN core module * (used by different CAN protocol modules) * * Copyright (c) 2002-2017 Volkswagen Group Electronic Research * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Volkswagen nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * The provided data structures and external interfaces from this code * are not restricted to be used by modules with a GPL compatible license. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include <linux/module.h> #include <linux/stddef.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/uaccess.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/socket.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/can.h> #include <linux/can/core.h> #include <linux/can/skb.h> #include <linux/can/can-ml.h> #include <linux/ratelimit.h> #include <net/net_namespace.h> #include <net/sock.h> #include "af_can.h" MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); MODULE_ALIAS_NETPROTO(PF_CAN); static int stats_timer __read_mostly = 1; module_param(stats_timer, int, 0444); MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); static struct kmem_cache *rcv_cache __read_mostly; /* table of registered CAN protocols */ static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; static DEFINE_MUTEX(proto_tab_lock); static atomic_t skbcounter = ATOMIC_INIT(0); /* af_can socket functions */ void can_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_error_queue); } EXPORT_SYMBOL(can_sock_destruct); static const struct can_proto *can_get_proto(int protocol) { const struct can_proto *cp; rcu_read_lock(); cp = rcu_dereference(proto_tab[protocol]); if (cp && !try_module_get(cp->prot->owner)) cp = NULL; rcu_read_unlock(); return cp; } static inline void can_put_proto(const struct can_proto *cp) { module_put(cp->prot->owner); } static int can_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; const struct can_proto *cp; int err = 0; sock->state = SS_UNCONNECTED; if (protocol < 0 || protocol >= CAN_NPROTO) return -EINVAL; cp = can_get_proto(protocol); #ifdef CONFIG_MODULES if (!cp) { /* try to load protocol module if kernel is modular */ err = request_module("can-proto-%d", protocol); /* In case of error we only print a message but don't * return the error code immediately. Below we will * return -EPROTONOSUPPORT */ if (err) pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n", protocol); cp = can_get_proto(protocol); } #endif /* check for available protocol and correct usage */ if (!cp) return -EPROTONOSUPPORT; if (cp->type != sock->type) { err = -EPROTOTYPE; goto errout; } sock->ops = cp->ops; sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); if (!sk) { err = -ENOMEM; goto errout; } sock_init_data(sock, sk); sk->sk_destruct = can_sock_destruct; if (sk->sk_prot->init) err = sk->sk_prot->init(sk); if (err) { /* release sk on errors */ sock_orphan(sk); sock_put(sk); sock->sk = NULL; } errout: can_put_proto(cp); return err; } /* af_can tx path */ /** * can_send - transmit a CAN frame (optional with local loopback) * @skb: pointer to socket buffer with CAN frame in data section * @loop: loopback for listeners on local CAN sockets (recommended default!) * * Due to the loopback this routine must not be called from hardirq context. * * Return: * 0 on success * -ENETDOWN when the selected interface is down * -ENOBUFS on full driver queue (see net_xmit_errno()) * -ENOMEM when local loopback failed at calling skb_clone() * -EPERM when trying to send on a non-CAN interface * -EMSGSIZE CAN frame size is bigger than CAN interface MTU * -EINVAL when the skb->data does not contain a valid CAN frame */ int can_send(struct sk_buff *skb, int loop) { struct sk_buff *newskb = NULL; struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats; int err = -EINVAL; if (can_is_canxl_skb(skb)) { skb->protocol = htons(ETH_P_CANXL); } else if (can_is_can_skb(skb)) { skb->protocol = htons(ETH_P_CAN); } else if (can_is_canfd_skb(skb)) { struct canfd_frame *cfd = (struct canfd_frame *)skb->data; skb->protocol = htons(ETH_P_CANFD); /* set CAN FD flag for CAN FD frames by default */ cfd->flags |= CANFD_FDF; } else { goto inval_skb; } /* Make sure the CAN frame can pass the selected CAN netdevice. */ if (unlikely(skb->len > skb->dev->mtu)) { err = -EMSGSIZE; goto inval_skb; } if (unlikely(skb->dev->type != ARPHRD_CAN)) { err = -EPERM; goto inval_skb; } if (unlikely(!(skb->dev->flags & IFF_UP))) { err = -ENETDOWN; goto inval_skb; } skb->ip_summed = CHECKSUM_UNNECESSARY; skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); if (loop) { /* local loopback of sent CAN frames */ /* indication for the CAN driver: do loopback */ skb->pkt_type = PACKET_LOOPBACK; /* The reference to the originating sock may be required * by the receiving socket to check whether the frame is * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS * Therefore we have to ensure that skb->sk remains the * reference to the originating sock by restoring skb->sk * after each skb_clone() or skb_orphan() usage. */ if (!(skb->dev->flags & IFF_ECHO)) { /* If the interface is not capable to do loopback * itself, we do it here. */ newskb = skb_clone(skb, GFP_ATOMIC); if (!newskb) { kfree_skb(skb); return -ENOMEM; } can_skb_set_owner(newskb, skb->sk); newskb->ip_summed = CHECKSUM_UNNECESSARY; newskb->pkt_type = PACKET_BROADCAST; } } else { /* indication for the CAN driver: no loopback required */ skb->pkt_type = PACKET_HOST; } /* send to netdevice */ err = dev_queue_xmit(skb); if (err > 0) err = net_xmit_errno(err); if (err) { kfree_skb(newskb); return err; } if (newskb) netif_rx(newskb); /* update statistics */ pkg_stats->tx_frames++; pkg_stats->tx_frames_delta++; return 0; inval_skb: kfree_skb(skb); return err; } EXPORT_SYMBOL(can_send); /* af_can rx path */ static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net, struct net_device *dev) { if (dev) { struct can_ml_priv *can_ml = can_get_ml_priv(dev); return &can_ml->dev_rcv_lists; } else { return net->can.rx_alldev_list; } } /** * effhash - hash function for 29 bit CAN identifier reduction * @can_id: 29 bit CAN identifier * * Description: * To reduce the linear traversal in one linked list of _single_ EFF CAN * frame subscriptions the 29 bit identifier is mapped to 10 bits. * (see CAN_EFF_RCV_HASH_BITS definition) * * Return: * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) */ static unsigned int effhash(canid_t can_id) { unsigned int hash; hash = can_id; hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); } /** * can_rcv_list_find - determine optimal filterlist inside device filter struct * @can_id: pointer to CAN identifier of a given can_filter * @mask: pointer to CAN mask of a given can_filter * @dev_rcv_lists: pointer to the device filter struct * * Description: * Returns the optimal filterlist to reduce the filter handling in the * receive path. This function is called by service functions that need * to register or unregister a can_filter in the filter lists. * * A filter matches in general, when * * <received_can_id> & mask == can_id & mask * * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe * relevant bits for the filter. * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg * frames there is a special filterlist and a special rx path filter handling. * * Return: * Pointer to optimal filterlist for the given can_id/mask pair. * Consistency checked mask. * Reduced can_id to have a preprocessed filter compare value. */ static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask, struct can_dev_rcv_lists *dev_rcv_lists) { canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ /* filter for error message frames in extra filterlist */ if (*mask & CAN_ERR_FLAG) { /* clear CAN_ERR_FLAG in filter entry */ *mask &= CAN_ERR_MASK; return &dev_rcv_lists->rx[RX_ERR]; } /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) /* ensure valid values in can_mask for 'SFF only' frame filtering */ if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); /* reduce condition testing at receive time */ *can_id &= *mask; /* inverse can_id/can_mask filter */ if (inv) return &dev_rcv_lists->rx[RX_INV]; /* mask == 0 => no condition testing at receive time */ if (!(*mask)) return &dev_rcv_lists->rx[RX_ALL]; /* extra filterlists for the subscription of a single non-RTR can_id */ if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && !(*can_id & CAN_RTR_FLAG)) { if (*can_id & CAN_EFF_FLAG) { if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) return &dev_rcv_lists->rx_eff[effhash(*can_id)]; } else { if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) return &dev_rcv_lists->rx_sff[*can_id]; } } /* default: filter via can_id/can_mask */ return &dev_rcv_lists->rx[RX_FIL]; } /** * can_rx_register - subscribe CAN frames from a specific interface * @net: the applicable net namespace * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list) * @can_id: CAN identifier (see description) * @mask: CAN mask (see description) * @func: callback function on filter match * @data: returned parameter for callback function * @ident: string for calling module identification * @sk: socket pointer (might be NULL) * * Description: * Invokes the callback function with the received sk_buff and the given * parameter 'data' on a matching receive filter. A filter matches, when * * <received_can_id> & mask == can_id & mask * * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can * filter for error message frames (CAN_ERR_FLAG bit set in mask). * * The provided pointer to the sk_buff is guaranteed to be valid as long as * the callback function is running. The callback function must *not* free * the given sk_buff while processing it's task. When the given sk_buff is * needed after the end of the callback function it must be cloned inside * the callback function with skb_clone(). * * Return: * 0 on success * -ENOMEM on missing cache mem to create subscription entry * -ENODEV unknown device */ int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data, char *ident, struct sock *sk) { struct receiver *rcv; struct hlist_head *rcv_list; struct can_dev_rcv_lists *dev_rcv_lists; struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; /* insert new receiver (dev,canid,mask) -> (func,data) */ if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev))) return -ENODEV; if (dev && !net_eq(net, dev_net(dev))) return -ENODEV; rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL); if (!rcv) return -ENOMEM; spin_lock_bh(&net->can.rcvlists_lock); dev_rcv_lists = can_dev_rcv_lists_find(net, dev); rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); rcv->can_id = can_id; rcv->mask = mask; rcv->matches = 0; rcv->func = func; rcv->data = data; rcv->ident = ident; rcv->sk = sk; hlist_add_head_rcu(&rcv->list, rcv_list); dev_rcv_lists->entries++; rcv_lists_stats->rcv_entries++; rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max, rcv_lists_stats->rcv_entries); spin_unlock_bh(&net->can.rcvlists_lock); return 0; } EXPORT_SYMBOL(can_rx_register); /* can_rx_delete_receiver - rcu callback for single receiver entry removal */ static void can_rx_delete_receiver(struct rcu_head *rp) { struct receiver *rcv = container_of(rp, struct receiver, rcu); struct sock *sk = rcv->sk; kmem_cache_free(rcv_cache, rcv); if (sk) sock_put(sk); } /** * can_rx_unregister - unsubscribe CAN frames from a specific interface * @net: the applicable net namespace * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) * @can_id: CAN identifier * @mask: CAN mask * @func: callback function on filter match * @data: returned parameter for callback function * * Description: * Removes subscription entry depending on given (subscription) values. */ void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, canid_t mask, void (*func)(struct sk_buff *, void *), void *data) { struct receiver *rcv = NULL; struct hlist_head *rcv_list; struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; struct can_dev_rcv_lists *dev_rcv_lists; if (dev && dev->type != ARPHRD_CAN) return; if (dev && !net_eq(net, dev_net(dev))) return; spin_lock_bh(&net->can.rcvlists_lock); dev_rcv_lists = can_dev_rcv_lists_find(net, dev); rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); /* Search the receiver list for the item to delete. This should * exist, since no receiver may be unregistered that hasn't * been registered before. */ hlist_for_each_entry_rcu(rcv, rcv_list, list) { if (rcv->can_id == can_id && rcv->mask == mask && rcv->func == func && rcv->data == data) break; } /* Check for bugs in CAN protocol implementations using af_can.c: * 'rcv' will be NULL if no matching list item was found for removal. * As this case may potentially happen when closing a socket while * the notifier for removing the CAN netdev is running we just print * a warning here. */ if (!rcv) { pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n", DNAME(dev), can_id, mask); goto out; } hlist_del_rcu(&rcv->list); dev_rcv_lists->entries--; if (rcv_lists_stats->rcv_entries > 0) rcv_lists_stats->rcv_entries--; out: spin_unlock_bh(&net->can.rcvlists_lock); /* schedule the receiver item for deletion */ if (rcv) { if (rcv->sk) sock_hold(rcv->sk); call_rcu(&rcv->rcu, can_rx_delete_receiver); } } EXPORT_SYMBOL(can_rx_unregister); static inline void deliver(struct sk_buff *skb, struct receiver *rcv) { rcv->func(skb, rcv->data); rcv->matches++; } static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb) { struct receiver *rcv; int matches = 0; struct can_frame *cf = (struct can_frame *)skb->data; canid_t can_id = cf->can_id; if (dev_rcv_lists->entries == 0) return 0; if (can_id & CAN_ERR_FLAG) { /* check for error message frame entries only */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) { if (can_id & rcv->mask) { deliver(skb, rcv); matches++; } } return matches; } /* check for unfiltered entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) { deliver(skb, rcv); matches++; } /* check for can_id/mask entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) { if ((can_id & rcv->mask) == rcv->can_id) { deliver(skb, rcv); matches++; } } /* check for inverted can_id/mask entries */ hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) { if ((can_id & rcv->mask) != rcv->can_id) { deliver(skb, rcv); matches++; } } /* check filterlists for single non-RTR can_ids */ if (can_id & CAN_RTR_FLAG) return matches; if (can_id & CAN_EFF_FLAG) { hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) { if (rcv->can_id == can_id) { deliver(skb, rcv); matches++; } } } else { can_id &= CAN_SFF_MASK; hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) { deliver(skb, rcv); matches++; } } return matches; } static void can_receive(struct sk_buff *skb, struct net_device *dev) { struct can_dev_rcv_lists *dev_rcv_lists; struct net *net = dev_net(dev); struct can_pkg_stats *pkg_stats = net->can.pkg_stats; int matches; /* update statistics */ pkg_stats->rx_frames++; pkg_stats->rx_frames_delta++; /* create non-zero unique skb identifier together with *skb */ while (!(can_skb_prv(skb)->skbcnt)) can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); rcu_read_lock(); /* deliver the packet to sockets listening on all devices */ matches = can_rcv_filter(net->can.rx_alldev_list, skb); /* find receive list for this device */ dev_rcv_lists = can_dev_rcv_lists_find(net, dev); matches += can_rcv_filter(dev_rcv_lists, skb); rcu_read_unlock(); /* consume the skbuff allocated by the netdevice driver */ consume_skb(skb); if (matches > 0) { pkg_stats->matches++; pkg_stats->matches_delta++; } } static int can_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) { pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n", dev->type, skb->len); kfree_skb(skb); return NET_RX_DROP; } can_receive(skb, dev); return NET_RX_SUCCESS; } static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) { pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n", dev->type, skb->len); kfree_skb(skb); return NET_RX_DROP; } can_receive(skb, dev); return NET_RX_SUCCESS; } static int canxl_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) { pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n", dev->type, skb->len); kfree_skb(skb); return NET_RX_DROP; } can_receive(skb, dev); return NET_RX_SUCCESS; } /* af_can protocol functions */ /** * can_proto_register - register CAN transport protocol * @cp: pointer to CAN protocol structure * * Return: * 0 on success * -EINVAL invalid (out of range) protocol number * -EBUSY protocol already in use * -ENOBUF if proto_register() fails */ int can_proto_register(const struct can_proto *cp) { int proto = cp->protocol; int err = 0; if (proto < 0 || proto >= CAN_NPROTO) { pr_err("can: protocol number %d out of range\n", proto); return -EINVAL; } err = proto_register(cp->prot, 0); if (err < 0) return err; mutex_lock(&proto_tab_lock); if (rcu_access_pointer(proto_tab[proto])) { pr_err("can: protocol %d already registered\n", proto); err = -EBUSY; } else { RCU_INIT_POINTER(proto_tab[proto], cp); } mutex_unlock(&proto_tab_lock); if (err < 0) proto_unregister(cp->prot); return err; } EXPORT_SYMBOL(can_proto_register); /** * can_proto_unregister - unregister CAN transport protocol * @cp: pointer to CAN protocol structure */ void can_proto_unregister(const struct can_proto *cp) { int proto = cp->protocol; mutex_lock(&proto_tab_lock); BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); RCU_INIT_POINTER(proto_tab[proto], NULL); mutex_unlock(&proto_tab_lock); synchronize_rcu(); proto_unregister(cp->prot); } EXPORT_SYMBOL(can_proto_unregister); static int can_pernet_init(struct net *net) { spin_lock_init(&net->can.rcvlists_lock); net->can.rx_alldev_list = kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL); if (!net->can.rx_alldev_list) goto out; net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL); if (!net->can.pkg_stats) goto out_free_rx_alldev_list; net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL); if (!net->can.rcv_lists_stats) goto out_free_pkg_stats; if (IS_ENABLED(CONFIG_PROC_FS)) { /* the statistics are updated every second (timer triggered) */ if (stats_timer) { timer_setup(&net->can.stattimer, can_stat_update, 0); mod_timer(&net->can.stattimer, round_jiffies(jiffies + HZ)); } net->can.pkg_stats->jiffies_init = jiffies; can_init_proc(net); } return 0; out_free_pkg_stats: kfree(net->can.pkg_stats); out_free_rx_alldev_list: kfree(net->can.rx_alldev_list); out: return -ENOMEM; } static void can_pernet_exit(struct net *net) { if (IS_ENABLED(CONFIG_PROC_FS)) { can_remove_proc(net); if (stats_timer) del_timer_sync(&net->can.stattimer); } kfree(net->can.rx_alldev_list); kfree(net->can.pkg_stats); kfree(net->can.rcv_lists_stats); } /* af_can module init/exit functions */ static struct packet_type can_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CAN), .func = can_rcv, }; static struct packet_type canfd_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CANFD), .func = canfd_rcv, }; static struct packet_type canxl_packet __read_mostly = { .type = cpu_to_be16(ETH_P_CANXL), .func = canxl_rcv, }; static const struct net_proto_family can_family_ops = { .family = PF_CAN, .create = can_create, .owner = THIS_MODULE, }; static struct pernet_operations can_pernet_ops __read_mostly = { .init = can_pernet_init, .exit = can_pernet_exit, }; static __init int can_init(void) { int err; /* check for correct padding to be able to use the structs similarly */ BUILD_BUG_ON(offsetof(struct can_frame, len) != offsetof(struct canfd_frame, len) || offsetof(struct can_frame, len) != offsetof(struct canxl_frame, flags) || offsetof(struct can_frame, data) != offsetof(struct canfd_frame, data)); pr_info("can: controller area network core\n"); rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 0, 0, NULL); if (!rcv_cache) return -ENOMEM; err = register_pernet_subsys(&can_pernet_ops); if (err) goto out_pernet; /* protocol register */ err = sock_register(&can_family_ops); if (err) goto out_sock; dev_add_pack(&can_packet); dev_add_pack(&canfd_packet); dev_add_pack(&canxl_packet); return 0; out_sock: unregister_pernet_subsys(&can_pernet_ops); out_pernet: kmem_cache_destroy(rcv_cache); return err; } static __exit void can_exit(void) { /* protocol unregister */ dev_remove_pack(&canxl_packet); dev_remove_pack(&canfd_packet); dev_remove_pack(&can_packet); sock_unregister(PF_CAN); unregister_pernet_subsys(&can_pernet_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ kmem_cache_destroy(rcv_cache); } module_init(can_init); module_exit(can_exit); |
47 1 53 42 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #ifndef __NET_MPTCP_H #define __NET_MPTCP_H #include <linux/skbuff.h> #include <linux/tcp.h> #include <linux/types.h> struct mptcp_info; struct mptcp_sock; struct seq_file; /* MPTCP sk_buff extension data */ struct mptcp_ext { union { u64 data_ack; u32 data_ack32; }; u64 data_seq; u32 subflow_seq; u16 data_len; __sum16 csum; u8 use_map:1, dsn64:1, data_fin:1, use_ack:1, ack64:1, mpc_map:1, frozen:1, reset_transient:1; u8 reset_reason:4, csum_reqd:1, infinite_map:1; }; #define MPTCPOPT_HMAC_LEN 20 #define MPTCP_RM_IDS_MAX 8 struct mptcp_rm_list { u8 ids[MPTCP_RM_IDS_MAX]; u8 nr; }; struct mptcp_addr_info { u8 id; sa_family_t family; __be16 port; union { struct in_addr addr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) struct in6_addr addr6; #endif }; }; struct mptcp_out_options { #if IS_ENABLED(CONFIG_MPTCP) u16 suboptions; struct mptcp_rm_list rm_list; u8 join_id; u8 backup; u8 reset_reason:4, reset_transient:1, csum_reqd:1, allow_join_id0:1; union { struct { u64 sndr_key; u64 rcvr_key; u64 data_seq; u32 subflow_seq; u16 data_len; __sum16 csum; }; struct { struct mptcp_addr_info addr; u64 ahmac; }; struct { struct mptcp_ext ext_copy; u64 fail_seq; }; struct { u32 nonce; u32 token; u64 thmac; u8 hmac[MPTCPOPT_HMAC_LEN]; }; }; #endif }; #define MPTCP_SCHED_NAME_MAX 16 #define MPTCP_SCHED_MAX 128 #define MPTCP_SCHED_BUF_MAX (MPTCP_SCHED_NAME_MAX * MPTCP_SCHED_MAX) #define MPTCP_SUBFLOWS_MAX 8 struct mptcp_sched_data { bool reinject; u8 subflows; struct mptcp_subflow_context *contexts[MPTCP_SUBFLOWS_MAX]; }; struct mptcp_sched_ops { int (*get_subflow)(struct mptcp_sock *msk, struct mptcp_sched_data *data); char name[MPTCP_SCHED_NAME_MAX]; struct module *owner; struct list_head list; void (*init)(struct mptcp_sock *msk); void (*release)(struct mptcp_sock *msk); } ____cacheline_aligned_in_smp; #ifdef CONFIG_MPTCP void mptcp_init(void); static inline bool sk_is_mptcp(const struct sock *sk) { return tcp_sk(sk)->is_mptcp; } static inline bool rsk_is_mptcp(const struct request_sock *req) { return tcp_rsk(req)->is_mptcp; } static inline bool rsk_drop_req(const struct request_sock *req) { return tcp_rsk(req)->is_mptcp && tcp_rsk(req)->drop_req; } void mptcp_space(const struct sock *ssk, int *space, int *full_space); bool mptcp_syn_options(struct sock *sk, const struct sk_buff *skb, unsigned int *size, struct mptcp_out_options *opts); bool mptcp_synack_options(const struct request_sock *req, unsigned int *size, struct mptcp_out_options *opts); bool mptcp_established_options(struct sock *sk, struct sk_buff *skb, unsigned int *size, unsigned int remaining, struct mptcp_out_options *opts); bool mptcp_incoming_options(struct sock *sk, struct sk_buff *skb); void mptcp_write_options(struct tcphdr *th, __be32 *ptr, struct tcp_sock *tp, struct mptcp_out_options *opts); void mptcp_diag_fill_info(struct mptcp_sock *msk, struct mptcp_info *info); /* move the skb extension owership, with the assumption that 'to' is * newly allocated */ static inline void mptcp_skb_ext_move(struct sk_buff *to, struct sk_buff *from) { if (!skb_ext_exist(from, SKB_EXT_MPTCP)) return; if (WARN_ON_ONCE(to->active_extensions)) skb_ext_put(to); to->active_extensions = from->active_extensions; to->extensions = from->extensions; from->active_extensions = 0; } static inline void mptcp_skb_ext_copy(struct sk_buff *to, struct sk_buff *from) { struct mptcp_ext *from_ext; from_ext = skb_ext_find(from, SKB_EXT_MPTCP); if (!from_ext) return; from_ext->frozen = 1; skb_ext_copy(to, from); } static inline bool mptcp_ext_matches(const struct mptcp_ext *to_ext, const struct mptcp_ext *from_ext) { /* MPTCP always clears the ext when adding it to the skb, so * holes do not bother us here */ return !from_ext || (to_ext && from_ext && !memcmp(from_ext, to_ext, sizeof(struct mptcp_ext))); } /* check if skbs can be collapsed. * MPTCP collapse is allowed if neither @to or @from carry an mptcp data * mapping, or if the extension of @to is the same as @from. * Collapsing is not possible if @to lacks an extension, but @from carries one. */ static inline bool mptcp_skb_can_collapse(const struct sk_buff *to, const struct sk_buff *from) { return mptcp_ext_matches(skb_ext_find(to, SKB_EXT_MPTCP), skb_ext_find(from, SKB_EXT_MPTCP)); } void mptcp_seq_show(struct seq_file *seq); int mptcp_subflow_init_cookie_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb); struct request_sock *mptcp_subflow_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener); __be32 mptcp_get_reset_option(const struct sk_buff *skb); static inline __be32 mptcp_reset_option(const struct sk_buff *skb) { if (skb_ext_exist(skb, SKB_EXT_MPTCP)) return mptcp_get_reset_option(skb); return htonl(0u); } void mptcp_active_detect_blackhole(struct sock *sk, bool expired); #else static inline void mptcp_init(void) { } static inline bool sk_is_mptcp(const struct sock *sk) { return false; } static inline bool rsk_is_mptcp(const struct request_sock *req) { return false; } static inline bool rsk_drop_req(const struct request_sock *req) { return false; } static inline bool mptcp_syn_options(struct sock *sk, const struct sk_buff *skb, unsigned int *size, struct mptcp_out_options *opts) { return false; } static inline bool mptcp_synack_options(const struct request_sock *req, unsigned int *size, struct mptcp_out_options *opts) { return false; } static inline bool mptcp_established_options(struct sock *sk, struct sk_buff *skb, unsigned int *size, unsigned int remaining, struct mptcp_out_options *opts) { return false; } static inline bool mptcp_incoming_options(struct sock *sk, struct sk_buff *skb) { return true; } static inline void mptcp_skb_ext_move(struct sk_buff *to, const struct sk_buff *from) { } static inline void mptcp_skb_ext_copy(struct sk_buff *to, struct sk_buff *from) { } static inline bool mptcp_skb_can_collapse(const struct sk_buff *to, const struct sk_buff *from) { return true; } static inline void mptcp_space(const struct sock *ssk, int *s, int *fs) { } static inline void mptcp_seq_show(struct seq_file *seq) { } static inline int mptcp_subflow_init_cookie_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { return 0; /* TCP fallback */ } static inline struct request_sock *mptcp_subflow_reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener, bool attach_listener) { return NULL; } static inline __be32 mptcp_reset_option(const struct sk_buff *skb) { return htonl(0u); } static inline void mptcp_active_detect_blackhole(struct sock *sk, bool expired) { } #endif /* CONFIG_MPTCP */ #if IS_ENABLED(CONFIG_MPTCP_IPV6) int mptcpv6_init(void); void mptcpv6_handle_mapped(struct sock *sk, bool mapped); #elif IS_ENABLED(CONFIG_IPV6) static inline int mptcpv6_init(void) { return 0; } static inline void mptcpv6_handle_mapped(struct sock *sk, bool mapped) { } #endif #if defined(CONFIG_MPTCP) && defined(CONFIG_BPF_SYSCALL) struct mptcp_sock *bpf_mptcp_sock_from_subflow(struct sock *sk); #else static inline struct mptcp_sock *bpf_mptcp_sock_from_subflow(struct sock *sk) { return NULL; } #endif #if !IS_ENABLED(CONFIG_MPTCP) struct mptcp_sock { }; #endif #endif /* __NET_MPTCP_H */ |
9 4 4 10 6 6 6 17 17 13 4 7 10 17 17 6 21 21 3 17 22 1 1 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | // SPDX-License-Identifier: GPL-2.0 /* XDP sockets monitoring support * * Copyright(c) 2019 Intel Corporation. * * Author: Björn Töpel <bjorn.topel@intel.com> */ #include <linux/module.h> #include <net/xdp_sock.h> #include <linux/xdp_diag.h> #include <linux/sock_diag.h> #include "xsk_queue.h" #include "xsk.h" static int xsk_diag_put_info(const struct xdp_sock *xs, struct sk_buff *nlskb) { struct xdp_diag_info di = {}; di.ifindex = xs->dev ? xs->dev->ifindex : 0; di.queue_id = xs->queue_id; return nla_put(nlskb, XDP_DIAG_INFO, sizeof(di), &di); } static int xsk_diag_put_ring(const struct xsk_queue *queue, int nl_type, struct sk_buff *nlskb) { struct xdp_diag_ring dr = {}; dr.entries = queue->nentries; return nla_put(nlskb, nl_type, sizeof(dr), &dr); } static int xsk_diag_put_rings_cfg(const struct xdp_sock *xs, struct sk_buff *nlskb) { int err = 0; if (xs->rx) err = xsk_diag_put_ring(xs->rx, XDP_DIAG_RX_RING, nlskb); if (!err && xs->tx) err = xsk_diag_put_ring(xs->tx, XDP_DIAG_TX_RING, nlskb); return err; } static int xsk_diag_put_umem(const struct xdp_sock *xs, struct sk_buff *nlskb) { struct xsk_buff_pool *pool = xs->pool; struct xdp_umem *umem = xs->umem; struct xdp_diag_umem du = {}; int err; if (!umem) return 0; du.id = umem->id; du.size = umem->size; du.num_pages = umem->npgs; du.chunk_size = umem->chunk_size; du.headroom = umem->headroom; du.ifindex = (pool && pool->netdev) ? pool->netdev->ifindex : 0; du.queue_id = pool ? pool->queue_id : 0; du.flags = 0; if (umem->zc) du.flags |= XDP_DU_F_ZEROCOPY; du.refs = refcount_read(&umem->users); err = nla_put(nlskb, XDP_DIAG_UMEM, sizeof(du), &du); if (!err && pool && pool->fq) err = xsk_diag_put_ring(pool->fq, XDP_DIAG_UMEM_FILL_RING, nlskb); if (!err && pool && pool->cq) err = xsk_diag_put_ring(pool->cq, XDP_DIAG_UMEM_COMPLETION_RING, nlskb); return err; } static int xsk_diag_put_stats(const struct xdp_sock *xs, struct sk_buff *nlskb) { struct xdp_diag_stats du = {}; du.n_rx_dropped = xs->rx_dropped; du.n_rx_invalid = xskq_nb_invalid_descs(xs->rx); du.n_rx_full = xs->rx_queue_full; du.n_fill_ring_empty = xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0; du.n_tx_invalid = xskq_nb_invalid_descs(xs->tx); du.n_tx_ring_empty = xskq_nb_queue_empty_descs(xs->tx); return nla_put(nlskb, XDP_DIAG_STATS, sizeof(du), &du); } static int xsk_diag_fill(struct sock *sk, struct sk_buff *nlskb, struct xdp_diag_req *req, struct user_namespace *user_ns, u32 portid, u32 seq, u32 flags, int sk_ino) { struct xdp_sock *xs = xdp_sk(sk); struct xdp_diag_msg *msg; struct nlmsghdr *nlh; nlh = nlmsg_put(nlskb, portid, seq, SOCK_DIAG_BY_FAMILY, sizeof(*msg), flags); if (!nlh) return -EMSGSIZE; msg = nlmsg_data(nlh); memset(msg, 0, sizeof(*msg)); msg->xdiag_family = AF_XDP; msg->xdiag_type = sk->sk_type; msg->xdiag_ino = sk_ino; sock_diag_save_cookie(sk, msg->xdiag_cookie); mutex_lock(&xs->mutex); if (READ_ONCE(xs->state) == XSK_UNBOUND) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_INFO) && xsk_diag_put_info(xs, nlskb)) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_INFO) && nla_put_u32(nlskb, XDP_DIAG_UID, from_kuid_munged(user_ns, sock_i_uid(sk)))) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_RING_CFG) && xsk_diag_put_rings_cfg(xs, nlskb)) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_UMEM) && xsk_diag_put_umem(xs, nlskb)) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_MEMINFO) && sock_diag_put_meminfo(sk, nlskb, XDP_DIAG_MEMINFO)) goto out_nlmsg_trim; if ((req->xdiag_show & XDP_SHOW_STATS) && xsk_diag_put_stats(xs, nlskb)) goto out_nlmsg_trim; mutex_unlock(&xs->mutex); nlmsg_end(nlskb, nlh); return 0; out_nlmsg_trim: mutex_unlock(&xs->mutex); nlmsg_cancel(nlskb, nlh); return -EMSGSIZE; } static int xsk_diag_dump(struct sk_buff *nlskb, struct netlink_callback *cb) { struct xdp_diag_req *req = nlmsg_data(cb->nlh); struct net *net = sock_net(nlskb->sk); int num = 0, s_num = cb->args[0]; struct sock *sk; mutex_lock(&net->xdp.lock); sk_for_each(sk, &net->xdp.list) { if (!net_eq(sock_net(sk), net)) continue; if (num++ < s_num) continue; if (xsk_diag_fill(sk, nlskb, req, sk_user_ns(NETLINK_CB(cb->skb).sk), NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, sock_i_ino(sk)) < 0) { num--; break; } } mutex_unlock(&net->xdp.lock); cb->args[0] = num; return nlskb->len; } static int xsk_diag_handler_dump(struct sk_buff *nlskb, struct nlmsghdr *hdr) { struct netlink_dump_control c = { .dump = xsk_diag_dump }; int hdrlen = sizeof(struct xdp_diag_req); struct net *net = sock_net(nlskb->sk); if (nlmsg_len(hdr) < hdrlen) return -EINVAL; if (!(hdr->nlmsg_flags & NLM_F_DUMP)) return -EOPNOTSUPP; return netlink_dump_start(net->diag_nlsk, nlskb, hdr, &c); } static const struct sock_diag_handler xsk_diag_handler = { .owner = THIS_MODULE, .family = AF_XDP, .dump = xsk_diag_handler_dump, }; static int __init xsk_diag_init(void) { return sock_diag_register(&xsk_diag_handler); } static void __exit xsk_diag_exit(void) { sock_diag_unregister(&xsk_diag_handler); } module_init(xsk_diag_init); module_exit(xsk_diag_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XDP socket monitoring via SOCK_DIAG"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, AF_XDP); |
408 569 670 106 9 670 43 43 5 43 43 7 3 74 68 7 3 7 720 699 665 35 698 699 43 5 671 671 42 43 698 75 75 59 9 68 3 4 7 1 75 246 460 75 75 32 1 31 7 1 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008-2014 Mathieu Desnoyers */ #include <linux/module.h> #include <linux/mutex.h> #include <linux/types.h> #include <linux/jhash.h> #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/tracepoint.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/static_key.h> enum tp_func_state { TP_FUNC_0, TP_FUNC_1, TP_FUNC_2, TP_FUNC_N, }; extern tracepoint_ptr_t __start___tracepoints_ptrs[]; extern tracepoint_ptr_t __stop___tracepoints_ptrs[]; enum tp_transition_sync { TP_TRANSITION_SYNC_1_0_1, TP_TRANSITION_SYNC_N_2_1, _NR_TP_TRANSITION_SYNC, }; struct tp_transition_snapshot { unsigned long rcu; bool ongoing; }; /* Protected by tracepoints_mutex */ static struct tp_transition_snapshot tp_transition_snapshot[_NR_TP_TRANSITION_SYNC]; static void tp_rcu_get_state(enum tp_transition_sync sync) { struct tp_transition_snapshot *snapshot = &tp_transition_snapshot[sync]; /* Keep the latest get_state snapshot. */ snapshot->rcu = get_state_synchronize_rcu(); snapshot->ongoing = true; } static void tp_rcu_cond_sync(enum tp_transition_sync sync) { struct tp_transition_snapshot *snapshot = &tp_transition_snapshot[sync]; if (!snapshot->ongoing) return; cond_synchronize_rcu(snapshot->rcu); snapshot->ongoing = false; } /* Set to 1 to enable tracepoint debug output */ static const int tracepoint_debug; #ifdef CONFIG_MODULES /* * Tracepoint module list mutex protects the local module list. */ static DEFINE_MUTEX(tracepoint_module_list_mutex); /* Local list of struct tp_module */ static LIST_HEAD(tracepoint_module_list); #endif /* CONFIG_MODULES */ /* * tracepoints_mutex protects the builtin and module tracepoints. * tracepoints_mutex nests inside tracepoint_module_list_mutex. */ static DEFINE_MUTEX(tracepoints_mutex); /* * Note about RCU : * It is used to delay the free of multiple probes array until a quiescent * state is reached. */ struct tp_probes { struct rcu_head rcu; struct tracepoint_func probes[]; }; /* Called in removal of a func but failed to allocate a new tp_funcs */ static void tp_stub_func(void) { return; } static inline void *allocate_probes(int count) { struct tp_probes *p = kmalloc(struct_size(p, probes, count), GFP_KERNEL); return p == NULL ? NULL : p->probes; } static void rcu_free_old_probes(struct rcu_head *head) { kfree(container_of(head, struct tp_probes, rcu)); } static inline void release_probes(struct tracepoint *tp, struct tracepoint_func *old) { if (old) { struct tp_probes *tp_probes = container_of(old, struct tp_probes, probes[0]); if (tracepoint_is_faultable(tp)) call_rcu_tasks_trace(&tp_probes->rcu, rcu_free_old_probes); else call_rcu(&tp_probes->rcu, rcu_free_old_probes); } } static void debug_print_probes(struct tracepoint_func *funcs) { int i; if (!tracepoint_debug || !funcs) return; for (i = 0; funcs[i].func; i++) printk(KERN_DEBUG "Probe %d : %p\n", i, funcs[i].func); } static struct tracepoint_func * func_add(struct tracepoint_func **funcs, struct tracepoint_func *tp_func, int prio) { struct tracepoint_func *old, *new; int iter_probes; /* Iterate over old probe array. */ int nr_probes = 0; /* Counter for probes */ int pos = -1; /* Insertion position into new array */ if (WARN_ON(!tp_func->func)) return ERR_PTR(-EINVAL); debug_print_probes(*funcs); old = *funcs; if (old) { /* (N -> N+1), (N != 0, 1) probes */ for (iter_probes = 0; old[iter_probes].func; iter_probes++) { if (old[iter_probes].func == tp_stub_func) continue; /* Skip stub functions. */ if (old[iter_probes].func == tp_func->func && old[iter_probes].data == tp_func->data) return ERR_PTR(-EEXIST); nr_probes++; } } /* + 2 : one for new probe, one for NULL func */ new = allocate_probes(nr_probes + 2); if (new == NULL) return ERR_PTR(-ENOMEM); if (old) { nr_probes = 0; for (iter_probes = 0; old[iter_probes].func; iter_probes++) { if (old[iter_probes].func == tp_stub_func) continue; /* Insert before probes of lower priority */ if (pos < 0 && old[iter_probes].prio < prio) pos = nr_probes++; new[nr_probes++] = old[iter_probes]; } if (pos < 0) pos = nr_probes++; /* nr_probes now points to the end of the new array */ } else { pos = 0; nr_probes = 1; /* must point at end of array */ } new[pos] = *tp_func; new[nr_probes].func = NULL; *funcs = new; debug_print_probes(*funcs); return old; } static void *func_remove(struct tracepoint_func **funcs, struct tracepoint_func *tp_func) { int nr_probes = 0, nr_del = 0, i; struct tracepoint_func *old, *new; old = *funcs; if (!old) return ERR_PTR(-ENOENT); debug_print_probes(*funcs); /* (N -> M), (N > 1, M >= 0) probes */ if (tp_func->func) { for (nr_probes = 0; old[nr_probes].func; nr_probes++) { if ((old[nr_probes].func == tp_func->func && old[nr_probes].data == tp_func->data) || old[nr_probes].func == tp_stub_func) nr_del++; } } /* * If probe is NULL, then nr_probes = nr_del = 0, and then the * entire entry will be removed. */ if (nr_probes - nr_del == 0) { /* N -> 0, (N > 1) */ *funcs = NULL; debug_print_probes(*funcs); return old; } else { int j = 0; /* N -> M, (N > 1, M > 0) */ /* + 1 for NULL */ new = allocate_probes(nr_probes - nr_del + 1); if (new) { for (i = 0; old[i].func; i++) { if ((old[i].func != tp_func->func || old[i].data != tp_func->data) && old[i].func != tp_stub_func) new[j++] = old[i]; } new[nr_probes - nr_del].func = NULL; *funcs = new; } else { /* * Failed to allocate, replace the old function * with calls to tp_stub_func. */ for (i = 0; old[i].func; i++) { if (old[i].func == tp_func->func && old[i].data == tp_func->data) WRITE_ONCE(old[i].func, tp_stub_func); } *funcs = old; } } debug_print_probes(*funcs); return old; } /* * Count the number of functions (enum tp_func_state) in a tp_funcs array. */ static enum tp_func_state nr_func_state(const struct tracepoint_func *tp_funcs) { if (!tp_funcs) return TP_FUNC_0; if (!tp_funcs[1].func) return TP_FUNC_1; if (!tp_funcs[2].func) return TP_FUNC_2; return TP_FUNC_N; /* 3 or more */ } static void tracepoint_update_call(struct tracepoint *tp, struct tracepoint_func *tp_funcs) { void *func = tp->iterator; /* Synthetic events do not have static call sites */ if (!tp->static_call_key) return; if (nr_func_state(tp_funcs) == TP_FUNC_1) func = tp_funcs[0].func; __static_call_update(tp->static_call_key, tp->static_call_tramp, func); } /* * Add the probe function to a tracepoint. */ static int tracepoint_add_func(struct tracepoint *tp, struct tracepoint_func *func, int prio, bool warn) { struct tracepoint_func *old, *tp_funcs; int ret; if (tp->ext && tp->ext->regfunc && !static_key_enabled(&tp->key)) { ret = tp->ext->regfunc(); if (ret < 0) return ret; } tp_funcs = rcu_dereference_protected(tp->funcs, lockdep_is_held(&tracepoints_mutex)); old = func_add(&tp_funcs, func, prio); if (IS_ERR(old)) { WARN_ON_ONCE(warn && PTR_ERR(old) != -ENOMEM); return PTR_ERR(old); } /* * rcu_assign_pointer has as smp_store_release() which makes sure * that the new probe callbacks array is consistent before setting * a pointer to it. This array is referenced by __DO_TRACE from * include/linux/tracepoint.h using rcu_dereference_sched(). */ switch (nr_func_state(tp_funcs)) { case TP_FUNC_1: /* 0->1 */ /* * Make sure new static func never uses old data after a * 1->0->1 transition sequence. */ tp_rcu_cond_sync(TP_TRANSITION_SYNC_1_0_1); /* Set static call to first function */ tracepoint_update_call(tp, tp_funcs); /* Both iterator and static call handle NULL tp->funcs */ rcu_assign_pointer(tp->funcs, tp_funcs); static_branch_enable(&tp->key); break; case TP_FUNC_2: /* 1->2 */ /* Set iterator static call */ tracepoint_update_call(tp, tp_funcs); /* * Iterator callback installed before updating tp->funcs. * Requires ordering between RCU assign/dereference and * static call update/call. */ fallthrough; case TP_FUNC_N: /* N->N+1 (N>1) */ rcu_assign_pointer(tp->funcs, tp_funcs); /* * Make sure static func never uses incorrect data after a * N->...->2->1 (N>1) transition sequence. */ if (tp_funcs[0].data != old[0].data) tp_rcu_get_state(TP_TRANSITION_SYNC_N_2_1); break; default: WARN_ON_ONCE(1); break; } release_probes(tp, old); return 0; } /* * Remove a probe function from a tracepoint. * Note: only waiting an RCU period after setting elem->call to the empty * function insures that the original callback is not used anymore. This insured * by preempt_disable around the call site. */ static int tracepoint_remove_func(struct tracepoint *tp, struct tracepoint_func *func) { struct tracepoint_func *old, *tp_funcs; tp_funcs = rcu_dereference_protected(tp->funcs, lockdep_is_held(&tracepoints_mutex)); old = func_remove(&tp_funcs, func); if (WARN_ON_ONCE(IS_ERR(old))) return PTR_ERR(old); if (tp_funcs == old) /* Failed allocating new tp_funcs, replaced func with stub */ return 0; switch (nr_func_state(tp_funcs)) { case TP_FUNC_0: /* 1->0 */ /* Removed last function */ if (tp->ext && tp->ext->unregfunc && static_key_enabled(&tp->key)) tp->ext->unregfunc(); static_branch_disable(&tp->key); /* Set iterator static call */ tracepoint_update_call(tp, tp_funcs); /* Both iterator and static call handle NULL tp->funcs */ rcu_assign_pointer(tp->funcs, NULL); /* * Make sure new static func never uses old data after a * 1->0->1 transition sequence. */ tp_rcu_get_state(TP_TRANSITION_SYNC_1_0_1); break; case TP_FUNC_1: /* 2->1 */ rcu_assign_pointer(tp->funcs, tp_funcs); /* * Make sure static func never uses incorrect data after a * N->...->2->1 (N>2) transition sequence. If the first * element's data has changed, then force the synchronization * to prevent current readers that have loaded the old data * from calling the new function. */ if (tp_funcs[0].data != old[0].data) tp_rcu_get_state(TP_TRANSITION_SYNC_N_2_1); tp_rcu_cond_sync(TP_TRANSITION_SYNC_N_2_1); /* Set static call to first function */ tracepoint_update_call(tp, tp_funcs); break; case TP_FUNC_2: /* N->N-1 (N>2) */ fallthrough; case TP_FUNC_N: rcu_assign_pointer(tp->funcs, tp_funcs); /* * Make sure static func never uses incorrect data after a * N->...->2->1 (N>2) transition sequence. */ if (tp_funcs[0].data != old[0].data) tp_rcu_get_state(TP_TRANSITION_SYNC_N_2_1); break; default: WARN_ON_ONCE(1); break; } release_probes(tp, old); return 0; } /** * tracepoint_probe_register_prio_may_exist - Connect a probe to a tracepoint with priority * @tp: tracepoint * @probe: probe handler * @data: tracepoint data * @prio: priority of this function over other registered functions * * Same as tracepoint_probe_register_prio() except that it will not warn * if the tracepoint is already registered. */ int tracepoint_probe_register_prio_may_exist(struct tracepoint *tp, void *probe, void *data, int prio) { struct tracepoint_func tp_func; int ret; mutex_lock(&tracepoints_mutex); tp_func.func = probe; tp_func.data = data; tp_func.prio = prio; ret = tracepoint_add_func(tp, &tp_func, prio, false); mutex_unlock(&tracepoints_mutex); return ret; } EXPORT_SYMBOL_GPL(tracepoint_probe_register_prio_may_exist); /** * tracepoint_probe_register_prio - Connect a probe to a tracepoint with priority * @tp: tracepoint * @probe: probe handler * @data: tracepoint data * @prio: priority of this function over other registered functions * * Returns 0 if ok, error value on error. * Note: if @tp is within a module, the caller is responsible for * unregistering the probe before the module is gone. This can be * performed either with a tracepoint module going notifier, or from * within module exit functions. */ int tracepoint_probe_register_prio(struct tracepoint *tp, void *probe, void *data, int prio) { struct tracepoint_func tp_func; int ret; mutex_lock(&tracepoints_mutex); tp_func.func = probe; tp_func.data = data; tp_func.prio = prio; ret = tracepoint_add_func(tp, &tp_func, prio, true); mutex_unlock(&tracepoints_mutex); return ret; } EXPORT_SYMBOL_GPL(tracepoint_probe_register_prio); /** * tracepoint_probe_register - Connect a probe to a tracepoint * @tp: tracepoint * @probe: probe handler * @data: tracepoint data * * Returns 0 if ok, error value on error. * Note: if @tp is within a module, the caller is responsible for * unregistering the probe before the module is gone. This can be * performed either with a tracepoint module going notifier, or from * within module exit functions. */ int tracepoint_probe_register(struct tracepoint *tp, void *probe, void *data) { return tracepoint_probe_register_prio(tp, probe, data, TRACEPOINT_DEFAULT_PRIO); } EXPORT_SYMBOL_GPL(tracepoint_probe_register); /** * tracepoint_probe_unregister - Disconnect a probe from a tracepoint * @tp: tracepoint * @probe: probe function pointer * @data: tracepoint data * * Returns 0 if ok, error value on error. */ int tracepoint_probe_unregister(struct tracepoint *tp, void *probe, void *data) { struct tracepoint_func tp_func; int ret; mutex_lock(&tracepoints_mutex); tp_func.func = probe; tp_func.data = data; ret = tracepoint_remove_func(tp, &tp_func); mutex_unlock(&tracepoints_mutex); return ret; } EXPORT_SYMBOL_GPL(tracepoint_probe_unregister); static void for_each_tracepoint_range( tracepoint_ptr_t *begin, tracepoint_ptr_t *end, void (*fct)(struct tracepoint *tp, void *priv), void *priv) { tracepoint_ptr_t *iter; if (!begin) return; for (iter = begin; iter < end; iter++) fct(tracepoint_ptr_deref(iter), priv); } #ifdef CONFIG_MODULES bool trace_module_has_bad_taint(struct module *mod) { return mod->taints & ~((1 << TAINT_OOT_MODULE) | (1 << TAINT_CRAP) | (1 << TAINT_UNSIGNED_MODULE) | (1 << TAINT_TEST) | (1 << TAINT_LIVEPATCH)); } static BLOCKING_NOTIFIER_HEAD(tracepoint_notify_list); /** * register_tracepoint_module_notifier - register tracepoint coming/going notifier * @nb: notifier block * * Notifiers registered with this function are called on module * coming/going with the tracepoint_module_list_mutex held. * The notifier block callback should expect a "struct tp_module" data * pointer. */ int register_tracepoint_module_notifier(struct notifier_block *nb) { struct tp_module *tp_mod; int ret; mutex_lock(&tracepoint_module_list_mutex); ret = blocking_notifier_chain_register(&tracepoint_notify_list, nb); if (ret) goto end; list_for_each_entry(tp_mod, &tracepoint_module_list, list) (void) nb->notifier_call(nb, MODULE_STATE_COMING, tp_mod); end: mutex_unlock(&tracepoint_module_list_mutex); return ret; } EXPORT_SYMBOL_GPL(register_tracepoint_module_notifier); /** * unregister_tracepoint_module_notifier - unregister tracepoint coming/going notifier * @nb: notifier block * * The notifier block callback should expect a "struct tp_module" data * pointer. */ int unregister_tracepoint_module_notifier(struct notifier_block *nb) { struct tp_module *tp_mod; int ret; mutex_lock(&tracepoint_module_list_mutex); ret = blocking_notifier_chain_unregister(&tracepoint_notify_list, nb); if (ret) goto end; list_for_each_entry(tp_mod, &tracepoint_module_list, list) (void) nb->notifier_call(nb, MODULE_STATE_GOING, tp_mod); end: mutex_unlock(&tracepoint_module_list_mutex); return ret; } EXPORT_SYMBOL_GPL(unregister_tracepoint_module_notifier); /* * Ensure the tracer unregistered the module's probes before the module * teardown is performed. Prevents leaks of probe and data pointers. */ static void tp_module_going_check_quiescent(struct tracepoint *tp, void *priv) { WARN_ON_ONCE(tp->funcs); } static int tracepoint_module_coming(struct module *mod) { struct tp_module *tp_mod; if (!mod->num_tracepoints) return 0; /* * We skip modules that taint the kernel, especially those with different * module headers (for forced load), to make sure we don't cause a crash. * Staging, out-of-tree, unsigned GPL, and test modules are fine. */ if (trace_module_has_bad_taint(mod)) return 0; tp_mod = kmalloc(sizeof(struct tp_module), GFP_KERNEL); if (!tp_mod) return -ENOMEM; tp_mod->mod = mod; mutex_lock(&tracepoint_module_list_mutex); list_add_tail(&tp_mod->list, &tracepoint_module_list); blocking_notifier_call_chain(&tracepoint_notify_list, MODULE_STATE_COMING, tp_mod); mutex_unlock(&tracepoint_module_list_mutex); return 0; } static void tracepoint_module_going(struct module *mod) { struct tp_module *tp_mod; if (!mod->num_tracepoints) return; mutex_lock(&tracepoint_module_list_mutex); list_for_each_entry(tp_mod, &tracepoint_module_list, list) { if (tp_mod->mod == mod) { blocking_notifier_call_chain(&tracepoint_notify_list, MODULE_STATE_GOING, tp_mod); list_del(&tp_mod->list); kfree(tp_mod); /* * Called the going notifier before checking for * quiescence. */ for_each_tracepoint_range(mod->tracepoints_ptrs, mod->tracepoints_ptrs + mod->num_tracepoints, tp_module_going_check_quiescent, NULL); break; } } /* * In the case of modules that were tainted at "coming", we'll simply * walk through the list without finding it. We cannot use the "tainted" * flag on "going", in case a module taints the kernel only after being * loaded. */ mutex_unlock(&tracepoint_module_list_mutex); } static int tracepoint_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; int ret = 0; switch (val) { case MODULE_STATE_COMING: ret = tracepoint_module_coming(mod); break; case MODULE_STATE_LIVE: break; case MODULE_STATE_GOING: tracepoint_module_going(mod); break; case MODULE_STATE_UNFORMED: break; } return notifier_from_errno(ret); } static struct notifier_block tracepoint_module_nb = { .notifier_call = tracepoint_module_notify, .priority = 0, }; static __init int init_tracepoints(void) { int ret; ret = register_module_notifier(&tracepoint_module_nb); if (ret) pr_warn("Failed to register tracepoint module enter notifier\n"); return ret; } __initcall(init_tracepoints); /** * for_each_tracepoint_in_module - iteration on all tracepoints in a module * @mod: module * @fct: callback * @priv: private data */ void for_each_tracepoint_in_module(struct module *mod, void (*fct)(struct tracepoint *tp, struct module *mod, void *priv), void *priv) { tracepoint_ptr_t *begin, *end, *iter; lockdep_assert_held(&tracepoint_module_list_mutex); if (!mod) return; begin = mod->tracepoints_ptrs; end = mod->tracepoints_ptrs + mod->num_tracepoints; for (iter = begin; iter < end; iter++) fct(tracepoint_ptr_deref(iter), mod, priv); } /** * for_each_module_tracepoint - iteration on all tracepoints in all modules * @fct: callback * @priv: private data */ void for_each_module_tracepoint(void (*fct)(struct tracepoint *tp, struct module *mod, void *priv), void *priv) { struct tp_module *tp_mod; mutex_lock(&tracepoint_module_list_mutex); list_for_each_entry(tp_mod, &tracepoint_module_list, list) for_each_tracepoint_in_module(tp_mod->mod, fct, priv); mutex_unlock(&tracepoint_module_list_mutex); } #endif /* CONFIG_MODULES */ /** * for_each_kernel_tracepoint - iteration on all kernel tracepoints * @fct: callback * @priv: private data */ void for_each_kernel_tracepoint(void (*fct)(struct tracepoint *tp, void *priv), void *priv) { for_each_tracepoint_range(__start___tracepoints_ptrs, __stop___tracepoints_ptrs, fct, priv); } EXPORT_SYMBOL_GPL(for_each_kernel_tracepoint); #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ static int sys_tracepoint_refcount; int syscall_regfunc(void) { struct task_struct *p, *t; if (!sys_tracepoint_refcount) { read_lock(&tasklist_lock); for_each_process_thread(p, t) { set_task_syscall_work(t, SYSCALL_TRACEPOINT); } read_unlock(&tasklist_lock); } sys_tracepoint_refcount++; return 0; } void syscall_unregfunc(void) { struct task_struct *p, *t; sys_tracepoint_refcount--; if (!sys_tracepoint_refcount) { read_lock(&tasklist_lock); for_each_process_thread(p, t) { clear_task_syscall_work(t, SYSCALL_TRACEPOINT); } read_unlock(&tasklist_lock); } } #endif |
69 69 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 | /* * An async IO implementation for Linux * Written by Benjamin LaHaise <bcrl@kvack.org> * * Implements an efficient asynchronous io interface. * * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. * Copyright 2018 Christoph Hellwig. * * See ../COPYING for licensing terms. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/kernel.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/time.h> #include <linux/aio_abi.h> #include <linux/export.h> #include <linux/syscalls.h> #include <linux/backing-dev.h> #include <linux/refcount.h> #include <linux/uio.h> #include <linux/sched/signal.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/aio.h> #include <linux/highmem.h> #include <linux/workqueue.h> #include <linux/security.h> #include <linux/eventfd.h> #include <linux/blkdev.h> #include <linux/compat.h> #include <linux/migrate.h> #include <linux/ramfs.h> #include <linux/percpu-refcount.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/uaccess.h> #include <linux/nospec.h> #include "internal.h" #define KIOCB_KEY 0 #define AIO_RING_MAGIC 0xa10a10a1 #define AIO_RING_COMPAT_FEATURES 1 #define AIO_RING_INCOMPAT_FEATURES 0 struct aio_ring { unsigned id; /* kernel internal index number */ unsigned nr; /* number of io_events */ unsigned head; /* Written to by userland or under ring_lock * mutex by aio_read_events_ring(). */ unsigned tail; unsigned magic; unsigned compat_features; unsigned incompat_features; unsigned header_length; /* size of aio_ring */ struct io_event io_events[]; }; /* 128 bytes + ring size */ /* * Plugging is meant to work with larger batches of IOs. If we don't * have more than the below, then don't bother setting up a plug. */ #define AIO_PLUG_THRESHOLD 2 #define AIO_RING_PAGES 8 struct kioctx_table { struct rcu_head rcu; unsigned nr; struct kioctx __rcu *table[] __counted_by(nr); }; struct kioctx_cpu { unsigned reqs_available; }; struct ctx_rq_wait { struct completion comp; atomic_t count; }; struct kioctx { struct percpu_ref users; atomic_t dead; struct percpu_ref reqs; unsigned long user_id; struct kioctx_cpu __percpu *cpu; /* * For percpu reqs_available, number of slots we move to/from global * counter at a time: */ unsigned req_batch; /* * This is what userspace passed to io_setup(), it's not used for * anything but counting against the global max_reqs quota. * * The real limit is nr_events - 1, which will be larger (see * aio_setup_ring()) */ unsigned max_reqs; /* Size of ringbuffer, in units of struct io_event */ unsigned nr_events; unsigned long mmap_base; unsigned long mmap_size; struct folio **ring_folios; long nr_pages; struct rcu_work free_rwork; /* see free_ioctx() */ /* * signals when all in-flight requests are done */ struct ctx_rq_wait *rq_wait; struct { /* * This counts the number of available slots in the ringbuffer, * so we avoid overflowing it: it's decremented (if positive) * when allocating a kiocb and incremented when the resulting * io_event is pulled off the ringbuffer. * * We batch accesses to it with a percpu version. */ atomic_t reqs_available; } ____cacheline_aligned_in_smp; struct { spinlock_t ctx_lock; struct list_head active_reqs; /* used for cancellation */ } ____cacheline_aligned_in_smp; struct { struct mutex ring_lock; wait_queue_head_t wait; } ____cacheline_aligned_in_smp; struct { unsigned tail; unsigned completed_events; spinlock_t completion_lock; } ____cacheline_aligned_in_smp; struct folio *internal_folios[AIO_RING_PAGES]; struct file *aio_ring_file; unsigned id; }; /* * First field must be the file pointer in all the * iocb unions! See also 'struct kiocb' in <linux/fs.h> */ struct fsync_iocb { struct file *file; struct work_struct work; bool datasync; struct cred *creds; }; struct poll_iocb { struct file *file; struct wait_queue_head *head; __poll_t events; bool cancelled; bool work_scheduled; bool work_need_resched; struct wait_queue_entry wait; struct work_struct work; }; /* * NOTE! Each of the iocb union members has the file pointer * as the first entry in their struct definition. So you can * access the file pointer through any of the sub-structs, * or directly as just 'ki_filp' in this struct. */ struct aio_kiocb { union { struct file *ki_filp; struct kiocb rw; struct fsync_iocb fsync; struct poll_iocb poll; }; struct kioctx *ki_ctx; kiocb_cancel_fn *ki_cancel; struct io_event ki_res; struct list_head ki_list; /* the aio core uses this * for cancellation */ refcount_t ki_refcnt; /* * If the aio_resfd field of the userspace iocb is not zero, * this is the underlying eventfd context to deliver events to. */ struct eventfd_ctx *ki_eventfd; }; /*------ sysctl variables----*/ static DEFINE_SPINLOCK(aio_nr_lock); static unsigned long aio_nr; /* current system wide number of aio requests */ static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ /*----end sysctl variables---*/ #ifdef CONFIG_SYSCTL static const struct ctl_table aio_sysctls[] = { { .procname = "aio-nr", .data = &aio_nr, .maxlen = sizeof(aio_nr), .mode = 0444, .proc_handler = proc_doulongvec_minmax, }, { .procname = "aio-max-nr", .data = &aio_max_nr, .maxlen = sizeof(aio_max_nr), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, }; static void __init aio_sysctl_init(void) { register_sysctl_init("fs", aio_sysctls); } #else #define aio_sysctl_init() do { } while (0) #endif static struct kmem_cache *kiocb_cachep; static struct kmem_cache *kioctx_cachep; static struct vfsmount *aio_mnt; static const struct file_operations aio_ring_fops; static const struct address_space_operations aio_ctx_aops; static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) { struct file *file; struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); if (IS_ERR(inode)) return ERR_CAST(inode); inode->i_mapping->a_ops = &aio_ctx_aops; inode->i_mapping->i_private_data = ctx; inode->i_size = PAGE_SIZE * nr_pages; file = alloc_file_pseudo(inode, aio_mnt, "[aio]", O_RDWR, &aio_ring_fops); if (IS_ERR(file)) iput(inode); return file; } static int aio_init_fs_context(struct fs_context *fc) { if (!init_pseudo(fc, AIO_RING_MAGIC)) return -ENOMEM; fc->s_iflags |= SB_I_NOEXEC; return 0; } /* aio_setup * Creates the slab caches used by the aio routines, panic on * failure as this is done early during the boot sequence. */ static int __init aio_setup(void) { static struct file_system_type aio_fs = { .name = "aio", .init_fs_context = aio_init_fs_context, .kill_sb = kill_anon_super, }; aio_mnt = kern_mount(&aio_fs); if (IS_ERR(aio_mnt)) panic("Failed to create aio fs mount."); kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); aio_sysctl_init(); return 0; } __initcall(aio_setup); static void put_aio_ring_file(struct kioctx *ctx) { struct file *aio_ring_file = ctx->aio_ring_file; struct address_space *i_mapping; if (aio_ring_file) { truncate_setsize(file_inode(aio_ring_file), 0); /* Prevent further access to the kioctx from migratepages */ i_mapping = aio_ring_file->f_mapping; spin_lock(&i_mapping->i_private_lock); i_mapping->i_private_data = NULL; ctx->aio_ring_file = NULL; spin_unlock(&i_mapping->i_private_lock); fput(aio_ring_file); } } static void aio_free_ring(struct kioctx *ctx) { int i; /* Disconnect the kiotx from the ring file. This prevents future * accesses to the kioctx from page migration. */ put_aio_ring_file(ctx); for (i = 0; i < ctx->nr_pages; i++) { struct folio *folio = ctx->ring_folios[i]; if (!folio) continue; pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, folio_ref_count(folio)); ctx->ring_folios[i] = NULL; folio_put(folio); } if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) { kfree(ctx->ring_folios); ctx->ring_folios = NULL; } } static int aio_ring_mremap(struct vm_area_struct *vma) { struct file *file = vma->vm_file; struct mm_struct *mm = vma->vm_mm; struct kioctx_table *table; int i, res = -EINVAL; spin_lock(&mm->ioctx_lock); rcu_read_lock(); table = rcu_dereference(mm->ioctx_table); if (!table) goto out_unlock; for (i = 0; i < table->nr; i++) { struct kioctx *ctx; ctx = rcu_dereference(table->table[i]); if (ctx && ctx->aio_ring_file == file) { if (!atomic_read(&ctx->dead)) { ctx->user_id = ctx->mmap_base = vma->vm_start; res = 0; } break; } } out_unlock: rcu_read_unlock(); spin_unlock(&mm->ioctx_lock); return res; } static const struct vm_operations_struct aio_ring_vm_ops = { .mremap = aio_ring_mremap, #if IS_ENABLED(CONFIG_MMU) .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = filemap_page_mkwrite, #endif }; static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) { vm_flags_set(vma, VM_DONTEXPAND); vma->vm_ops = &aio_ring_vm_ops; return 0; } static const struct file_operations aio_ring_fops = { .mmap = aio_ring_mmap, }; #if IS_ENABLED(CONFIG_MIGRATION) static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, struct folio *src, enum migrate_mode mode) { struct kioctx *ctx; unsigned long flags; pgoff_t idx; int rc = 0; /* mapping->i_private_lock here protects against the kioctx teardown. */ spin_lock(&mapping->i_private_lock); ctx = mapping->i_private_data; if (!ctx) { rc = -EINVAL; goto out; } /* The ring_lock mutex. The prevents aio_read_events() from writing * to the ring's head, and prevents page migration from mucking in * a partially initialized kiotx. */ if (!mutex_trylock(&ctx->ring_lock)) { rc = -EAGAIN; goto out; } idx = src->index; if (idx < (pgoff_t)ctx->nr_pages) { /* Make sure the old folio hasn't already been changed */ if (ctx->ring_folios[idx] != src) rc = -EAGAIN; } else rc = -EINVAL; if (rc != 0) goto out_unlock; /* Writeback must be complete */ BUG_ON(folio_test_writeback(src)); folio_get(dst); rc = folio_migrate_mapping(mapping, dst, src, 1); if (rc != MIGRATEPAGE_SUCCESS) { folio_put(dst); goto out_unlock; } /* Take completion_lock to prevent other writes to the ring buffer * while the old folio is copied to the new. This prevents new * events from being lost. */ spin_lock_irqsave(&ctx->completion_lock, flags); folio_copy(dst, src); folio_migrate_flags(dst, src); BUG_ON(ctx->ring_folios[idx] != src); ctx->ring_folios[idx] = dst; spin_unlock_irqrestore(&ctx->completion_lock, flags); /* The old folio is no longer accessible. */ folio_put(src); out_unlock: mutex_unlock(&ctx->ring_lock); out: spin_unlock(&mapping->i_private_lock); return rc; } #else #define aio_migrate_folio NULL #endif static const struct address_space_operations aio_ctx_aops = { .dirty_folio = noop_dirty_folio, .migrate_folio = aio_migrate_folio, }; static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) { struct aio_ring *ring; struct mm_struct *mm = current->mm; unsigned long size, unused; int nr_pages; int i; struct file *file; /* Compensate for the ring buffer's head/tail overlap entry */ nr_events += 2; /* 1 is required, 2 for good luck */ size = sizeof(struct aio_ring); size += sizeof(struct io_event) * nr_events; nr_pages = PFN_UP(size); if (nr_pages < 0) return -EINVAL; file = aio_private_file(ctx, nr_pages); if (IS_ERR(file)) { ctx->aio_ring_file = NULL; return -ENOMEM; } ctx->aio_ring_file = file; nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); ctx->ring_folios = ctx->internal_folios; if (nr_pages > AIO_RING_PAGES) { ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_KERNEL); if (!ctx->ring_folios) { put_aio_ring_file(ctx); return -ENOMEM; } } for (i = 0; i < nr_pages; i++) { struct folio *folio; folio = __filemap_get_folio(file->f_mapping, i, FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_USER | __GFP_ZERO); if (IS_ERR(folio)) break; pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, folio_ref_count(folio)); folio_end_read(folio, true); ctx->ring_folios[i] = folio; } ctx->nr_pages = i; if (unlikely(i != nr_pages)) { aio_free_ring(ctx); return -ENOMEM; } ctx->mmap_size = nr_pages * PAGE_SIZE; pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); if (mmap_write_lock_killable(mm)) { ctx->mmap_size = 0; aio_free_ring(ctx); return -EINTR; } ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 0, 0, &unused, NULL); mmap_write_unlock(mm); if (IS_ERR((void *)ctx->mmap_base)) { ctx->mmap_size = 0; aio_free_ring(ctx); return -ENOMEM; } pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); ctx->user_id = ctx->mmap_base; ctx->nr_events = nr_events; /* trusted copy */ ring = folio_address(ctx->ring_folios[0]); ring->nr = nr_events; /* user copy */ ring->id = ~0U; ring->head = ring->tail = 0; ring->magic = AIO_RING_MAGIC; ring->compat_features = AIO_RING_COMPAT_FEATURES; ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; ring->header_length = sizeof(struct aio_ring); flush_dcache_folio(ctx->ring_folios[0]); return 0; } #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) { struct aio_kiocb *req; struct kioctx *ctx; unsigned long flags; /* * kiocb didn't come from aio or is neither a read nor a write, hence * ignore it. */ if (!(iocb->ki_flags & IOCB_AIO_RW)) return; req = container_of(iocb, struct aio_kiocb, rw); if (WARN_ON_ONCE(!list_empty(&req->ki_list))) return; ctx = req->ki_ctx; spin_lock_irqsave(&ctx->ctx_lock, flags); list_add_tail(&req->ki_list, &ctx->active_reqs); req->ki_cancel = cancel; spin_unlock_irqrestore(&ctx->ctx_lock, flags); } EXPORT_SYMBOL(kiocb_set_cancel_fn); /* * free_ioctx() should be RCU delayed to synchronize against the RCU * protected lookup_ioctx() and also needs process context to call * aio_free_ring(). Use rcu_work. */ static void free_ioctx(struct work_struct *work) { struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, free_rwork); pr_debug("freeing %p\n", ctx); aio_free_ring(ctx); free_percpu(ctx->cpu); percpu_ref_exit(&ctx->reqs); percpu_ref_exit(&ctx->users); kmem_cache_free(kioctx_cachep, ctx); } static void free_ioctx_reqs(struct percpu_ref *ref) { struct kioctx *ctx = container_of(ref, struct kioctx, reqs); /* At this point we know that there are no any in-flight requests */ if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) complete(&ctx->rq_wait->comp); /* Synchronize against RCU protected table->table[] dereferences */ INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); queue_rcu_work(system_wq, &ctx->free_rwork); } /* * When this function runs, the kioctx has been removed from the "hash table" * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - * now it's safe to cancel any that need to be. */ static void free_ioctx_users(struct percpu_ref *ref) { struct kioctx *ctx = container_of(ref, struct kioctx, users); struct aio_kiocb *req; spin_lock_irq(&ctx->ctx_lock); while (!list_empty(&ctx->active_reqs)) { req = list_first_entry(&ctx->active_reqs, struct aio_kiocb, ki_list); req->ki_cancel(&req->rw); list_del_init(&req->ki_list); } spin_unlock_irq(&ctx->ctx_lock); percpu_ref_kill(&ctx->reqs); percpu_ref_put(&ctx->reqs); } static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) { unsigned i, new_nr; struct kioctx_table *table, *old; struct aio_ring *ring; spin_lock(&mm->ioctx_lock); table = rcu_dereference_raw(mm->ioctx_table); while (1) { if (table) for (i = 0; i < table->nr; i++) if (!rcu_access_pointer(table->table[i])) { ctx->id = i; rcu_assign_pointer(table->table[i], ctx); spin_unlock(&mm->ioctx_lock); /* While kioctx setup is in progress, * we are protected from page migration * changes ring_folios by ->ring_lock. */ ring = folio_address(ctx->ring_folios[0]); ring->id = ctx->id; return 0; } new_nr = (table ? table->nr : 1) * 4; spin_unlock(&mm->ioctx_lock); table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); if (!table) return -ENOMEM; table->nr = new_nr; spin_lock(&mm->ioctx_lock); old = rcu_dereference_raw(mm->ioctx_table); if (!old) { rcu_assign_pointer(mm->ioctx_table, table); } else if (table->nr > old->nr) { memcpy(table->table, old->table, old->nr * sizeof(struct kioctx *)); rcu_assign_pointer(mm->ioctx_table, table); kfree_rcu(old, rcu); } else { kfree(table); table = old; } } } static void aio_nr_sub(unsigned nr) { spin_lock(&aio_nr_lock); if (WARN_ON(aio_nr - nr > aio_nr)) aio_nr = 0; else aio_nr -= nr; spin_unlock(&aio_nr_lock); } /* ioctx_alloc * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. */ static struct kioctx *ioctx_alloc(unsigned nr_events) { struct mm_struct *mm = current->mm; struct kioctx *ctx; int err = -ENOMEM; /* * Store the original nr_events -- what userspace passed to io_setup(), * for counting against the global limit -- before it changes. */ unsigned int max_reqs = nr_events; /* * We keep track of the number of available ringbuffer slots, to prevent * overflow (reqs_available), and we also use percpu counters for this. * * So since up to half the slots might be on other cpu's percpu counters * and unavailable, double nr_events so userspace sees what they * expected: additionally, we move req_batch slots to/from percpu * counters at a time, so make sure that isn't 0: */ nr_events = max(nr_events, num_possible_cpus() * 4); nr_events *= 2; /* Prevent overflows */ if (nr_events > (0x10000000U / sizeof(struct io_event))) { pr_debug("ENOMEM: nr_events too high\n"); return ERR_PTR(-EINVAL); } if (!nr_events || (unsigned long)max_reqs > aio_max_nr) return ERR_PTR(-EAGAIN); ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->max_reqs = max_reqs; spin_lock_init(&ctx->ctx_lock); spin_lock_init(&ctx->completion_lock); mutex_init(&ctx->ring_lock); /* Protect against page migration throughout kiotx setup by keeping * the ring_lock mutex held until setup is complete. */ mutex_lock(&ctx->ring_lock); init_waitqueue_head(&ctx->wait); INIT_LIST_HEAD(&ctx->active_reqs); if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) goto err; if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) goto err; ctx->cpu = alloc_percpu(struct kioctx_cpu); if (!ctx->cpu) goto err; err = aio_setup_ring(ctx, nr_events); if (err < 0) goto err; atomic_set(&ctx->reqs_available, ctx->nr_events - 1); ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); if (ctx->req_batch < 1) ctx->req_batch = 1; /* limit the number of system wide aios */ spin_lock(&aio_nr_lock); if (aio_nr + ctx->max_reqs > aio_max_nr || aio_nr + ctx->max_reqs < aio_nr) { spin_unlock(&aio_nr_lock); err = -EAGAIN; goto err_ctx; } aio_nr += ctx->max_reqs; spin_unlock(&aio_nr_lock); percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ err = ioctx_add_table(ctx, mm); if (err) goto err_cleanup; /* Release the ring_lock mutex now that all setup is complete. */ mutex_unlock(&ctx->ring_lock); pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", ctx, ctx->user_id, mm, ctx->nr_events); return ctx; err_cleanup: aio_nr_sub(ctx->max_reqs); err_ctx: atomic_set(&ctx->dead, 1); if (ctx->mmap_size) vm_munmap(ctx->mmap_base, ctx->mmap_size); aio_free_ring(ctx); err: mutex_unlock(&ctx->ring_lock); free_percpu(ctx->cpu); percpu_ref_exit(&ctx->reqs); percpu_ref_exit(&ctx->users); kmem_cache_free(kioctx_cachep, ctx); pr_debug("error allocating ioctx %d\n", err); return ERR_PTR(err); } /* kill_ioctx * Cancels all outstanding aio requests on an aio context. Used * when the processes owning a context have all exited to encourage * the rapid destruction of the kioctx. */ static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, struct ctx_rq_wait *wait) { struct kioctx_table *table; spin_lock(&mm->ioctx_lock); if (atomic_xchg(&ctx->dead, 1)) { spin_unlock(&mm->ioctx_lock); return -EINVAL; } table = rcu_dereference_raw(mm->ioctx_table); WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); RCU_INIT_POINTER(table->table[ctx->id], NULL); spin_unlock(&mm->ioctx_lock); /* free_ioctx_reqs() will do the necessary RCU synchronization */ wake_up_all(&ctx->wait); /* * It'd be more correct to do this in free_ioctx(), after all * the outstanding kiocbs have finished - but by then io_destroy * has already returned, so io_setup() could potentially return * -EAGAIN with no ioctxs actually in use (as far as userspace * could tell). */ aio_nr_sub(ctx->max_reqs); if (ctx->mmap_size) vm_munmap(ctx->mmap_base, ctx->mmap_size); ctx->rq_wait = wait; percpu_ref_kill(&ctx->users); return 0; } /* * exit_aio: called when the last user of mm goes away. At this point, there is * no way for any new requests to be submited or any of the io_* syscalls to be * called on the context. * * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on * them. */ void exit_aio(struct mm_struct *mm) { struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); struct ctx_rq_wait wait; int i, skipped; if (!table) return; atomic_set(&wait.count, table->nr); init_completion(&wait.comp); skipped = 0; for (i = 0; i < table->nr; ++i) { struct kioctx *ctx = rcu_dereference_protected(table->table[i], true); if (!ctx) { skipped++; continue; } /* * We don't need to bother with munmap() here - exit_mmap(mm) * is coming and it'll unmap everything. And we simply can't, * this is not necessarily our ->mm. * Since kill_ioctx() uses non-zero ->mmap_size as indicator * that it needs to unmap the area, just set it to 0. */ ctx->mmap_size = 0; kill_ioctx(mm, ctx, &wait); } if (!atomic_sub_and_test(skipped, &wait.count)) { /* Wait until all IO for the context are done. */ wait_for_completion(&wait.comp); } RCU_INIT_POINTER(mm->ioctx_table, NULL); kfree(table); } static void put_reqs_available(struct kioctx *ctx, unsigned nr) { struct kioctx_cpu *kcpu; unsigned long flags; local_irq_save(flags); kcpu = this_cpu_ptr(ctx->cpu); kcpu->reqs_available += nr; while (kcpu->reqs_available >= ctx->req_batch * 2) { kcpu->reqs_available -= ctx->req_batch; atomic_add(ctx->req_batch, &ctx->reqs_available); } local_irq_restore(flags); } static bool __get_reqs_available(struct kioctx *ctx) { struct kioctx_cpu *kcpu; bool ret = false; unsigned long flags; local_irq_save(flags); kcpu = this_cpu_ptr(ctx->cpu); if (!kcpu->reqs_available) { int avail = atomic_read(&ctx->reqs_available); do { if (avail < ctx->req_batch) goto out; } while (!atomic_try_cmpxchg(&ctx->reqs_available, &avail, avail - ctx->req_batch)); kcpu->reqs_available += ctx->req_batch; } ret = true; kcpu->reqs_available--; out: local_irq_restore(flags); return ret; } /* refill_reqs_available * Updates the reqs_available reference counts used for tracking the * number of free slots in the completion ring. This can be called * from aio_complete() (to optimistically update reqs_available) or * from aio_get_req() (the we're out of events case). It must be * called holding ctx->completion_lock. */ static void refill_reqs_available(struct kioctx *ctx, unsigned head, unsigned tail) { unsigned events_in_ring, completed; /* Clamp head since userland can write to it. */ head %= ctx->nr_events; if (head <= tail) events_in_ring = tail - head; else events_in_ring = ctx->nr_events - (head - tail); completed = ctx->completed_events; if (events_in_ring < completed) completed -= events_in_ring; else completed = 0; if (!completed) return; ctx->completed_events -= completed; put_reqs_available(ctx, completed); } /* user_refill_reqs_available * Called to refill reqs_available when aio_get_req() encounters an * out of space in the completion ring. */ static void user_refill_reqs_available(struct kioctx *ctx) { spin_lock_irq(&ctx->completion_lock); if (ctx->completed_events) { struct aio_ring *ring; unsigned head; /* Access of ring->head may race with aio_read_events_ring() * here, but that's okay since whether we read the old version * or the new version, and either will be valid. The important * part is that head cannot pass tail since we prevent * aio_complete() from updating tail by holding * ctx->completion_lock. Even if head is invalid, the check * against ctx->completed_events below will make sure we do the * safe/right thing. */ ring = folio_address(ctx->ring_folios[0]); head = ring->head; refill_reqs_available(ctx, head, ctx->tail); } spin_unlock_irq(&ctx->completion_lock); } static bool get_reqs_available(struct kioctx *ctx) { if (__get_reqs_available(ctx)) return true; user_refill_reqs_available(ctx); return __get_reqs_available(ctx); } /* aio_get_req * Allocate a slot for an aio request. * Returns NULL if no requests are free. * * The refcount is initialized to 2 - one for the async op completion, * one for the synchronous code that does this. */ static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) { struct aio_kiocb *req; req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); if (unlikely(!req)) return NULL; if (unlikely(!get_reqs_available(ctx))) { kmem_cache_free(kiocb_cachep, req); return NULL; } percpu_ref_get(&ctx->reqs); req->ki_ctx = ctx; INIT_LIST_HEAD(&req->ki_list); refcount_set(&req->ki_refcnt, 2); req->ki_eventfd = NULL; return req; } static struct kioctx *lookup_ioctx(unsigned long ctx_id) { struct aio_ring __user *ring = (void __user *)ctx_id; struct mm_struct *mm = current->mm; struct kioctx *ctx, *ret = NULL; struct kioctx_table *table; unsigned id; if (get_user(id, &ring->id)) return NULL; rcu_read_lock(); table = rcu_dereference(mm->ioctx_table); if (!table || id >= table->nr) goto out; id = array_index_nospec(id, table->nr); ctx = rcu_dereference(table->table[id]); if (ctx && ctx->user_id == ctx_id) { if (percpu_ref_tryget_live(&ctx->users)) ret = ctx; } out: rcu_read_unlock(); return ret; } static inline void iocb_destroy(struct aio_kiocb *iocb) { if (iocb->ki_eventfd) eventfd_ctx_put(iocb->ki_eventfd); if (iocb->ki_filp) fput(iocb->ki_filp); percpu_ref_put(&iocb->ki_ctx->reqs); kmem_cache_free(kiocb_cachep, iocb); } struct aio_waiter { struct wait_queue_entry w; size_t min_nr; }; /* aio_complete * Called when the io request on the given iocb is complete. */ static void aio_complete(struct aio_kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; struct aio_ring *ring; struct io_event *ev_page, *event; unsigned tail, pos, head, avail; unsigned long flags; /* * Add a completion event to the ring buffer. Must be done holding * ctx->completion_lock to prevent other code from messing with the tail * pointer since we might be called from irq context. */ spin_lock_irqsave(&ctx->completion_lock, flags); tail = ctx->tail; pos = tail + AIO_EVENTS_OFFSET; if (++tail >= ctx->nr_events) tail = 0; ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); event = ev_page + pos % AIO_EVENTS_PER_PAGE; *event = iocb->ki_res; flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, (void __user *)(unsigned long)iocb->ki_res.obj, iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); /* after flagging the request as done, we * must never even look at it again */ smp_wmb(); /* make event visible before updating tail */ ctx->tail = tail; ring = folio_address(ctx->ring_folios[0]); head = ring->head; ring->tail = tail; flush_dcache_folio(ctx->ring_folios[0]); ctx->completed_events++; if (ctx->completed_events > 1) refill_reqs_available(ctx, head, tail); avail = tail > head ? tail - head : tail + ctx->nr_events - head; spin_unlock_irqrestore(&ctx->completion_lock, flags); pr_debug("added to ring %p at [%u]\n", iocb, tail); /* * Check if the user asked us to deliver the result through an * eventfd. The eventfd_signal() function is safe to be called * from IRQ context. */ if (iocb->ki_eventfd) eventfd_signal(iocb->ki_eventfd); /* * We have to order our ring_info tail store above and test * of the wait list below outside the wait lock. This is * like in wake_up_bit() where clearing a bit has to be * ordered with the unlocked test. */ smp_mb(); if (waitqueue_active(&ctx->wait)) { struct aio_waiter *curr, *next; unsigned long flags; spin_lock_irqsave(&ctx->wait.lock, flags); list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) if (avail >= curr->min_nr) { wake_up_process(curr->w.private); list_del_init_careful(&curr->w.entry); } spin_unlock_irqrestore(&ctx->wait.lock, flags); } } static inline void iocb_put(struct aio_kiocb *iocb) { if (refcount_dec_and_test(&iocb->ki_refcnt)) { aio_complete(iocb); iocb_destroy(iocb); } } /* aio_read_events_ring * Pull an event off of the ioctx's event ring. Returns the number of * events fetched */ static long aio_read_events_ring(struct kioctx *ctx, struct io_event __user *event, long nr) { struct aio_ring *ring; unsigned head, tail, pos; long ret = 0; int copy_ret; /* * The mutex can block and wake us up and that will cause * wait_event_interruptible_hrtimeout() to schedule without sleeping * and repeat. This should be rare enough that it doesn't cause * peformance issues. See the comment in read_events() for more detail. */ sched_annotate_sleep(); mutex_lock(&ctx->ring_lock); /* Access to ->ring_folios here is protected by ctx->ring_lock. */ ring = folio_address(ctx->ring_folios[0]); head = ring->head; tail = ring->tail; /* * Ensure that once we've read the current tail pointer, that * we also see the events that were stored up to the tail. */ smp_rmb(); pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); if (head == tail) goto out; head %= ctx->nr_events; tail %= ctx->nr_events; while (ret < nr) { long avail; struct io_event *ev; struct folio *folio; avail = (head <= tail ? tail : ctx->nr_events) - head; if (head == tail) break; pos = head + AIO_EVENTS_OFFSET; folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]; pos %= AIO_EVENTS_PER_PAGE; avail = min(avail, nr - ret); avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); ev = folio_address(folio); copy_ret = copy_to_user(event + ret, ev + pos, sizeof(*ev) * avail); if (unlikely(copy_ret)) { ret = -EFAULT; goto out; } ret += avail; head += avail; head %= ctx->nr_events; } ring = folio_address(ctx->ring_folios[0]); ring->head = head; flush_dcache_folio(ctx->ring_folios[0]); pr_debug("%li h%u t%u\n", ret, head, tail); out: mutex_unlock(&ctx->ring_lock); return ret; } static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, long *i) { long ret = aio_read_events_ring(ctx, event + *i, nr - *i); if (ret > 0) *i += ret; if (unlikely(atomic_read(&ctx->dead))) ret = -EINVAL; if (!*i) *i = ret; return ret < 0 || *i >= min_nr; } static long read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, ktime_t until) { struct hrtimer_sleeper t; struct aio_waiter w; long ret = 0, ret2 = 0; /* * Note that aio_read_events() is being called as the conditional - i.e. * we're calling it after prepare_to_wait() has set task state to * TASK_INTERRUPTIBLE. * * But aio_read_events() can block, and if it blocks it's going to flip * the task state back to TASK_RUNNING. * * This should be ok, provided it doesn't flip the state back to * TASK_RUNNING and return 0 too much - that causes us to spin. That * will only happen if the mutex_lock() call blocks, and we then find * the ringbuffer empty. So in practice we should be ok, but it's * something to be aware of when touching this code. */ aio_read_events(ctx, min_nr, nr, event, &ret); if (until == 0 || ret < 0 || ret >= min_nr) return ret; hrtimer_setup_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); if (until != KTIME_MAX) { hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); } init_wait(&w.w); while (1) { unsigned long nr_got = ret; w.min_nr = min_nr - ret; ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); if (!ret2 && !t.task) ret2 = -ETIME; if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) break; if (nr_got == ret) schedule(); } finish_wait(&ctx->wait, &w.w); hrtimer_cancel(&t.timer); destroy_hrtimer_on_stack(&t.timer); return ret; } /* sys_io_setup: * Create an aio_context capable of receiving at least nr_events. * ctxp must not point to an aio_context that already exists, and * must be initialized to 0 prior to the call. On successful * creation of the aio_context, *ctxp is filled in with the resulting * handle. May fail with -EINVAL if *ctxp is not initialized, * if the specified nr_events exceeds internal limits. May fail * with -EAGAIN if the specified nr_events exceeds the user's limit * of available events. May fail with -ENOMEM if insufficient kernel * resources are available. May fail with -EFAULT if an invalid * pointer is passed for ctxp. Will fail with -ENOSYS if not * implemented. */ SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) { struct kioctx *ioctx = NULL; unsigned long ctx; long ret; ret = get_user(ctx, ctxp); if (unlikely(ret)) goto out; ret = -EINVAL; if (unlikely(ctx || nr_events == 0)) { pr_debug("EINVAL: ctx %lu nr_events %u\n", ctx, nr_events); goto out; } ioctx = ioctx_alloc(nr_events); ret = PTR_ERR(ioctx); if (!IS_ERR(ioctx)) { ret = put_user(ioctx->user_id, ctxp); if (ret) kill_ioctx(current->mm, ioctx, NULL); percpu_ref_put(&ioctx->users); } out: return ret; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) { struct kioctx *ioctx = NULL; unsigned long ctx; long ret; ret = get_user(ctx, ctx32p); if (unlikely(ret)) goto out; ret = -EINVAL; if (unlikely(ctx || nr_events == 0)) { pr_debug("EINVAL: ctx %lu nr_events %u\n", ctx, nr_events); goto out; } ioctx = ioctx_alloc(nr_events); ret = PTR_ERR(ioctx); if (!IS_ERR(ioctx)) { /* truncating is ok because it's a user address */ ret = put_user((u32)ioctx->user_id, ctx32p); if (ret) kill_ioctx(current->mm, ioctx, NULL); percpu_ref_put(&ioctx->users); } out: return ret; } #endif /* sys_io_destroy: * Destroy the aio_context specified. May cancel any outstanding * AIOs and block on completion. Will fail with -ENOSYS if not * implemented. May fail with -EINVAL if the context pointed to * is invalid. */ SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) { struct kioctx *ioctx = lookup_ioctx(ctx); if (likely(NULL != ioctx)) { struct ctx_rq_wait wait; int ret; init_completion(&wait.comp); atomic_set(&wait.count, 1); /* Pass requests_done to kill_ioctx() where it can be set * in a thread-safe way. If we try to set it here then we have * a race condition if two io_destroy() called simultaneously. */ ret = kill_ioctx(current->mm, ioctx, &wait); percpu_ref_put(&ioctx->users); /* Wait until all IO for the context are done. Otherwise kernel * keep using user-space buffers even if user thinks the context * is destroyed. */ if (!ret) wait_for_completion(&wait.comp); return ret; } pr_debug("EINVAL: invalid context id\n"); return -EINVAL; } static void aio_remove_iocb(struct aio_kiocb *iocb) { struct kioctx *ctx = iocb->ki_ctx; unsigned long flags; spin_lock_irqsave(&ctx->ctx_lock, flags); list_del(&iocb->ki_list); spin_unlock_irqrestore(&ctx->ctx_lock, flags); } static void aio_complete_rw(struct kiocb *kiocb, long res) { struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); if (!list_empty_careful(&iocb->ki_list)) aio_remove_iocb(iocb); if (kiocb->ki_flags & IOCB_WRITE) { struct inode *inode = file_inode(kiocb->ki_filp); if (S_ISREG(inode->i_mode)) kiocb_end_write(kiocb); } iocb->ki_res.res = res; iocb->ki_res.res2 = 0; iocb_put(iocb); } static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type) { int ret; req->ki_complete = aio_complete_rw; req->private = NULL; req->ki_pos = iocb->aio_offset; req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; if (iocb->aio_flags & IOCB_FLAG_RESFD) req->ki_flags |= IOCB_EVENTFD; if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { /* * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then * aio_reqprio is interpreted as an I/O scheduling * class and priority. */ ret = ioprio_check_cap(iocb->aio_reqprio); if (ret) { pr_debug("aio ioprio check cap error: %d\n", ret); return ret; } req->ki_ioprio = iocb->aio_reqprio; } else req->ki_ioprio = get_current_ioprio(); ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type); if (unlikely(ret)) return ret; req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ return 0; } static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec, bool vectored, bool compat, struct iov_iter *iter) { void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; size_t len = iocb->aio_nbytes; if (!vectored) { ssize_t ret = import_ubuf(rw, buf, len, iter); *iovec = NULL; return ret; } return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); } static inline void aio_rw_done(struct kiocb *req, ssize_t ret) { switch (ret) { case -EIOCBQUEUED: break; case -ERESTARTSYS: case -ERESTARTNOINTR: case -ERESTARTNOHAND: case -ERESTART_RESTARTBLOCK: /* * There's no easy way to restart the syscall since other AIO's * may be already running. Just fail this IO with EINTR. */ ret = -EINTR; fallthrough; default: req->ki_complete(req, ret); } } static int aio_read(struct kiocb *req, const struct iocb *iocb, bool vectored, bool compat) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct iov_iter iter; struct file *file; int ret; ret = aio_prep_rw(req, iocb, READ); if (ret) return ret; file = req->ki_filp; if (unlikely(!(file->f_mode & FMODE_READ))) return -EBADF; if (unlikely(!file->f_op->read_iter)) return -EINVAL; ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); if (ret < 0) return ret; ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); if (!ret) aio_rw_done(req, file->f_op->read_iter(req, &iter)); kfree(iovec); return ret; } static int aio_write(struct kiocb *req, const struct iocb *iocb, bool vectored, bool compat) { struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; struct iov_iter iter; struct file *file; int ret; ret = aio_prep_rw(req, iocb, WRITE); if (ret) return ret; file = req->ki_filp; if (unlikely(!(file->f_mode & FMODE_WRITE))) return -EBADF; if (unlikely(!file->f_op->write_iter)) return -EINVAL; ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); if (ret < 0) return ret; ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); if (!ret) { if (S_ISREG(file_inode(file)->i_mode)) kiocb_start_write(req); req->ki_flags |= IOCB_WRITE; aio_rw_done(req, file->f_op->write_iter(req, &iter)); } kfree(iovec); return ret; } static void aio_fsync_work(struct work_struct *work) { struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); const struct cred *old_cred = override_creds(iocb->fsync.creds); iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); revert_creds(old_cred); put_cred(iocb->fsync.creds); iocb_put(iocb); } static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, bool datasync) { if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)) return -EINVAL; if (unlikely(!req->file->f_op->fsync)) return -EINVAL; req->creds = prepare_creds(); if (!req->creds) return -ENOMEM; req->datasync = datasync; INIT_WORK(&req->work, aio_fsync_work); schedule_work(&req->work); return 0; } static void aio_poll_put_work(struct work_struct *work) { struct poll_iocb *req = container_of(work, struct poll_iocb, work); struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); iocb_put(iocb); } /* * Safely lock the waitqueue which the request is on, synchronizing with the * case where the ->poll() provider decides to free its waitqueue early. * * Returns true on success, meaning that req->head->lock was locked, req->wait * is on req->head, and an RCU read lock was taken. Returns false if the * request was already removed from its waitqueue (which might no longer exist). */ static bool poll_iocb_lock_wq(struct poll_iocb *req) { wait_queue_head_t *head; /* * While we hold the waitqueue lock and the waitqueue is nonempty, * wake_up_pollfree() will wait for us. However, taking the waitqueue * lock in the first place can race with the waitqueue being freed. * * We solve this as eventpoll does: by taking advantage of the fact that * all users of wake_up_pollfree() will RCU-delay the actual free. If * we enter rcu_read_lock() and see that the pointer to the queue is * non-NULL, we can then lock it without the memory being freed out from * under us, then check whether the request is still on the queue. * * Keep holding rcu_read_lock() as long as we hold the queue lock, in * case the caller deletes the entry from the queue, leaving it empty. * In that case, only RCU prevents the queue memory from being freed. */ rcu_read_lock(); head = smp_load_acquire(&req->head); if (head) { spin_lock(&head->lock); if (!list_empty(&req->wait.entry)) return true; spin_unlock(&head->lock); } rcu_read_unlock(); return false; } static void poll_iocb_unlock_wq(struct poll_iocb *req) { spin_unlock(&req->head->lock); rcu_read_unlock(); } static void aio_poll_complete_work(struct work_struct *work) { struct poll_iocb *req = container_of(work, struct poll_iocb, work); struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); struct poll_table_struct pt = { ._key = req->events }; struct kioctx *ctx = iocb->ki_ctx; __poll_t mask = 0; if (!READ_ONCE(req->cancelled)) mask = vfs_poll(req->file, &pt) & req->events; /* * Note that ->ki_cancel callers also delete iocb from active_reqs after * calling ->ki_cancel. We need the ctx_lock roundtrip here to * synchronize with them. In the cancellation case the list_del_init * itself is not actually needed, but harmless so we keep it in to * avoid further branches in the fast path. */ spin_lock_irq(&ctx->ctx_lock); if (poll_iocb_lock_wq(req)) { if (!mask && !READ_ONCE(req->cancelled)) { /* * The request isn't actually ready to be completed yet. * Reschedule completion if another wakeup came in. */ if (req->work_need_resched) { schedule_work(&req->work); req->work_need_resched = false; } else { req->work_scheduled = false; } poll_iocb_unlock_wq(req); spin_unlock_irq(&ctx->ctx_lock); return; } list_del_init(&req->wait.entry); poll_iocb_unlock_wq(req); } /* else, POLLFREE has freed the waitqueue, so we must complete */ list_del_init(&iocb->ki_list); iocb->ki_res.res = mangle_poll(mask); spin_unlock_irq(&ctx->ctx_lock); iocb_put(iocb); } /* assumes we are called with irqs disabled */ static int aio_poll_cancel(struct kiocb *iocb) { struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); struct poll_iocb *req = &aiocb->poll; if (poll_iocb_lock_wq(req)) { WRITE_ONCE(req->cancelled, true); if (!req->work_scheduled) { schedule_work(&aiocb->poll.work); req->work_scheduled = true; } poll_iocb_unlock_wq(req); } /* else, the request was force-cancelled by POLLFREE already */ return 0; } static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key) { struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); __poll_t mask = key_to_poll(key); unsigned long flags; /* for instances that support it check for an event match first: */ if (mask && !(mask & req->events)) return 0; /* * Complete the request inline if possible. This requires that three * conditions be met: * 1. An event mask must have been passed. If a plain wakeup was done * instead, then mask == 0 and we have to call vfs_poll() to get * the events, so inline completion isn't possible. * 2. The completion work must not have already been scheduled. * 3. ctx_lock must not be busy. We have to use trylock because we * already hold the waitqueue lock, so this inverts the normal * locking order. Use irqsave/irqrestore because not all * filesystems (e.g. fuse) call this function with IRQs disabled, * yet IRQs have to be disabled before ctx_lock is obtained. */ if (mask && !req->work_scheduled && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { struct kioctx *ctx = iocb->ki_ctx; list_del_init(&req->wait.entry); list_del(&iocb->ki_list); iocb->ki_res.res = mangle_poll(mask); if (iocb->ki_eventfd && !eventfd_signal_allowed()) { iocb = NULL; INIT_WORK(&req->work, aio_poll_put_work); schedule_work(&req->work); } spin_unlock_irqrestore(&ctx->ctx_lock, flags); if (iocb) iocb_put(iocb); } else { /* * Schedule the completion work if needed. If it was already * scheduled, record that another wakeup came in. * * Don't remove the request from the waitqueue here, as it might * not actually be complete yet (we won't know until vfs_poll() * is called), and we must not miss any wakeups. POLLFREE is an * exception to this; see below. */ if (req->work_scheduled) { req->work_need_resched = true; } else { schedule_work(&req->work); req->work_scheduled = true; } /* * If the waitqueue is being freed early but we can't complete * the request inline, we have to tear down the request as best * we can. That means immediately removing the request from its * waitqueue and preventing all further accesses to the * waitqueue via the request. We also need to schedule the * completion work (done above). Also mark the request as * cancelled, to potentially skip an unneeded call to ->poll(). */ if (mask & POLLFREE) { WRITE_ONCE(req->cancelled, true); list_del_init(&req->wait.entry); /* * Careful: this *must* be the last step, since as soon * as req->head is NULL'ed out, the request can be * completed and freed, since aio_poll_complete_work() * will no longer need to take the waitqueue lock. */ smp_store_release(&req->head, NULL); } } return 1; } struct aio_poll_table { struct poll_table_struct pt; struct aio_kiocb *iocb; bool queued; int error; }; static void aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p) { struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); /* multiple wait queues per file are not supported */ if (unlikely(pt->queued)) { pt->error = -EINVAL; return; } pt->queued = true; pt->error = 0; pt->iocb->poll.head = head; add_wait_queue(head, &pt->iocb->poll.wait); } static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) { struct kioctx *ctx = aiocb->ki_ctx; struct poll_iocb *req = &aiocb->poll; struct aio_poll_table apt; bool cancel = false; __poll_t mask; /* reject any unknown events outside the normal event mask. */ if ((u16)iocb->aio_buf != iocb->aio_buf) return -EINVAL; /* reject fields that are not defined for poll */ if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) return -EINVAL; INIT_WORK(&req->work, aio_poll_complete_work); req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; req->head = NULL; req->cancelled = false; req->work_scheduled = false; req->work_need_resched = false; apt.pt._qproc = aio_poll_queue_proc; apt.pt._key = req->events; apt.iocb = aiocb; apt.queued = false; apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ /* initialized the list so that we can do list_empty checks */ INIT_LIST_HEAD(&req->wait.entry); init_waitqueue_func_entry(&req->wait, aio_poll_wake); mask = vfs_poll(req->file, &apt.pt) & req->events; spin_lock_irq(&ctx->ctx_lock); if (likely(apt.queued)) { bool on_queue = poll_iocb_lock_wq(req); if (!on_queue || req->work_scheduled) { /* * aio_poll_wake() already either scheduled the async * completion work, or completed the request inline. */ if (apt.error) /* unsupported case: multiple queues */ cancel = true; apt.error = 0; mask = 0; } if (mask || apt.error) { /* Steal to complete synchronously. */ list_del_init(&req->wait.entry); } else if (cancel) { /* Cancel if possible (may be too late though). */ WRITE_ONCE(req->cancelled, true); } else if (on_queue) { /* * Actually waiting for an event, so add the request to * active_reqs so that it can be cancelled if needed. */ list_add_tail(&aiocb->ki_list, &ctx->active_reqs); aiocb->ki_cancel = aio_poll_cancel; } if (on_queue) poll_iocb_unlock_wq(req); } if (mask) { /* no async, we'd stolen it */ aiocb->ki_res.res = mangle_poll(mask); apt.error = 0; } spin_unlock_irq(&ctx->ctx_lock); if (mask) iocb_put(aiocb); return apt.error; } static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, struct iocb __user *user_iocb, struct aio_kiocb *req, bool compat) { req->ki_filp = fget(iocb->aio_fildes); if (unlikely(!req->ki_filp)) return -EBADF; if (iocb->aio_flags & IOCB_FLAG_RESFD) { struct eventfd_ctx *eventfd; /* * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an * instance of the file* now. The file descriptor must be * an eventfd() fd, and will be signaled for each completed * event using the eventfd_signal() function. */ eventfd = eventfd_ctx_fdget(iocb->aio_resfd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); req->ki_eventfd = eventfd; } if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { pr_debug("EFAULT: aio_key\n"); return -EFAULT; } req->ki_res.obj = (u64)(unsigned long)user_iocb; req->ki_res.data = iocb->aio_data; req->ki_res.res = 0; req->ki_res.res2 = 0; switch (iocb->aio_lio_opcode) { case IOCB_CMD_PREAD: return aio_read(&req->rw, iocb, false, compat); case IOCB_CMD_PWRITE: return aio_write(&req->rw, iocb, false, compat); case IOCB_CMD_PREADV: return aio_read(&req->rw, iocb, true, compat); case IOCB_CMD_PWRITEV: return aio_write(&req->rw, iocb, true, compat); case IOCB_CMD_FSYNC: return aio_fsync(&req->fsync, iocb, false); case IOCB_CMD_FDSYNC: return aio_fsync(&req->fsync, iocb, true); case IOCB_CMD_POLL: return aio_poll(req, iocb); default: pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); return -EINVAL; } } static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, bool compat) { struct aio_kiocb *req; struct iocb iocb; int err; if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) return -EFAULT; /* enforce forwards compatibility on users */ if (unlikely(iocb.aio_reserved2)) { pr_debug("EINVAL: reserve field set\n"); return -EINVAL; } /* prevent overflows */ if (unlikely( (iocb.aio_buf != (unsigned long)iocb.aio_buf) || (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || ((ssize_t)iocb.aio_nbytes < 0) )) { pr_debug("EINVAL: overflow check\n"); return -EINVAL; } req = aio_get_req(ctx); if (unlikely(!req)) return -EAGAIN; err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); /* Done with the synchronous reference */ iocb_put(req); /* * If err is 0, we'd either done aio_complete() ourselves or have * arranged for that to be done asynchronously. Anything non-zero * means that we need to destroy req ourselves. */ if (unlikely(err)) { iocb_destroy(req); put_reqs_available(ctx, 1); } return err; } /* sys_io_submit: * Queue the nr iocbs pointed to by iocbpp for processing. Returns * the number of iocbs queued. May return -EINVAL if the aio_context * specified by ctx_id is invalid, if nr is < 0, if the iocb at * *iocbpp[0] is not properly initialized, if the operation specified * is invalid for the file descriptor in the iocb. May fail with * -EFAULT if any of the data structures point to invalid data. May * fail with -EBADF if the file descriptor specified in the first * iocb is invalid. May fail with -EAGAIN if insufficient resources * are available to queue any iocbs. Will return 0 if nr is 0. Will * fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, struct iocb __user * __user *, iocbpp) { struct kioctx *ctx; long ret = 0; int i = 0; struct blk_plug plug; if (unlikely(nr < 0)) return -EINVAL; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) { pr_debug("EINVAL: invalid context id\n"); return -EINVAL; } if (nr > ctx->nr_events) nr = ctx->nr_events; if (nr > AIO_PLUG_THRESHOLD) blk_start_plug(&plug); for (i = 0; i < nr; i++) { struct iocb __user *user_iocb; if (unlikely(get_user(user_iocb, iocbpp + i))) { ret = -EFAULT; break; } ret = io_submit_one(ctx, user_iocb, false); if (ret) break; } if (nr > AIO_PLUG_THRESHOLD) blk_finish_plug(&plug); percpu_ref_put(&ctx->users); return i ? i : ret; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, int, nr, compat_uptr_t __user *, iocbpp) { struct kioctx *ctx; long ret = 0; int i = 0; struct blk_plug plug; if (unlikely(nr < 0)) return -EINVAL; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) { pr_debug("EINVAL: invalid context id\n"); return -EINVAL; } if (nr > ctx->nr_events) nr = ctx->nr_events; if (nr > AIO_PLUG_THRESHOLD) blk_start_plug(&plug); for (i = 0; i < nr; i++) { compat_uptr_t user_iocb; if (unlikely(get_user(user_iocb, iocbpp + i))) { ret = -EFAULT; break; } ret = io_submit_one(ctx, compat_ptr(user_iocb), true); if (ret) break; } if (nr > AIO_PLUG_THRESHOLD) blk_finish_plug(&plug); percpu_ref_put(&ctx->users); return i ? i : ret; } #endif /* sys_io_cancel: * Attempts to cancel an iocb previously passed to io_submit. If * the operation is successfully cancelled, the resulting event is * copied into the memory pointed to by result without being placed * into the completion queue and 0 is returned. May fail with * -EFAULT if any of the data structures pointed to are invalid. * May fail with -EINVAL if aio_context specified by ctx_id is * invalid. May fail with -EAGAIN if the iocb specified was not * cancelled. Will fail with -ENOSYS if not implemented. */ SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, struct io_event __user *, result) { struct kioctx *ctx; struct aio_kiocb *kiocb; int ret = -EINVAL; u32 key; u64 obj = (u64)(unsigned long)iocb; if (unlikely(get_user(key, &iocb->aio_key))) return -EFAULT; if (unlikely(key != KIOCB_KEY)) return -EINVAL; ctx = lookup_ioctx(ctx_id); if (unlikely(!ctx)) return -EINVAL; spin_lock_irq(&ctx->ctx_lock); list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { if (kiocb->ki_res.obj == obj) { ret = kiocb->ki_cancel(&kiocb->rw); list_del_init(&kiocb->ki_list); break; } } spin_unlock_irq(&ctx->ctx_lock); if (!ret) { /* * The result argument is no longer used - the io_event is * always delivered via the ring buffer. -EINPROGRESS indicates * cancellation is progress: */ ret = -EINPROGRESS; } percpu_ref_put(&ctx->users); return ret; } static long do_io_getevents(aio_context_t ctx_id, long min_nr, long nr, struct io_event __user *events, struct timespec64 *ts) { ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; struct kioctx *ioctx = lookup_ioctx(ctx_id); long ret = -EINVAL; if (likely(ioctx)) { if (likely(min_nr <= nr && min_nr >= 0)) ret = read_events(ioctx, min_nr, nr, events, until); percpu_ref_put(&ioctx->users); } return ret; } /* io_getevents: * Attempts to read at least min_nr events and up to nr events from * the completion queue for the aio_context specified by ctx_id. If * it succeeds, the number of read events is returned. May fail with * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is * out of range, if timeout is out of range. May fail with -EFAULT * if any of the memory specified is invalid. May return 0 or * < min_nr if the timeout specified by timeout has elapsed * before sufficient events are available, where timeout == NULL * specifies an infinite timeout. Note that the timeout pointed to by * timeout is relative. Will fail with -ENOSYS if not implemented. */ #ifdef CONFIG_64BIT SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout) { struct timespec64 ts; int ret; if (timeout && unlikely(get_timespec64(&ts, timeout))) return -EFAULT; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); if (!ret && signal_pending(current)) ret = -EINTR; return ret; } #endif struct __aio_sigset { const sigset_t __user *sigmask; size_t sigsetsize; }; SYSCALL_DEFINE6(io_pgetevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout, const struct __aio_sigset __user *, usig) { struct __aio_sigset ksig = { NULL, }; struct timespec64 ts; bool interrupted; int ret; if (timeout && unlikely(get_timespec64(&ts, timeout))) return -EFAULT; if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) return -EFAULT; ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); if (ret) return ret; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); interrupted = signal_pending(current); restore_saved_sigmask_unless(interrupted); if (interrupted && !ret) ret = -ERESTARTNOHAND; return ret; } #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) SYSCALL_DEFINE6(io_pgetevents_time32, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout, const struct __aio_sigset __user *, usig) { struct __aio_sigset ksig = { NULL, }; struct timespec64 ts; bool interrupted; int ret; if (timeout && unlikely(get_old_timespec32(&ts, timeout))) return -EFAULT; if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) return -EFAULT; ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); if (ret) return ret; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); interrupted = signal_pending(current); restore_saved_sigmask_unless(interrupted); if (interrupted && !ret) ret = -ERESTARTNOHAND; return ret; } #endif #if defined(CONFIG_COMPAT_32BIT_TIME) SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, __s32, min_nr, __s32, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout) { struct timespec64 t; int ret; if (timeout && get_old_timespec32(&t, timeout)) return -EFAULT; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); if (!ret && signal_pending(current)) ret = -EINTR; return ret; } #endif #ifdef CONFIG_COMPAT struct __compat_aio_sigset { compat_uptr_t sigmask; compat_size_t sigsetsize; }; #if defined(CONFIG_COMPAT_32BIT_TIME) COMPAT_SYSCALL_DEFINE6(io_pgetevents, compat_aio_context_t, ctx_id, compat_long_t, min_nr, compat_long_t, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout, const struct __compat_aio_sigset __user *, usig) { struct __compat_aio_sigset ksig = { 0, }; struct timespec64 t; bool interrupted; int ret; if (timeout && get_old_timespec32(&t, timeout)) return -EFAULT; if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) return -EFAULT; ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); if (ret) return ret; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); interrupted = signal_pending(current); restore_saved_sigmask_unless(interrupted); if (interrupted && !ret) ret = -ERESTARTNOHAND; return ret; } #endif COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, compat_aio_context_t, ctx_id, compat_long_t, min_nr, compat_long_t, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout, const struct __compat_aio_sigset __user *, usig) { struct __compat_aio_sigset ksig = { 0, }; struct timespec64 t; bool interrupted; int ret; if (timeout && get_timespec64(&t, timeout)) return -EFAULT; if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) return -EFAULT; ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); if (ret) return ret; ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); interrupted = signal_pending(current); restore_saved_sigmask_unless(interrupted); if (interrupted && !ret) ret = -ERESTARTNOHAND; return ret; } #endif |
3634 219 218 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PKRU_H #define _ASM_X86_PKRU_H #include <asm/cpufeature.h> #define PKRU_AD_BIT 0x1u #define PKRU_WD_BIT 0x2u #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #define pkru_get_init_value() READ_ONCE(init_pkru_value) #else #define init_pkru_value 0 #define pkru_get_init_value() 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u32 read_pkru(void) { if (cpu_feature_enabled(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru != rdpkru()) wrpkru(pkru); } static inline void pkru_write_default(void) { if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; wrpkru(pkru_get_init_value()); } #endif |
38 170 171 132 38 38 17 17 44 44 44 44 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2004 IBM Corporation * * Author: Serge Hallyn <serue@us.ibm.com> */ #include <linux/export.h> #include <linux/uts.h> #include <linux/utsname.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/cred.h> #include <linux/user_namespace.h> #include <linux/proc_ns.h> #include <linux/sched/task.h> static struct kmem_cache *uts_ns_cache __ro_after_init; static struct ucounts *inc_uts_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_UTS_NAMESPACES); } static void dec_uts_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_UTS_NAMESPACES); } static struct uts_namespace *create_uts_ns(void) { struct uts_namespace *uts_ns; uts_ns = kmem_cache_alloc(uts_ns_cache, GFP_KERNEL); if (uts_ns) refcount_set(&uts_ns->ns.count, 1); return uts_ns; } /* * Clone a new ns copying an original utsname, setting refcount to 1 * @old_ns: namespace to clone * Return ERR_PTR(-ENOMEM) on error (failure to allocate), new ns otherwise */ static struct uts_namespace *clone_uts_ns(struct user_namespace *user_ns, struct uts_namespace *old_ns) { struct uts_namespace *ns; struct ucounts *ucounts; int err; err = -ENOSPC; ucounts = inc_uts_namespaces(user_ns); if (!ucounts) goto fail; err = -ENOMEM; ns = create_uts_ns(); if (!ns) goto fail_dec; err = ns_alloc_inum(&ns->ns); if (err) goto fail_free; ns->ucounts = ucounts; ns->ns.ops = &utsns_operations; down_read(&uts_sem); memcpy(&ns->name, &old_ns->name, sizeof(ns->name)); ns->user_ns = get_user_ns(user_ns); up_read(&uts_sem); return ns; fail_free: kmem_cache_free(uts_ns_cache, ns); fail_dec: dec_uts_namespaces(ucounts); fail: return ERR_PTR(err); } /* * Copy task tsk's utsname namespace, or clone it if flags * specifies CLONE_NEWUTS. In latter case, changes to the * utsname of this process won't be seen by parent, and vice * versa. */ struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace *user_ns, struct uts_namespace *old_ns) { struct uts_namespace *new_ns; BUG_ON(!old_ns); get_uts_ns(old_ns); if (!(flags & CLONE_NEWUTS)) return old_ns; new_ns = clone_uts_ns(user_ns, old_ns); put_uts_ns(old_ns); return new_ns; } void free_uts_ns(struct uts_namespace *ns) { dec_uts_namespaces(ns->ucounts); put_user_ns(ns->user_ns); ns_free_inum(&ns->ns); kmem_cache_free(uts_ns_cache, ns); } static inline struct uts_namespace *to_uts_ns(struct ns_common *ns) { return container_of(ns, struct uts_namespace, ns); } static struct ns_common *utsns_get(struct task_struct *task) { struct uts_namespace *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = nsproxy->uts_ns; get_uts_ns(ns); } task_unlock(task); return ns ? &ns->ns : NULL; } static void utsns_put(struct ns_common *ns) { put_uts_ns(to_uts_ns(ns)); } static int utsns_install(struct nsset *nsset, struct ns_common *new) { struct nsproxy *nsproxy = nsset->nsproxy; struct uts_namespace *ns = to_uts_ns(new); if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) return -EPERM; get_uts_ns(ns); put_uts_ns(nsproxy->uts_ns); nsproxy->uts_ns = ns; return 0; } static struct user_namespace *utsns_owner(struct ns_common *ns) { return to_uts_ns(ns)->user_ns; } const struct proc_ns_operations utsns_operations = { .name = "uts", .type = CLONE_NEWUTS, .get = utsns_get, .put = utsns_put, .install = utsns_install, .owner = utsns_owner, }; void __init uts_ns_init(void) { uts_ns_cache = kmem_cache_create_usercopy( "uts_namespace", sizeof(struct uts_namespace), 0, SLAB_PANIC|SLAB_ACCOUNT, offsetof(struct uts_namespace, name), sizeof_field(struct uts_namespace, name), NULL); } |
344 345 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 | // SPDX-License-Identifier: GPL-2.0-or-later /* Basic authentication token and access key management * * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/export.h> #include <linux/init.h> #include <linux/poison.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/workqueue.h> #include <linux/random.h> #include <linux/err.h> #include "internal.h" struct kmem_cache *key_jar; struct rb_root key_serial_tree; /* tree of keys indexed by serial */ DEFINE_SPINLOCK(key_serial_lock); struct rb_root key_user_tree; /* tree of quota records indexed by UID */ DEFINE_SPINLOCK(key_user_lock); unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ unsigned int key_quota_maxkeys = 200; /* general key count quota */ unsigned int key_quota_maxbytes = 20000; /* general key space quota */ static LIST_HEAD(key_types_list); static DECLARE_RWSEM(key_types_sem); /* We serialise key instantiation and link */ DEFINE_MUTEX(key_construction_mutex); #ifdef KEY_DEBUGGING void __key_check(const struct key *key) { printk("__key_check: key %p {%08x} should be {%08x}\n", key, key->magic, KEY_DEBUG_MAGIC); BUG(); } #endif /* * Get the key quota record for a user, allocating a new record if one doesn't * already exist. */ struct key_user *key_user_lookup(kuid_t uid) { struct key_user *candidate = NULL, *user; struct rb_node *parent, **p; try_again: parent = NULL; p = &key_user_tree.rb_node; spin_lock(&key_user_lock); /* search the tree for a user record with a matching UID */ while (*p) { parent = *p; user = rb_entry(parent, struct key_user, node); if (uid_lt(uid, user->uid)) p = &(*p)->rb_left; else if (uid_gt(uid, user->uid)) p = &(*p)->rb_right; else goto found; } /* if we get here, we failed to find a match in the tree */ if (!candidate) { /* allocate a candidate user record if we don't already have * one */ spin_unlock(&key_user_lock); user = NULL; candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); if (unlikely(!candidate)) goto out; /* the allocation may have scheduled, so we need to repeat the * search lest someone else added the record whilst we were * asleep */ goto try_again; } /* if we get here, then the user record still hadn't appeared on the * second pass - so we use the candidate record */ refcount_set(&candidate->usage, 1); atomic_set(&candidate->nkeys, 0); atomic_set(&candidate->nikeys, 0); candidate->uid = uid; candidate->qnkeys = 0; candidate->qnbytes = 0; spin_lock_init(&candidate->lock); mutex_init(&candidate->cons_lock); rb_link_node(&candidate->node, parent, p); rb_insert_color(&candidate->node, &key_user_tree); spin_unlock(&key_user_lock); user = candidate; goto out; /* okay - we found a user record for this UID */ found: refcount_inc(&user->usage); spin_unlock(&key_user_lock); kfree(candidate); out: return user; } /* * Dispose of a user structure */ void key_user_put(struct key_user *user) { if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { rb_erase(&user->node, &key_user_tree); spin_unlock(&key_user_lock); kfree(user); } } /* * Allocate a serial number for a key. These are assigned randomly to avoid * security issues through covert channel problems. */ static inline void key_alloc_serial(struct key *key) { struct rb_node *parent, **p; struct key *xkey; /* propose a random serial number and look for a hole for it in the * serial number tree */ do { get_random_bytes(&key->serial, sizeof(key->serial)); key->serial >>= 1; /* negative numbers are not permitted */ } while (key->serial < 3); spin_lock(&key_serial_lock); attempt_insertion: parent = NULL; p = &key_serial_tree.rb_node; while (*p) { parent = *p; xkey = rb_entry(parent, struct key, serial_node); if (key->serial < xkey->serial) p = &(*p)->rb_left; else if (key->serial > xkey->serial) p = &(*p)->rb_right; else goto serial_exists; } /* we've found a suitable hole - arrange for this key to occupy it */ rb_link_node(&key->serial_node, parent, p); rb_insert_color(&key->serial_node, &key_serial_tree); spin_unlock(&key_serial_lock); return; /* we found a key with the proposed serial number - walk the tree from * that point looking for the next unused serial number */ serial_exists: for (;;) { key->serial++; if (key->serial < 3) { key->serial = 3; goto attempt_insertion; } parent = rb_next(parent); if (!parent) goto attempt_insertion; xkey = rb_entry(parent, struct key, serial_node); if (key->serial < xkey->serial) goto attempt_insertion; } } /** * key_alloc - Allocate a key of the specified type. * @type: The type of key to allocate. * @desc: The key description to allow the key to be searched out. * @uid: The owner of the new key. * @gid: The group ID for the new key's group permissions. * @cred: The credentials specifying UID namespace. * @perm: The permissions mask of the new key. * @flags: Flags specifying quota properties. * @restrict_link: Optional link restriction for new keyrings. * * Allocate a key of the specified type with the attributes given. The key is * returned in an uninstantiated state and the caller needs to instantiate the * key before returning. * * The restrict_link structure (if not NULL) will be freed when the * keyring is destroyed, so it must be dynamically allocated. * * The user's key count quota is updated to reflect the creation of the key and * the user's key data quota has the default for the key type reserved. The * instantiation function should amend this as necessary. If insufficient * quota is available, -EDQUOT will be returned. * * The LSM security modules can prevent a key being created, in which case * -EACCES will be returned. * * Returns a pointer to the new key if successful and an error code otherwise. * * Note that the caller needs to ensure the key type isn't uninstantiated. * Internally this can be done by locking key_types_sem. Externally, this can * be done by either never unregistering the key type, or making sure * key_alloc() calls don't race with module unloading. */ struct key *key_alloc(struct key_type *type, const char *desc, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link) { struct key_user *user = NULL; struct key *key; size_t desclen, quotalen; int ret; unsigned long irqflags; key = ERR_PTR(-EINVAL); if (!desc || !*desc) goto error; if (type->vet_description) { ret = type->vet_description(desc); if (ret < 0) { key = ERR_PTR(ret); goto error; } } desclen = strlen(desc); quotalen = desclen + 1 + type->def_datalen; /* get hold of the key tracking for this user */ user = key_user_lookup(uid); if (!user) goto no_memory_1; /* check that the user's quota permits allocation of another key and * its description */ if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? key_quota_root_maxkeys : key_quota_maxkeys; unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? key_quota_root_maxbytes : key_quota_maxbytes; spin_lock_irqsave(&user->lock, irqflags); if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { if (user->qnkeys + 1 > maxkeys || user->qnbytes + quotalen > maxbytes || user->qnbytes + quotalen < user->qnbytes) goto no_quota; } user->qnkeys++; user->qnbytes += quotalen; spin_unlock_irqrestore(&user->lock, irqflags); } /* allocate and initialise the key and its description */ key = kmem_cache_zalloc(key_jar, GFP_KERNEL); if (!key) goto no_memory_2; key->index_key.desc_len = desclen; key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); if (!key->index_key.description) goto no_memory_3; key->index_key.type = type; key_set_index_key(&key->index_key); refcount_set(&key->usage, 1); init_rwsem(&key->sem); lockdep_set_class(&key->sem, &type->lock_class); key->user = user; key->quotalen = quotalen; key->datalen = type->def_datalen; key->uid = uid; key->gid = gid; key->perm = perm; key->expiry = TIME64_MAX; key->restrict_link = restrict_link; key->last_used_at = ktime_get_real_seconds(); if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) key->flags |= 1 << KEY_FLAG_IN_QUOTA; if (flags & KEY_ALLOC_BUILT_IN) key->flags |= 1 << KEY_FLAG_BUILTIN; if (flags & KEY_ALLOC_UID_KEYRING) key->flags |= 1 << KEY_FLAG_UID_KEYRING; if (flags & KEY_ALLOC_SET_KEEP) key->flags |= 1 << KEY_FLAG_KEEP; #ifdef KEY_DEBUGGING key->magic = KEY_DEBUG_MAGIC; #endif /* let the security module know about the key */ ret = security_key_alloc(key, cred, flags); if (ret < 0) goto security_error; /* publish the key by giving it a serial number */ refcount_inc(&key->domain_tag->usage); atomic_inc(&user->nkeys); key_alloc_serial(key); error: return key; security_error: kfree(key->description); kmem_cache_free(key_jar, key); if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { spin_lock_irqsave(&user->lock, irqflags); user->qnkeys--; user->qnbytes -= quotalen; spin_unlock_irqrestore(&user->lock, irqflags); } key_user_put(user); key = ERR_PTR(ret); goto error; no_memory_3: kmem_cache_free(key_jar, key); no_memory_2: if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { spin_lock_irqsave(&user->lock, irqflags); user->qnkeys--; user->qnbytes -= quotalen; spin_unlock_irqrestore(&user->lock, irqflags); } key_user_put(user); no_memory_1: key = ERR_PTR(-ENOMEM); goto error; no_quota: spin_unlock_irqrestore(&user->lock, irqflags); key_user_put(user); key = ERR_PTR(-EDQUOT); goto error; } EXPORT_SYMBOL(key_alloc); /** * key_payload_reserve - Adjust data quota reservation for the key's payload * @key: The key to make the reservation for. * @datalen: The amount of data payload the caller now wants. * * Adjust the amount of the owning user's key data quota that a key reserves. * If the amount is increased, then -EDQUOT may be returned if there isn't * enough free quota available. * * If successful, 0 is returned. */ int key_payload_reserve(struct key *key, size_t datalen) { int delta = (int)datalen - key->datalen; int ret = 0; key_check(key); /* contemplate the quota adjustment */ if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? key_quota_root_maxbytes : key_quota_maxbytes; unsigned long flags; spin_lock_irqsave(&key->user->lock, flags); if (delta > 0 && (key->user->qnbytes + delta > maxbytes || key->user->qnbytes + delta < key->user->qnbytes)) { ret = -EDQUOT; } else { key->user->qnbytes += delta; key->quotalen += delta; } spin_unlock_irqrestore(&key->user->lock, flags); } /* change the recorded data length if that didn't generate an error */ if (ret == 0) key->datalen = datalen; return ret; } EXPORT_SYMBOL(key_payload_reserve); /* * Change the key state to being instantiated. */ static void mark_key_instantiated(struct key *key, int reject_error) { /* Commit the payload before setting the state; barrier versus * key_read_state(). */ smp_store_release(&key->state, (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); } /* * Instantiate a key and link it into the target keyring atomically. Must be * called with the target keyring's semaphore writelocked. The target key's * semaphore need not be locked as instantiation is serialised by * key_construction_mutex. */ static int __key_instantiate_and_link(struct key *key, struct key_preparsed_payload *prep, struct key *keyring, struct key *authkey, struct assoc_array_edit **_edit) { int ret, awaken; key_check(key); key_check(keyring); awaken = 0; ret = -EBUSY; mutex_lock(&key_construction_mutex); /* can't instantiate twice */ if (key->state == KEY_IS_UNINSTANTIATED) { /* instantiate the key */ ret = key->type->instantiate(key, prep); if (ret == 0) { /* mark the key as being instantiated */ atomic_inc(&key->user->nikeys); mark_key_instantiated(key, 0); notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) awaken = 1; /* and link it into the destination keyring */ if (keyring) { if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) set_bit(KEY_FLAG_KEEP, &key->flags); __key_link(keyring, key, _edit); } /* disable the authorisation key */ if (authkey) key_invalidate(authkey); if (prep->expiry != TIME64_MAX) key_set_expiry(key, prep->expiry); } } mutex_unlock(&key_construction_mutex); /* wake up anyone waiting for a key to be constructed */ if (awaken) wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); return ret; } /** * key_instantiate_and_link - Instantiate a key and link it into the keyring. * @key: The key to instantiate. * @data: The data to use to instantiate the keyring. * @datalen: The length of @data. * @keyring: Keyring to create a link in on success (or NULL). * @authkey: The authorisation token permitting instantiation. * * Instantiate a key that's in the uninstantiated state using the provided data * and, if successful, link it in to the destination keyring if one is * supplied. * * If successful, 0 is returned, the authorisation token is revoked and anyone * waiting for the key is woken up. If the key was already instantiated, * -EBUSY will be returned. */ int key_instantiate_and_link(struct key *key, const void *data, size_t datalen, struct key *keyring, struct key *authkey) { struct key_preparsed_payload prep; struct assoc_array_edit *edit = NULL; int ret; memset(&prep, 0, sizeof(prep)); prep.orig_description = key->description; prep.data = data; prep.datalen = datalen; prep.quotalen = key->type->def_datalen; prep.expiry = TIME64_MAX; if (key->type->preparse) { ret = key->type->preparse(&prep); if (ret < 0) goto error; } if (keyring) { ret = __key_link_lock(keyring, &key->index_key); if (ret < 0) goto error; ret = __key_link_begin(keyring, &key->index_key, &edit); if (ret < 0) goto error_link_end; if (keyring->restrict_link && keyring->restrict_link->check) { struct key_restriction *keyres = keyring->restrict_link; ret = keyres->check(keyring, key->type, &prep.payload, keyres->key); if (ret < 0) goto error_link_end; } } ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); error_link_end: if (keyring) __key_link_end(keyring, &key->index_key, edit); error: if (key->type->preparse) key->type->free_preparse(&prep); return ret; } EXPORT_SYMBOL(key_instantiate_and_link); /** * key_reject_and_link - Negatively instantiate a key and link it into the keyring. * @key: The key to instantiate. * @timeout: The timeout on the negative key. * @error: The error to return when the key is hit. * @keyring: Keyring to create a link in on success (or NULL). * @authkey: The authorisation token permitting instantiation. * * Negatively instantiate a key that's in the uninstantiated state and, if * successful, set its timeout and stored error and link it in to the * destination keyring if one is supplied. The key and any links to the key * will be automatically garbage collected after the timeout expires. * * Negative keys are used to rate limit repeated request_key() calls by causing * them to return the stored error code (typically ENOKEY) until the negative * key expires. * * If successful, 0 is returned, the authorisation token is revoked and anyone * waiting for the key is woken up. If the key was already instantiated, * -EBUSY will be returned. */ int key_reject_and_link(struct key *key, unsigned timeout, unsigned error, struct key *keyring, struct key *authkey) { struct assoc_array_edit *edit = NULL; int ret, awaken, link_ret = 0; key_check(key); key_check(keyring); awaken = 0; ret = -EBUSY; if (keyring) { if (keyring->restrict_link) return -EPERM; link_ret = __key_link_lock(keyring, &key->index_key); if (link_ret == 0) { link_ret = __key_link_begin(keyring, &key->index_key, &edit); if (link_ret < 0) __key_link_end(keyring, &key->index_key, edit); } } mutex_lock(&key_construction_mutex); /* can't instantiate twice */ if (key->state == KEY_IS_UNINSTANTIATED) { /* mark the key as being negatively instantiated */ atomic_inc(&key->user->nikeys); mark_key_instantiated(key, -error); notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); key_set_expiry(key, ktime_get_real_seconds() + timeout); if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) awaken = 1; ret = 0; /* and link it into the destination keyring */ if (keyring && link_ret == 0) __key_link(keyring, key, &edit); /* disable the authorisation key */ if (authkey) key_invalidate(authkey); } mutex_unlock(&key_construction_mutex); if (keyring && link_ret == 0) __key_link_end(keyring, &key->index_key, edit); /* wake up anyone waiting for a key to be constructed */ if (awaken) wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); return ret == 0 ? link_ret : ret; } EXPORT_SYMBOL(key_reject_and_link); /** * key_put - Discard a reference to a key. * @key: The key to discard a reference from. * * Discard a reference to a key, and when all the references are gone, we * schedule the cleanup task to come and pull it out of the tree in process * context at some later time. */ void key_put(struct key *key) { if (key) { key_check(key); if (refcount_dec_and_test(&key->usage)) { unsigned long flags; /* deal with the user's key tracking and quota */ if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { spin_lock_irqsave(&key->user->lock, flags); key->user->qnkeys--; key->user->qnbytes -= key->quotalen; spin_unlock_irqrestore(&key->user->lock, flags); } schedule_work(&key_gc_work); } } } EXPORT_SYMBOL(key_put); /* * Find a key by its serial number. */ struct key *key_lookup(key_serial_t id) { struct rb_node *n; struct key *key; spin_lock(&key_serial_lock); /* search the tree for the specified key */ n = key_serial_tree.rb_node; while (n) { key = rb_entry(n, struct key, serial_node); if (id < key->serial) n = n->rb_left; else if (id > key->serial) n = n->rb_right; else goto found; } not_found: key = ERR_PTR(-ENOKEY); goto error; found: /* A key is allowed to be looked up only if someone still owns a * reference to it - otherwise it's awaiting the gc. */ if (!refcount_inc_not_zero(&key->usage)) goto not_found; error: spin_unlock(&key_serial_lock); return key; } EXPORT_SYMBOL(key_lookup); /* * Find and lock the specified key type against removal. * * We return with the sem read-locked if successful. If the type wasn't * available -ENOKEY is returned instead. */ struct key_type *key_type_lookup(const char *type) { struct key_type *ktype; down_read(&key_types_sem); /* look up the key type to see if it's one of the registered kernel * types */ list_for_each_entry(ktype, &key_types_list, link) { if (strcmp(ktype->name, type) == 0) goto found_kernel_type; } up_read(&key_types_sem); ktype = ERR_PTR(-ENOKEY); found_kernel_type: return ktype; } void key_set_timeout(struct key *key, unsigned timeout) { time64_t expiry = TIME64_MAX; /* make the changes with the locks held to prevent races */ down_write(&key->sem); if (timeout > 0) expiry = ktime_get_real_seconds() + timeout; key_set_expiry(key, expiry); up_write(&key->sem); } EXPORT_SYMBOL_GPL(key_set_timeout); /* * Unlock a key type locked by key_type_lookup(). */ void key_type_put(struct key_type *ktype) { up_read(&key_types_sem); } /* * Attempt to update an existing key. * * The key is given to us with an incremented refcount that we need to discard * if we get an error. */ static inline key_ref_t __key_update(key_ref_t key_ref, struct key_preparsed_payload *prep) { struct key *key = key_ref_to_ptr(key_ref); int ret; /* need write permission on the key to update it */ ret = key_permission(key_ref, KEY_NEED_WRITE); if (ret < 0) goto error; ret = -EEXIST; if (!key->type->update) goto error; down_write(&key->sem); ret = key->type->update(key, prep); if (ret == 0) { /* Updating a negative key positively instantiates it */ mark_key_instantiated(key, 0); notify_key(key, NOTIFY_KEY_UPDATED, 0); } up_write(&key->sem); if (ret < 0) goto error; out: return key_ref; error: key_put(key); key_ref = ERR_PTR(ret); goto out; } /* * Create or potentially update a key. The combined logic behind * key_create_or_update() and key_create() */ static key_ref_t __key_create_or_update(key_ref_t keyring_ref, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags, bool allow_update) { struct keyring_index_key index_key = { .description = description, }; struct key_preparsed_payload prep; struct assoc_array_edit *edit = NULL; const struct cred *cred = current_cred(); struct key *keyring, *key = NULL; key_ref_t key_ref; int ret; struct key_restriction *restrict_link = NULL; /* look up the key type to see if it's one of the registered kernel * types */ index_key.type = key_type_lookup(type); if (IS_ERR(index_key.type)) { key_ref = ERR_PTR(-ENODEV); goto error; } key_ref = ERR_PTR(-EINVAL); if (!index_key.type->instantiate || (!index_key.description && !index_key.type->preparse)) goto error_put_type; keyring = key_ref_to_ptr(keyring_ref); key_check(keyring); if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) restrict_link = keyring->restrict_link; key_ref = ERR_PTR(-ENOTDIR); if (keyring->type != &key_type_keyring) goto error_put_type; memset(&prep, 0, sizeof(prep)); prep.orig_description = description; prep.data = payload; prep.datalen = plen; prep.quotalen = index_key.type->def_datalen; prep.expiry = TIME64_MAX; if (index_key.type->preparse) { ret = index_key.type->preparse(&prep); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_free_prep; } if (!index_key.description) index_key.description = prep.description; key_ref = ERR_PTR(-EINVAL); if (!index_key.description) goto error_free_prep; } index_key.desc_len = strlen(index_key.description); key_set_index_key(&index_key); ret = __key_link_lock(keyring, &index_key); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_free_prep; } ret = __key_link_begin(keyring, &index_key, &edit); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_link_end; } if (restrict_link && restrict_link->check) { ret = restrict_link->check(keyring, index_key.type, &prep.payload, restrict_link->key); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_link_end; } } /* if we're going to allocate a new key, we're going to have * to modify the keyring */ ret = key_permission(keyring_ref, KEY_NEED_WRITE); if (ret < 0) { key_ref = ERR_PTR(ret); goto error_link_end; } /* if it's requested and possible to update this type of key, search * for an existing key of the same type and description in the * destination keyring and update that instead if possible */ if (allow_update) { if (index_key.type->update) { key_ref = find_key_to_update(keyring_ref, &index_key); if (key_ref) goto found_matching_key; } } else { key_ref = find_key_to_update(keyring_ref, &index_key); if (key_ref) { key_ref_put(key_ref); key_ref = ERR_PTR(-EEXIST); goto error_link_end; } } /* if the client doesn't provide, decide on the permissions we want */ if (perm == KEY_PERM_UNDEF) { perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; perm |= KEY_USR_VIEW; if (index_key.type->read) perm |= KEY_POS_READ; if (index_key.type == &key_type_keyring || index_key.type->update) perm |= KEY_POS_WRITE; } /* allocate a new key */ key = key_alloc(index_key.type, index_key.description, cred->fsuid, cred->fsgid, cred, perm, flags, NULL); if (IS_ERR(key)) { key_ref = ERR_CAST(key); goto error_link_end; } /* instantiate it and link it into the target keyring */ ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); if (ret < 0) { key_put(key); key_ref = ERR_PTR(ret); goto error_link_end; } security_key_post_create_or_update(keyring, key, payload, plen, flags, true); key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); error_link_end: __key_link_end(keyring, &index_key, edit); error_free_prep: if (index_key.type->preparse) index_key.type->free_preparse(&prep); error_put_type: key_type_put(index_key.type); error: return key_ref; found_matching_key: /* we found a matching key, so we're going to try to update it * - we can drop the locks first as we have the key pinned */ __key_link_end(keyring, &index_key, edit); key = key_ref_to_ptr(key_ref); if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { ret = wait_for_key_construction(key, true); if (ret < 0) { key_ref_put(key_ref); key_ref = ERR_PTR(ret); goto error_free_prep; } } key_ref = __key_update(key_ref, &prep); if (!IS_ERR(key_ref)) security_key_post_create_or_update(keyring, key, payload, plen, flags, false); goto error_free_prep; } /** * key_create_or_update - Update or create and instantiate a key. * @keyring_ref: A pointer to the destination keyring with possession flag. * @type: The type of key. * @description: The searchable description for the key. * @payload: The data to use to instantiate or update the key. * @plen: The length of @payload. * @perm: The permissions mask for a new key. * @flags: The quota flags for a new key. * * Search the destination keyring for a key of the same description and if one * is found, update it, otherwise create and instantiate a new one and create a * link to it from that keyring. * * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be * concocted. * * Returns a pointer to the new key if successful, -ENODEV if the key type * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the * caller isn't permitted to modify the keyring or the LSM did not permit * creation of the key. * * On success, the possession flag from the keyring ref will be tacked on to * the key ref before it is returned. */ key_ref_t key_create_or_update(key_ref_t keyring_ref, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags) { return __key_create_or_update(keyring_ref, type, description, payload, plen, perm, flags, true); } EXPORT_SYMBOL(key_create_or_update); /** * key_create - Create and instantiate a key. * @keyring_ref: A pointer to the destination keyring with possession flag. * @type: The type of key. * @description: The searchable description for the key. * @payload: The data to use to instantiate or update the key. * @plen: The length of @payload. * @perm: The permissions mask for a new key. * @flags: The quota flags for a new key. * * Create and instantiate a new key and link to it from the destination keyring. * * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be * concocted. * * Returns a pointer to the new key if successful, -EEXIST if a key with the * same description already exists, -ENODEV if the key type wasn't available, * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't * permitted to modify the keyring or the LSM did not permit creation of the * key. * * On success, the possession flag from the keyring ref will be tacked on to * the key ref before it is returned. */ key_ref_t key_create(key_ref_t keyring_ref, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags) { return __key_create_or_update(keyring_ref, type, description, payload, plen, perm, flags, false); } EXPORT_SYMBOL(key_create); /** * key_update - Update a key's contents. * @key_ref: The pointer (plus possession flag) to the key. * @payload: The data to be used to update the key. * @plen: The length of @payload. * * Attempt to update the contents of a key with the given payload data. The * caller must be granted Write permission on the key. Negative keys can be * instantiated by this method. * * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key * type does not support updating. The key type may return other errors. */ int key_update(key_ref_t key_ref, const void *payload, size_t plen) { struct key_preparsed_payload prep; struct key *key = key_ref_to_ptr(key_ref); int ret; key_check(key); /* the key must be writable */ ret = key_permission(key_ref, KEY_NEED_WRITE); if (ret < 0) return ret; /* attempt to update it if supported */ if (!key->type->update) return -EOPNOTSUPP; memset(&prep, 0, sizeof(prep)); prep.data = payload; prep.datalen = plen; prep.quotalen = key->type->def_datalen; prep.expiry = TIME64_MAX; if (key->type->preparse) { ret = key->type->preparse(&prep); if (ret < 0) goto error; } down_write(&key->sem); ret = key->type->update(key, &prep); if (ret == 0) { /* Updating a negative key positively instantiates it */ mark_key_instantiated(key, 0); notify_key(key, NOTIFY_KEY_UPDATED, 0); } up_write(&key->sem); error: if (key->type->preparse) key->type->free_preparse(&prep); return ret; } EXPORT_SYMBOL(key_update); /** * key_revoke - Revoke a key. * @key: The key to be revoked. * * Mark a key as being revoked and ask the type to free up its resources. The * revocation timeout is set and the key and all its links will be * automatically garbage collected after key_gc_delay amount of time if they * are not manually dealt with first. */ void key_revoke(struct key *key) { time64_t time; key_check(key); /* make sure no one's trying to change or use the key when we mark it * - we tell lockdep that we might nest because we might be revoking an * authorisation key whilst holding the sem on a key we've just * instantiated */ down_write_nested(&key->sem, 1); if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { notify_key(key, NOTIFY_KEY_REVOKED, 0); if (key->type->revoke) key->type->revoke(key); /* set the death time to no more than the expiry time */ time = ktime_get_real_seconds(); if (key->revoked_at == 0 || key->revoked_at > time) { key->revoked_at = time; key_schedule_gc(key->revoked_at + key_gc_delay); } } up_write(&key->sem); } EXPORT_SYMBOL(key_revoke); /** * key_invalidate - Invalidate a key. * @key: The key to be invalidated. * * Mark a key as being invalidated and have it cleaned up immediately. The key * is ignored by all searches and other operations from this point. */ void key_invalidate(struct key *key) { kenter("%d", key_serial(key)); key_check(key); if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { down_write_nested(&key->sem, 1); if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { notify_key(key, NOTIFY_KEY_INVALIDATED, 0); key_schedule_gc_links(); } up_write(&key->sem); } } EXPORT_SYMBOL(key_invalidate); /** * generic_key_instantiate - Simple instantiation of a key from preparsed data * @key: The key to be instantiated * @prep: The preparsed data to load. * * Instantiate a key from preparsed data. We assume we can just copy the data * in directly and clear the old pointers. * * This can be pointed to directly by the key type instantiate op pointer. */ int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) { int ret; pr_devel("==>%s()\n", __func__); ret = key_payload_reserve(key, prep->quotalen); if (ret == 0) { rcu_assign_keypointer(key, prep->payload.data[0]); key->payload.data[1] = prep->payload.data[1]; key->payload.data[2] = prep->payload.data[2]; key->payload.data[3] = prep->payload.data[3]; prep->payload.data[0] = NULL; prep->payload.data[1] = NULL; prep->payload.data[2] = NULL; prep->payload.data[3] = NULL; } pr_devel("<==%s() = %d\n", __func__, ret); return ret; } EXPORT_SYMBOL(generic_key_instantiate); /** * register_key_type - Register a type of key. * @ktype: The new key type. * * Register a new key type. * * Returns 0 on success or -EEXIST if a type of this name already exists. */ int register_key_type(struct key_type *ktype) { struct key_type *p; int ret; memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); ret = -EEXIST; down_write(&key_types_sem); /* disallow key types with the same name */ list_for_each_entry(p, &key_types_list, link) { if (strcmp(p->name, ktype->name) == 0) goto out; } /* store the type */ list_add(&ktype->link, &key_types_list); pr_notice("Key type %s registered\n", ktype->name); ret = 0; out: up_write(&key_types_sem); return ret; } EXPORT_SYMBOL(register_key_type); /** * unregister_key_type - Unregister a type of key. * @ktype: The key type. * * Unregister a key type and mark all the extant keys of this type as dead. * Those keys of this type are then destroyed to get rid of their payloads and * they and their links will be garbage collected as soon as possible. */ void unregister_key_type(struct key_type *ktype) { down_write(&key_types_sem); list_del_init(&ktype->link); downgrade_write(&key_types_sem); key_gc_keytype(ktype); pr_notice("Key type %s unregistered\n", ktype->name); up_read(&key_types_sem); } EXPORT_SYMBOL(unregister_key_type); /* * Initialise the key management state. */ void __init key_init(void) { /* allocate a slab in which we can store keys */ key_jar = kmem_cache_create("key_jar", sizeof(struct key), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* add the special key types */ list_add_tail(&key_type_keyring.link, &key_types_list); list_add_tail(&key_type_dead.link, &key_types_list); list_add_tail(&key_type_user.link, &key_types_list); list_add_tail(&key_type_logon.link, &key_types_list); /* record the root user tracking */ rb_link_node(&root_key_user.node, NULL, &key_user_tree.rb_node); rb_insert_color(&root_key_user.node, &key_user_tree); } |
397 397 216 174 174 216 216 22 22 4567 680 680 54 2745 2742 11 11 11 1142 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 | // SPDX-License-Identifier: GPL-2.0-only /* * Landlock LSM - Filesystem management and hooks * * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net> * Copyright © 2018-2020 ANSSI * Copyright © 2021-2022 Microsoft Corporation * Copyright © 2022 Günther Noack <gnoack3000@gmail.com> * Copyright © 2023-2024 Google LLC */ #include <asm/ioctls.h> #include <kunit/test.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/bits.h> #include <linux/compiler_types.h> #include <linux/dcache.h> #include <linux/err.h> #include <linux/falloc.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/lsm_hooks.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/path.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/stat.h> #include <linux/types.h> #include <linux/wait_bit.h> #include <linux/workqueue.h> #include <uapi/linux/fiemap.h> #include <uapi/linux/landlock.h> #include "access.h" #include "common.h" #include "cred.h" #include "fs.h" #include "limits.h" #include "object.h" #include "ruleset.h" #include "setup.h" /* Underlying object management */ static void release_inode(struct landlock_object *const object) __releases(object->lock) { struct inode *const inode = object->underobj; struct super_block *sb; if (!inode) { spin_unlock(&object->lock); return; } /* * Protects against concurrent use by hook_sb_delete() of the reference * to the underlying inode. */ object->underobj = NULL; /* * Makes sure that if the filesystem is concurrently unmounted, * hook_sb_delete() will wait for us to finish iput(). */ sb = inode->i_sb; atomic_long_inc(&landlock_superblock(sb)->inode_refs); spin_unlock(&object->lock); /* * Because object->underobj was not NULL, hook_sb_delete() and * get_inode_object() guarantee that it is safe to reset * landlock_inode(inode)->object while it is not NULL. It is therefore * not necessary to lock inode->i_lock. */ rcu_assign_pointer(landlock_inode(inode)->object, NULL); /* * Now, new rules can safely be tied to @inode with get_inode_object(). */ iput(inode); if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs)) wake_up_var(&landlock_superblock(sb)->inode_refs); } static const struct landlock_object_underops landlock_fs_underops = { .release = release_inode }; /* IOCTL helpers */ /** * is_masked_device_ioctl - Determine whether an IOCTL command is always * permitted with Landlock for device files. These commands can not be * restricted on device files by enforcing a Landlock policy. * * @cmd: The IOCTL command that is supposed to be run. * * By default, any IOCTL on a device file requires the * LANDLOCK_ACCESS_FS_IOCTL_DEV right. However, we blanket-permit some * commands, if: * * 1. The command is implemented in fs/ioctl.c's do_vfs_ioctl(), * not in f_ops->unlocked_ioctl() or f_ops->compat_ioctl(). * * 2. The command is harmless when invoked on devices. * * We also permit commands that do not make sense for devices, but where the * do_vfs_ioctl() implementation returns a more conventional error code. * * Any new IOCTL commands that are implemented in fs/ioctl.c's do_vfs_ioctl() * should be considered for inclusion here. * * Returns: true if the IOCTL @cmd can not be restricted with Landlock for * device files. */ static __attribute_const__ bool is_masked_device_ioctl(const unsigned int cmd) { switch (cmd) { /* * FIOCLEX, FIONCLEX, FIONBIO and FIOASYNC manipulate the FD's * close-on-exec and the file's buffered-IO and async flags. These * operations are also available through fcntl(2), and are * unconditionally permitted in Landlock. */ case FIOCLEX: case FIONCLEX: case FIONBIO: case FIOASYNC: /* * FIOQSIZE queries the size of a regular file, directory, or link. * * We still permit it, because it always returns -ENOTTY for * other file types. */ case FIOQSIZE: /* * FIFREEZE and FITHAW freeze and thaw the file system which the * given file belongs to. Requires CAP_SYS_ADMIN. * * These commands operate on the file system's superblock rather * than on the file itself. The same operations can also be * done through any other file or directory on the same file * system, so it is safe to permit these. */ case FIFREEZE: case FITHAW: /* * FS_IOC_FIEMAP queries information about the allocation of * blocks within a file. * * This IOCTL command only makes sense for regular files and is * not implemented by devices. It is harmless to permit. */ case FS_IOC_FIEMAP: /* * FIGETBSZ queries the file system's block size for a file or * directory. * * This command operates on the file system's superblock rather * than on the file itself. The same operation can also be done * through any other file or directory on the same file system, * so it is safe to permit it. */ case FIGETBSZ: /* * FICLONE, FICLONERANGE and FIDEDUPERANGE make files share * their underlying storage ("reflink") between source and * destination FDs, on file systems which support that. * * These IOCTL commands only apply to regular files * and are harmless to permit for device files. */ case FICLONE: case FICLONERANGE: case FIDEDUPERANGE: /* * FS_IOC_GETFSUUID and FS_IOC_GETFSSYSFSPATH both operate on * the file system superblock, not on the specific file, so * these operations are available through any other file on the * same file system as well. */ case FS_IOC_GETFSUUID: case FS_IOC_GETFSSYSFSPATH: return true; /* * FIONREAD, FS_IOC_GETFLAGS, FS_IOC_SETFLAGS, FS_IOC_FSGETXATTR and * FS_IOC_FSSETXATTR are forwarded to device implementations. */ /* * file_ioctl() commands (FIBMAP, FS_IOC_RESVSP, FS_IOC_RESVSP64, * FS_IOC_UNRESVSP, FS_IOC_UNRESVSP64 and FS_IOC_ZERO_RANGE) are * forwarded to device implementations, so not permitted. */ /* Other commands are guarded by the access right. */ default: return false; } } /* * is_masked_device_ioctl_compat - same as the helper above, but checking the * "compat" IOCTL commands. * * The IOCTL commands with special handling in compat-mode should behave the * same as their non-compat counterparts. */ static __attribute_const__ bool is_masked_device_ioctl_compat(const unsigned int cmd) { switch (cmd) { /* FICLONE is permitted, same as in the non-compat variant. */ case FICLONE: return true; #if defined(CONFIG_X86_64) /* * FS_IOC_RESVSP_32, FS_IOC_RESVSP64_32, FS_IOC_UNRESVSP_32, * FS_IOC_UNRESVSP64_32, FS_IOC_ZERO_RANGE_32: not blanket-permitted, * for consistency with their non-compat variants. */ case FS_IOC_RESVSP_32: case FS_IOC_RESVSP64_32: case FS_IOC_UNRESVSP_32: case FS_IOC_UNRESVSP64_32: case FS_IOC_ZERO_RANGE_32: #endif /* * FS_IOC32_GETFLAGS, FS_IOC32_SETFLAGS are forwarded to their device * implementations. */ case FS_IOC32_GETFLAGS: case FS_IOC32_SETFLAGS: return false; default: return is_masked_device_ioctl(cmd); } } /* Ruleset management */ static struct landlock_object *get_inode_object(struct inode *const inode) { struct landlock_object *object, *new_object; struct landlock_inode_security *inode_sec = landlock_inode(inode); rcu_read_lock(); retry: object = rcu_dereference(inode_sec->object); if (object) { if (likely(refcount_inc_not_zero(&object->usage))) { rcu_read_unlock(); return object; } /* * We are racing with release_inode(), the object is going * away. Wait for release_inode(), then retry. */ spin_lock(&object->lock); spin_unlock(&object->lock); goto retry; } rcu_read_unlock(); /* * If there is no object tied to @inode, then create a new one (without * holding any locks). */ new_object = landlock_create_object(&landlock_fs_underops, inode); if (IS_ERR(new_object)) return new_object; /* * Protects against concurrent calls to get_inode_object() or * hook_sb_delete(). */ spin_lock(&inode->i_lock); if (unlikely(rcu_access_pointer(inode_sec->object))) { /* Someone else just created the object, bail out and retry. */ spin_unlock(&inode->i_lock); kfree(new_object); rcu_read_lock(); goto retry; } /* * @inode will be released by hook_sb_delete() on its superblock * shutdown, or by release_inode() when no more ruleset references the * related object. */ ihold(inode); rcu_assign_pointer(inode_sec->object, new_object); spin_unlock(&inode->i_lock); return new_object; } /* All access rights that can be tied to files. */ /* clang-format off */ #define ACCESS_FILE ( \ LANDLOCK_ACCESS_FS_EXECUTE | \ LANDLOCK_ACCESS_FS_WRITE_FILE | \ LANDLOCK_ACCESS_FS_READ_FILE | \ LANDLOCK_ACCESS_FS_TRUNCATE | \ LANDLOCK_ACCESS_FS_IOCTL_DEV) /* clang-format on */ /* * @path: Should have been checked by get_path_from_fd(). */ int landlock_append_fs_rule(struct landlock_ruleset *const ruleset, const struct path *const path, access_mask_t access_rights) { int err; struct landlock_id id = { .type = LANDLOCK_KEY_INODE, }; /* Files only get access rights that make sense. */ if (!d_is_dir(path->dentry) && (access_rights | ACCESS_FILE) != ACCESS_FILE) return -EINVAL; if (WARN_ON_ONCE(ruleset->num_layers != 1)) return -EINVAL; /* Transforms relative access rights to absolute ones. */ access_rights |= LANDLOCK_MASK_ACCESS_FS & ~landlock_get_fs_access_mask(ruleset, 0); id.key.object = get_inode_object(d_backing_inode(path->dentry)); if (IS_ERR(id.key.object)) return PTR_ERR(id.key.object); mutex_lock(&ruleset->lock); err = landlock_insert_rule(ruleset, id, access_rights); mutex_unlock(&ruleset->lock); /* * No need to check for an error because landlock_insert_rule() * increments the refcount for the new object if needed. */ landlock_put_object(id.key.object); return err; } /* Access-control management */ /* * The lifetime of the returned rule is tied to @domain. * * Returns NULL if no rule is found or if @dentry is negative. */ static const struct landlock_rule * find_rule(const struct landlock_ruleset *const domain, const struct dentry *const dentry) { const struct landlock_rule *rule; const struct inode *inode; struct landlock_id id = { .type = LANDLOCK_KEY_INODE, }; /* Ignores nonexistent leafs. */ if (d_is_negative(dentry)) return NULL; inode = d_backing_inode(dentry); rcu_read_lock(); id.key.object = rcu_dereference(landlock_inode(inode)->object); rule = landlock_find_rule(domain, id); rcu_read_unlock(); return rule; } /* * Allows access to pseudo filesystems that will never be mountable (e.g. * sockfs, pipefs), but can still be reachable through * /proc/<pid>/fd/<file-descriptor> */ static bool is_nouser_or_private(const struct dentry *dentry) { return (dentry->d_sb->s_flags & SB_NOUSER) || (d_is_positive(dentry) && unlikely(IS_PRIVATE(d_backing_inode(dentry)))); } static const struct access_masks any_fs = { .fs = ~0, }; static const struct landlock_ruleset *get_current_fs_domain(void) { return landlock_get_applicable_domain(landlock_get_current_domain(), any_fs); } /* * Check that a destination file hierarchy has more restrictions than a source * file hierarchy. This is only used for link and rename actions. * * @layer_masks_child2: Optional child masks. */ static bool no_more_access( const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS], const bool child1_is_directory, const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS], const bool child2_is_directory) { unsigned long access_bit; for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2); access_bit++) { /* Ignores accesses that only make sense for directories. */ const bool is_file_access = !!(BIT_ULL(access_bit) & ACCESS_FILE); if (child1_is_directory || is_file_access) { /* * Checks if the destination restrictions are a * superset of the source ones (i.e. inherited access * rights without child exceptions): * restrictions(parent2) >= restrictions(child1) */ if ((((*layer_masks_parent1)[access_bit] & (*layer_masks_child1)[access_bit]) | (*layer_masks_parent2)[access_bit]) != (*layer_masks_parent2)[access_bit]) return false; } if (!layer_masks_child2) continue; if (child2_is_directory || is_file_access) { /* * Checks inverted restrictions for RENAME_EXCHANGE: * restrictions(parent1) >= restrictions(child2) */ if ((((*layer_masks_parent2)[access_bit] & (*layer_masks_child2)[access_bit]) | (*layer_masks_parent1)[access_bit]) != (*layer_masks_parent1)[access_bit]) return false; } } return true; } #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__)) #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__)) #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST static void test_no_more_access(struct kunit *const test) { const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), [BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0), }; const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), [BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0), }; const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), }; const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1), }; const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) | BIT_ULL(1), }; const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {}; /* Checks without restriction. */ NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false); NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false); NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false); /* * Checks that we can only refer a file if no more access could be * inherited. */ NMA_TRUE(&x0, &x0, false, &rx0, NULL, false); NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false); NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false); NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false); /* Checks allowed referring with different nested domains. */ NMA_TRUE(&x0, &x1, false, &x0, NULL, false); NMA_TRUE(&x1, &x0, false, &x0, NULL, false); NMA_TRUE(&x0, &x01, false, &x0, NULL, false); NMA_TRUE(&x0, &x01, false, &rx0, NULL, false); NMA_TRUE(&x01, &x0, false, &x0, NULL, false); NMA_TRUE(&x01, &x0, false, &rx0, NULL, false); NMA_FALSE(&x01, &x01, false, &x0, NULL, false); /* Checks that file access rights are also enforced for a directory. */ NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false); /* Checks that directory access rights don't impact file referring... */ NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false); /* ...but only directory referring. */ NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false); /* Checks directory exchange. */ NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true); NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true); NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true); NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true); NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true); /* Checks file exchange with directory access rights... */ NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false); NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false); NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false); NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false); /* ...and with file access rights. */ NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false); NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false); NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false); NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false); NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false); /* * Allowing the following requests should not be a security risk * because domain 0 denies execute access, and domain 1 is always * nested with domain 0. However, adding an exception for this case * would mean to check all nested domains to make sure none can get * more privileges (e.g. processes only sandboxed by domain 0). * Moreover, this behavior (i.e. composition of N domains) could then * be inconsistent compared to domain 1's ruleset alone (e.g. it might * be denied to link/rename with domain 1's ruleset, whereas it would * be allowed if nested on top of domain 0). Another drawback would be * to create a cover channel that could enable sandboxed processes to * infer most of the filesystem restrictions from their domain. To * make it simple, efficient, safe, and more consistent, this case is * always denied. */ NMA_FALSE(&x1, &x1, false, &x0, NULL, false); NMA_FALSE(&x1, &x1, false, &rx0, NULL, false); NMA_FALSE(&x1, &x1, true, &x0, NULL, false); NMA_FALSE(&x1, &x1, true, &rx0, NULL, false); /* Checks the same case of exclusive domains with a file... */ NMA_TRUE(&x1, &x1, false, &x01, NULL, false); NMA_FALSE(&x1, &x1, false, &x01, &x0, false); NMA_FALSE(&x1, &x1, false, &x01, &x01, false); NMA_FALSE(&x1, &x1, false, &x0, &x0, false); /* ...and with a directory. */ NMA_FALSE(&x1, &x1, false, &x0, &x0, true); NMA_FALSE(&x1, &x1, true, &x0, &x0, false); NMA_FALSE(&x1, &x1, true, &x0, &x0, true); } #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ #undef NMA_TRUE #undef NMA_FALSE static bool is_layer_masks_allowed( layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) { return !memchr_inv(layer_masks, 0, sizeof(*layer_masks)); } /* * Removes @layer_masks accesses that are not requested. * * Returns true if the request is allowed, false otherwise. */ static bool scope_to_request(const access_mask_t access_request, layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) { const unsigned long access_req = access_request; unsigned long access_bit; if (WARN_ON_ONCE(!layer_masks)) return true; for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks)) (*layer_masks)[access_bit] = 0; return is_layer_masks_allowed(layer_masks); } #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST static void test_scope_to_request_with_exec_none(struct kunit *const test) { /* Allows everything. */ layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; /* Checks and scopes with execute. */ KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE, &layer_masks)); KUNIT_EXPECT_EQ(test, 0, layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); KUNIT_EXPECT_EQ(test, 0, layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); } static void test_scope_to_request_with_exec_some(struct kunit *const test) { /* Denies execute and write. */ layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1), }; /* Checks and scopes with execute. */ KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE, &layer_masks)); KUNIT_EXPECT_EQ(test, BIT_ULL(0), layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); KUNIT_EXPECT_EQ(test, 0, layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); } static void test_scope_to_request_without_access(struct kunit *const test) { /* Denies execute and write. */ layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0), [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1), }; /* Checks and scopes without access request. */ KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks)); KUNIT_EXPECT_EQ(test, 0, layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]); KUNIT_EXPECT_EQ(test, 0, layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]); } #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ /* * Returns true if there is at least one access right different than * LANDLOCK_ACCESS_FS_REFER. */ static bool is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS], const access_mask_t access_request) { unsigned long access_bit; /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */ const unsigned long access_check = access_request & ~LANDLOCK_ACCESS_FS_REFER; if (!layer_masks) return false; for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) { if ((*layer_masks)[access_bit]) return true; } return false; } #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__)) #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__)) #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST static void test_is_eacces_with_none(struct kunit *const test) { const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; IE_FALSE(&layer_masks, 0); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); } static void test_is_eacces_with_refer(struct kunit *const test) { const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0), }; IE_FALSE(&layer_masks, 0); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); } static void test_is_eacces_with_write(struct kunit *const test) { const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = { [BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0), }; IE_FALSE(&layer_masks, 0); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER); IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE); IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE); } #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ #undef IE_TRUE #undef IE_FALSE /** * is_access_to_paths_allowed - Check accesses for requests with a common path * * @domain: Domain to check against. * @path: File hierarchy to walk through. * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is * equal to @layer_masks_parent2 (if any). This is tied to the unique * requested path for most actions, or the source in case of a refer action * (i.e. rename or link), or the source and destination in case of * RENAME_EXCHANGE. * @layer_masks_parent1: Pointer to a matrix of layer masks per access * masks, identifying the layers that forbid a specific access. Bits from * this matrix can be unset according to the @path walk. An empty matrix * means that @domain allows all possible Landlock accesses (i.e. not only * those identified by @access_request_parent1). This matrix can * initially refer to domain layer masks and, when the accesses for the * destination and source are the same, to requested layer masks. * @dentry_child1: Dentry to the initial child of the parent1 path. This * pointer must be NULL for non-refer actions (i.e. not link nor rename). * @access_request_parent2: Similar to @access_request_parent1 but for a * request involving a source and a destination. This refers to the * destination, except in case of RENAME_EXCHANGE where it also refers to * the source. Must be set to 0 when using a simple path request. * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer * action. This must be NULL otherwise. * @dentry_child2: Dentry to the initial child of the parent2 path. This * pointer is only set for RENAME_EXCHANGE actions and must be NULL * otherwise. * * This helper first checks that the destination has a superset of restrictions * compared to the source (if any) for a common path. Because of * RENAME_EXCHANGE actions, source and destinations may be swapped. It then * checks that the collected accesses and the remaining ones are enough to * allow the request. * * Returns: * - true if the access request is granted; * - false otherwise. */ static bool is_access_to_paths_allowed( const struct landlock_ruleset *const domain, const struct path *const path, const access_mask_t access_request_parent1, layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], const struct dentry *const dentry_child1, const access_mask_t access_request_parent2, layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], const struct dentry *const dentry_child2) { bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check, child1_is_directory = true, child2_is_directory = true; struct path walker_path; access_mask_t access_masked_parent1, access_masked_parent2; layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS], _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS]; layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL, (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL; if (!access_request_parent1 && !access_request_parent2) return true; if (WARN_ON_ONCE(!domain || !path)) return true; if (is_nouser_or_private(path->dentry)) return true; if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1)) return false; allowed_parent1 = is_layer_masks_allowed(layer_masks_parent1); if (unlikely(layer_masks_parent2)) { if (WARN_ON_ONCE(!dentry_child1)) return false; allowed_parent2 = is_layer_masks_allowed(layer_masks_parent2); /* * For a double request, first check for potential privilege * escalation by looking at domain handled accesses (which are * a superset of the meaningful requested accesses). */ access_masked_parent1 = access_masked_parent2 = landlock_union_access_masks(domain).fs; is_dom_check = true; } else { if (WARN_ON_ONCE(dentry_child1 || dentry_child2)) return false; /* For a simple request, only check for requested accesses. */ access_masked_parent1 = access_request_parent1; access_masked_parent2 = access_request_parent2; is_dom_check = false; } if (unlikely(dentry_child1)) { landlock_unmask_layers( find_rule(domain, dentry_child1), landlock_init_layer_masks( domain, LANDLOCK_MASK_ACCESS_FS, &_layer_masks_child1, LANDLOCK_KEY_INODE), &_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1)); layer_masks_child1 = &_layer_masks_child1; child1_is_directory = d_is_dir(dentry_child1); } if (unlikely(dentry_child2)) { landlock_unmask_layers( find_rule(domain, dentry_child2), landlock_init_layer_masks( domain, LANDLOCK_MASK_ACCESS_FS, &_layer_masks_child2, LANDLOCK_KEY_INODE), &_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2)); layer_masks_child2 = &_layer_masks_child2; child2_is_directory = d_is_dir(dentry_child2); } walker_path = *path; path_get(&walker_path); /* * We need to walk through all the hierarchy to not miss any relevant * restriction. */ while (true) { struct dentry *parent_dentry; const struct landlock_rule *rule; /* * If at least all accesses allowed on the destination are * already allowed on the source, respectively if there is at * least as much as restrictions on the destination than on the * source, then we can safely refer files from the source to * the destination without risking a privilege escalation. * This also applies in the case of RENAME_EXCHANGE, which * implies checks on both direction. This is crucial for * standalone multilayered security policies. Furthermore, * this helps avoid policy writers to shoot themselves in the * foot. */ if (unlikely(is_dom_check && no_more_access( layer_masks_parent1, layer_masks_child1, child1_is_directory, layer_masks_parent2, layer_masks_child2, child2_is_directory))) { /* * Now, downgrades the remaining checks from domain * handled accesses to requested accesses. */ is_dom_check = false; access_masked_parent1 = access_request_parent1; access_masked_parent2 = access_request_parent2; allowed_parent1 = allowed_parent1 || scope_to_request(access_masked_parent1, layer_masks_parent1); allowed_parent2 = allowed_parent2 || scope_to_request(access_masked_parent2, layer_masks_parent2); /* Stops when all accesses are granted. */ if (allowed_parent1 && allowed_parent2) break; } rule = find_rule(domain, walker_path.dentry); allowed_parent1 = allowed_parent1 || landlock_unmask_layers( rule, access_masked_parent1, layer_masks_parent1, ARRAY_SIZE(*layer_masks_parent1)); allowed_parent2 = allowed_parent2 || landlock_unmask_layers( rule, access_masked_parent2, layer_masks_parent2, ARRAY_SIZE(*layer_masks_parent2)); /* Stops when a rule from each layer grants access. */ if (allowed_parent1 && allowed_parent2) break; jump_up: if (walker_path.dentry == walker_path.mnt->mnt_root) { if (follow_up(&walker_path)) { /* Ignores hidden mount points. */ goto jump_up; } else { /* * Stops at the real root. Denies access * because not all layers have granted access. */ break; } } if (unlikely(IS_ROOT(walker_path.dentry))) { /* * Stops at disconnected root directories. Only allows * access to internal filesystems (e.g. nsfs, which is * reachable through /proc/<pid>/ns/<namespace>). */ if (walker_path.mnt->mnt_flags & MNT_INTERNAL) { allowed_parent1 = true; allowed_parent2 = true; } break; } parent_dentry = dget_parent(walker_path.dentry); dput(walker_path.dentry); walker_path.dentry = parent_dentry; } path_put(&walker_path); return allowed_parent1 && allowed_parent2; } static int current_check_access_path(const struct path *const path, access_mask_t access_request) { const struct landlock_ruleset *const dom = get_current_fs_domain(); layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; if (!dom) return 0; access_request = landlock_init_layer_masks( dom, access_request, &layer_masks, LANDLOCK_KEY_INODE); if (is_access_to_paths_allowed(dom, path, access_request, &layer_masks, NULL, 0, NULL, NULL)) return 0; return -EACCES; } static __attribute_const__ access_mask_t get_mode_access(const umode_t mode) { switch (mode & S_IFMT) { case S_IFLNK: return LANDLOCK_ACCESS_FS_MAKE_SYM; case S_IFDIR: return LANDLOCK_ACCESS_FS_MAKE_DIR; case S_IFCHR: return LANDLOCK_ACCESS_FS_MAKE_CHAR; case S_IFBLK: return LANDLOCK_ACCESS_FS_MAKE_BLOCK; case S_IFIFO: return LANDLOCK_ACCESS_FS_MAKE_FIFO; case S_IFSOCK: return LANDLOCK_ACCESS_FS_MAKE_SOCK; case S_IFREG: case 0: /* A zero mode translates to S_IFREG. */ default: /* Treats weird files as regular files. */ return LANDLOCK_ACCESS_FS_MAKE_REG; } } static access_mask_t maybe_remove(const struct dentry *const dentry) { if (d_is_negative(dentry)) return 0; return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR : LANDLOCK_ACCESS_FS_REMOVE_FILE; } /** * collect_domain_accesses - Walk through a file path and collect accesses * * @domain: Domain to check against. * @mnt_root: Last directory to check. * @dir: Directory to start the walk from. * @layer_masks_dom: Where to store the collected accesses. * * This helper is useful to begin a path walk from the @dir directory to a * @mnt_root directory used as a mount point. This mount point is the common * ancestor between the source and the destination of a renamed and linked * file. While walking from @dir to @mnt_root, we record all the domain's * allowed accesses in @layer_masks_dom. * * This is similar to is_access_to_paths_allowed() but much simpler because it * only handles walking on the same mount point and only checks one set of * accesses. * * Returns: * - true if all the domain access rights are allowed for @dir; * - false if the walk reached @mnt_root. */ static bool collect_domain_accesses( const struct landlock_ruleset *const domain, const struct dentry *const mnt_root, struct dentry *dir, layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS]) { unsigned long access_dom; bool ret = false; if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom)) return true; if (is_nouser_or_private(dir)) return true; access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, layer_masks_dom, LANDLOCK_KEY_INODE); dget(dir); while (true) { struct dentry *parent_dentry; /* Gets all layers allowing all domain accesses. */ if (landlock_unmask_layers(find_rule(domain, dir), access_dom, layer_masks_dom, ARRAY_SIZE(*layer_masks_dom))) { /* * Stops when all handled accesses are allowed by at * least one rule in each layer. */ ret = true; break; } /* We should not reach a root other than @mnt_root. */ if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir))) break; parent_dentry = dget_parent(dir); dput(dir); dir = parent_dentry; } dput(dir); return ret; } /** * current_check_refer_path - Check if a rename or link action is allowed * * @old_dentry: File or directory requested to be moved or linked. * @new_dir: Destination parent directory. * @new_dentry: Destination file or directory. * @removable: Sets to true if it is a rename operation. * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE. * * Because of its unprivileged constraints, Landlock relies on file hierarchies * (and not only inodes) to tie access rights to files. Being able to link or * rename a file hierarchy brings some challenges. Indeed, moving or linking a * file (i.e. creating a new reference to an inode) can have an impact on the * actions allowed for a set of files if it would change its parent directory * (i.e. reparenting). * * To avoid trivial access right bypasses, Landlock first checks if the file or * directory requested to be moved would gain new access rights inherited from * its new hierarchy. Before returning any error, Landlock then checks that * the parent source hierarchy and the destination hierarchy would allow the * link or rename action. If it is not the case, an error with EACCES is * returned to inform user space that there is no way to remove or create the * requested source file type. If it should be allowed but the new inherited * access rights would be greater than the source access rights, then the * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables * user space to abort the whole operation if there is no way to do it, or to * manually copy the source to the destination if this remains allowed, e.g. * because file creation is allowed on the destination directory but not direct * linking. * * To achieve this goal, the kernel needs to compare two file hierarchies: the * one identifying the source file or directory (including itself), and the * destination one. This can be seen as a multilayer partial ordering problem. * The kernel walks through these paths and collects in a matrix the access * rights that are denied per layer. These matrices are then compared to see * if the destination one has more (or the same) restrictions as the source * one. If this is the case, the requested action will not return EXDEV, which * doesn't mean the action is allowed. The parent hierarchy of the source * (i.e. parent directory), and the destination hierarchy must also be checked * to verify that they explicitly allow such action (i.e. referencing, * creation and potentially removal rights). The kernel implementation is then * required to rely on potentially four matrices of access rights: one for the * source file or directory (i.e. the child), a potentially other one for the * other source/destination (in case of RENAME_EXCHANGE), one for the source * parent hierarchy and a last one for the destination hierarchy. These * ephemeral matrices take some space on the stack, which limits the number of * layers to a deemed reasonable number: 16. * * Returns: * - 0 if access is allowed; * - -EXDEV if @old_dentry would inherit new access rights from @new_dir; * - -EACCES if file removal or creation is denied. */ static int current_check_refer_path(struct dentry *const old_dentry, const struct path *const new_dir, struct dentry *const new_dentry, const bool removable, const bool exchange) { const struct landlock_ruleset *const dom = get_current_fs_domain(); bool allow_parent1, allow_parent2; access_mask_t access_request_parent1, access_request_parent2; struct path mnt_dir; struct dentry *old_parent; layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {}, layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {}; if (!dom) return 0; if (WARN_ON_ONCE(dom->num_layers < 1)) return -EACCES; if (unlikely(d_is_negative(old_dentry))) return -ENOENT; if (exchange) { if (unlikely(d_is_negative(new_dentry))) return -ENOENT; access_request_parent1 = get_mode_access(d_backing_inode(new_dentry)->i_mode); } else { access_request_parent1 = 0; } access_request_parent2 = get_mode_access(d_backing_inode(old_dentry)->i_mode); if (removable) { access_request_parent1 |= maybe_remove(old_dentry); access_request_parent2 |= maybe_remove(new_dentry); } /* The mount points are the same for old and new paths, cf. EXDEV. */ if (old_dentry->d_parent == new_dir->dentry) { /* * The LANDLOCK_ACCESS_FS_REFER access right is not required * for same-directory referer (i.e. no reparenting). */ access_request_parent1 = landlock_init_layer_masks( dom, access_request_parent1 | access_request_parent2, &layer_masks_parent1, LANDLOCK_KEY_INODE); if (is_access_to_paths_allowed( dom, new_dir, access_request_parent1, &layer_masks_parent1, NULL, 0, NULL, NULL)) return 0; return -EACCES; } access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER; access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER; /* Saves the common mount point. */ mnt_dir.mnt = new_dir->mnt; mnt_dir.dentry = new_dir->mnt->mnt_root; /* * old_dentry may be the root of the common mount point and * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and * OPEN_TREE_CLONE). We do not need to call dget(old_parent) because * we keep a reference to old_dentry. */ old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry : old_dentry->d_parent; /* new_dir->dentry is equal to new_dentry->d_parent */ allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent, &layer_masks_parent1); allow_parent2 = collect_domain_accesses( dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2); if (allow_parent1 && allow_parent2) return 0; /* * To be able to compare source and destination domain access rights, * take into account the @old_dentry access rights aggregated with its * parent access rights. This will be useful to compare with the * destination parent access rights. */ if (is_access_to_paths_allowed( dom, &mnt_dir, access_request_parent1, &layer_masks_parent1, old_dentry, access_request_parent2, &layer_masks_parent2, exchange ? new_dentry : NULL)) return 0; /* * This prioritizes EACCES over EXDEV for all actions, including * renames with RENAME_EXCHANGE. */ if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) || is_eacces(&layer_masks_parent2, access_request_parent2))) return -EACCES; /* * Gracefully forbids reparenting if the destination directory * hierarchy is not a superset of restrictions of the source directory * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the * source or the destination. */ return -EXDEV; } /* Inode hooks */ static void hook_inode_free_security_rcu(void *inode_security) { struct landlock_inode_security *inode_sec; /* * All inodes must already have been untied from their object by * release_inode() or hook_sb_delete(). */ inode_sec = inode_security + landlock_blob_sizes.lbs_inode; WARN_ON_ONCE(inode_sec->object); } /* Super-block hooks */ /* * Release the inodes used in a security policy. * * Cf. fsnotify_unmount_inodes() and invalidate_inodes() */ static void hook_sb_delete(struct super_block *const sb) { struct inode *inode, *prev_inode = NULL; if (!landlock_initialized) return; spin_lock(&sb->s_inode_list_lock); list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { struct landlock_object *object; /* Only handles referenced inodes. */ if (!atomic_read(&inode->i_count)) continue; /* * Protects against concurrent modification of inode (e.g. * from get_inode_object()). */ spin_lock(&inode->i_lock); /* * Checks I_FREEING and I_WILL_FREE to protect against a race * condition when release_inode() just called iput(), which * could lead to a NULL dereference of inode->security or a * second call to iput() for the same Landlock object. Also * checks I_NEW because such inode cannot be tied to an object. */ if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { spin_unlock(&inode->i_lock); continue; } rcu_read_lock(); object = rcu_dereference(landlock_inode(inode)->object); if (!object) { rcu_read_unlock(); spin_unlock(&inode->i_lock); continue; } /* Keeps a reference to this inode until the next loop walk. */ __iget(inode); spin_unlock(&inode->i_lock); /* * If there is no concurrent release_inode() ongoing, then we * are in charge of calling iput() on this inode, otherwise we * will just wait for it to finish. */ spin_lock(&object->lock); if (object->underobj == inode) { object->underobj = NULL; spin_unlock(&object->lock); rcu_read_unlock(); /* * Because object->underobj was not NULL, * release_inode() and get_inode_object() guarantee * that it is safe to reset * landlock_inode(inode)->object while it is not NULL. * It is therefore not necessary to lock inode->i_lock. */ rcu_assign_pointer(landlock_inode(inode)->object, NULL); /* * At this point, we own the ihold() reference that was * originally set up by get_inode_object() and the * __iget() reference that we just set in this loop * walk. Therefore the following call to iput() will * not sleep nor drop the inode because there is now at * least two references to it. */ iput(inode); } else { spin_unlock(&object->lock); rcu_read_unlock(); } if (prev_inode) { /* * At this point, we still own the __iget() reference * that we just set in this loop walk. Therefore we * can drop the list lock and know that the inode won't * disappear from under us until the next loop walk. */ spin_unlock(&sb->s_inode_list_lock); /* * We can now actually put the inode reference from the * previous loop walk, which is not needed anymore. */ iput(prev_inode); cond_resched(); spin_lock(&sb->s_inode_list_lock); } prev_inode = inode; } spin_unlock(&sb->s_inode_list_lock); /* Puts the inode reference from the last loop walk, if any. */ if (prev_inode) iput(prev_inode); /* Waits for pending iput() in release_inode(). */ wait_var_event(&landlock_superblock(sb)->inode_refs, !atomic_long_read(&landlock_superblock(sb)->inode_refs)); } /* * Because a Landlock security policy is defined according to the filesystem * topology (i.e. the mount namespace), changing it may grant access to files * not previously allowed. * * To make it simple, deny any filesystem topology modification by landlocked * processes. Non-landlocked processes may still change the namespace of a * landlocked process, but this kind of threat must be handled by a system-wide * access-control security policy. * * This could be lifted in the future if Landlock can safely handle mount * namespace updates requested by a landlocked process. Indeed, we could * update the current domain (which is currently read-only) by taking into * account the accesses of the source and the destination of a new mount point. * However, it would also require to make all the child domains dynamically * inherit these new constraints. Anyway, for backward compatibility reasons, * a dedicated user space option would be required (e.g. as a ruleset flag). */ static int hook_sb_mount(const char *const dev_name, const struct path *const path, const char *const type, const unsigned long flags, void *const data) { if (!get_current_fs_domain()) return 0; return -EPERM; } static int hook_move_mount(const struct path *const from_path, const struct path *const to_path) { if (!get_current_fs_domain()) return 0; return -EPERM; } /* * Removing a mount point may reveal a previously hidden file hierarchy, which * may then grant access to files, which may have previously been forbidden. */ static int hook_sb_umount(struct vfsmount *const mnt, const int flags) { if (!get_current_fs_domain()) return 0; return -EPERM; } static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts) { if (!get_current_fs_domain()) return 0; return -EPERM; } /* * pivot_root(2), like mount(2), changes the current mount namespace. It must * then be forbidden for a landlocked process. * * However, chroot(2) may be allowed because it only changes the relative root * directory of the current process. Moreover, it can be used to restrict the * view of the filesystem. */ static int hook_sb_pivotroot(const struct path *const old_path, const struct path *const new_path) { if (!get_current_fs_domain()) return 0; return -EPERM; } /* Path hooks */ static int hook_path_link(struct dentry *const old_dentry, const struct path *const new_dir, struct dentry *const new_dentry) { return current_check_refer_path(old_dentry, new_dir, new_dentry, false, false); } static int hook_path_rename(const struct path *const old_dir, struct dentry *const old_dentry, const struct path *const new_dir, struct dentry *const new_dentry, const unsigned int flags) { /* old_dir refers to old_dentry->d_parent and new_dir->mnt */ return current_check_refer_path(old_dentry, new_dir, new_dentry, true, !!(flags & RENAME_EXCHANGE)); } static int hook_path_mkdir(const struct path *const dir, struct dentry *const dentry, const umode_t mode) { return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR); } static int hook_path_mknod(const struct path *const dir, struct dentry *const dentry, const umode_t mode, const unsigned int dev) { return current_check_access_path(dir, get_mode_access(mode)); } static int hook_path_symlink(const struct path *const dir, struct dentry *const dentry, const char *const old_name) { return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM); } static int hook_path_unlink(const struct path *const dir, struct dentry *const dentry) { return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE); } static int hook_path_rmdir(const struct path *const dir, struct dentry *const dentry) { return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR); } static int hook_path_truncate(const struct path *const path) { return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE); } /* File hooks */ /** * get_required_file_open_access - Get access needed to open a file * * @file: File being opened. * * Returns the access rights that are required for opening the given file, * depending on the file type and open mode. */ static access_mask_t get_required_file_open_access(const struct file *const file) { access_mask_t access = 0; if (file->f_mode & FMODE_READ) { /* A directory can only be opened in read mode. */ if (S_ISDIR(file_inode(file)->i_mode)) return LANDLOCK_ACCESS_FS_READ_DIR; access = LANDLOCK_ACCESS_FS_READ_FILE; } if (file->f_mode & FMODE_WRITE) access |= LANDLOCK_ACCESS_FS_WRITE_FILE; /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */ if (file->f_flags & __FMODE_EXEC) access |= LANDLOCK_ACCESS_FS_EXECUTE; return access; } static int hook_file_alloc_security(struct file *const file) { /* * Grants all access rights, even if most of them are not checked later * on. It is more consistent. * * Notably, file descriptors for regular files can also be acquired * without going through the file_open hook, for example when using * memfd_create(2). */ landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS; return 0; } static bool is_device(const struct file *const file) { const struct inode *inode = file_inode(file); return S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode); } static int hook_file_open(struct file *const file) { layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; access_mask_t open_access_request, full_access_request, allowed_access, optional_access; const struct landlock_ruleset *const dom = landlock_get_applicable_domain( landlock_cred(file->f_cred)->domain, any_fs); if (!dom) return 0; /* * Because a file may be opened with O_PATH, get_required_file_open_access() * may return 0. This case will be handled with a future Landlock * evolution. */ open_access_request = get_required_file_open_access(file); /* * We look up more access than what we immediately need for open(), so * that we can later authorize operations on opened files. */ optional_access = LANDLOCK_ACCESS_FS_TRUNCATE; if (is_device(file)) optional_access |= LANDLOCK_ACCESS_FS_IOCTL_DEV; full_access_request = open_access_request | optional_access; if (is_access_to_paths_allowed( dom, &file->f_path, landlock_init_layer_masks(dom, full_access_request, &layer_masks, LANDLOCK_KEY_INODE), &layer_masks, NULL, 0, NULL, NULL)) { allowed_access = full_access_request; } else { unsigned long access_bit; const unsigned long access_req = full_access_request; /* * Calculate the actual allowed access rights from layer_masks. * Add each access right to allowed_access which has not been * vetoed by any layer. */ allowed_access = 0; for_each_set_bit(access_bit, &access_req, ARRAY_SIZE(layer_masks)) { if (!layer_masks[access_bit]) allowed_access |= BIT_ULL(access_bit); } } /* * For operations on already opened files (i.e. ftruncate()), it is the * access rights at the time of open() which decide whether the * operation is permitted. Therefore, we record the relevant subset of * file access rights in the opened struct file. */ landlock_file(file)->allowed_access = allowed_access; if ((open_access_request & allowed_access) == open_access_request) return 0; return -EACCES; } static int hook_file_truncate(struct file *const file) { /* * Allows truncation if the truncate right was available at the time of * opening the file, to get a consistent access check as for read, write * and execute operations. * * Note: For checks done based on the file's Landlock allowed access, we * enforce them independently of whether the current thread is in a * Landlock domain, so that open files passed between independent * processes retain their behaviour. */ if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE) return 0; return -EACCES; } static int hook_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { access_mask_t allowed_access = landlock_file(file)->allowed_access; /* * It is the access rights at the time of opening the file which * determine whether IOCTL can be used on the opened file later. * * The access right is attached to the opened file in hook_file_open(). */ if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV) return 0; if (!is_device(file)) return 0; if (is_masked_device_ioctl(cmd)) return 0; return -EACCES; } static int hook_file_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { access_mask_t allowed_access = landlock_file(file)->allowed_access; /* * It is the access rights at the time of opening the file which * determine whether IOCTL can be used on the opened file later. * * The access right is attached to the opened file in hook_file_open(). */ if (allowed_access & LANDLOCK_ACCESS_FS_IOCTL_DEV) return 0; if (!is_device(file)) return 0; if (is_masked_device_ioctl_compat(cmd)) return 0; return -EACCES; } static void hook_file_set_fowner(struct file *file) { struct landlock_ruleset *new_dom, *prev_dom; /* * Lock already held by __f_setown(), see commit 26f204380a3c ("fs: Fix * file_set_fowner LSM hook inconsistencies"). */ lockdep_assert_held(&file_f_owner(file)->lock); new_dom = landlock_get_current_domain(); landlock_get_ruleset(new_dom); prev_dom = landlock_file(file)->fown_domain; landlock_file(file)->fown_domain = new_dom; /* Called in an RCU read-side critical section. */ landlock_put_ruleset_deferred(prev_dom); } static void hook_file_free_security(struct file *file) { landlock_put_ruleset_deferred(landlock_file(file)->fown_domain); } static struct security_hook_list landlock_hooks[] __ro_after_init = { LSM_HOOK_INIT(inode_free_security_rcu, hook_inode_free_security_rcu), LSM_HOOK_INIT(sb_delete, hook_sb_delete), LSM_HOOK_INIT(sb_mount, hook_sb_mount), LSM_HOOK_INIT(move_mount, hook_move_mount), LSM_HOOK_INIT(sb_umount, hook_sb_umount), LSM_HOOK_INIT(sb_remount, hook_sb_remount), LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot), LSM_HOOK_INIT(path_link, hook_path_link), LSM_HOOK_INIT(path_rename, hook_path_rename), LSM_HOOK_INIT(path_mkdir, hook_path_mkdir), LSM_HOOK_INIT(path_mknod, hook_path_mknod), LSM_HOOK_INIT(path_symlink, hook_path_symlink), LSM_HOOK_INIT(path_unlink, hook_path_unlink), LSM_HOOK_INIT(path_rmdir, hook_path_rmdir), LSM_HOOK_INIT(path_truncate, hook_path_truncate), LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security), LSM_HOOK_INIT(file_open, hook_file_open), LSM_HOOK_INIT(file_truncate, hook_file_truncate), LSM_HOOK_INIT(file_ioctl, hook_file_ioctl), LSM_HOOK_INIT(file_ioctl_compat, hook_file_ioctl_compat), LSM_HOOK_INIT(file_set_fowner, hook_file_set_fowner), LSM_HOOK_INIT(file_free_security, hook_file_free_security), }; __init void landlock_add_fs_hooks(void) { security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), &landlock_lsmid); } #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST /* clang-format off */ static struct kunit_case test_cases[] = { KUNIT_CASE(test_no_more_access), KUNIT_CASE(test_scope_to_request_with_exec_none), KUNIT_CASE(test_scope_to_request_with_exec_some), KUNIT_CASE(test_scope_to_request_without_access), KUNIT_CASE(test_is_eacces_with_none), KUNIT_CASE(test_is_eacces_with_refer), KUNIT_CASE(test_is_eacces_with_write), {} }; /* clang-format on */ static struct kunit_suite test_suite = { .name = "landlock_fs", .test_cases = test_cases, }; kunit_test_suite(test_suite); #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */ |
9 9 18 18 18 18 39 13 26 11 9 6 9 9 6 9 2 7 13 13 13 9 7 2 2 2 13 1 1 7 3 1 7 3 3 3 3 3 3 3 16 1 1 14 4 6 4 4 2 4 4 4 13 1 1 1 6 4 4 4 4 4 9 1 8 1 3 1 3 3 1 10 1 1 9 9 12 1 1 4 3 1 2 2 1 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/cls_api.c Packet classifier API. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * Changes: * * Eduardo J. Blanco <ejbs@netlabs.com.uy> :990222: kmod support */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/idr.h> #include <linux/jhash.h> #include <linux/rculist.h> #include <linux/rhashtable.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/tc_act/tc_pedit.h> #include <net/tc_act/tc_mirred.h> #include <net/tc_act/tc_vlan.h> #include <net/tc_act/tc_tunnel_key.h> #include <net/tc_act/tc_csum.h> #include <net/tc_act/tc_gact.h> #include <net/tc_act/tc_police.h> #include <net/tc_act/tc_sample.h> #include <net/tc_act/tc_skbedit.h> #include <net/tc_act/tc_ct.h> #include <net/tc_act/tc_mpls.h> #include <net/tc_act/tc_gate.h> #include <net/flow_offload.h> #include <net/tc_wrapper.h> /* The list of all installed classifier types */ static LIST_HEAD(tcf_proto_base); /* Protects list of registered TC modules. It is pure SMP lock. */ static DEFINE_RWLOCK(cls_mod_lock); static struct xarray tcf_exts_miss_cookies_xa; struct tcf_exts_miss_cookie_node { const struct tcf_chain *chain; const struct tcf_proto *tp; const struct tcf_exts *exts; u32 chain_index; u32 tp_prio; u32 handle; u32 miss_cookie_base; struct rcu_head rcu; }; /* Each tc action entry cookie will be comprised of 32bit miss_cookie_base + * action index in the exts tc actions array. */ union tcf_exts_miss_cookie { struct { u32 miss_cookie_base; u32 act_index; }; u64 miss_cookie; }; #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static int tcf_exts_miss_cookie_base_alloc(struct tcf_exts *exts, struct tcf_proto *tp, u32 handle) { struct tcf_exts_miss_cookie_node *n; static u32 next; int err; if (WARN_ON(!handle || !tp->ops->get_exts)) return -EINVAL; n = kzalloc(sizeof(*n), GFP_KERNEL); if (!n) return -ENOMEM; n->chain_index = tp->chain->index; n->chain = tp->chain; n->tp_prio = tp->prio; n->tp = tp; n->exts = exts; n->handle = handle; err = xa_alloc_cyclic(&tcf_exts_miss_cookies_xa, &n->miss_cookie_base, n, xa_limit_32b, &next, GFP_KERNEL); if (err < 0) goto err_xa_alloc; exts->miss_cookie_node = n; return 0; err_xa_alloc: kfree(n); return err; } static void tcf_exts_miss_cookie_base_destroy(struct tcf_exts *exts) { struct tcf_exts_miss_cookie_node *n; if (!exts->miss_cookie_node) return; n = exts->miss_cookie_node; xa_erase(&tcf_exts_miss_cookies_xa, n->miss_cookie_base); kfree_rcu(n, rcu); } static struct tcf_exts_miss_cookie_node * tcf_exts_miss_cookie_lookup(u64 miss_cookie, int *act_index) { union tcf_exts_miss_cookie mc = { .miss_cookie = miss_cookie, }; *act_index = mc.act_index; return xa_load(&tcf_exts_miss_cookies_xa, mc.miss_cookie_base); } #else /* IS_ENABLED(CONFIG_NET_TC_SKB_EXT) */ static int tcf_exts_miss_cookie_base_alloc(struct tcf_exts *exts, struct tcf_proto *tp, u32 handle) { return 0; } static void tcf_exts_miss_cookie_base_destroy(struct tcf_exts *exts) { } #endif /* IS_ENABLED(CONFIG_NET_TC_SKB_EXT) */ static u64 tcf_exts_miss_cookie_get(u32 miss_cookie_base, int act_index) { union tcf_exts_miss_cookie mc = { .act_index = act_index, }; if (!miss_cookie_base) return 0; mc.miss_cookie_base = miss_cookie_base; return mc.miss_cookie; } #ifdef CONFIG_NET_CLS_ACT DEFINE_STATIC_KEY_FALSE(tc_skb_ext_tc); EXPORT_SYMBOL(tc_skb_ext_tc); void tc_skb_ext_tc_enable(void) { static_branch_inc(&tc_skb_ext_tc); } EXPORT_SYMBOL(tc_skb_ext_tc_enable); void tc_skb_ext_tc_disable(void) { static_branch_dec(&tc_skb_ext_tc); } EXPORT_SYMBOL(tc_skb_ext_tc_disable); #endif static u32 destroy_obj_hashfn(const struct tcf_proto *tp) { return jhash_3words(tp->chain->index, tp->prio, (__force __u32)tp->protocol, 0); } static void tcf_proto_signal_destroying(struct tcf_chain *chain, struct tcf_proto *tp) { struct tcf_block *block = chain->block; mutex_lock(&block->proto_destroy_lock); hash_add_rcu(block->proto_destroy_ht, &tp->destroy_ht_node, destroy_obj_hashfn(tp)); mutex_unlock(&block->proto_destroy_lock); } static bool tcf_proto_cmp(const struct tcf_proto *tp1, const struct tcf_proto *tp2) { return tp1->chain->index == tp2->chain->index && tp1->prio == tp2->prio && tp1->protocol == tp2->protocol; } static bool tcf_proto_exists_destroying(struct tcf_chain *chain, struct tcf_proto *tp) { u32 hash = destroy_obj_hashfn(tp); struct tcf_proto *iter; bool found = false; rcu_read_lock(); hash_for_each_possible_rcu(chain->block->proto_destroy_ht, iter, destroy_ht_node, hash) { if (tcf_proto_cmp(tp, iter)) { found = true; break; } } rcu_read_unlock(); return found; } static void tcf_proto_signal_destroyed(struct tcf_chain *chain, struct tcf_proto *tp) { struct tcf_block *block = chain->block; mutex_lock(&block->proto_destroy_lock); if (hash_hashed(&tp->destroy_ht_node)) hash_del_rcu(&tp->destroy_ht_node); mutex_unlock(&block->proto_destroy_lock); } /* Find classifier type by string name */ static const struct tcf_proto_ops *__tcf_proto_lookup_ops(const char *kind) { const struct tcf_proto_ops *t, *res = NULL; if (kind) { read_lock(&cls_mod_lock); list_for_each_entry(t, &tcf_proto_base, head) { if (strcmp(kind, t->kind) == 0) { if (try_module_get(t->owner)) res = t; break; } } read_unlock(&cls_mod_lock); } return res; } static const struct tcf_proto_ops * tcf_proto_lookup_ops(const char *kind, bool rtnl_held, struct netlink_ext_ack *extack) { const struct tcf_proto_ops *ops; ops = __tcf_proto_lookup_ops(kind); if (ops) return ops; #ifdef CONFIG_MODULES if (rtnl_held) rtnl_unlock(); request_module(NET_CLS_ALIAS_PREFIX "%s", kind); if (rtnl_held) rtnl_lock(); ops = __tcf_proto_lookup_ops(kind); /* We dropped the RTNL semaphore in order to perform * the module load. So, even if we succeeded in loading * the module we have to replay the request. We indicate * this using -EAGAIN. */ if (ops) { module_put(ops->owner); return ERR_PTR(-EAGAIN); } #endif NL_SET_ERR_MSG(extack, "TC classifier not found"); return ERR_PTR(-ENOENT); } /* Register(unregister) new classifier type */ int register_tcf_proto_ops(struct tcf_proto_ops *ops) { struct tcf_proto_ops *t; int rc = -EEXIST; write_lock(&cls_mod_lock); list_for_each_entry(t, &tcf_proto_base, head) if (!strcmp(ops->kind, t->kind)) goto out; list_add_tail(&ops->head, &tcf_proto_base); rc = 0; out: write_unlock(&cls_mod_lock); return rc; } EXPORT_SYMBOL(register_tcf_proto_ops); static struct workqueue_struct *tc_filter_wq; void unregister_tcf_proto_ops(struct tcf_proto_ops *ops) { struct tcf_proto_ops *t; int rc = -ENOENT; /* Wait for outstanding call_rcu()s, if any, from a * tcf_proto_ops's destroy() handler. */ rcu_barrier(); flush_workqueue(tc_filter_wq); write_lock(&cls_mod_lock); list_for_each_entry(t, &tcf_proto_base, head) { if (t == ops) { list_del(&t->head); rc = 0; break; } } write_unlock(&cls_mod_lock); WARN(rc, "unregister tc filter kind(%s) failed %d\n", ops->kind, rc); } EXPORT_SYMBOL(unregister_tcf_proto_ops); bool tcf_queue_work(struct rcu_work *rwork, work_func_t func) { INIT_RCU_WORK(rwork, func); return queue_rcu_work(tc_filter_wq, rwork); } EXPORT_SYMBOL(tcf_queue_work); /* Select new prio value from the range, managed by kernel. */ static inline u32 tcf_auto_prio(struct tcf_proto *tp) { u32 first = TC_H_MAKE(0xC0000000U, 0U); if (tp) first = tp->prio - 1; return TC_H_MAJ(first); } static bool tcf_proto_check_kind(struct nlattr *kind, char *name) { if (kind) return nla_strscpy(name, kind, IFNAMSIZ) < 0; memset(name, 0, IFNAMSIZ); return false; } static bool tcf_proto_is_unlocked(const char *kind) { const struct tcf_proto_ops *ops; bool ret; if (strlen(kind) == 0) return false; ops = tcf_proto_lookup_ops(kind, false, NULL); /* On error return false to take rtnl lock. Proto lookup/create * functions will perform lookup again and properly handle errors. */ if (IS_ERR(ops)) return false; ret = !!(ops->flags & TCF_PROTO_OPS_DOIT_UNLOCKED); module_put(ops->owner); return ret; } static struct tcf_proto *tcf_proto_create(const char *kind, u32 protocol, u32 prio, struct tcf_chain *chain, bool rtnl_held, struct netlink_ext_ack *extack) { struct tcf_proto *tp; int err; tp = kzalloc(sizeof(*tp), GFP_KERNEL); if (!tp) return ERR_PTR(-ENOBUFS); tp->ops = tcf_proto_lookup_ops(kind, rtnl_held, extack); if (IS_ERR(tp->ops)) { err = PTR_ERR(tp->ops); goto errout; } tp->classify = tp->ops->classify; tp->protocol = protocol; tp->prio = prio; tp->chain = chain; tp->usesw = !tp->ops->reoffload; spin_lock_init(&tp->lock); refcount_set(&tp->refcnt, 1); err = tp->ops->init(tp); if (err) { module_put(tp->ops->owner); goto errout; } return tp; errout: kfree(tp); return ERR_PTR(err); } static void tcf_proto_get(struct tcf_proto *tp) { refcount_inc(&tp->refcnt); } static void tcf_proto_count_usesw(struct tcf_proto *tp, bool add) { #ifdef CONFIG_NET_CLS_ACT struct tcf_block *block = tp->chain->block; bool counted = false; if (!add) { if (tp->usesw && tp->counted) { if (!atomic_dec_return(&block->useswcnt)) static_branch_dec(&tcf_sw_enabled_key); tp->counted = false; } return; } spin_lock(&tp->lock); if (tp->usesw && !tp->counted) { counted = true; tp->counted = true; } spin_unlock(&tp->lock); if (counted && atomic_inc_return(&block->useswcnt) == 1) static_branch_inc(&tcf_sw_enabled_key); #endif } static void tcf_chain_put(struct tcf_chain *chain); static void tcf_proto_destroy(struct tcf_proto *tp, bool rtnl_held, bool sig_destroy, struct netlink_ext_ack *extack) { tp->ops->destroy(tp, rtnl_held, extack); tcf_proto_count_usesw(tp, false); if (sig_destroy) tcf_proto_signal_destroyed(tp->chain, tp); tcf_chain_put(tp->chain); module_put(tp->ops->owner); kfree_rcu(tp, rcu); } static void tcf_proto_put(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack) { if (refcount_dec_and_test(&tp->refcnt)) tcf_proto_destroy(tp, rtnl_held, true, extack); } static bool tcf_proto_check_delete(struct tcf_proto *tp) { if (tp->ops->delete_empty) return tp->ops->delete_empty(tp); tp->deleting = true; return tp->deleting; } static void tcf_proto_mark_delete(struct tcf_proto *tp) { spin_lock(&tp->lock); tp->deleting = true; spin_unlock(&tp->lock); } static bool tcf_proto_is_deleting(struct tcf_proto *tp) { bool deleting; spin_lock(&tp->lock); deleting = tp->deleting; spin_unlock(&tp->lock); return deleting; } #define ASSERT_BLOCK_LOCKED(block) \ lockdep_assert_held(&(block)->lock) struct tcf_filter_chain_list_item { struct list_head list; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; }; static struct tcf_chain *tcf_chain_create(struct tcf_block *block, u32 chain_index) { struct tcf_chain *chain; ASSERT_BLOCK_LOCKED(block); chain = kzalloc(sizeof(*chain), GFP_KERNEL); if (!chain) return NULL; list_add_tail_rcu(&chain->list, &block->chain_list); mutex_init(&chain->filter_chain_lock); chain->block = block; chain->index = chain_index; chain->refcnt = 1; if (!chain->index) block->chain0.chain = chain; return chain; } static void tcf_chain_head_change_item(struct tcf_filter_chain_list_item *item, struct tcf_proto *tp_head) { if (item->chain_head_change) item->chain_head_change(tp_head, item->chain_head_change_priv); } static void tcf_chain0_head_change(struct tcf_chain *chain, struct tcf_proto *tp_head) { struct tcf_filter_chain_list_item *item; struct tcf_block *block = chain->block; if (chain->index) return; mutex_lock(&block->lock); list_for_each_entry(item, &block->chain0.filter_chain_list, list) tcf_chain_head_change_item(item, tp_head); mutex_unlock(&block->lock); } /* Returns true if block can be safely freed. */ static bool tcf_chain_detach(struct tcf_chain *chain) { struct tcf_block *block = chain->block; ASSERT_BLOCK_LOCKED(block); list_del_rcu(&chain->list); if (!chain->index) block->chain0.chain = NULL; if (list_empty(&block->chain_list) && refcount_read(&block->refcnt) == 0) return true; return false; } static void tcf_block_destroy(struct tcf_block *block) { mutex_destroy(&block->lock); mutex_destroy(&block->proto_destroy_lock); xa_destroy(&block->ports); kfree_rcu(block, rcu); } static void tcf_chain_destroy(struct tcf_chain *chain, bool free_block) { struct tcf_block *block = chain->block; mutex_destroy(&chain->filter_chain_lock); kfree_rcu(chain, rcu); if (free_block) tcf_block_destroy(block); } static void tcf_chain_hold(struct tcf_chain *chain) { ASSERT_BLOCK_LOCKED(chain->block); ++chain->refcnt; } static bool tcf_chain_held_by_acts_only(struct tcf_chain *chain) { ASSERT_BLOCK_LOCKED(chain->block); /* In case all the references are action references, this * chain should not be shown to the user. */ return chain->refcnt == chain->action_refcnt; } static struct tcf_chain *tcf_chain_lookup(struct tcf_block *block, u32 chain_index) { struct tcf_chain *chain; ASSERT_BLOCK_LOCKED(block); list_for_each_entry(chain, &block->chain_list, list) { if (chain->index == chain_index) return chain; } return NULL; } #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static struct tcf_chain *tcf_chain_lookup_rcu(const struct tcf_block *block, u32 chain_index) { struct tcf_chain *chain; list_for_each_entry_rcu(chain, &block->chain_list, list) { if (chain->index == chain_index) return chain; } return NULL; } #endif static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb, u32 seq, u16 flags, int event, bool unicast, struct netlink_ext_ack *extack); static struct tcf_chain *__tcf_chain_get(struct tcf_block *block, u32 chain_index, bool create, bool by_act) { struct tcf_chain *chain = NULL; bool is_first_reference; mutex_lock(&block->lock); chain = tcf_chain_lookup(block, chain_index); if (chain) { tcf_chain_hold(chain); } else { if (!create) goto errout; chain = tcf_chain_create(block, chain_index); if (!chain) goto errout; } if (by_act) ++chain->action_refcnt; is_first_reference = chain->refcnt - chain->action_refcnt == 1; mutex_unlock(&block->lock); /* Send notification only in case we got the first * non-action reference. Until then, the chain acts only as * a placeholder for actions pointing to it and user ought * not know about them. */ if (is_first_reference && !by_act) tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL, RTM_NEWCHAIN, false, NULL); return chain; errout: mutex_unlock(&block->lock); return chain; } static struct tcf_chain *tcf_chain_get(struct tcf_block *block, u32 chain_index, bool create) { return __tcf_chain_get(block, chain_index, create, false); } struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index) { return __tcf_chain_get(block, chain_index, true, true); } EXPORT_SYMBOL(tcf_chain_get_by_act); static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops, void *tmplt_priv); static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops, void *tmplt_priv, u32 chain_index, struct tcf_block *block, struct sk_buff *oskb, u32 seq, u16 flags); static void __tcf_chain_put(struct tcf_chain *chain, bool by_act, bool explicitly_created) { struct tcf_block *block = chain->block; const struct tcf_proto_ops *tmplt_ops; unsigned int refcnt, non_act_refcnt; bool free_block = false; void *tmplt_priv; mutex_lock(&block->lock); if (explicitly_created) { if (!chain->explicitly_created) { mutex_unlock(&block->lock); return; } chain->explicitly_created = false; } if (by_act) chain->action_refcnt--; /* tc_chain_notify_delete can't be called while holding block lock. * However, when block is unlocked chain can be changed concurrently, so * save these to temporary variables. */ refcnt = --chain->refcnt; non_act_refcnt = refcnt - chain->action_refcnt; tmplt_ops = chain->tmplt_ops; tmplt_priv = chain->tmplt_priv; if (non_act_refcnt == chain->explicitly_created && !by_act) { if (non_act_refcnt == 0) tc_chain_notify_delete(tmplt_ops, tmplt_priv, chain->index, block, NULL, 0, 0); /* Last reference to chain, no need to lock. */ chain->flushing = false; } if (refcnt == 0) free_block = tcf_chain_detach(chain); mutex_unlock(&block->lock); if (refcnt == 0) { tc_chain_tmplt_del(tmplt_ops, tmplt_priv); tcf_chain_destroy(chain, free_block); } } static void tcf_chain_put(struct tcf_chain *chain) { __tcf_chain_put(chain, false, false); } void tcf_chain_put_by_act(struct tcf_chain *chain) { __tcf_chain_put(chain, true, false); } EXPORT_SYMBOL(tcf_chain_put_by_act); static void tcf_chain_put_explicitly_created(struct tcf_chain *chain) { __tcf_chain_put(chain, false, true); } static void tcf_chain_flush(struct tcf_chain *chain, bool rtnl_held) { struct tcf_proto *tp, *tp_next; mutex_lock(&chain->filter_chain_lock); tp = tcf_chain_dereference(chain->filter_chain, chain); while (tp) { tp_next = rcu_dereference_protected(tp->next, 1); tcf_proto_signal_destroying(chain, tp); tp = tp_next; } tp = tcf_chain_dereference(chain->filter_chain, chain); RCU_INIT_POINTER(chain->filter_chain, NULL); tcf_chain0_head_change(chain, NULL); chain->flushing = true; mutex_unlock(&chain->filter_chain_lock); while (tp) { tp_next = rcu_dereference_protected(tp->next, 1); tcf_proto_put(tp, rtnl_held, NULL); tp = tp_next; } } static int tcf_block_setup(struct tcf_block *block, struct flow_block_offload *bo); static void tcf_block_offload_init(struct flow_block_offload *bo, struct net_device *dev, struct Qdisc *sch, enum flow_block_command command, enum flow_block_binder_type binder_type, struct flow_block *flow_block, bool shared, struct netlink_ext_ack *extack) { bo->net = dev_net(dev); bo->command = command; bo->binder_type = binder_type; bo->block = flow_block; bo->block_shared = shared; bo->extack = extack; bo->sch = sch; bo->cb_list_head = &flow_block->cb_list; INIT_LIST_HEAD(&bo->cb_list); } static void tcf_block_unbind(struct tcf_block *block, struct flow_block_offload *bo); static void tc_block_indr_cleanup(struct flow_block_cb *block_cb) { struct tcf_block *block = block_cb->indr.data; struct net_device *dev = block_cb->indr.dev; struct Qdisc *sch = block_cb->indr.sch; struct netlink_ext_ack extack = {}; struct flow_block_offload bo = {}; tcf_block_offload_init(&bo, dev, sch, FLOW_BLOCK_UNBIND, block_cb->indr.binder_type, &block->flow_block, tcf_block_shared(block), &extack); rtnl_lock(); down_write(&block->cb_lock); list_del(&block_cb->driver_list); list_move(&block_cb->list, &bo.cb_list); tcf_block_unbind(block, &bo); up_write(&block->cb_lock); rtnl_unlock(); } static bool tcf_block_offload_in_use(struct tcf_block *block) { return atomic_read(&block->offloadcnt); } static int tcf_block_offload_cmd(struct tcf_block *block, struct net_device *dev, struct Qdisc *sch, struct tcf_block_ext_info *ei, enum flow_block_command command, struct netlink_ext_ack *extack) { struct flow_block_offload bo = {}; tcf_block_offload_init(&bo, dev, sch, command, ei->binder_type, &block->flow_block, tcf_block_shared(block), extack); if (dev->netdev_ops->ndo_setup_tc) { int err; err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_BLOCK, &bo); if (err < 0) { if (err != -EOPNOTSUPP) NL_SET_ERR_MSG(extack, "Driver ndo_setup_tc failed"); return err; } return tcf_block_setup(block, &bo); } flow_indr_dev_setup_offload(dev, sch, TC_SETUP_BLOCK, block, &bo, tc_block_indr_cleanup); tcf_block_setup(block, &bo); return -EOPNOTSUPP; } static int tcf_block_offload_bind(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { struct net_device *dev = q->dev_queue->dev; int err; down_write(&block->cb_lock); /* If tc offload feature is disabled and the block we try to bind * to already has some offloaded filters, forbid to bind. */ if (dev->netdev_ops->ndo_setup_tc && !tc_can_offload(dev) && tcf_block_offload_in_use(block)) { NL_SET_ERR_MSG(extack, "Bind to offloaded block failed as dev has offload disabled"); err = -EOPNOTSUPP; goto err_unlock; } err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_BIND, extack); if (err == -EOPNOTSUPP) goto no_offload_dev_inc; if (err) goto err_unlock; up_write(&block->cb_lock); return 0; no_offload_dev_inc: if (tcf_block_offload_in_use(block)) goto err_unlock; err = 0; block->nooffloaddevcnt++; err_unlock: up_write(&block->cb_lock); return err; } static void tcf_block_offload_unbind(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { struct net_device *dev = q->dev_queue->dev; int err; down_write(&block->cb_lock); err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_UNBIND, NULL); if (err == -EOPNOTSUPP) goto no_offload_dev_dec; up_write(&block->cb_lock); return; no_offload_dev_dec: WARN_ON(block->nooffloaddevcnt-- == 0); up_write(&block->cb_lock); } static int tcf_chain0_head_change_cb_add(struct tcf_block *block, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { struct tcf_filter_chain_list_item *item; struct tcf_chain *chain0; item = kmalloc(sizeof(*item), GFP_KERNEL); if (!item) { NL_SET_ERR_MSG(extack, "Memory allocation for head change callback item failed"); return -ENOMEM; } item->chain_head_change = ei->chain_head_change; item->chain_head_change_priv = ei->chain_head_change_priv; mutex_lock(&block->lock); chain0 = block->chain0.chain; if (chain0) tcf_chain_hold(chain0); else list_add(&item->list, &block->chain0.filter_chain_list); mutex_unlock(&block->lock); if (chain0) { struct tcf_proto *tp_head; mutex_lock(&chain0->filter_chain_lock); tp_head = tcf_chain_dereference(chain0->filter_chain, chain0); if (tp_head) tcf_chain_head_change_item(item, tp_head); mutex_lock(&block->lock); list_add(&item->list, &block->chain0.filter_chain_list); mutex_unlock(&block->lock); mutex_unlock(&chain0->filter_chain_lock); tcf_chain_put(chain0); } return 0; } static void tcf_chain0_head_change_cb_del(struct tcf_block *block, struct tcf_block_ext_info *ei) { struct tcf_filter_chain_list_item *item; mutex_lock(&block->lock); list_for_each_entry(item, &block->chain0.filter_chain_list, list) { if ((!ei->chain_head_change && !ei->chain_head_change_priv) || (item->chain_head_change == ei->chain_head_change && item->chain_head_change_priv == ei->chain_head_change_priv)) { if (block->chain0.chain) tcf_chain_head_change_item(item, NULL); list_del(&item->list); mutex_unlock(&block->lock); kfree(item); return; } } mutex_unlock(&block->lock); WARN_ON(1); } struct tcf_net { spinlock_t idr_lock; /* Protects idr */ struct idr idr; }; static unsigned int tcf_net_id; static int tcf_block_insert(struct tcf_block *block, struct net *net, struct netlink_ext_ack *extack) { struct tcf_net *tn = net_generic(net, tcf_net_id); int err; idr_preload(GFP_KERNEL); spin_lock(&tn->idr_lock); err = idr_alloc_u32(&tn->idr, block, &block->index, block->index, GFP_NOWAIT); spin_unlock(&tn->idr_lock); idr_preload_end(); return err; } static void tcf_block_remove(struct tcf_block *block, struct net *net) { struct tcf_net *tn = net_generic(net, tcf_net_id); spin_lock(&tn->idr_lock); idr_remove(&tn->idr, block->index); spin_unlock(&tn->idr_lock); } static struct tcf_block *tcf_block_create(struct net *net, struct Qdisc *q, u32 block_index, struct netlink_ext_ack *extack) { struct tcf_block *block; block = kzalloc(sizeof(*block), GFP_KERNEL); if (!block) { NL_SET_ERR_MSG(extack, "Memory allocation for block failed"); return ERR_PTR(-ENOMEM); } mutex_init(&block->lock); mutex_init(&block->proto_destroy_lock); init_rwsem(&block->cb_lock); flow_block_init(&block->flow_block); INIT_LIST_HEAD(&block->chain_list); INIT_LIST_HEAD(&block->owner_list); INIT_LIST_HEAD(&block->chain0.filter_chain_list); refcount_set(&block->refcnt, 1); block->net = net; block->index = block_index; xa_init(&block->ports); /* Don't store q pointer for blocks which are shared */ if (!tcf_block_shared(block)) block->q = q; return block; } struct tcf_block *tcf_block_lookup(struct net *net, u32 block_index) { struct tcf_net *tn = net_generic(net, tcf_net_id); return idr_find(&tn->idr, block_index); } EXPORT_SYMBOL(tcf_block_lookup); static struct tcf_block *tcf_block_refcnt_get(struct net *net, u32 block_index) { struct tcf_block *block; rcu_read_lock(); block = tcf_block_lookup(net, block_index); if (block && !refcount_inc_not_zero(&block->refcnt)) block = NULL; rcu_read_unlock(); return block; } static struct tcf_chain * __tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain) { mutex_lock(&block->lock); if (chain) chain = list_is_last(&chain->list, &block->chain_list) ? NULL : list_next_entry(chain, list); else chain = list_first_entry_or_null(&block->chain_list, struct tcf_chain, list); /* skip all action-only chains */ while (chain && tcf_chain_held_by_acts_only(chain)) chain = list_is_last(&chain->list, &block->chain_list) ? NULL : list_next_entry(chain, list); if (chain) tcf_chain_hold(chain); mutex_unlock(&block->lock); return chain; } /* Function to be used by all clients that want to iterate over all chains on * block. It properly obtains block->lock and takes reference to chain before * returning it. Users of this function must be tolerant to concurrent chain * insertion/deletion or ensure that no concurrent chain modification is * possible. Note that all netlink dump callbacks cannot guarantee to provide * consistent dump because rtnl lock is released each time skb is filled with * data and sent to user-space. */ struct tcf_chain * tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain) { struct tcf_chain *chain_next = __tcf_get_next_chain(block, chain); if (chain) tcf_chain_put(chain); return chain_next; } EXPORT_SYMBOL(tcf_get_next_chain); static struct tcf_proto * __tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp) { u32 prio = 0; ASSERT_RTNL(); mutex_lock(&chain->filter_chain_lock); if (!tp) { tp = tcf_chain_dereference(chain->filter_chain, chain); } else if (tcf_proto_is_deleting(tp)) { /* 'deleting' flag is set and chain->filter_chain_lock was * unlocked, which means next pointer could be invalid. Restart * search. */ prio = tp->prio + 1; tp = tcf_chain_dereference(chain->filter_chain, chain); for (; tp; tp = tcf_chain_dereference(tp->next, chain)) if (!tp->deleting && tp->prio >= prio) break; } else { tp = tcf_chain_dereference(tp->next, chain); } if (tp) tcf_proto_get(tp); mutex_unlock(&chain->filter_chain_lock); return tp; } /* Function to be used by all clients that want to iterate over all tp's on * chain. Users of this function must be tolerant to concurrent tp * insertion/deletion or ensure that no concurrent chain modification is * possible. Note that all netlink dump callbacks cannot guarantee to provide * consistent dump because rtnl lock is released each time skb is filled with * data and sent to user-space. */ struct tcf_proto * tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp) { struct tcf_proto *tp_next = __tcf_get_next_proto(chain, tp); if (tp) tcf_proto_put(tp, true, NULL); return tp_next; } EXPORT_SYMBOL(tcf_get_next_proto); static void tcf_block_flush_all_chains(struct tcf_block *block, bool rtnl_held) { struct tcf_chain *chain; /* Last reference to block. At this point chains cannot be added or * removed concurrently. */ for (chain = tcf_get_next_chain(block, NULL); chain; chain = tcf_get_next_chain(block, chain)) { tcf_chain_put_explicitly_created(chain); tcf_chain_flush(chain, rtnl_held); } } /* Lookup Qdisc and increments its reference counter. * Set parent, if necessary. */ static int __tcf_qdisc_find(struct net *net, struct Qdisc **q, u32 *parent, int ifindex, bool rtnl_held, struct netlink_ext_ack *extack) { const struct Qdisc_class_ops *cops; struct net_device *dev; int err = 0; if (ifindex == TCM_IFINDEX_MAGIC_BLOCK) return 0; rcu_read_lock(); /* Find link */ dev = dev_get_by_index_rcu(net, ifindex); if (!dev) { rcu_read_unlock(); return -ENODEV; } /* Find qdisc */ if (!*parent) { *q = rcu_dereference(dev->qdisc); *parent = (*q)->handle; } else { *q = qdisc_lookup_rcu(dev, TC_H_MAJ(*parent)); if (!*q) { NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists"); err = -EINVAL; goto errout_rcu; } } *q = qdisc_refcount_inc_nz(*q); if (!*q) { NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists"); err = -EINVAL; goto errout_rcu; } /* Is it classful? */ cops = (*q)->ops->cl_ops; if (!cops) { NL_SET_ERR_MSG(extack, "Qdisc not classful"); err = -EINVAL; goto errout_qdisc; } if (!cops->tcf_block) { NL_SET_ERR_MSG(extack, "Class doesn't support blocks"); err = -EOPNOTSUPP; goto errout_qdisc; } errout_rcu: /* At this point we know that qdisc is not noop_qdisc, * which means that qdisc holds a reference to net_device * and we hold a reference to qdisc, so it is safe to release * rcu read lock. */ rcu_read_unlock(); return err; errout_qdisc: rcu_read_unlock(); if (rtnl_held) qdisc_put(*q); else qdisc_put_unlocked(*q); *q = NULL; return err; } static int __tcf_qdisc_cl_find(struct Qdisc *q, u32 parent, unsigned long *cl, int ifindex, struct netlink_ext_ack *extack) { if (ifindex == TCM_IFINDEX_MAGIC_BLOCK) return 0; /* Do we search for filter, attached to class? */ if (TC_H_MIN(parent)) { const struct Qdisc_class_ops *cops = q->ops->cl_ops; *cl = cops->find(q, parent); if (*cl == 0) { NL_SET_ERR_MSG(extack, "Specified class doesn't exist"); return -ENOENT; } } return 0; } static struct tcf_block *__tcf_block_find(struct net *net, struct Qdisc *q, unsigned long cl, int ifindex, u32 block_index, struct netlink_ext_ack *extack) { struct tcf_block *block; if (ifindex == TCM_IFINDEX_MAGIC_BLOCK) { block = tcf_block_refcnt_get(net, block_index); if (!block) { NL_SET_ERR_MSG(extack, "Block of given index was not found"); return ERR_PTR(-EINVAL); } } else { const struct Qdisc_class_ops *cops = q->ops->cl_ops; block = cops->tcf_block(q, cl, extack); if (!block) return ERR_PTR(-EINVAL); if (tcf_block_shared(block)) { NL_SET_ERR_MSG(extack, "This filter block is shared. Please use the block index to manipulate the filters"); return ERR_PTR(-EOPNOTSUPP); } /* Always take reference to block in order to support execution * of rules update path of cls API without rtnl lock. Caller * must release block when it is finished using it. 'if' block * of this conditional obtain reference to block by calling * tcf_block_refcnt_get(). */ refcount_inc(&block->refcnt); } return block; } static void __tcf_block_put(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei, bool rtnl_held) { if (refcount_dec_and_mutex_lock(&block->refcnt, &block->lock)) { /* Flushing/putting all chains will cause the block to be * deallocated when last chain is freed. However, if chain_list * is empty, block has to be manually deallocated. After block * reference counter reached 0, it is no longer possible to * increment it or add new chains to block. */ bool free_block = list_empty(&block->chain_list); mutex_unlock(&block->lock); if (tcf_block_shared(block)) tcf_block_remove(block, block->net); if (q) tcf_block_offload_unbind(block, q, ei); if (free_block) tcf_block_destroy(block); else tcf_block_flush_all_chains(block, rtnl_held); } else if (q) { tcf_block_offload_unbind(block, q, ei); } } static void tcf_block_refcnt_put(struct tcf_block *block, bool rtnl_held) { __tcf_block_put(block, NULL, NULL, rtnl_held); } /* Find tcf block. * Set q, parent, cl when appropriate. */ static struct tcf_block *tcf_block_find(struct net *net, struct Qdisc **q, u32 *parent, unsigned long *cl, int ifindex, u32 block_index, struct netlink_ext_ack *extack) { struct tcf_block *block; int err = 0; ASSERT_RTNL(); err = __tcf_qdisc_find(net, q, parent, ifindex, true, extack); if (err) goto errout; err = __tcf_qdisc_cl_find(*q, *parent, cl, ifindex, extack); if (err) goto errout_qdisc; block = __tcf_block_find(net, *q, *cl, ifindex, block_index, extack); if (IS_ERR(block)) { err = PTR_ERR(block); goto errout_qdisc; } return block; errout_qdisc: if (*q) qdisc_put(*q); errout: *q = NULL; return ERR_PTR(err); } static void tcf_block_release(struct Qdisc *q, struct tcf_block *block, bool rtnl_held) { if (!IS_ERR_OR_NULL(block)) tcf_block_refcnt_put(block, rtnl_held); if (q) { if (rtnl_held) qdisc_put(q); else qdisc_put_unlocked(q); } } struct tcf_block_owner_item { struct list_head list; struct Qdisc *q; enum flow_block_binder_type binder_type; }; static void tcf_block_owner_netif_keep_dst(struct tcf_block *block, struct Qdisc *q, enum flow_block_binder_type binder_type) { if (block->keep_dst && binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS && binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) netif_keep_dst(qdisc_dev(q)); } void tcf_block_netif_keep_dst(struct tcf_block *block) { struct tcf_block_owner_item *item; block->keep_dst = true; list_for_each_entry(item, &block->owner_list, list) tcf_block_owner_netif_keep_dst(block, item->q, item->binder_type); } EXPORT_SYMBOL(tcf_block_netif_keep_dst); static int tcf_block_owner_add(struct tcf_block *block, struct Qdisc *q, enum flow_block_binder_type binder_type) { struct tcf_block_owner_item *item; item = kmalloc(sizeof(*item), GFP_KERNEL); if (!item) return -ENOMEM; item->q = q; item->binder_type = binder_type; list_add(&item->list, &block->owner_list); return 0; } static void tcf_block_owner_del(struct tcf_block *block, struct Qdisc *q, enum flow_block_binder_type binder_type) { struct tcf_block_owner_item *item; list_for_each_entry(item, &block->owner_list, list) { if (item->q == q && item->binder_type == binder_type) { list_del(&item->list); kfree(item); return; } } WARN_ON(1); } static bool tcf_block_tracks_dev(struct tcf_block *block, struct tcf_block_ext_info *ei) { return tcf_block_shared(block) && (ei->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS || ei->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS); } int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { struct net_device *dev = qdisc_dev(q); struct net *net = qdisc_net(q); struct tcf_block *block = NULL; int err; if (ei->block_index) /* block_index not 0 means the shared block is requested */ block = tcf_block_refcnt_get(net, ei->block_index); if (!block) { block = tcf_block_create(net, q, ei->block_index, extack); if (IS_ERR(block)) return PTR_ERR(block); if (tcf_block_shared(block)) { err = tcf_block_insert(block, net, extack); if (err) goto err_block_insert; } } err = tcf_block_owner_add(block, q, ei->binder_type); if (err) goto err_block_owner_add; tcf_block_owner_netif_keep_dst(block, q, ei->binder_type); err = tcf_chain0_head_change_cb_add(block, ei, extack); if (err) goto err_chain0_head_change_cb_add; err = tcf_block_offload_bind(block, q, ei, extack); if (err) goto err_block_offload_bind; if (tcf_block_tracks_dev(block, ei)) { err = xa_insert(&block->ports, dev->ifindex, dev, GFP_KERNEL); if (err) { NL_SET_ERR_MSG(extack, "block dev insert failed"); goto err_dev_insert; } } *p_block = block; return 0; err_dev_insert: tcf_block_offload_unbind(block, q, ei); err_block_offload_bind: tcf_chain0_head_change_cb_del(block, ei); err_chain0_head_change_cb_add: tcf_block_owner_del(block, q, ei->binder_type); err_block_owner_add: err_block_insert: tcf_block_refcnt_put(block, true); return err; } EXPORT_SYMBOL(tcf_block_get_ext); static void tcf_chain_head_change_dflt(struct tcf_proto *tp_head, void *priv) { struct tcf_proto __rcu **p_filter_chain = priv; rcu_assign_pointer(*p_filter_chain, tp_head); } int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { struct tcf_block_ext_info ei = { .chain_head_change = tcf_chain_head_change_dflt, .chain_head_change_priv = p_filter_chain, }; WARN_ON(!p_filter_chain); return tcf_block_get_ext(p_block, q, &ei, extack); } EXPORT_SYMBOL(tcf_block_get); /* XXX: Standalone actions are not allowed to jump to any chain, and bound * actions should be all removed after flushing. */ void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { struct net_device *dev = qdisc_dev(q); if (!block) return; if (tcf_block_tracks_dev(block, ei)) xa_erase(&block->ports, dev->ifindex); tcf_chain0_head_change_cb_del(block, ei); tcf_block_owner_del(block, q, ei->binder_type); __tcf_block_put(block, q, ei, true); } EXPORT_SYMBOL(tcf_block_put_ext); void tcf_block_put(struct tcf_block *block) { struct tcf_block_ext_info ei = {0, }; if (!block) return; tcf_block_put_ext(block, block->q, &ei); } EXPORT_SYMBOL(tcf_block_put); static int tcf_block_playback_offloads(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv, bool add, bool offload_in_use, struct netlink_ext_ack *extack) { struct tcf_chain *chain, *chain_prev; struct tcf_proto *tp, *tp_prev; int err; lockdep_assert_held(&block->cb_lock); for (chain = __tcf_get_next_chain(block, NULL); chain; chain_prev = chain, chain = __tcf_get_next_chain(block, chain), tcf_chain_put(chain_prev)) { if (chain->tmplt_ops && add) chain->tmplt_ops->tmplt_reoffload(chain, true, cb, cb_priv); for (tp = __tcf_get_next_proto(chain, NULL); tp; tp_prev = tp, tp = __tcf_get_next_proto(chain, tp), tcf_proto_put(tp_prev, true, NULL)) { if (tp->ops->reoffload) { err = tp->ops->reoffload(tp, add, cb, cb_priv, extack); if (err && add) goto err_playback_remove; } else if (add && offload_in_use) { err = -EOPNOTSUPP; NL_SET_ERR_MSG(extack, "Filter HW offload failed - classifier without re-offloading support"); goto err_playback_remove; } } if (chain->tmplt_ops && !add) chain->tmplt_ops->tmplt_reoffload(chain, false, cb, cb_priv); } return 0; err_playback_remove: tcf_proto_put(tp, true, NULL); tcf_chain_put(chain); tcf_block_playback_offloads(block, cb, cb_priv, false, offload_in_use, extack); return err; } static int tcf_block_bind(struct tcf_block *block, struct flow_block_offload *bo) { struct flow_block_cb *block_cb, *next; int err, i = 0; lockdep_assert_held(&block->cb_lock); list_for_each_entry(block_cb, &bo->cb_list, list) { err = tcf_block_playback_offloads(block, block_cb->cb, block_cb->cb_priv, true, tcf_block_offload_in_use(block), bo->extack); if (err) goto err_unroll; if (!bo->unlocked_driver_cb) block->lockeddevcnt++; i++; } list_splice(&bo->cb_list, &block->flow_block.cb_list); return 0; err_unroll: list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) { list_del(&block_cb->driver_list); if (i-- > 0) { list_del(&block_cb->list); tcf_block_playback_offloads(block, block_cb->cb, block_cb->cb_priv, false, tcf_block_offload_in_use(block), NULL); if (!bo->unlocked_driver_cb) block->lockeddevcnt--; } flow_block_cb_free(block_cb); } return err; } static void tcf_block_unbind(struct tcf_block *block, struct flow_block_offload *bo) { struct flow_block_cb *block_cb, *next; lockdep_assert_held(&block->cb_lock); list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) { tcf_block_playback_offloads(block, block_cb->cb, block_cb->cb_priv, false, tcf_block_offload_in_use(block), NULL); list_del(&block_cb->list); flow_block_cb_free(block_cb); if (!bo->unlocked_driver_cb) block->lockeddevcnt--; } } static int tcf_block_setup(struct tcf_block *block, struct flow_block_offload *bo) { int err; switch (bo->command) { case FLOW_BLOCK_BIND: err = tcf_block_bind(block, bo); break; case FLOW_BLOCK_UNBIND: err = 0; tcf_block_unbind(block, bo); break; default: WARN_ON_ONCE(1); err = -EOPNOTSUPP; } return err; } /* Main classifier routine: scans classifier chain attached * to this qdisc, (optionally) tests for protocol and asks * specific classifiers. */ static inline int __tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, const struct tcf_proto *orig_tp, struct tcf_result *res, bool compat_mode, struct tcf_exts_miss_cookie_node *n, int act_index, u32 *last_executed_chain) { #ifdef CONFIG_NET_CLS_ACT const int max_reclassify_loop = 16; const struct tcf_proto *first_tp; int limit = 0; reclassify: #endif for (; tp; tp = rcu_dereference_bh(tp->next)) { __be16 protocol = skb_protocol(skb, false); int err = 0; if (n) { struct tcf_exts *exts; if (n->tp_prio != tp->prio) continue; /* We re-lookup the tp and chain based on index instead * of having hard refs and locks to them, so do a sanity * check if any of tp,chain,exts was replaced by the * time we got here with a cookie from hardware. */ if (unlikely(n->tp != tp || n->tp->chain != n->chain || !tp->ops->get_exts)) { tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_COOKIE_ERROR); return TC_ACT_SHOT; } exts = tp->ops->get_exts(tp, n->handle); if (unlikely(!exts || n->exts != exts)) { tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_COOKIE_ERROR); return TC_ACT_SHOT; } n = NULL; err = tcf_exts_exec_ex(skb, exts, act_index, res); } else { if (tp->protocol != protocol && tp->protocol != htons(ETH_P_ALL)) continue; err = tc_classify(skb, tp, res); } #ifdef CONFIG_NET_CLS_ACT if (unlikely(err == TC_ACT_RECLASSIFY && !compat_mode)) { first_tp = orig_tp; *last_executed_chain = first_tp->chain->index; goto reset; } else if (unlikely(TC_ACT_EXT_CMP(err, TC_ACT_GOTO_CHAIN))) { first_tp = res->goto_tp; *last_executed_chain = err & TC_ACT_EXT_VAL_MASK; goto reset; } #endif if (err >= 0) return err; } if (unlikely(n)) { tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_COOKIE_ERROR); return TC_ACT_SHOT; } return TC_ACT_UNSPEC; /* signal: continue lookup */ #ifdef CONFIG_NET_CLS_ACT reset: if (unlikely(limit++ >= max_reclassify_loop)) { net_notice_ratelimited("%u: reclassify loop, rule prio %u, protocol %02x\n", tp->chain->block->index, tp->prio & 0xffff, ntohs(tp->protocol)); tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); return TC_ACT_SHOT; } tp = first_tp; goto reclassify; #endif } int tcf_classify(struct sk_buff *skb, const struct tcf_block *block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { #if !IS_ENABLED(CONFIG_NET_TC_SKB_EXT) u32 last_executed_chain = 0; return __tcf_classify(skb, tp, tp, res, compat_mode, NULL, 0, &last_executed_chain); #else u32 last_executed_chain = tp ? tp->chain->index : 0; struct tcf_exts_miss_cookie_node *n = NULL; const struct tcf_proto *orig_tp = tp; struct tc_skb_ext *ext; int act_index = 0; int ret; if (block) { ext = skb_ext_find(skb, TC_SKB_EXT); if (ext && (ext->chain || ext->act_miss)) { struct tcf_chain *fchain; u32 chain; if (ext->act_miss) { n = tcf_exts_miss_cookie_lookup(ext->act_miss_cookie, &act_index); if (!n) { tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_COOKIE_ERROR); return TC_ACT_SHOT; } chain = n->chain_index; } else { chain = ext->chain; } fchain = tcf_chain_lookup_rcu(block, chain); if (!fchain) { tcf_set_drop_reason(skb, SKB_DROP_REASON_TC_CHAIN_NOTFOUND); return TC_ACT_SHOT; } /* Consume, so cloned/redirect skbs won't inherit ext */ skb_ext_del(skb, TC_SKB_EXT); tp = rcu_dereference_bh(fchain->filter_chain); last_executed_chain = fchain->index; } } ret = __tcf_classify(skb, tp, orig_tp, res, compat_mode, n, act_index, &last_executed_chain); if (tc_skb_ext_tc_enabled()) { /* If we missed on some chain */ if (ret == TC_ACT_UNSPEC && last_executed_chain) { struct tc_skb_cb *cb = tc_skb_cb(skb); ext = tc_skb_ext_alloc(skb); if (WARN_ON_ONCE(!ext)) { tcf_set_drop_reason(skb, SKB_DROP_REASON_NOMEM); return TC_ACT_SHOT; } ext->chain = last_executed_chain; ext->mru = cb->mru; ext->post_ct = cb->post_ct; ext->post_ct_snat = cb->post_ct_snat; ext->post_ct_dnat = cb->post_ct_dnat; ext->zone = cb->zone; } } return ret; #endif } EXPORT_SYMBOL(tcf_classify); struct tcf_chain_info { struct tcf_proto __rcu **pprev; struct tcf_proto __rcu *next; }; static struct tcf_proto *tcf_chain_tp_prev(struct tcf_chain *chain, struct tcf_chain_info *chain_info) { return tcf_chain_dereference(*chain_info->pprev, chain); } static int tcf_chain_tp_insert(struct tcf_chain *chain, struct tcf_chain_info *chain_info, struct tcf_proto *tp) { if (chain->flushing) return -EAGAIN; RCU_INIT_POINTER(tp->next, tcf_chain_tp_prev(chain, chain_info)); if (*chain_info->pprev == chain->filter_chain) tcf_chain0_head_change(chain, tp); tcf_proto_get(tp); rcu_assign_pointer(*chain_info->pprev, tp); return 0; } static void tcf_chain_tp_remove(struct tcf_chain *chain, struct tcf_chain_info *chain_info, struct tcf_proto *tp) { struct tcf_proto *next = tcf_chain_dereference(chain_info->next, chain); tcf_proto_mark_delete(tp); if (tp == chain->filter_chain) tcf_chain0_head_change(chain, next); RCU_INIT_POINTER(*chain_info->pprev, next); } static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain, struct tcf_chain_info *chain_info, u32 protocol, u32 prio, bool prio_allocate, struct netlink_ext_ack *extack); /* Try to insert new proto. * If proto with specified priority already exists, free new proto * and return existing one. */ static struct tcf_proto *tcf_chain_tp_insert_unique(struct tcf_chain *chain, struct tcf_proto *tp_new, u32 protocol, u32 prio, bool rtnl_held) { struct tcf_chain_info chain_info; struct tcf_proto *tp; int err = 0; mutex_lock(&chain->filter_chain_lock); if (tcf_proto_exists_destroying(chain, tp_new)) { mutex_unlock(&chain->filter_chain_lock); tcf_proto_destroy(tp_new, rtnl_held, false, NULL); return ERR_PTR(-EAGAIN); } tp = tcf_chain_tp_find(chain, &chain_info, protocol, prio, false, NULL); if (!tp) err = tcf_chain_tp_insert(chain, &chain_info, tp_new); mutex_unlock(&chain->filter_chain_lock); if (tp) { tcf_proto_destroy(tp_new, rtnl_held, false, NULL); tp_new = tp; } else if (err) { tcf_proto_destroy(tp_new, rtnl_held, false, NULL); tp_new = ERR_PTR(err); } return tp_new; } static void tcf_chain_tp_delete_empty(struct tcf_chain *chain, struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack) { struct tcf_chain_info chain_info; struct tcf_proto *tp_iter; struct tcf_proto **pprev; struct tcf_proto *next; mutex_lock(&chain->filter_chain_lock); /* Atomically find and remove tp from chain. */ for (pprev = &chain->filter_chain; (tp_iter = tcf_chain_dereference(*pprev, chain)); pprev = &tp_iter->next) { if (tp_iter == tp) { chain_info.pprev = pprev; chain_info.next = tp_iter->next; WARN_ON(tp_iter->deleting); break; } } /* Verify that tp still exists and no new filters were inserted * concurrently. * Mark tp for deletion if it is empty. */ if (!tp_iter || !tcf_proto_check_delete(tp)) { mutex_unlock(&chain->filter_chain_lock); return; } tcf_proto_signal_destroying(chain, tp); next = tcf_chain_dereference(chain_info.next, chain); if (tp == chain->filter_chain) tcf_chain0_head_change(chain, next); RCU_INIT_POINTER(*chain_info.pprev, next); mutex_unlock(&chain->filter_chain_lock); tcf_proto_put(tp, rtnl_held, extack); } static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain, struct tcf_chain_info *chain_info, u32 protocol, u32 prio, bool prio_allocate, struct netlink_ext_ack *extack) { struct tcf_proto **pprev; struct tcf_proto *tp; /* Check the chain for existence of proto-tcf with this priority */ for (pprev = &chain->filter_chain; (tp = tcf_chain_dereference(*pprev, chain)); pprev = &tp->next) { if (tp->prio >= prio) { if (tp->prio == prio) { if (prio_allocate) { NL_SET_ERR_MSG(extack, "Lowest ID from auto-alloc range already in use"); return ERR_PTR(-ENOSPC); } if (tp->protocol != protocol && protocol) { NL_SET_ERR_MSG(extack, "Protocol mismatch for filter with specified priority"); return ERR_PTR(-EINVAL); } } else { tp = NULL; } break; } } chain_info->pprev = pprev; if (tp) { chain_info->next = tp->next; tcf_proto_get(tp); } else { chain_info->next = NULL; } return tp; } static int tcf_fill_node(struct net *net, struct sk_buff *skb, struct tcf_proto *tp, struct tcf_block *block, struct Qdisc *q, u32 parent, void *fh, u32 portid, u32 seq, u16 flags, int event, bool terse_dump, bool rtnl_held, struct netlink_ext_ack *extack) { struct tcmsg *tcm; struct nlmsghdr *nlh; unsigned char *b = skb_tail_pointer(skb); nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags); if (!nlh) goto out_nlmsg_trim; tcm = nlmsg_data(nlh); tcm->tcm_family = AF_UNSPEC; tcm->tcm__pad1 = 0; tcm->tcm__pad2 = 0; if (q) { tcm->tcm_ifindex = qdisc_dev(q)->ifindex; tcm->tcm_parent = parent; } else { tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK; tcm->tcm_block_index = block->index; } tcm->tcm_info = TC_H_MAKE(tp->prio, tp->protocol); if (nla_put_string(skb, TCA_KIND, tp->ops->kind)) goto nla_put_failure; if (nla_put_u32(skb, TCA_CHAIN, tp->chain->index)) goto nla_put_failure; if (!fh) { tcm->tcm_handle = 0; } else if (terse_dump) { if (tp->ops->terse_dump) { if (tp->ops->terse_dump(net, tp, fh, skb, tcm, rtnl_held) < 0) goto nla_put_failure; } else { goto cls_op_not_supp; } } else { if (tp->ops->dump && tp->ops->dump(net, tp, fh, skb, tcm, rtnl_held) < 0) goto nla_put_failure; } if (extack && extack->_msg && nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg)) goto nla_put_failure; nlh->nlmsg_len = skb_tail_pointer(skb) - b; return skb->len; out_nlmsg_trim: nla_put_failure: cls_op_not_supp: nlmsg_trim(skb, b); return -1; } static int tfilter_notify(struct net *net, struct sk_buff *oskb, struct nlmsghdr *n, struct tcf_proto *tp, struct tcf_block *block, struct Qdisc *q, u32 parent, void *fh, int event, bool unicast, bool rtnl_held, struct netlink_ext_ack *extack) { struct sk_buff *skb; u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; int err = 0; if (!unicast && !rtnl_notify_needed(net, n->nlmsg_flags, RTNLGRP_TC)) return 0; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid, n->nlmsg_seq, n->nlmsg_flags, event, false, rtnl_held, extack) <= 0) { kfree_skb(skb); return -EINVAL; } if (unicast) err = rtnl_unicast(skb, net, portid); else err = rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); return err; } static int tfilter_del_notify(struct net *net, struct sk_buff *oskb, struct nlmsghdr *n, struct tcf_proto *tp, struct tcf_block *block, struct Qdisc *q, u32 parent, void *fh, bool *last, bool rtnl_held, struct netlink_ext_ack *extack) { struct sk_buff *skb; u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; int err; if (!rtnl_notify_needed(net, n->nlmsg_flags, RTNLGRP_TC)) return tp->ops->delete(tp, fh, last, rtnl_held, extack); skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid, n->nlmsg_seq, n->nlmsg_flags, RTM_DELTFILTER, false, rtnl_held, extack) <= 0) { NL_SET_ERR_MSG(extack, "Failed to build del event notification"); kfree_skb(skb); return -EINVAL; } err = tp->ops->delete(tp, fh, last, rtnl_held, extack); if (err) { kfree_skb(skb); return err; } err = rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); if (err < 0) NL_SET_ERR_MSG(extack, "Failed to send filter delete notification"); return err; } static void tfilter_notify_chain(struct net *net, struct sk_buff *oskb, struct tcf_block *block, struct Qdisc *q, u32 parent, struct nlmsghdr *n, struct tcf_chain *chain, int event, struct netlink_ext_ack *extack) { struct tcf_proto *tp; for (tp = tcf_get_next_proto(chain, NULL); tp; tp = tcf_get_next_proto(chain, tp)) tfilter_notify(net, oskb, n, tp, block, q, parent, NULL, event, false, true, extack); } static void tfilter_put(struct tcf_proto *tp, void *fh) { if (tp->ops->put && fh) tp->ops->put(tp, fh); } static bool is_qdisc_ingress(__u32 classid) { return (TC_H_MIN(classid) == TC_H_MIN(TC_H_MIN_INGRESS)); } static int tc_new_tfilter(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; char name[IFNAMSIZ]; struct tcmsg *t; u32 protocol; u32 prio; bool prio_allocate; u32 parent; u32 chain_index; struct Qdisc *q; struct tcf_chain_info chain_info; struct tcf_chain *chain; struct tcf_block *block; struct tcf_proto *tp; unsigned long cl; void *fh; int err; int tp_created; bool rtnl_held = false; u32 flags; replay: tp_created = 0; err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; t = nlmsg_data(n); protocol = TC_H_MIN(t->tcm_info); prio = TC_H_MAJ(t->tcm_info); prio_allocate = false; parent = t->tcm_parent; tp = NULL; cl = 0; block = NULL; q = NULL; chain = NULL; flags = 0; if (prio == 0) { /* If no priority is provided by the user, * we allocate one. */ if (n->nlmsg_flags & NLM_F_CREATE) { prio = TC_H_MAKE(0x80000000U, 0U); prio_allocate = true; } else { NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero"); return -ENOENT; } } /* Find head of filter chain. */ err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack); if (err) return err; if (tcf_proto_check_kind(tca[TCA_KIND], name)) { NL_SET_ERR_MSG(extack, "Specified TC filter name too long"); err = -EINVAL; goto errout; } /* Take rtnl mutex if rtnl_held was set to true on previous iteration, * block is shared (no qdisc found), qdisc is not unlocked, classifier * type is not specified, classifier is not unlocked. */ if (rtnl_held || (q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) || !tcf_proto_is_unlocked(name)) { rtnl_held = true; rtnl_lock(); } err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack); if (err) goto errout; block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index, extack); if (IS_ERR(block)) { err = PTR_ERR(block); goto errout; } block->classid = parent; chain_index = nla_get_u32_default(tca[TCA_CHAIN], 0); if (chain_index > TC_ACT_EXT_VAL_MASK) { NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit"); err = -EINVAL; goto errout; } chain = tcf_chain_get(block, chain_index, true); if (!chain) { NL_SET_ERR_MSG(extack, "Cannot create specified filter chain"); err = -ENOMEM; goto errout; } mutex_lock(&chain->filter_chain_lock); tp = tcf_chain_tp_find(chain, &chain_info, protocol, prio, prio_allocate, extack); if (IS_ERR(tp)) { err = PTR_ERR(tp); goto errout_locked; } if (tp == NULL) { struct tcf_proto *tp_new = NULL; if (chain->flushing) { err = -EAGAIN; goto errout_locked; } /* Proto-tcf does not exist, create new one */ if (tca[TCA_KIND] == NULL || !protocol) { NL_SET_ERR_MSG(extack, "Filter kind and protocol must be specified"); err = -EINVAL; goto errout_locked; } if (!(n->nlmsg_flags & NLM_F_CREATE)) { NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter"); err = -ENOENT; goto errout_locked; } if (prio_allocate) prio = tcf_auto_prio(tcf_chain_tp_prev(chain, &chain_info)); mutex_unlock(&chain->filter_chain_lock); tp_new = tcf_proto_create(name, protocol, prio, chain, rtnl_held, extack); if (IS_ERR(tp_new)) { err = PTR_ERR(tp_new); goto errout_tp; } tp_created = 1; tp = tcf_chain_tp_insert_unique(chain, tp_new, protocol, prio, rtnl_held); if (IS_ERR(tp)) { err = PTR_ERR(tp); goto errout_tp; } } else { mutex_unlock(&chain->filter_chain_lock); } if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) { NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one"); err = -EINVAL; goto errout; } fh = tp->ops->get(tp, t->tcm_handle); if (!fh) { if (!(n->nlmsg_flags & NLM_F_CREATE)) { NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter"); err = -ENOENT; goto errout; } } else if (n->nlmsg_flags & NLM_F_EXCL) { tfilter_put(tp, fh); NL_SET_ERR_MSG(extack, "Filter already exists"); err = -EEXIST; goto errout; } if (chain->tmplt_ops && chain->tmplt_ops != tp->ops) { tfilter_put(tp, fh); NL_SET_ERR_MSG(extack, "Chain template is set to a different filter kind"); err = -EINVAL; goto errout; } if (!(n->nlmsg_flags & NLM_F_CREATE)) flags |= TCA_ACT_FLAGS_REPLACE; if (!rtnl_held) flags |= TCA_ACT_FLAGS_NO_RTNL; if (is_qdisc_ingress(parent)) flags |= TCA_ACT_FLAGS_AT_INGRESS; err = tp->ops->change(net, skb, tp, cl, t->tcm_handle, tca, &fh, flags, extack); if (err == 0) { tfilter_notify(net, skb, n, tp, block, q, parent, fh, RTM_NEWTFILTER, false, rtnl_held, extack); tfilter_put(tp, fh); tcf_proto_count_usesw(tp, true); /* q pointer is NULL for shared blocks */ if (q) q->flags &= ~TCQ_F_CAN_BYPASS; } errout: if (err && tp_created) tcf_chain_tp_delete_empty(chain, tp, rtnl_held, NULL); errout_tp: if (chain) { if (tp && !IS_ERR(tp)) tcf_proto_put(tp, rtnl_held, NULL); if (!tp_created) tcf_chain_put(chain); } tcf_block_release(q, block, rtnl_held); if (rtnl_held) rtnl_unlock(); if (err == -EAGAIN) { /* Take rtnl lock in case EAGAIN is caused by concurrent flush * of target chain. */ rtnl_held = true; /* Replay the request. */ goto replay; } return err; errout_locked: mutex_unlock(&chain->filter_chain_lock); goto errout; } static int tc_del_tfilter(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; char name[IFNAMSIZ]; struct tcmsg *t; u32 protocol; u32 prio; u32 parent; u32 chain_index; struct Qdisc *q = NULL; struct tcf_chain_info chain_info; struct tcf_chain *chain = NULL; struct tcf_block *block = NULL; struct tcf_proto *tp = NULL; unsigned long cl = 0; void *fh = NULL; int err; bool rtnl_held = false; err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; t = nlmsg_data(n); protocol = TC_H_MIN(t->tcm_info); prio = TC_H_MAJ(t->tcm_info); parent = t->tcm_parent; if (prio == 0 && (protocol || t->tcm_handle || tca[TCA_KIND])) { NL_SET_ERR_MSG(extack, "Cannot flush filters with protocol, handle or kind set"); return -ENOENT; } /* Find head of filter chain. */ err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack); if (err) return err; if (tcf_proto_check_kind(tca[TCA_KIND], name)) { NL_SET_ERR_MSG(extack, "Specified TC filter name too long"); err = -EINVAL; goto errout; } /* Take rtnl mutex if flushing whole chain, block is shared (no qdisc * found), qdisc is not unlocked, classifier type is not specified, * classifier is not unlocked. */ if (!prio || (q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) || !tcf_proto_is_unlocked(name)) { rtnl_held = true; rtnl_lock(); } err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack); if (err) goto errout; block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index, extack); if (IS_ERR(block)) { err = PTR_ERR(block); goto errout; } chain_index = nla_get_u32_default(tca[TCA_CHAIN], 0); if (chain_index > TC_ACT_EXT_VAL_MASK) { NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit"); err = -EINVAL; goto errout; } chain = tcf_chain_get(block, chain_index, false); if (!chain) { /* User requested flush on non-existent chain. Nothing to do, * so just return success. */ if (prio == 0) { err = 0; goto errout; } NL_SET_ERR_MSG(extack, "Cannot find specified filter chain"); err = -ENOENT; goto errout; } if (prio == 0) { tfilter_notify_chain(net, skb, block, q, parent, n, chain, RTM_DELTFILTER, extack); tcf_chain_flush(chain, rtnl_held); err = 0; goto errout; } mutex_lock(&chain->filter_chain_lock); tp = tcf_chain_tp_find(chain, &chain_info, protocol, prio, false, extack); if (!tp) { err = -ENOENT; NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found"); goto errout_locked; } else if (IS_ERR(tp)) { err = PTR_ERR(tp); goto errout_locked; } else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) { NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one"); err = -EINVAL; goto errout_locked; } else if (t->tcm_handle == 0) { tcf_proto_signal_destroying(chain, tp); tcf_chain_tp_remove(chain, &chain_info, tp); mutex_unlock(&chain->filter_chain_lock); tcf_proto_put(tp, rtnl_held, NULL); tfilter_notify(net, skb, n, tp, block, q, parent, fh, RTM_DELTFILTER, false, rtnl_held, extack); err = 0; goto errout; } mutex_unlock(&chain->filter_chain_lock); fh = tp->ops->get(tp, t->tcm_handle); if (!fh) { NL_SET_ERR_MSG(extack, "Specified filter handle not found"); err = -ENOENT; } else { bool last; err = tfilter_del_notify(net, skb, n, tp, block, q, parent, fh, &last, rtnl_held, extack); if (err) goto errout; if (last) tcf_chain_tp_delete_empty(chain, tp, rtnl_held, extack); } errout: if (chain) { if (tp && !IS_ERR(tp)) tcf_proto_put(tp, rtnl_held, NULL); tcf_chain_put(chain); } tcf_block_release(q, block, rtnl_held); if (rtnl_held) rtnl_unlock(); return err; errout_locked: mutex_unlock(&chain->filter_chain_lock); goto errout; } static int tc_get_tfilter(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; char name[IFNAMSIZ]; struct tcmsg *t; u32 protocol; u32 prio; u32 parent; u32 chain_index; struct Qdisc *q = NULL; struct tcf_chain_info chain_info; struct tcf_chain *chain = NULL; struct tcf_block *block = NULL; struct tcf_proto *tp = NULL; unsigned long cl = 0; void *fh = NULL; int err; bool rtnl_held = false; err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; t = nlmsg_data(n); protocol = TC_H_MIN(t->tcm_info); prio = TC_H_MAJ(t->tcm_info); parent = t->tcm_parent; if (prio == 0) { NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero"); return -ENOENT; } /* Find head of filter chain. */ err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack); if (err) return err; if (tcf_proto_check_kind(tca[TCA_KIND], name)) { NL_SET_ERR_MSG(extack, "Specified TC filter name too long"); err = -EINVAL; goto errout; } /* Take rtnl mutex if block is shared (no qdisc found), qdisc is not * unlocked, classifier type is not specified, classifier is not * unlocked. */ if ((q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) || !tcf_proto_is_unlocked(name)) { rtnl_held = true; rtnl_lock(); } err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack); if (err) goto errout; block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index, extack); if (IS_ERR(block)) { err = PTR_ERR(block); goto errout; } chain_index = nla_get_u32_default(tca[TCA_CHAIN], 0); if (chain_index > TC_ACT_EXT_VAL_MASK) { NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit"); err = -EINVAL; goto errout; } chain = tcf_chain_get(block, chain_index, false); if (!chain) { NL_SET_ERR_MSG(extack, "Cannot find specified filter chain"); err = -EINVAL; goto errout; } mutex_lock(&chain->filter_chain_lock); tp = tcf_chain_tp_find(chain, &chain_info, protocol, prio, false, extack); mutex_unlock(&chain->filter_chain_lock); if (!tp) { err = -ENOENT; NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found"); goto errout; } else if (IS_ERR(tp)) { err = PTR_ERR(tp); goto errout; } else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) { NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one"); err = -EINVAL; goto errout; } fh = tp->ops->get(tp, t->tcm_handle); if (!fh) { NL_SET_ERR_MSG(extack, "Specified filter handle not found"); err = -ENOENT; } else { err = tfilter_notify(net, skb, n, tp, block, q, parent, fh, RTM_NEWTFILTER, true, rtnl_held, NULL); if (err < 0) NL_SET_ERR_MSG(extack, "Failed to send filter notify message"); } tfilter_put(tp, fh); errout: if (chain) { if (tp && !IS_ERR(tp)) tcf_proto_put(tp, rtnl_held, NULL); tcf_chain_put(chain); } tcf_block_release(q, block, rtnl_held); if (rtnl_held) rtnl_unlock(); return err; } struct tcf_dump_args { struct tcf_walker w; struct sk_buff *skb; struct netlink_callback *cb; struct tcf_block *block; struct Qdisc *q; u32 parent; bool terse_dump; }; static int tcf_node_dump(struct tcf_proto *tp, void *n, struct tcf_walker *arg) { struct tcf_dump_args *a = (void *)arg; struct net *net = sock_net(a->skb->sk); return tcf_fill_node(net, a->skb, tp, a->block, a->q, a->parent, n, NETLINK_CB(a->cb->skb).portid, a->cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWTFILTER, a->terse_dump, true, NULL); } static bool tcf_chain_dump(struct tcf_chain *chain, struct Qdisc *q, u32 parent, struct sk_buff *skb, struct netlink_callback *cb, long index_start, long *p_index, bool terse) { struct net *net = sock_net(skb->sk); struct tcf_block *block = chain->block; struct tcmsg *tcm = nlmsg_data(cb->nlh); struct tcf_proto *tp, *tp_prev; struct tcf_dump_args arg; for (tp = __tcf_get_next_proto(chain, NULL); tp; tp_prev = tp, tp = __tcf_get_next_proto(chain, tp), tcf_proto_put(tp_prev, true, NULL), (*p_index)++) { if (*p_index < index_start) continue; if (TC_H_MAJ(tcm->tcm_info) && TC_H_MAJ(tcm->tcm_info) != tp->prio) continue; if (TC_H_MIN(tcm->tcm_info) && TC_H_MIN(tcm->tcm_info) != tp->protocol) continue; if (*p_index > index_start) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (cb->args[1] == 0) { if (tcf_fill_node(net, skb, tp, block, q, parent, NULL, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWTFILTER, false, true, NULL) <= 0) goto errout; cb->args[1] = 1; } if (!tp->ops->walk) continue; arg.w.fn = tcf_node_dump; arg.skb = skb; arg.cb = cb; arg.block = block; arg.q = q; arg.parent = parent; arg.w.stop = 0; arg.w.skip = cb->args[1] - 1; arg.w.count = 0; arg.w.cookie = cb->args[2]; arg.terse_dump = terse; tp->ops->walk(tp, &arg.w, true); cb->args[2] = arg.w.cookie; cb->args[1] = arg.w.count + 1; if (arg.w.stop) goto errout; } return true; errout: tcf_proto_put(tp, true, NULL); return false; } static const struct nla_policy tcf_tfilter_dump_policy[TCA_MAX + 1] = { [TCA_CHAIN] = { .type = NLA_U32 }, [TCA_DUMP_FLAGS] = NLA_POLICY_BITFIELD32(TCA_DUMP_FLAGS_TERSE), }; /* called with RTNL */ static int tc_dump_tfilter(struct sk_buff *skb, struct netlink_callback *cb) { struct tcf_chain *chain, *chain_prev; struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; struct Qdisc *q = NULL; struct tcf_block *block; struct tcmsg *tcm = nlmsg_data(cb->nlh); bool terse_dump = false; long index_start; long index; u32 parent; int err; if (nlmsg_len(cb->nlh) < sizeof(*tcm)) return skb->len; err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX, tcf_tfilter_dump_policy, cb->extack); if (err) return err; if (tca[TCA_DUMP_FLAGS]) { struct nla_bitfield32 flags = nla_get_bitfield32(tca[TCA_DUMP_FLAGS]); terse_dump = flags.value & TCA_DUMP_FLAGS_TERSE; } if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) { block = tcf_block_refcnt_get(net, tcm->tcm_block_index); if (!block) goto out; /* If we work with block index, q is NULL and parent value * will never be used in the following code. The check * in tcf_fill_node prevents it. However, compiler does not * see that far, so set parent to zero to silence the warning * about parent being uninitialized. */ parent = 0; } else { const struct Qdisc_class_ops *cops; struct net_device *dev; unsigned long cl = 0; dev = __dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return skb->len; parent = tcm->tcm_parent; if (!parent) q = rtnl_dereference(dev->qdisc); else q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent)); if (!q) goto out; cops = q->ops->cl_ops; if (!cops) goto out; if (!cops->tcf_block) goto out; if (TC_H_MIN(tcm->tcm_parent)) { cl = cops->find(q, tcm->tcm_parent); if (cl == 0) goto out; } block = cops->tcf_block(q, cl, NULL); if (!block) goto out; parent = block->classid; if (tcf_block_shared(block)) q = NULL; } index_start = cb->args[0]; index = 0; for (chain = __tcf_get_next_chain(block, NULL); chain; chain_prev = chain, chain = __tcf_get_next_chain(block, chain), tcf_chain_put(chain_prev)) { if (tca[TCA_CHAIN] && nla_get_u32(tca[TCA_CHAIN]) != chain->index) continue; if (!tcf_chain_dump(chain, q, parent, skb, cb, index_start, &index, terse_dump)) { tcf_chain_put(chain); err = -EMSGSIZE; break; } } if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) tcf_block_refcnt_put(block, true); cb->args[0] = index; out: /* If we did no progress, the error (EMSGSIZE) is real */ if (skb->len == 0 && err) return err; return skb->len; } static int tc_chain_fill_node(const struct tcf_proto_ops *tmplt_ops, void *tmplt_priv, u32 chain_index, struct net *net, struct sk_buff *skb, struct tcf_block *block, u32 portid, u32 seq, u16 flags, int event, struct netlink_ext_ack *extack) { unsigned char *b = skb_tail_pointer(skb); const struct tcf_proto_ops *ops; struct nlmsghdr *nlh; struct tcmsg *tcm; void *priv; ops = tmplt_ops; priv = tmplt_priv; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags); if (!nlh) goto out_nlmsg_trim; tcm = nlmsg_data(nlh); tcm->tcm_family = AF_UNSPEC; tcm->tcm__pad1 = 0; tcm->tcm__pad2 = 0; tcm->tcm_handle = 0; if (block->q) { tcm->tcm_ifindex = qdisc_dev(block->q)->ifindex; tcm->tcm_parent = block->q->handle; } else { tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK; tcm->tcm_block_index = block->index; } if (nla_put_u32(skb, TCA_CHAIN, chain_index)) goto nla_put_failure; if (ops) { if (nla_put_string(skb, TCA_KIND, ops->kind)) goto nla_put_failure; if (ops->tmplt_dump(skb, net, priv) < 0) goto nla_put_failure; } if (extack && extack->_msg && nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg)) goto out_nlmsg_trim; nlh->nlmsg_len = skb_tail_pointer(skb) - b; return skb->len; out_nlmsg_trim: nla_put_failure: nlmsg_trim(skb, b); return -EMSGSIZE; } static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb, u32 seq, u16 flags, int event, bool unicast, struct netlink_ext_ack *extack) { u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; struct tcf_block *block = chain->block; struct net *net = block->net; struct sk_buff *skb; int err = 0; if (!unicast && !rtnl_notify_needed(net, flags, RTNLGRP_TC)) return 0; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv, chain->index, net, skb, block, portid, seq, flags, event, extack) <= 0) { kfree_skb(skb); return -EINVAL; } if (unicast) err = rtnl_unicast(skb, net, portid); else err = rtnetlink_send(skb, net, portid, RTNLGRP_TC, flags & NLM_F_ECHO); return err; } static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops, void *tmplt_priv, u32 chain_index, struct tcf_block *block, struct sk_buff *oskb, u32 seq, u16 flags) { u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; struct net *net = block->net; struct sk_buff *skb; if (!rtnl_notify_needed(net, flags, RTNLGRP_TC)) return 0; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tc_chain_fill_node(tmplt_ops, tmplt_priv, chain_index, net, skb, block, portid, seq, flags, RTM_DELCHAIN, NULL) <= 0) { kfree_skb(skb); return -EINVAL; } return rtnetlink_send(skb, net, portid, RTNLGRP_TC, flags & NLM_F_ECHO); } static int tc_chain_tmplt_add(struct tcf_chain *chain, struct net *net, struct nlattr **tca, struct netlink_ext_ack *extack) { const struct tcf_proto_ops *ops; char name[IFNAMSIZ]; void *tmplt_priv; /* If kind is not set, user did not specify template. */ if (!tca[TCA_KIND]) return 0; if (tcf_proto_check_kind(tca[TCA_KIND], name)) { NL_SET_ERR_MSG(extack, "Specified TC chain template name too long"); return -EINVAL; } ops = tcf_proto_lookup_ops(name, true, extack); if (IS_ERR(ops)) return PTR_ERR(ops); if (!ops->tmplt_create || !ops->tmplt_destroy || !ops->tmplt_dump || !ops->tmplt_reoffload) { NL_SET_ERR_MSG(extack, "Chain templates are not supported with specified classifier"); module_put(ops->owner); return -EOPNOTSUPP; } tmplt_priv = ops->tmplt_create(net, chain, tca, extack); if (IS_ERR(tmplt_priv)) { module_put(ops->owner); return PTR_ERR(tmplt_priv); } chain->tmplt_ops = ops; chain->tmplt_priv = tmplt_priv; return 0; } static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops, void *tmplt_priv) { /* If template ops are set, no work to do for us. */ if (!tmplt_ops) return; tmplt_ops->tmplt_destroy(tmplt_priv); module_put(tmplt_ops->owner); } /* Add/delete/get a chain */ static int tc_ctl_chain(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; struct tcmsg *t; u32 parent; u32 chain_index; struct Qdisc *q; struct tcf_chain *chain; struct tcf_block *block; unsigned long cl; int err; replay: q = NULL; err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; t = nlmsg_data(n); parent = t->tcm_parent; cl = 0; block = tcf_block_find(net, &q, &parent, &cl, t->tcm_ifindex, t->tcm_block_index, extack); if (IS_ERR(block)) return PTR_ERR(block); chain_index = nla_get_u32_default(tca[TCA_CHAIN], 0); if (chain_index > TC_ACT_EXT_VAL_MASK) { NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit"); err = -EINVAL; goto errout_block; } mutex_lock(&block->lock); chain = tcf_chain_lookup(block, chain_index); if (n->nlmsg_type == RTM_NEWCHAIN) { if (chain) { if (tcf_chain_held_by_acts_only(chain)) { /* The chain exists only because there is * some action referencing it. */ tcf_chain_hold(chain); } else { NL_SET_ERR_MSG(extack, "Filter chain already exists"); err = -EEXIST; goto errout_block_locked; } } else { if (!(n->nlmsg_flags & NLM_F_CREATE)) { NL_SET_ERR_MSG(extack, "Need both RTM_NEWCHAIN and NLM_F_CREATE to create a new chain"); err = -ENOENT; goto errout_block_locked; } chain = tcf_chain_create(block, chain_index); if (!chain) { NL_SET_ERR_MSG(extack, "Failed to create filter chain"); err = -ENOMEM; goto errout_block_locked; } } } else { if (!chain || tcf_chain_held_by_acts_only(chain)) { NL_SET_ERR_MSG(extack, "Cannot find specified filter chain"); err = -EINVAL; goto errout_block_locked; } tcf_chain_hold(chain); } if (n->nlmsg_type == RTM_NEWCHAIN) { /* Modifying chain requires holding parent block lock. In case * the chain was successfully added, take a reference to the * chain. This ensures that an empty chain does not disappear at * the end of this function. */ tcf_chain_hold(chain); chain->explicitly_created = true; } mutex_unlock(&block->lock); switch (n->nlmsg_type) { case RTM_NEWCHAIN: err = tc_chain_tmplt_add(chain, net, tca, extack); if (err) { tcf_chain_put_explicitly_created(chain); goto errout; } tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL, RTM_NEWCHAIN, false, extack); break; case RTM_DELCHAIN: tfilter_notify_chain(net, skb, block, q, parent, n, chain, RTM_DELTFILTER, extack); /* Flush the chain first as the user requested chain removal. */ tcf_chain_flush(chain, true); /* In case the chain was successfully deleted, put a reference * to the chain previously taken during addition. */ tcf_chain_put_explicitly_created(chain); break; case RTM_GETCHAIN: err = tc_chain_notify(chain, skb, n->nlmsg_seq, n->nlmsg_flags, n->nlmsg_type, true, extack); if (err < 0) NL_SET_ERR_MSG(extack, "Failed to send chain notify message"); break; default: err = -EOPNOTSUPP; NL_SET_ERR_MSG(extack, "Unsupported message type"); goto errout; } errout: tcf_chain_put(chain); errout_block: tcf_block_release(q, block, true); if (err == -EAGAIN) /* Replay the request. */ goto replay; return err; errout_block_locked: mutex_unlock(&block->lock); goto errout_block; } /* called with RTNL */ static int tc_dump_chain(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_MAX + 1]; struct Qdisc *q = NULL; struct tcf_block *block; struct tcmsg *tcm = nlmsg_data(cb->nlh); struct tcf_chain *chain; long index_start; long index; int err; if (nlmsg_len(cb->nlh) < sizeof(*tcm)) return skb->len; err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX, rtm_tca_policy, cb->extack); if (err) return err; if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) { block = tcf_block_refcnt_get(net, tcm->tcm_block_index); if (!block) goto out; } else { const struct Qdisc_class_ops *cops; struct net_device *dev; unsigned long cl = 0; dev = __dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return skb->len; if (!tcm->tcm_parent) q = rtnl_dereference(dev->qdisc); else q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent)); if (!q) goto out; cops = q->ops->cl_ops; if (!cops) goto out; if (!cops->tcf_block) goto out; if (TC_H_MIN(tcm->tcm_parent)) { cl = cops->find(q, tcm->tcm_parent); if (cl == 0) goto out; } block = cops->tcf_block(q, cl, NULL); if (!block) goto out; if (tcf_block_shared(block)) q = NULL; } index_start = cb->args[0]; index = 0; mutex_lock(&block->lock); list_for_each_entry(chain, &block->chain_list, list) { if ((tca[TCA_CHAIN] && nla_get_u32(tca[TCA_CHAIN]) != chain->index)) continue; if (index < index_start) { index++; continue; } if (tcf_chain_held_by_acts_only(chain)) continue; err = tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv, chain->index, net, skb, block, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWCHAIN, NULL); if (err <= 0) break; index++; } mutex_unlock(&block->lock); if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) tcf_block_refcnt_put(block, true); cb->args[0] = index; out: /* If we did no progress, the error (EMSGSIZE) is real */ if (skb->len == 0 && err) return err; return skb->len; } int tcf_exts_init_ex(struct tcf_exts *exts, struct net *net, int action, int police, struct tcf_proto *tp, u32 handle, bool use_action_miss) { int err = 0; #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->miss_cookie_node = NULL; /* Note: we do not own yet a reference on net. * This reference might be taken later from tcf_exts_get_net(). */ exts->net = net; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; if (!use_action_miss) return 0; err = tcf_exts_miss_cookie_base_alloc(exts, tp, handle); if (err) goto err_miss_alloc; return 0; err_miss_alloc: tcf_exts_destroy(exts); #ifdef CONFIG_NET_CLS_ACT exts->actions = NULL; #endif return err; } EXPORT_SYMBOL(tcf_exts_init_ex); void tcf_exts_destroy(struct tcf_exts *exts) { tcf_exts_miss_cookie_base_destroy(exts); #ifdef CONFIG_NET_CLS_ACT if (exts->actions) { tcf_action_destroy(exts->actions, TCA_ACT_UNBIND); kfree(exts->actions); } exts->nr_actions = 0; #endif } EXPORT_SYMBOL(tcf_exts_destroy); int tcf_exts_validate_ex(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, u32 flags, u32 fl_flags, struct netlink_ext_ack *extack) { #ifdef CONFIG_NET_CLS_ACT { int init_res[TCA_ACT_MAX_PRIO] = {}; struct tc_action *act; size_t attr_size = 0; if (exts->police && tb[exts->police]) { struct tc_action_ops *a_o; flags |= TCA_ACT_FLAGS_POLICE | TCA_ACT_FLAGS_BIND; a_o = tc_action_load_ops(tb[exts->police], flags, extack); if (IS_ERR(a_o)) return PTR_ERR(a_o); act = tcf_action_init_1(net, tp, tb[exts->police], rate_tlv, a_o, init_res, flags, extack); module_put(a_o->owner); if (IS_ERR(act)) return PTR_ERR(act); act->type = exts->type = TCA_OLD_COMPAT; exts->actions[0] = act; exts->nr_actions = 1; tcf_idr_insert_many(exts->actions, init_res); } else if (exts->action && tb[exts->action]) { int err; flags |= TCA_ACT_FLAGS_BIND; err = tcf_action_init(net, tp, tb[exts->action], rate_tlv, exts->actions, init_res, &attr_size, flags, fl_flags, extack); if (err < 0) return err; exts->nr_actions = err; } } #else if ((exts->action && tb[exts->action]) || (exts->police && tb[exts->police])) { NL_SET_ERR_MSG(extack, "Classifier actions are not supported per compile options (CONFIG_NET_CLS_ACT)"); return -EOPNOTSUPP; } #endif return 0; } EXPORT_SYMBOL(tcf_exts_validate_ex); int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, u32 flags, struct netlink_ext_ack *extack) { return tcf_exts_validate_ex(net, tp, tb, rate_tlv, exts, flags, 0, extack); } EXPORT_SYMBOL(tcf_exts_validate); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src) { #ifdef CONFIG_NET_CLS_ACT struct tcf_exts old = *dst; *dst = *src; tcf_exts_destroy(&old); #endif } EXPORT_SYMBOL(tcf_exts_change); #ifdef CONFIG_NET_CLS_ACT static struct tc_action *tcf_exts_first_act(struct tcf_exts *exts) { if (exts->nr_actions == 0) return NULL; else return exts->actions[0]; } #endif int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT struct nlattr *nest; if (exts->action && tcf_exts_has_actions(exts)) { /* * again for backward compatible mode - we want * to work with both old and new modes of entering * tc data even if iproute2 was newer - jhs */ if (exts->type != TCA_OLD_COMPAT) { nest = nla_nest_start_noflag(skb, exts->action); if (nest == NULL) goto nla_put_failure; if (tcf_action_dump(skb, exts->actions, 0, 0, false) < 0) goto nla_put_failure; nla_nest_end(skb, nest); } else if (exts->police) { struct tc_action *act = tcf_exts_first_act(exts); nest = nla_nest_start_noflag(skb, exts->police); if (nest == NULL || !act) goto nla_put_failure; if (tcf_action_dump_old(skb, act, 0, 0) < 0) goto nla_put_failure; nla_nest_end(skb, nest); } } return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -1; #else return 0; #endif } EXPORT_SYMBOL(tcf_exts_dump); int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT struct nlattr *nest; if (!exts->action || !tcf_exts_has_actions(exts)) return 0; nest = nla_nest_start_noflag(skb, exts->action); if (!nest) goto nla_put_failure; if (tcf_action_dump(skb, exts->actions, 0, 0, true) < 0) goto nla_put_failure; nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -1; #else return 0; #endif } EXPORT_SYMBOL(tcf_exts_terse_dump); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT struct tc_action *a = tcf_exts_first_act(exts); if (a != NULL && tcf_action_copy_stats(skb, a, 1) < 0) return -1; #endif return 0; } EXPORT_SYMBOL(tcf_exts_dump_stats); static void tcf_block_offload_inc(struct tcf_block *block, u32 *flags) { if (*flags & TCA_CLS_FLAGS_IN_HW) return; *flags |= TCA_CLS_FLAGS_IN_HW; atomic_inc(&block->offloadcnt); } static void tcf_block_offload_dec(struct tcf_block *block, u32 *flags) { if (!(*flags & TCA_CLS_FLAGS_IN_HW)) return; *flags &= ~TCA_CLS_FLAGS_IN_HW; atomic_dec(&block->offloadcnt); } static void tc_cls_offload_cnt_update(struct tcf_block *block, struct tcf_proto *tp, u32 *cnt, u32 *flags, u32 diff, bool add) { lockdep_assert_held(&block->cb_lock); spin_lock(&tp->lock); if (add) { if (!*cnt) tcf_block_offload_inc(block, flags); *cnt += diff; } else { *cnt -= diff; if (!*cnt) tcf_block_offload_dec(block, flags); } spin_unlock(&tp->lock); } static void tc_cls_offload_cnt_reset(struct tcf_block *block, struct tcf_proto *tp, u32 *cnt, u32 *flags) { lockdep_assert_held(&block->cb_lock); spin_lock(&tp->lock); tcf_block_offload_dec(block, flags); *cnt = 0; spin_unlock(&tp->lock); } static int __tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop) { struct flow_block_cb *block_cb; int ok_count = 0; int err; list_for_each_entry(block_cb, &block->flow_block.cb_list, list) { err = block_cb->cb(type, type_data, block_cb->cb_priv); if (err) { if (err_stop) return err; } else { ok_count++; } } return ok_count; } int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop, bool rtnl_held) { bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held; int ok_count; retry: if (take_rtnl) rtnl_lock(); down_read(&block->cb_lock); /* Need to obtain rtnl lock if block is bound to devs that require it. * In block bind code cb_lock is obtained while holding rtnl, so we must * obtain the locks in same order here. */ if (!rtnl_held && !take_rtnl && block->lockeddevcnt) { up_read(&block->cb_lock); take_rtnl = true; goto retry; } ok_count = __tc_setup_cb_call(block, type, type_data, err_stop); up_read(&block->cb_lock); if (take_rtnl) rtnl_unlock(); return ok_count; } EXPORT_SYMBOL(tc_setup_cb_call); /* Non-destructive filter add. If filter that wasn't already in hardware is * successfully offloaded, increment block offloads counter. On failure, * previously offloaded filter is considered to be intact and offloads counter * is not decremented. */ int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held) { bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held; int ok_count; retry: if (take_rtnl) rtnl_lock(); down_read(&block->cb_lock); /* Need to obtain rtnl lock if block is bound to devs that require it. * In block bind code cb_lock is obtained while holding rtnl, so we must * obtain the locks in same order here. */ if (!rtnl_held && !take_rtnl && block->lockeddevcnt) { up_read(&block->cb_lock); take_rtnl = true; goto retry; } /* Make sure all netdevs sharing this block are offload-capable. */ if (block->nooffloaddevcnt && err_stop) { ok_count = -EOPNOTSUPP; goto err_unlock; } ok_count = __tc_setup_cb_call(block, type, type_data, err_stop); if (ok_count < 0) goto err_unlock; if (tp->ops->hw_add) tp->ops->hw_add(tp, type_data); if (ok_count > 0) tc_cls_offload_cnt_update(block, tp, in_hw_count, flags, ok_count, true); err_unlock: up_read(&block->cb_lock); if (take_rtnl) rtnl_unlock(); return min(ok_count, 0); } EXPORT_SYMBOL(tc_setup_cb_add); /* Destructive filter replace. If filter that wasn't already in hardware is * successfully offloaded, increment block offload counter. On failure, * previously offloaded filter is considered to be destroyed and offload counter * is decremented. */ int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *old_flags, unsigned int *old_in_hw_count, u32 *new_flags, unsigned int *new_in_hw_count, bool rtnl_held) { bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held; int ok_count; retry: if (take_rtnl) rtnl_lock(); down_read(&block->cb_lock); /* Need to obtain rtnl lock if block is bound to devs that require it. * In block bind code cb_lock is obtained while holding rtnl, so we must * obtain the locks in same order here. */ if (!rtnl_held && !take_rtnl && block->lockeddevcnt) { up_read(&block->cb_lock); take_rtnl = true; goto retry; } /* Make sure all netdevs sharing this block are offload-capable. */ if (block->nooffloaddevcnt && err_stop) { ok_count = -EOPNOTSUPP; goto err_unlock; } tc_cls_offload_cnt_reset(block, tp, old_in_hw_count, old_flags); if (tp->ops->hw_del) tp->ops->hw_del(tp, type_data); ok_count = __tc_setup_cb_call(block, type, type_data, err_stop); if (ok_count < 0) goto err_unlock; if (tp->ops->hw_add) tp->ops->hw_add(tp, type_data); if (ok_count > 0) tc_cls_offload_cnt_update(block, tp, new_in_hw_count, new_flags, ok_count, true); err_unlock: up_read(&block->cb_lock); if (take_rtnl) rtnl_unlock(); return min(ok_count, 0); } EXPORT_SYMBOL(tc_setup_cb_replace); /* Destroy filter and decrement block offload counter, if filter was previously * offloaded. */ int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held) { bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held; int ok_count; retry: if (take_rtnl) rtnl_lock(); down_read(&block->cb_lock); /* Need to obtain rtnl lock if block is bound to devs that require it. * In block bind code cb_lock is obtained while holding rtnl, so we must * obtain the locks in same order here. */ if (!rtnl_held && !take_rtnl && block->lockeddevcnt) { up_read(&block->cb_lock); take_rtnl = true; goto retry; } ok_count = __tc_setup_cb_call(block, type, type_data, err_stop); tc_cls_offload_cnt_reset(block, tp, in_hw_count, flags); if (tp->ops->hw_del) tp->ops->hw_del(tp, type_data); up_read(&block->cb_lock); if (take_rtnl) rtnl_unlock(); return min(ok_count, 0); } EXPORT_SYMBOL(tc_setup_cb_destroy); int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, enum tc_setup_type type, void *type_data, void *cb_priv, u32 *flags, unsigned int *in_hw_count) { int err = cb(type, type_data, cb_priv); if (err) { if (add && tc_skip_sw(*flags)) return err; } else { tc_cls_offload_cnt_update(block, tp, in_hw_count, flags, 1, add); } return 0; } EXPORT_SYMBOL(tc_setup_cb_reoffload); static int tcf_act_get_user_cookie(struct flow_action_entry *entry, const struct tc_action *act) { struct tc_cookie *user_cookie; int err = 0; rcu_read_lock(); user_cookie = rcu_dereference(act->user_cookie); if (user_cookie) { entry->user_cookie = flow_action_cookie_create(user_cookie->data, user_cookie->len, GFP_ATOMIC); if (!entry->user_cookie) err = -ENOMEM; } rcu_read_unlock(); return err; } static void tcf_act_put_user_cookie(struct flow_action_entry *entry) { flow_action_cookie_destroy(entry->user_cookie); } void tc_cleanup_offload_action(struct flow_action *flow_action) { struct flow_action_entry *entry; int i; flow_action_for_each(i, entry, flow_action) { tcf_act_put_user_cookie(entry); if (entry->destructor) entry->destructor(entry->destructor_priv); } } EXPORT_SYMBOL(tc_cleanup_offload_action); static int tc_setup_offload_act(struct tc_action *act, struct flow_action_entry *entry, u32 *index_inc, struct netlink_ext_ack *extack) { #ifdef CONFIG_NET_CLS_ACT if (act->ops->offload_act_setup) { return act->ops->offload_act_setup(act, entry, index_inc, true, extack); } else { NL_SET_ERR_MSG(extack, "Action does not support offload"); return -EOPNOTSUPP; } #else return 0; #endif } int tc_setup_action(struct flow_action *flow_action, struct tc_action *actions[], u32 miss_cookie_base, struct netlink_ext_ack *extack) { int i, j, k, index, err = 0; struct tc_action *act; BUILD_BUG_ON(TCA_ACT_HW_STATS_ANY != FLOW_ACTION_HW_STATS_ANY); BUILD_BUG_ON(TCA_ACT_HW_STATS_IMMEDIATE != FLOW_ACTION_HW_STATS_IMMEDIATE); BUILD_BUG_ON(TCA_ACT_HW_STATS_DELAYED != FLOW_ACTION_HW_STATS_DELAYED); if (!actions) return 0; j = 0; tcf_act_for_each_action(i, act, actions) { struct flow_action_entry *entry; entry = &flow_action->entries[j]; spin_lock_bh(&act->tcfa_lock); err = tcf_act_get_user_cookie(entry, act); if (err) goto err_out_locked; index = 0; err = tc_setup_offload_act(act, entry, &index, extack); if (err) goto err_out_locked; for (k = 0; k < index ; k++) { entry[k].hw_stats = tc_act_hw_stats(act->hw_stats); entry[k].hw_index = act->tcfa_index; entry[k].cookie = (unsigned long)act; entry[k].miss_cookie = tcf_exts_miss_cookie_get(miss_cookie_base, i); } j += index; spin_unlock_bh(&act->tcfa_lock); } err_out: if (err) tc_cleanup_offload_action(flow_action); return err; err_out_locked: spin_unlock_bh(&act->tcfa_lock); goto err_out; } int tc_setup_offload_action(struct flow_action *flow_action, const struct tcf_exts *exts, struct netlink_ext_ack *extack) { #ifdef CONFIG_NET_CLS_ACT u32 miss_cookie_base; if (!exts) return 0; miss_cookie_base = exts->miss_cookie_node ? exts->miss_cookie_node->miss_cookie_base : 0; return tc_setup_action(flow_action, exts->actions, miss_cookie_base, extack); #else return 0; #endif } EXPORT_SYMBOL(tc_setup_offload_action); unsigned int tcf_exts_num_actions(struct tcf_exts *exts) { unsigned int num_acts = 0; struct tc_action *act; int i; tcf_exts_for_each_action(i, act, exts) { if (is_tcf_pedit(act)) num_acts += tcf_pedit_nkeys(act); else num_acts++; } return num_acts; } EXPORT_SYMBOL(tcf_exts_num_actions); #ifdef CONFIG_NET_CLS_ACT static int tcf_qevent_parse_block_index(struct nlattr *block_index_attr, u32 *p_block_index, struct netlink_ext_ack *extack) { *p_block_index = nla_get_u32(block_index_attr); if (!*p_block_index) { NL_SET_ERR_MSG(extack, "Block number may not be zero"); return -EINVAL; } return 0; } int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { u32 block_index; int err; if (!block_index_attr) return 0; err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack); if (err) return err; qe->info.binder_type = binder_type; qe->info.chain_head_change = tcf_chain_head_change_dflt; qe->info.chain_head_change_priv = &qe->filter_chain; qe->info.block_index = block_index; return tcf_block_get_ext(&qe->block, sch, &qe->info, extack); } EXPORT_SYMBOL(tcf_qevent_init); void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch) { if (qe->info.block_index) tcf_block_put_ext(qe->block, sch, &qe->info); } EXPORT_SYMBOL(tcf_qevent_destroy); int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { u32 block_index; int err; if (!block_index_attr) return 0; err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack); if (err) return err; /* Bounce newly-configured block or change in block. */ if (block_index != qe->info.block_index) { NL_SET_ERR_MSG(extack, "Change of blocks is not supported"); return -EINVAL; } return 0; } EXPORT_SYMBOL(tcf_qevent_validate_change); struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret) { struct tcf_result cl_res; struct tcf_proto *fl; if (!qe->info.block_index) return skb; fl = rcu_dereference_bh(qe->filter_chain); switch (tcf_classify(skb, NULL, fl, &cl_res, false)) { case TC_ACT_SHOT: qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); *ret = __NET_XMIT_BYPASS; return NULL; case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: __qdisc_drop(skb, to_free); *ret = __NET_XMIT_STOLEN; return NULL; case TC_ACT_REDIRECT: skb_do_redirect(skb); *ret = __NET_XMIT_STOLEN; return NULL; } return skb; } EXPORT_SYMBOL(tcf_qevent_handle); int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe) { if (!qe->info.block_index) return 0; return nla_put_u32(skb, attr_name, qe->info.block_index); } EXPORT_SYMBOL(tcf_qevent_dump); #endif static __net_init int tcf_net_init(struct net *net) { struct tcf_net *tn = net_generic(net, tcf_net_id); spin_lock_init(&tn->idr_lock); idr_init(&tn->idr); return 0; } static void __net_exit tcf_net_exit(struct net *net) { struct tcf_net *tn = net_generic(net, tcf_net_id); idr_destroy(&tn->idr); } static struct pernet_operations tcf_net_ops = { .init = tcf_net_init, .exit = tcf_net_exit, .id = &tcf_net_id, .size = sizeof(struct tcf_net), }; static const struct rtnl_msg_handler tc_filter_rtnl_msg_handlers[] __initconst = { {.msgtype = RTM_NEWTFILTER, .doit = tc_new_tfilter, .flags = RTNL_FLAG_DOIT_UNLOCKED}, {.msgtype = RTM_DELTFILTER, .doit = tc_del_tfilter, .flags = RTNL_FLAG_DOIT_UNLOCKED}, {.msgtype = RTM_GETTFILTER, .doit = tc_get_tfilter, .dumpit = tc_dump_tfilter, .flags = RTNL_FLAG_DOIT_UNLOCKED}, {.msgtype = RTM_NEWCHAIN, .doit = tc_ctl_chain}, {.msgtype = RTM_DELCHAIN, .doit = tc_ctl_chain}, {.msgtype = RTM_GETCHAIN, .doit = tc_ctl_chain, .dumpit = tc_dump_chain}, }; static int __init tc_filter_init(void) { int err; tc_filter_wq = alloc_ordered_workqueue("tc_filter_workqueue", 0); if (!tc_filter_wq) return -ENOMEM; err = register_pernet_subsys(&tcf_net_ops); if (err) goto err_register_pernet_subsys; xa_init_flags(&tcf_exts_miss_cookies_xa, XA_FLAGS_ALLOC1); rtnl_register_many(tc_filter_rtnl_msg_handlers); return 0; err_register_pernet_subsys: destroy_workqueue(tc_filter_wq); return err; } subsys_initcall(tc_filter_init); |
7 7 6 1 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | // SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche, <flla@stud.uni-sb.de> * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> * Linus Torvalds, <torvalds@cs.helsinki.fi> * Alan Cox, <gw4pts@gw4pts.ampr.org> * Matthew Dillon, <dillon@apollo.west.oic.com> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Jorge Cwik, <jorge@laser.satlink.net> */ #include <net/tcp.h> #include <net/xfrm.h> #include <net/busy_poll.h> #include <net/rstreason.h> static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) { if (seq == s_win) return true; if (after(end_seq, s_win) && before(seq, e_win)) return true; return seq == e_win && seq == end_seq; } static enum tcp_tw_status tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw, const struct sk_buff *skb, int mib_idx) { struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx, &tcptw->tw_last_oow_ack_time)) { /* Send ACK. Note, we do not put the bucket, * it will be released by caller. */ return TCP_TW_ACK; } /* We are rate-limiting, so just release the tw sock and drop skb. */ inet_twsk_put(tw); return TCP_TW_SUCCESS; } static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq, u32 rcv_nxt) { #ifdef CONFIG_TCP_AO struct tcp_ao_info *ao; ao = rcu_dereference(tcptw->ao_info); if (unlikely(ao && seq < rcv_nxt)) WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1); #endif WRITE_ONCE(tcptw->tw_rcv_nxt, seq); } /* * * Main purpose of TIME-WAIT state is to close connection gracefully, * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN * (and, probably, tail of data) and one or more our ACKs are lost. * * What is TIME-WAIT timeout? It is associated with maximal packet * lifetime in the internet, which results in wrong conclusion, that * it is set to catch "old duplicate segments" wandering out of their path. * It is not quite correct. This timeout is calculated so that it exceeds * maximal retransmission timeout enough to allow to lose one (or more) * segments sent by peer and our ACKs. This time may be calculated from RTO. * * When TIME-WAIT socket receives RST, it means that another end * finally closed and we are allowed to kill TIME-WAIT too. * * Second purpose of TIME-WAIT is catching old duplicate segments. * Well, certainly it is pure paranoia, but if we load TIME-WAIT * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. * * If we invented some more clever way to catch duplicates * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. * * The algorithm below is based on FORMAL INTERPRETATION of RFCs. * When you compare it to RFCs, please, read section SEGMENT ARRIVES * from the very beginning. * * NOTE. With recycling (and later with fin-wait-2) TW bucket * is _not_ stateless. It means, that strictly speaking we must * spinlock it. I do not want! Well, probability of misbehaviour * is ridiculously low and, seems, we could use some mb() tricks * to avoid misread sequence numbers, states etc. --ANK * * We don't need to initialize tmp_out.sack_ok as we don't use the results */ enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, const struct tcphdr *th, u32 *tw_isn) { struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt); struct tcp_options_received tmp_opt; bool paws_reject = false; int ts_recent_stamp; tmp_opt.saw_tstamp = 0; ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp); if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) { tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL); if (tmp_opt.saw_tstamp) { if (tmp_opt.rcv_tsecr) tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset; tmp_opt.ts_recent = READ_ONCE(tcptw->tw_ts_recent); tmp_opt.ts_recent_stamp = ts_recent_stamp; paws_reject = tcp_paws_reject(&tmp_opt, th->rst); } } if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) { /* Just repeat all the checks of tcp_rcv_state_process() */ /* Out of window, send ACK */ if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, rcv_nxt, rcv_nxt + tcptw->tw_rcv_wnd)) return tcp_timewait_check_oow_rate_limit( tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2); if (th->rst) goto kill; if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt)) return TCP_TW_RST; /* Dup ACK? */ if (!th->ack || !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) || TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { inet_twsk_put(tw); return TCP_TW_SUCCESS; } /* New data or FIN. If new data arrive after half-duplex close, * reset. */ if (!th->fin || TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1) return TCP_TW_RST; /* FIN arrived, enter true time-wait state. */ WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT); twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq, rcv_nxt); if (tmp_opt.saw_tstamp) { u64 ts = tcp_clock_ms(); WRITE_ONCE(tw->tw_entry_stamp, ts); WRITE_ONCE(tcptw->tw_ts_recent_stamp, div_u64(ts, MSEC_PER_SEC)); WRITE_ONCE(tcptw->tw_ts_recent, tmp_opt.rcv_tsval); } inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); return TCP_TW_ACK; } /* * Now real TIME-WAIT state. * * RFC 1122: * "When a connection is [...] on TIME-WAIT state [...] * [a TCP] MAY accept a new SYN from the remote TCP to * reopen the connection directly, if it: * * (1) assigns its initial sequence number for the new * connection to be larger than the largest sequence * number it used on the previous connection incarnation, * and * * (2) returns to TIME-WAIT state if the SYN turns out * to be an old duplicate". */ if (!paws_reject && (TCP_SKB_CB(skb)->seq == rcv_nxt && (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { /* In window segment, it may be only reset or bare ack. */ if (th->rst) { /* This is TIME_WAIT assassination, in two flavors. * Oh well... nobody has a sufficient solution to this * protocol bug yet. */ if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) { kill: inet_twsk_deschedule_put(tw); return TCP_TW_SUCCESS; } } else { inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); } if (tmp_opt.saw_tstamp) { WRITE_ONCE(tcptw->tw_ts_recent, tmp_opt.rcv_tsval); WRITE_ONCE(tcptw->tw_ts_recent_stamp, ktime_get_seconds()); } inet_twsk_put(tw); return TCP_TW_SUCCESS; } /* Out of window segment. All the segments are ACKed immediately. The only exception is new SYN. We accept it, if it is not old duplicate and we are not in danger to be killed by delayed old duplicates. RFC check is that it has newer sequence number works at rates <40Mbit/sec. However, if paws works, it is reliable AND even more, we even may relax silly seq space cutoff. RED-PEN: we violate main RFC requirement, if this SYN will appear old duplicate (i.e. we receive RST in reply to SYN-ACK), we must return socket to time-wait state. It is not good, but not fatal yet. */ if (th->syn && !th->rst && !th->ack && !paws_reject && (after(TCP_SKB_CB(skb)->seq, rcv_nxt) || (tmp_opt.saw_tstamp && (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) { u32 isn = tcptw->tw_snd_nxt + 65535 + 2; if (isn == 0) isn++; *tw_isn = isn; return TCP_TW_SYN; } if (paws_reject) __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); if (!th->rst) { /* In this case we must reset the TIMEWAIT timer. * * If it is ACKless SYN it may be both old duplicate * and new good SYN with random sequence number <rcv_nxt. * Do not reschedule in the last case. */ if (paws_reject || th->ack) inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); return tcp_timewait_check_oow_rate_limit( tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT); } inet_twsk_put(tw); return TCP_TW_SUCCESS; } EXPORT_SYMBOL(tcp_timewait_state_process); static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw) { #ifdef CONFIG_TCP_MD5SIG const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *key; /* * The timewait bucket does not have the key DB from the * sock structure. We just make a quick copy of the * md5 key being used (if indeed we are using one) * so the timewait ack generating code has the key. */ tcptw->tw_md5_key = NULL; if (!static_branch_unlikely(&tcp_md5_needed.key)) return; key = tp->af_specific->md5_lookup(sk, sk); if (key) { tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC); if (!tcptw->tw_md5_key) return; if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) goto out_free; tcp_md5_add_sigpool(); } return; out_free: WARN_ON_ONCE(1); kfree(tcptw->tw_md5_key); tcptw->tw_md5_key = NULL; #endif } /* * Move a socket to time-wait or dead fin-wait-2 state. */ void tcp_time_wait(struct sock *sk, int state, int timeo) { const struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); struct inet_timewait_sock *tw; tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state); if (tw) { struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); tw->tw_transparent = inet_test_bit(TRANSPARENT, sk); tw->tw_mark = sk->sk_mark; tw->tw_priority = READ_ONCE(sk->sk_priority); tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; /* refreshed when we enter true TIME-WAIT state */ tw->tw_entry_stamp = tcp_time_stamp_ms(tp); tcptw->tw_rcv_nxt = tp->rcv_nxt; tcptw->tw_snd_nxt = tp->snd_nxt; tcptw->tw_rcv_wnd = tcp_receive_window(tp); tcptw->tw_ts_recent = tp->rx_opt.ts_recent; tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; tcptw->tw_ts_offset = tp->tsoffset; tw->tw_usec_ts = tp->tcp_usec_ts; tcptw->tw_last_oow_ack_time = 0; tcptw->tw_tx_delay = tp->tcp_tx_delay; tw->tw_txhash = sk->sk_txhash; tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping; #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping; #endif #if IS_ENABLED(CONFIG_IPV6) if (tw->tw_family == PF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); tw->tw_v6_daddr = sk->sk_v6_daddr; tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr; tw->tw_tclass = np->tclass; tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK); tw->tw_ipv6only = sk->sk_ipv6only; } #endif tcp_time_wait_init(sk, tcptw); tcp_ao_time_wait(tcptw, tp); /* Get the TIME_WAIT timeout firing. */ if (timeo < rto) timeo = rto; if (state == TCP_TIME_WAIT) timeo = TCP_TIMEWAIT_LEN; /* Linkage updates. * Note that access to tw after this point is illegal. */ inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo); } else { /* Sorry, if we're out of memory, just CLOSE this * socket up. We've got bigger problems than * non-graceful socket closings. */ NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW); } tcp_update_metrics(sk); tcp_done(sk); } EXPORT_SYMBOL(tcp_time_wait); #ifdef CONFIG_TCP_MD5SIG static void tcp_md5_twsk_free_rcu(struct rcu_head *head) { struct tcp_md5sig_key *key; key = container_of(head, struct tcp_md5sig_key, rcu); kfree(key); static_branch_slow_dec_deferred(&tcp_md5_needed); tcp_md5_release_sigpool(); } #endif void tcp_twsk_destructor(struct sock *sk) { #ifdef CONFIG_TCP_MD5SIG if (static_branch_unlikely(&tcp_md5_needed.key)) { struct tcp_timewait_sock *twsk = tcp_twsk(sk); if (twsk->tw_md5_key) call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu); } #endif tcp_ao_destroy_sock(sk, true); } EXPORT_SYMBOL_GPL(tcp_twsk_destructor); void tcp_twsk_purge(struct list_head *net_exit_list) { bool purged_once = false; struct net *net; list_for_each_entry(net, net_exit_list, exit_list) { if (net->ipv4.tcp_death_row.hashinfo->pernet) { /* Even if tw_refcount == 1, we must clean up kernel reqsk */ inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo); } else if (!purged_once) { inet_twsk_purge(&tcp_hashinfo); purged_once = true; } } } /* Warning : This function is called without sk_listener being locked. * Be sure to read socket fields once, as their value could change under us. */ void tcp_openreq_init_rwin(struct request_sock *req, const struct sock *sk_listener, const struct dst_entry *dst) { struct inet_request_sock *ireq = inet_rsk(req); const struct tcp_sock *tp = tcp_sk(sk_listener); int full_space = tcp_full_space(sk_listener); u32 window_clamp; __u8 rcv_wscale; u32 rcv_wnd; int mss; mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); window_clamp = READ_ONCE(tp->window_clamp); /* Set this up on the first call only */ req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW); /* limit the window selection if the user enforce a smaller rx buffer */ if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK && (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) req->rsk_window_clamp = full_space; rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req); if (rcv_wnd == 0) rcv_wnd = dst_metric(dst, RTAX_INITRWND); else if (full_space < rcv_wnd * mss) full_space = rcv_wnd * mss; /* tcp_full_space because it is guaranteed to be the first packet */ tcp_select_initial_window(sk_listener, full_space, mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), &req->rsk_rcv_wnd, &req->rsk_window_clamp, ireq->wscale_ok, &rcv_wscale, rcv_wnd); ireq->rcv_wscale = rcv_wscale; } EXPORT_SYMBOL(tcp_openreq_init_rwin); static void tcp_ecn_openreq_child(struct tcp_sock *tp, const struct request_sock *req) { tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; } void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst) { struct inet_connection_sock *icsk = inet_csk(sk); u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); bool ca_got_dst = false; if (ca_key != TCP_CA_UNSPEC) { const struct tcp_congestion_ops *ca; rcu_read_lock(); ca = tcp_ca_find_key(ca_key); if (likely(ca && bpf_try_module_get(ca, ca->owner))) { icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); icsk->icsk_ca_ops = ca; ca_got_dst = true; } rcu_read_unlock(); } /* If no valid choice made yet, assign current system default ca. */ if (!ca_got_dst && (!icsk->icsk_ca_setsockopt || !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner))) tcp_assign_congestion_control(sk); tcp_set_ca_state(sk, TCP_CA_Open); } EXPORT_SYMBOL_GPL(tcp_ca_openreq_child); static void smc_check_reset_syn_req(const struct tcp_sock *oldtp, struct request_sock *req, struct tcp_sock *newtp) { #if IS_ENABLED(CONFIG_SMC) struct inet_request_sock *ireq; if (static_branch_unlikely(&tcp_have_smc)) { ireq = inet_rsk(req); if (oldtp->syn_smc && !ireq->smc_ok) newtp->syn_smc = 0; } #endif } /* This is not only more efficient than what we used to do, it eliminates * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM * * Actually, we could lots of memory writes here. tp of listening * socket contains all necessary default parameters. */ struct sock *tcp_create_openreq_child(const struct sock *sk, struct request_sock *req, struct sk_buff *skb) { struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); const struct inet_request_sock *ireq = inet_rsk(req); struct tcp_request_sock *treq = tcp_rsk(req); struct inet_connection_sock *newicsk; const struct tcp_sock *oldtp; struct tcp_sock *newtp; u32 seq; if (!newsk) return NULL; newicsk = inet_csk(newsk); newtp = tcp_sk(newsk); oldtp = tcp_sk(sk); smc_check_reset_syn_req(oldtp, req, newtp); /* Now setup tcp_sock */ newtp->pred_flags = 0; seq = treq->rcv_isn + 1; newtp->rcv_wup = seq; WRITE_ONCE(newtp->copied_seq, seq); WRITE_ONCE(newtp->rcv_nxt, seq); newtp->segs_in = 1; seq = treq->snt_isn + 1; newtp->snd_sml = newtp->snd_una = seq; WRITE_ONCE(newtp->snd_nxt, seq); newtp->snd_up = seq; INIT_LIST_HEAD(&newtp->tsq_node); INIT_LIST_HEAD(&newtp->tsorted_sent_queue); tcp_init_wl(newtp, treq->rcv_isn); minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U); newicsk->icsk_ack.lrcvtime = tcp_jiffies32; newtp->lsndtime = tcp_jiffies32; newsk->sk_txhash = READ_ONCE(treq->txhash); newtp->total_retrans = req->num_retrans; tcp_init_xmit_timers(newsk); WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1); if (sock_flag(newsk, SOCK_KEEPOPEN)) inet_csk_reset_keepalive_timer(newsk, keepalive_time_when(newtp)); newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; newtp->rx_opt.sack_ok = ireq->sack_ok; newtp->window_clamp = req->rsk_window_clamp; newtp->rcv_ssthresh = req->rsk_rcv_wnd; newtp->rcv_wnd = req->rsk_rcv_wnd; newtp->rx_opt.wscale_ok = ireq->wscale_ok; if (newtp->rx_opt.wscale_ok) { newtp->rx_opt.snd_wscale = ireq->snd_wscale; newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; } else { newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; newtp->window_clamp = min(newtp->window_clamp, 65535U); } newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale; newtp->max_window = newtp->snd_wnd; if (newtp->rx_opt.tstamp_ok) { newtp->tcp_usec_ts = treq->req_usec_ts; newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent); newtp->rx_opt.ts_recent_stamp = ktime_get_seconds(); newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; } else { newtp->tcp_usec_ts = 0; newtp->rx_opt.ts_recent_stamp = 0; newtp->tcp_header_len = sizeof(struct tcphdr); } if (req->num_timeout) { newtp->total_rto = req->num_timeout; newtp->undo_marker = treq->snt_isn; if (newtp->tcp_usec_ts) { newtp->retrans_stamp = treq->snt_synack; newtp->total_rto_time = (u32)(tcp_clock_us() - newtp->retrans_stamp) / USEC_PER_MSEC; } else { newtp->retrans_stamp = div_u64(treq->snt_synack, USEC_PER_SEC / TCP_TS_HZ); newtp->total_rto_time = tcp_clock_ms() - newtp->retrans_stamp; } newtp->total_rto_recoveries = 1; } newtp->tsoffset = treq->ts_off; #ifdef CONFIG_TCP_MD5SIG newtp->md5sig_info = NULL; /*XXX*/ #endif #ifdef CONFIG_TCP_AO newtp->ao_info = NULL; if (tcp_rsk_used_ao(req)) { struct tcp_ao_key *ao_key; ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1); if (ao_key) newtp->tcp_header_len += tcp_ao_len_aligned(ao_key); } #endif if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; newtp->rx_opt.mss_clamp = req->mss; tcp_ecn_openreq_child(newtp, req); newtp->fastopen_req = NULL; RCU_INIT_POINTER(newtp->fastopen_rsk, NULL); newtp->bpf_chg_cc_inprogress = 0; tcp_bpf_clone(sk, newsk); __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS); xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1); return newsk; } EXPORT_SYMBOL(tcp_create_openreq_child); /* * Process an incoming packet for SYN_RECV sockets represented as a * request_sock. Normally sk is the listener socket but for TFO it * points to the child socket. * * XXX (TFO) - The current impl contains a special check for ack * validation and inside tcp_v4_reqsk_send_ack(). Can we do better? * * We don't need to initialize tmp_opt.sack_ok as we don't use the results * * Note: If @fastopen is true, this can be called from process context. * Otherwise, this is from BH context. */ struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, struct request_sock *req, bool fastopen, bool *req_stolen) { struct tcp_options_received tmp_opt; struct sock *child; const struct tcphdr *th = tcp_hdr(skb); __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); bool paws_reject = false; bool own_req; tmp_opt.saw_tstamp = 0; if (th->doff > (sizeof(struct tcphdr)>>2)) { tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL); if (tmp_opt.saw_tstamp) { tmp_opt.ts_recent = READ_ONCE(req->ts_recent); if (tmp_opt.rcv_tsecr) tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off; /* We do not store true stamp, but it is not required, * it can be estimated (approximately) * from another data. */ tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ; paws_reject = tcp_paws_reject(&tmp_opt, th->rst); } } /* Check for pure retransmitted SYN. */ if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && flg == TCP_FLAG_SYN && !paws_reject) { /* * RFC793 draws (Incorrectly! It was fixed in RFC1122) * this case on figure 6 and figure 8, but formal * protocol description says NOTHING. * To be more exact, it says that we should send ACK, * because this segment (at least, if it has no data) * is out of window. * * CONCLUSION: RFC793 (even with RFC1122) DOES NOT * describe SYN-RECV state. All the description * is wrong, we cannot believe to it and should * rely only on common sense and implementation * experience. * * Enforce "SYN-ACK" according to figure 8, figure 6 * of RFC793, fixed by RFC1122. * * Note that even if there is new data in the SYN packet * they will be thrown away too. * * Reset timer after retransmitting SYNACK, similar to * the idea of fast retransmit in recovery. */ if (!tcp_oow_rate_limited(sock_net(sk), skb, LINUX_MIB_TCPACKSKIPPEDSYNRECV, &tcp_rsk(req)->last_oow_ack_time) && !inet_rtx_syn_ack(sk, req)) { unsigned long expires = jiffies; expires += reqsk_timeout(req, TCP_RTO_MAX); if (!fastopen) mod_timer_pending(&req->rsk_timer, expires); else req->rsk_timer.expires = expires; } return NULL; } /* Further reproduces section "SEGMENT ARRIVES" for state SYN-RECEIVED of RFC793. It is broken, however, it does not work only when SYNs are crossed. You would think that SYN crossing is impossible here, since we should have a SYN_SENT socket (from connect()) on our end, but this is not true if the crossed SYNs were sent to both ends by a malicious third party. We must defend against this, and to do that we first verify the ACK (as per RFC793, page 36) and reset if it is invalid. Is this a true full defense? To convince ourselves, let us consider a way in which the ACK test can still pass in this 'malicious crossed SYNs' case. Malicious sender sends identical SYNs (and thus identical sequence numbers) to both A and B: A: gets SYN, seq=7 B: gets SYN, seq=7 By our good fortune, both A and B select the same initial send sequence number of seven :-) A: sends SYN|ACK, seq=7, ack_seq=8 B: sends SYN|ACK, seq=7, ack_seq=8 So we are now A eating this SYN|ACK, ACK test passes. So does sequence test, SYN is truncated, and thus we consider it a bare ACK. If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this bare ACK. Otherwise, we create an established connection. Both ends (listening sockets) accept the new incoming connection and try to talk to each other. 8-) Note: This case is both harmless, and rare. Possibility is about the same as us discovering intelligent life on another plant tomorrow. But generally, we should (RFC lies!) to accept ACK from SYNACK both here and in tcp_rcv_state_process(). tcp_rcv_state_process() does not, hence, we do not too. Note that the case is absolutely generic: we cannot optimize anything here without violating protocol. All the checks must be made before attempt to create socket. */ /* RFC793 page 36: "If the connection is in any non-synchronized state ... * and the incoming segment acknowledges something not yet * sent (the segment carries an unacceptable ACK) ... * a reset is sent." * * Invalid ACK: reset will be sent by listening socket. * Note that the ACK validity check for a Fast Open socket is done * elsewhere and is checked directly against the child socket rather * than req because user data may have been sent out. */ if ((flg & TCP_FLAG_ACK) && !fastopen && (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1)) return sk; /* Also, it would be not so bad idea to check rcv_tsecr, which * is essentially ACK extension and too early or too late values * should cause reset in unsynchronized states. */ /* RFC793: "first check sequence number". */ if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + tcp_synack_window(req))) { /* Out of window: send ACK and drop. */ if (!(flg & TCP_FLAG_RST) && !tcp_oow_rate_limited(sock_net(sk), skb, LINUX_MIB_TCPACKSKIPPEDSYNRECV, &tcp_rsk(req)->last_oow_ack_time)) req->rsk_ops->send_ack(sk, skb, req); if (paws_reject) NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); return NULL; } /* In sequence, PAWS is OK. */ /* TODO: We probably should defer ts_recent change once * we take ownership of @req. */ if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt)) WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval); if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { /* Truncate SYN, it is out of window starting at tcp_rsk(req)->rcv_isn + 1. */ flg &= ~TCP_FLAG_SYN; } /* RFC793: "second check the RST bit" and * "fourth, check the SYN bit" */ if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); goto embryonic_reset; } /* ACK sequence verified above, just make sure ACK is * set. If ACK not set, just silently drop the packet. * * XXX (TFO) - if we ever allow "data after SYN", the * following check needs to be removed. */ if (!(flg & TCP_FLAG_ACK)) return NULL; /* For Fast Open no more processing is needed (sk is the * child socket). */ if (fastopen) return sk; /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */ if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) && TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { inet_rsk(req)->acked = 1; __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP); return NULL; } /* OK, ACK is valid, create big socket and * feed this segment to it. It will repeat all * the tests. THIS SEGMENT MUST MOVE SOCKET TO * ESTABLISHED STATE. If it will be dropped after * socket is created, wait for troubles. */ child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, req, &own_req); if (!child) goto listen_overflow; if (own_req && rsk_drop_req(req)) { reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req); return child; } sock_rps_save_rxhash(child, skb); tcp_synack_rtt_meas(child, req); *req_stolen = !own_req; return inet_csk_complete_hashdance(sk, child, req, own_req); listen_overflow: if (sk != req->rsk_listener) __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) { inet_rsk(req)->acked = 1; return NULL; } embryonic_reset: if (!(flg & TCP_FLAG_RST)) { /* Received a bad SYN pkt - for TFO We try not to reset * the local connection unless it's really necessary to * avoid becoming vulnerable to outside attack aiming at * resetting legit local connections. */ req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN); } else if (fastopen) { /* received a valid RST pkt */ reqsk_fastopen_remove(sk, req, true); tcp_reset(sk, skb); } if (!fastopen) { bool unlinked = inet_csk_reqsk_queue_drop(sk, req); if (unlinked) __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); *req_stolen = !unlinked; } return NULL; } EXPORT_SYMBOL(tcp_check_req); /* * Queue segment on the new socket if the new socket is active, * otherwise we just shortcircuit this and continue with * the new socket. * * For the vast majority of cases child->sk_state will be TCP_SYN_RECV * when entering. But other states are possible due to a race condition * where after __inet_lookup_established() fails but before the listener * locked is obtained, other packets cause the same connection to * be created. */ enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, struct sk_buff *skb) __releases(&((child)->sk_lock.slock)) { enum skb_drop_reason reason = SKB_NOT_DROPPED_YET; int state = child->sk_state; /* record sk_napi_id and sk_rx_queue_mapping of child. */ sk_mark_napi_id_set(child, skb); tcp_segs_in(tcp_sk(child), skb); if (!sock_owned_by_user(child)) { reason = tcp_rcv_state_process(child, skb); /* Wakeup parent, send SIGIO */ if (state == TCP_SYN_RECV && child->sk_state != state) parent->sk_data_ready(parent); } else { /* Alas, it is possible again, because we do lookup * in main socket hash table and lock on listening * socket does not protect us more. */ __sk_add_backlog(child, skb); } bh_unlock_sock(child); sock_put(child); return reason; } EXPORT_SYMBOL(tcp_child_process); |
18 2 140 18 29 29 29 29 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/ns_common.h> #include <linux/fs_pin.h> struct mnt_namespace { struct ns_common ns; struct mount * root; struct { struct rb_root mounts; /* Protected by namespace_sem */ struct rb_node *mnt_last_node; /* last (rightmost) mount in the rbtree */ struct rb_node *mnt_first_node; /* first (leftmost) mount in the rbtree */ }; struct user_namespace *user_ns; struct ucounts *ucounts; u64 seq; /* Sequence number to prevent loops */ union { wait_queue_head_t poll; struct rcu_head mnt_ns_rcu; }; u64 event; unsigned int nr_mounts; /* # of mounts in the namespace */ unsigned int pending_mounts; struct rb_node mnt_ns_tree_node; /* node in the mnt_ns_tree */ struct list_head mnt_ns_list; /* entry in the sequential list of mounts namespace */ refcount_t passive; /* number references not pinning @mounts */ } __randomize_layout; struct mnt_pcp { int mnt_count; int mnt_writers; }; struct mountpoint { struct hlist_node m_hash; struct dentry *m_dentry; struct hlist_head m_list; int m_count; }; struct mount { struct hlist_node mnt_hash; struct mount *mnt_parent; struct dentry *mnt_mountpoint; struct vfsmount mnt; union { struct rb_node mnt_node; /* node in the ns->mounts rbtree */ struct rcu_head mnt_rcu; struct llist_node mnt_llist; }; #ifdef CONFIG_SMP struct mnt_pcp __percpu *mnt_pcp; #else int mnt_count; int mnt_writers; #endif struct list_head mnt_mounts; /* list of children, anchored here */ struct list_head mnt_child; /* and going through their mnt_child */ struct list_head mnt_instance; /* mount instance on sb->s_mounts */ const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */ struct list_head mnt_list; struct list_head mnt_expire; /* link in fs-specific expiry list */ struct list_head mnt_share; /* circular list of shared mounts */ struct list_head mnt_slave_list;/* list of slave mounts */ struct list_head mnt_slave; /* slave list entry */ struct mount *mnt_master; /* slave is on master->mnt_slave_list */ struct mnt_namespace *mnt_ns; /* containing namespace */ struct mountpoint *mnt_mp; /* where is it mounted */ union { struct hlist_node mnt_mp_list; /* list mounts with the same mountpoint */ struct hlist_node mnt_umount; }; struct list_head mnt_umounting; /* list entry for umount propagation */ #ifdef CONFIG_FSNOTIFY struct fsnotify_mark_connector __rcu *mnt_fsnotify_marks; __u32 mnt_fsnotify_mask; #endif int mnt_id; /* mount identifier, reused */ u64 mnt_id_unique; /* mount ID unique until reboot */ int mnt_group_id; /* peer group identifier */ int mnt_expiry_mark; /* true if marked for expiry */ struct hlist_head mnt_pins; struct hlist_head mnt_stuck_children; } __randomize_layout; #define MNT_NS_INTERNAL ERR_PTR(-EINVAL) /* distinct from any mnt_namespace */ static inline struct mount *real_mount(struct vfsmount *mnt) { return container_of(mnt, struct mount, mnt); } static inline int mnt_has_parent(struct mount *mnt) { return mnt != mnt->mnt_parent; } static inline int is_mounted(struct vfsmount *mnt) { /* neither detached nor internal? */ return !IS_ERR_OR_NULL(real_mount(mnt)->mnt_ns); } extern struct mount *__lookup_mnt(struct vfsmount *, struct dentry *); extern int __legitimize_mnt(struct vfsmount *, unsigned); static inline bool __path_is_mountpoint(const struct path *path) { struct mount *m = __lookup_mnt(path->mnt, path->dentry); return m && likely(!(m->mnt.mnt_flags & MNT_SYNC_UMOUNT)); } extern void __detach_mounts(struct dentry *dentry); static inline void detach_mounts(struct dentry *dentry) { if (!d_mountpoint(dentry)) return; __detach_mounts(dentry); } static inline void get_mnt_ns(struct mnt_namespace *ns) { refcount_inc(&ns->ns.count); } extern seqlock_t mount_lock; struct proc_mounts { struct mnt_namespace *ns; struct path root; int (*show)(struct seq_file *, struct vfsmount *); }; extern const struct seq_operations mounts_op; extern bool __is_local_mountpoint(struct dentry *dentry); static inline bool is_local_mountpoint(struct dentry *dentry) { if (!d_mountpoint(dentry)) return false; return __is_local_mountpoint(dentry); } static inline bool is_anon_ns(struct mnt_namespace *ns) { return ns->seq == 0; } static inline bool mnt_ns_attached(const struct mount *mnt) { return !RB_EMPTY_NODE(&mnt->mnt_node); } static inline void move_from_ns(struct mount *mnt, struct list_head *dt_list) { struct mnt_namespace *ns = mnt->mnt_ns; WARN_ON(!mnt_ns_attached(mnt)); if (ns->mnt_last_node == &mnt->mnt_node) ns->mnt_last_node = rb_prev(&mnt->mnt_node); if (ns->mnt_first_node == &mnt->mnt_node) ns->mnt_first_node = rb_next(&mnt->mnt_node); rb_erase(&mnt->mnt_node, &ns->mounts); RB_CLEAR_NODE(&mnt->mnt_node); list_add_tail(&mnt->mnt_list, dt_list); } bool has_locked_children(struct mount *mnt, struct dentry *dentry); struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mnt_ns, bool previous); static inline struct mnt_namespace *to_mnt_ns(struct ns_common *ns) { return container_of(ns, struct mnt_namespace, ns); } |
164 163 165 165 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * sha256_base.h - core logic for SHA-256 implementations * * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org> */ #ifndef _CRYPTO_SHA256_BASE_H #define _CRYPTO_SHA256_BASE_H #include <asm/byteorder.h> #include <linux/unaligned.h> #include <crypto/internal/hash.h> #include <crypto/sha2.h> #include <linux/string.h> #include <linux/types.h> typedef void (sha256_block_fn)(struct sha256_state *sst, u8 const *src, int blocks); static inline int sha224_base_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sha224_init(sctx); return 0; } static inline int sha256_base_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sha256_init(sctx); return 0; } static inline int lib_sha256_base_do_update(struct sha256_state *sctx, const u8 *data, unsigned int len, sha256_block_fn *block_fn) { unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; sctx->count += len; if (unlikely((partial + len) >= SHA256_BLOCK_SIZE)) { int blocks; if (partial) { int p = SHA256_BLOCK_SIZE - partial; memcpy(sctx->buf + partial, data, p); data += p; len -= p; block_fn(sctx, sctx->buf, 1); } blocks = len / SHA256_BLOCK_SIZE; len %= SHA256_BLOCK_SIZE; if (blocks) { block_fn(sctx, data, blocks); data += blocks * SHA256_BLOCK_SIZE; } partial = 0; } if (len) memcpy(sctx->buf + partial, data, len); return 0; } static inline int sha256_base_do_update(struct shash_desc *desc, const u8 *data, unsigned int len, sha256_block_fn *block_fn) { struct sha256_state *sctx = shash_desc_ctx(desc); return lib_sha256_base_do_update(sctx, data, len, block_fn); } static inline int lib_sha256_base_do_finalize(struct sha256_state *sctx, sha256_block_fn *block_fn) { const int bit_offset = SHA256_BLOCK_SIZE - sizeof(__be64); __be64 *bits = (__be64 *)(sctx->buf + bit_offset); unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; sctx->buf[partial++] = 0x80; if (partial > bit_offset) { memset(sctx->buf + partial, 0x0, SHA256_BLOCK_SIZE - partial); partial = 0; block_fn(sctx, sctx->buf, 1); } memset(sctx->buf + partial, 0x0, bit_offset - partial); *bits = cpu_to_be64(sctx->count << 3); block_fn(sctx, sctx->buf, 1); return 0; } static inline int sha256_base_do_finalize(struct shash_desc *desc, sha256_block_fn *block_fn) { struct sha256_state *sctx = shash_desc_ctx(desc); return lib_sha256_base_do_finalize(sctx, block_fn); } static inline int lib_sha256_base_finish(struct sha256_state *sctx, u8 *out, unsigned int digest_size) { __be32 *digest = (__be32 *)out; int i; for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be32)) put_unaligned_be32(sctx->state[i], digest++); memzero_explicit(sctx, sizeof(*sctx)); return 0; } static inline int sha256_base_finish(struct shash_desc *desc, u8 *out) { unsigned int digest_size = crypto_shash_digestsize(desc->tfm); struct sha256_state *sctx = shash_desc_ctx(desc); return lib_sha256_base_finish(sctx, out, digest_size); } #endif /* _CRYPTO_SHA256_BASE_H */ |
424 402 423 424 424 424 424 423 421 423 423 423 424 424 423 424 424 424 424 403 424 424 424 424 424 422 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008 IBM Corporation * Author: Mimi Zohar <zohar@us.ibm.com> * * ima_policy.c * - initialize default measure policy rules */ #include <linux/init.h> #include <linux/list.h> #include <linux/kernel_read_file.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/magic.h> #include <linux/parser.h> #include <linux/slab.h> #include <linux/rculist.h> #include <linux/seq_file.h> #include <linux/ima.h> #include "ima.h" /* flags definitions */ #define IMA_FUNC 0x0001 #define IMA_MASK 0x0002 #define IMA_FSMAGIC 0x0004 #define IMA_UID 0x0008 #define IMA_FOWNER 0x0010 #define IMA_FSUUID 0x0020 #define IMA_INMASK 0x0040 #define IMA_EUID 0x0080 #define IMA_PCR 0x0100 #define IMA_FSNAME 0x0200 #define IMA_KEYRINGS 0x0400 #define IMA_LABEL 0x0800 #define IMA_VALIDATE_ALGOS 0x1000 #define IMA_GID 0x2000 #define IMA_EGID 0x4000 #define IMA_FGROUP 0x8000 #define UNKNOWN 0 #define MEASURE 0x0001 /* same as IMA_MEASURE */ #define DONT_MEASURE 0x0002 #define APPRAISE 0x0004 /* same as IMA_APPRAISE */ #define DONT_APPRAISE 0x0008 #define AUDIT 0x0040 #define HASH 0x0100 #define DONT_HASH 0x0200 #define INVALID_PCR(a) (((a) < 0) || \ (a) >= (sizeof_field(struct ima_iint_cache, measured_pcrs) * 8)) int ima_policy_flag; static int temp_ima_appraise; static int build_ima_appraise __ro_after_init; atomic_t ima_setxattr_allowed_hash_algorithms; #define MAX_LSM_RULES 6 enum lsm_rule_types { LSM_OBJ_USER, LSM_OBJ_ROLE, LSM_OBJ_TYPE, LSM_SUBJ_USER, LSM_SUBJ_ROLE, LSM_SUBJ_TYPE }; enum policy_types { ORIGINAL_TCB = 1, DEFAULT_TCB }; enum policy_rule_list { IMA_DEFAULT_POLICY = 1, IMA_CUSTOM_POLICY }; struct ima_rule_opt_list { size_t count; char *items[] __counted_by(count); }; /* * These comparators are needed nowhere outside of ima so just define them here. * This pattern should hopefully never be needed outside of ima. */ static inline bool vfsuid_gt_kuid(vfsuid_t vfsuid, kuid_t kuid) { return __vfsuid_val(vfsuid) > __kuid_val(kuid); } static inline bool vfsgid_gt_kgid(vfsgid_t vfsgid, kgid_t kgid) { return __vfsgid_val(vfsgid) > __kgid_val(kgid); } static inline bool vfsuid_lt_kuid(vfsuid_t vfsuid, kuid_t kuid) { return __vfsuid_val(vfsuid) < __kuid_val(kuid); } static inline bool vfsgid_lt_kgid(vfsgid_t vfsgid, kgid_t kgid) { return __vfsgid_val(vfsgid) < __kgid_val(kgid); } struct ima_rule_entry { struct list_head list; int action; unsigned int flags; enum ima_hooks func; int mask; unsigned long fsmagic; uuid_t fsuuid; kuid_t uid; kgid_t gid; kuid_t fowner; kgid_t fgroup; bool (*uid_op)(kuid_t cred_uid, kuid_t rule_uid); /* Handlers for operators */ bool (*gid_op)(kgid_t cred_gid, kgid_t rule_gid); bool (*fowner_op)(vfsuid_t vfsuid, kuid_t rule_uid); /* vfsuid_eq_kuid(), vfsuid_gt_kuid(), vfsuid_lt_kuid() */ bool (*fgroup_op)(vfsgid_t vfsgid, kgid_t rule_gid); /* vfsgid_eq_kgid(), vfsgid_gt_kgid(), vfsgid_lt_kgid() */ int pcr; unsigned int allowed_algos; /* bitfield of allowed hash algorithms */ struct { void *rule; /* LSM file metadata specific */ char *args_p; /* audit value */ int type; /* audit type */ } lsm[MAX_LSM_RULES]; char *fsname; struct ima_rule_opt_list *keyrings; /* Measure keys added to these keyrings */ struct ima_rule_opt_list *label; /* Measure data grouped under this label */ struct ima_template_desc *template; }; /* * sanity check in case the kernels gains more hash algorithms that can * fit in an unsigned int */ static_assert( 8 * sizeof(unsigned int) >= HASH_ALGO__LAST, "The bitfield allowed_algos in ima_rule_entry is too small to contain all the supported hash algorithms, consider using a bigger type"); /* * Without LSM specific knowledge, the default policy can only be * written in terms of .action, .func, .mask, .fsmagic, .uid, .gid, * .fowner, and .fgroup */ /* * The minimum rule set to allow for full TCB coverage. Measures all files * opened or mmap for exec and everything read by root. Dangerous because * normal users can easily run the machine out of memory simply building * and running executables. */ static struct ima_rule_entry dont_measure_rules[] __ro_after_init = { {.action = DONT_MEASURE, .fsmagic = PROC_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = SYSFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = DEBUGFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = TMPFS_MAGIC, .func = FILE_CHECK, .flags = IMA_FSMAGIC | IMA_FUNC}, {.action = DONT_MEASURE, .fsmagic = DEVPTS_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = BINFMTFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = SECURITYFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = SELINUX_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = SMACK_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = CGROUP_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = CGROUP2_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = NSFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_MEASURE, .fsmagic = EFIVARFS_MAGIC, .flags = IMA_FSMAGIC} }; static struct ima_rule_entry original_measurement_rules[] __ro_after_init = { {.action = MEASURE, .func = MMAP_CHECK, .mask = MAY_EXEC, .flags = IMA_FUNC | IMA_MASK}, {.action = MEASURE, .func = BPRM_CHECK, .mask = MAY_EXEC, .flags = IMA_FUNC | IMA_MASK}, {.action = MEASURE, .func = FILE_CHECK, .mask = MAY_READ, .uid = GLOBAL_ROOT_UID, .uid_op = &uid_eq, .flags = IMA_FUNC | IMA_MASK | IMA_UID}, {.action = MEASURE, .func = MODULE_CHECK, .flags = IMA_FUNC}, {.action = MEASURE, .func = FIRMWARE_CHECK, .flags = IMA_FUNC}, }; static struct ima_rule_entry default_measurement_rules[] __ro_after_init = { {.action = MEASURE, .func = MMAP_CHECK, .mask = MAY_EXEC, .flags = IMA_FUNC | IMA_MASK}, {.action = MEASURE, .func = BPRM_CHECK, .mask = MAY_EXEC, .flags = IMA_FUNC | IMA_MASK}, {.action = MEASURE, .func = FILE_CHECK, .mask = MAY_READ, .uid = GLOBAL_ROOT_UID, .uid_op = &uid_eq, .flags = IMA_FUNC | IMA_INMASK | IMA_EUID}, {.action = MEASURE, .func = FILE_CHECK, .mask = MAY_READ, .uid = GLOBAL_ROOT_UID, .uid_op = &uid_eq, .flags = IMA_FUNC | IMA_INMASK | IMA_UID}, {.action = MEASURE, .func = MODULE_CHECK, .flags = IMA_FUNC}, {.action = MEASURE, .func = FIRMWARE_CHECK, .flags = IMA_FUNC}, {.action = MEASURE, .func = POLICY_CHECK, .flags = IMA_FUNC}, }; static struct ima_rule_entry default_appraise_rules[] __ro_after_init = { {.action = DONT_APPRAISE, .fsmagic = PROC_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = SYSFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = DEBUGFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = TMPFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = RAMFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = DEVPTS_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = BINFMTFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = SECURITYFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = SELINUX_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = SMACK_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = NSFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = EFIVARFS_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = CGROUP_SUPER_MAGIC, .flags = IMA_FSMAGIC}, {.action = DONT_APPRAISE, .fsmagic = CGROUP2_SUPER_MAGIC, .flags = IMA_FSMAGIC}, #ifdef CONFIG_IMA_WRITE_POLICY {.action = APPRAISE, .func = POLICY_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, #endif #ifndef CONFIG_IMA_APPRAISE_SIGNED_INIT {.action = APPRAISE, .fowner = GLOBAL_ROOT_UID, .fowner_op = &vfsuid_eq_kuid, .flags = IMA_FOWNER}, #else /* force signature */ {.action = APPRAISE, .fowner = GLOBAL_ROOT_UID, .fowner_op = &vfsuid_eq_kuid, .flags = IMA_FOWNER | IMA_DIGSIG_REQUIRED}, #endif }; static struct ima_rule_entry build_appraise_rules[] __ro_after_init = { #ifdef CONFIG_IMA_APPRAISE_REQUIRE_MODULE_SIGS {.action = APPRAISE, .func = MODULE_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, #endif #ifdef CONFIG_IMA_APPRAISE_REQUIRE_FIRMWARE_SIGS {.action = APPRAISE, .func = FIRMWARE_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, #endif #ifdef CONFIG_IMA_APPRAISE_REQUIRE_KEXEC_SIGS {.action = APPRAISE, .func = KEXEC_KERNEL_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, #endif #ifdef CONFIG_IMA_APPRAISE_REQUIRE_POLICY_SIGS {.action = APPRAISE, .func = POLICY_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, #endif }; static struct ima_rule_entry secure_boot_rules[] __ro_after_init = { {.action = APPRAISE, .func = MODULE_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, {.action = APPRAISE, .func = FIRMWARE_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, {.action = APPRAISE, .func = KEXEC_KERNEL_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, {.action = APPRAISE, .func = POLICY_CHECK, .flags = IMA_FUNC | IMA_DIGSIG_REQUIRED}, }; static struct ima_rule_entry critical_data_rules[] __ro_after_init = { {.action = MEASURE, .func = CRITICAL_DATA, .flags = IMA_FUNC}, }; /* An array of architecture specific rules */ static struct ima_rule_entry *arch_policy_entry __ro_after_init; static LIST_HEAD(ima_default_rules); static LIST_HEAD(ima_policy_rules); static LIST_HEAD(ima_temp_rules); static struct list_head __rcu *ima_rules = (struct list_head __rcu *)(&ima_default_rules); static int ima_policy __initdata; static int __init default_measure_policy_setup(char *str) { if (ima_policy) return 1; ima_policy = ORIGINAL_TCB; return 1; } __setup("ima_tcb", default_measure_policy_setup); static bool ima_use_appraise_tcb __initdata; static bool ima_use_secure_boot __initdata; static bool ima_use_critical_data __initdata; static bool ima_fail_unverifiable_sigs __ro_after_init; static int __init policy_setup(char *str) { char *p; while ((p = strsep(&str, " |\n")) != NULL) { if (*p == ' ') continue; if ((strcmp(p, "tcb") == 0) && !ima_policy) ima_policy = DEFAULT_TCB; else if (strcmp(p, "appraise_tcb") == 0) ima_use_appraise_tcb = true; else if (strcmp(p, "secure_boot") == 0) ima_use_secure_boot = true; else if (strcmp(p, "critical_data") == 0) ima_use_critical_data = true; else if (strcmp(p, "fail_securely") == 0) ima_fail_unverifiable_sigs = true; else pr_err("policy \"%s\" not found", p); } return 1; } __setup("ima_policy=", policy_setup); static int __init default_appraise_policy_setup(char *str) { ima_use_appraise_tcb = true; return 1; } __setup("ima_appraise_tcb", default_appraise_policy_setup); static struct ima_rule_opt_list *ima_alloc_rule_opt_list(const substring_t *src) { struct ima_rule_opt_list *opt_list; size_t count = 0; char *src_copy; char *cur, *next; size_t i; src_copy = match_strdup(src); if (!src_copy) return ERR_PTR(-ENOMEM); next = src_copy; while ((cur = strsep(&next, "|"))) { /* Don't accept an empty list item */ if (!(*cur)) { kfree(src_copy); return ERR_PTR(-EINVAL); } count++; } /* Don't accept an empty list */ if (!count) { kfree(src_copy); return ERR_PTR(-EINVAL); } opt_list = kzalloc(struct_size(opt_list, items, count), GFP_KERNEL); if (!opt_list) { kfree(src_copy); return ERR_PTR(-ENOMEM); } opt_list->count = count; /* * strsep() has already replaced all instances of '|' with '\0', * leaving a byte sequence of NUL-terminated strings. Reference each * string with the array of items. * * IMPORTANT: Ownership of the allocated buffer is transferred from * src_copy to the first element in the items array. To free the * buffer, kfree() must only be called on the first element of the * array. */ for (i = 0, cur = src_copy; i < count; i++) { opt_list->items[i] = cur; cur = strchr(cur, '\0') + 1; } return opt_list; } static void ima_free_rule_opt_list(struct ima_rule_opt_list *opt_list) { if (!opt_list) return; if (opt_list->count) { kfree(opt_list->items[0]); opt_list->count = 0; } kfree(opt_list); } static void ima_lsm_free_rule(struct ima_rule_entry *entry) { int i; for (i = 0; i < MAX_LSM_RULES; i++) { ima_filter_rule_free(entry->lsm[i].rule); kfree(entry->lsm[i].args_p); } } static void ima_free_rule(struct ima_rule_entry *entry) { if (!entry) return; /* * entry->template->fields may be allocated in ima_parse_rule() but that * reference is owned by the corresponding ima_template_desc element in * the defined_templates list and cannot be freed here */ kfree(entry->fsname); ima_free_rule_opt_list(entry->keyrings); ima_lsm_free_rule(entry); kfree(entry); } static struct ima_rule_entry *ima_lsm_copy_rule(struct ima_rule_entry *entry, gfp_t gfp) { struct ima_rule_entry *nentry; int i; /* * Immutable elements are copied over as pointers and data; only * lsm rules can change */ nentry = kmemdup(entry, sizeof(*nentry), gfp); if (!nentry) return NULL; memset(nentry->lsm, 0, sizeof_field(struct ima_rule_entry, lsm)); for (i = 0; i < MAX_LSM_RULES; i++) { if (!entry->lsm[i].args_p) continue; nentry->lsm[i].type = entry->lsm[i].type; nentry->lsm[i].args_p = entry->lsm[i].args_p; ima_filter_rule_init(nentry->lsm[i].type, Audit_equal, nentry->lsm[i].args_p, &nentry->lsm[i].rule, gfp); if (!nentry->lsm[i].rule) pr_warn("rule for LSM \'%s\' is undefined\n", nentry->lsm[i].args_p); } return nentry; } static int ima_lsm_update_rule(struct ima_rule_entry *entry) { int i; struct ima_rule_entry *nentry; nentry = ima_lsm_copy_rule(entry, GFP_KERNEL); if (!nentry) return -ENOMEM; list_replace_rcu(&entry->list, &nentry->list); synchronize_rcu(); /* * ima_lsm_copy_rule() shallow copied all references, except for the * LSM references, from entry to nentry so we only want to free the LSM * references and the entry itself. All other memory references will now * be owned by nentry. */ for (i = 0; i < MAX_LSM_RULES; i++) ima_filter_rule_free(entry->lsm[i].rule); kfree(entry); return 0; } static bool ima_rule_contains_lsm_cond(struct ima_rule_entry *entry) { int i; for (i = 0; i < MAX_LSM_RULES; i++) if (entry->lsm[i].args_p) return true; return false; } /* * The LSM policy can be reloaded, leaving the IMA LSM based rules referring * to the old, stale LSM policy. Update the IMA LSM based rules to reflect * the reloaded LSM policy. */ static void ima_lsm_update_rules(void) { struct ima_rule_entry *entry, *e; int result; list_for_each_entry_safe(entry, e, &ima_policy_rules, list) { if (!ima_rule_contains_lsm_cond(entry)) continue; result = ima_lsm_update_rule(entry); if (result) { pr_err("lsm rule update error %d\n", result); return; } } } int ima_lsm_policy_change(struct notifier_block *nb, unsigned long event, void *lsm_data) { if (event != LSM_POLICY_CHANGE) return NOTIFY_DONE; ima_lsm_update_rules(); return NOTIFY_OK; } /** * ima_match_rule_data - determine whether func_data matches the policy rule * @rule: a pointer to a rule * @func_data: data to match against the measure rule data * @cred: a pointer to a credentials structure for user validation * * Returns true if func_data matches one in the rule, false otherwise. */ static bool ima_match_rule_data(struct ima_rule_entry *rule, const char *func_data, const struct cred *cred) { const struct ima_rule_opt_list *opt_list = NULL; bool matched = false; size_t i; if ((rule->flags & IMA_UID) && !rule->uid_op(cred->uid, rule->uid)) return false; switch (rule->func) { case KEY_CHECK: if (!rule->keyrings) return true; opt_list = rule->keyrings; break; case CRITICAL_DATA: if (!rule->label) return true; opt_list = rule->label; break; default: return false; } if (!func_data) return false; for (i = 0; i < opt_list->count; i++) { if (!strcmp(opt_list->items[i], func_data)) { matched = true; break; } } return matched; } /** * ima_match_rules - determine whether an inode matches the policy rule. * @rule: a pointer to a rule * @idmap: idmap of the mount the inode was found from * @inode: a pointer to an inode * @cred: a pointer to a credentials structure for user validation * @prop: LSM properties of the task to be validated * @func: LIM hook identifier * @mask: requested action (MAY_READ | MAY_WRITE | MAY_APPEND | MAY_EXEC) * @func_data: func specific data, may be NULL * * Returns true on rule match, false on failure. */ static bool ima_match_rules(struct ima_rule_entry *rule, struct mnt_idmap *idmap, struct inode *inode, const struct cred *cred, struct lsm_prop *prop, enum ima_hooks func, int mask, const char *func_data) { int i; bool result = false; struct ima_rule_entry *lsm_rule = rule; bool rule_reinitialized = false; if ((rule->flags & IMA_FUNC) && (rule->func != func && func != POST_SETATTR)) return false; switch (func) { case KEY_CHECK: case CRITICAL_DATA: return ((rule->func == func) && ima_match_rule_data(rule, func_data, cred)); default: break; } if ((rule->flags & IMA_MASK) && (rule->mask != mask && func != POST_SETATTR)) return false; if ((rule->flags & IMA_INMASK) && (!(rule->mask & mask) && func != POST_SETATTR)) return false; if ((rule->flags & IMA_FSMAGIC) && rule->fsmagic != inode->i_sb->s_magic) return false; if ((rule->flags & IMA_FSNAME) && strcmp(rule->fsname, inode->i_sb->s_type->name)) return false; if ((rule->flags & IMA_FSUUID) && !uuid_equal(&rule->fsuuid, &inode->i_sb->s_uuid)) return false; if ((rule->flags & IMA_UID) && !rule->uid_op(cred->uid, rule->uid)) return false; if (rule->flags & IMA_EUID) { if (has_capability_noaudit(current, CAP_SETUID)) { if (!rule->uid_op(cred->euid, rule->uid) && !rule->uid_op(cred->suid, rule->uid) && !rule->uid_op(cred->uid, rule->uid)) return false; } else if (!rule->uid_op(cred->euid, rule->uid)) return false; } if ((rule->flags & IMA_GID) && !rule->gid_op(cred->gid, rule->gid)) return false; if (rule->flags & IMA_EGID) { if (has_capability_noaudit(current, CAP_SETGID)) { if (!rule->gid_op(cred->egid, rule->gid) && !rule->gid_op(cred->sgid, rule->gid) && !rule->gid_op(cred->gid, rule->gid)) return false; } else if (!rule->gid_op(cred->egid, rule->gid)) return false; } if ((rule->flags & IMA_FOWNER) && !rule->fowner_op(i_uid_into_vfsuid(idmap, inode), rule->fowner)) return false; if ((rule->flags & IMA_FGROUP) && !rule->fgroup_op(i_gid_into_vfsgid(idmap, inode), rule->fgroup)) return false; for (i = 0; i < MAX_LSM_RULES; i++) { int rc = 0; struct lsm_prop inode_prop = { }; if (!lsm_rule->lsm[i].rule) { if (!lsm_rule->lsm[i].args_p) continue; else return false; } retry: switch (i) { case LSM_OBJ_USER: case LSM_OBJ_ROLE: case LSM_OBJ_TYPE: security_inode_getlsmprop(inode, &inode_prop); rc = ima_filter_rule_match(&inode_prop, lsm_rule->lsm[i].type, Audit_equal, lsm_rule->lsm[i].rule); break; case LSM_SUBJ_USER: case LSM_SUBJ_ROLE: case LSM_SUBJ_TYPE: rc = ima_filter_rule_match(prop, lsm_rule->lsm[i].type, Audit_equal, lsm_rule->lsm[i].rule); break; default: break; } if (rc == -ESTALE && !rule_reinitialized) { lsm_rule = ima_lsm_copy_rule(rule, GFP_ATOMIC); if (lsm_rule) { rule_reinitialized = true; goto retry; } } if (!rc) { result = false; goto out; } } result = true; out: if (rule_reinitialized) { for (i = 0; i < MAX_LSM_RULES; i++) ima_filter_rule_free(lsm_rule->lsm[i].rule); kfree(lsm_rule); } return result; } /* * In addition to knowing that we need to appraise the file in general, * we need to differentiate between calling hooks, for hook specific rules. */ static int get_subaction(struct ima_rule_entry *rule, enum ima_hooks func) { if (!(rule->flags & IMA_FUNC)) return IMA_FILE_APPRAISE; switch (func) { case MMAP_CHECK: case MMAP_CHECK_REQPROT: return IMA_MMAP_APPRAISE; case BPRM_CHECK: return IMA_BPRM_APPRAISE; case CREDS_CHECK: return IMA_CREDS_APPRAISE; case FILE_CHECK: case POST_SETATTR: return IMA_FILE_APPRAISE; case MODULE_CHECK ... MAX_CHECK - 1: default: return IMA_READ_APPRAISE; } } /** * ima_match_policy - decision based on LSM and other conditions * @idmap: idmap of the mount the inode was found from * @inode: pointer to an inode for which the policy decision is being made * @cred: pointer to a credentials structure for which the policy decision is * being made * @prop: LSM properties of the task to be validated * @func: IMA hook identifier * @mask: requested action (MAY_READ | MAY_WRITE | MAY_APPEND | MAY_EXEC) * @flags: IMA actions to consider (e.g. IMA_MEASURE | IMA_APPRAISE) * @pcr: set the pcr to extend * @template_desc: the template that should be used for this rule * @func_data: func specific data, may be NULL * @allowed_algos: allowlist of hash algorithms for the IMA xattr * * Measure decision based on func/mask/fsmagic and LSM(subj/obj/type) * conditions. * * Since the IMA policy may be updated multiple times we need to lock the * list when walking it. Reads are many orders of magnitude more numerous * than writes so ima_match_policy() is classical RCU candidate. */ int ima_match_policy(struct mnt_idmap *idmap, struct inode *inode, const struct cred *cred, struct lsm_prop *prop, enum ima_hooks func, int mask, int flags, int *pcr, struct ima_template_desc **template_desc, const char *func_data, unsigned int *allowed_algos) { struct ima_rule_entry *entry; int action = 0, actmask = flags | (flags << 1); struct list_head *ima_rules_tmp; if (template_desc && !*template_desc) *template_desc = ima_template_desc_current(); rcu_read_lock(); ima_rules_tmp = rcu_dereference(ima_rules); list_for_each_entry_rcu(entry, ima_rules_tmp, list) { if (!(entry->action & actmask)) continue; if (!ima_match_rules(entry, idmap, inode, cred, prop, func, mask, func_data)) continue; action |= entry->flags & IMA_NONACTION_FLAGS; action |= entry->action & IMA_DO_MASK; if (entry->action & IMA_APPRAISE) { action |= get_subaction(entry, func); action &= ~IMA_HASH; if (ima_fail_unverifiable_sigs) action |= IMA_FAIL_UNVERIFIABLE_SIGS; if (allowed_algos && entry->flags & IMA_VALIDATE_ALGOS) *allowed_algos = entry->allowed_algos; } if (entry->action & IMA_DO_MASK) actmask &= ~(entry->action | entry->action << 1); else actmask &= ~(entry->action | entry->action >> 1); if ((pcr) && (entry->flags & IMA_PCR)) *pcr = entry->pcr; if (template_desc && entry->template) *template_desc = entry->template; if (!actmask) break; } rcu_read_unlock(); return action; } /** * ima_update_policy_flags() - Update global IMA variables * * Update ima_policy_flag and ima_setxattr_allowed_hash_algorithms * based on the currently loaded policy. * * With ima_policy_flag, the decision to short circuit out of a function * or not call the function in the first place can be made earlier. * * With ima_setxattr_allowed_hash_algorithms, the policy can restrict the * set of hash algorithms accepted when updating the security.ima xattr of * a file. * * Context: called after a policy update and at system initialization. */ void ima_update_policy_flags(void) { struct ima_rule_entry *entry; int new_policy_flag = 0; struct list_head *ima_rules_tmp; rcu_read_lock(); ima_rules_tmp = rcu_dereference(ima_rules); list_for_each_entry_rcu(entry, ima_rules_tmp, list) { /* * SETXATTR_CHECK rules do not implement a full policy check * because rule checking would probably have an important * performance impact on setxattr(). As a consequence, only one * SETXATTR_CHECK can be active at a given time. * Because we want to preserve that property, we set out to use * atomic_cmpxchg. Either: * - the atomic was non-zero: a setxattr hash policy is * already enforced, we do nothing * - the atomic was zero: no setxattr policy was set, enable * the setxattr hash policy */ if (entry->func == SETXATTR_CHECK) { atomic_cmpxchg(&ima_setxattr_allowed_hash_algorithms, 0, entry->allowed_algos); /* SETXATTR_CHECK doesn't impact ima_policy_flag */ continue; } if (entry->action & IMA_DO_MASK) new_policy_flag |= entry->action; } rcu_read_unlock(); ima_appraise |= (build_ima_appraise | temp_ima_appraise); if (!ima_appraise) new_policy_flag &= ~IMA_APPRAISE; ima_policy_flag = new_policy_flag; } static int ima_appraise_flag(enum ima_hooks func) { if (func == MODULE_CHECK) return IMA_APPRAISE_MODULES; else if (func == FIRMWARE_CHECK) return IMA_APPRAISE_FIRMWARE; else if (func == POLICY_CHECK) return IMA_APPRAISE_POLICY; else if (func == KEXEC_KERNEL_CHECK) return IMA_APPRAISE_KEXEC; return 0; } static void add_rules(struct ima_rule_entry *entries, int count, enum policy_rule_list policy_rule) { int i = 0; for (i = 0; i < count; i++) { struct ima_rule_entry *entry; if (policy_rule & IMA_DEFAULT_POLICY) list_add_tail(&entries[i].list, &ima_default_rules); if (policy_rule & IMA_CUSTOM_POLICY) { entry = kmemdup(&entries[i], sizeof(*entry), GFP_KERNEL); if (!entry) continue; list_add_tail(&entry->list, &ima_policy_rules); } if (entries[i].action == APPRAISE) { if (entries != build_appraise_rules) temp_ima_appraise |= ima_appraise_flag(entries[i].func); else build_ima_appraise |= ima_appraise_flag(entries[i].func); } } } static int ima_parse_rule(char *rule, struct ima_rule_entry *entry); static int __init ima_init_arch_policy(void) { const char * const *arch_rules; const char * const *rules; int arch_entries = 0; int i = 0; arch_rules = arch_get_ima_policy(); if (!arch_rules) return arch_entries; /* Get number of rules */ for (rules = arch_rules; *rules != NULL; rules++) arch_entries++; arch_policy_entry = kcalloc(arch_entries + 1, sizeof(*arch_policy_entry), GFP_KERNEL); if (!arch_policy_entry) return 0; /* Convert each policy string rules to struct ima_rule_entry format */ for (rules = arch_rules, i = 0; *rules != NULL; rules++) { char rule[255]; int result; result = strscpy(rule, *rules, sizeof(rule)); INIT_LIST_HEAD(&arch_policy_entry[i].list); result = ima_parse_rule(rule, &arch_policy_entry[i]); if (result) { pr_warn("Skipping unknown architecture policy rule: %s\n", rule); memset(&arch_policy_entry[i], 0, sizeof(*arch_policy_entry)); continue; } i++; } return i; } /** * ima_init_policy - initialize the default measure rules. * * ima_rules points to either the ima_default_rules or the new ima_policy_rules. */ void __init ima_init_policy(void) { int build_appraise_entries, arch_entries; /* if !ima_policy, we load NO default rules */ if (ima_policy) add_rules(dont_measure_rules, ARRAY_SIZE(dont_measure_rules), IMA_DEFAULT_POLICY); switch (ima_policy) { case ORIGINAL_TCB: add_rules(original_measurement_rules, ARRAY_SIZE(original_measurement_rules), IMA_DEFAULT_POLICY); break; case DEFAULT_TCB: add_rules(default_measurement_rules, ARRAY_SIZE(default_measurement_rules), IMA_DEFAULT_POLICY); break; default: break; } /* * Based on runtime secure boot flags, insert arch specific measurement * and appraise rules requiring file signatures for both the initial * and custom policies, prior to other appraise rules. * (Highest priority) */ arch_entries = ima_init_arch_policy(); if (!arch_entries) pr_info("No architecture policies found\n"); else add_rules(arch_policy_entry, arch_entries, IMA_DEFAULT_POLICY | IMA_CUSTOM_POLICY); /* * Insert the builtin "secure_boot" policy rules requiring file * signatures, prior to other appraise rules. */ if (ima_use_secure_boot) add_rules(secure_boot_rules, ARRAY_SIZE(secure_boot_rules), IMA_DEFAULT_POLICY); /* * Insert the build time appraise rules requiring file signatures * for both the initial and custom policies, prior to other appraise * rules. As the secure boot rules includes all of the build time * rules, include either one or the other set of rules, but not both. */ build_appraise_entries = ARRAY_SIZE(build_appraise_rules); if (build_appraise_entries) { if (ima_use_secure_boot) add_rules(build_appraise_rules, build_appraise_entries, IMA_CUSTOM_POLICY); else add_rules(build_appraise_rules, build_appraise_entries, IMA_DEFAULT_POLICY | IMA_CUSTOM_POLICY); } if (ima_use_appraise_tcb) add_rules(default_appraise_rules, ARRAY_SIZE(default_appraise_rules), IMA_DEFAULT_POLICY); if (ima_use_critical_data) add_rules(critical_data_rules, ARRAY_SIZE(critical_data_rules), IMA_DEFAULT_POLICY); atomic_set(&ima_setxattr_allowed_hash_algorithms, 0); ima_update_policy_flags(); } /* Make sure we have a valid policy, at least containing some rules. */ int ima_check_policy(void) { if (list_empty(&ima_temp_rules)) return -EINVAL; return 0; } /** * ima_update_policy - update default_rules with new measure rules * * Called on file .release to update the default rules with a complete new * policy. What we do here is to splice ima_policy_rules and ima_temp_rules so * they make a queue. The policy may be updated multiple times and this is the * RCU updater. * * Policy rules are never deleted so ima_policy_flag gets zeroed only once when * we switch from the default policy to user defined. */ void ima_update_policy(void) { struct list_head *policy = &ima_policy_rules; list_splice_tail_init_rcu(&ima_temp_rules, policy, synchronize_rcu); if (ima_rules != (struct list_head __rcu *)policy) { ima_policy_flag = 0; rcu_assign_pointer(ima_rules, policy); /* * IMA architecture specific policy rules are specified * as strings and converted to an array of ima_entry_rules * on boot. After loading a custom policy, free the * architecture specific rules stored as an array. */ kfree(arch_policy_entry); } ima_update_policy_flags(); /* Custom IMA policy has been loaded */ ima_process_queued_keys(); } /* Keep the enumeration in sync with the policy_tokens! */ enum policy_opt { Opt_measure, Opt_dont_measure, Opt_appraise, Opt_dont_appraise, Opt_audit, Opt_hash, Opt_dont_hash, Opt_obj_user, Opt_obj_role, Opt_obj_type, Opt_subj_user, Opt_subj_role, Opt_subj_type, Opt_func, Opt_mask, Opt_fsmagic, Opt_fsname, Opt_fsuuid, Opt_uid_eq, Opt_euid_eq, Opt_gid_eq, Opt_egid_eq, Opt_fowner_eq, Opt_fgroup_eq, Opt_uid_gt, Opt_euid_gt, Opt_gid_gt, Opt_egid_gt, Opt_fowner_gt, Opt_fgroup_gt, Opt_uid_lt, Opt_euid_lt, Opt_gid_lt, Opt_egid_lt, Opt_fowner_lt, Opt_fgroup_lt, Opt_digest_type, Opt_appraise_type, Opt_appraise_flag, Opt_appraise_algos, Opt_permit_directio, Opt_pcr, Opt_template, Opt_keyrings, Opt_label, Opt_err }; static const match_table_t policy_tokens = { {Opt_measure, "measure"}, {Opt_dont_measure, "dont_measure"}, {Opt_appraise, "appraise"}, {Opt_dont_appraise, "dont_appraise"}, {Opt_audit, "audit"}, {Opt_hash, "hash"}, {Opt_dont_hash, "dont_hash"}, {Opt_obj_user, "obj_user=%s"}, {Opt_obj_role, "obj_role=%s"}, {Opt_obj_type, "obj_type=%s"}, {Opt_subj_user, "subj_user=%s"}, {Opt_subj_role, "subj_role=%s"}, {Opt_subj_type, "subj_type=%s"}, {Opt_func, "func=%s"}, {Opt_mask, "mask=%s"}, {Opt_fsmagic, "fsmagic=%s"}, {Opt_fsname, "fsname=%s"}, {Opt_fsuuid, "fsuuid=%s"}, {Opt_uid_eq, "uid=%s"}, {Opt_euid_eq, "euid=%s"}, {Opt_gid_eq, "gid=%s"}, {Opt_egid_eq, "egid=%s"}, {Opt_fowner_eq, "fowner=%s"}, {Opt_fgroup_eq, "fgroup=%s"}, {Opt_uid_gt, "uid>%s"}, {Opt_euid_gt, "euid>%s"}, {Opt_gid_gt, "gid>%s"}, {Opt_egid_gt, "egid>%s"}, {Opt_fowner_gt, "fowner>%s"}, {Opt_fgroup_gt, "fgroup>%s"}, {Opt_uid_lt, "uid<%s"}, {Opt_euid_lt, "euid<%s"}, {Opt_gid_lt, "gid<%s"}, {Opt_egid_lt, "egid<%s"}, {Opt_fowner_lt, "fowner<%s"}, {Opt_fgroup_lt, "fgroup<%s"}, {Opt_digest_type, "digest_type=%s"}, {Opt_appraise_type, "appraise_type=%s"}, {Opt_appraise_flag, "appraise_flag=%s"}, {Opt_appraise_algos, "appraise_algos=%s"}, {Opt_permit_directio, "permit_directio"}, {Opt_pcr, "pcr=%s"}, {Opt_template, "template=%s"}, {Opt_keyrings, "keyrings=%s"}, {Opt_label, "label=%s"}, {Opt_err, NULL} }; static int ima_lsm_rule_init(struct ima_rule_entry *entry, substring_t *args, int lsm_rule, int audit_type) { int result; if (entry->lsm[lsm_rule].rule) return -EINVAL; entry->lsm[lsm_rule].args_p = match_strdup(args); if (!entry->lsm[lsm_rule].args_p) return -ENOMEM; entry->lsm[lsm_rule].type = audit_type; result = ima_filter_rule_init(entry->lsm[lsm_rule].type, Audit_equal, entry->lsm[lsm_rule].args_p, &entry->lsm[lsm_rule].rule, GFP_KERNEL); if (!entry->lsm[lsm_rule].rule) { pr_warn("rule for LSM \'%s\' is undefined\n", entry->lsm[lsm_rule].args_p); if (ima_rules == (struct list_head __rcu *)(&ima_default_rules)) { kfree(entry->lsm[lsm_rule].args_p); entry->lsm[lsm_rule].args_p = NULL; result = -EINVAL; } else result = 0; } return result; } static void ima_log_string_op(struct audit_buffer *ab, char *key, char *value, enum policy_opt rule_operator) { if (!ab) return; switch (rule_operator) { case Opt_uid_gt: case Opt_euid_gt: case Opt_gid_gt: case Opt_egid_gt: case Opt_fowner_gt: case Opt_fgroup_gt: audit_log_format(ab, "%s>", key); break; case Opt_uid_lt: case Opt_euid_lt: case Opt_gid_lt: case Opt_egid_lt: case Opt_fowner_lt: case Opt_fgroup_lt: audit_log_format(ab, "%s<", key); break; default: audit_log_format(ab, "%s=", key); } audit_log_format(ab, "%s ", value); } static void ima_log_string(struct audit_buffer *ab, char *key, char *value) { ima_log_string_op(ab, key, value, Opt_err); } /* * Validating the appended signature included in the measurement list requires * the file hash calculated without the appended signature (i.e., the 'd-modsig' * field). Therefore, notify the user if they have the 'modsig' field but not * the 'd-modsig' field in the template. */ static void check_template_modsig(const struct ima_template_desc *template) { #define MSG "template with 'modsig' field also needs 'd-modsig' field\n" bool has_modsig, has_dmodsig; static bool checked; int i; /* We only need to notify the user once. */ if (checked) return; has_modsig = has_dmodsig = false; for (i = 0; i < template->num_fields; i++) { if (!strcmp(template->fields[i]->field_id, "modsig")) has_modsig = true; else if (!strcmp(template->fields[i]->field_id, "d-modsig")) has_dmodsig = true; } if (has_modsig && !has_dmodsig) pr_notice(MSG); checked = true; #undef MSG } /* * Warn if the template does not contain the given field. */ static void check_template_field(const struct ima_template_desc *template, const char *field, const char *msg) { int i; for (i = 0; i < template->num_fields; i++) if (!strcmp(template->fields[i]->field_id, field)) return; pr_notice_once("%s", msg); } static bool ima_validate_rule(struct ima_rule_entry *entry) { /* Ensure that the action is set and is compatible with the flags */ if (entry->action == UNKNOWN) return false; if (entry->action != MEASURE && entry->flags & IMA_PCR) return false; if (entry->action != APPRAISE && entry->flags & (IMA_DIGSIG_REQUIRED | IMA_MODSIG_ALLOWED | IMA_CHECK_BLACKLIST | IMA_VALIDATE_ALGOS)) return false; /* * The IMA_FUNC bit must be set if and only if there's a valid hook * function specified, and vice versa. Enforcing this property allows * for the NONE case below to validate a rule without an explicit hook * function. */ if (((entry->flags & IMA_FUNC) && entry->func == NONE) || (!(entry->flags & IMA_FUNC) && entry->func != NONE)) return false; /* * Ensure that the hook function is compatible with the other * components of the rule */ switch (entry->func) { case NONE: case FILE_CHECK: case MMAP_CHECK: case MMAP_CHECK_REQPROT: case BPRM_CHECK: case CREDS_CHECK: case POST_SETATTR: case FIRMWARE_CHECK: case POLICY_CHECK: if (entry->flags & ~(IMA_FUNC | IMA_MASK | IMA_FSMAGIC | IMA_UID | IMA_FOWNER | IMA_FSUUID | IMA_INMASK | IMA_EUID | IMA_PCR | IMA_FSNAME | IMA_GID | IMA_EGID | IMA_FGROUP | IMA_DIGSIG_REQUIRED | IMA_PERMIT_DIRECTIO | IMA_VALIDATE_ALGOS | IMA_CHECK_BLACKLIST | IMA_VERITY_REQUIRED)) return false; break; case MODULE_CHECK: case KEXEC_KERNEL_CHECK: case KEXEC_INITRAMFS_CHECK: if (entry->flags & ~(IMA_FUNC | IMA_MASK | IMA_FSMAGIC | IMA_UID | IMA_FOWNER | IMA_FSUUID | IMA_INMASK | IMA_EUID | IMA_PCR | IMA_FSNAME | IMA_GID | IMA_EGID | IMA_FGROUP | IMA_DIGSIG_REQUIRED | IMA_PERMIT_DIRECTIO | IMA_MODSIG_ALLOWED | IMA_CHECK_BLACKLIST | IMA_VALIDATE_ALGOS)) return false; break; case KEXEC_CMDLINE: if (entry->action & ~(MEASURE | DONT_MEASURE)) return false; if (entry->flags & ~(IMA_FUNC | IMA_FSMAGIC | IMA_UID | IMA_FOWNER | IMA_FSUUID | IMA_EUID | IMA_PCR | IMA_FSNAME | IMA_GID | IMA_EGID | IMA_FGROUP)) return false; break; case KEY_CHECK: if (entry->action & ~(MEASURE | DONT_MEASURE)) return false; if (entry->flags & ~(IMA_FUNC | IMA_UID | IMA_GID | IMA_PCR | IMA_KEYRINGS)) return false; if (ima_rule_contains_lsm_cond(entry)) return false; break; case CRITICAL_DATA: if (entry->action & ~(MEASURE | DONT_MEASURE)) return false; if (entry->flags & ~(IMA_FUNC | IMA_UID | IMA_GID | IMA_PCR | IMA_LABEL)) return false; if (ima_rule_contains_lsm_cond(entry)) return false; break; case SETXATTR_CHECK: /* any action other than APPRAISE is unsupported */ if (entry->action != APPRAISE) return false; /* SETXATTR_CHECK requires an appraise_algos parameter */ if (!(entry->flags & IMA_VALIDATE_ALGOS)) return false; /* * full policies are not supported, they would have too * much of a performance impact */ if (entry->flags & ~(IMA_FUNC | IMA_VALIDATE_ALGOS)) return false; break; default: return false; } /* Ensure that combinations of flags are compatible with each other */ if (entry->flags & IMA_CHECK_BLACKLIST && !(entry->flags & IMA_DIGSIG_REQUIRED)) return false; /* * Unlike for regular IMA 'appraise' policy rules where security.ima * xattr may contain either a file hash or signature, the security.ima * xattr for fsverity must contain a file signature (sigv3). Ensure * that 'appraise' rules for fsverity require file signatures by * checking the IMA_DIGSIG_REQUIRED flag is set. */ if (entry->action == APPRAISE && (entry->flags & IMA_VERITY_REQUIRED) && !(entry->flags & IMA_DIGSIG_REQUIRED)) return false; return true; } static unsigned int ima_parse_appraise_algos(char *arg) { unsigned int res = 0; int idx; char *token; while ((token = strsep(&arg, ",")) != NULL) { idx = match_string(hash_algo_name, HASH_ALGO__LAST, token); if (idx < 0) { pr_err("unknown hash algorithm \"%s\"", token); return 0; } if (!crypto_has_alg(hash_algo_name[idx], 0, 0)) { pr_err("unavailable hash algorithm \"%s\", check your kernel configuration", token); return 0; } /* Add the hash algorithm to the 'allowed' bitfield */ res |= (1U << idx); } return res; } static int ima_parse_rule(char *rule, struct ima_rule_entry *entry) { struct audit_buffer *ab; char *from; char *p; bool eid_token; /* either euid or egid */ struct ima_template_desc *template_desc; int result = 0; ab = integrity_audit_log_start(audit_context(), GFP_KERNEL, AUDIT_INTEGRITY_POLICY_RULE); entry->uid = INVALID_UID; entry->gid = INVALID_GID; entry->fowner = INVALID_UID; entry->fgroup = INVALID_GID; entry->uid_op = &uid_eq; entry->gid_op = &gid_eq; entry->fowner_op = &vfsuid_eq_kuid; entry->fgroup_op = &vfsgid_eq_kgid; entry->action = UNKNOWN; while ((p = strsep(&rule, " \t")) != NULL) { substring_t args[MAX_OPT_ARGS]; int token; unsigned long lnum; if (result < 0 || *p == '#') /* ignore suffixed comment */ break; if ((*p == '\0') || (*p == ' ') || (*p == '\t')) continue; token = match_token(p, policy_tokens, args); switch (token) { case Opt_measure: ima_log_string(ab, "action", "measure"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = MEASURE; break; case Opt_dont_measure: ima_log_string(ab, "action", "dont_measure"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = DONT_MEASURE; break; case Opt_appraise: ima_log_string(ab, "action", "appraise"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = APPRAISE; break; case Opt_dont_appraise: ima_log_string(ab, "action", "dont_appraise"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = DONT_APPRAISE; break; case Opt_audit: ima_log_string(ab, "action", "audit"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = AUDIT; break; case Opt_hash: ima_log_string(ab, "action", "hash"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = HASH; break; case Opt_dont_hash: ima_log_string(ab, "action", "dont_hash"); if (entry->action != UNKNOWN) result = -EINVAL; entry->action = DONT_HASH; break; case Opt_func: ima_log_string(ab, "func", args[0].from); if (entry->func) result = -EINVAL; if (strcmp(args[0].from, "FILE_CHECK") == 0) entry->func = FILE_CHECK; /* PATH_CHECK is for backwards compat */ else if (strcmp(args[0].from, "PATH_CHECK") == 0) entry->func = FILE_CHECK; else if (strcmp(args[0].from, "MODULE_CHECK") == 0) entry->func = MODULE_CHECK; else if (strcmp(args[0].from, "FIRMWARE_CHECK") == 0) entry->func = FIRMWARE_CHECK; else if ((strcmp(args[0].from, "FILE_MMAP") == 0) || (strcmp(args[0].from, "MMAP_CHECK") == 0)) entry->func = MMAP_CHECK; else if ((strcmp(args[0].from, "MMAP_CHECK_REQPROT") == 0)) entry->func = MMAP_CHECK_REQPROT; else if (strcmp(args[0].from, "BPRM_CHECK") == 0) entry->func = BPRM_CHECK; else if (strcmp(args[0].from, "CREDS_CHECK") == 0) entry->func = CREDS_CHECK; else if (strcmp(args[0].from, "KEXEC_KERNEL_CHECK") == 0) entry->func = KEXEC_KERNEL_CHECK; else if (strcmp(args[0].from, "KEXEC_INITRAMFS_CHECK") == 0) entry->func = KEXEC_INITRAMFS_CHECK; else if (strcmp(args[0].from, "POLICY_CHECK") == 0) entry->func = POLICY_CHECK; else if (strcmp(args[0].from, "KEXEC_CMDLINE") == 0) entry->func = KEXEC_CMDLINE; else if (IS_ENABLED(CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS) && strcmp(args[0].from, "KEY_CHECK") == 0) entry->func = KEY_CHECK; else if (strcmp(args[0].from, "CRITICAL_DATA") == 0) entry->func = CRITICAL_DATA; else if (strcmp(args[0].from, "SETXATTR_CHECK") == 0) entry->func = SETXATTR_CHECK; else result = -EINVAL; if (!result) entry->flags |= IMA_FUNC; break; case Opt_mask: ima_log_string(ab, "mask", args[0].from); if (entry->mask) result = -EINVAL; from = args[0].from; if (*from == '^') from++; if ((strcmp(from, "MAY_EXEC")) == 0) entry->mask = MAY_EXEC; else if (strcmp(from, "MAY_WRITE") == 0) entry->mask = MAY_WRITE; else if (strcmp(from, "MAY_READ") == 0) entry->mask = MAY_READ; else if (strcmp(from, "MAY_APPEND") == 0) entry->mask = MAY_APPEND; else result = -EINVAL; if (!result) entry->flags |= (*args[0].from == '^') ? IMA_INMASK : IMA_MASK; break; case Opt_fsmagic: ima_log_string(ab, "fsmagic", args[0].from); if (entry->fsmagic) { result = -EINVAL; break; } result = kstrtoul(args[0].from, 16, &entry->fsmagic); if (!result) entry->flags |= IMA_FSMAGIC; break; case Opt_fsname: ima_log_string(ab, "fsname", args[0].from); entry->fsname = kstrdup(args[0].from, GFP_KERNEL); if (!entry->fsname) { result = -ENOMEM; break; } result = 0; entry->flags |= IMA_FSNAME; break; case Opt_keyrings: ima_log_string(ab, "keyrings", args[0].from); if (!IS_ENABLED(CONFIG_IMA_MEASURE_ASYMMETRIC_KEYS) || entry->keyrings) { result = -EINVAL; break; } entry->keyrings = ima_alloc_rule_opt_list(args); if (IS_ERR(entry->keyrings)) { result = PTR_ERR(entry->keyrings); entry->keyrings = NULL; break; } entry->flags |= IMA_KEYRINGS; break; case Opt_label: ima_log_string(ab, "label", args[0].from); if (entry->label) { result = -EINVAL; break; } entry->label = ima_alloc_rule_opt_list(args); if (IS_ERR(entry->label)) { result = PTR_ERR(entry->label); entry->label = NULL; break; } entry->flags |= IMA_LABEL; break; case Opt_fsuuid: ima_log_string(ab, "fsuuid", args[0].from); if (!uuid_is_null(&entry->fsuuid)) { result = -EINVAL; break; } result = uuid_parse(args[0].from, &entry->fsuuid); if (!result) entry->flags |= IMA_FSUUID; break; case Opt_uid_gt: case Opt_euid_gt: entry->uid_op = &uid_gt; fallthrough; case Opt_uid_lt: case Opt_euid_lt: if ((token == Opt_uid_lt) || (token == Opt_euid_lt)) entry->uid_op = &uid_lt; fallthrough; case Opt_uid_eq: case Opt_euid_eq: eid_token = (token == Opt_euid_eq) || (token == Opt_euid_gt) || (token == Opt_euid_lt); ima_log_string_op(ab, eid_token ? "euid" : "uid", args[0].from, token); if (uid_valid(entry->uid)) { result = -EINVAL; break; } result = kstrtoul(args[0].from, 10, &lnum); if (!result) { entry->uid = make_kuid(current_user_ns(), (uid_t) lnum); if (!uid_valid(entry->uid) || (uid_t)lnum != lnum) result = -EINVAL; else entry->flags |= eid_token ? IMA_EUID : IMA_UID; } break; case Opt_gid_gt: case Opt_egid_gt: entry->gid_op = &gid_gt; fallthrough; case Opt_gid_lt: case Opt_egid_lt: if ((token == Opt_gid_lt) || (token == Opt_egid_lt)) entry->gid_op = &gid_lt; fallthrough; case Opt_gid_eq: case Opt_egid_eq: eid_token = (token == Opt_egid_eq) || (token == Opt_egid_gt) || (token == Opt_egid_lt); ima_log_string_op(ab, eid_token ? "egid" : "gid", args[0].from, token); if (gid_valid(entry->gid)) { result = -EINVAL; break; } result = kstrtoul(args[0].from, 10, &lnum); if (!result) { entry->gid = make_kgid(current_user_ns(), (gid_t)lnum); if (!gid_valid(entry->gid) || (((gid_t)lnum) != lnum)) result = -EINVAL; else entry->flags |= eid_token ? IMA_EGID : IMA_GID; } break; case Opt_fowner_gt: entry->fowner_op = &vfsuid_gt_kuid; fallthrough; case Opt_fowner_lt: if (token == Opt_fowner_lt) entry->fowner_op = &vfsuid_lt_kuid; fallthrough; case Opt_fowner_eq: ima_log_string_op(ab, "fowner", args[0].from, token); if (uid_valid(entry->fowner)) { result = -EINVAL; break; } result = kstrtoul(args[0].from, 10, &lnum); if (!result) { entry->fowner = make_kuid(current_user_ns(), (uid_t)lnum); if (!uid_valid(entry->fowner) || (((uid_t)lnum) != lnum)) result = -EINVAL; else entry->flags |= IMA_FOWNER; } break; case Opt_fgroup_gt: entry->fgroup_op = &vfsgid_gt_kgid; fallthrough; case Opt_fgroup_lt: if (token == Opt_fgroup_lt) entry->fgroup_op = &vfsgid_lt_kgid; fallthrough; case Opt_fgroup_eq: ima_log_string_op(ab, "fgroup", args[0].from, token); if (gid_valid(entry->fgroup)) { result = -EINVAL; break; } result = kstrtoul(args[0].from, 10, &lnum); if (!result) { entry->fgroup = make_kgid(current_user_ns(), (gid_t)lnum); if (!gid_valid(entry->fgroup) || (((gid_t)lnum) != lnum)) result = -EINVAL; else entry->flags |= IMA_FGROUP; } break; case Opt_obj_user: ima_log_string(ab, "obj_user", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_OBJ_USER, AUDIT_OBJ_USER); break; case Opt_obj_role: ima_log_string(ab, "obj_role", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_OBJ_ROLE, AUDIT_OBJ_ROLE); break; case Opt_obj_type: ima_log_string(ab, "obj_type", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_OBJ_TYPE, AUDIT_OBJ_TYPE); break; case Opt_subj_user: ima_log_string(ab, "subj_user", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_SUBJ_USER, AUDIT_SUBJ_USER); break; case Opt_subj_role: ima_log_string(ab, "subj_role", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_SUBJ_ROLE, AUDIT_SUBJ_ROLE); break; case Opt_subj_type: ima_log_string(ab, "subj_type", args[0].from); result = ima_lsm_rule_init(entry, args, LSM_SUBJ_TYPE, AUDIT_SUBJ_TYPE); break; case Opt_digest_type: ima_log_string(ab, "digest_type", args[0].from); if (entry->flags & IMA_DIGSIG_REQUIRED) result = -EINVAL; else if ((strcmp(args[0].from, "verity")) == 0) entry->flags |= IMA_VERITY_REQUIRED; else result = -EINVAL; break; case Opt_appraise_type: ima_log_string(ab, "appraise_type", args[0].from); if ((strcmp(args[0].from, "imasig")) == 0) { if (entry->flags & IMA_VERITY_REQUIRED) result = -EINVAL; else entry->flags |= IMA_DIGSIG_REQUIRED | IMA_CHECK_BLACKLIST; } else if (strcmp(args[0].from, "sigv3") == 0) { /* Only fsverity supports sigv3 for now */ if (entry->flags & IMA_VERITY_REQUIRED) entry->flags |= IMA_DIGSIG_REQUIRED | IMA_CHECK_BLACKLIST; else result = -EINVAL; } else if (IS_ENABLED(CONFIG_IMA_APPRAISE_MODSIG) && strcmp(args[0].from, "imasig|modsig") == 0) { if (entry->flags & IMA_VERITY_REQUIRED) result = -EINVAL; else entry->flags |= IMA_DIGSIG_REQUIRED | IMA_MODSIG_ALLOWED | IMA_CHECK_BLACKLIST; } else { result = -EINVAL; } break; case Opt_appraise_flag: ima_log_string(ab, "appraise_flag", args[0].from); break; case Opt_appraise_algos: ima_log_string(ab, "appraise_algos", args[0].from); if (entry->allowed_algos) { result = -EINVAL; break; } entry->allowed_algos = ima_parse_appraise_algos(args[0].from); /* invalid or empty list of algorithms */ if (!entry->allowed_algos) { result = -EINVAL; break; } entry->flags |= IMA_VALIDATE_ALGOS; break; case Opt_permit_directio: entry->flags |= IMA_PERMIT_DIRECTIO; break; case Opt_pcr: ima_log_string(ab, "pcr", args[0].from); result = kstrtoint(args[0].from, 10, &entry->pcr); if (result || INVALID_PCR(entry->pcr)) result = -EINVAL; else entry->flags |= IMA_PCR; break; case Opt_template: ima_log_string(ab, "template", args[0].from); if (entry->action != MEASURE) { result = -EINVAL; break; } template_desc = lookup_template_desc(args[0].from); if (!template_desc || entry->template) { result = -EINVAL; break; } /* * template_desc_init_fields() does nothing if * the template is already initialised, so * it's safe to do this unconditionally */ template_desc_init_fields(template_desc->fmt, &(template_desc->fields), &(template_desc->num_fields)); entry->template = template_desc; break; case Opt_err: ima_log_string(ab, "UNKNOWN", p); result = -EINVAL; break; } } if (!result && !ima_validate_rule(entry)) result = -EINVAL; else if (entry->action == APPRAISE) temp_ima_appraise |= ima_appraise_flag(entry->func); if (!result && entry->flags & IMA_MODSIG_ALLOWED) { template_desc = entry->template ? entry->template : ima_template_desc_current(); check_template_modsig(template_desc); } /* d-ngv2 template field recommended for unsigned fs-verity digests */ if (!result && entry->action == MEASURE && entry->flags & IMA_VERITY_REQUIRED) { template_desc = entry->template ? entry->template : ima_template_desc_current(); check_template_field(template_desc, "d-ngv2", "verity rules should include d-ngv2"); } audit_log_format(ab, "res=%d", !result); audit_log_end(ab); return result; } /** * ima_parse_add_rule - add a rule to ima_policy_rules * @rule: ima measurement policy rule * * Avoid locking by allowing just one writer at a time in ima_write_policy() * Returns the length of the rule parsed, an error code on failure */ ssize_t ima_parse_add_rule(char *rule) { static const char op[] = "update_policy"; char *p; struct ima_rule_entry *entry; ssize_t result, len; int audit_info = 0; p = strsep(&rule, "\n"); len = strlen(p) + 1; p += strspn(p, " \t"); if (*p == '#' || *p == '\0') return len; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { integrity_audit_msg(AUDIT_INTEGRITY_STATUS, NULL, NULL, op, "-ENOMEM", -ENOMEM, audit_info); return -ENOMEM; } INIT_LIST_HEAD(&entry->list); result = ima_parse_rule(p, entry); if (result) { ima_free_rule(entry); integrity_audit_msg(AUDIT_INTEGRITY_STATUS, NULL, NULL, op, "invalid-policy", result, audit_info); return result; } list_add_tail(&entry->list, &ima_temp_rules); return len; } /** * ima_delete_rules() - called to cleanup invalid in-flight policy. * * We don't need locking as we operate on the temp list, which is * different from the active one. There is also only one user of * ima_delete_rules() at a time. */ void ima_delete_rules(void) { struct ima_rule_entry *entry, *tmp; temp_ima_appraise = 0; list_for_each_entry_safe(entry, tmp, &ima_temp_rules, list) { list_del(&entry->list); ima_free_rule(entry); } } #define __ima_hook_stringify(func, str) (#func), const char *const func_tokens[] = { __ima_hooks(__ima_hook_stringify) }; #ifdef CONFIG_IMA_READ_POLICY enum { mask_exec = 0, mask_write, mask_read, mask_append }; static const char *const mask_tokens[] = { "^MAY_EXEC", "^MAY_WRITE", "^MAY_READ", "^MAY_APPEND" }; void *ima_policy_start(struct seq_file *m, loff_t *pos) { loff_t l = *pos; struct ima_rule_entry *entry; struct list_head *ima_rules_tmp; rcu_read_lock(); ima_rules_tmp = rcu_dereference(ima_rules); list_for_each_entry_rcu(entry, ima_rules_tmp, list) { if (!l--) { rcu_read_unlock(); return entry; } } rcu_read_unlock(); return NULL; } void *ima_policy_next(struct seq_file *m, void *v, loff_t *pos) { struct ima_rule_entry *entry = v; rcu_read_lock(); entry = list_entry_rcu(entry->list.next, struct ima_rule_entry, list); rcu_read_unlock(); (*pos)++; return (&entry->list == &ima_default_rules || &entry->list == &ima_policy_rules) ? NULL : entry; } void ima_policy_stop(struct seq_file *m, void *v) { } #define pt(token) policy_tokens[token].pattern #define mt(token) mask_tokens[token] /* * policy_func_show - display the ima_hooks policy rule */ static void policy_func_show(struct seq_file *m, enum ima_hooks func) { if (func > 0 && func < MAX_CHECK) seq_printf(m, "func=%s ", func_tokens[func]); else seq_printf(m, "func=%d ", func); } static void ima_show_rule_opt_list(struct seq_file *m, const struct ima_rule_opt_list *opt_list) { size_t i; for (i = 0; i < opt_list->count; i++) seq_printf(m, "%s%s", i ? "|" : "", opt_list->items[i]); } static void ima_policy_show_appraise_algos(struct seq_file *m, unsigned int allowed_hashes) { int idx, list_size = 0; for (idx = 0; idx < HASH_ALGO__LAST; idx++) { if (!(allowed_hashes & (1U << idx))) continue; /* only add commas if the list contains multiple entries */ if (list_size++) seq_puts(m, ","); seq_puts(m, hash_algo_name[idx]); } } int ima_policy_show(struct seq_file *m, void *v) { struct ima_rule_entry *entry = v; int i; char tbuf[64] = {0,}; int offset = 0; rcu_read_lock(); /* Do not print rules with inactive LSM labels */ for (i = 0; i < MAX_LSM_RULES; i++) { if (entry->lsm[i].args_p && !entry->lsm[i].rule) { rcu_read_unlock(); return 0; } } if (entry->action & MEASURE) seq_puts(m, pt(Opt_measure)); if (entry->action & DONT_MEASURE) seq_puts(m, pt(Opt_dont_measure)); if (entry->action & APPRAISE) seq_puts(m, pt(Opt_appraise)); if (entry->action & DONT_APPRAISE) seq_puts(m, pt(Opt_dont_appraise)); if (entry->action & AUDIT) seq_puts(m, pt(Opt_audit)); if (entry->action & HASH) seq_puts(m, pt(Opt_hash)); if (entry->action & DONT_HASH) seq_puts(m, pt(Opt_dont_hash)); seq_puts(m, " "); if (entry->flags & IMA_FUNC) policy_func_show(m, entry->func); if ((entry->flags & IMA_MASK) || (entry->flags & IMA_INMASK)) { if (entry->flags & IMA_MASK) offset = 1; if (entry->mask & MAY_EXEC) seq_printf(m, pt(Opt_mask), mt(mask_exec) + offset); if (entry->mask & MAY_WRITE) seq_printf(m, pt(Opt_mask), mt(mask_write) + offset); if (entry->mask & MAY_READ) seq_printf(m, pt(Opt_mask), mt(mask_read) + offset); if (entry->mask & MAY_APPEND) seq_printf(m, pt(Opt_mask), mt(mask_append) + offset); seq_puts(m, " "); } if (entry->flags & IMA_FSMAGIC) { snprintf(tbuf, sizeof(tbuf), "0x%lx", entry->fsmagic); seq_printf(m, pt(Opt_fsmagic), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_FSNAME) { snprintf(tbuf, sizeof(tbuf), "%s", entry->fsname); seq_printf(m, pt(Opt_fsname), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_KEYRINGS) { seq_puts(m, "keyrings="); ima_show_rule_opt_list(m, entry->keyrings); seq_puts(m, " "); } if (entry->flags & IMA_LABEL) { seq_puts(m, "label="); ima_show_rule_opt_list(m, entry->label); seq_puts(m, " "); } if (entry->flags & IMA_PCR) { snprintf(tbuf, sizeof(tbuf), "%d", entry->pcr); seq_printf(m, pt(Opt_pcr), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_FSUUID) { seq_printf(m, "fsuuid=%pU", &entry->fsuuid); seq_puts(m, " "); } if (entry->flags & IMA_UID) { snprintf(tbuf, sizeof(tbuf), "%d", __kuid_val(entry->uid)); if (entry->uid_op == &uid_gt) seq_printf(m, pt(Opt_uid_gt), tbuf); else if (entry->uid_op == &uid_lt) seq_printf(m, pt(Opt_uid_lt), tbuf); else seq_printf(m, pt(Opt_uid_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_EUID) { snprintf(tbuf, sizeof(tbuf), "%d", __kuid_val(entry->uid)); if (entry->uid_op == &uid_gt) seq_printf(m, pt(Opt_euid_gt), tbuf); else if (entry->uid_op == &uid_lt) seq_printf(m, pt(Opt_euid_lt), tbuf); else seq_printf(m, pt(Opt_euid_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_GID) { snprintf(tbuf, sizeof(tbuf), "%d", __kgid_val(entry->gid)); if (entry->gid_op == &gid_gt) seq_printf(m, pt(Opt_gid_gt), tbuf); else if (entry->gid_op == &gid_lt) seq_printf(m, pt(Opt_gid_lt), tbuf); else seq_printf(m, pt(Opt_gid_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_EGID) { snprintf(tbuf, sizeof(tbuf), "%d", __kgid_val(entry->gid)); if (entry->gid_op == &gid_gt) seq_printf(m, pt(Opt_egid_gt), tbuf); else if (entry->gid_op == &gid_lt) seq_printf(m, pt(Opt_egid_lt), tbuf); else seq_printf(m, pt(Opt_egid_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_FOWNER) { snprintf(tbuf, sizeof(tbuf), "%d", __kuid_val(entry->fowner)); if (entry->fowner_op == &vfsuid_gt_kuid) seq_printf(m, pt(Opt_fowner_gt), tbuf); else if (entry->fowner_op == &vfsuid_lt_kuid) seq_printf(m, pt(Opt_fowner_lt), tbuf); else seq_printf(m, pt(Opt_fowner_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_FGROUP) { snprintf(tbuf, sizeof(tbuf), "%d", __kgid_val(entry->fgroup)); if (entry->fgroup_op == &vfsgid_gt_kgid) seq_printf(m, pt(Opt_fgroup_gt), tbuf); else if (entry->fgroup_op == &vfsgid_lt_kgid) seq_printf(m, pt(Opt_fgroup_lt), tbuf); else seq_printf(m, pt(Opt_fgroup_eq), tbuf); seq_puts(m, " "); } if (entry->flags & IMA_VALIDATE_ALGOS) { seq_puts(m, "appraise_algos="); ima_policy_show_appraise_algos(m, entry->allowed_algos); seq_puts(m, " "); } for (i = 0; i < MAX_LSM_RULES; i++) { if (entry->lsm[i].rule) { switch (i) { case LSM_OBJ_USER: seq_printf(m, pt(Opt_obj_user), entry->lsm[i].args_p); break; case LSM_OBJ_ROLE: seq_printf(m, pt(Opt_obj_role), entry->lsm[i].args_p); break; case LSM_OBJ_TYPE: seq_printf(m, pt(Opt_obj_type), entry->lsm[i].args_p); break; case LSM_SUBJ_USER: seq_printf(m, pt(Opt_subj_user), entry->lsm[i].args_p); break; case LSM_SUBJ_ROLE: seq_printf(m, pt(Opt_subj_role), entry->lsm[i].args_p); break; case LSM_SUBJ_TYPE: seq_printf(m, pt(Opt_subj_type), entry->lsm[i].args_p); break; } seq_puts(m, " "); } } if (entry->template) seq_printf(m, "template=%s ", entry->template->name); if (entry->flags & IMA_DIGSIG_REQUIRED) { if (entry->flags & IMA_VERITY_REQUIRED) seq_puts(m, "appraise_type=sigv3 "); else if (entry->flags & IMA_MODSIG_ALLOWED) seq_puts(m, "appraise_type=imasig|modsig "); else seq_puts(m, "appraise_type=imasig "); } if (entry->flags & IMA_VERITY_REQUIRED) seq_puts(m, "digest_type=verity "); if (entry->flags & IMA_PERMIT_DIRECTIO) seq_puts(m, "permit_directio "); rcu_read_unlock(); seq_puts(m, "\n"); return 0; } #endif /* CONFIG_IMA_READ_POLICY */ #if defined(CONFIG_IMA_APPRAISE) && defined(CONFIG_INTEGRITY_TRUSTED_KEYRING) /* * ima_appraise_signature: whether IMA will appraise a given function using * an IMA digital signature. This is restricted to cases where the kernel * has a set of built-in trusted keys in order to avoid an attacker simply * loading additional keys. */ bool ima_appraise_signature(enum kernel_read_file_id id) { struct ima_rule_entry *entry; bool found = false; enum ima_hooks func; struct list_head *ima_rules_tmp; if (id >= READING_MAX_ID) return false; if (id == READING_KEXEC_IMAGE && !(ima_appraise & IMA_APPRAISE_ENFORCE) && security_locked_down(LOCKDOWN_KEXEC)) return false; func = read_idmap[id] ?: FILE_CHECK; rcu_read_lock(); ima_rules_tmp = rcu_dereference(ima_rules); list_for_each_entry_rcu(entry, ima_rules_tmp, list) { if (entry->action != APPRAISE) continue; /* * A generic entry will match, but otherwise require that it * match the func we're looking for */ if (entry->func && entry->func != func) continue; /* * We require this to be a digital signature, not a raw IMA * hash. */ if (entry->flags & IMA_DIGSIG_REQUIRED) found = true; /* * We've found a rule that matches, so break now even if it * didn't require a digital signature - a later rule that does * won't override it, so would be a false positive. */ break; } rcu_read_unlock(); return found; } #endif /* CONFIG_IMA_APPRAISE && CONFIG_INTEGRITY_TRUSTED_KEYRING */ |
1036 1035 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /* Copyright 2011, Siemens AG * written by Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ /* Based on patches from Jon Smirl <jonsmirl@gmail.com> * Copyright (c) 2011 Jon Smirl <jonsmirl@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* Jon's code is based on 6lowpan implementation for Contiki which is: * Copyright (c) 2008, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <linux/module.h> #include <linux/netdevice.h> #include <linux/ieee802154.h> #include <linux/if_arp.h> #include <net/ipv6.h> #include "6lowpan_i.h" static int open_count; static const struct header_ops lowpan_header_ops = { .create = lowpan_header_create, }; static int lowpan_dev_init(struct net_device *ldev) { netdev_lockdep_set_classes(ldev); return 0; } static int lowpan_open(struct net_device *dev) { if (!open_count) lowpan_rx_init(); open_count++; return 0; } static int lowpan_stop(struct net_device *dev) { open_count--; if (!open_count) lowpan_rx_exit(); return 0; } static int lowpan_neigh_construct(struct net_device *dev, struct neighbour *n) { struct lowpan_802154_neigh *neigh = lowpan_802154_neigh(neighbour_priv(n)); /* default no short_addr is available for a neighbour */ neigh->short_addr = cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC); return 0; } static int lowpan_get_iflink(const struct net_device *dev) { return READ_ONCE(lowpan_802154_dev(dev)->wdev->ifindex); } static const struct net_device_ops lowpan_netdev_ops = { .ndo_init = lowpan_dev_init, .ndo_start_xmit = lowpan_xmit, .ndo_open = lowpan_open, .ndo_stop = lowpan_stop, .ndo_neigh_construct = lowpan_neigh_construct, .ndo_get_iflink = lowpan_get_iflink, }; static void lowpan_setup(struct net_device *ldev) { memset(ldev->broadcast, 0xff, IEEE802154_ADDR_LEN); /* We need an ipv6hdr as minimum len when calling xmit */ ldev->hard_header_len = sizeof(struct ipv6hdr); ldev->flags = IFF_BROADCAST | IFF_MULTICAST; ldev->priv_flags |= IFF_NO_QUEUE; ldev->netdev_ops = &lowpan_netdev_ops; ldev->header_ops = &lowpan_header_ops; ldev->needs_free_netdev = true; ldev->netns_local = true; } static int lowpan_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != IEEE802154_ADDR_LEN) return -EINVAL; } return 0; } static int lowpan_newlink(struct net *src_net, struct net_device *ldev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net_device *wdev; int ret; ASSERT_RTNL(); pr_debug("adding new link\n"); if (!tb[IFLA_LINK]) return -EINVAL; /* find and hold wpan device */ wdev = dev_get_by_index(dev_net(ldev), nla_get_u32(tb[IFLA_LINK])); if (!wdev) return -ENODEV; if (wdev->type != ARPHRD_IEEE802154) { dev_put(wdev); return -EINVAL; } if (wdev->ieee802154_ptr->lowpan_dev) { dev_put(wdev); return -EBUSY; } lowpan_802154_dev(ldev)->wdev = wdev; /* Set the lowpan hardware address to the wpan hardware address. */ __dev_addr_set(ldev, wdev->dev_addr, IEEE802154_ADDR_LEN); /* We need headroom for possible wpan_dev_hard_header call and tailroom * for encryption/fcs handling. The lowpan interface will replace * the IPv6 header with 6LoWPAN header. At worst case the 6LoWPAN * header has LOWPAN_IPHC_MAX_HEADER_LEN more bytes than the IPv6 * header. */ ldev->needed_headroom = LOWPAN_IPHC_MAX_HEADER_LEN + wdev->needed_headroom; ldev->needed_tailroom = wdev->needed_tailroom; ldev->neigh_priv_len = sizeof(struct lowpan_802154_neigh); ret = lowpan_register_netdevice(ldev, LOWPAN_LLTYPE_IEEE802154); if (ret < 0) { dev_put(wdev); return ret; } wdev->ieee802154_ptr->lowpan_dev = ldev; return 0; } static void lowpan_dellink(struct net_device *ldev, struct list_head *head) { struct net_device *wdev = lowpan_802154_dev(ldev)->wdev; ASSERT_RTNL(); wdev->ieee802154_ptr->lowpan_dev = NULL; lowpan_unregister_netdevice(ldev); dev_put(wdev); } static struct rtnl_link_ops lowpan_link_ops __read_mostly = { .kind = "lowpan", .priv_size = LOWPAN_PRIV_SIZE(sizeof(struct lowpan_802154_dev)), .setup = lowpan_setup, .newlink = lowpan_newlink, .dellink = lowpan_dellink, .validate = lowpan_validate, }; static inline int __init lowpan_netlink_init(void) { return rtnl_link_register(&lowpan_link_ops); } static inline void lowpan_netlink_fini(void) { rtnl_link_unregister(&lowpan_link_ops); } static int lowpan_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct wpan_dev *wpan_dev; if (ndev->type != ARPHRD_IEEE802154) return NOTIFY_DONE; wpan_dev = ndev->ieee802154_ptr; if (!wpan_dev) return NOTIFY_DONE; switch (event) { case NETDEV_UNREGISTER: /* Check if wpan interface is unregistered that we * also delete possible lowpan interfaces which belongs * to the wpan interface. */ if (wpan_dev->lowpan_dev) lowpan_dellink(wpan_dev->lowpan_dev, NULL); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static struct notifier_block lowpan_dev_notifier = { .notifier_call = lowpan_device_event, }; static int __init lowpan_init_module(void) { int err = 0; err = lowpan_net_frag_init(); if (err < 0) goto out; err = lowpan_netlink_init(); if (err < 0) goto out_frag; err = register_netdevice_notifier(&lowpan_dev_notifier); if (err < 0) goto out_pack; return 0; out_pack: lowpan_netlink_fini(); out_frag: lowpan_net_frag_exit(); out: return err; } static void __exit lowpan_cleanup_module(void) { lowpan_netlink_fini(); lowpan_net_frag_exit(); unregister_netdevice_notifier(&lowpan_dev_notifier); } module_init(lowpan_init_module); module_exit(lowpan_cleanup_module); MODULE_DESCRIPTION("IPv6 over Low power Wireless Personal Area Network IEEE 802.15.4 core"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("lowpan"); |
948 3682 6019 3680 3684 436 3681 257 6047 6045 256 3008 2379 741 3006 3602 3605 3602 3602 2452 5066 2184 2187 2183 124 124 124 992 911 95 10 10 10 10 3866 3855 3324 1672 259 145 322 145 435 3615 199 855 3469 434 434 3117 3131 434 3866 3682 3681 3682 3678 3684 3675 3680 487 413 206 3681 540 3683 3680 3686 3679 434 435 433 434 435 3684 232 233 234 233 175 97 97 80 29 94 29 94 94 88 97 97 97 488 488 488 489 489 485 1 1 3595 3602 3679 3681 2616 3681 2199 2480 2604 3676 3651 257 256 256 256 3681 3684 140 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001 Momchil Velikov * Portions Copyright (C) 2001 Christoph Hellwig * Copyright (C) 2005 SGI, Christoph Lameter * Copyright (C) 2006 Nick Piggin * Copyright (C) 2012 Konstantin Khlebnikov * Copyright (C) 2016 Intel, Matthew Wilcox * Copyright (C) 2016 Intel, Ross Zwisler */ #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/cpu.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kmemleak.h> #include <linux/percpu.h> #include <linux/preempt.h> /* in_interrupt() */ #include <linux/radix-tree.h> #include <linux/rcupdate.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/xarray.h> #include "radix-tree.h" /* * Radix tree node cache. */ struct kmem_cache *radix_tree_node_cachep; /* * The radix tree is variable-height, so an insert operation not only has * to build the branch to its corresponding item, it also has to build the * branch to existing items if the size has to be increased (by * radix_tree_extend). * * The worst case is a zero height tree with just a single item at index 0, * and then inserting an item at index ULONG_MAX. This requires 2 new branches * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. * Hence: */ #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) /* * The IDR does not have to be as high as the radix tree since it uses * signed integers, not unsigned longs. */ #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1) #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \ RADIX_TREE_MAP_SHIFT)) #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1) /* * Per-cpu pool of preloaded nodes */ DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { .lock = INIT_LOCAL_LOCK(lock), }; EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads); static inline struct radix_tree_node *entry_to_node(void *ptr) { return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); } static inline void *node_to_entry(void *ptr) { return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); } #define RADIX_TREE_RETRY XA_RETRY_ENTRY static inline unsigned long get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot) { return parent ? slot - parent->slots : 0; } static unsigned int radix_tree_descend(const struct radix_tree_node *parent, struct radix_tree_node **nodep, unsigned long index) { unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; void __rcu **entry = rcu_dereference_raw(parent->slots[offset]); *nodep = (void *)entry; return offset; } static inline gfp_t root_gfp_mask(const struct radix_tree_root *root) { return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK); } static inline void tag_set(struct radix_tree_node *node, unsigned int tag, int offset) { __set_bit(offset, node->tags[tag]); } static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, int offset) { __clear_bit(offset, node->tags[tag]); } static inline int tag_get(const struct radix_tree_node *node, unsigned int tag, int offset) { return test_bit(offset, node->tags[tag]); } static inline void root_tag_set(struct radix_tree_root *root, unsigned tag) { root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) { root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); } static inline void root_tag_clear_all(struct radix_tree_root *root) { root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1); } static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag) { return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT)); } static inline unsigned root_tags_get(const struct radix_tree_root *root) { return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT; } static inline bool is_idr(const struct radix_tree_root *root) { return !!(root->xa_flags & ROOT_IS_IDR); } /* * Returns 1 if any slot in the node has this tag set. * Otherwise returns 0. */ static inline int any_tag_set(const struct radix_tree_node *node, unsigned int tag) { unsigned idx; for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { if (node->tags[tag][idx]) return 1; } return 0; } static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag) { bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE); } /** * radix_tree_find_next_bit - find the next set bit in a memory region * * @node: where to begin the search * @tag: the tag index * @offset: the bitnumber to start searching at * * Unrollable variant of find_next_bit() for constant size arrays. * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. * Returns next bit offset, or size if nothing found. */ static __always_inline unsigned long radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, unsigned long offset) { const unsigned long *addr = node->tags[tag]; if (offset < RADIX_TREE_MAP_SIZE) { unsigned long tmp; addr += offset / BITS_PER_LONG; tmp = *addr >> (offset % BITS_PER_LONG); if (tmp) return __ffs(tmp) + offset; offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); while (offset < RADIX_TREE_MAP_SIZE) { tmp = *++addr; if (tmp) return __ffs(tmp) + offset; offset += BITS_PER_LONG; } } return RADIX_TREE_MAP_SIZE; } static unsigned int iter_offset(const struct radix_tree_iter *iter) { return iter->index & RADIX_TREE_MAP_MASK; } /* * The maximum index which can be stored in a radix tree */ static inline unsigned long shift_maxindex(unsigned int shift) { return (RADIX_TREE_MAP_SIZE << shift) - 1; } static inline unsigned long node_maxindex(const struct radix_tree_node *node) { return shift_maxindex(node->shift); } static unsigned long next_index(unsigned long index, const struct radix_tree_node *node, unsigned long offset) { return (index & ~node_maxindex(node)) + (offset << node->shift); } /* * This assumes that the caller has performed appropriate preallocation, and * that the caller has pinned this thread of control to the current CPU. */ static struct radix_tree_node * radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent, struct radix_tree_root *root, unsigned int shift, unsigned int offset, unsigned int count, unsigned int nr_values) { struct radix_tree_node *ret = NULL; /* * Preload code isn't irq safe and it doesn't make sense to use * preloading during an interrupt anyway as all the allocations have * to be atomic. So just do normal allocation when in interrupt. */ if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { struct radix_tree_preload *rtp; /* * Even if the caller has preloaded, try to allocate from the * cache first for the new node to get accounted to the memory * cgroup. */ ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask | __GFP_NOWARN); if (ret) goto out; /* * Provided the caller has preloaded here, we will always * succeed in getting a node here (and never reach * kmem_cache_alloc) */ rtp = this_cpu_ptr(&radix_tree_preloads); if (rtp->nr) { ret = rtp->nodes; rtp->nodes = ret->parent; rtp->nr--; } /* * Update the allocation stack trace as this is more useful * for debugging. */ kmemleak_update_trace(ret); goto out; } ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); out: BUG_ON(radix_tree_is_internal_node(ret)); if (ret) { ret->shift = shift; ret->offset = offset; ret->count = count; ret->nr_values = nr_values; ret->parent = parent; ret->array = root; } return ret; } void radix_tree_node_rcu_free(struct rcu_head *head) { struct radix_tree_node *node = container_of(head, struct radix_tree_node, rcu_head); /* * Must only free zeroed nodes into the slab. We can be left with * non-NULL entries by radix_tree_free_nodes, so clear the entries * and tags here. */ memset(node->slots, 0, sizeof(node->slots)); memset(node->tags, 0, sizeof(node->tags)); INIT_LIST_HEAD(&node->private_list); kmem_cache_free(radix_tree_node_cachep, node); } static inline void radix_tree_node_free(struct radix_tree_node *node) { call_rcu(&node->rcu_head, radix_tree_node_rcu_free); } /* * Load up this CPU's radix_tree_node buffer with sufficient objects to * ensure that the addition of a single element in the tree cannot fail. On * success, return zero, with preemption disabled. On error, return -ENOMEM * with preemption not disabled. * * To make use of this facility, the radix tree must be initialised without * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). */ static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) { struct radix_tree_preload *rtp; struct radix_tree_node *node; int ret = -ENOMEM; /* * Nodes preloaded by one cgroup can be used by another cgroup, so * they should never be accounted to any particular memory cgroup. */ gfp_mask &= ~__GFP_ACCOUNT; local_lock(&radix_tree_preloads.lock); rtp = this_cpu_ptr(&radix_tree_preloads); while (rtp->nr < nr) { local_unlock(&radix_tree_preloads.lock); node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); if (node == NULL) goto out; local_lock(&radix_tree_preloads.lock); rtp = this_cpu_ptr(&radix_tree_preloads); if (rtp->nr < nr) { node->parent = rtp->nodes; rtp->nodes = node; rtp->nr++; } else { kmem_cache_free(radix_tree_node_cachep, node); } } ret = 0; out: return ret; } /* * Load up this CPU's radix_tree_node buffer with sufficient objects to * ensure that the addition of a single element in the tree cannot fail. On * success, return zero, with preemption disabled. On error, return -ENOMEM * with preemption not disabled. * * To make use of this facility, the radix tree must be initialised without * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). */ int radix_tree_preload(gfp_t gfp_mask) { /* Warn on non-sensical use... */ WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); } EXPORT_SYMBOL(radix_tree_preload); /* * The same as above function, except we don't guarantee preloading happens. * We do it, if we decide it helps. On success, return zero with preemption * disabled. On error, return -ENOMEM with preemption not disabled. */ int radix_tree_maybe_preload(gfp_t gfp_mask) { if (gfpflags_allow_blocking(gfp_mask)) return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); /* Preloading doesn't help anything with this gfp mask, skip it */ local_lock(&radix_tree_preloads.lock); return 0; } EXPORT_SYMBOL(radix_tree_maybe_preload); static unsigned radix_tree_load_root(const struct radix_tree_root *root, struct radix_tree_node **nodep, unsigned long *maxindex) { struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); *nodep = node; if (likely(radix_tree_is_internal_node(node))) { node = entry_to_node(node); *maxindex = node_maxindex(node); return node->shift + RADIX_TREE_MAP_SHIFT; } *maxindex = 0; return 0; } /* * Extend a radix tree so it can store key @index. */ static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, unsigned long index, unsigned int shift) { void *entry; unsigned int maxshift; int tag; /* Figure out what the shift should be. */ maxshift = shift; while (index > shift_maxindex(maxshift)) maxshift += RADIX_TREE_MAP_SHIFT; entry = rcu_dereference_raw(root->xa_head); if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE))) goto out; do { struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL, root, shift, 0, 1, 0); if (!node) return -ENOMEM; if (is_idr(root)) { all_tag_set(node, IDR_FREE); if (!root_tag_get(root, IDR_FREE)) { tag_clear(node, IDR_FREE, 0); root_tag_set(root, IDR_FREE); } } else { /* Propagate the aggregated tag info to the new child */ for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { if (root_tag_get(root, tag)) tag_set(node, tag, 0); } } BUG_ON(shift > BITS_PER_LONG); if (radix_tree_is_internal_node(entry)) { entry_to_node(entry)->parent = node; } else if (xa_is_value(entry)) { /* Moving a value entry root->xa_head to a node */ node->nr_values = 1; } /* * entry was already in the radix tree, so we do not need * rcu_assign_pointer here */ node->slots[0] = (void __rcu *)entry; entry = node_to_entry(node); rcu_assign_pointer(root->xa_head, entry); shift += RADIX_TREE_MAP_SHIFT; } while (shift <= maxshift); out: return maxshift + RADIX_TREE_MAP_SHIFT; } /** * radix_tree_shrink - shrink radix tree to minimum height * @root: radix tree root */ static inline bool radix_tree_shrink(struct radix_tree_root *root) { bool shrunk = false; for (;;) { struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); struct radix_tree_node *child; if (!radix_tree_is_internal_node(node)) break; node = entry_to_node(node); /* * The candidate node has more than one child, or its child * is not at the leftmost slot, we cannot shrink. */ if (node->count != 1) break; child = rcu_dereference_raw(node->slots[0]); if (!child) break; /* * For an IDR, we must not shrink entry 0 into the root in * case somebody calls idr_replace() with a pointer that * appears to be an internal entry */ if (!node->shift && is_idr(root)) break; if (radix_tree_is_internal_node(child)) entry_to_node(child)->parent = NULL; /* * We don't need rcu_assign_pointer(), since we are simply * moving the node from one part of the tree to another: if it * was safe to dereference the old pointer to it * (node->slots[0]), it will be safe to dereference the new * one (root->xa_head) as far as dependent read barriers go. */ root->xa_head = (void __rcu *)child; if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) root_tag_clear(root, IDR_FREE); /* * We have a dilemma here. The node's slot[0] must not be * NULLed in case there are concurrent lookups expecting to * find the item. However if this was a bottom-level node, * then it may be subject to the slot pointer being visible * to callers dereferencing it. If item corresponding to * slot[0] is subsequently deleted, these callers would expect * their slot to become empty sooner or later. * * For example, lockless pagecache will look up a slot, deref * the page pointer, and if the page has 0 refcount it means it * was concurrently deleted from pagecache so try the deref * again. Fortunately there is already a requirement for logic * to retry the entire slot lookup -- the indirect pointer * problem (replacing direct root node with an indirect pointer * also results in a stale slot). So tag the slot as indirect * to force callers to retry. */ node->count = 0; if (!radix_tree_is_internal_node(child)) { node->slots[0] = (void __rcu *)RADIX_TREE_RETRY; } WARN_ON_ONCE(!list_empty(&node->private_list)); radix_tree_node_free(node); shrunk = true; } return shrunk; } static bool delete_node(struct radix_tree_root *root, struct radix_tree_node *node) { bool deleted = false; do { struct radix_tree_node *parent; if (node->count) { if (node_to_entry(node) == rcu_dereference_raw(root->xa_head)) deleted |= radix_tree_shrink(root); return deleted; } parent = node->parent; if (parent) { parent->slots[node->offset] = NULL; parent->count--; } else { /* * Shouldn't the tags already have all been cleared * by the caller? */ if (!is_idr(root)) root_tag_clear_all(root); root->xa_head = NULL; } WARN_ON_ONCE(!list_empty(&node->private_list)); radix_tree_node_free(node); deleted = true; node = parent; } while (node); return deleted; } /** * __radix_tree_create - create a slot in a radix tree * @root: radix tree root * @index: index key * @nodep: returns node * @slotp: returns slot * * Create, if necessary, and return the node and slot for an item * at position @index in the radix tree @root. * * Until there is more than one item in the tree, no nodes are * allocated and @root->xa_head is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. * * Returns -ENOMEM, or 0 for success. */ static int __radix_tree_create(struct radix_tree_root *root, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp) { struct radix_tree_node *node = NULL, *child; void __rcu **slot = (void __rcu **)&root->xa_head; unsigned long maxindex; unsigned int shift, offset = 0; unsigned long max = index; gfp_t gfp = root_gfp_mask(root); shift = radix_tree_load_root(root, &child, &maxindex); /* Make sure the tree is high enough. */ if (max > maxindex) { int error = radix_tree_extend(root, gfp, max, shift); if (error < 0) return error; shift = error; child = rcu_dereference_raw(root->xa_head); } while (shift > 0) { shift -= RADIX_TREE_MAP_SHIFT; if (child == NULL) { /* Have to add a child node. */ child = radix_tree_node_alloc(gfp, node, root, shift, offset, 0, 0); if (!child) return -ENOMEM; rcu_assign_pointer(*slot, node_to_entry(child)); if (node) node->count++; } else if (!radix_tree_is_internal_node(child)) break; /* Go a level down */ node = entry_to_node(child); offset = radix_tree_descend(node, &child, index); slot = &node->slots[offset]; } if (nodep) *nodep = node; if (slotp) *slotp = slot; return 0; } /* * Free any nodes below this node. The tree is presumed to not need * shrinking, and any user data in the tree is presumed to not need a * destructor called on it. If we need to add a destructor, we can * add that functionality later. Note that we may not clear tags or * slots from the tree as an RCU walker may still have a pointer into * this subtree. We could replace the entries with RADIX_TREE_RETRY, * but we'll still have to clear those in rcu_free. */ static void radix_tree_free_nodes(struct radix_tree_node *node) { unsigned offset = 0; struct radix_tree_node *child = entry_to_node(node); for (;;) { void *entry = rcu_dereference_raw(child->slots[offset]); if (xa_is_node(entry) && child->shift) { child = entry_to_node(entry); offset = 0; continue; } offset++; while (offset == RADIX_TREE_MAP_SIZE) { struct radix_tree_node *old = child; offset = child->offset + 1; child = child->parent; WARN_ON_ONCE(!list_empty(&old->private_list)); radix_tree_node_free(old); if (old == entry_to_node(node)) return; } } } static inline int insert_entries(struct radix_tree_node *node, void __rcu **slot, void *item) { if (*slot) return -EEXIST; rcu_assign_pointer(*slot, item); if (node) { node->count++; if (xa_is_value(item)) node->nr_values++; } return 1; } /** * radix_tree_insert - insert into a radix tree * @root: radix tree root * @index: index key * @item: item to insert * * Insert an item into the radix tree at position @index. */ int radix_tree_insert(struct radix_tree_root *root, unsigned long index, void *item) { struct radix_tree_node *node; void __rcu **slot; int error; BUG_ON(radix_tree_is_internal_node(item)); error = __radix_tree_create(root, index, &node, &slot); if (error) return error; error = insert_entries(node, slot, item); if (error < 0) return error; if (node) { unsigned offset = get_slot_offset(node, slot); BUG_ON(tag_get(node, 0, offset)); BUG_ON(tag_get(node, 1, offset)); BUG_ON(tag_get(node, 2, offset)); } else { BUG_ON(root_tags_get(root)); } return 0; } EXPORT_SYMBOL(radix_tree_insert); /** * __radix_tree_lookup - lookup an item in a radix tree * @root: radix tree root * @index: index key * @nodep: returns node * @slotp: returns slot * * Lookup and return the item at position @index in the radix * tree @root. * * Until there is more than one item in the tree, no nodes are * allocated and @root->xa_head is used as a direct slot instead of * pointing to a node, in which case *@nodep will be NULL. */ void *__radix_tree_lookup(const struct radix_tree_root *root, unsigned long index, struct radix_tree_node **nodep, void __rcu ***slotp) { struct radix_tree_node *node, *parent; unsigned long maxindex; void __rcu **slot; restart: parent = NULL; slot = (void __rcu **)&root->xa_head; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return NULL; while (radix_tree_is_internal_node(node)) { unsigned offset; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); slot = parent->slots + offset; if (node == RADIX_TREE_RETRY) goto restart; if (parent->shift == 0) break; } if (nodep) *nodep = parent; if (slotp) *slotp = slot; return node; } /** * radix_tree_lookup_slot - lookup a slot in a radix tree * @root: radix tree root * @index: index key * * Returns: the slot corresponding to the position @index in the * radix tree @root. This is useful for update-if-exists operations. * * This function can be called under rcu_read_lock iff the slot is not * modified by radix_tree_replace_slot, otherwise it must be called * exclusive from other writers. Any dereference of the slot must be done * using radix_tree_deref_slot. */ void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root, unsigned long index) { void __rcu **slot; if (!__radix_tree_lookup(root, index, NULL, &slot)) return NULL; return slot; } EXPORT_SYMBOL(radix_tree_lookup_slot); /** * radix_tree_lookup - perform lookup operation on a radix tree * @root: radix tree root * @index: index key * * Lookup the item at the position @index in the radix tree @root. * * This function can be called under rcu_read_lock, however the caller * must manage lifetimes of leaf nodes (eg. RCU may also be used to free * them safely). No RCU barriers are required to access or modify the * returned item, however. */ void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index) { return __radix_tree_lookup(root, index, NULL, NULL); } EXPORT_SYMBOL(radix_tree_lookup); static void replace_slot(void __rcu **slot, void *item, struct radix_tree_node *node, int count, int values) { if (node && (count || values)) { node->count += count; node->nr_values += values; } rcu_assign_pointer(*slot, item); } static bool node_tag_get(const struct radix_tree_root *root, const struct radix_tree_node *node, unsigned int tag, unsigned int offset) { if (node) return tag_get(node, tag, offset); return root_tag_get(root, tag); } /* * IDR users want to be able to store NULL in the tree, so if the slot isn't * free, don't adjust the count, even if it's transitioning between NULL and * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still * have empty bits, but it only stores NULL in slots when they're being * deleted. */ static int calculate_count(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot, void *item, void *old) { if (is_idr(root)) { unsigned offset = get_slot_offset(node, slot); bool free = node_tag_get(root, node, IDR_FREE, offset); if (!free) return 0; if (!old) return 1; } return !!item - !!old; } /** * __radix_tree_replace - replace item in a slot * @root: radix tree root * @node: pointer to tree node * @slot: pointer to slot in @node * @item: new item to store in the slot. * * For use with __radix_tree_lookup(). Caller must hold tree write locked * across slot lookup and replacement. */ void __radix_tree_replace(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot, void *item) { void *old = rcu_dereference_raw(*slot); int values = !!xa_is_value(item) - !!xa_is_value(old); int count = calculate_count(root, node, slot, item, old); /* * This function supports replacing value entries and * deleting entries, but that needs accounting against the * node unless the slot is root->xa_head. */ WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) && (count || values)); replace_slot(slot, item, node, count, values); if (!node) return; delete_node(root, node); } /** * radix_tree_replace_slot - replace item in a slot * @root: radix tree root * @slot: pointer to slot * @item: new item to store in the slot. * * For use with radix_tree_lookup_slot() and * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked * across slot lookup and replacement. * * NOTE: This cannot be used to switch between non-entries (empty slots), * regular entries, and value entries, as that requires accounting * inside the radix tree node. When switching from one type of entry or * deleting, use __radix_tree_lookup() and __radix_tree_replace() or * radix_tree_iter_replace(). */ void radix_tree_replace_slot(struct radix_tree_root *root, void __rcu **slot, void *item) { __radix_tree_replace(root, NULL, slot, item); } EXPORT_SYMBOL(radix_tree_replace_slot); /** * radix_tree_iter_replace - replace item in a slot * @root: radix tree root * @iter: iterator state * @slot: pointer to slot * @item: new item to store in the slot. * * For use with radix_tree_for_each_slot(). * Caller must hold tree write locked. */ void radix_tree_iter_replace(struct radix_tree_root *root, const struct radix_tree_iter *iter, void __rcu **slot, void *item) { __radix_tree_replace(root, iter->node, slot, item); } static void node_tag_set(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) { while (node) { if (tag_get(node, tag, offset)) return; tag_set(node, tag, offset); offset = node->offset; node = node->parent; } if (!root_tag_get(root, tag)) root_tag_set(root, tag); } /** * radix_tree_tag_set - set a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index * * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) * corresponding to @index in the radix tree. From * the root all the way down to the leaf node. * * Returns the address of the tagged item. Setting a tag on a not-present * item is a bug. */ void *radix_tree_tag_set(struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; radix_tree_load_root(root, &node, &maxindex); BUG_ON(index > maxindex); while (radix_tree_is_internal_node(node)) { unsigned offset; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); BUG_ON(!node); if (!tag_get(parent, tag, offset)) tag_set(parent, tag, offset); } /* set the root's tag bit */ if (!root_tag_get(root, tag)) root_tag_set(root, tag); return node; } EXPORT_SYMBOL(radix_tree_tag_set); static void node_tag_clear(struct radix_tree_root *root, struct radix_tree_node *node, unsigned int tag, unsigned int offset) { while (node) { if (!tag_get(node, tag, offset)) return; tag_clear(node, tag, offset); if (any_tag_set(node, tag)) return; offset = node->offset; node = node->parent; } /* clear the root's tag bit */ if (root_tag_get(root, tag)) root_tag_clear(root, tag); } /** * radix_tree_tag_clear - clear a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index * * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) * corresponding to @index in the radix tree. If this causes * the leaf node to have no tags set then clear the tag in the * next-to-leaf node, etc. * * Returns the address of the tagged item on success, else NULL. ie: * has the same return value and semantics as radix_tree_lookup(). */ void *radix_tree_tag_clear(struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; int offset = 0; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return NULL; parent = NULL; while (radix_tree_is_internal_node(node)) { parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); } if (node) node_tag_clear(root, parent, tag, offset); return node; } EXPORT_SYMBOL(radix_tree_tag_clear); /** * radix_tree_iter_tag_clear - clear a tag on the current iterator entry * @root: radix tree root * @iter: iterator state * @tag: tag to clear */ void radix_tree_iter_tag_clear(struct radix_tree_root *root, const struct radix_tree_iter *iter, unsigned int tag) { node_tag_clear(root, iter->node, tag, iter_offset(iter)); } /** * radix_tree_tag_get - get a tag on a radix tree node * @root: radix tree root * @index: index key * @tag: tag index (< RADIX_TREE_MAX_TAGS) * * Return values: * * 0: tag not present or not set * 1: tag set * * Note that the return value of this function may not be relied on, even if * the RCU lock is held, unless tag modification and node deletion are excluded * from concurrency. */ int radix_tree_tag_get(const struct radix_tree_root *root, unsigned long index, unsigned int tag) { struct radix_tree_node *node, *parent; unsigned long maxindex; if (!root_tag_get(root, tag)) return 0; radix_tree_load_root(root, &node, &maxindex); if (index > maxindex) return 0; while (radix_tree_is_internal_node(node)) { unsigned offset; parent = entry_to_node(node); offset = radix_tree_descend(parent, &node, index); if (!tag_get(parent, tag, offset)) return 0; if (node == RADIX_TREE_RETRY) break; } return 1; } EXPORT_SYMBOL(radix_tree_tag_get); /* Construct iter->tags bit-mask from node->tags[tag] array */ static void set_iter_tags(struct radix_tree_iter *iter, struct radix_tree_node *node, unsigned offset, unsigned tag) { unsigned tag_long = offset / BITS_PER_LONG; unsigned tag_bit = offset % BITS_PER_LONG; if (!node) { iter->tags = 1; return; } iter->tags = node->tags[tag][tag_long] >> tag_bit; /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ if (tag_long < RADIX_TREE_TAG_LONGS - 1) { /* Pick tags from next element */ if (tag_bit) iter->tags |= node->tags[tag][tag_long + 1] << (BITS_PER_LONG - tag_bit); /* Clip chunk size, here only BITS_PER_LONG tags */ iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); } } void __rcu **radix_tree_iter_resume(void __rcu **slot, struct radix_tree_iter *iter) { iter->index = __radix_tree_iter_add(iter, 1); iter->next_index = iter->index; iter->tags = 0; return NULL; } EXPORT_SYMBOL(radix_tree_iter_resume); /** * radix_tree_next_chunk - find next chunk of slots for iteration * * @root: radix tree root * @iter: iterator state * @flags: RADIX_TREE_ITER_* flags and tag index * Returns: pointer to chunk first slot, or NULL if iteration is over */ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, struct radix_tree_iter *iter, unsigned flags) { unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; struct radix_tree_node *node, *child; unsigned long index, offset, maxindex; if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) return NULL; /* * Catch next_index overflow after ~0UL. iter->index never overflows * during iterating; it can be zero only at the beginning. * And we cannot overflow iter->next_index in a single step, * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. * * This condition also used by radix_tree_next_slot() to stop * contiguous iterating, and forbid switching to the next chunk. */ index = iter->next_index; if (!index && iter->index) return NULL; restart: radix_tree_load_root(root, &child, &maxindex); if (index > maxindex) return NULL; if (!child) return NULL; if (!radix_tree_is_internal_node(child)) { /* Single-slot tree */ iter->index = index; iter->next_index = maxindex + 1; iter->tags = 1; iter->node = NULL; return (void __rcu **)&root->xa_head; } do { node = entry_to_node(child); offset = radix_tree_descend(node, &child, index); if ((flags & RADIX_TREE_ITER_TAGGED) ? !tag_get(node, tag, offset) : !child) { /* Hole detected */ if (flags & RADIX_TREE_ITER_CONTIG) return NULL; if (flags & RADIX_TREE_ITER_TAGGED) offset = radix_tree_find_next_bit(node, tag, offset + 1); else while (++offset < RADIX_TREE_MAP_SIZE) { void *slot = rcu_dereference_raw( node->slots[offset]); if (slot) break; } index &= ~node_maxindex(node); index += offset << node->shift; /* Overflow after ~0UL */ if (!index) return NULL; if (offset == RADIX_TREE_MAP_SIZE) goto restart; child = rcu_dereference_raw(node->slots[offset]); } if (!child) goto restart; if (child == RADIX_TREE_RETRY) break; } while (node->shift && radix_tree_is_internal_node(child)); /* Update the iterator state */ iter->index = (index &~ node_maxindex(node)) | offset; iter->next_index = (index | node_maxindex(node)) + 1; iter->node = node; if (flags & RADIX_TREE_ITER_TAGGED) set_iter_tags(iter, node, offset, tag); return node->slots + offset; } EXPORT_SYMBOL(radix_tree_next_chunk); /** * radix_tree_gang_lookup - perform multiple lookup on a radix tree * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * * Performs an index-ascending scan of the tree for present items. Places * them at *@results and returns the number of items which were placed at * *@results. * * The implementation is naive. * * Like radix_tree_lookup, radix_tree_gang_lookup may be called under * rcu_read_lock. In this case, rather than the returned results being * an atomic snapshot of the tree at a single point in time, the * semantics of an RCU protected gang lookup are as though multiple * radix_tree_lookups have been issued in individual locks, and results * stored in 'results'. */ unsigned int radix_tree_gang_lookup(const struct radix_tree_root *root, void **results, unsigned long first_index, unsigned int max_items) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_slot(slot, root, &iter, first_index) { results[ret] = rcu_dereference_raw(*slot); if (!results[ret]) continue; if (radix_tree_is_internal_node(results[ret])) { slot = radix_tree_iter_retry(&iter); continue; } if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup); /** * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree * based on a tag * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * @tag: the tag index (< RADIX_TREE_MAX_TAGS) * * Performs an index-ascending scan of the tree for present items which * have the tag indexed by @tag set. Places the items at *@results and * returns the number of items which were placed at *@results. */ unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results, unsigned long first_index, unsigned int max_items, unsigned int tag) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { results[ret] = rcu_dereference_raw(*slot); if (!results[ret]) continue; if (radix_tree_is_internal_node(results[ret])) { slot = radix_tree_iter_retry(&iter); continue; } if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup_tag); /** * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a * radix tree based on a tag * @root: radix tree root * @results: where the results of the lookup are placed * @first_index: start the lookup from this key * @max_items: place up to this many items at *results * @tag: the tag index (< RADIX_TREE_MAX_TAGS) * * Performs an index-ascending scan of the tree for present items which * have the tag indexed by @tag set. Places the slots at *@results and * returns the number of slots which were placed at *@results. */ unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root, void __rcu ***results, unsigned long first_index, unsigned int max_items, unsigned int tag) { struct radix_tree_iter iter; void __rcu **slot; unsigned int ret = 0; if (unlikely(!max_items)) return 0; radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { results[ret] = slot; if (++ret == max_items) break; } return ret; } EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); static bool __radix_tree_delete(struct radix_tree_root *root, struct radix_tree_node *node, void __rcu **slot) { void *old = rcu_dereference_raw(*slot); int values = xa_is_value(old) ? -1 : 0; unsigned offset = get_slot_offset(node, slot); int tag; if (is_idr(root)) node_tag_set(root, node, IDR_FREE, offset); else for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) node_tag_clear(root, node, tag, offset); replace_slot(slot, NULL, node, -1, values); return node && delete_node(root, node); } /** * radix_tree_iter_delete - delete the entry at this iterator position * @root: radix tree root * @iter: iterator state * @slot: pointer to slot * * Delete the entry at the position currently pointed to by the iterator. * This may result in the current node being freed; if it is, the iterator * is advanced so that it will not reference the freed memory. This * function may be called without any locking if there are no other threads * which can access this tree. */ void radix_tree_iter_delete(struct radix_tree_root *root, struct radix_tree_iter *iter, void __rcu **slot) { if (__radix_tree_delete(root, iter->node, slot)) iter->index = iter->next_index; } EXPORT_SYMBOL(radix_tree_iter_delete); /** * radix_tree_delete_item - delete an item from a radix tree * @root: radix tree root * @index: index key * @item: expected item * * Remove @item at @index from the radix tree rooted at @root. * * Return: the deleted entry, or %NULL if it was not present * or the entry at the given @index was not @item. */ void *radix_tree_delete_item(struct radix_tree_root *root, unsigned long index, void *item) { struct radix_tree_node *node = NULL; void __rcu **slot = NULL; void *entry; entry = __radix_tree_lookup(root, index, &node, &slot); if (!slot) return NULL; if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE, get_slot_offset(node, slot)))) return NULL; if (item && entry != item) return NULL; __radix_tree_delete(root, node, slot); return entry; } EXPORT_SYMBOL(radix_tree_delete_item); /** * radix_tree_delete - delete an entry from a radix tree * @root: radix tree root * @index: index key * * Remove the entry at @index from the radix tree rooted at @root. * * Return: The deleted entry, or %NULL if it was not present. */ void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) { return radix_tree_delete_item(root, index, NULL); } EXPORT_SYMBOL(radix_tree_delete); /** * radix_tree_tagged - test whether any items in the tree are tagged * @root: radix tree root * @tag: tag to test */ int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag) { return root_tag_get(root, tag); } EXPORT_SYMBOL(radix_tree_tagged); /** * idr_preload - preload for idr_alloc() * @gfp_mask: allocation mask to use for preloading * * Preallocate memory to use for the next call to idr_alloc(). This function * returns with preemption disabled. It will be enabled by idr_preload_end(). */ void idr_preload(gfp_t gfp_mask) { if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE)) local_lock(&radix_tree_preloads.lock); } EXPORT_SYMBOL(idr_preload); void __rcu **idr_get_free(struct radix_tree_root *root, struct radix_tree_iter *iter, gfp_t gfp, unsigned long max) { struct radix_tree_node *node = NULL, *child; void __rcu **slot = (void __rcu **)&root->xa_head; unsigned long maxindex, start = iter->next_index; unsigned int shift, offset = 0; grow: shift = radix_tree_load_root(root, &child, &maxindex); if (!radix_tree_tagged(root, IDR_FREE)) start = max(start, maxindex + 1); if (start > max) return ERR_PTR(-ENOSPC); if (start > maxindex) { int error = radix_tree_extend(root, gfp, start, shift); if (error < 0) return ERR_PTR(error); shift = error; child = rcu_dereference_raw(root->xa_head); } if (start == 0 && shift == 0) shift = RADIX_TREE_MAP_SHIFT; while (shift) { shift -= RADIX_TREE_MAP_SHIFT; if (child == NULL) { /* Have to add a child node. */ child = radix_tree_node_alloc(gfp, node, root, shift, offset, 0, 0); if (!child) return ERR_PTR(-ENOMEM); all_tag_set(child, IDR_FREE); rcu_assign_pointer(*slot, node_to_entry(child)); if (node) node->count++; } else if (!radix_tree_is_internal_node(child)) break; node = entry_to_node(child); offset = radix_tree_descend(node, &child, start); if (!tag_get(node, IDR_FREE, offset)) { offset = radix_tree_find_next_bit(node, IDR_FREE, offset + 1); start = next_index(start, node, offset); if (start > max || start == 0) return ERR_PTR(-ENOSPC); while (offset == RADIX_TREE_MAP_SIZE) { offset = node->offset + 1; node = node->parent; if (!node) goto grow; shift = node->shift; } child = rcu_dereference_raw(node->slots[offset]); } slot = &node->slots[offset]; } iter->index = start; if (node) iter->next_index = 1 + min(max, (start | node_maxindex(node))); else iter->next_index = 1; iter->node = node; set_iter_tags(iter, node, offset, IDR_FREE); return slot; } /** * idr_destroy - release all internal memory from an IDR * @idr: idr handle * * After this function is called, the IDR is empty, and may be reused or * the data structure containing it may be freed. * * A typical clean-up sequence for objects stored in an idr tree will use * idr_for_each() to free all objects, if necessary, then idr_destroy() to * free the memory used to keep track of those objects. */ void idr_destroy(struct idr *idr) { struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head); if (radix_tree_is_internal_node(node)) radix_tree_free_nodes(node); idr->idr_rt.xa_head = NULL; root_tag_set(&idr->idr_rt, IDR_FREE); } EXPORT_SYMBOL(idr_destroy); static void radix_tree_node_ctor(void *arg) { struct radix_tree_node *node = arg; memset(node, 0, sizeof(*node)); INIT_LIST_HEAD(&node->private_list); } static int radix_tree_cpu_dead(unsigned int cpu) { struct radix_tree_preload *rtp; struct radix_tree_node *node; /* Free per-cpu pool of preloaded nodes */ rtp = &per_cpu(radix_tree_preloads, cpu); while (rtp->nr) { node = rtp->nodes; rtp->nodes = node->parent; kmem_cache_free(radix_tree_node_cachep, node); rtp->nr--; } return 0; } void __init radix_tree_init(void) { int ret; BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32); BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK); BUILD_BUG_ON(XA_CHUNK_SIZE > 255); radix_tree_node_cachep = kmem_cache_create("radix_tree_node", sizeof(struct radix_tree_node), 0, SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, radix_tree_node_ctor); ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", NULL, radix_tree_cpu_dead); WARN_ON(ret < 0); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for non-atomic * bit operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #include <linux/instrumented.h> /** * ___set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static __always_inline void ___set_bit(unsigned long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___set_bit(nr, addr); } /** * ___clear_bit - Clears a bit in memory * @nr: the bit to clear * @addr: the address to start counting from * * Unlike clear_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static __always_inline void ___clear_bit(unsigned long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___clear_bit(nr, addr); } /** * ___change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static __always_inline void ___change_bit(unsigned long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___change_bit(nr, addr); } static __always_inline void __instrument_read_write_bitop(long nr, volatile unsigned long *addr) { if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC)) { /* * We treat non-atomic read-write bitops a little more special. * Given the operations here only modify a single bit, assuming * non-atomicity of the writer is sufficient may be reasonable * for certain usage (and follows the permissible nature of the * assume-plain-writes-atomic rule): * 1. report read-modify-write races -> check read; * 2. do not report races with marked readers, but do report * races with unmarked readers -> check "atomic" write. */ kcsan_check_read(addr + BIT_WORD(nr), sizeof(long)); /* * Use generic write instrumentation, in case other sanitizers * or tools are enabled alongside KCSAN. */ instrument_write(addr + BIT_WORD(nr), sizeof(long)); } else { instrument_read_write(addr + BIT_WORD(nr), sizeof(long)); } } /** * ___test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static __always_inline bool ___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_set_bit(nr, addr); } /** * ___test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static __always_inline bool ___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_clear_bit(nr, addr); } /** * ___test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static __always_inline bool ___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_change_bit(nr, addr); } /** * _test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static __always_inline bool _test_bit(unsigned long nr, const volatile unsigned long *addr) { instrument_atomic_read(addr + BIT_WORD(nr), sizeof(long)); return arch_test_bit(nr, addr); } /** * _test_bit_acquire - Determine, with acquire semantics, whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static __always_inline bool _test_bit_acquire(unsigned long nr, const volatile unsigned long *addr) { instrument_atomic_read(addr + BIT_WORD(nr), sizeof(long)); return arch_test_bit_acquire(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */ |
2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include <net/genetlink.h> #include <net/sock.h> #include <trace/events/devlink.h> #include "devl_internal.h" struct devlink_fmsg_item { struct list_head list; int attrtype; u8 nla_type; u16 len; int value[]; }; struct devlink_fmsg { struct list_head item_list; int err; /* first error encountered on some devlink_fmsg_XXX() call */ bool putting_binary; /* This flag forces enclosing of binary data * in an array brackets. It forces using * of designated API: * devlink_fmsg_binary_pair_nest_start() * devlink_fmsg_binary_pair_nest_end() */ }; static struct devlink_fmsg *devlink_fmsg_alloc(void) { struct devlink_fmsg *fmsg; fmsg = kzalloc(sizeof(*fmsg), GFP_KERNEL); if (!fmsg) return NULL; INIT_LIST_HEAD(&fmsg->item_list); return fmsg; } static void devlink_fmsg_free(struct devlink_fmsg *fmsg) { struct devlink_fmsg_item *item, *tmp; list_for_each_entry_safe(item, tmp, &fmsg->item_list, list) { list_del(&item->list); kfree(item); } kfree(fmsg); } struct devlink_health_reporter { struct list_head list; void *priv; const struct devlink_health_reporter_ops *ops; struct devlink *devlink; struct devlink_port *devlink_port; struct devlink_fmsg *dump_fmsg; u64 graceful_period; bool auto_recover; bool auto_dump; u8 health_state; u64 dump_ts; u64 dump_real_ts; u64 error_count; u64 recovery_count; u64 last_recovery_ts; }; void * devlink_health_reporter_priv(struct devlink_health_reporter *reporter) { return reporter->priv; } EXPORT_SYMBOL_GPL(devlink_health_reporter_priv); static struct devlink_health_reporter * __devlink_health_reporter_find_by_name(struct list_head *reporter_list, const char *reporter_name) { struct devlink_health_reporter *reporter; list_for_each_entry(reporter, reporter_list, list) if (!strcmp(reporter->ops->name, reporter_name)) return reporter; return NULL; } static struct devlink_health_reporter * devlink_health_reporter_find_by_name(struct devlink *devlink, const char *reporter_name) { return __devlink_health_reporter_find_by_name(&devlink->reporter_list, reporter_name); } static struct devlink_health_reporter * devlink_port_health_reporter_find_by_name(struct devlink_port *devlink_port, const char *reporter_name) { return __devlink_health_reporter_find_by_name(&devlink_port->reporter_list, reporter_name); } static struct devlink_health_reporter * __devlink_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; if (WARN_ON(graceful_period && !ops->recover)) return ERR_PTR(-EINVAL); reporter = kzalloc(sizeof(*reporter), GFP_KERNEL); if (!reporter) return ERR_PTR(-ENOMEM); reporter->priv = priv; reporter->ops = ops; reporter->devlink = devlink; reporter->graceful_period = graceful_period; reporter->auto_recover = !!ops->recover; reporter->auto_dump = !!ops->dump; return reporter; } /** * devl_port_health_reporter_create() - create devlink health reporter for * specified port instance * * @port: devlink_port to which health reports will relate * @ops: devlink health reporter ops * @graceful_period: min time (in msec) between recovery attempts * @priv: driver priv pointer */ struct devlink_health_reporter * devl_port_health_reporter_create(struct devlink_port *port, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_assert_locked(port->devlink); if (__devlink_health_reporter_find_by_name(&port->reporter_list, ops->name)) return ERR_PTR(-EEXIST); reporter = __devlink_health_reporter_create(port->devlink, ops, graceful_period, priv); if (IS_ERR(reporter)) return reporter; reporter->devlink_port = port; list_add_tail(&reporter->list, &port->reporter_list); return reporter; } EXPORT_SYMBOL_GPL(devl_port_health_reporter_create); struct devlink_health_reporter * devlink_port_health_reporter_create(struct devlink_port *port, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; struct devlink *devlink = port->devlink; devl_lock(devlink); reporter = devl_port_health_reporter_create(port, ops, graceful_period, priv); devl_unlock(devlink); return reporter; } EXPORT_SYMBOL_GPL(devlink_port_health_reporter_create); /** * devl_health_reporter_create - create devlink health reporter * * @devlink: devlink instance which the health reports will relate * @ops: devlink health reporter ops * @graceful_period: min time (in msec) between recovery attempts * @priv: driver priv pointer */ struct devlink_health_reporter * devl_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_assert_locked(devlink); if (devlink_health_reporter_find_by_name(devlink, ops->name)) return ERR_PTR(-EEXIST); reporter = __devlink_health_reporter_create(devlink, ops, graceful_period, priv); if (IS_ERR(reporter)) return reporter; list_add_tail(&reporter->list, &devlink->reporter_list); return reporter; } EXPORT_SYMBOL_GPL(devl_health_reporter_create); struct devlink_health_reporter * devlink_health_reporter_create(struct devlink *devlink, const struct devlink_health_reporter_ops *ops, u64 graceful_period, void *priv) { struct devlink_health_reporter *reporter; devl_lock(devlink); reporter = devl_health_reporter_create(devlink, ops, graceful_period, priv); devl_unlock(devlink); return reporter; } EXPORT_SYMBOL_GPL(devlink_health_reporter_create); static void devlink_health_reporter_free(struct devlink_health_reporter *reporter) { if (reporter->dump_fmsg) devlink_fmsg_free(reporter->dump_fmsg); kfree(reporter); } /** * devl_health_reporter_destroy() - destroy devlink health reporter * * @reporter: devlink health reporter to destroy */ void devl_health_reporter_destroy(struct devlink_health_reporter *reporter) { devl_assert_locked(reporter->devlink); list_del(&reporter->list); devlink_health_reporter_free(reporter); } EXPORT_SYMBOL_GPL(devl_health_reporter_destroy); void devlink_health_reporter_destroy(struct devlink_health_reporter *reporter) { struct devlink *devlink = reporter->devlink; devl_lock(devlink); devl_health_reporter_destroy(reporter); devl_unlock(devlink); } EXPORT_SYMBOL_GPL(devlink_health_reporter_destroy); static int devlink_nl_health_reporter_fill(struct sk_buff *msg, struct devlink_health_reporter *reporter, enum devlink_command cmd, u32 portid, u32 seq, int flags) { struct devlink *devlink = reporter->devlink; struct nlattr *reporter_attr; void *hdr; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto genlmsg_cancel; if (reporter->devlink_port) { if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, reporter->devlink_port->index)) goto genlmsg_cancel; } reporter_attr = nla_nest_start_noflag(msg, DEVLINK_ATTR_HEALTH_REPORTER); if (!reporter_attr) goto genlmsg_cancel; if (nla_put_string(msg, DEVLINK_ATTR_HEALTH_REPORTER_NAME, reporter->ops->name)) goto reporter_nest_cancel; if (nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_STATE, reporter->health_state)) goto reporter_nest_cancel; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_ERR_COUNT, reporter->error_count)) goto reporter_nest_cancel; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_RECOVER_COUNT, reporter->recovery_count)) goto reporter_nest_cancel; if (reporter->ops->recover && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD, reporter->graceful_period)) goto reporter_nest_cancel; if (reporter->ops->recover && nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER, reporter->auto_recover)) goto reporter_nest_cancel; if (reporter->dump_fmsg && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS, jiffies_to_msecs(reporter->dump_ts))) goto reporter_nest_cancel; if (reporter->dump_fmsg && devlink_nl_put_u64(msg, DEVLINK_ATTR_HEALTH_REPORTER_DUMP_TS_NS, reporter->dump_real_ts)) goto reporter_nest_cancel; if (reporter->ops->dump && nla_put_u8(msg, DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP, reporter->auto_dump)) goto reporter_nest_cancel; nla_nest_end(msg, reporter_attr); genlmsg_end(msg, hdr); return 0; reporter_nest_cancel: nla_nest_cancel(msg, reporter_attr); genlmsg_cancel: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static struct devlink_health_reporter * devlink_health_reporter_get_from_attrs(struct devlink *devlink, struct nlattr **attrs) { struct devlink_port *devlink_port; char *reporter_name; if (!attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME]) return NULL; reporter_name = nla_data(attrs[DEVLINK_ATTR_HEALTH_REPORTER_NAME]); devlink_port = devlink_port_get_from_attrs(devlink, attrs); if (IS_ERR(devlink_port)) return devlink_health_reporter_find_by_name(devlink, reporter_name); else return devlink_port_health_reporter_find_by_name(devlink_port, reporter_name); } static struct devlink_health_reporter * devlink_health_reporter_get_from_info(struct devlink *devlink, struct genl_info *info) { return devlink_health_reporter_get_from_attrs(devlink, info->attrs); } int devlink_nl_health_reporter_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; struct sk_buff *msg; int err; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_health_reporter_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); const struct genl_info *info = genl_info_dump(cb); struct devlink_health_reporter *reporter; unsigned long port_index_end = ULONG_MAX; struct nlattr **attrs = info->attrs; unsigned long port_index_start = 0; struct devlink_port *port; unsigned long port_index; int idx = 0; int err; if (attrs && attrs[DEVLINK_ATTR_PORT_INDEX]) { port_index_start = nla_get_u32(attrs[DEVLINK_ATTR_PORT_INDEX]); port_index_end = port_index_start; flags |= NLM_F_DUMP_FILTERED; goto per_port_dump; } list_for_each_entry(reporter, &devlink->reporter_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; return err; } idx++; } per_port_dump: xa_for_each_range(&devlink->ports, port_index, port, port_index_start, port_index_end) { list_for_each_entry(reporter, &port->reporter_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_health_reporter_fill(msg, reporter, DEVLINK_CMD_HEALTH_REPORTER_GET, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; return err; } idx++; } } return 0; } int devlink_nl_health_reporter_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_health_reporter_get_dump_one); } int devlink_nl_health_reporter_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->recover && (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD] || info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER])) return -EOPNOTSUPP; if (!reporter->ops->dump && info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]) return -EOPNOTSUPP; if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD]) reporter->graceful_period = nla_get_u64(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_GRACEFUL_PERIOD]); if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER]) reporter->auto_recover = nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_RECOVER]); if (info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]) reporter->auto_dump = nla_get_u8(info->attrs[DEVLINK_ATTR_HEALTH_REPORTER_AUTO_DUMP]); return 0; } static void devlink_recover_notify(struct devlink_health_reporter *reporter, enum devlink_command cmd) { struct devlink *devlink = reporter->devlink; struct devlink_obj_desc desc; struct sk_buff *msg; int err; WARN_ON(cmd != DEVLINK_CMD_HEALTH_REPORTER_RECOVER); ASSERT_DEVLINK_REGISTERED(devlink); if (!devlink_nl_notify_need(devlink)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; err = devlink_nl_health_reporter_fill(msg, reporter, cmd, 0, 0, 0); if (err) { nlmsg_free(msg); return; } devlink_nl_obj_desc_init(&desc, devlink); if (reporter->devlink_port) devlink_nl_obj_desc_port_set(&desc, reporter->devlink_port); devlink_nl_notify_send_desc(devlink, msg, &desc); } void devlink_health_reporter_recovery_done(struct devlink_health_reporter *reporter) { reporter->recovery_count++; reporter->last_recovery_ts = jiffies; } EXPORT_SYMBOL_GPL(devlink_health_reporter_recovery_done); static int devlink_health_reporter_recover(struct devlink_health_reporter *reporter, void *priv_ctx, struct netlink_ext_ack *extack) { int err; if (reporter->health_state == DEVLINK_HEALTH_REPORTER_STATE_HEALTHY) return 0; if (!reporter->ops->recover) return -EOPNOTSUPP; err = reporter->ops->recover(reporter, priv_ctx, extack); if (err) return err; devlink_health_reporter_recovery_done(reporter); reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_HEALTHY; devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); return 0; } static void devlink_health_dump_clear(struct devlink_health_reporter *reporter) { if (!reporter->dump_fmsg) return; devlink_fmsg_free(reporter->dump_fmsg); reporter->dump_fmsg = NULL; } static int devlink_health_do_dump(struct devlink_health_reporter *reporter, void *priv_ctx, struct netlink_ext_ack *extack) { int err; if (!reporter->ops->dump) return 0; if (reporter->dump_fmsg) return 0; reporter->dump_fmsg = devlink_fmsg_alloc(); if (!reporter->dump_fmsg) return -ENOMEM; devlink_fmsg_obj_nest_start(reporter->dump_fmsg); err = reporter->ops->dump(reporter, reporter->dump_fmsg, priv_ctx, extack); if (err) goto dump_err; devlink_fmsg_obj_nest_end(reporter->dump_fmsg); err = reporter->dump_fmsg->err; if (err) goto dump_err; reporter->dump_ts = jiffies; reporter->dump_real_ts = ktime_get_real_ns(); return 0; dump_err: devlink_health_dump_clear(reporter); return err; } int devlink_health_report(struct devlink_health_reporter *reporter, const char *msg, void *priv_ctx) { enum devlink_health_reporter_state prev_health_state; struct devlink *devlink = reporter->devlink; unsigned long recover_ts_threshold; int ret; /* write a log message of the current error */ WARN_ON(!msg); trace_devlink_health_report(devlink, reporter->ops->name, msg); reporter->error_count++; prev_health_state = reporter->health_state; reporter->health_state = DEVLINK_HEALTH_REPORTER_STATE_ERROR; devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); /* abort if the previous error wasn't recovered */ recover_ts_threshold = reporter->last_recovery_ts + msecs_to_jiffies(reporter->graceful_period); if (reporter->auto_recover && (prev_health_state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY || (reporter->last_recovery_ts && reporter->recovery_count && time_is_after_jiffies(recover_ts_threshold)))) { trace_devlink_health_recover_aborted(devlink, reporter->ops->name, reporter->health_state, jiffies - reporter->last_recovery_ts); return -ECANCELED; } if (reporter->auto_dump) { devl_lock(devlink); /* store current dump of current error, for later analysis */ devlink_health_do_dump(reporter, priv_ctx, NULL); devl_unlock(devlink); } if (!reporter->auto_recover) return 0; devl_lock(devlink); ret = devlink_health_reporter_recover(reporter, priv_ctx, NULL); devl_unlock(devlink); return ret; } EXPORT_SYMBOL_GPL(devlink_health_report); void devlink_health_reporter_state_update(struct devlink_health_reporter *reporter, enum devlink_health_reporter_state state) { if (WARN_ON(state != DEVLINK_HEALTH_REPORTER_STATE_HEALTHY && state != DEVLINK_HEALTH_REPORTER_STATE_ERROR)) return; if (reporter->health_state == state) return; reporter->health_state = state; trace_devlink_health_reporter_state_update(reporter->devlink, reporter->ops->name, state); devlink_recover_notify(reporter, DEVLINK_CMD_HEALTH_REPORTER_RECOVER); } EXPORT_SYMBOL_GPL(devlink_health_reporter_state_update); int devlink_nl_health_reporter_recover_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; return devlink_health_reporter_recover(reporter, NULL, info->extack); } static void devlink_fmsg_err_if_binary(struct devlink_fmsg *fmsg) { if (!fmsg->err && fmsg->putting_binary) fmsg->err = -EINVAL; } static void devlink_fmsg_nest_common(struct devlink_fmsg *fmsg, int attrtype) { struct devlink_fmsg_item *item; if (fmsg->err) return; item = kzalloc(sizeof(*item), GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->attrtype = attrtype; list_add_tail(&item->list, &fmsg->item_list); } void devlink_fmsg_obj_nest_start(struct devlink_fmsg *fmsg) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_OBJ_NEST_START); } EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_start); static void devlink_fmsg_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_NEST_END); } void devlink_fmsg_obj_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_obj_nest_end); #define DEVLINK_FMSG_MAX_SIZE (GENLMSG_DEFAULT_SIZE - GENL_HDRLEN - NLA_HDRLEN) static void devlink_fmsg_put_name(struct devlink_fmsg *fmsg, const char *name) { struct devlink_fmsg_item *item; devlink_fmsg_err_if_binary(fmsg); if (fmsg->err) return; if (strlen(name) + 1 > DEVLINK_FMSG_MAX_SIZE) { fmsg->err = -EMSGSIZE; return; } item = kzalloc(sizeof(*item) + strlen(name) + 1, GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->nla_type = NLA_NUL_STRING; item->len = strlen(name) + 1; item->attrtype = DEVLINK_ATTR_FMSG_OBJ_NAME; memcpy(&item->value, name, item->len); list_add_tail(&item->list, &fmsg->item_list); } void devlink_fmsg_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_PAIR_NEST_START); devlink_fmsg_put_name(fmsg, name); } EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_start); void devlink_fmsg_pair_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_pair_nest_end); void devlink_fmsg_arr_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_nest_common(fmsg, DEVLINK_ATTR_FMSG_ARR_NEST_START); } EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_start); void devlink_fmsg_arr_pair_nest_end(struct devlink_fmsg *fmsg) { devlink_fmsg_nest_end(fmsg); devlink_fmsg_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_arr_pair_nest_end); void devlink_fmsg_binary_pair_nest_start(struct devlink_fmsg *fmsg, const char *name) { devlink_fmsg_arr_pair_nest_start(fmsg, name); fmsg->putting_binary = true; } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_start); void devlink_fmsg_binary_pair_nest_end(struct devlink_fmsg *fmsg) { if (fmsg->err) return; if (!fmsg->putting_binary) fmsg->err = -EINVAL; fmsg->putting_binary = false; devlink_fmsg_arr_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_nest_end); static void devlink_fmsg_put_value(struct devlink_fmsg *fmsg, const void *value, u16 value_len, u8 value_nla_type) { struct devlink_fmsg_item *item; if (fmsg->err) return; if (value_len > DEVLINK_FMSG_MAX_SIZE) { fmsg->err = -EMSGSIZE; return; } item = kzalloc(sizeof(*item) + value_len, GFP_KERNEL); if (!item) { fmsg->err = -ENOMEM; return; } item->nla_type = value_nla_type; item->len = value_len; item->attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA; memcpy(&item->value, value, item->len); list_add_tail(&item->list, &fmsg->item_list); } static void devlink_fmsg_bool_put(struct devlink_fmsg *fmsg, bool value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_FLAG); } static void devlink_fmsg_u8_put(struct devlink_fmsg *fmsg, u8 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U8); } void devlink_fmsg_u32_put(struct devlink_fmsg *fmsg, u32 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U32); } EXPORT_SYMBOL_GPL(devlink_fmsg_u32_put); static void devlink_fmsg_u64_put(struct devlink_fmsg *fmsg, u64 value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, &value, sizeof(value), NLA_U64); } void devlink_fmsg_string_put(struct devlink_fmsg *fmsg, const char *value) { devlink_fmsg_err_if_binary(fmsg); devlink_fmsg_put_value(fmsg, value, strlen(value) + 1, NLA_NUL_STRING); } EXPORT_SYMBOL_GPL(devlink_fmsg_string_put); void devlink_fmsg_binary_put(struct devlink_fmsg *fmsg, const void *value, u16 value_len) { if (!fmsg->err && !fmsg->putting_binary) fmsg->err = -EINVAL; devlink_fmsg_put_value(fmsg, value, value_len, NLA_BINARY); } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_put); void devlink_fmsg_bool_pair_put(struct devlink_fmsg *fmsg, const char *name, bool value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_bool_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_bool_pair_put); void devlink_fmsg_u8_pair_put(struct devlink_fmsg *fmsg, const char *name, u8 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u8_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u8_pair_put); void devlink_fmsg_u32_pair_put(struct devlink_fmsg *fmsg, const char *name, u32 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u32_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u32_pair_put); void devlink_fmsg_u64_pair_put(struct devlink_fmsg *fmsg, const char *name, u64 value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_u64_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_u64_pair_put); void devlink_fmsg_string_pair_put(struct devlink_fmsg *fmsg, const char *name, const char *value) { devlink_fmsg_pair_nest_start(fmsg, name); devlink_fmsg_string_put(fmsg, value); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_string_pair_put); void devlink_fmsg_binary_pair_put(struct devlink_fmsg *fmsg, const char *name, const void *value, u32 value_len) { u32 data_size; u32 offset; devlink_fmsg_binary_pair_nest_start(fmsg, name); for (offset = 0; offset < value_len; offset += data_size) { data_size = value_len - offset; if (data_size > DEVLINK_FMSG_MAX_SIZE) data_size = DEVLINK_FMSG_MAX_SIZE; devlink_fmsg_binary_put(fmsg, value + offset, data_size); } devlink_fmsg_binary_pair_nest_end(fmsg); fmsg->putting_binary = false; } EXPORT_SYMBOL_GPL(devlink_fmsg_binary_pair_put); static int devlink_fmsg_item_fill_type(struct devlink_fmsg_item *msg, struct sk_buff *skb) { switch (msg->nla_type) { case NLA_FLAG: case NLA_U8: case NLA_U32: case NLA_U64: case NLA_NUL_STRING: case NLA_BINARY: return nla_put_u8(skb, DEVLINK_ATTR_FMSG_OBJ_VALUE_TYPE, msg->nla_type); default: return -EINVAL; } } static int devlink_fmsg_item_fill_data(struct devlink_fmsg_item *msg, struct sk_buff *skb) { int attrtype = DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA; u8 tmp; switch (msg->nla_type) { case NLA_FLAG: /* Always provide flag data, regardless of its value */ tmp = *(bool *)msg->value; return nla_put_u8(skb, attrtype, tmp); case NLA_U8: return nla_put_u8(skb, attrtype, *(u8 *)msg->value); case NLA_U32: return nla_put_u32(skb, attrtype, *(u32 *)msg->value); case NLA_U64: return devlink_nl_put_u64(skb, attrtype, *(u64 *)msg->value); case NLA_NUL_STRING: return nla_put_string(skb, attrtype, (char *)&msg->value); case NLA_BINARY: return nla_put(skb, attrtype, msg->len, (void *)&msg->value); default: return -EINVAL; } } static int devlink_fmsg_prepare_skb(struct devlink_fmsg *fmsg, struct sk_buff *skb, int *start) { struct devlink_fmsg_item *item; struct nlattr *fmsg_nlattr; int err = 0; int i = 0; fmsg_nlattr = nla_nest_start_noflag(skb, DEVLINK_ATTR_FMSG); if (!fmsg_nlattr) return -EMSGSIZE; list_for_each_entry(item, &fmsg->item_list, list) { if (i < *start) { i++; continue; } switch (item->attrtype) { case DEVLINK_ATTR_FMSG_OBJ_NEST_START: case DEVLINK_ATTR_FMSG_PAIR_NEST_START: case DEVLINK_ATTR_FMSG_ARR_NEST_START: case DEVLINK_ATTR_FMSG_NEST_END: err = nla_put_flag(skb, item->attrtype); break; case DEVLINK_ATTR_FMSG_OBJ_VALUE_DATA: err = devlink_fmsg_item_fill_type(item, skb); if (err) break; err = devlink_fmsg_item_fill_data(item, skb); break; case DEVLINK_ATTR_FMSG_OBJ_NAME: err = nla_put_string(skb, item->attrtype, (char *)&item->value); break; default: err = -EINVAL; break; } if (!err) *start = ++i; else break; } nla_nest_end(skb, fmsg_nlattr); return err; } static int devlink_fmsg_snd(struct devlink_fmsg *fmsg, struct genl_info *info, enum devlink_command cmd, int flags) { struct nlmsghdr *nlh; struct sk_buff *skb; bool last = false; int index = 0; void *hdr; int err; if (fmsg->err) return fmsg->err; while (!last) { int tmp_index = index; skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq, &devlink_nl_family, flags | NLM_F_MULTI, cmd); if (!hdr) { err = -EMSGSIZE; goto nla_put_failure; } err = devlink_fmsg_prepare_skb(fmsg, skb, &index); if (!err) last = true; else if (err != -EMSGSIZE || tmp_index == index) goto nla_put_failure; genlmsg_end(skb, hdr); err = genlmsg_reply(skb, info); if (err) return err; } skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; nlh = nlmsg_put(skb, info->snd_portid, info->snd_seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = -EMSGSIZE; goto nla_put_failure; } return genlmsg_reply(skb, info); nla_put_failure: nlmsg_free(skb); return err; } static int devlink_fmsg_dumpit(struct devlink_fmsg *fmsg, struct sk_buff *skb, struct netlink_callback *cb, enum devlink_command cmd) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); int index = state->idx; int tmp_index = index; void *hdr; int err; if (fmsg->err) return fmsg->err; hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &devlink_nl_family, NLM_F_ACK | NLM_F_MULTI, cmd); if (!hdr) { err = -EMSGSIZE; goto nla_put_failure; } err = devlink_fmsg_prepare_skb(fmsg, skb, &index); if ((err && err != -EMSGSIZE) || tmp_index == index) goto nla_put_failure; state->idx = index; genlmsg_end(skb, hdr); return skb->len; nla_put_failure: genlmsg_cancel(skb, hdr); return err; } int devlink_nl_health_reporter_diagnose_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; struct devlink_fmsg *fmsg; int err; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->diagnose) return -EOPNOTSUPP; fmsg = devlink_fmsg_alloc(); if (!fmsg) return -ENOMEM; devlink_fmsg_obj_nest_start(fmsg); err = reporter->ops->diagnose(reporter, fmsg, info->extack); if (err) goto out; devlink_fmsg_obj_nest_end(fmsg); err = devlink_fmsg_snd(fmsg, info, DEVLINK_CMD_HEALTH_REPORTER_DIAGNOSE, 0); out: devlink_fmsg_free(fmsg); return err; } static struct devlink_health_reporter * devlink_health_reporter_get_from_cb_lock(struct netlink_callback *cb) { const struct genl_info *info = genl_info_dump(cb); struct devlink_health_reporter *reporter; struct nlattr **attrs = info->attrs; struct devlink *devlink; devlink = devlink_get_from_attrs_lock(sock_net(cb->skb->sk), attrs, false); if (IS_ERR(devlink)) return NULL; reporter = devlink_health_reporter_get_from_attrs(devlink, attrs); if (!reporter) { devl_unlock(devlink); devlink_put(devlink); } return reporter; } int devlink_nl_health_reporter_dump_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_health_reporter *reporter; struct devlink *devlink; int err; reporter = devlink_health_reporter_get_from_cb_lock(cb); if (!reporter) return -EINVAL; devlink = reporter->devlink; if (!reporter->ops->dump) { devl_unlock(devlink); devlink_put(devlink); return -EOPNOTSUPP; } if (!state->idx) { err = devlink_health_do_dump(reporter, NULL, cb->extack); if (err) goto unlock; state->dump_ts = reporter->dump_ts; } if (!reporter->dump_fmsg || state->dump_ts != reporter->dump_ts) { NL_SET_ERR_MSG(cb->extack, "Dump trampled, please retry"); err = -EAGAIN; goto unlock; } err = devlink_fmsg_dumpit(reporter->dump_fmsg, skb, cb, DEVLINK_CMD_HEALTH_REPORTER_DUMP_GET); unlock: devl_unlock(devlink); devlink_put(devlink); return err; } int devlink_nl_health_reporter_dump_clear_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->dump) return -EOPNOTSUPP; devlink_health_dump_clear(reporter); return 0; } int devlink_nl_health_reporter_test_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_health_reporter *reporter; reporter = devlink_health_reporter_get_from_info(devlink, info); if (!reporter) return -EINVAL; if (!reporter->ops->test) return -EOPNOTSUPP; return reporter->ops->test(reporter, info->extack); } /** * devlink_fmsg_dump_skb - Dump sk_buffer structure * @fmsg: devlink formatted message pointer * @skb: pointer to skb * * Dump diagnostic information about sk_buff structure, like headroom, length, * tailroom, MAC, etc. */ void devlink_fmsg_dump_skb(struct devlink_fmsg *fmsg, const struct sk_buff *skb) { struct skb_shared_info *sh = skb_shinfo(skb); struct sock *sk = skb->sk; bool has_mac, has_trans; has_mac = skb_mac_header_was_set(skb); has_trans = skb_transport_header_was_set(skb); devlink_fmsg_pair_nest_start(fmsg, "skb"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "actual len", skb->len); devlink_fmsg_put(fmsg, "head len", skb_headlen(skb)); devlink_fmsg_put(fmsg, "data len", skb->data_len); devlink_fmsg_put(fmsg, "tail len", skb_tailroom(skb)); devlink_fmsg_put(fmsg, "MAC", has_mac ? skb->mac_header : -1); devlink_fmsg_put(fmsg, "MAC len", has_mac ? skb_mac_header_len(skb) : -1); devlink_fmsg_put(fmsg, "network hdr", skb->network_header); devlink_fmsg_put(fmsg, "network hdr len", has_trans ? skb_network_header_len(skb) : -1); devlink_fmsg_put(fmsg, "transport hdr", has_trans ? skb->transport_header : -1); devlink_fmsg_put(fmsg, "csum", (__force u32)skb->csum); devlink_fmsg_put(fmsg, "csum_ip_summed", (u8)skb->ip_summed); devlink_fmsg_put(fmsg, "csum_complete_sw", !!skb->csum_complete_sw); devlink_fmsg_put(fmsg, "csum_valid", !!skb->csum_valid); devlink_fmsg_put(fmsg, "csum_level", (u8)skb->csum_level); devlink_fmsg_put(fmsg, "sw_hash", !!skb->sw_hash); devlink_fmsg_put(fmsg, "l4_hash", !!skb->l4_hash); devlink_fmsg_put(fmsg, "proto", ntohs(skb->protocol)); devlink_fmsg_put(fmsg, "pkt_type", (u8)skb->pkt_type); devlink_fmsg_put(fmsg, "iif", skb->skb_iif); if (sk) { devlink_fmsg_pair_nest_start(fmsg, "sk"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "family", sk->sk_type); devlink_fmsg_put(fmsg, "type", sk->sk_type); devlink_fmsg_put(fmsg, "proto", sk->sk_protocol); devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); } devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); devlink_fmsg_pair_nest_start(fmsg, "shinfo"); devlink_fmsg_obj_nest_start(fmsg); devlink_fmsg_put(fmsg, "tx_flags", sh->tx_flags); devlink_fmsg_put(fmsg, "nr_frags", sh->nr_frags); devlink_fmsg_put(fmsg, "gso_size", sh->gso_size); devlink_fmsg_put(fmsg, "gso_type", sh->gso_type); devlink_fmsg_put(fmsg, "gso_segs", sh->gso_segs); devlink_fmsg_obj_nest_end(fmsg); devlink_fmsg_pair_nest_end(fmsg); } EXPORT_SYMBOL_GPL(devlink_fmsg_dump_skb); |
140 2501 2168 2168 968 2024 1578 966 1300 1299 1300 1300 977 968 966 967 968 966 968 256 254 977 977 974 977 975 977 1728 1728 1731 1730 1728 1733 1521 1727 1505 1459 1732 1729 1730 1575 321 1578 1578 26 1578 1582 342 1729 1733 1733 1731 1581 1730 1729 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 | // SPDX-License-Identifier: GPL-2.0-only /* * Generic helpers for smp ipi calls * * (C) Jens Axboe <jens.axboe@oracle.com> 2008 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/irq_work.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/idle.h> #include <linux/hypervisor.h> #include <linux/sched/clock.h> #include <linux/nmi.h> #include <linux/sched/debug.h> #include <linux/jump_label.h> #include <linux/string_choices.h> #include <trace/events/ipi.h> #define CREATE_TRACE_POINTS #include <trace/events/csd.h> #undef CREATE_TRACE_POINTS #include "smpboot.h" #include "sched/smp.h" #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) struct call_function_data { call_single_data_t __percpu *csd; cpumask_var_t cpumask; cpumask_var_t cpumask_ipi; }; static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1); static void __flush_smp_call_function_queue(bool warn_cpu_offline); int smpcfd_prepare_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, cpu_to_node(cpu))) return -ENOMEM; if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, cpu_to_node(cpu))) { free_cpumask_var(cfd->cpumask); return -ENOMEM; } cfd->csd = alloc_percpu(call_single_data_t); if (!cfd->csd) { free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); return -ENOMEM; } return 0; } int smpcfd_dead_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); free_percpu(cfd->csd); return 0; } int smpcfd_dying_cpu(unsigned int cpu) { /* * The IPIs for the smp-call-function callbacks queued by other * CPUs might arrive late, either due to hardware latencies or * because this CPU disabled interrupts (inside stop-machine) * before the IPIs were sent. So flush out any pending callbacks * explicitly (without waiting for the IPIs to arrive), to * ensure that the outgoing CPU doesn't go offline with work * still pending. */ __flush_smp_call_function_queue(false); irq_work_run(); return 0; } void __init call_function_init(void) { int i; for_each_possible_cpu(i) init_llist_head(&per_cpu(call_single_queue, i)); smpcfd_prepare_cpu(smp_processor_id()); } static __always_inline void send_call_function_single_ipi(int cpu) { if (call_function_single_prep_ipi(cpu)) { trace_ipi_send_cpu(cpu, _RET_IP_, generic_smp_call_function_single_interrupt); arch_send_call_function_single_ipi(cpu); } } static __always_inline void send_call_function_ipi_mask(struct cpumask *mask) { trace_ipi_send_cpumask(mask, _RET_IP_, generic_smp_call_function_single_interrupt); arch_send_call_function_ipi_mask(mask); } static __always_inline void csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd) { trace_csd_function_entry(func, csd); func(info); trace_csd_function_exit(func, csd); } #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled); /* * Parse the csdlock_debug= kernel boot parameter. * * If you need to restore the old "ext" value that once provided * additional debugging information, reapply the following commits: * * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging") * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging") */ static int __init csdlock_debug(char *str) { int ret; unsigned int val = 0; ret = get_option(&str, &val); if (ret) { if (val) static_branch_enable(&csdlock_debug_enabled); else static_branch_disable(&csdlock_debug_enabled); } return 1; } __setup("csdlock_debug=", csdlock_debug); static DEFINE_PER_CPU(call_single_data_t *, cur_csd); static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); static DEFINE_PER_CPU(void *, cur_csd_info); static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ module_param(csd_lock_timeout, ulong, 0644); static int panic_on_ipistall; /* CSD panic timeout in milliseconds, 300000 for five minutes. */ module_param(panic_on_ipistall, int, 0644); static atomic_t csd_bug_count = ATOMIC_INIT(0); /* Record current CSD work for current CPU, NULL to erase. */ static void __csd_lock_record(call_single_data_t *csd) { if (!csd) { smp_mb(); /* NULL cur_csd after unlock. */ __this_cpu_write(cur_csd, NULL); return; } __this_cpu_write(cur_csd_func, csd->func); __this_cpu_write(cur_csd_info, csd->info); smp_wmb(); /* func and info before csd. */ __this_cpu_write(cur_csd, csd); smp_mb(); /* Update cur_csd before function call. */ /* Or before unlock, as the case may be. */ } static __always_inline void csd_lock_record(call_single_data_t *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) __csd_lock_record(csd); } static int csd_lock_wait_getcpu(call_single_data_t *csd) { unsigned int csd_type; csd_type = CSD_TYPE(csd); if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ return -1; } static atomic_t n_csd_lock_stuck; /** * csd_lock_is_stuck - Has a CSD-lock acquisition been stuck too long? * * Returns @true if a CSD-lock acquisition is stuck and has been stuck * long enough for a "non-responsive CSD lock" message to be printed. */ bool csd_lock_is_stuck(void) { return !!atomic_read(&n_csd_lock_stuck); } /* * Complain if too much time spent waiting. Note that only * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, * so waiting on other types gets much less information. */ static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id, unsigned long *nmessages) { int cpu = -1; int cpux; bool firsttime; u64 ts2, ts_delta; call_single_data_t *cpu_cur_csd; unsigned int flags = READ_ONCE(csd->node.u_flags); unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; if (!(flags & CSD_FLAG_LOCK)) { if (!unlikely(*bug_id)) return true; cpu = csd_lock_wait_getcpu(csd); pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", *bug_id, raw_smp_processor_id(), cpu); atomic_dec(&n_csd_lock_stuck); return true; } ts2 = ktime_get_mono_fast_ns(); /* How long since we last checked for a stuck CSD lock.*/ ts_delta = ts2 - *ts1; if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) * (!*nmessages ? 1 : (ilog2(num_online_cpus()) / 2 + 1)) || csd_lock_timeout_ns == 0)) return false; if (ts0 > ts2) { /* Our own sched_clock went backward; don't blame another CPU. */ ts_delta = ts0 - ts2; pr_alert("sched_clock on CPU %d went backward by %llu ns\n", raw_smp_processor_id(), ts_delta); *ts1 = ts2; return false; } firsttime = !*bug_id; if (firsttime) *bug_id = atomic_inc_return(&csd_bug_count); cpu = csd_lock_wait_getcpu(csd); if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) cpux = 0; else cpux = cpu; cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ /* How long since this CSD lock was stuck. */ ts_delta = ts2 - ts0; pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %lld ns for CPU#%02d %pS(%ps).\n", firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), (s64)ts_delta, cpu, csd->func, csd->info); (*nmessages)++; if (firsttime) atomic_inc(&n_csd_lock_stuck); /* * If the CSD lock is still stuck after 5 minutes, it is unlikely * to become unstuck. Use a signed comparison to avoid triggering * on underflows when the TSC is out of sync between sockets. */ BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC)); if (cpu_cur_csd && csd != cpu_cur_csd) { pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), READ_ONCE(per_cpu(cur_csd_info, cpux))); } else { pr_alert("\tcsd: CSD lock (#%d) %s.\n", *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); } if (cpu >= 0) { if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0)) dump_cpu_task(cpu); if (!cpu_cur_csd) { pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); arch_send_call_function_single_ipi(cpu); } } if (firsttime) dump_stack(); *ts1 = ts2; return false; } /* * csd_lock/csd_unlock used to serialize access to per-cpu csd resources * * For non-synchronous ipi calls the csd can still be in use by the * previous function call. For multi-cpu calls its even more interesting * as we'll have to ensure no other cpu is observing our csd. */ static void __csd_lock_wait(call_single_data_t *csd) { unsigned long nmessages = 0; int bug_id = 0; u64 ts0, ts1; ts1 = ts0 = ktime_get_mono_fast_ns(); for (;;) { if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages)) break; cpu_relax(); } smp_acquire__after_ctrl_dep(); } static __always_inline void csd_lock_wait(call_single_data_t *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) { __csd_lock_wait(csd); return; } smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #else static void csd_lock_record(call_single_data_t *csd) { } static __always_inline void csd_lock_wait(call_single_data_t *csd) { smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #endif static __always_inline void csd_lock(call_single_data_t *csd) { csd_lock_wait(csd); csd->node.u_flags |= CSD_FLAG_LOCK; /* * prevent CPU from reordering the above assignment * to ->flags with any subsequent assignments to other * fields of the specified call_single_data_t structure: */ smp_wmb(); } static __always_inline void csd_unlock(call_single_data_t *csd) { WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); /* * ensure we're all done before releasing data: */ smp_store_release(&csd->node.u_flags, 0); } static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); void __smp_call_single_queue(int cpu, struct llist_node *node) { /* * We have to check the type of the CSD before queueing it, because * once queued it can have its flags cleared by * flush_smp_call_function_queue() * even if we haven't sent the smp_call IPI yet (e.g. the stopper * executes migration_cpu_stop() on the remote CPU). */ if (trace_csd_queue_cpu_enabled()) { call_single_data_t *csd; smp_call_func_t func; csd = container_of(node, call_single_data_t, node.llist); func = CSD_TYPE(csd) == CSD_TYPE_TTWU ? sched_ttwu_pending : csd->func; trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); } /* * The list addition should be visible to the target CPU when it pops * the head of the list to pull the entry off it in the IPI handler * because of normal cache coherency rules implied by the underlying * llist ops. * * If IPIs can go out of order to the cache coherency protocol * in an architecture, sufficient synchronisation should be added * to arch code to make it appear to obey cache coherency WRT * locking and barrier primitives. Generic code isn't really * equipped to do the right thing... */ if (llist_add(node, &per_cpu(call_single_queue, cpu))) send_call_function_single_ipi(cpu); } /* * Insert a previously allocated call_single_data_t element * for execution on the given CPU. data must already have * ->func, ->info, and ->flags set. */ static int generic_exec_single(int cpu, call_single_data_t *csd) { if (cpu == smp_processor_id()) { smp_call_func_t func = csd->func; void *info = csd->info; unsigned long flags; /* * We can unlock early even for the synchronous on-stack case, * since we're doing this from the same CPU.. */ csd_lock_record(csd); csd_unlock(csd); local_irq_save(flags); csd_do_func(func, info, NULL); csd_lock_record(NULL); local_irq_restore(flags); return 0; } if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { csd_unlock(csd); return -ENXIO; } __smp_call_single_queue(cpu, &csd->node.llist); return 0; } /** * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks * * Invoked by arch to handle an IPI for call function single. * Must be called with interrupts disabled. */ void generic_smp_call_function_single_interrupt(void) { __flush_smp_call_function_queue(true); } /** * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks * * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an * offline CPU. Skip this check if set to 'false'. * * Flush any pending smp-call-function callbacks queued on this CPU. This is * invoked by the generic IPI handler, as well as by a CPU about to go offline, * to ensure that all pending IPI callbacks are run before it goes completely * offline. * * Loop through the call_single_queue and run all the queued callbacks. * Must be called with interrupts disabled. */ static void __flush_smp_call_function_queue(bool warn_cpu_offline) { call_single_data_t *csd, *csd_next; struct llist_node *entry, *prev; struct llist_head *head; static bool warned; atomic_t *tbt; lockdep_assert_irqs_disabled(); /* Allow waiters to send backtrace NMI from here onwards */ tbt = this_cpu_ptr(&trigger_backtrace); atomic_set_release(tbt, 1); head = this_cpu_ptr(&call_single_queue); entry = llist_del_all(head); entry = llist_reverse_order(entry); /* There shouldn't be any pending callbacks on an offline CPU. */ if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && !warned && entry != NULL)) { warned = true; WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); /* * We don't have to use the _safe() variant here * because we are not invoking the IPI handlers yet. */ llist_for_each_entry(csd, entry, node.llist) { switch (CSD_TYPE(csd)) { case CSD_TYPE_ASYNC: case CSD_TYPE_SYNC: case CSD_TYPE_IRQ_WORK: pr_warn("IPI callback %pS sent to offline CPU\n", csd->func); break; case CSD_TYPE_TTWU: pr_warn("IPI task-wakeup sent to offline CPU\n"); break; default: pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", CSD_TYPE(csd)); break; } } } /* * First; run all SYNC callbacks, people are waiting for us. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { /* Do we wait until *after* callback? */ if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { smp_call_func_t func = csd->func; void *info = csd->info; if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } csd_lock_record(csd); csd_do_func(func, info, csd); csd_unlock(csd); csd_lock_record(NULL); } else { prev = &csd->node.llist; } } if (!entry) return; /* * Second; run all !SYNC callbacks. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { int type = CSD_TYPE(csd); if (type != CSD_TYPE_TTWU) { if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } if (type == CSD_TYPE_ASYNC) { smp_call_func_t func = csd->func; void *info = csd->info; csd_lock_record(csd); csd_unlock(csd); csd_do_func(func, info, csd); csd_lock_record(NULL); } else if (type == CSD_TYPE_IRQ_WORK) { irq_work_single(csd); } } else { prev = &csd->node.llist; } } /* * Third; only CSD_TYPE_TTWU is left, issue those. */ if (entry) { csd = llist_entry(entry, typeof(*csd), node.llist); csd_do_func(sched_ttwu_pending, entry, csd); } } /** * flush_smp_call_function_queue - Flush pending smp-call-function callbacks * from task context (idle, migration thread) * * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to * handle queued SMP function calls before scheduling. * * The migration thread has to ensure that an eventually pending wakeup has * been handled before it migrates a task. */ void flush_smp_call_function_queue(void) { unsigned int was_pending; unsigned long flags; if (llist_empty(this_cpu_ptr(&call_single_queue))) return; local_irq_save(flags); /* Get the already pending soft interrupts for RT enabled kernels */ was_pending = local_softirq_pending(); __flush_smp_call_function_queue(true); if (local_softirq_pending()) do_softirq_post_smp_call_flush(was_pending); local_irq_restore(flags); } /* * smp_call_function_single - Run a function on a specific CPU * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed on other CPUs. * * Returns 0 on success, else a negative status code. */ int smp_call_function_single(int cpu, smp_call_func_t func, void *info, int wait) { call_single_data_t *csd; call_single_data_t csd_stack = { .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, }; int this_cpu; int err; /* * prevent preemption and reschedule on another processor, * as well as CPU removal */ this_cpu = get_cpu(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() && !oops_in_progress); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); csd = &csd_stack; if (!wait) { csd = this_cpu_ptr(&csd_data); csd_lock(csd); } csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif err = generic_exec_single(cpu, csd); if (wait) csd_lock_wait(csd); put_cpu(); return err; } EXPORT_SYMBOL(smp_call_function_single); /** * smp_call_function_single_async() - Run an asynchronous function on a * specific CPU. * @cpu: The CPU to run on. * @csd: Pre-allocated and setup data structure * * Like smp_call_function_single(), but the call is asynchonous and * can thus be done from contexts with disabled interrupts. * * The caller passes his own pre-allocated data structure * (ie: embedded in an object) and is responsible for synchronizing it * such that the IPIs performed on the @csd are strictly serialized. * * If the function is called with one csd which has not yet been * processed by previous call to smp_call_function_single_async(), the * function will return immediately with -EBUSY showing that the csd * object is still in progress. * * NOTE: Be careful, there is unfortunately no current debugging facility to * validate the correctness of this serialization. * * Return: %0 on success or negative errno value on error */ int smp_call_function_single_async(int cpu, call_single_data_t *csd) { int err = 0; preempt_disable(); if (csd->node.u_flags & CSD_FLAG_LOCK) { err = -EBUSY; goto out; } csd->node.u_flags = CSD_FLAG_LOCK; smp_wmb(); err = generic_exec_single(cpu, csd); out: preempt_enable(); return err; } EXPORT_SYMBOL_GPL(smp_call_function_single_async); /* * smp_call_function_any - Run a function on any of the given cpus * @mask: The mask of cpus it can run on. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed. * * Returns 0 on success, else a negative status code (if no cpus were online). * * Selection preference: * 1) current cpu if in @mask * 2) any cpu of current node if in @mask * 3) any other online cpu in @mask */ int smp_call_function_any(const struct cpumask *mask, smp_call_func_t func, void *info, int wait) { unsigned int cpu; const struct cpumask *nodemask; int ret; /* Try for same CPU (cheapest) */ cpu = get_cpu(); if (cpumask_test_cpu(cpu, mask)) goto call; /* Try for same node. */ nodemask = cpumask_of_node(cpu_to_node(cpu)); for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; cpu = cpumask_next_and(cpu, nodemask, mask)) { if (cpu_online(cpu)) goto call; } /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ cpu = cpumask_any_and(mask, cpu_online_mask); call: ret = smp_call_function_single(cpu, func, info, wait); put_cpu(); return ret; } EXPORT_SYMBOL_GPL(smp_call_function_any); /* * Flags to be used as scf_flags argument of smp_call_function_many_cond(). * * %SCF_WAIT: Wait until function execution is completed * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask */ #define SCF_WAIT (1U << 0) #define SCF_RUN_LOCAL (1U << 1) static void smp_call_function_many_cond(const struct cpumask *mask, smp_call_func_t func, void *info, unsigned int scf_flags, smp_cond_func_t cond_func) { int cpu, last_cpu, this_cpu = smp_processor_id(); struct call_function_data *cfd; bool wait = scf_flags & SCF_WAIT; int nr_cpus = 0; bool run_remote = false; bool run_local = false; lockdep_assert_preemption_disabled(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ if (cpu_online(this_cpu) && !oops_in_progress && !early_boot_irqs_disabled) lockdep_assert_irqs_enabled(); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); /* Check if we need local execution. */ if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask) && (!cond_func || cond_func(this_cpu, info))) run_local = true; /* Check if we need remote execution, i.e., any CPU excluding this one. */ cpu = cpumask_first_and(mask, cpu_online_mask); if (cpu == this_cpu) cpu = cpumask_next_and(cpu, mask, cpu_online_mask); if (cpu < nr_cpu_ids) run_remote = true; if (run_remote) { cfd = this_cpu_ptr(&cfd_data); cpumask_and(cfd->cpumask, mask, cpu_online_mask); __cpumask_clear_cpu(this_cpu, cfd->cpumask); cpumask_clear(cfd->cpumask_ipi); for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu); if (cond_func && !cond_func(cpu, info)) { __cpumask_clear_cpu(cpu, cfd->cpumask); continue; } csd_lock(csd); if (wait) csd->node.u_flags |= CSD_TYPE_SYNC; csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { __cpumask_set_cpu(cpu, cfd->cpumask_ipi); nr_cpus++; last_cpu = cpu; } } /* * Choose the most efficient way to send an IPI. Note that the * number of CPUs might be zero due to concurrent changes to the * provided mask. */ if (nr_cpus == 1) send_call_function_single_ipi(last_cpu); else if (likely(nr_cpus > 1)) send_call_function_ipi_mask(cfd->cpumask_ipi); } if (run_local) { unsigned long flags; local_irq_save(flags); csd_do_func(func, info, NULL); local_irq_restore(flags); } if (run_remote && wait) { for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd; csd = per_cpu_ptr(cfd->csd, cpu); csd_lock_wait(csd); } } } /** * smp_call_function_many(): Run a function on a set of CPUs. * @mask: The set of cpus to run on (only runs on online subset). * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait * (atomically) until function has completed on other CPUs. If * %SCF_RUN_LOCAL is set, the function will also be run locally * if the local CPU is set in the @cpumask. * * If @wait is true, then returns once @func has returned. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. Preemption * must be disabled when calling this function. */ void smp_call_function_many(const struct cpumask *mask, smp_call_func_t func, void *info, bool wait) { smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); } EXPORT_SYMBOL(smp_call_function_many); /** * smp_call_function(): Run a function on all other CPUs. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait (atomically) until function has completed * on other CPUs. * * Returns 0. * * If @wait is true, then returns once @func has returned; otherwise * it returns just before the target cpu calls @func. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ void smp_call_function(smp_call_func_t func, void *info, int wait) { preempt_disable(); smp_call_function_many(cpu_online_mask, func, info, wait); preempt_enable(); } EXPORT_SYMBOL(smp_call_function); /* Setup configured maximum number of CPUs to activate */ unsigned int setup_max_cpus = NR_CPUS; EXPORT_SYMBOL(setup_max_cpus); /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ void __weak __init arch_disable_smp_support(void) { } static int __init nosmp(char *str) { setup_max_cpus = 0; arch_disable_smp_support(); return 0; } early_param("nosmp", nosmp); /* this is hard limit */ static int __init nrcpus(char *str) { int nr_cpus; if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) set_nr_cpu_ids(nr_cpus); return 0; } early_param("nr_cpus", nrcpus); static int __init maxcpus(char *str) { get_option(&str, &setup_max_cpus); if (setup_max_cpus == 0) arch_disable_smp_support(); return 0; } early_param("maxcpus", maxcpus); #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS) /* Setup number of possible processor ids */ unsigned int nr_cpu_ids __read_mostly = NR_CPUS; EXPORT_SYMBOL(nr_cpu_ids); #endif /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ void __init setup_nr_cpu_ids(void) { set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1); } /* Called by boot processor to activate the rest. */ void __init smp_init(void) { int num_nodes, num_cpus; idle_threads_init(); cpuhp_threads_init(); pr_info("Bringing up secondary CPUs ...\n"); bringup_nonboot_cpus(setup_max_cpus); num_nodes = num_online_nodes(); num_cpus = num_online_cpus(); pr_info("Brought up %d node%s, %d CPU%s\n", num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus)); /* Any cleanup work */ smp_cpus_done(setup_max_cpus); } /* * on_each_cpu_cond(): Call a function on each processor for which * the supplied function cond_func returns true, optionally waiting * for all the required CPUs to finish. This may include the local * processor. * @cond_func: A callback function that is passed a cpu id and * the info parameter. The function is called * with preemption disabled. The function should * return a blooean value indicating whether to IPI * the specified CPU. * @func: The function to run on all applicable CPUs. * This must be fast and non-blocking. * @info: An arbitrary pointer to pass to both functions. * @wait: If true, wait (atomically) until function has * completed on other CPUs. * * Preemption is disabled to protect against CPUs going offline but not online. * CPUs going online during the call will not be seen or sent an IPI. * * You must not call this function with disabled interrupts or * from a hardware interrupt handler or from a bottom half handler. */ void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, void *info, bool wait, const struct cpumask *mask) { unsigned int scf_flags = SCF_RUN_LOCAL; if (wait) scf_flags |= SCF_WAIT; preempt_disable(); smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); preempt_enable(); } EXPORT_SYMBOL(on_each_cpu_cond_mask); static void do_nothing(void *unused) { } /** * kick_all_cpus_sync - Force all cpus out of idle * * Used to synchronize the update of pm_idle function pointer. It's * called after the pointer is updated and returns after the dummy * callback function has been executed on all cpus. The execution of * the function can only happen on the remote cpus after they have * left the idle function which had been called via pm_idle function * pointer. So it's guaranteed that nothing uses the previous pointer * anymore. */ void kick_all_cpus_sync(void) { /* Make sure the change is visible before we kick the cpus */ smp_mb(); smp_call_function(do_nothing, NULL, 1); } EXPORT_SYMBOL_GPL(kick_all_cpus_sync); /** * wake_up_all_idle_cpus - break all cpus out of idle * wake_up_all_idle_cpus try to break all cpus which is in idle state even * including idle polling cpus, for non-idle cpus, we will do nothing * for them. */ void wake_up_all_idle_cpus(void) { int cpu; for_each_possible_cpu(cpu) { preempt_disable(); if (cpu != smp_processor_id() && cpu_online(cpu)) wake_up_if_idle(cpu); preempt_enable(); } } EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); /** * struct smp_call_on_cpu_struct - Call a function on a specific CPU * @work: &work_struct * @done: &completion to signal * @func: function to call * @data: function's data argument * @ret: return value from @func * @cpu: target CPU (%-1 for any CPU) * * Used to call a function on a specific cpu and wait for it to return. * Optionally make sure the call is done on a specified physical cpu via vcpu * pinning in order to support virtualized environments. */ struct smp_call_on_cpu_struct { struct work_struct work; struct completion done; int (*func)(void *); void *data; int ret; int cpu; }; static void smp_call_on_cpu_callback(struct work_struct *work) { struct smp_call_on_cpu_struct *sscs; sscs = container_of(work, struct smp_call_on_cpu_struct, work); if (sscs->cpu >= 0) hypervisor_pin_vcpu(sscs->cpu); sscs->ret = sscs->func(sscs->data); if (sscs->cpu >= 0) hypervisor_pin_vcpu(-1); complete(&sscs->done); } int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) { struct smp_call_on_cpu_struct sscs = { .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), .func = func, .data = par, .cpu = phys ? cpu : -1, }; INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); if (cpu >= nr_cpu_ids || !cpu_online(cpu)) return -ENXIO; queue_work_on(cpu, system_wq, &sscs.work); wait_for_completion(&sscs.done); destroy_work_on_stack(&sscs.work); return sscs.ret; } EXPORT_SYMBOL_GPL(smp_call_on_cpu); |
319 320 317 318 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 | // SPDX-License-Identifier: GPL-2.0-only /* * fs/userfaultfd.c * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * Copyright (C) 2008-2009 Red Hat, Inc. * Copyright (C) 2015 Red Hat, Inc. * * Some part derived from fs/eventfd.c (anon inode setup) and * mm/ksm.c (mm hashing). */ #include <linux/list.h> #include <linux/hashtable.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/mm.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/file.h> #include <linux/bug.h> #include <linux/anon_inodes.h> #include <linux/syscalls.h> #include <linux/userfaultfd_k.h> #include <linux/mempolicy.h> #include <linux/ioctl.h> #include <linux/security.h> #include <linux/hugetlb.h> #include <linux/swapops.h> #include <linux/miscdevice.h> #include <linux/uio.h> static int sysctl_unprivileged_userfaultfd __read_mostly; #ifdef CONFIG_SYSCTL static const struct ctl_table vm_userfaultfd_table[] = { { .procname = "unprivileged_userfaultfd", .data = &sysctl_unprivileged_userfaultfd, .maxlen = sizeof(sysctl_unprivileged_userfaultfd), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, }; #endif static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; struct userfaultfd_fork_ctx { struct userfaultfd_ctx *orig; struct userfaultfd_ctx *new; struct list_head list; }; struct userfaultfd_unmap_ctx { struct userfaultfd_ctx *ctx; unsigned long start; unsigned long end; struct list_head list; }; struct userfaultfd_wait_queue { struct uffd_msg msg; wait_queue_entry_t wq; struct userfaultfd_ctx *ctx; bool waken; }; struct userfaultfd_wake_range { unsigned long start; unsigned long len; }; /* internal indication that UFFD_API ioctl was successfully executed */ #define UFFD_FEATURE_INITIALIZED (1u << 31) static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) { return ctx->features & UFFD_FEATURE_INITIALIZED; } static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) { return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); } /* * Whether WP_UNPOPULATED is enabled on the uffd context. It is only * meaningful when userfaultfd_wp()==true on the vma and when it's * anonymous. */ bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) { struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx) return false; return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; } static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, int wake_flags, void *key) { struct userfaultfd_wake_range *range = key; int ret; struct userfaultfd_wait_queue *uwq; unsigned long start, len; uwq = container_of(wq, struct userfaultfd_wait_queue, wq); ret = 0; /* len == 0 means wake all */ start = range->start; len = range->len; if (len && (start > uwq->msg.arg.pagefault.address || start + len <= uwq->msg.arg.pagefault.address)) goto out; WRITE_ONCE(uwq->waken, true); /* * The Program-Order guarantees provided by the scheduler * ensure uwq->waken is visible before the task is woken. */ ret = wake_up_state(wq->private, mode); if (ret) { /* * Wake only once, autoremove behavior. * * After the effect of list_del_init is visible to the other * CPUs, the waitqueue may disappear from under us, see the * !list_empty_careful() in handle_userfault(). * * try_to_wake_up() has an implicit smp_mb(), and the * wq->private is read before calling the extern function * "wake_up_state" (which in turns calls try_to_wake_up). */ list_del_init(&wq->entry); } out: return ret; } /** * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to the userfaultfd context. */ static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) { refcount_inc(&ctx->refcount); } /** * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to userfaultfd context. * * The userfaultfd context reference must have been previously acquired either * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). */ static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) { if (refcount_dec_and_test(&ctx->refcount)) { VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); mmdrop(ctx->mm); kmem_cache_free(userfaultfd_ctx_cachep, ctx); } } static inline void msg_init(struct uffd_msg *msg) { BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); /* * Must use memset to zero out the paddings or kernel data is * leaked to userland. */ memset(msg, 0, sizeof(struct uffd_msg)); } static inline struct uffd_msg userfault_msg(unsigned long address, unsigned long real_address, unsigned int flags, unsigned long reason, unsigned int features) { struct uffd_msg msg; msg_init(&msg); msg.event = UFFD_EVENT_PAGEFAULT; msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? real_address : address; /* * These flags indicate why the userfault occurred: * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. * - Neither of these flags being set indicates a MISSING fault. * * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write * fault. Otherwise, it was a read fault. */ if (flags & FAULT_FLAG_WRITE) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; if (reason & VM_UFFD_WP) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; if (reason & VM_UFFD_MINOR) msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; if (features & UFFD_FEATURE_THREAD_ID) msg.arg.pagefault.feat.ptid = task_pid_vnr(current); return msg; } #ifdef CONFIG_HUGETLB_PAGE /* * Same functionality as userfaultfd_must_wait below with modifications for * hugepmd ranges. */ static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_fault *vmf, unsigned long reason) { struct vm_area_struct *vma = vmf->vma; pte_t *ptep, pte; bool ret = true; assert_fault_locked(vmf); ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); if (!ptep) goto out; ret = false; pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep); /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. PTE markers should be handled the same as none * ptes here. */ if (huge_pte_none_mostly(pte)) ret = true; if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) ret = true; out: return ret; } #else static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_fault *vmf, unsigned long reason) { return false; /* should never get here */ } #endif /* CONFIG_HUGETLB_PAGE */ /* * Verify the pagetables are still not ok after having reigstered into * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any * userfault that has already been resolved, if userfaultfd_read_iter and * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different * threads. */ static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, struct vm_fault *vmf, unsigned long reason) { struct mm_struct *mm = ctx->mm; unsigned long address = vmf->address; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd, _pmd; pte_t *pte; pte_t ptent; bool ret = true; assert_fault_locked(vmf); pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) goto out; pud = pud_offset(p4d, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); again: _pmd = pmdp_get_lockless(pmd); if (pmd_none(_pmd)) goto out; ret = false; if (!pmd_present(_pmd) || pmd_devmap(_pmd)) goto out; if (pmd_trans_huge(_pmd)) { if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) ret = true; goto out; } pte = pte_offset_map(pmd, address); if (!pte) { ret = true; goto again; } /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. PTE markers should be handled the same as none * ptes here. */ ptent = ptep_get(pte); if (pte_none_mostly(ptent)) ret = true; if (!pte_write(ptent) && (reason & VM_UFFD_WP)) ret = true; pte_unmap(pte); out: return ret; } static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) { if (flags & FAULT_FLAG_INTERRUPTIBLE) return TASK_INTERRUPTIBLE; if (flags & FAULT_FLAG_KILLABLE) return TASK_KILLABLE; return TASK_UNINTERRUPTIBLE; } /* * The locking rules involved in returning VM_FAULT_RETRY depending on * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" * recommendation in __lock_page_or_retry is not an understatement. * * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is * not set. * * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not * set, VM_FAULT_RETRY can still be returned if and only if there are * fatal_signal_pending()s, and the mmap_lock must be released before * returning it. */ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue uwq; vm_fault_t ret = VM_FAULT_SIGBUS; bool must_wait; unsigned int blocking_state; /* * We don't do userfault handling for the final child pid update * and when coredumping (faults triggered by get_dump_page()). */ if (current->flags & (PF_EXITING|PF_DUMPCORE)) goto out; assert_fault_locked(vmf); ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx) goto out; BUG_ON(ctx->mm != mm); /* Any unrecognized flag is a bug. */ VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); /* 0 or > 1 flags set is a bug; we expect exactly 1. */ VM_BUG_ON(!reason || (reason & (reason - 1))); if (ctx->features & UFFD_FEATURE_SIGBUS) goto out; if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) goto out; /* * If it's already released don't get it. This avoids to loop * in __get_user_pages if userfaultfd_release waits on the * caller of handle_userfault to release the mmap_lock. */ if (unlikely(READ_ONCE(ctx->released))) { /* * Don't return VM_FAULT_SIGBUS in this case, so a non * cooperative manager can close the uffd after the * last UFFDIO_COPY, without risking to trigger an * involuntary SIGBUS if the process was starting the * userfaultfd while the userfaultfd was still armed * (but after the last UFFDIO_COPY). If the uffd * wasn't already closed when the userfault reached * this point, that would normally be solved by * userfaultfd_must_wait returning 'false'. * * If we were to return VM_FAULT_SIGBUS here, the non * cooperative manager would be instead forced to * always call UFFDIO_UNREGISTER before it can safely * close the uffd. */ ret = VM_FAULT_NOPAGE; goto out; } /* * Check that we can return VM_FAULT_RETRY. * * NOTE: it should become possible to return VM_FAULT_RETRY * even if FAULT_FLAG_TRIED is set without leading to gup() * -EBUSY failures, if the userfaultfd is to be extended for * VM_UFFD_WP tracking and we intend to arm the userfault * without first stopping userland access to the memory. For * VM_UFFD_MISSING userfaults this is enough for now. */ if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { /* * Validate the invariant that nowait must allow retry * to be sure not to return SIGBUS erroneously on * nowait invocations. */ BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); #ifdef CONFIG_DEBUG_VM if (printk_ratelimit()) { printk(KERN_WARNING "FAULT_FLAG_ALLOW_RETRY missing %x\n", vmf->flags); dump_stack(); } #endif goto out; } /* * Handle nowait, not much to do other than tell it to retry * and wait. */ ret = VM_FAULT_RETRY; if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) goto out; /* take the reference before dropping the mmap_lock */ userfaultfd_ctx_get(ctx); init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); uwq.wq.private = current; uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, reason, ctx->features); uwq.ctx = ctx; uwq.waken = false; blocking_state = userfaultfd_get_blocking_state(vmf->flags); /* * Take the vma lock now, in order to safely call * userfaultfd_huge_must_wait() later. Since acquiring the * (sleepable) vma lock can modify the current task state, that * must be before explicitly calling set_current_state(). */ if (is_vm_hugetlb_page(vma)) hugetlb_vma_lock_read(vma); spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); /* * The smp_mb() after __set_current_state prevents the reads * following the spin_unlock to happen before the list_add in * __add_wait_queue. */ set_current_state(blocking_state); spin_unlock_irq(&ctx->fault_pending_wqh.lock); if (!is_vm_hugetlb_page(vma)) must_wait = userfaultfd_must_wait(ctx, vmf, reason); else must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); if (is_vm_hugetlb_page(vma)) hugetlb_vma_unlock_read(vma); release_fault_lock(vmf); if (likely(must_wait && !READ_ONCE(ctx->released))) { wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); } __set_current_state(TASK_RUNNING); /* * Here we race with the list_del; list_add in * userfaultfd_ctx_read(), however because we don't ever run * list_del_init() to refile across the two lists, the prev * and next pointers will never point to self. list_add also * would never let any of the two pointers to point to * self. So list_empty_careful won't risk to see both pointers * pointing to self at any time during the list refile. The * only case where list_del_init() is called is the full * removal in the wake function and there we don't re-list_add * and it's fine not to block on the spinlock. The uwq on this * kernel stack can be released after the list_del_init. */ if (!list_empty_careful(&uwq.wq.entry)) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * No need of list_del_init(), the uwq on the stack * will be freed shortly anyway. */ list_del(&uwq.wq.entry); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ userfaultfd_ctx_put(ctx); out: return ret; } static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { struct userfaultfd_ctx *release_new_ctx; if (WARN_ON_ONCE(current->flags & PF_EXITING)) goto out; ewq->ctx = ctx; init_waitqueue_entry(&ewq->wq, current); release_new_ctx = NULL; spin_lock_irq(&ctx->event_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->event_wqh, &ewq->wq); for (;;) { set_current_state(TASK_KILLABLE); if (ewq->msg.event == 0) break; if (READ_ONCE(ctx->released) || fatal_signal_pending(current)) { /* * &ewq->wq may be queued in fork_event, but * __remove_wait_queue ignores the head * parameter. It would be a problem if it * didn't. */ __remove_wait_queue(&ctx->event_wqh, &ewq->wq); if (ewq->msg.event == UFFD_EVENT_FORK) { struct userfaultfd_ctx *new; new = (struct userfaultfd_ctx *) (unsigned long) ewq->msg.arg.reserved.reserved1; release_new_ctx = new; } break; } spin_unlock_irq(&ctx->event_wqh.lock); wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); spin_lock_irq(&ctx->event_wqh.lock); } __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->event_wqh.lock); if (release_new_ctx) { userfaultfd_release_new(release_new_ctx); userfaultfd_ctx_put(release_new_ctx); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ out: atomic_dec(&ctx->mmap_changing); VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); userfaultfd_ctx_put(ctx); } static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { ewq->msg.event = 0; wake_up_locked(&ctx->event_wqh); __remove_wait_queue(&ctx->event_wqh, &ewq->wq); } int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) { struct userfaultfd_ctx *ctx = NULL, *octx; struct userfaultfd_fork_ctx *fctx; octx = vma->vm_userfaultfd_ctx.ctx; if (!octx) return 0; if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) { userfaultfd_reset_ctx(vma); return 0; } list_for_each_entry(fctx, fcs, list) if (fctx->orig == octx) { ctx = fctx->new; break; } if (!ctx) { fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); if (!fctx) return -ENOMEM; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) { kfree(fctx); return -ENOMEM; } refcount_set(&ctx->refcount, 1); ctx->flags = octx->flags; ctx->features = octx->features; ctx->released = false; init_rwsem(&ctx->map_changing_lock); atomic_set(&ctx->mmap_changing, 0); ctx->mm = vma->vm_mm; mmgrab(ctx->mm); userfaultfd_ctx_get(octx); down_write(&octx->map_changing_lock); atomic_inc(&octx->mmap_changing); up_write(&octx->map_changing_lock); fctx->orig = octx; fctx->new = ctx; list_add_tail(&fctx->list, fcs); } vma->vm_userfaultfd_ctx.ctx = ctx; return 0; } static void dup_fctx(struct userfaultfd_fork_ctx *fctx) { struct userfaultfd_ctx *ctx = fctx->orig; struct userfaultfd_wait_queue ewq; msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_FORK; ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; userfaultfd_event_wait_completion(ctx, &ewq); } void dup_userfaultfd_complete(struct list_head *fcs) { struct userfaultfd_fork_ctx *fctx, *n; list_for_each_entry_safe(fctx, n, fcs, list) { dup_fctx(fctx); list_del(&fctx->list); kfree(fctx); } } void dup_userfaultfd_fail(struct list_head *fcs) { struct userfaultfd_fork_ctx *fctx, *n; /* * An error has occurred on fork, we will tear memory down, but have * allocated memory for fctx's and raised reference counts for both the * original and child contexts (and on the mm for each as a result). * * These would ordinarily be taken care of by a user handling the event, * but we are no longer doing so, so manually clean up here. * * mm tear down will take care of cleaning up VMA contexts. */ list_for_each_entry_safe(fctx, n, fcs, list) { struct userfaultfd_ctx *octx = fctx->orig; struct userfaultfd_ctx *ctx = fctx->new; atomic_dec(&octx->mmap_changing); VM_BUG_ON(atomic_read(&octx->mmap_changing) < 0); userfaultfd_ctx_put(octx); userfaultfd_ctx_put(ctx); list_del(&fctx->list); kfree(fctx); } } void mremap_userfaultfd_prep(struct vm_area_struct *vma, struct vm_userfaultfd_ctx *vm_ctx) { struct userfaultfd_ctx *ctx; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx) return; if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { vm_ctx->ctx = ctx; userfaultfd_ctx_get(ctx); down_write(&ctx->map_changing_lock); atomic_inc(&ctx->mmap_changing); up_write(&ctx->map_changing_lock); } else { /* Drop uffd context if remap feature not enabled */ userfaultfd_reset_ctx(vma); } } void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, unsigned long from, unsigned long to, unsigned long len) { struct userfaultfd_ctx *ctx = vm_ctx->ctx; struct userfaultfd_wait_queue ewq; if (!ctx) return; if (to & ~PAGE_MASK) { userfaultfd_ctx_put(ctx); return; } msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMAP; ewq.msg.arg.remap.from = from; ewq.msg.arg.remap.to = to; ewq.msg.arg.remap.len = len; userfaultfd_event_wait_completion(ctx, &ewq); } bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue ewq; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) return true; userfaultfd_ctx_get(ctx); down_write(&ctx->map_changing_lock); atomic_inc(&ctx->mmap_changing); up_write(&ctx->map_changing_lock); mmap_read_unlock(mm); msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMOVE; ewq.msg.arg.remove.start = start; ewq.msg.arg.remove.end = end; userfaultfd_event_wait_completion(ctx, &ewq); return false; } static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, unsigned long start, unsigned long end) { struct userfaultfd_unmap_ctx *unmap_ctx; list_for_each_entry(unmap_ctx, unmaps, list) if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && unmap_ctx->end == end) return true; return false; } int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *unmaps) { struct userfaultfd_unmap_ctx *unmap_ctx; struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || has_unmap_ctx(ctx, unmaps, start, end)) return 0; unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); if (!unmap_ctx) return -ENOMEM; userfaultfd_ctx_get(ctx); down_write(&ctx->map_changing_lock); atomic_inc(&ctx->mmap_changing); up_write(&ctx->map_changing_lock); unmap_ctx->ctx = ctx; unmap_ctx->start = start; unmap_ctx->end = end; list_add_tail(&unmap_ctx->list, unmaps); return 0; } void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) { struct userfaultfd_unmap_ctx *ctx, *n; struct userfaultfd_wait_queue ewq; list_for_each_entry_safe(ctx, n, uf, list) { msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_UNMAP; ewq.msg.arg.remove.start = ctx->start; ewq.msg.arg.remove.end = ctx->end; userfaultfd_event_wait_completion(ctx->ctx, &ewq); list_del(&ctx->list); kfree(ctx); } } static int userfaultfd_release(struct inode *inode, struct file *file) { struct userfaultfd_ctx *ctx = file->private_data; struct mm_struct *mm = ctx->mm; /* len == 0 means wake all */ struct userfaultfd_wake_range range = { .len = 0, }; WRITE_ONCE(ctx->released, true); userfaultfd_release_all(mm, ctx); /* * After no new page faults can wait on this fault_*wqh, flush * the last page faults that may have been already waiting on * the fault_*wqh. */ spin_lock_irq(&ctx->fault_pending_wqh.lock); __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* Flush pending events that may still wait on event_wqh */ wake_up_all(&ctx->event_wqh); wake_up_poll(&ctx->fd_wqh, EPOLLHUP); userfaultfd_ctx_put(ctx); return 0; } /* fault_pending_wqh.lock must be hold by the caller */ static inline struct userfaultfd_wait_queue *find_userfault_in( wait_queue_head_t *wqh) { wait_queue_entry_t *wq; struct userfaultfd_wait_queue *uwq; lockdep_assert_held(&wqh->lock); uwq = NULL; if (!waitqueue_active(wqh)) goto out; /* walk in reverse to provide FIFO behavior to read userfaults */ wq = list_last_entry(&wqh->head, typeof(*wq), entry); uwq = container_of(wq, struct userfaultfd_wait_queue, wq); out: return uwq; } static inline struct userfaultfd_wait_queue *find_userfault( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->fault_pending_wqh); } static inline struct userfaultfd_wait_queue *find_userfault_evt( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->event_wqh); } static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) { struct userfaultfd_ctx *ctx = file->private_data; __poll_t ret; poll_wait(file, &ctx->fd_wqh, wait); if (!userfaultfd_is_initialized(ctx)) return EPOLLERR; /* * poll() never guarantees that read won't block. * userfaults can be waken before they're read(). */ if (unlikely(!(file->f_flags & O_NONBLOCK))) return EPOLLERR; /* * lockless access to see if there are pending faults * __pollwait last action is the add_wait_queue but * the spin_unlock would allow the waitqueue_active to * pass above the actual list_add inside * add_wait_queue critical section. So use a full * memory barrier to serialize the list_add write of * add_wait_queue() with the waitqueue_active read * below. */ ret = 0; smp_mb(); if (waitqueue_active(&ctx->fault_pending_wqh)) ret = EPOLLIN; else if (waitqueue_active(&ctx->event_wqh)) ret = EPOLLIN; return ret; } static const struct file_operations userfaultfd_fops; static int resolve_userfault_fork(struct userfaultfd_ctx *new, struct inode *inode, struct uffd_msg *msg) { int fd; fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); if (fd < 0) return fd; msg->arg.reserved.reserved1 = 0; msg->arg.fork.ufd = fd; return 0; } static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, struct uffd_msg *msg, struct inode *inode) { ssize_t ret; DECLARE_WAITQUEUE(wait, current); struct userfaultfd_wait_queue *uwq; /* * Handling fork event requires sleeping operations, so * we drop the event_wqh lock, then do these ops, then * lock it back and wake up the waiter. While the lock is * dropped the ewq may go away so we keep track of it * carefully. */ LIST_HEAD(fork_event); struct userfaultfd_ctx *fork_nctx = NULL; /* always take the fd_wqh lock before the fault_pending_wqh lock */ spin_lock_irq(&ctx->fd_wqh.lock); __add_wait_queue(&ctx->fd_wqh, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&ctx->fault_pending_wqh.lock); uwq = find_userfault(ctx); if (uwq) { /* * Use a seqcount to repeat the lockless check * in wake_userfault() to avoid missing * wakeups because during the refile both * waitqueue could become empty if this is the * only userfault. */ write_seqcount_begin(&ctx->refile_seq); /* * The fault_pending_wqh.lock prevents the uwq * to disappear from under us. * * Refile this userfault from * fault_pending_wqh to fault_wqh, it's not * pending anymore after we read it. * * Use list_del() by hand (as * userfaultfd_wake_function also uses * list_del_init() by hand) to be sure nobody * changes __remove_wait_queue() to use * list_del_init() in turn breaking the * !list_empty_careful() check in * handle_userfault(). The uwq->wq.head list * must never be empty at any time during the * refile, or the waitqueue could disappear * from under us. The "wait_queue_head_t" * parameter of __remove_wait_queue() is unused * anyway. */ list_del(&uwq->wq.entry); add_wait_queue(&ctx->fault_wqh, &uwq->wq); write_seqcount_end(&ctx->refile_seq); /* careful to always initialize msg if ret == 0 */ *msg = uwq->msg; spin_unlock(&ctx->fault_pending_wqh.lock); ret = 0; break; } spin_unlock(&ctx->fault_pending_wqh.lock); spin_lock(&ctx->event_wqh.lock); uwq = find_userfault_evt(ctx); if (uwq) { *msg = uwq->msg; if (uwq->msg.event == UFFD_EVENT_FORK) { fork_nctx = (struct userfaultfd_ctx *) (unsigned long) uwq->msg.arg.reserved.reserved1; list_move(&uwq->wq.entry, &fork_event); /* * fork_nctx can be freed as soon as * we drop the lock, unless we take a * reference on it. */ userfaultfd_ctx_get(fork_nctx); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } userfaultfd_event_complete(ctx, uwq); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } spin_unlock(&ctx->event_wqh.lock); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } if (no_wait) { ret = -EAGAIN; break; } spin_unlock_irq(&ctx->fd_wqh.lock); schedule(); spin_lock_irq(&ctx->fd_wqh.lock); } __remove_wait_queue(&ctx->fd_wqh, &wait); __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->fd_wqh.lock); if (!ret && msg->event == UFFD_EVENT_FORK) { ret = resolve_userfault_fork(fork_nctx, inode, msg); spin_lock_irq(&ctx->event_wqh.lock); if (!list_empty(&fork_event)) { /* * The fork thread didn't abort, so we can * drop the temporary refcount. */ userfaultfd_ctx_put(fork_nctx); uwq = list_first_entry(&fork_event, typeof(*uwq), wq.entry); /* * If fork_event list wasn't empty and in turn * the event wasn't already released by fork * (the event is allocated on fork kernel * stack), put the event back to its place in * the event_wq. fork_event head will be freed * as soon as we return so the event cannot * stay queued there no matter the current * "ret" value. */ list_del(&uwq->wq.entry); __add_wait_queue(&ctx->event_wqh, &uwq->wq); /* * Leave the event in the waitqueue and report * error to userland if we failed to resolve * the userfault fork. */ if (likely(!ret)) userfaultfd_event_complete(ctx, uwq); } else { /* * Here the fork thread aborted and the * refcount from the fork thread on fork_nctx * has already been released. We still hold * the reference we took before releasing the * lock above. If resolve_userfault_fork * failed we've to drop it because the * fork_nctx has to be freed in such case. If * it succeeded we'll hold it because the new * uffd references it. */ if (ret) userfaultfd_ctx_put(fork_nctx); } spin_unlock_irq(&ctx->event_wqh.lock); } return ret; } static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct userfaultfd_ctx *ctx = file->private_data; ssize_t _ret, ret = 0; struct uffd_msg msg; struct inode *inode = file_inode(file); bool no_wait; if (!userfaultfd_is_initialized(ctx)) return -EINVAL; no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT; for (;;) { if (iov_iter_count(to) < sizeof(msg)) return ret ? ret : -EINVAL; _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); if (_ret < 0) return ret ? ret : _ret; _ret = !copy_to_iter_full(&msg, sizeof(msg), to); if (_ret) return ret ? ret : -EFAULT; ret += sizeof(msg); /* * Allow to read more than one fault at time but only * block if waiting for the very first one. */ no_wait = true; } } static void __wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* wake all in the range and autoremove */ if (waitqueue_active(&ctx->fault_pending_wqh)) __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, range); if (waitqueue_active(&ctx->fault_wqh)) __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { unsigned seq; bool need_wakeup; /* * To be sure waitqueue_active() is not reordered by the CPU * before the pagetable update, use an explicit SMP memory * barrier here. PT lock release or mmap_read_unlock(mm) still * have release semantics that can allow the * waitqueue_active() to be reordered before the pte update. */ smp_mb(); /* * Use waitqueue_active because it's very frequent to * change the address space atomically even if there are no * userfaults yet. So we take the spinlock only when we're * sure we've userfaults to wake. */ do { seq = read_seqcount_begin(&ctx->refile_seq); need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || waitqueue_active(&ctx->fault_wqh); cond_resched(); } while (read_seqcount_retry(&ctx->refile_seq, seq)); if (need_wakeup) __wake_userfault(ctx, range); } static __always_inline int validate_unaligned_range( struct mm_struct *mm, __u64 start, __u64 len) { __u64 task_size = mm->task_size; if (len & ~PAGE_MASK) return -EINVAL; if (!len) return -EINVAL; if (start < mmap_min_addr) return -EINVAL; if (start >= task_size) return -EINVAL; if (len > task_size - start) return -EINVAL; if (start + len <= start) return -EINVAL; return 0; } static __always_inline int validate_range(struct mm_struct *mm, __u64 start, __u64 len) { if (start & ~PAGE_MASK) return -EINVAL; return validate_unaligned_range(mm, start, len); } static int userfaultfd_register(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *cur; int ret; struct uffdio_register uffdio_register; struct uffdio_register __user *user_uffdio_register; unsigned long vm_flags; bool found; bool basic_ioctls; unsigned long start, end; struct vma_iterator vmi; bool wp_async = userfaultfd_wp_async_ctx(ctx); user_uffdio_register = (struct uffdio_register __user *) arg; ret = -EFAULT; if (copy_from_user(&uffdio_register, user_uffdio_register, sizeof(uffdio_register)-sizeof(__u64))) goto out; ret = -EINVAL; if (!uffdio_register.mode) goto out; if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) goto out; vm_flags = 0; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) vm_flags |= VM_UFFD_MISSING; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP goto out; #endif vm_flags |= VM_UFFD_WP; } if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR goto out; #endif vm_flags |= VM_UFFD_MINOR; } ret = validate_range(mm, uffdio_register.range.start, uffdio_register.range.len); if (ret) goto out; start = uffdio_register.range.start; end = start + uffdio_register.range.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; ret = -EINVAL; mmap_write_lock(mm); vma_iter_init(&vmi, mm, start); vma = vma_find(&vmi, end); if (!vma) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; basic_ioctls = false; cur = vma; do { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & __VM_UFFD_FLAGS)); /* check not compatible vmas */ ret = -EINVAL; if (!vma_can_userfault(cur, vm_flags, wp_async)) goto out_unlock; /* * UFFDIO_COPY will fill file holes even without * PROT_WRITE. This check enforces that if this is a * MAP_SHARED, the process has write permission to the backing * file. If VM_MAYWRITE is set it also enforces that on a * MAP_SHARED vma: there is no F_WRITE_SEAL and no further * F_WRITE_SEAL can be taken until the vma is destroyed. */ ret = -EPERM; if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) goto out_unlock; /* * If this vma contains ending address, and huge pages * check alignment. */ if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && end > cur->vm_start) { unsigned long vma_hpagesize = vma_kernel_pagesize(cur); ret = -EINVAL; if (end & (vma_hpagesize - 1)) goto out_unlock; } if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) goto out_unlock; /* * Check that this vma isn't already owned by a * different userfaultfd. We can't allow more than one * userfaultfd to own a single vma simultaneously or we * wouldn't know which one to deliver the userfaults to. */ ret = -EBUSY; if (cur->vm_userfaultfd_ctx.ctx && cur->vm_userfaultfd_ctx.ctx != ctx) goto out_unlock; /* * Note vmas containing huge pages */ if (is_vm_hugetlb_page(cur)) basic_ioctls = true; found = true; } for_each_vma_range(vmi, cur, end); BUG_ON(!found); ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end, wp_async); out_unlock: mmap_write_unlock(mm); mmput(mm); if (!ret) { __u64 ioctls_out; ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : UFFD_API_RANGE_IOCTLS; /* * Declare the WP ioctl only if the WP mode is * specified and all checks passed with the range */ if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); /* CONTINUE ioctl is only supported for MINOR ranges. */ if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); /* * Now that we scanned all vmas we can already tell * userland which ioctls methods are guaranteed to * succeed on this range. */ if (put_user(ioctls_out, &user_uffdio_register->ioctls)) ret = -EFAULT; } out: return ret; } static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev, *cur; int ret; struct uffdio_range uffdio_unregister; bool found; unsigned long start, end, vma_end; const void __user *buf = (void __user *)arg; struct vma_iterator vmi; bool wp_async = userfaultfd_wp_async_ctx(ctx); ret = -EFAULT; if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) goto out; ret = validate_range(mm, uffdio_unregister.start, uffdio_unregister.len); if (ret) goto out; start = uffdio_unregister.start; end = start + uffdio_unregister.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; mmap_write_lock(mm); ret = -EINVAL; vma_iter_init(&vmi, mm, start); vma = vma_find(&vmi, end); if (!vma) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; cur = vma; do { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & __VM_UFFD_FLAGS)); /* * Check not compatible vmas, not strictly required * here as not compatible vmas cannot have an * userfaultfd_ctx registered on them, but this * provides for more strict behavior to notice * unregistration errors. */ if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) goto out_unlock; found = true; } for_each_vma_range(vmi, cur, end); BUG_ON(!found); vma_iter_set(&vmi, start); prev = vma_prev(&vmi); if (vma->vm_start < start) prev = vma; ret = 0; for_each_vma_range(vmi, vma, end) { cond_resched(); BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async)); /* * Nothing to do: this vma is already registered into this * userfaultfd and with the right tracking mode too. */ if (!vma->vm_userfaultfd_ctx.ctx) goto skip; WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); if (vma->vm_start > start) start = vma->vm_start; vma_end = min(end, vma->vm_end); if (userfaultfd_missing(vma)) { /* * Wake any concurrent pending userfault while * we unregister, so they will not hang * permanently and it avoids userland to call * UFFDIO_WAKE explicitly. */ struct userfaultfd_wake_range range; range.start = start; range.len = vma_end - start; wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); } vma = userfaultfd_clear_vma(&vmi, prev, vma, start, vma_end); if (IS_ERR(vma)) { ret = PTR_ERR(vma); break; } skip: prev = vma; start = vma->vm_end; } out_unlock: mmap_write_unlock(mm); mmput(mm); out: return ret; } /* * userfaultfd_wake may be used in combination with the * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. */ static int userfaultfd_wake(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_range uffdio_wake; struct userfaultfd_wake_range range; const void __user *buf = (void __user *)arg; ret = -EFAULT; if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) goto out; ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); if (ret) goto out; range.start = uffdio_wake.start; range.len = uffdio_wake.len; /* * len == 0 means wake all and we don't want to wake all here, * so check it again to be sure. */ VM_BUG_ON(!range.len); wake_userfault(ctx, &range); ret = 0; out: return ret; } static int userfaultfd_copy(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_copy uffdio_copy; struct uffdio_copy __user *user_uffdio_copy; struct userfaultfd_wake_range range; uffd_flags_t flags = 0; user_uffdio_copy = (struct uffdio_copy __user *) arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_copy, user_uffdio_copy, /* don't copy "copy" last field */ sizeof(uffdio_copy)-sizeof(__s64))) goto out; ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, uffdio_copy.len); if (ret) goto out; ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); if (ret) goto out; ret = -EINVAL; if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) goto out; if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) flags |= MFILL_ATOMIC_WP; if (mmget_not_zero(ctx->mm)) { ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src, uffdio_copy.len, flags); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_copy->copy))) return -EFAULT; if (ret < 0) goto out; BUG_ON(!ret); /* len == 0 would wake all */ range.len = ret; if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { range.start = uffdio_copy.dst; wake_userfault(ctx, &range); } ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_zeropage uffdio_zeropage; struct uffdio_zeropage __user *user_uffdio_zeropage; struct userfaultfd_wake_range range; user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, /* don't copy "zeropage" last field */ sizeof(uffdio_zeropage)-sizeof(__s64))) goto out; ret = validate_range(ctx->mm, uffdio_zeropage.range.start, uffdio_zeropage.range.len); if (ret) goto out; ret = -EINVAL; if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) goto out; if (mmget_not_zero(ctx->mm)) { ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start, uffdio_zeropage.range.len); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { range.start = uffdio_zeropage.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_writeprotect uffdio_wp; struct uffdio_writeprotect __user *user_uffdio_wp; struct userfaultfd_wake_range range; bool mode_wp, mode_dontwake; if (atomic_read(&ctx->mmap_changing)) return -EAGAIN; user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; if (copy_from_user(&uffdio_wp, user_uffdio_wp, sizeof(struct uffdio_writeprotect))) return -EFAULT; ret = validate_range(ctx->mm, uffdio_wp.range.start, uffdio_wp.range.len); if (ret) return ret; if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | UFFDIO_WRITEPROTECT_MODE_WP)) return -EINVAL; mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; if (mode_wp && mode_dontwake) return -EINVAL; if (mmget_not_zero(ctx->mm)) { ret = mwriteprotect_range(ctx, uffdio_wp.range.start, uffdio_wp.range.len, mode_wp); mmput(ctx->mm); } else { return -ESRCH; } if (ret) return ret; if (!mode_wp && !mode_dontwake) { range.start = uffdio_wp.range.start; range.len = uffdio_wp.range.len; wake_userfault(ctx, &range); } return ret; } static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_continue uffdio_continue; struct uffdio_continue __user *user_uffdio_continue; struct userfaultfd_wake_range range; uffd_flags_t flags = 0; user_uffdio_continue = (struct uffdio_continue __user *)arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_continue, user_uffdio_continue, /* don't copy the output fields */ sizeof(uffdio_continue) - (sizeof(__s64)))) goto out; ret = validate_range(ctx->mm, uffdio_continue.range.start, uffdio_continue.range.len); if (ret) goto out; ret = -EINVAL; if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | UFFDIO_CONTINUE_MODE_WP)) goto out; if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) flags |= MFILL_ATOMIC_WP; if (mmget_not_zero(ctx->mm)) { ret = mfill_atomic_continue(ctx, uffdio_continue.range.start, uffdio_continue.range.len, flags); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { range.start = uffdio_continue.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; out: return ret; } static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_poison uffdio_poison; struct uffdio_poison __user *user_uffdio_poison; struct userfaultfd_wake_range range; user_uffdio_poison = (struct uffdio_poison __user *)arg; ret = -EAGAIN; if (atomic_read(&ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_poison, user_uffdio_poison, /* don't copy the output fields */ sizeof(uffdio_poison) - (sizeof(__s64)))) goto out; ret = validate_range(ctx->mm, uffdio_poison.range.start, uffdio_poison.range.len); if (ret) goto out; ret = -EINVAL; if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) goto out; if (mmget_not_zero(ctx->mm)) { ret = mfill_atomic_poison(ctx, uffdio_poison.range.start, uffdio_poison.range.len, 0); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_poison->updated))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { range.start = uffdio_poison.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; out: return ret; } bool userfaultfd_wp_async(struct vm_area_struct *vma) { return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); } static inline unsigned int uffd_ctx_features(__u64 user_features) { /* * For the current set of features the bits just coincide. Set * UFFD_FEATURE_INITIALIZED to mark the features as enabled. */ return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; } static int userfaultfd_move(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_move uffdio_move; struct uffdio_move __user *user_uffdio_move; struct userfaultfd_wake_range range; struct mm_struct *mm = ctx->mm; user_uffdio_move = (struct uffdio_move __user *) arg; if (atomic_read(&ctx->mmap_changing)) return -EAGAIN; if (copy_from_user(&uffdio_move, user_uffdio_move, /* don't copy "move" last field */ sizeof(uffdio_move)-sizeof(__s64))) return -EFAULT; /* Do not allow cross-mm moves. */ if (mm != current->mm) return -EINVAL; ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); if (ret) return ret; ret = validate_range(mm, uffdio_move.src, uffdio_move.len); if (ret) return ret; if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| UFFDIO_MOVE_MODE_DONTWAKE)) return -EINVAL; if (mmget_not_zero(mm)) { ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src, uffdio_move.len, uffdio_move.mode); mmput(mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_move->move))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ VM_WARN_ON(!ret); range.len = ret; if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { range.start = uffdio_move.dst; wake_userfault(ctx, &range); } ret = range.len == uffdio_move.len ? 0 : -EAGAIN; out: return ret; } /* * userland asks for a certain API version and we return which bits * and ioctl commands are implemented in this kernel for such API * version or -EINVAL if unknown. */ static int userfaultfd_api(struct userfaultfd_ctx *ctx, unsigned long arg) { struct uffdio_api uffdio_api; void __user *buf = (void __user *)arg; unsigned int ctx_features; int ret; __u64 features; ret = -EFAULT; if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) goto out; features = uffdio_api.features; ret = -EINVAL; if (uffdio_api.api != UFFD_API) goto err_out; ret = -EPERM; if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) goto err_out; /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ if (features & UFFD_FEATURE_WP_ASYNC) features |= UFFD_FEATURE_WP_UNPOPULATED; /* report all available features and ioctls to userland */ uffdio_api.features = UFFD_API_FEATURES; #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR uffdio_api.features &= ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); #endif #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; #endif #ifndef CONFIG_PTE_MARKER_UFFD_WP uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; #endif ret = -EINVAL; if (features & ~uffdio_api.features) goto err_out; uffdio_api.ioctls = UFFD_API_IOCTLS; ret = -EFAULT; if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) goto out; /* only enable the requested features for this uffd context */ ctx_features = uffd_ctx_features(features); ret = -EINVAL; if (cmpxchg(&ctx->features, 0, ctx_features) != 0) goto err_out; ret = 0; out: return ret; err_out: memset(&uffdio_api, 0, sizeof(uffdio_api)); if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) ret = -EFAULT; goto out; } static long userfaultfd_ioctl(struct file *file, unsigned cmd, unsigned long arg) { int ret = -EINVAL; struct userfaultfd_ctx *ctx = file->private_data; if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) return -EINVAL; switch(cmd) { case UFFDIO_API: ret = userfaultfd_api(ctx, arg); break; case UFFDIO_REGISTER: ret = userfaultfd_register(ctx, arg); break; case UFFDIO_UNREGISTER: ret = userfaultfd_unregister(ctx, arg); break; case UFFDIO_WAKE: ret = userfaultfd_wake(ctx, arg); break; case UFFDIO_COPY: ret = userfaultfd_copy(ctx, arg); break; case UFFDIO_ZEROPAGE: ret = userfaultfd_zeropage(ctx, arg); break; case UFFDIO_MOVE: ret = userfaultfd_move(ctx, arg); break; case UFFDIO_WRITEPROTECT: ret = userfaultfd_writeprotect(ctx, arg); break; case UFFDIO_CONTINUE: ret = userfaultfd_continue(ctx, arg); break; case UFFDIO_POISON: ret = userfaultfd_poison(ctx, arg); break; } return ret; } #ifdef CONFIG_PROC_FS static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) { struct userfaultfd_ctx *ctx = f->private_data; wait_queue_entry_t *wq; unsigned long pending = 0, total = 0; spin_lock_irq(&ctx->fault_pending_wqh.lock); list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { pending++; total++; } list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { total++; } spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* * If more protocols will be added, there will be all shown * separated by a space. Like this: * protocols: aa:... bb:... */ seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", pending, total, UFFD_API, ctx->features, UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); } #endif static const struct file_operations userfaultfd_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = userfaultfd_show_fdinfo, #endif .release = userfaultfd_release, .poll = userfaultfd_poll, .read_iter = userfaultfd_read_iter, .unlocked_ioctl = userfaultfd_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static void init_once_userfaultfd_ctx(void *mem) { struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; init_waitqueue_head(&ctx->fault_pending_wqh); init_waitqueue_head(&ctx->fault_wqh); init_waitqueue_head(&ctx->event_wqh); init_waitqueue_head(&ctx->fd_wqh); seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); } static int new_userfaultfd(int flags) { struct userfaultfd_ctx *ctx; struct file *file; int fd; BUG_ON(!current->mm); /* Check the UFFD_* constants for consistency. */ BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) return -EINVAL; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) return -ENOMEM; refcount_set(&ctx->refcount, 1); ctx->flags = flags; ctx->features = 0; ctx->released = false; init_rwsem(&ctx->map_changing_lock); atomic_set(&ctx->mmap_changing, 0); ctx->mm = current->mm; fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); if (fd < 0) goto err_out; /* Create a new inode so that the LSM can block the creation. */ file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx, O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); if (IS_ERR(file)) { put_unused_fd(fd); fd = PTR_ERR(file); goto err_out; } /* prevent the mm struct to be freed */ mmgrab(ctx->mm); file->f_mode |= FMODE_NOWAIT; fd_install(fd, file); return fd; err_out: kmem_cache_free(userfaultfd_ctx_cachep, ctx); return fd; } static inline bool userfaultfd_syscall_allowed(int flags) { /* Userspace-only page faults are always allowed */ if (flags & UFFD_USER_MODE_ONLY) return true; /* * The user is requesting a userfaultfd which can handle kernel faults. * Privileged users are always allowed to do this. */ if (capable(CAP_SYS_PTRACE)) return true; /* Otherwise, access to kernel fault handling is sysctl controlled. */ return sysctl_unprivileged_userfaultfd; } SYSCALL_DEFINE1(userfaultfd, int, flags) { if (!userfaultfd_syscall_allowed(flags)) return -EPERM; return new_userfaultfd(flags); } static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) { if (cmd != USERFAULTFD_IOC_NEW) return -EINVAL; return new_userfaultfd(flags); } static const struct file_operations userfaultfd_dev_fops = { .unlocked_ioctl = userfaultfd_dev_ioctl, .compat_ioctl = userfaultfd_dev_ioctl, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice userfaultfd_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "userfaultfd", .fops = &userfaultfd_dev_fops }; static int __init userfaultfd_init(void) { int ret; ret = misc_register(&userfaultfd_misc); if (ret) return ret; userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", sizeof(struct userfaultfd_ctx), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, init_once_userfaultfd_ctx); #ifdef CONFIG_SYSCTL register_sysctl_init("vm", vm_userfaultfd_table); #endif return 0; } __initcall(userfaultfd_init); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner */ #ifndef _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ #define _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ #include "main.h" #include <linux/kref.h> #include <linux/netlink.h> #include <linux/skbuff.h> #include <linux/types.h> #include <uapi/linux/batadv_packet.h> void batadv_gw_check_client_stop(struct batadv_priv *bat_priv); void batadv_gw_reselect(struct batadv_priv *bat_priv); void batadv_gw_election(struct batadv_priv *bat_priv); struct batadv_orig_node * batadv_gw_get_selected_orig(struct batadv_priv *bat_priv); void batadv_gw_check_election(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); void batadv_gw_node_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway); void batadv_gw_node_delete(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); void batadv_gw_node_free(struct batadv_priv *bat_priv); void batadv_gw_node_release(struct kref *ref); struct batadv_gw_node * batadv_gw_get_selected_gw_node(struct batadv_priv *bat_priv); int batadv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb); bool batadv_gw_out_of_range(struct batadv_priv *bat_priv, struct sk_buff *skb); enum batadv_dhcp_recipient batadv_gw_dhcp_recipient_get(struct sk_buff *skb, unsigned int *header_len, u8 *chaddr); struct batadv_gw_node *batadv_gw_node_get(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); /** * batadv_gw_node_put() - decrement the gw_node refcounter and possibly release * it * @gw_node: gateway node to free */ static inline void batadv_gw_node_put(struct batadv_gw_node *gw_node) { if (!gw_node) return; kref_put(&gw_node->refcount, batadv_gw_node_release); } #endif /* _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include <linux/bio-integrity.h> #include <linux/blk-crypto.h> #include <linux/lockdep.h> #include <linux/memblock.h> /* for max_pfn/max_low_pfn */ #include <linux/sched/sysctl.h> #include <linux/timekeeping.h> #include <xen/xen.h> #include "blk-crypto-internal.h" struct elevator_type; #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9) /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { spinlock_t mq_flush_lock; unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; unsigned long flush_data_in_flight; struct request *flush_rq; }; bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); bool blk_queue_start_drain(struct request_queue *q); bool __blk_freeze_queue_start(struct request_queue *q, struct task_struct *owner); int __bio_queue_enter(struct request_queue *q, struct bio *bio); void submit_bio_noacct_nocheck(struct bio *bio); void bio_await_chain(struct bio *bio); static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) { rcu_read_lock(); if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) goto fail; /* * The code that increments the pm_only counter must ensure that the * counter is globally visible before the queue is unfrozen. */ if (blk_queue_pm_only(q) && (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) goto fail_put; rcu_read_unlock(); return true; fail_put: blk_queue_exit(q); fail: rcu_read_unlock(); return false; } static inline int bio_queue_enter(struct bio *bio) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); if (blk_try_enter_queue(q, false)) { rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_); rwsem_release(&q->io_lockdep_map, _RET_IP_); return 0; } return __bio_queue_enter(q, bio); } static inline void blk_wait_io(struct completion *done) { /* Prevent hang_check timer from firing at us during very long I/O */ unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; if (timeout) while (!wait_for_completion_io_timeout(done, timeout)) ; else wait_for_completion_io(done); } #define BIO_INLINE_VECS 4 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, gfp_t gfp_mask); void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, struct page *page, unsigned len, unsigned offset, bool *same_page); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = bvec_phys(vec1); phys_addr_t addr2 = bvec_phys(vec2); /* * Merging adjacent physical pages may not work correctly under KMSAN * if their metadata pages aren't adjacent. Just disable merging. */ if (IS_ENABLED(CONFIG_KMSAN)) return false; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, struct bio_vec *bprv, unsigned int offset) { return (offset & lim->virt_boundary_mask) || ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(const struct queue_limits *lim, struct bio_vec *bprv, unsigned int offset) { if (!lim->virt_boundary_mask) return false; return __bvec_gap_to_prev(lim, bprv, offset); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } /* * There are two different ways to handle DISCARD merges: * 1) If max_discard_segments > 1, the driver treats every bio as a range and * send the bios to controller together. The ranges don't need to be * contiguous. * 2) Otherwise, the request will be normal read/write requests. The ranges * need to be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline unsigned int blk_rq_get_max_segments(struct request *rq) { if (req_op(rq) == REQ_OP_DISCARD) return queue_max_discard_segments(rq->q); return queue_max_segments(rq->q); } static inline unsigned int blk_queue_get_max_sectors(struct request *rq) { struct request_queue *q = rq->q; enum req_op op = req_op(rq); if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; if (rq->cmd_flags & REQ_ATOMIC) return q->limits.atomic_write_max_sectors; return q->limits.max_sectors; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); void bio_integrity_free(struct bio *bio); /* * Integrity payloads can either be owned by the submitter, in which case * bio_uninit will free them, or owned and generated by the block layer, * in which case we'll verify them here (for reads) and free them before * the bio is handed back to the submitted. */ bool __bio_integrity_endio(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(&req->q->limits, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(&req->q->limits, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } extern const struct attribute_group blk_integrity_attr_group; #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); enum bio_merge_status { BIO_MERGE_OK, BIO_MERGE_NONE, BIO_MERGE_FAILED, }; enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) bool blk_insert_flush(struct request *rq); int elevator_switch(struct request_queue *q, struct elevator_type *new_e); void elevator_disable(struct request_queue *q); void elevator_exit(struct request_queue *q); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs); struct bio *bio_split_write_zeroes(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs); struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs); struct bio *bio_split_zone_append(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs); /* * All drivers must accept single-segments bios that are smaller than PAGE_SIZE. * * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is * always valid if a bio has data. The check might lead to occasional false * positives when bios are cloned, but compared to the performance impact of * cloned bios themselves the loop below doesn't matter anyway. */ static inline bool bio_may_need_split(struct bio *bio, const struct queue_limits *lim) { return lim->chunk_sectors || bio->bi_vcnt != 1 || bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; } /** * __bio_split_to_limits - split a bio to fit the queue limits * @bio: bio to be split * @lim: queue limits to split based on * @nr_segs: returns the number of segments in the returned bio * * Check if @bio needs splitting based on the queue limits, and if so split off * a bio fitting the limits from the beginning of @bio and return it. @bio is * shortened to the remainder and re-submitted. * * The split bio is allocated from @q->bio_split, which is provided by the * block layer. */ static inline struct bio *__bio_split_to_limits(struct bio *bio, const struct queue_limits *lim, unsigned int *nr_segs) { switch (bio_op(bio)) { case REQ_OP_READ: case REQ_OP_WRITE: if (bio_may_need_split(bio, lim)) return bio_split_rw(bio, lim, nr_segs); *nr_segs = 1; return bio; case REQ_OP_ZONE_APPEND: return bio_split_zone_append(bio, lim, nr_segs); case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: return bio_split_discard(bio, lim, nr_segs); case REQ_OP_WRITE_ZEROES: return bio_split_write_zeroes(bio, lim, nr_segs); default: /* other operations can't be split */ *nr_segs = 0; return bio; } } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_set_default_limits(struct queue_limits *lim); void blk_apply_bdi_limits(struct backing_dev_info *bdi, struct queue_limits *lim); int blk_dev_init(void); void update_io_ticks(struct block_device *part, unsigned long now, bool end); unsigned int part_in_flight(struct block_device *part); static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * Internal io_context interface */ struct io_cq *ioc_find_get_icq(struct request_queue *q); struct io_cq *ioc_lookup_icq(struct request_queue *q); #ifdef CONFIG_BLK_ICQ void ioc_clear_queue(struct request_queue *q); #else static inline void ioc_clear_queue(struct request_queue *q) { } #endif /* CONFIG_BLK_ICQ */ struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); static inline bool blk_queue_may_bounce(struct request_queue *q) { return IS_ENABLED(CONFIG_BOUNCE) && (q->limits.features & BLK_FEAT_BOUNCE_HIGH) && max_low_pfn >= max_pfn; } static inline struct bio *blk_queue_bounce(struct bio *bio, struct request_queue *q) { if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) return __blk_queue_bounce(bio, q); return bio; } #ifdef CONFIG_BLK_DEV_ZONED void disk_init_zone_resources(struct gendisk *disk); void disk_free_zone_resources(struct gendisk *disk); static inline bool bio_zone_write_plugging(struct bio *bio) { return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); } void blk_zone_write_plug_bio_merged(struct bio *bio); void blk_zone_write_plug_init_request(struct request *rq); static inline void blk_zone_update_request_bio(struct request *rq, struct bio *bio) { /* * For zone append requests, the request sector indicates the location * at which the BIO data was written. Return this value to the BIO * issuer through the BIO iter sector. * For plugged zone writes, which include emulated zone append, we need * the original BIO sector so that blk_zone_write_plug_bio_endio() can * lookup the zone write plug. */ if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio)) bio->bi_iter.bi_sector = rq->__sector; } void blk_zone_write_plug_bio_endio(struct bio *bio); static inline void blk_zone_bio_endio(struct bio *bio) { /* * For write BIOs to zoned devices, signal the completion of the BIO so * that the next write BIO can be submitted by zone write plugging. */ if (bio_zone_write_plugging(bio)) blk_zone_write_plug_bio_endio(bio); } void blk_zone_write_plug_finish_request(struct request *rq); static inline void blk_zone_finish_request(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING) blk_zone_write_plug_finish_request(rq); } int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, unsigned long arg); int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline void disk_init_zone_resources(struct gendisk *disk) { } static inline void disk_free_zone_resources(struct gendisk *disk) { } static inline bool bio_zone_write_plugging(struct bio *bio) { return false; } static inline void blk_zone_write_plug_bio_merged(struct bio *bio) { } static inline void blk_zone_write_plug_init_request(struct request *rq) { } static inline void blk_zone_update_request_bio(struct request *rq, struct bio *bio) { } static inline void blk_zone_bio_endio(struct bio *bio) { } static inline void blk_zone_finish_request(struct request *rq) { } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); void bdev_add(struct block_device *bdev, dev_t dev); void bdev_unhash(struct block_device *bdev); void bdev_drop(struct block_device *bdev); int blk_alloc_ext_minor(void); void blk_free_ext_minor(unsigned int minor); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 #define ADDPART_FLAG_READONLY 4 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); int bdev_del_partition(struct gendisk *disk, int partno); int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, sector_t length); void drop_partition(struct block_device *part); void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, struct lock_class_key *lkclass); /* * Clean up a page appropriately, where the page may be pinned, may have a * ref taken on it or neither. */ static inline void bio_release_page(struct bio *bio, struct page *page) { if (bio_flagged(bio, BIO_PAGE_PINNED)) unpin_user_page(page); } struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id); int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); int disk_alloc_events(struct gendisk *disk); void disk_add_events(struct gendisk *disk); void disk_del_events(struct gendisk *disk); void disk_release_events(struct gendisk *disk); void disk_block_events(struct gendisk *disk); void disk_unblock_events(struct gendisk *disk); void disk_flush_events(struct gendisk *disk, unsigned int mask); extern struct device_attribute dev_attr_events; extern struct device_attribute dev_attr_events_async; extern struct device_attribute dev_attr_events_poll_msecs; extern struct attribute_group blk_trace_attr_group; blk_mode_t file_to_blk_mode(struct file *file); int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, loff_t lstart, loff_t lend); long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags); long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); extern const struct address_space_operations def_blk_aops; int disk_register_independent_access_ranges(struct gendisk *disk); void disk_unregister_independent_access_ranges(struct gendisk *disk); #ifdef CONFIG_FAIL_MAKE_REQUEST bool should_fail_request(struct block_device *part, unsigned int bytes); #else /* CONFIG_FAIL_MAKE_REQUEST */ static inline bool should_fail_request(struct block_device *part, unsigned int bytes) { return false; } #endif /* CONFIG_FAIL_MAKE_REQUEST */ /* * Optimized request reference counting. Ideally we'd make timeouts be more * clever, as that's the only reason we need references at all... But until * this happens, this is faster than using refcount_t. Also see: * * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") */ #define req_ref_zero_or_close_to_overflow(req) \ ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) static inline bool req_ref_inc_not_zero(struct request *req) { return atomic_inc_not_zero(&req->ref); } static inline bool req_ref_put_and_test(struct request *req) { WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); return atomic_dec_and_test(&req->ref); } static inline void req_ref_set(struct request *req, int value) { atomic_set(&req->ref, value); } static inline int req_ref_read(struct request *req) { return atomic_read(&req->ref); } static inline u64 blk_time_get_ns(void) { struct blk_plug *plug = current->plug; if (!plug || !in_task()) return ktime_get_ns(); /* * 0 could very well be a valid time, but rather than flag "this is * a valid timestamp" separately, just accept that we'll do an extra * ktime_get_ns() if we just happen to get 0 as the current time. */ if (!plug->cur_ktime) { plug->cur_ktime = ktime_get_ns(); current->flags |= PF_BLOCK_TS; } return plug->cur_ktime; } static inline ktime_t blk_time_get(void) { return ns_to_ktime(blk_time_get_ns()); } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } void bdev_release(struct file *bdev_file); int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops, struct file *bdev_file); int bdev_permission(dev_t dev, blk_mode_t mode, void *holder); void blk_integrity_generate(struct bio *bio); void blk_integrity_verify(struct bio *bio); void blk_integrity_prepare(struct request *rq); void blk_integrity_complete(struct request *rq, unsigned int nr_bytes); #ifdef CONFIG_LOCKDEP static inline void blk_freeze_acquire_lock(struct request_queue *q) { if (!q->mq_freeze_disk_dead) rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_); if (!q->mq_freeze_queue_dying) rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_); } static inline void blk_unfreeze_release_lock(struct request_queue *q) { if (!q->mq_freeze_queue_dying) rwsem_release(&q->q_lockdep_map, _RET_IP_); if (!q->mq_freeze_disk_dead) rwsem_release(&q->io_lockdep_map, _RET_IP_); } #else static inline void blk_freeze_acquire_lock(struct request_queue *q) { } static inline void blk_unfreeze_release_lock(struct request_queue *q) { } #endif #endif /* BLK_INTERNAL_H */ |
12 1037 1038 1037 1035 5 5 5 5 1 1 1 1 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | // SPDX-License-Identifier: GPL-2.0-only /* * CAIF Interface registration. * Copyright (C) ST-Ericsson AB 2010 * Author: Sjur Brendeland * * Borrowed heavily from file: pn_dev.c. Thanks to Remi Denis-Courmont * and Sakari Ailus <sakari.ailus@nokia.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__ #include <linux/kernel.h> #include <linux/if_arp.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/spinlock.h> #include <net/netns/generic.h> #include <net/net_namespace.h> #include <net/pkt_sched.h> #include <net/caif/caif_device.h> #include <net/caif/caif_layer.h> #include <net/caif/caif_dev.h> #include <net/caif/cfpkt.h> #include <net/caif/cfcnfg.h> #include <net/caif/cfserl.h> MODULE_DESCRIPTION("ST-Ericsson CAIF modem protocol support"); MODULE_LICENSE("GPL"); /* Used for local tracking of the CAIF net devices */ struct caif_device_entry { struct cflayer layer; struct list_head list; struct net_device *netdev; int __percpu *pcpu_refcnt; spinlock_t flow_lock; struct sk_buff *xoff_skb; void (*xoff_skb_dtor)(struct sk_buff *skb); bool xoff; }; struct caif_device_entry_list { struct list_head list; /* Protects simulanous deletes in list */ struct mutex lock; }; struct caif_net { struct cfcnfg *cfg; struct caif_device_entry_list caifdevs; }; static unsigned int caif_net_id; static int q_high = 50; /* Percent */ struct cfcnfg *get_cfcnfg(struct net *net) { struct caif_net *caifn; caifn = net_generic(net, caif_net_id); return caifn->cfg; } EXPORT_SYMBOL(get_cfcnfg); static struct caif_device_entry_list *caif_device_list(struct net *net) { struct caif_net *caifn; caifn = net_generic(net, caif_net_id); return &caifn->caifdevs; } static void caifd_put(struct caif_device_entry *e) { this_cpu_dec(*e->pcpu_refcnt); } static void caifd_hold(struct caif_device_entry *e) { this_cpu_inc(*e->pcpu_refcnt); } static int caifd_refcnt_read(struct caif_device_entry *e) { int i, refcnt = 0; for_each_possible_cpu(i) refcnt += *per_cpu_ptr(e->pcpu_refcnt, i); return refcnt; } /* Allocate new CAIF device. */ static struct caif_device_entry *caif_device_alloc(struct net_device *dev) { struct caif_device_entry *caifd; caifd = kzalloc(sizeof(*caifd), GFP_KERNEL); if (!caifd) return NULL; caifd->pcpu_refcnt = alloc_percpu(int); if (!caifd->pcpu_refcnt) { kfree(caifd); return NULL; } caifd->netdev = dev; dev_hold(dev); return caifd; } static struct caif_device_entry *caif_get(struct net_device *dev) { struct caif_device_entry_list *caifdevs = caif_device_list(dev_net(dev)); struct caif_device_entry *caifd; list_for_each_entry_rcu(caifd, &caifdevs->list, list, lockdep_rtnl_is_held()) { if (caifd->netdev == dev) return caifd; } return NULL; } static void caif_flow_cb(struct sk_buff *skb) { struct caif_device_entry *caifd; void (*dtor)(struct sk_buff *skb) = NULL; bool send_xoff; WARN_ON(skb->dev == NULL); rcu_read_lock(); caifd = caif_get(skb->dev); WARN_ON(caifd == NULL); if (!caifd) { rcu_read_unlock(); return; } caifd_hold(caifd); rcu_read_unlock(); spin_lock_bh(&caifd->flow_lock); send_xoff = caifd->xoff; caifd->xoff = false; dtor = caifd->xoff_skb_dtor; if (WARN_ON(caifd->xoff_skb != skb)) skb = NULL; caifd->xoff_skb = NULL; caifd->xoff_skb_dtor = NULL; spin_unlock_bh(&caifd->flow_lock); if (dtor && skb) dtor(skb); if (send_xoff) caifd->layer.up-> ctrlcmd(caifd->layer.up, _CAIF_CTRLCMD_PHYIF_FLOW_ON_IND, caifd->layer.id); caifd_put(caifd); } static int transmit(struct cflayer *layer, struct cfpkt *pkt) { int err, high = 0, qlen = 0; struct caif_device_entry *caifd = container_of(layer, struct caif_device_entry, layer); struct sk_buff *skb; struct netdev_queue *txq; rcu_read_lock_bh(); skb = cfpkt_tonative(pkt); skb->dev = caifd->netdev; skb_reset_network_header(skb); skb->protocol = htons(ETH_P_CAIF); /* Check if we need to handle xoff */ if (likely(caifd->netdev->priv_flags & IFF_NO_QUEUE)) goto noxoff; if (unlikely(caifd->xoff)) goto noxoff; if (likely(!netif_queue_stopped(caifd->netdev))) { struct Qdisc *sch; /* If we run with a TX queue, check if the queue is too long*/ txq = netdev_get_tx_queue(skb->dev, 0); sch = rcu_dereference_bh(txq->qdisc); if (likely(qdisc_is_empty(sch))) goto noxoff; /* can check for explicit qdisc len value only !NOLOCK, * always set flow off otherwise */ high = (caifd->netdev->tx_queue_len * q_high) / 100; if (!(sch->flags & TCQ_F_NOLOCK) && likely(sch->q.qlen < high)) goto noxoff; } /* Hold lock while accessing xoff */ spin_lock_bh(&caifd->flow_lock); if (caifd->xoff) { spin_unlock_bh(&caifd->flow_lock); goto noxoff; } /* * Handle flow off, we do this by temporary hi-jacking this * skb's destructor function, and replace it with our own * flow-on callback. The callback will set flow-on and call * the original destructor. */ pr_debug("queue has stopped(%d) or is full (%d > %d)\n", netif_queue_stopped(caifd->netdev), qlen, high); caifd->xoff = true; caifd->xoff_skb = skb; caifd->xoff_skb_dtor = skb->destructor; skb->destructor = caif_flow_cb; spin_unlock_bh(&caifd->flow_lock); caifd->layer.up->ctrlcmd(caifd->layer.up, _CAIF_CTRLCMD_PHYIF_FLOW_OFF_IND, caifd->layer.id); noxoff: rcu_read_unlock_bh(); err = dev_queue_xmit(skb); if (err > 0) err = -EIO; return err; } /* * Stuff received packets into the CAIF stack. * On error, returns non-zero and releases the skb. */ static int receive(struct sk_buff *skb, struct net_device *dev, struct packet_type *pkttype, struct net_device *orig_dev) { struct cfpkt *pkt; struct caif_device_entry *caifd; int err; pkt = cfpkt_fromnative(CAIF_DIR_IN, skb); rcu_read_lock(); caifd = caif_get(dev); if (!caifd || !caifd->layer.up || !caifd->layer.up->receive || !netif_oper_up(caifd->netdev)) { rcu_read_unlock(); kfree_skb(skb); return NET_RX_DROP; } /* Hold reference to netdevice while using CAIF stack */ caifd_hold(caifd); rcu_read_unlock(); err = caifd->layer.up->receive(caifd->layer.up, pkt); /* For -EILSEQ the packet is not freed so free it now */ if (err == -EILSEQ) cfpkt_destroy(pkt); /* Release reference to stack upwards */ caifd_put(caifd); if (err != 0) err = NET_RX_DROP; return err; } static struct packet_type caif_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_CAIF), .func = receive, }; static void dev_flowctrl(struct net_device *dev, int on) { struct caif_device_entry *caifd; rcu_read_lock(); caifd = caif_get(dev); if (!caifd || !caifd->layer.up || !caifd->layer.up->ctrlcmd) { rcu_read_unlock(); return; } caifd_hold(caifd); rcu_read_unlock(); caifd->layer.up->ctrlcmd(caifd->layer.up, on ? _CAIF_CTRLCMD_PHYIF_FLOW_ON_IND : _CAIF_CTRLCMD_PHYIF_FLOW_OFF_IND, caifd->layer.id); caifd_put(caifd); } int caif_enroll_dev(struct net_device *dev, struct caif_dev_common *caifdev, struct cflayer *link_support, int head_room, struct cflayer **layer, int (**rcv_func)(struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *)) { struct caif_device_entry *caifd; enum cfcnfg_phy_preference pref; struct cfcnfg *cfg = get_cfcnfg(dev_net(dev)); struct caif_device_entry_list *caifdevs; int res; caifdevs = caif_device_list(dev_net(dev)); caifd = caif_device_alloc(dev); if (!caifd) return -ENOMEM; *layer = &caifd->layer; spin_lock_init(&caifd->flow_lock); switch (caifdev->link_select) { case CAIF_LINK_HIGH_BANDW: pref = CFPHYPREF_HIGH_BW; break; case CAIF_LINK_LOW_LATENCY: pref = CFPHYPREF_LOW_LAT; break; default: pref = CFPHYPREF_HIGH_BW; break; } mutex_lock(&caifdevs->lock); list_add_rcu(&caifd->list, &caifdevs->list); strscpy(caifd->layer.name, dev->name, sizeof(caifd->layer.name)); caifd->layer.transmit = transmit; res = cfcnfg_add_phy_layer(cfg, dev, &caifd->layer, pref, link_support, caifdev->use_fcs, head_room); mutex_unlock(&caifdevs->lock); if (rcv_func) *rcv_func = receive; return res; } EXPORT_SYMBOL(caif_enroll_dev); /* notify Caif of device events */ static int caif_device_notify(struct notifier_block *me, unsigned long what, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct caif_device_entry *caifd = NULL; struct caif_dev_common *caifdev; struct cfcnfg *cfg; struct cflayer *layer, *link_support; int head_room = 0; struct caif_device_entry_list *caifdevs; int res; cfg = get_cfcnfg(dev_net(dev)); caifdevs = caif_device_list(dev_net(dev)); caifd = caif_get(dev); if (caifd == NULL && dev->type != ARPHRD_CAIF) return 0; switch (what) { case NETDEV_REGISTER: if (caifd != NULL) break; caifdev = netdev_priv(dev); link_support = NULL; if (caifdev->use_frag) { head_room = 1; link_support = cfserl_create(dev->ifindex, caifdev->use_stx); if (!link_support) { pr_warn("Out of memory\n"); break; } } res = caif_enroll_dev(dev, caifdev, link_support, head_room, &layer, NULL); if (res) cfserl_release(link_support); caifdev->flowctrl = dev_flowctrl; break; case NETDEV_UP: rcu_read_lock(); caifd = caif_get(dev); if (caifd == NULL) { rcu_read_unlock(); break; } caifd->xoff = false; cfcnfg_set_phy_state(cfg, &caifd->layer, true); rcu_read_unlock(); break; case NETDEV_DOWN: rcu_read_lock(); caifd = caif_get(dev); if (!caifd || !caifd->layer.up || !caifd->layer.up->ctrlcmd) { rcu_read_unlock(); return -EINVAL; } cfcnfg_set_phy_state(cfg, &caifd->layer, false); caifd_hold(caifd); rcu_read_unlock(); caifd->layer.up->ctrlcmd(caifd->layer.up, _CAIF_CTRLCMD_PHYIF_DOWN_IND, caifd->layer.id); spin_lock_bh(&caifd->flow_lock); /* * Replace our xoff-destructor with original destructor. * We trust that skb->destructor *always* is called before * the skb reference is invalid. The hijacked SKB destructor * takes the flow_lock so manipulating the skb->destructor here * should be safe. */ if (caifd->xoff_skb_dtor != NULL && caifd->xoff_skb != NULL) caifd->xoff_skb->destructor = caifd->xoff_skb_dtor; caifd->xoff = false; caifd->xoff_skb_dtor = NULL; caifd->xoff_skb = NULL; spin_unlock_bh(&caifd->flow_lock); caifd_put(caifd); break; case NETDEV_UNREGISTER: mutex_lock(&caifdevs->lock); caifd = caif_get(dev); if (caifd == NULL) { mutex_unlock(&caifdevs->lock); break; } list_del_rcu(&caifd->list); /* * NETDEV_UNREGISTER is called repeatedly until all reference * counts for the net-device are released. If references to * caifd is taken, simply ignore NETDEV_UNREGISTER and wait for * the next call to NETDEV_UNREGISTER. * * If any packets are in flight down the CAIF Stack, * cfcnfg_del_phy_layer will return nonzero. * If no packets are in flight, the CAIF Stack associated * with the net-device un-registering is freed. */ if (caifd_refcnt_read(caifd) != 0 || cfcnfg_del_phy_layer(cfg, &caifd->layer) != 0) { pr_info("Wait for device inuse\n"); /* Enrole device if CAIF Stack is still in use */ list_add_rcu(&caifd->list, &caifdevs->list); mutex_unlock(&caifdevs->lock); break; } synchronize_rcu(); dev_put(caifd->netdev); free_percpu(caifd->pcpu_refcnt); kfree(caifd); mutex_unlock(&caifdevs->lock); break; } return 0; } static struct notifier_block caif_device_notifier = { .notifier_call = caif_device_notify, .priority = 0, }; /* Per-namespace Caif devices handling */ static int caif_init_net(struct net *net) { struct caif_net *caifn = net_generic(net, caif_net_id); INIT_LIST_HEAD(&caifn->caifdevs.list); mutex_init(&caifn->caifdevs.lock); caifn->cfg = cfcnfg_create(); if (!caifn->cfg) return -ENOMEM; return 0; } static void caif_exit_net(struct net *net) { struct caif_device_entry *caifd, *tmp; struct caif_device_entry_list *caifdevs = caif_device_list(net); struct cfcnfg *cfg = get_cfcnfg(net); rtnl_lock(); mutex_lock(&caifdevs->lock); list_for_each_entry_safe(caifd, tmp, &caifdevs->list, list) { int i = 0; list_del_rcu(&caifd->list); cfcnfg_set_phy_state(cfg, &caifd->layer, false); while (i < 10 && (caifd_refcnt_read(caifd) != 0 || cfcnfg_del_phy_layer(cfg, &caifd->layer) != 0)) { pr_info("Wait for device inuse\n"); msleep(250); i++; } synchronize_rcu(); dev_put(caifd->netdev); free_percpu(caifd->pcpu_refcnt); kfree(caifd); } cfcnfg_remove(cfg); mutex_unlock(&caifdevs->lock); rtnl_unlock(); } static struct pernet_operations caif_net_ops = { .init = caif_init_net, .exit = caif_exit_net, .id = &caif_net_id, .size = sizeof(struct caif_net), }; /* Initialize Caif devices list */ static int __init caif_device_init(void) { int result; result = register_pernet_subsys(&caif_net_ops); if (result) return result; register_netdevice_notifier(&caif_device_notifier); dev_add_pack(&caif_packet_type); return result; } static void __exit caif_device_exit(void) { unregister_netdevice_notifier(&caif_device_notifier); dev_remove_pack(&caif_packet_type); unregister_pernet_subsys(&caif_net_ops); } module_init(caif_device_init); module_exit(caif_device_exit); |
177 177 177 64 48 93 93 36 6388 3825 5889 4266 5500 4320 1407 349 351 351 351 6306 6248 338 7613 7192 3726 7586 469 4233 4244 6314 3180 7597 1 2203 7599 9 883 7587 14 468 14 469 6 7607 8 1147 7606 58 58 7627 2513 7617 7605 4 5 1277 1281 7535 7525 1278 7508 7540 5898 5629 7 7 7534 1 7556 4 4 4 20 20 2 14 6 4 7 3 14 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 308 308 308 308 386 18 372 293 18 388 365 293 367 292 64 292 276 36 55 166 371 18 8 1 7 394 8 387 396 288 290 683 530 6 6 6 6 6 6 6 6 1235 703 6 6 530 2 6 18 8038 8297 865 6 8324 8119 8038 3258 3219 8024 8033 110 8039 6279 7555 7596 6 5309 8005 8025 6028 5299 6273 864 6 3671 859 3692 3688 7498 1217 1219 54 4463 7889 3961 4006 6840 64 65 2811 636 636 17 1 1 1 6 11 1 7 25 1 30 13 621 208 149 208 24 194 125 11 11 126 8 123 11 11 123 123 121 93 20 4 93 16 112 208 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/lib/vsprintf.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* vsprintf.c -- Lars Wirzenius & Linus Torvalds. */ /* * Wirzenius wrote this portably, Torvalds fucked it up :-) */ /* * Fri Jul 13 2001 Crutcher Dunnavant <crutcher+kernel@datastacks.com> * - changed to provide snprintf and vsnprintf functions * So Feb 1 16:51:32 CET 2004 Juergen Quade <quade@hsnr.de> * - scnprintf and vscnprintf */ #include <linux/stdarg.h> #include <linux/build_bug.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/errname.h> #include <linux/module.h> /* for KSYM_SYMBOL_LEN */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/kernel.h> #include <linux/kallsyms.h> #include <linux/math64.h> #include <linux/uaccess.h> #include <linux/ioport.h> #include <linux/dcache.h> #include <linux/cred.h> #include <linux/rtc.h> #include <linux/sprintf.h> #include <linux/time.h> #include <linux/uuid.h> #include <linux/of.h> #include <net/addrconf.h> #include <linux/siphash.h> #include <linux/compiler.h> #include <linux/property.h> #include <linux/notifier.h> #ifdef CONFIG_BLOCK #include <linux/blkdev.h> #endif #include "../mm/internal.h" /* For the trace_print_flags arrays */ #include <asm/page.h> /* for PAGE_SIZE */ #include <asm/byteorder.h> /* cpu_to_le16 */ #include <linux/unaligned.h> #include <linux/string_helpers.h> #include "kstrtox.h" /* Disable pointer hashing if requested */ bool no_hash_pointers __ro_after_init; EXPORT_SYMBOL_GPL(no_hash_pointers); noinline static unsigned long long simple_strntoull(const char *startp, char **endp, unsigned int base, size_t max_chars) { const char *cp; unsigned long long result = 0ULL; size_t prefix_chars; unsigned int rv; cp = _parse_integer_fixup_radix(startp, &base); prefix_chars = cp - startp; if (prefix_chars < max_chars) { rv = _parse_integer_limit(cp, base, &result, max_chars - prefix_chars); /* FIXME */ cp += (rv & ~KSTRTOX_OVERFLOW); } else { /* Field too short for prefix + digit, skip over without converting */ cp = startp + max_chars; } if (endp) *endp = (char *)cp; return result; } /** * simple_strtoull - convert a string to an unsigned long long * @cp: The start of the string * @endp: A pointer to the end of the parsed string will be placed here * @base: The number base to use * * This function has caveats. Please use kstrtoull instead. */ noinline unsigned long long simple_strtoull(const char *cp, char **endp, unsigned int base) { return simple_strntoull(cp, endp, base, INT_MAX); } EXPORT_SYMBOL(simple_strtoull); /** * simple_strtoul - convert a string to an unsigned long * @cp: The start of the string * @endp: A pointer to the end of the parsed string will be placed here * @base: The number base to use * * This function has caveats. Please use kstrtoul instead. */ unsigned long simple_strtoul(const char *cp, char **endp, unsigned int base) { return simple_strtoull(cp, endp, base); } EXPORT_SYMBOL(simple_strtoul); /** * simple_strtol - convert a string to a signed long * @cp: The start of the string * @endp: A pointer to the end of the parsed string will be placed here * @base: The number base to use * * This function has caveats. Please use kstrtol instead. */ long simple_strtol(const char *cp, char **endp, unsigned int base) { if (*cp == '-') return -simple_strtoul(cp + 1, endp, base); return simple_strtoul(cp, endp, base); } EXPORT_SYMBOL(simple_strtol); noinline static long long simple_strntoll(const char *cp, char **endp, unsigned int base, size_t max_chars) { /* * simple_strntoull() safely handles receiving max_chars==0 in the * case cp[0] == '-' && max_chars == 1. * If max_chars == 0 we can drop through and pass it to simple_strntoull() * and the content of *cp is irrelevant. */ if (*cp == '-' && max_chars > 0) return -simple_strntoull(cp + 1, endp, base, max_chars - 1); return simple_strntoull(cp, endp, base, max_chars); } /** * simple_strtoll - convert a string to a signed long long * @cp: The start of the string * @endp: A pointer to the end of the parsed string will be placed here * @base: The number base to use * * This function has caveats. Please use kstrtoll instead. */ long long simple_strtoll(const char *cp, char **endp, unsigned int base) { return simple_strntoll(cp, endp, base, INT_MAX); } EXPORT_SYMBOL(simple_strtoll); static inline int skip_atoi(const char **s) { int i = 0; do { i = i*10 + *((*s)++) - '0'; } while (isdigit(**s)); return i; } /* * Decimal conversion is by far the most typical, and is used for * /proc and /sys data. This directly impacts e.g. top performance * with many processes running. We optimize it for speed by emitting * two characters at a time, using a 200 byte lookup table. This * roughly halves the number of multiplications compared to computing * the digits one at a time. Implementation strongly inspired by the * previous version, which in turn used ideas described at * <http://www.cs.uiowa.edu/~jones/bcd/divide.html> (with permission * from the author, Douglas W. Jones). * * It turns out there is precisely one 26 bit fixed-point * approximation a of 64/100 for which x/100 == (x * (u64)a) >> 32 * holds for all x in [0, 10^8-1], namely a = 0x28f5c29. The actual * range happens to be somewhat larger (x <= 1073741898), but that's * irrelevant for our purpose. * * For dividing a number in the range [10^4, 10^6-1] by 100, we still * need a 32x32->64 bit multiply, so we simply use the same constant. * * For dividing a number in the range [100, 10^4-1] by 100, there are * several options. The simplest is (x * 0x147b) >> 19, which is valid * for all x <= 43698. */ static const u16 decpair[100] = { #define _(x) (__force u16) cpu_to_le16(((x % 10) | ((x / 10) << 8)) + 0x3030) _( 0), _( 1), _( 2), _( 3), _( 4), _( 5), _( 6), _( 7), _( 8), _( 9), _(10), _(11), _(12), _(13), _(14), _(15), _(16), _(17), _(18), _(19), _(20), _(21), _(22), _(23), _(24), _(25), _(26), _(27), _(28), _(29), _(30), _(31), _(32), _(33), _(34), _(35), _(36), _(37), _(38), _(39), _(40), _(41), _(42), _(43), _(44), _(45), _(46), _(47), _(48), _(49), _(50), _(51), _(52), _(53), _(54), _(55), _(56), _(57), _(58), _(59), _(60), _(61), _(62), _(63), _(64), _(65), _(66), _(67), _(68), _(69), _(70), _(71), _(72), _(73), _(74), _(75), _(76), _(77), _(78), _(79), _(80), _(81), _(82), _(83), _(84), _(85), _(86), _(87), _(88), _(89), _(90), _(91), _(92), _(93), _(94), _(95), _(96), _(97), _(98), _(99), #undef _ }; /* * This will print a single '0' even if r == 0, since we would * immediately jump to out_r where two 0s would be written but only * one of them accounted for in buf. This is needed by ip4_string * below. All other callers pass a non-zero value of r. */ static noinline_for_stack char *put_dec_trunc8(char *buf, unsigned r) { unsigned q; /* 1 <= r < 10^8 */ if (r < 100) goto out_r; /* 100 <= r < 10^8 */ q = (r * (u64)0x28f5c29) >> 32; *((u16 *)buf) = decpair[r - 100*q]; buf += 2; /* 1 <= q < 10^6 */ if (q < 100) goto out_q; /* 100 <= q < 10^6 */ r = (q * (u64)0x28f5c29) >> 32; *((u16 *)buf) = decpair[q - 100*r]; buf += 2; /* 1 <= r < 10^4 */ if (r < 100) goto out_r; /* 100 <= r < 10^4 */ q = (r * 0x147b) >> 19; *((u16 *)buf) = decpair[r - 100*q]; buf += 2; out_q: /* 1 <= q < 100 */ r = q; out_r: /* 1 <= r < 100 */ *((u16 *)buf) = decpair[r]; buf += r < 10 ? 1 : 2; return buf; } #if BITS_PER_LONG == 64 && BITS_PER_LONG_LONG == 64 static noinline_for_stack char *put_dec_full8(char *buf, unsigned r) { unsigned q; /* 0 <= r < 10^8 */ q = (r * (u64)0x28f5c29) >> 32; *((u16 *)buf) = decpair[r - 100*q]; buf += 2; /* 0 <= q < 10^6 */ r = (q * (u64)0x28f5c29) >> 32; *((u16 *)buf) = decpair[q - 100*r]; buf += 2; /* 0 <= r < 10^4 */ q = (r * 0x147b) >> 19; *((u16 *)buf) = decpair[r - 100*q]; buf += 2; /* 0 <= q < 100 */ *((u16 *)buf) = decpair[q]; buf += 2; return buf; } static noinline_for_stack char *put_dec(char *buf, unsigned long long n) { if (n >= 100*1000*1000) buf = put_dec_full8(buf, do_div(n, 100*1000*1000)); /* 1 <= n <= 1.6e11 */ if (n >= 100*1000*1000) buf = put_dec_full8(buf, do_div(n, 100*1000*1000)); /* 1 <= n < 1e8 */ return put_dec_trunc8(buf, n); } #elif BITS_PER_LONG == 32 && BITS_PER_LONG_LONG == 64 static void put_dec_full4(char *buf, unsigned r) { unsigned q; /* 0 <= r < 10^4 */ q = (r * 0x147b) >> 19; *((u16 *)buf) = decpair[r - 100*q]; buf += 2; /* 0 <= q < 100 */ *((u16 *)buf) = decpair[q]; } /* * Call put_dec_full4 on x % 10000, return x / 10000. * The approximation x/10000 == (x * 0x346DC5D7) >> 43 * holds for all x < 1,128,869,999. The largest value this * helper will ever be asked to convert is 1,125,520,955. * (second call in the put_dec code, assuming n is all-ones). */ static noinline_for_stack unsigned put_dec_helper4(char *buf, unsigned x) { uint32_t q = (x * (uint64_t)0x346DC5D7) >> 43; put_dec_full4(buf, x - q * 10000); return q; } /* Based on code by Douglas W. Jones found at * <http://www.cs.uiowa.edu/~jones/bcd/decimal.html#sixtyfour> * (with permission from the author). * Performs no 64-bit division and hence should be fast on 32-bit machines. */ static char *put_dec(char *buf, unsigned long long n) { uint32_t d3, d2, d1, q, h; if (n < 100*1000*1000) return put_dec_trunc8(buf, n); d1 = ((uint32_t)n >> 16); /* implicit "& 0xffff" */ h = (n >> 32); d2 = (h ) & 0xffff; d3 = (h >> 16); /* implicit "& 0xffff" */ /* n = 2^48 d3 + 2^32 d2 + 2^16 d1 + d0 = 281_4749_7671_0656 d3 + 42_9496_7296 d2 + 6_5536 d1 + d0 */ q = 656 * d3 + 7296 * d2 + 5536 * d1 + ((uint32_t)n & 0xffff); q = put_dec_helper4(buf, q); q += 7671 * d3 + 9496 * d2 + 6 * d1; q = put_dec_helper4(buf+4, q); q += 4749 * d3 + 42 * d2; q = put_dec_helper4(buf+8, q); q += 281 * d3; buf += 12; if (q) buf = put_dec_trunc8(buf, q); else while (buf[-1] == '0') --buf; return buf; } #endif /* * Convert passed number to decimal string. * Returns the length of string. On buffer overflow, returns 0. * * If speed is not important, use snprintf(). It's easy to read the code. */ int num_to_str(char *buf, int size, unsigned long long num, unsigned int width) { /* put_dec requires 2-byte alignment of the buffer. */ char tmp[sizeof(num) * 3] __aligned(2); int idx, len; /* put_dec() may work incorrectly for num = 0 (generate "", not "0") */ if (num <= 9) { tmp[0] = '0' + num; len = 1; } else { len = put_dec(tmp, num) - tmp; } if (len > size || width > size) return 0; if (width > len) { width = width - len; for (idx = 0; idx < width; idx++) buf[idx] = ' '; } else { width = 0; } for (idx = 0; idx < len; ++idx) buf[idx + width] = tmp[len - idx - 1]; return len + width; } #define SIGN 1 /* unsigned/signed */ #define LEFT 2 /* left justified */ #define PLUS 4 /* show plus */ #define SPACE 8 /* space if plus */ #define ZEROPAD 16 /* pad with zero, must be 16 == '0' - ' ' */ #define SMALL 32 /* use lowercase in hex (must be 32 == 0x20) */ #define SPECIAL 64 /* prefix hex with "0x", octal with "0" */ static_assert(ZEROPAD == ('0' - ' ')); static_assert(SMALL == ('a' ^ 'A')); enum format_state { FORMAT_STATE_NONE, /* Just a string part */ FORMAT_STATE_NUM, FORMAT_STATE_WIDTH, FORMAT_STATE_PRECISION, FORMAT_STATE_CHAR, FORMAT_STATE_STR, FORMAT_STATE_PTR, FORMAT_STATE_PERCENT_CHAR, FORMAT_STATE_INVALID, }; struct printf_spec { unsigned char flags; /* flags to number() */ unsigned char base; /* number base, 8, 10 or 16 only */ short precision; /* # of digits/chars */ int field_width; /* width of output field */ } __packed; static_assert(sizeof(struct printf_spec) == 8); #define FIELD_WIDTH_MAX ((1 << 23) - 1) #define PRECISION_MAX ((1 << 15) - 1) static noinline_for_stack char *number(char *buf, char *end, unsigned long long num, struct printf_spec spec) { /* put_dec requires 2-byte alignment of the buffer. */ char tmp[3 * sizeof(num)] __aligned(2); char sign; char locase; int need_pfx = ((spec.flags & SPECIAL) && spec.base != 10); int i; bool is_zero = num == 0LL; int field_width = spec.field_width; int precision = spec.precision; /* locase = 0 or 0x20. ORing digits or letters with 'locase' * produces same digits or (maybe lowercased) letters */ locase = (spec.flags & SMALL); if (spec.flags & LEFT) spec.flags &= ~ZEROPAD; sign = 0; if (spec.flags & SIGN) { if ((signed long long)num < 0) { sign = '-'; num = -(signed long long)num; field_width--; } else if (spec.flags & PLUS) { sign = '+'; field_width--; } else if (spec.flags & SPACE) { sign = ' '; field_width--; } } if (need_pfx) { if (spec.base == 16) field_width -= 2; else if (!is_zero) field_width--; } /* generate full string in tmp[], in reverse order */ i = 0; if (num < spec.base) tmp[i++] = hex_asc_upper[num] | locase; else if (spec.base != 10) { /* 8 or 16 */ int mask = spec.base - 1; int shift = 3; if (spec.base == 16) shift = 4; do { tmp[i++] = (hex_asc_upper[((unsigned char)num) & mask] | locase); num >>= shift; } while (num); } else { /* base 10 */ i = put_dec(tmp, num) - tmp; } /* printing 100 using %2d gives "100", not "00" */ if (i > precision) precision = i; /* leading space padding */ field_width -= precision; if (!(spec.flags & (ZEROPAD | LEFT))) { while (--field_width >= 0) { if (buf < end) *buf = ' '; ++buf; } } /* sign */ if (sign) { if (buf < end) *buf = sign; ++buf; } /* "0x" / "0" prefix */ if (need_pfx) { if (spec.base == 16 || !is_zero) { if (buf < end) *buf = '0'; ++buf; } if (spec.base == 16) { if (buf < end) *buf = ('X' | locase); ++buf; } } /* zero or space padding */ if (!(spec.flags & LEFT)) { char c = ' ' + (spec.flags & ZEROPAD); while (--field_width >= 0) { if (buf < end) *buf = c; ++buf; } } /* hmm even more zero padding? */ while (i <= --precision) { if (buf < end) *buf = '0'; ++buf; } /* actual digits of result */ while (--i >= 0) { if (buf < end) *buf = tmp[i]; ++buf; } /* trailing space padding */ while (--field_width >= 0) { if (buf < end) *buf = ' '; ++buf; } return buf; } static noinline_for_stack char *special_hex_number(char *buf, char *end, unsigned long long num, int size) { struct printf_spec spec; spec.field_width = 2 + 2 * size; /* 0x + hex */ spec.flags = SPECIAL | SMALL | ZEROPAD; spec.base = 16; spec.precision = -1; return number(buf, end, num, spec); } static void move_right(char *buf, char *end, unsigned len, unsigned spaces) { size_t size; if (buf >= end) /* nowhere to put anything */ return; size = end - buf; if (size <= spaces) { memset(buf, ' ', size); return; } if (len) { if (len > size - spaces) len = size - spaces; memmove(buf + spaces, buf, len); } memset(buf, ' ', spaces); } /* * Handle field width padding for a string. * @buf: current buffer position * @n: length of string * @end: end of output buffer * @spec: for field width and flags * Returns: new buffer position after padding. */ static noinline_for_stack char *widen_string(char *buf, int n, char *end, struct printf_spec spec) { unsigned spaces; if (likely(n >= spec.field_width)) return buf; /* we want to pad the sucker */ spaces = spec.field_width - n; if (!(spec.flags & LEFT)) { move_right(buf - n, end, n, spaces); return buf + spaces; } while (spaces--) { if (buf < end) *buf = ' '; ++buf; } return buf; } /* Handle string from a well known address. */ static char *string_nocheck(char *buf, char *end, const char *s, struct printf_spec spec) { int len = 0; int lim = spec.precision; while (lim--) { char c = *s++; if (!c) break; if (buf < end) *buf = c; ++buf; ++len; } return widen_string(buf, len, end, spec); } static char *err_ptr(char *buf, char *end, void *ptr, struct printf_spec spec) { int err = PTR_ERR(ptr); const char *sym = errname(err); if (sym) return string_nocheck(buf, end, sym, spec); /* * Somebody passed ERR_PTR(-1234) or some other non-existing * Efoo - or perhaps CONFIG_SYMBOLIC_ERRNAME=n. Fall back to * printing it as its decimal representation. */ spec.flags |= SIGN; spec.base = 10; return number(buf, end, err, spec); } /* Be careful: error messages must fit into the given buffer. */ static char *error_string(char *buf, char *end, const char *s, struct printf_spec spec) { /* * Hard limit to avoid a completely insane messages. It actually * works pretty well because most error messages are in * the many pointer format modifiers. */ if (spec.precision == -1) spec.precision = 2 * sizeof(void *); return string_nocheck(buf, end, s, spec); } /* * Do not call any complex external code here. Nested printk()/vsprintf() * might cause infinite loops. Failures might break printk() and would * be hard to debug. */ static const char *check_pointer_msg(const void *ptr) { if (!ptr) return "(null)"; if ((unsigned long)ptr < PAGE_SIZE || IS_ERR_VALUE(ptr)) return "(efault)"; return NULL; } static int check_pointer(char **buf, char *end, const void *ptr, struct printf_spec spec) { const char *err_msg; err_msg = check_pointer_msg(ptr); if (err_msg) { *buf = error_string(*buf, end, err_msg, spec); return -EFAULT; } return 0; } static noinline_for_stack char *string(char *buf, char *end, const char *s, struct printf_spec spec) { if (check_pointer(&buf, end, s, spec)) return buf; return string_nocheck(buf, end, s, spec); } static char *pointer_string(char *buf, char *end, const void *ptr, struct printf_spec spec) { spec.base = 16; spec.flags |= SMALL; if (spec.field_width == -1) { spec.field_width = 2 * sizeof(ptr); spec.flags |= ZEROPAD; } return number(buf, end, (unsigned long int)ptr, spec); } /* Make pointers available for printing early in the boot sequence. */ static int debug_boot_weak_hash __ro_after_init; static int __init debug_boot_weak_hash_enable(char *str) { debug_boot_weak_hash = 1; pr_info("debug_boot_weak_hash enabled\n"); return 0; } early_param("debug_boot_weak_hash", debug_boot_weak_hash_enable); static bool filled_random_ptr_key __read_mostly; static siphash_key_t ptr_key __read_mostly; static int fill_ptr_key(struct notifier_block *nb, unsigned long action, void *data) { get_random_bytes(&ptr_key, sizeof(ptr_key)); /* Pairs with smp_rmb() before reading ptr_key. */ smp_wmb(); WRITE_ONCE(filled_random_ptr_key, true); return NOTIFY_DONE; } static int __init vsprintf_init_hashval(void) { static struct notifier_block fill_ptr_key_nb = { .notifier_call = fill_ptr_key }; execute_with_initialized_rng(&fill_ptr_key_nb); return 0; } subsys_initcall(vsprintf_init_hashval) /* Maps a pointer to a 32 bit unique identifier. */ static inline int __ptr_to_hashval(const void *ptr, unsigned long *hashval_out) { unsigned long hashval; if (!READ_ONCE(filled_random_ptr_key)) return -EBUSY; /* Pairs with smp_wmb() after writing ptr_key. */ smp_rmb(); #ifdef CONFIG_64BIT hashval = (unsigned long)siphash_1u64((u64)ptr, &ptr_key); /* * Mask off the first 32 bits, this makes explicit that we have * modified the address (and 32 bits is plenty for a unique ID). */ hashval = hashval & 0xffffffff; #else hashval = (unsigned long)siphash_1u32((u32)ptr, &ptr_key); #endif *hashval_out = hashval; return 0; } int ptr_to_hashval(const void *ptr, unsigned long *hashval_out) { return __ptr_to_hashval(ptr, hashval_out); } static char *ptr_to_id(char *buf, char *end, const void *ptr, struct printf_spec spec) { const char *str = sizeof(ptr) == 8 ? "(____ptrval____)" : "(ptrval)"; unsigned long hashval; int ret; /* * Print the real pointer value for NULL and error pointers, * as they are not actual addresses. */ if (IS_ERR_OR_NULL(ptr)) return pointer_string(buf, end, ptr, spec); /* When debugging early boot use non-cryptographically secure hash. */ if (unlikely(debug_boot_weak_hash)) { hashval = hash_long((unsigned long)ptr, 32); return pointer_string(buf, end, (const void *)hashval, spec); } ret = __ptr_to_hashval(ptr, &hashval); if (ret) { spec.field_width = 2 * sizeof(ptr); /* string length must be less than default_width */ return error_string(buf, end, str, spec); } return pointer_string(buf, end, (const void *)hashval, spec); } static char *default_pointer(char *buf, char *end, const void *ptr, struct printf_spec spec) { /* * default is to _not_ leak addresses, so hash before printing, * unless no_hash_pointers is specified on the command line. */ if (unlikely(no_hash_pointers)) return pointer_string(buf, end, ptr, spec); return ptr_to_id(buf, end, ptr, spec); } int kptr_restrict __read_mostly; static noinline_for_stack char *restricted_pointer(char *buf, char *end, const void *ptr, struct printf_spec spec) { switch (kptr_restrict) { case 0: /* Handle as %p, hash and do _not_ leak addresses. */ return default_pointer(buf, end, ptr, spec); case 1: { const struct cred *cred; /* * kptr_restrict==1 cannot be used in IRQ context * because its test for CAP_SYSLOG would be meaningless. */ if (in_hardirq() || in_serving_softirq() || in_nmi()) { if (spec.field_width == -1) spec.field_width = 2 * sizeof(ptr); return error_string(buf, end, "pK-error", spec); } /* * Only print the real pointer value if the current * process has CAP_SYSLOG and is running with the * same credentials it started with. This is because * access to files is checked at open() time, but %pK * checks permission at read() time. We don't want to * leak pointer values if a binary opens a file using * %pK and then elevates privileges before reading it. */ cred = current_cred(); if (!has_capability_noaudit(current, CAP_SYSLOG) || !uid_eq(cred->euid, cred->uid) || !gid_eq(cred->egid, cred->gid)) ptr = NULL; break; } case 2: default: /* Always print 0's for %pK */ ptr = NULL; break; } return pointer_string(buf, end, ptr, spec); } static noinline_for_stack char *dentry_name(char *buf, char *end, const struct dentry *d, struct printf_spec spec, const char *fmt) { const char *array[4], *s; const struct dentry *p; int depth; int i, n; switch (fmt[1]) { case '2': case '3': case '4': depth = fmt[1] - '0'; break; default: depth = 1; } rcu_read_lock(); for (i = 0; i < depth; i++, d = p) { if (check_pointer(&buf, end, d, spec)) { rcu_read_unlock(); return buf; } p = READ_ONCE(d->d_parent); array[i] = READ_ONCE(d->d_name.name); if (p == d) { if (i) array[i] = ""; i++; break; } } s = array[--i]; for (n = 0; n != spec.precision; n++, buf++) { char c = *s++; if (!c) { if (!i) break; c = '/'; s = array[--i]; } if (buf < end) *buf = c; } rcu_read_unlock(); return widen_string(buf, n, end, spec); } static noinline_for_stack char *file_dentry_name(char *buf, char *end, const struct file *f, struct printf_spec spec, const char *fmt) { if (check_pointer(&buf, end, f, spec)) return buf; return dentry_name(buf, end, f->f_path.dentry, spec, fmt); } #ifdef CONFIG_BLOCK static noinline_for_stack char *bdev_name(char *buf, char *end, struct block_device *bdev, struct printf_spec spec, const char *fmt) { struct gendisk *hd; if (check_pointer(&buf, end, bdev, spec)) return buf; hd = bdev->bd_disk; buf = string(buf, end, hd->disk_name, spec); if (bdev_is_partition(bdev)) { if (isdigit(hd->disk_name[strlen(hd->disk_name)-1])) { if (buf < end) *buf = 'p'; buf++; } buf = number(buf, end, bdev_partno(bdev), spec); } return buf; } #endif static noinline_for_stack char *symbol_string(char *buf, char *end, void *ptr, struct printf_spec spec, const char *fmt) { unsigned long value; #ifdef CONFIG_KALLSYMS char sym[KSYM_SYMBOL_LEN]; #endif if (fmt[1] == 'R') ptr = __builtin_extract_return_addr(ptr); value = (unsigned long)ptr; #ifdef CONFIG_KALLSYMS if (*fmt == 'B' && fmt[1] == 'b') sprint_backtrace_build_id(sym, value); else if (*fmt == 'B') sprint_backtrace(sym, value); else if (*fmt == 'S' && (fmt[1] == 'b' || (fmt[1] == 'R' && fmt[2] == 'b'))) sprint_symbol_build_id(sym, value); else if (*fmt != 's') sprint_symbol(sym, value); else sprint_symbol_no_offset(sym, value); return string_nocheck(buf, end, sym, spec); #else return special_hex_number(buf, end, value, sizeof(void *)); #endif } static const struct printf_spec default_str_spec = { .field_width = -1, .precision = -1, }; static const struct printf_spec default_flag_spec = { .base = 16, .precision = -1, .flags = SPECIAL | SMALL, }; static const struct printf_spec default_dec_spec = { .base = 10, .precision = -1, }; static const struct printf_spec default_dec02_spec = { .base = 10, .field_width = 2, .precision = -1, .flags = ZEROPAD, }; static const struct printf_spec default_dec04_spec = { .base = 10, .field_width = 4, .precision = -1, .flags = ZEROPAD, }; static noinline_for_stack char *hex_range(char *buf, char *end, u64 start_val, u64 end_val, struct printf_spec spec) { buf = number(buf, end, start_val, spec); if (start_val == end_val) return buf; if (buf < end) *buf = '-'; ++buf; return number(buf, end, end_val, spec); } static noinline_for_stack char *resource_string(char *buf, char *end, struct resource *res, struct printf_spec spec, const char *fmt) { #ifndef IO_RSRC_PRINTK_SIZE #define IO_RSRC_PRINTK_SIZE 6 #endif #ifndef MEM_RSRC_PRINTK_SIZE #define MEM_RSRC_PRINTK_SIZE 10 #endif static const struct printf_spec io_spec = { .base = 16, .field_width = IO_RSRC_PRINTK_SIZE, .precision = -1, .flags = SPECIAL | SMALL | ZEROPAD, }; static const struct printf_spec mem_spec = { .base = 16, .field_width = MEM_RSRC_PRINTK_SIZE, .precision = -1, .flags = SPECIAL | SMALL | ZEROPAD, }; static const struct printf_spec bus_spec = { .base = 16, .field_width = 2, .precision = -1, .flags = SMALL | ZEROPAD, }; static const struct printf_spec str_spec = { .field_width = -1, .precision = 10, .flags = LEFT, }; /* 32-bit res (sizeof==4): 10 chars in dec, 10 in hex ("0x" + 8) * 64-bit res (sizeof==8): 20 chars in dec, 18 in hex ("0x" + 16) */ #define RSRC_BUF_SIZE ((2 * sizeof(resource_size_t)) + 4) #define FLAG_BUF_SIZE (2 * sizeof(res->flags)) #define DECODED_BUF_SIZE sizeof("[mem - 64bit pref window disabled]") #define RAW_BUF_SIZE sizeof("[mem - flags 0x]") char sym[MAX(2*RSRC_BUF_SIZE + DECODED_BUF_SIZE, 2*RSRC_BUF_SIZE + FLAG_BUF_SIZE + RAW_BUF_SIZE)]; char *p = sym, *pend = sym + sizeof(sym); int decode = (fmt[0] == 'R') ? 1 : 0; const struct printf_spec *specp; if (check_pointer(&buf, end, res, spec)) return buf; *p++ = '['; if (res->flags & IORESOURCE_IO) { p = string_nocheck(p, pend, "io ", str_spec); specp = &io_spec; } else if (res->flags & IORESOURCE_MEM) { p = string_nocheck(p, pend, "mem ", str_spec); specp = &mem_spec; } else if (res->flags & IORESOURCE_IRQ) { p = string_nocheck(p, pend, "irq ", str_spec); specp = &default_dec_spec; } else if (res->flags & IORESOURCE_DMA) { p = string_nocheck(p, pend, "dma ", str_spec); specp = &default_dec_spec; } else if (res->flags & IORESOURCE_BUS) { p = string_nocheck(p, pend, "bus ", str_spec); specp = &bus_spec; } else { p = string_nocheck(p, pend, "??? ", str_spec); specp = &mem_spec; decode = 0; } if (decode && res->flags & IORESOURCE_UNSET) { p = string_nocheck(p, pend, "size ", str_spec); p = number(p, pend, resource_size(res), *specp); } else { p = hex_range(p, pend, res->start, res->end, *specp); } if (decode) { if (res->flags & IORESOURCE_MEM_64) p = string_nocheck(p, pend, " 64bit", str_spec); if (res->flags & IORESOURCE_PREFETCH) p = string_nocheck(p, pend, " pref", str_spec); if (res->flags & IORESOURCE_WINDOW) p = string_nocheck(p, pend, " window", str_spec); if (res->flags & IORESOURCE_DISABLED) p = string_nocheck(p, pend, " disabled", str_spec); } else { p = string_nocheck(p, pend, " flags ", str_spec); p = number(p, pend, res->flags, default_flag_spec); } *p++ = ']'; *p = '\0'; return string_nocheck(buf, end, sym, spec); } static noinline_for_stack char *range_string(char *buf, char *end, const struct range *range, struct printf_spec spec, const char *fmt) { char sym[sizeof("[range 0x0123456789abcdef-0x0123456789abcdef]")]; char *p = sym, *pend = sym + sizeof(sym); struct printf_spec range_spec = { .field_width = 2 + 2 * sizeof(range->start), /* 0x + 2 * 8 */ .flags = SPECIAL | SMALL | ZEROPAD, .base = 16, .precision = -1, }; if (check_pointer(&buf, end, range, spec)) return buf; p = string_nocheck(p, pend, "[range ", default_str_spec); p = hex_range(p, pend, range->start, range->end, range_spec); *p++ = ']'; *p = '\0'; return string_nocheck(buf, end, sym, spec); } static noinline_for_stack char *hex_string(char *buf, char *end, u8 *addr, struct printf_spec spec, const char *fmt) { int i, len = 1; /* if we pass '%ph[CDN]', field width remains negative value, fallback to the default */ char separator; if (spec.field_width == 0) /* nothing to print */ return buf; if (check_pointer(&buf, end, addr, spec)) return buf; switch (fmt[1]) { case 'C': separator = ':'; break; case 'D': separator = '-'; break; case 'N': separator = 0; break; default: separator = ' '; break; } if (spec.field_width > 0) len = min_t(int, spec.field_width, 64); for (i = 0; i < len; ++i) { if (buf < end) *buf = hex_asc_hi(addr[i]); ++buf; if (buf < end) *buf = hex_asc_lo(addr[i]); ++buf; if (separator && i != len - 1) { if (buf < end) *buf = separator; ++buf; } } return buf; } static noinline_for_stack char *bitmap_string(char *buf, char *end, const unsigned long *bitmap, struct printf_spec spec, const char *fmt) { const int CHUNKSZ = 32; int nr_bits = max_t(int, spec.field_width, 0); int i, chunksz; bool first = true; if (check_pointer(&buf, end, bitmap, spec)) return buf; /* reused to print numbers */ spec = (struct printf_spec){ .flags = SMALL | ZEROPAD, .base = 16 }; chunksz = nr_bits & (CHUNKSZ - 1); if (chunksz == 0) chunksz = CHUNKSZ; i = ALIGN(nr_bits, CHUNKSZ) - CHUNKSZ; for (; i >= 0; i -= CHUNKSZ) { u32 chunkmask, val; int word, bit; chunkmask = ((1ULL << chunksz) - 1); word = i / BITS_PER_LONG; bit = i % BITS_PER_LONG; val = (bitmap[word] >> bit) & chunkmask; if (!first) { if (buf < end) *buf = ','; buf++; } first = false; spec.field_width = DIV_ROUND_UP(chunksz, 4); buf = number(buf, end, val, spec); chunksz = CHUNKSZ; } return buf; } static noinline_for_stack char *bitmap_list_string(char *buf, char *end, const unsigned long *bitmap, struct printf_spec spec, const char *fmt) { int nr_bits = max_t(int, spec.field_width, 0); bool first = true; int rbot, rtop; if (check_pointer(&buf, end, bitmap, spec)) return buf; for_each_set_bitrange(rbot, rtop, bitmap, nr_bits) { if (!first) { if (buf < end) *buf = ','; buf++; } first = false; buf = number(buf, end, rbot, default_dec_spec); if (rtop == rbot + 1) continue; if (buf < end) *buf = '-'; buf = number(++buf, end, rtop - 1, default_dec_spec); } return buf; } static noinline_for_stack char *mac_address_string(char *buf, char *end, u8 *addr, struct printf_spec spec, const char *fmt) { char mac_addr[sizeof("xx:xx:xx:xx:xx:xx")]; char *p = mac_addr; int i; char separator; bool reversed = false; if (check_pointer(&buf, end, addr, spec)) return buf; switch (fmt[1]) { case 'F': separator = '-'; break; case 'R': reversed = true; fallthrough; default: separator = ':'; break; } for (i = 0; i < 6; i++) { if (reversed) p = hex_byte_pack(p, addr[5 - i]); else p = hex_byte_pack(p, addr[i]); if (fmt[0] == 'M' && i != 5) *p++ = separator; } *p = '\0'; return string_nocheck(buf, end, mac_addr, spec); } static noinline_for_stack char *ip4_string(char *p, const u8 *addr, const char *fmt) { int i; bool leading_zeros = (fmt[0] == 'i'); int index; int step; switch (fmt[2]) { case 'h': #ifdef __BIG_ENDIAN index = 0; step = 1; #else index = 3; step = -1; #endif break; case 'l': index = 3; step = -1; break; case 'n': case 'b': default: index = 0; step = 1; break; } for (i = 0; i < 4; i++) { char temp[4] __aligned(2); /* hold each IP quad in reverse order */ int digits = put_dec_trunc8(temp, addr[index]) - temp; if (leading_zeros) { if (digits < 3) *p++ = '0'; if (digits < 2) *p++ = '0'; } /* reverse the digits in the quad */ while (digits--) *p++ = temp[digits]; if (i < 3) *p++ = '.'; index += step; } *p = '\0'; return p; } static noinline_for_stack char *ip6_compressed_string(char *p, const char *addr) { int i, j, range; unsigned char zerolength[8]; int longest = 1; int colonpos = -1; u16 word; u8 hi, lo; bool needcolon = false; bool useIPv4; struct in6_addr in6; memcpy(&in6, addr, sizeof(struct in6_addr)); useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6); memset(zerolength, 0, sizeof(zerolength)); if (useIPv4) range = 6; else range = 8; /* find position of longest 0 run */ for (i = 0; i < range; i++) { for (j = i; j < range; j++) { if (in6.s6_addr16[j] != 0) break; zerolength[i]++; } } for (i = 0; i < range; i++) { if (zerolength[i] > longest) { longest = zerolength[i]; colonpos = i; } } if (longest == 1) /* don't compress a single 0 */ colonpos = -1; /* emit address */ for (i = 0; i < range; i++) { if (i == colonpos) { if (needcolon || i == 0) *p++ = ':'; *p++ = ':'; needcolon = false; i += longest - 1; continue; } if (needcolon) { *p++ = ':'; needcolon = false; } /* hex u16 without leading 0s */ word = ntohs(in6.s6_addr16[i]); hi = word >> 8; lo = word & 0xff; if (hi) { if (hi > 0x0f) p = hex_byte_pack(p, hi); else *p++ = hex_asc_lo(hi); p = hex_byte_pack(p, lo); } else if (lo > 0x0f) p = hex_byte_pack(p, lo); else *p++ = hex_asc_lo(lo); needcolon = true; } if (useIPv4) { if (needcolon) *p++ = ':'; p = ip4_string(p, &in6.s6_addr[12], "I4"); } *p = '\0'; return p; } static noinline_for_stack char *ip6_string(char *p, const char *addr, const char *fmt) { int i; for (i = 0; i < 8; i++) { p = hex_byte_pack(p, *addr++); p = hex_byte_pack(p, *addr++); if (fmt[0] == 'I' && i != 7) *p++ = ':'; } *p = '\0'; return p; } static noinline_for_stack char *ip6_addr_string(char *buf, char *end, const u8 *addr, struct printf_spec spec, const char *fmt) { char ip6_addr[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255")]; if (fmt[0] == 'I' && fmt[2] == 'c') ip6_compressed_string(ip6_addr, addr); else ip6_string(ip6_addr, addr, fmt); return string_nocheck(buf, end, ip6_addr, spec); } static noinline_for_stack char *ip4_addr_string(char *buf, char *end, const u8 *addr, struct printf_spec spec, const char *fmt) { char ip4_addr[sizeof("255.255.255.255")]; ip4_string(ip4_addr, addr, fmt); return string_nocheck(buf, end, ip4_addr, spec); } static noinline_for_stack char *ip6_addr_string_sa(char *buf, char *end, const struct sockaddr_in6 *sa, struct printf_spec spec, const char *fmt) { bool have_p = false, have_s = false, have_f = false, have_c = false; char ip6_addr[sizeof("[xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255]") + sizeof(":12345") + sizeof("/123456789") + sizeof("%1234567890")]; char *p = ip6_addr, *pend = ip6_addr + sizeof(ip6_addr); const u8 *addr = (const u8 *) &sa->sin6_addr; char fmt6[2] = { fmt[0], '6' }; u8 off = 0; fmt++; while (isalpha(*++fmt)) { switch (*fmt) { case 'p': have_p = true; break; case 'f': have_f = true; break; case 's': have_s = true; break; case 'c': have_c = true; break; } } if (have_p || have_s || have_f) { *p = '['; off = 1; } if (fmt6[0] == 'I' && have_c) p = ip6_compressed_string(ip6_addr + off, addr); else p = ip6_string(ip6_addr + off, addr, fmt6); if (have_p || have_s || have_f) *p++ = ']'; if (have_p) { *p++ = ':'; p = number(p, pend, ntohs(sa->sin6_port), spec); } if (have_f) { *p++ = '/'; p = number(p, pend, ntohl(sa->sin6_flowinfo & IPV6_FLOWINFO_MASK), spec); } if (have_s) { *p++ = '%'; p = number(p, pend, sa->sin6_scope_id, spec); } *p = '\0'; return string_nocheck(buf, end, ip6_addr, spec); } static noinline_for_stack char *ip4_addr_string_sa(char *buf, char *end, const struct sockaddr_in *sa, struct printf_spec spec, const char *fmt) { bool have_p = false; char *p, ip4_addr[sizeof("255.255.255.255") + sizeof(":12345")]; char *pend = ip4_addr + sizeof(ip4_addr); const u8 *addr = (const u8 *) &sa->sin_addr.s_addr; char fmt4[3] = { fmt[0], '4', 0 }; fmt++; while (isalpha(*++fmt)) { switch (*fmt) { case 'p': have_p = true; break; case 'h': case 'l': case 'n': case 'b': fmt4[2] = *fmt; break; } } p = ip4_string(ip4_addr, addr, fmt4); if (have_p) { *p++ = ':'; p = number(p, pend, ntohs(sa->sin_port), spec); } *p = '\0'; return string_nocheck(buf, end, ip4_addr, spec); } static noinline_for_stack char *ip_addr_string(char *buf, char *end, const void *ptr, struct printf_spec spec, const char *fmt) { char *err_fmt_msg; if (check_pointer(&buf, end, ptr, spec)) return buf; switch (fmt[1]) { case '6': return ip6_addr_string(buf, end, ptr, spec, fmt); case '4': return ip4_addr_string(buf, end, ptr, spec, fmt); case 'S': { const union { struct sockaddr raw; struct sockaddr_in v4; struct sockaddr_in6 v6; } *sa = ptr; switch (sa->raw.sa_family) { case AF_INET: return ip4_addr_string_sa(buf, end, &sa->v4, spec, fmt); case AF_INET6: return ip6_addr_string_sa(buf, end, &sa->v6, spec, fmt); default: return error_string(buf, end, "(einval)", spec); }} } err_fmt_msg = fmt[0] == 'i' ? "(%pi?)" : "(%pI?)"; return error_string(buf, end, err_fmt_msg, spec); } static noinline_for_stack char *escaped_string(char *buf, char *end, u8 *addr, struct printf_spec spec, const char *fmt) { bool found = true; int count = 1; unsigned int flags = 0; int len; if (spec.field_width == 0) return buf; /* nothing to print */ if (check_pointer(&buf, end, addr, spec)) return buf; do { switch (fmt[count++]) { case 'a': flags |= ESCAPE_ANY; break; case 'c': flags |= ESCAPE_SPECIAL; break; case 'h': flags |= ESCAPE_HEX; break; case 'n': flags |= ESCAPE_NULL; break; case 'o': flags |= ESCAPE_OCTAL; break; case 'p': flags |= ESCAPE_NP; break; case 's': flags |= ESCAPE_SPACE; break; default: found = false; break; } } while (found); if (!flags) flags = ESCAPE_ANY_NP; len = spec.field_width < 0 ? 1 : spec.field_width; /* * string_escape_mem() writes as many characters as it can to * the given buffer, and returns the total size of the output * had the buffer been big enough. */ buf += string_escape_mem(addr, len, buf, buf < end ? end - buf : 0, flags, NULL); return buf; } static char *va_format(char *buf, char *end, struct va_format *va_fmt, struct printf_spec spec, const char *fmt) { va_list va; if (check_pointer(&buf, end, va_fmt, spec)) return buf; va_copy(va, *va_fmt->va); buf += vsnprintf(buf, end > buf ? end - buf : 0, va_fmt->fmt, va); va_end(va); return buf; } static noinline_for_stack char *uuid_string(char *buf, char *end, const u8 *addr, struct printf_spec spec, const char *fmt) { char uuid[UUID_STRING_LEN + 1]; char *p = uuid; int i; const u8 *index = uuid_index; bool uc = false; if (check_pointer(&buf, end, addr, spec)) return buf; switch (*(++fmt)) { case 'L': uc = true; fallthrough; case 'l': index = guid_index; break; case 'B': uc = true; break; } for (i = 0; i < 16; i++) { if (uc) p = hex_byte_pack_upper(p, addr[index[i]]); else p = hex_byte_pack(p, addr[index[i]]); switch (i) { case 3: case 5: case 7: case 9: *p++ = '-'; break; } } *p = 0; return string_nocheck(buf, end, uuid, spec); } static noinline_for_stack char *netdev_bits(char *buf, char *end, const void *addr, struct printf_spec spec, const char *fmt) { unsigned long long num; int size; if (check_pointer(&buf, end, addr, spec)) return buf; switch (fmt[1]) { case 'F': num = *(const netdev_features_t *)addr; size = sizeof(netdev_features_t); break; default: return error_string(buf, end, "(%pN?)", spec); } return special_hex_number(buf, end, num, size); } static noinline_for_stack char *fourcc_string(char *buf, char *end, const u32 *fourcc, struct printf_spec spec, const char *fmt) { char output[sizeof("0123 little-endian (0x01234567)")]; char *p = output; unsigned int i; u32 orig, val; if (fmt[1] != 'c' || fmt[2] != 'c') return error_string(buf, end, "(%p4?)", spec); if (check_pointer(&buf, end, fourcc, spec)) return buf; orig = get_unaligned(fourcc); val = orig & ~BIT(31); for (i = 0; i < sizeof(u32); i++) { unsigned char c = val >> (i * 8); /* Print non-control ASCII characters as-is, dot otherwise */ *p++ = isascii(c) && isprint(c) ? c : '.'; } *p++ = ' '; strcpy(p, orig & BIT(31) ? "big-endian" : "little-endian"); p += strlen(p); *p++ = ' '; *p++ = '('; p = special_hex_number(p, output + sizeof(output) - 2, orig, sizeof(u32)); *p++ = ')'; *p = '\0'; return string(buf, end, output, spec); } static noinline_for_stack char *address_val(char *buf, char *end, const void *addr, struct printf_spec spec, const char *fmt) { unsigned long long num; int size; if (check_pointer(&buf, end, addr, spec)) return buf; switch (fmt[1]) { case 'd': num = *(const dma_addr_t *)addr; size = sizeof(dma_addr_t); break; case 'p': default: num = *(const phys_addr_t *)addr; size = sizeof(phys_addr_t); break; } return special_hex_number(buf, end, num, size); } static noinline_for_stack char *date_str(char *buf, char *end, const struct rtc_time *tm, bool r) { int year = tm->tm_year + (r ? 0 : 1900); int mon = tm->tm_mon + (r ? 0 : 1); buf = number(buf, end, year, default_dec04_spec); if (buf < end) *buf = '-'; buf++; buf = number(buf, end, mon, default_dec02_spec); if (buf < end) *buf = '-'; buf++; return number(buf, end, tm->tm_mday, default_dec02_spec); } static noinline_for_stack char *time_str(char *buf, char *end, const struct rtc_time *tm, bool r) { buf = number(buf, end, tm->tm_hour, default_dec02_spec); if (buf < end) *buf = ':'; buf++; buf = number(buf, end, tm->tm_min, default_dec02_spec); if (buf < end) *buf = ':'; buf++; return number(buf, end, tm->tm_sec, default_dec02_spec); } static noinline_for_stack char *rtc_str(char *buf, char *end, const struct rtc_time *tm, struct printf_spec spec, const char *fmt) { bool have_t = true, have_d = true; bool raw = false, iso8601_separator = true; bool found = true; int count = 2; if (check_pointer(&buf, end, tm, spec)) return buf; switch (fmt[count]) { case 'd': have_t = false; count++; break; case 't': have_d = false; count++; break; } do { switch (fmt[count++]) { case 'r': raw = true; break; case 's': iso8601_separator = false; break; default: found = false; break; } } while (found); if (have_d) buf = date_str(buf, end, tm, raw); if (have_d && have_t) { if (buf < end) *buf = iso8601_separator ? 'T' : ' '; buf++; } if (have_t) buf = time_str(buf, end, tm, raw); return buf; } static noinline_for_stack char *time64_str(char *buf, char *end, const time64_t time, struct printf_spec spec, const char *fmt) { struct rtc_time rtc_time; struct tm tm; time64_to_tm(time, 0, &tm); rtc_time.tm_sec = tm.tm_sec; rtc_time.tm_min = tm.tm_min; rtc_time.tm_hour = tm.tm_hour; rtc_time.tm_mday = tm.tm_mday; rtc_time.tm_mon = tm.tm_mon; rtc_time.tm_year = tm.tm_year; rtc_time.tm_wday = tm.tm_wday; rtc_time.tm_yday = tm.tm_yday; rtc_time.tm_isdst = 0; return rtc_str(buf, end, &rtc_time, spec, fmt); } static noinline_for_stack char *time_and_date(char *buf, char *end, void *ptr, struct printf_spec spec, const char *fmt) { switch (fmt[1]) { case 'R': return rtc_str(buf, end, (const struct rtc_time *)ptr, spec, fmt); case 'T': return time64_str(buf, end, *(const time64_t *)ptr, spec, fmt); default: return error_string(buf, end, "(%pt?)", spec); } } static noinline_for_stack char *clock(char *buf, char *end, struct clk *clk, struct printf_spec spec, const char *fmt) { if (!IS_ENABLED(CONFIG_HAVE_CLK)) return error_string(buf, end, "(%pC?)", spec); if (check_pointer(&buf, end, clk, spec)) return buf; switch (fmt[1]) { case 'n': default: #ifdef CONFIG_COMMON_CLK return string(buf, end, __clk_get_name(clk), spec); #else return ptr_to_id(buf, end, clk, spec); #endif } } static char *format_flags(char *buf, char *end, unsigned long flags, const struct trace_print_flags *names) { unsigned long mask; for ( ; flags && names->name; names++) { mask = names->mask; if ((flags & mask) != mask) continue; buf = string(buf, end, names->name, default_str_spec); flags &= ~mask; if (flags) { if (buf < end) *buf = '|'; buf++; } } if (flags) buf = number(buf, end, flags, default_flag_spec); return buf; } struct page_flags_fields { int width; int shift; int mask; const struct printf_spec *spec; const char *name; }; static const struct page_flags_fields pff[] = { {SECTIONS_WIDTH, SECTIONS_PGSHIFT, SECTIONS_MASK, &default_dec_spec, "section"}, {NODES_WIDTH, NODES_PGSHIFT, NODES_MASK, &default_dec_spec, "node"}, {ZONES_WIDTH, ZONES_PGSHIFT, ZONES_MASK, &default_dec_spec, "zone"}, {LAST_CPUPID_WIDTH, LAST_CPUPID_PGSHIFT, LAST_CPUPID_MASK, &default_flag_spec, "lastcpupid"}, {KASAN_TAG_WIDTH, KASAN_TAG_PGSHIFT, KASAN_TAG_MASK, &default_flag_spec, "kasantag"}, }; static char *format_page_flags(char *buf, char *end, unsigned long flags) { unsigned long main_flags = flags & PAGEFLAGS_MASK; bool append = false; int i; buf = number(buf, end, flags, default_flag_spec); if (buf < end) *buf = '('; buf++; /* Page flags from the main area. */ if (main_flags) { buf = format_flags(buf, end, main_flags, pageflag_names); append = true; } /* Page flags from the fields area */ for (i = 0; i < ARRAY_SIZE(pff); i++) { /* Skip undefined fields. */ if (!pff[i].width) continue; /* Format: Flag Name + '=' (equals sign) + Number + '|' (separator) */ if (append) { if (buf < end) *buf = '|'; buf++; } buf = string(buf, end, pff[i].name, default_str_spec); if (buf < end) *buf = '='; buf++; buf = number(buf, end, (flags >> pff[i].shift) & pff[i].mask, *pff[i].spec); append = true; } if (buf < end) *buf = ')'; buf++; return buf; } static noinline_for_stack char *flags_string(char *buf, char *end, void *flags_ptr, struct printf_spec spec, const char *fmt) { unsigned long flags; const struct trace_print_flags *names; if (check_pointer(&buf, end, flags_ptr, spec)) return buf; switch (fmt[1]) { case 'p': return format_page_flags(buf, end, *(unsigned long *)flags_ptr); case 'v': flags = *(unsigned long *)flags_ptr; names = vmaflag_names; break; case 'g': flags = (__force unsigned long)(*(gfp_t *)flags_ptr); names = gfpflag_names; break; default: return error_string(buf, end, "(%pG?)", spec); } return format_flags(buf, end, flags, names); } static noinline_for_stack char *fwnode_full_name_string(struct fwnode_handle *fwnode, char *buf, char *end) { int depth; /* Loop starting from the root node to the current node. */ for (depth = fwnode_count_parents(fwnode); depth >= 0; depth--) { /* * Only get a reference for other nodes (i.e. parent nodes). * fwnode refcount may be 0 here. */ struct fwnode_handle *__fwnode = depth ? fwnode_get_nth_parent(fwnode, depth) : fwnode; buf = string(buf, end, fwnode_get_name_prefix(__fwnode), default_str_spec); buf = string(buf, end, fwnode_get_name(__fwnode), default_str_spec); if (depth) fwnode_handle_put(__fwnode); } return buf; } static noinline_for_stack char *device_node_string(char *buf, char *end, struct device_node *dn, struct printf_spec spec, const char *fmt) { char tbuf[sizeof("xxxx") + 1]; const char *p; int ret; char *buf_start = buf; struct property *prop; bool has_mult, pass; struct printf_spec str_spec = spec; str_spec.field_width = -1; if (fmt[0] != 'F') return error_string(buf, end, "(%pO?)", spec); if (!IS_ENABLED(CONFIG_OF)) return error_string(buf, end, "(%pOF?)", spec); if (check_pointer(&buf, end, dn, spec)) return buf; /* simple case without anything any more format specifiers */ fmt++; if (fmt[0] == '\0' || strcspn(fmt,"fnpPFcC") > 0) fmt = "f"; for (pass = false; strspn(fmt,"fnpPFcC"); fmt++, pass = true) { int precision; if (pass) { if (buf < end) *buf = ':'; buf++; } switch (*fmt) { case 'f': /* full_name */ buf = fwnode_full_name_string(of_fwnode_handle(dn), buf, end); break; case 'n': /* name */ p = fwnode_get_name(of_fwnode_handle(dn)); precision = str_spec.precision; str_spec.precision = strchrnul(p, '@') - p; buf = string(buf, end, p, str_spec); str_spec.precision = precision; break; case 'p': /* phandle */ buf = number(buf, end, (unsigned int)dn->phandle, default_dec_spec); break; case 'P': /* path-spec */ p = fwnode_get_name(of_fwnode_handle(dn)); if (!p[1]) p = "/"; buf = string(buf, end, p, str_spec); break; case 'F': /* flags */ tbuf[0] = of_node_check_flag(dn, OF_DYNAMIC) ? 'D' : '-'; tbuf[1] = of_node_check_flag(dn, OF_DETACHED) ? 'd' : '-'; tbuf[2] = of_node_check_flag(dn, OF_POPULATED) ? 'P' : '-'; tbuf[3] = of_node_check_flag(dn, OF_POPULATED_BUS) ? 'B' : '-'; tbuf[4] = 0; buf = string_nocheck(buf, end, tbuf, str_spec); break; case 'c': /* major compatible string */ ret = of_property_read_string(dn, "compatible", &p); if (!ret) buf = string(buf, end, p, str_spec); break; case 'C': /* full compatible string */ has_mult = false; of_property_for_each_string(dn, "compatible", prop, p) { if (has_mult) buf = string_nocheck(buf, end, ",", str_spec); buf = string_nocheck(buf, end, "\"", str_spec); buf = string(buf, end, p, str_spec); buf = string_nocheck(buf, end, "\"", str_spec); has_mult = true; } break; default: break; } } return widen_string(buf, buf - buf_start, end, spec); } static noinline_for_stack char *fwnode_string(char *buf, char *end, struct fwnode_handle *fwnode, struct printf_spec spec, const char *fmt) { struct printf_spec str_spec = spec; char *buf_start = buf; str_spec.field_width = -1; if (*fmt != 'w') return error_string(buf, end, "(%pf?)", spec); if (check_pointer(&buf, end, fwnode, spec)) return buf; fmt++; switch (*fmt) { case 'P': /* name */ buf = string(buf, end, fwnode_get_name(fwnode), str_spec); break; case 'f': /* full_name */ default: buf = fwnode_full_name_string(fwnode, buf, end); break; } return widen_string(buf, buf - buf_start, end, spec); } static noinline_for_stack char *resource_or_range(const char *fmt, char *buf, char *end, void *ptr, struct printf_spec spec) { if (*fmt == 'r' && fmt[1] == 'a') return range_string(buf, end, ptr, spec, fmt); return resource_string(buf, end, ptr, spec, fmt); } int __init no_hash_pointers_enable(char *str) { if (no_hash_pointers) return 0; no_hash_pointers = true; pr_warn("**********************************************************\n"); pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); pr_warn("** **\n"); pr_warn("** This system shows unhashed kernel memory addresses **\n"); pr_warn("** via the console, logs, and other interfaces. This **\n"); pr_warn("** might reduce the security of your system. **\n"); pr_warn("** **\n"); pr_warn("** If you see this message and you are not debugging **\n"); pr_warn("** the kernel, report this immediately to your system **\n"); pr_warn("** administrator! **\n"); pr_warn("** **\n"); pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n"); pr_warn("**********************************************************\n"); return 0; } early_param("no_hash_pointers", no_hash_pointers_enable); /* Used for Rust formatting ('%pA'). */ char *rust_fmt_argument(char *buf, char *end, void *ptr); /* * Show a '%p' thing. A kernel extension is that the '%p' is followed * by an extra set of alphanumeric characters that are extended format * specifiers. * * Please update scripts/checkpatch.pl when adding/removing conversion * characters. (Search for "check for vsprintf extension"). * * Right now we handle: * * - 'S' For symbolic direct pointers (or function descriptors) with offset * - 's' For symbolic direct pointers (or function descriptors) without offset * - '[Ss]R' as above with __builtin_extract_return_addr() translation * - 'S[R]b' as above with module build ID (for use in backtraces) * - '[Ff]' %pf and %pF were obsoleted and later removed in favor of * %ps and %pS. Be careful when re-using these specifiers. * - 'B' For backtraced symbolic direct pointers with offset * - 'Bb' as above with module build ID (for use in backtraces) * - 'R' For decoded struct resource, e.g., [mem 0x0-0x1f 64bit pref] * - 'r' For raw struct resource, e.g., [mem 0x0-0x1f flags 0x201] * - 'ra' For struct ranges, e.g., [range 0x0000000000000000 - 0x00000000000000ff] * - 'b[l]' For a bitmap, the number of bits is determined by the field * width which must be explicitly specified either as part of the * format string '%32b[l]' or through '%*b[l]', [l] selects * range-list format instead of hex format * - 'M' For a 6-byte MAC address, it prints the address in the * usual colon-separated hex notation * - 'm' For a 6-byte MAC address, it prints the hex address without colons * - 'MF' For a 6-byte MAC FDDI address, it prints the address * with a dash-separated hex notation * - '[mM]R' For a 6-byte MAC address, Reverse order (Bluetooth) * - 'I' [46] for IPv4/IPv6 addresses printed in the usual way * IPv4 uses dot-separated decimal without leading 0's (1.2.3.4) * IPv6 uses colon separated network-order 16 bit hex with leading 0's * [S][pfs] * Generic IPv4/IPv6 address (struct sockaddr *) that falls back to * [4] or [6] and is able to print port [p], flowinfo [f], scope [s] * - 'i' [46] for 'raw' IPv4/IPv6 addresses * IPv6 omits the colons (01020304...0f) * IPv4 uses dot-separated decimal with leading 0's (010.123.045.006) * [S][pfs] * Generic IPv4/IPv6 address (struct sockaddr *) that falls back to * [4] or [6] and is able to print port [p], flowinfo [f], scope [s] * - '[Ii][4S][hnbl]' IPv4 addresses in host, network, big or little endian order * - 'I[6S]c' for IPv6 addresses printed as specified by * https://tools.ietf.org/html/rfc5952 * - 'E[achnops]' For an escaped buffer, where rules are defined by combination * of the following flags (see string_escape_mem() for the * details): * a - ESCAPE_ANY * c - ESCAPE_SPECIAL * h - ESCAPE_HEX * n - ESCAPE_NULL * o - ESCAPE_OCTAL * p - ESCAPE_NP * s - ESCAPE_SPACE * By default ESCAPE_ANY_NP is used. * - 'U' For a 16 byte UUID/GUID, it prints the UUID/GUID in the form * "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" * Options for %pU are: * b big endian lower case hex (default) * B big endian UPPER case hex * l little endian lower case hex * L little endian UPPER case hex * big endian output byte order is: * [0][1][2][3]-[4][5]-[6][7]-[8][9]-[10][11][12][13][14][15] * little endian output byte order is: * [3][2][1][0]-[5][4]-[7][6]-[8][9]-[10][11][12][13][14][15] * - 'V' For a struct va_format which contains a format string * and va_list *, * call vsnprintf(->format, *->va_list). * Implements a "recursive vsnprintf". * Do not use this feature without some mechanism to verify the * correctness of the format string and va_list arguments. * - 'K' For a kernel pointer that should be hidden from unprivileged users. * Use only for procfs, sysfs and similar files, not printk(); please * read the documentation (path below) first. * - 'NF' For a netdev_features_t * - '4cc' V4L2 or DRM FourCC code, with endianness and raw numerical value. * - 'h[CDN]' For a variable-length buffer, it prints it as a hex string with * a certain separator (' ' by default): * C colon * D dash * N no separator * The maximum supported length is 64 bytes of the input. Consider * to use print_hex_dump() for the larger input. * - 'a[pd]' For address types [p] phys_addr_t, [d] dma_addr_t and derivatives * (default assumed to be phys_addr_t, passed by reference) * - 'd[234]' For a dentry name (optionally 2-4 last components) * - 'D[234]' Same as 'd' but for a struct file * - 'g' For block_device name (gendisk + partition number) * - 't[RT][dt][r][s]' For time and date as represented by: * R struct rtc_time * T time64_t * - 'C' For a clock, it prints the name (Common Clock Framework) or address * (legacy clock framework) of the clock * - 'Cn' For a clock, it prints the name (Common Clock Framework) or address * (legacy clock framework) of the clock * - 'G' For flags to be printed as a collection of symbolic strings that would * construct the specific value. Supported flags given by option: * p page flags (see struct page) given as pointer to unsigned long * g gfp flags (GFP_* and __GFP_*) given as pointer to gfp_t * v vma flags (VM_*) given as pointer to unsigned long * - 'OF[fnpPcCF]' For a device tree object * Without any optional arguments prints the full_name * f device node full_name * n device node name * p device node phandle * P device node path spec (name + @unit) * F device node flags * c major compatible string * C full compatible string * - 'fw[fP]' For a firmware node (struct fwnode_handle) pointer * Without an option prints the full name of the node * f full name * P node name, including a possible unit address * - 'x' For printing the address unmodified. Equivalent to "%lx". * Please read the documentation (path below) before using! * - '[ku]s' For a BPF/tracing related format specifier, e.g. used out of * bpf_trace_printk() where [ku] prefix specifies either kernel (k) * or user (u) memory to probe, and: * s a string, equivalent to "%s" on direct vsnprintf() use * * ** When making changes please also update: * Documentation/core-api/printk-formats.rst * * Note: The default behaviour (unadorned %p) is to hash the address, * rendering it useful as a unique identifier. * * There is also a '%pA' format specifier, but it is only intended to be used * from Rust code to format core::fmt::Arguments. Do *not* use it from C. * See rust/kernel/print.rs for details. */ static noinline_for_stack char *pointer(const char *fmt, char *buf, char *end, void *ptr, struct printf_spec spec) { switch (*fmt) { case 'S': case 's': ptr = dereference_symbol_descriptor(ptr); fallthrough; case 'B': return symbol_string(buf, end, ptr, spec, fmt); case 'R': case 'r': return resource_or_range(fmt, buf, end, ptr, spec); case 'h': return hex_string(buf, end, ptr, spec, fmt); case 'b': switch (fmt[1]) { case 'l': return bitmap_list_string(buf, end, ptr, spec, fmt); default: return bitmap_string(buf, end, ptr, spec, fmt); } case 'M': /* Colon separated: 00:01:02:03:04:05 */ case 'm': /* Contiguous: 000102030405 */ /* [mM]F (FDDI) */ /* [mM]R (Reverse order; Bluetooth) */ return mac_address_string(buf, end, ptr, spec, fmt); case 'I': /* Formatted IP supported * 4: 1.2.3.4 * 6: 0001:0203:...:0708 * 6c: 1::708 or 1::1.2.3.4 */ case 'i': /* Contiguous: * 4: 001.002.003.004 * 6: 000102...0f */ return ip_addr_string(buf, end, ptr, spec, fmt); case 'E': return escaped_string(buf, end, ptr, spec, fmt); case 'U': return uuid_string(buf, end, ptr, spec, fmt); case 'V': return va_format(buf, end, ptr, spec, fmt); case 'K': return restricted_pointer(buf, end, ptr, spec); case 'N': return netdev_bits(buf, end, ptr, spec, fmt); case '4': return fourcc_string(buf, end, ptr, spec, fmt); case 'a': return address_val(buf, end, ptr, spec, fmt); case 'd': return dentry_name(buf, end, ptr, spec, fmt); case 't': return time_and_date(buf, end, ptr, spec, fmt); case 'C': return clock(buf, end, ptr, spec, fmt); case 'D': return file_dentry_name(buf, end, ptr, spec, fmt); #ifdef CONFIG_BLOCK case 'g': return bdev_name(buf, end, ptr, spec, fmt); #endif case 'G': return flags_string(buf, end, ptr, spec, fmt); case 'O': return device_node_string(buf, end, ptr, spec, fmt + 1); case 'f': return fwnode_string(buf, end, ptr, spec, fmt + 1); case 'A': if (!IS_ENABLED(CONFIG_RUST)) { WARN_ONCE(1, "Please remove %%pA from non-Rust code\n"); return error_string(buf, end, "(%pA?)", spec); } return rust_fmt_argument(buf, end, ptr); case 'x': return pointer_string(buf, end, ptr, spec); case 'e': /* %pe with a non-ERR_PTR gets treated as plain %p */ if (!IS_ERR(ptr)) return default_pointer(buf, end, ptr, spec); return err_ptr(buf, end, ptr, spec); case 'u': case 'k': switch (fmt[1]) { case 's': return string(buf, end, ptr, spec); default: return error_string(buf, end, "(einval)", spec); } default: return default_pointer(buf, end, ptr, spec); } } struct fmt { const char *str; unsigned char state; // enum format_state unsigned char size; // size of numbers }; #define SPEC_CHAR(x, flag) [(x)-32] = flag static unsigned char spec_flag(unsigned char c) { static const unsigned char spec_flag_array[] = { SPEC_CHAR(' ', SPACE), SPEC_CHAR('#', SPECIAL), SPEC_CHAR('+', PLUS), SPEC_CHAR('-', LEFT), SPEC_CHAR('0', ZEROPAD), }; c -= 32; return (c < sizeof(spec_flag_array)) ? spec_flag_array[c] : 0; } /* * Helper function to decode printf style format. * Each call decode a token from the format and return the * number of characters read (or likely the delta where it wants * to go on the next call). * The decoded token is returned through the parameters * * 'h', 'l', or 'L' for integer fields * 'z' support added 23/7/1999 S.H. * 'z' changed to 'Z' --davidm 1/25/99 * 'Z' changed to 'z' --adobriyan 2017-01-25 * 't' added for ptrdiff_t * * @fmt: the format string * @type of the token returned * @flags: various flags such as +, -, # tokens.. * @field_width: overwritten width * @base: base of the number (octal, hex, ...) * @precision: precision of a number * @qualifier: qualifier of a number (long, size_t, ...) */ static noinline_for_stack struct fmt format_decode(struct fmt fmt, struct printf_spec *spec) { const char *start = fmt.str; char flag; /* we finished early by reading the field width */ if (unlikely(fmt.state == FORMAT_STATE_WIDTH)) { if (spec->field_width < 0) { spec->field_width = -spec->field_width; spec->flags |= LEFT; } fmt.state = FORMAT_STATE_NONE; goto precision; } /* we finished early by reading the precision */ if (unlikely(fmt.state == FORMAT_STATE_PRECISION)) { if (spec->precision < 0) spec->precision = 0; fmt.state = FORMAT_STATE_NONE; goto qualifier; } /* By default */ fmt.state = FORMAT_STATE_NONE; for (; *fmt.str ; fmt.str++) { if (*fmt.str == '%') break; } /* Return the current non-format string */ if (fmt.str != start || !*fmt.str) return fmt; /* Process flags. This also skips the first '%' */ spec->flags = 0; do { /* this also skips first '%' */ flag = spec_flag(*++fmt.str); spec->flags |= flag; } while (flag); /* get field width */ spec->field_width = -1; if (isdigit(*fmt.str)) spec->field_width = skip_atoi(&fmt.str); else if (unlikely(*fmt.str == '*')) { /* it's the next argument */ fmt.state = FORMAT_STATE_WIDTH; fmt.str++; return fmt; } precision: /* get the precision */ spec->precision = -1; if (unlikely(*fmt.str == '.')) { fmt.str++; if (isdigit(*fmt.str)) { spec->precision = skip_atoi(&fmt.str); if (spec->precision < 0) spec->precision = 0; } else if (*fmt.str == '*') { /* it's the next argument */ fmt.state = FORMAT_STATE_PRECISION; fmt.str++; return fmt; } } qualifier: /* Set up default numeric format */ spec->base = 10; fmt.state = FORMAT_STATE_NUM; fmt.size = sizeof(int); static const struct format_state { unsigned char state; unsigned char size; unsigned char flags_or_double_size; unsigned char base; } lookup_state[256] = { // Length ['l'] = { 0, sizeof(long), sizeof(long long) }, ['L'] = { 0, sizeof(long long) }, ['h'] = { 0, sizeof(short), sizeof(char) }, ['H'] = { 0, sizeof(char) }, // Questionable historical ['z'] = { 0, sizeof(size_t) }, ['t'] = { 0, sizeof(ptrdiff_t) }, // Non-numeric formats ['c'] = { FORMAT_STATE_CHAR }, ['s'] = { FORMAT_STATE_STR }, ['p'] = { FORMAT_STATE_PTR }, ['%'] = { FORMAT_STATE_PERCENT_CHAR }, // Numerics ['o'] = { FORMAT_STATE_NUM, 0, 0, 8 }, ['x'] = { FORMAT_STATE_NUM, 0, SMALL, 16 }, ['X'] = { FORMAT_STATE_NUM, 0, 0, 16 }, ['d'] = { FORMAT_STATE_NUM, 0, SIGN, 10 }, ['i'] = { FORMAT_STATE_NUM, 0, SIGN, 10 }, ['u'] = { FORMAT_STATE_NUM, 0, 0, 10, }, /* * Since %n poses a greater security risk than * utility, treat it as any other invalid or * unsupported format specifier. */ }; const struct format_state *p = lookup_state + (u8)*fmt.str; if (p->size) { fmt.size = p->size; if (p->flags_or_double_size && fmt.str[0] == fmt.str[1]) { fmt.size = p->flags_or_double_size; fmt.str++; } fmt.str++; p = lookup_state + *fmt.str; } if (p->state) { if (p->base) spec->base = p->base; spec->flags |= p->flags_or_double_size; fmt.state = p->state; fmt.str++; return fmt; } WARN_ONCE(1, "Please remove unsupported %%%c in format string\n", *fmt.str); fmt.state = FORMAT_STATE_INVALID; return fmt; } static void set_field_width(struct printf_spec *spec, int width) { spec->field_width = width; if (WARN_ONCE(spec->field_width != width, "field width %d too large", width)) { spec->field_width = clamp(width, -FIELD_WIDTH_MAX, FIELD_WIDTH_MAX); } } static void set_precision(struct printf_spec *spec, int prec) { spec->precision = prec; if (WARN_ONCE(spec->precision != prec, "precision %d too large", prec)) { spec->precision = clamp(prec, 0, PRECISION_MAX); } } /* * Turn a 1/2/4-byte value into a 64-bit one for printing: truncate * as necessary and deal with signedness. * * 'size' is the size of the value in bytes. */ static unsigned long long convert_num_spec(unsigned int val, int size, struct printf_spec spec) { unsigned int shift = 32 - size*8; val <<= shift; if (!(spec.flags & SIGN)) return val >> shift; return (int)val >> shift; } /** * vsnprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @size: The size of the buffer, including the trailing null space * @fmt_str: The format string to use * @args: Arguments for the format string * * This function generally follows C99 vsnprintf, but has some * extensions and a few limitations: * * - ``%n`` is unsupported * - ``%p*`` is handled by pointer() * * See pointer() or Documentation/core-api/printk-formats.rst for more * extensive description. * * **Please update the documentation in both places when making changes** * * The return value is the number of characters which would * be generated for the given input, excluding the trailing * '\0', as per ISO C99. If you want to have the exact * number of characters written into @buf as return value * (not including the trailing '\0'), use vscnprintf(). If the * return is greater than or equal to @size, the resulting * string is truncated. * * If you're not already dealing with a va_list consider using snprintf(). */ int vsnprintf(char *buf, size_t size, const char *fmt_str, va_list args) { char *str, *end; struct printf_spec spec = {0}; struct fmt fmt = { .str = fmt_str, .state = FORMAT_STATE_NONE, }; /* Reject out-of-range values early. Large positive sizes are used for unknown buffer sizes. */ if (WARN_ON_ONCE(size > INT_MAX)) return 0; str = buf; end = buf + size; /* Make sure end is always >= buf */ if (end < buf) { end = ((void *)-1); size = end - buf; } while (*fmt.str) { const char *old_fmt = fmt.str; fmt = format_decode(fmt, &spec); switch (fmt.state) { case FORMAT_STATE_NONE: { int read = fmt.str - old_fmt; if (str < end) { int copy = read; if (copy > end - str) copy = end - str; memcpy(str, old_fmt, copy); } str += read; continue; } case FORMAT_STATE_NUM: { unsigned long long num; if (fmt.size <= sizeof(int)) num = convert_num_spec(va_arg(args, int), fmt.size, spec); else num = va_arg(args, long long); str = number(str, end, num, spec); continue; } case FORMAT_STATE_WIDTH: set_field_width(&spec, va_arg(args, int)); continue; case FORMAT_STATE_PRECISION: set_precision(&spec, va_arg(args, int)); continue; case FORMAT_STATE_CHAR: { char c; if (!(spec.flags & LEFT)) { while (--spec.field_width > 0) { if (str < end) *str = ' '; ++str; } } c = (unsigned char) va_arg(args, int); if (str < end) *str = c; ++str; while (--spec.field_width > 0) { if (str < end) *str = ' '; ++str; } continue; } case FORMAT_STATE_STR: str = string(str, end, va_arg(args, char *), spec); continue; case FORMAT_STATE_PTR: str = pointer(fmt.str, str, end, va_arg(args, void *), spec); while (isalnum(*fmt.str)) fmt.str++; continue; case FORMAT_STATE_PERCENT_CHAR: if (str < end) *str = '%'; ++str; continue; default: /* * Presumably the arguments passed gcc's type * checking, but there is no safe or sane way * for us to continue parsing the format and * fetching from the va_list; the remaining * specifiers and arguments would be out of * sync. */ goto out; } } out: if (size > 0) { if (str < end) *str = '\0'; else end[-1] = '\0'; } /* the trailing null byte doesn't count towards the total */ return str-buf; } EXPORT_SYMBOL(vsnprintf); /** * vscnprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @size: The size of the buffer, including the trailing null space * @fmt: The format string to use * @args: Arguments for the format string * * The return value is the number of characters which have been written into * the @buf not including the trailing '\0'. If @size is == 0 the function * returns 0. * * If you're not already dealing with a va_list consider using scnprintf(). * * See the vsnprintf() documentation for format string extensions over C99. */ int vscnprintf(char *buf, size_t size, const char *fmt, va_list args) { int i; if (unlikely(!size)) return 0; i = vsnprintf(buf, size, fmt, args); if (likely(i < size)) return i; return size - 1; } EXPORT_SYMBOL(vscnprintf); /** * snprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @size: The size of the buffer, including the trailing null space * @fmt: The format string to use * @...: Arguments for the format string * * The return value is the number of characters which would be * generated for the given input, excluding the trailing null, * as per ISO C99. If the return is greater than or equal to * @size, the resulting string is truncated. * * See the vsnprintf() documentation for format string extensions over C99. */ int snprintf(char *buf, size_t size, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vsnprintf(buf, size, fmt, args); va_end(args); return i; } EXPORT_SYMBOL(snprintf); /** * scnprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @size: The size of the buffer, including the trailing null space * @fmt: The format string to use * @...: Arguments for the format string * * The return value is the number of characters written into @buf not including * the trailing '\0'. If @size is == 0 the function returns 0. */ int scnprintf(char *buf, size_t size, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vscnprintf(buf, size, fmt, args); va_end(args); return i; } EXPORT_SYMBOL(scnprintf); /** * vsprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @fmt: The format string to use * @args: Arguments for the format string * * The function returns the number of characters written * into @buf. Use vsnprintf() or vscnprintf() in order to avoid * buffer overflows. * * If you're not already dealing with a va_list consider using sprintf(). * * See the vsnprintf() documentation for format string extensions over C99. */ int vsprintf(char *buf, const char *fmt, va_list args) { return vsnprintf(buf, INT_MAX, fmt, args); } EXPORT_SYMBOL(vsprintf); /** * sprintf - Format a string and place it in a buffer * @buf: The buffer to place the result into * @fmt: The format string to use * @...: Arguments for the format string * * The function returns the number of characters written * into @buf. Use snprintf() or scnprintf() in order to avoid * buffer overflows. * * See the vsnprintf() documentation for format string extensions over C99. */ int sprintf(char *buf, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vsnprintf(buf, INT_MAX, fmt, args); va_end(args); return i; } EXPORT_SYMBOL(sprintf); #ifdef CONFIG_BINARY_PRINTF /* * bprintf service: * vbin_printf() - VA arguments to binary data * bstr_printf() - Binary data to text string */ /** * vbin_printf - Parse a format string and place args' binary value in a buffer * @bin_buf: The buffer to place args' binary value * @size: The size of the buffer(by words(32bits), not characters) * @fmt_str: The format string to use * @args: Arguments for the format string * * The format follows C99 vsnprintf, except %n is ignored, and its argument * is skipped. * * The return value is the number of words(32bits) which would be generated for * the given input. * * NOTE: * If the return value is greater than @size, the resulting bin_buf is NOT * valid for bstr_printf(). */ int vbin_printf(u32 *bin_buf, size_t size, const char *fmt_str, va_list args) { struct fmt fmt = { .str = fmt_str, .state = FORMAT_STATE_NONE, }; struct printf_spec spec = {0}; char *str, *end; int width; str = (char *)bin_buf; end = (char *)(bin_buf + size); #define save_arg(type) \ ({ \ unsigned long long value; \ if (sizeof(type) == 8) { \ unsigned long long val8; \ str = PTR_ALIGN(str, sizeof(u32)); \ val8 = va_arg(args, unsigned long long); \ if (str + sizeof(type) <= end) { \ *(u32 *)str = *(u32 *)&val8; \ *(u32 *)(str + 4) = *((u32 *)&val8 + 1); \ } \ value = val8; \ } else { \ unsigned int val4; \ str = PTR_ALIGN(str, sizeof(type)); \ val4 = va_arg(args, int); \ if (str + sizeof(type) <= end) \ *(typeof(type) *)str = (type)(long)val4; \ value = (unsigned long long)val4; \ } \ str += sizeof(type); \ value; \ }) while (*fmt.str) { fmt = format_decode(fmt, &spec); switch (fmt.state) { case FORMAT_STATE_NONE: case FORMAT_STATE_PERCENT_CHAR: break; case FORMAT_STATE_INVALID: goto out; case FORMAT_STATE_WIDTH: case FORMAT_STATE_PRECISION: width = (int)save_arg(int); /* Pointers may require the width */ if (*fmt.str == 'p') set_field_width(&spec, width); break; case FORMAT_STATE_CHAR: save_arg(char); break; case FORMAT_STATE_STR: { const char *save_str = va_arg(args, char *); const char *err_msg; size_t len; err_msg = check_pointer_msg(save_str); if (err_msg) save_str = err_msg; len = strlen(save_str) + 1; if (str + len < end) memcpy(str, save_str, len); str += len; break; } case FORMAT_STATE_PTR: /* Dereferenced pointers must be done now */ switch (*fmt.str) { /* Dereference of functions is still OK */ case 'S': case 's': case 'x': case 'K': case 'e': save_arg(void *); break; default: if (!isalnum(*fmt.str)) { save_arg(void *); break; } str = pointer(fmt.str, str, end, va_arg(args, void *), spec); if (str + 1 < end) *str++ = '\0'; else end[-1] = '\0'; /* Must be nul terminated */ } /* skip all alphanumeric pointer suffixes */ while (isalnum(*fmt.str)) fmt.str++; break; case FORMAT_STATE_NUM: if (fmt.size > sizeof(int)) { save_arg(long long); } else { save_arg(int); } } } out: return (u32 *)(PTR_ALIGN(str, sizeof(u32))) - bin_buf; #undef save_arg } EXPORT_SYMBOL_GPL(vbin_printf); /** * bstr_printf - Format a string from binary arguments and place it in a buffer * @buf: The buffer to place the result into * @size: The size of the buffer, including the trailing null space * @fmt_str: The format string to use * @bin_buf: Binary arguments for the format string * * This function like C99 vsnprintf, but the difference is that vsnprintf gets * arguments from stack, and bstr_printf gets arguments from @bin_buf which is * a binary buffer that generated by vbin_printf. * * The format follows C99 vsnprintf, but has some extensions: * see vsnprintf comment for details. * * The return value is the number of characters which would * be generated for the given input, excluding the trailing * '\0', as per ISO C99. If you want to have the exact * number of characters written into @buf as return value * (not including the trailing '\0'), use vscnprintf(). If the * return is greater than or equal to @size, the resulting * string is truncated. */ int bstr_printf(char *buf, size_t size, const char *fmt_str, const u32 *bin_buf) { struct fmt fmt = { .str = fmt_str, .state = FORMAT_STATE_NONE, }; struct printf_spec spec = {0}; char *str, *end; const char *args = (const char *)bin_buf; if (WARN_ON_ONCE(size > INT_MAX)) return 0; str = buf; end = buf + size; #define get_arg(type) \ ({ \ typeof(type) value; \ if (sizeof(type) == 8) { \ args = PTR_ALIGN(args, sizeof(u32)); \ *(u32 *)&value = *(u32 *)args; \ *((u32 *)&value + 1) = *(u32 *)(args + 4); \ } else { \ args = PTR_ALIGN(args, sizeof(type)); \ value = *(typeof(type) *)args; \ } \ args += sizeof(type); \ value; \ }) /* Make sure end is always >= buf */ if (end < buf) { end = ((void *)-1); size = end - buf; } while (*fmt.str) { const char *old_fmt = fmt.str; unsigned long long num; fmt = format_decode(fmt, &spec); switch (fmt.state) { case FORMAT_STATE_NONE: { int read = fmt.str - old_fmt; if (str < end) { int copy = read; if (copy > end - str) copy = end - str; memcpy(str, old_fmt, copy); } str += read; continue; } case FORMAT_STATE_WIDTH: set_field_width(&spec, get_arg(int)); continue; case FORMAT_STATE_PRECISION: set_precision(&spec, get_arg(int)); continue; case FORMAT_STATE_CHAR: { char c; if (!(spec.flags & LEFT)) { while (--spec.field_width > 0) { if (str < end) *str = ' '; ++str; } } c = (unsigned char) get_arg(char); if (str < end) *str = c; ++str; while (--spec.field_width > 0) { if (str < end) *str = ' '; ++str; } continue; } case FORMAT_STATE_STR: { const char *str_arg = args; args += strlen(str_arg) + 1; str = string(str, end, (char *)str_arg, spec); continue; } case FORMAT_STATE_PTR: { bool process = false; int copy, len; /* Non function dereferences were already done */ switch (*fmt.str) { case 'S': case 's': case 'x': case 'K': case 'e': process = true; break; default: if (!isalnum(*fmt.str)) { process = true; break; } /* Pointer dereference was already processed */ if (str < end) { len = copy = strlen(args); if (copy > end - str) copy = end - str; memcpy(str, args, copy); str += len; args += len + 1; } } if (process) str = pointer(fmt.str, str, end, get_arg(void *), spec); while (isalnum(*fmt.str)) fmt.str++; continue; } case FORMAT_STATE_PERCENT_CHAR: if (str < end) *str = '%'; ++str; continue; case FORMAT_STATE_INVALID: goto out; case FORMAT_STATE_NUM: if (fmt.size > sizeof(int)) { num = get_arg(long long); } else { num = convert_num_spec(get_arg(int), fmt.size, spec); } str = number(str, end, num, spec); continue; } } /* while(*fmt.str) */ out: if (size > 0) { if (str < end) *str = '\0'; else end[-1] = '\0'; } #undef get_arg /* the trailing null byte doesn't count towards the total */ return str - buf; } EXPORT_SYMBOL_GPL(bstr_printf); #endif /* CONFIG_BINARY_PRINTF */ /** * vsscanf - Unformat a buffer into a list of arguments * @buf: input buffer * @fmt: format of buffer * @args: arguments */ int vsscanf(const char *buf, const char *fmt, va_list args) { const char *str = buf; char *next; char digit; int num = 0; u8 qualifier; unsigned int base; union { long long s; unsigned long long u; } val; s16 field_width; bool is_sign; while (*fmt) { /* skip any white space in format */ /* white space in format matches any amount of * white space, including none, in the input. */ if (isspace(*fmt)) { fmt = skip_spaces(++fmt); str = skip_spaces(str); } /* anything that is not a conversion must match exactly */ if (*fmt != '%' && *fmt) { if (*fmt++ != *str++) break; continue; } if (!*fmt) break; ++fmt; /* skip this conversion. * advance both strings to next white space */ if (*fmt == '*') { if (!*str) break; while (!isspace(*fmt) && *fmt != '%' && *fmt) { /* '%*[' not yet supported, invalid format */ if (*fmt == '[') return num; fmt++; } while (!isspace(*str) && *str) str++; continue; } /* get field width */ field_width = -1; if (isdigit(*fmt)) { field_width = skip_atoi(&fmt); if (field_width <= 0) break; } /* get conversion qualifier */ qualifier = -1; if (*fmt == 'h' || _tolower(*fmt) == 'l' || *fmt == 'z') { qualifier = *fmt++; if (unlikely(qualifier == *fmt)) { if (qualifier == 'h') { qualifier = 'H'; fmt++; } else if (qualifier == 'l') { qualifier = 'L'; fmt++; } } } if (!*fmt) break; if (*fmt == 'n') { /* return number of characters read so far */ *va_arg(args, int *) = str - buf; ++fmt; continue; } if (!*str) break; base = 10; is_sign = false; switch (*fmt++) { case 'c': { char *s = (char *)va_arg(args, char*); if (field_width == -1) field_width = 1; do { *s++ = *str++; } while (--field_width > 0 && *str); num++; } continue; case 's': { char *s = (char *)va_arg(args, char *); if (field_width == -1) field_width = SHRT_MAX; /* first, skip leading white space in buffer */ str = skip_spaces(str); /* now copy until next white space */ while (*str && !isspace(*str) && field_width--) *s++ = *str++; *s = '\0'; num++; } continue; /* * Warning: This implementation of the '[' conversion specifier * deviates from its glibc counterpart in the following ways: * (1) It does NOT support ranges i.e. '-' is NOT a special * character * (2) It cannot match the closing bracket ']' itself * (3) A field width is required * (4) '%*[' (discard matching input) is currently not supported * * Example usage: * ret = sscanf("00:0a:95","%2[^:]:%2[^:]:%2[^:]", * buf1, buf2, buf3); * if (ret < 3) * // etc.. */ case '[': { char *s = (char *)va_arg(args, char *); DECLARE_BITMAP(set, 256) = {0}; unsigned int len = 0; bool negate = (*fmt == '^'); /* field width is required */ if (field_width == -1) return num; if (negate) ++fmt; for ( ; *fmt && *fmt != ']'; ++fmt, ++len) __set_bit((u8)*fmt, set); /* no ']' or no character set found */ if (!*fmt || !len) return num; ++fmt; if (negate) { bitmap_complement(set, set, 256); /* exclude null '\0' byte */ __clear_bit(0, set); } /* match must be non-empty */ if (!test_bit((u8)*str, set)) return num; while (test_bit((u8)*str, set) && field_width--) *s++ = *str++; *s = '\0'; ++num; } continue; case 'o': base = 8; break; case 'x': case 'X': base = 16; break; case 'i': base = 0; fallthrough; case 'd': is_sign = true; fallthrough; case 'u': break; case '%': /* looking for '%' in str */ if (*str++ != '%') return num; continue; default: /* invalid format; stop here */ return num; } /* have some sort of integer conversion. * first, skip white space in buffer. */ str = skip_spaces(str); digit = *str; if (is_sign && digit == '-') { if (field_width == 1) break; digit = *(str + 1); } if (!digit || (base == 16 && !isxdigit(digit)) || (base == 10 && !isdigit(digit)) || (base == 8 && !isodigit(digit)) || (base == 0 && !isdigit(digit))) break; if (is_sign) val.s = simple_strntoll(str, &next, base, field_width >= 0 ? field_width : INT_MAX); else val.u = simple_strntoull(str, &next, base, field_width >= 0 ? field_width : INT_MAX); switch (qualifier) { case 'H': /* that's 'hh' in format */ if (is_sign) *va_arg(args, signed char *) = val.s; else *va_arg(args, unsigned char *) = val.u; break; case 'h': if (is_sign) *va_arg(args, short *) = val.s; else *va_arg(args, unsigned short *) = val.u; break; case 'l': if (is_sign) *va_arg(args, long *) = val.s; else *va_arg(args, unsigned long *) = val.u; break; case 'L': if (is_sign) *va_arg(args, long long *) = val.s; else *va_arg(args, unsigned long long *) = val.u; break; case 'z': *va_arg(args, size_t *) = val.u; break; default: if (is_sign) *va_arg(args, int *) = val.s; else *va_arg(args, unsigned int *) = val.u; break; } num++; if (!next) break; str = next; } return num; } EXPORT_SYMBOL(vsscanf); /** * sscanf - Unformat a buffer into a list of arguments * @buf: input buffer * @fmt: formatting of buffer * @...: resulting arguments */ int sscanf(const char *buf, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vsscanf(buf, fmt, args); va_end(args); return i; } EXPORT_SYMBOL(sscanf); |
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | /* SPDX-License-Identifier: GPL-2.0 */ /* * sysfs.h - definitions for the device driver filesystem * * Copyright (c) 2001,2002 Patrick Mochel * Copyright (c) 2004 Silicon Graphics, Inc. * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007 Tejun Heo <teheo@suse.de> * * Please see Documentation/filesystems/sysfs.rst for more information. */ #ifndef _SYSFS_H_ #define _SYSFS_H_ #include <linux/kernfs.h> #include <linux/compiler.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/kobject_ns.h> #include <linux/stat.h> #include <linux/atomic.h> struct kobject; struct module; struct bin_attribute; enum kobj_ns_type; struct attribute { const char *name; umode_t mode; #ifdef CONFIG_DEBUG_LOCK_ALLOC bool ignore_lockdep:1; struct lock_class_key *key; struct lock_class_key skey; #endif }; /** * sysfs_attr_init - initialize a dynamically allocated sysfs attribute * @attr: struct attribute to initialize * * Initialize a dynamically allocated struct attribute so we can * make lockdep happy. This is a new requirement for attributes * and initially this is only needed when lockdep is enabled. * Lockdep gives a nice error when your attribute is added to * sysfs if you don't have this. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC #define sysfs_attr_init(attr) \ do { \ static struct lock_class_key __key; \ \ (attr)->key = &__key; \ } while (0) #else #define sysfs_attr_init(attr) do {} while (0) #endif /** * struct attribute_group - data structure used to declare an attribute group. * @name: Optional: Attribute group name * If specified, the attribute group will be created in a * new subdirectory with this name. Additionally when a * group is named, @is_visible and @is_bin_visible may * return SYSFS_GROUP_INVISIBLE to control visibility of * the directory itself. * @is_visible: Optional: Function to return permissions associated with an * attribute of the group. Will be called repeatedly for * each non-binary attribute in the group. Only read/write * permissions as well as SYSFS_PREALLOC are accepted. Must * return 0 if an attribute is not visible. The returned * value will replace static permissions defined in struct * attribute. Use SYSFS_GROUP_VISIBLE() when assigning this * callback to specify separate _group_visible() and * _attr_visible() handlers. * @is_bin_visible: * Optional: Function to return permissions associated with a * binary attribute of the group. Will be called repeatedly * for each binary attribute in the group. Only read/write * permissions as well as SYSFS_PREALLOC (and the * visibility flags for named groups) are accepted. Must * return 0 if a binary attribute is not visible. The * returned value will replace static permissions defined * in struct bin_attribute. If @is_visible is not set, Use * SYSFS_GROUP_VISIBLE() when assigning this callback to * specify separate _group_visible() and _attr_visible() * handlers. * @bin_size: * Optional: Function to return the size of a binary attribute * of the group. Will be called repeatedly for each binary * attribute in the group. Overwrites the size field embedded * inside the attribute itself. * @attrs: Pointer to NULL terminated list of attributes. * @bin_attrs: Pointer to NULL terminated list of binary attributes. * Either attrs or bin_attrs or both must be provided. */ struct attribute_group { const char *name; umode_t (*is_visible)(struct kobject *, struct attribute *, int); umode_t (*is_bin_visible)(struct kobject *, const struct bin_attribute *, int); size_t (*bin_size)(struct kobject *, const struct bin_attribute *, int); struct attribute **attrs; union { struct bin_attribute **bin_attrs; const struct bin_attribute *const *bin_attrs_new; }; }; #define SYSFS_PREALLOC 010000 #define SYSFS_GROUP_INVISIBLE 020000 /* * DEFINE_SYSFS_GROUP_VISIBLE(name): * A helper macro to pair with the assignment of ".is_visible = * SYSFS_GROUP_VISIBLE(name)", that arranges for the directory * associated with a named attribute_group to optionally be hidden. * This allows for static declaration of attribute_groups, and the * simplification of attribute visibility lifetime that implies, * without polluting sysfs with empty attribute directories. * Ex. * * static umode_t example_attr_visible(struct kobject *kobj, * struct attribute *attr, int n) * { * if (example_attr_condition) * return 0; * else if (ro_attr_condition) * return 0444; * return a->mode; * } * * static bool example_group_visible(struct kobject *kobj) * { * if (example_group_condition) * return false; * return true; * } * * DEFINE_SYSFS_GROUP_VISIBLE(example); * * static struct attribute_group example_group = { * .name = "example", * .is_visible = SYSFS_GROUP_VISIBLE(example), * .attrs = &example_attrs, * }; * * Note that it expects <name>_attr_visible and <name>_group_visible to * be defined. For cases where individual attributes do not need * separate visibility consideration, only entire group visibility at * once, see DEFINE_SIMPLE_SYSFS_GROUP_VISIBLE(). */ #define DEFINE_SYSFS_GROUP_VISIBLE(name) \ static inline umode_t sysfs_group_visible_##name( \ struct kobject *kobj, struct attribute *attr, int n) \ { \ if (n == 0 && !name##_group_visible(kobj)) \ return SYSFS_GROUP_INVISIBLE; \ return name##_attr_visible(kobj, attr, n); \ } /* * DEFINE_SIMPLE_SYSFS_GROUP_VISIBLE(name): * A helper macro to pair with SYSFS_GROUP_VISIBLE() that like * DEFINE_SYSFS_GROUP_VISIBLE() controls group visibility, but does * not require the implementation of a per-attribute visibility * callback. * Ex. * * static bool example_group_visible(struct kobject *kobj) * { * if (example_group_condition) * return false; * return true; * } * * DEFINE_SIMPLE_SYSFS_GROUP_VISIBLE(example); * * static struct attribute_group example_group = { * .name = "example", * .is_visible = SYSFS_GROUP_VISIBLE(example), * .attrs = &example_attrs, * }; */ #define DEFINE_SIMPLE_SYSFS_GROUP_VISIBLE(name) \ static inline umode_t sysfs_group_visible_##name( \ struct kobject *kobj, struct attribute *a, int n) \ { \ if (n == 0 && !name##_group_visible(kobj)) \ return SYSFS_GROUP_INVISIBLE; \ return a->mode; \ } /* * Same as DEFINE_SYSFS_GROUP_VISIBLE, but for groups with only binary * attributes. If an attribute_group defines both text and binary * attributes, the group visibility is determined by the function * specified to is_visible() not is_bin_visible() */ #define DEFINE_SYSFS_BIN_GROUP_VISIBLE(name) \ static inline umode_t sysfs_group_visible_##name( \ struct kobject *kobj, const struct bin_attribute *attr, int n) \ { \ if (n == 0 && !name##_group_visible(kobj)) \ return SYSFS_GROUP_INVISIBLE; \ return name##_attr_visible(kobj, attr, n); \ } #define DEFINE_SIMPLE_SYSFS_BIN_GROUP_VISIBLE(name) \ static inline umode_t sysfs_group_visible_##name( \ struct kobject *kobj, const struct bin_attribute *a, int n) \ { \ if (n == 0 && !name##_group_visible(kobj)) \ return SYSFS_GROUP_INVISIBLE; \ return a->mode; \ } #define SYSFS_GROUP_VISIBLE(fn) sysfs_group_visible_##fn /* * Use these macros to make defining attributes easier. * See include/linux/device.h for examples.. */ #define __ATTR(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _show, \ .store = _store, \ } #define __ATTR_PREALLOC(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), \ .mode = SYSFS_PREALLOC | VERIFY_OCTAL_PERMISSIONS(_mode) },\ .show = _show, \ .store = _store, \ } #define __ATTR_RO(_name) { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = _name##_show, \ } #define __ATTR_RO_MODE(_name, _mode) { \ .attr = { .name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _name##_show, \ } #define __ATTR_RW_MODE(_name, _mode) { \ .attr = { .name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _name##_show, \ .store = _name##_store, \ } #define __ATTR_WO(_name) { \ .attr = { .name = __stringify(_name), .mode = 0200 }, \ .store = _name##_store, \ } #define __ATTR_RW(_name) __ATTR(_name, 0644, _name##_show, _name##_store) #define __ATTR_NULL { .attr = { .name = NULL } } #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), .mode = _mode, \ .ignore_lockdep = true }, \ .show = _show, \ .store = _store, \ } #else #define __ATTR_IGNORE_LOCKDEP __ATTR #endif #define __ATTRIBUTE_GROUPS(_name) \ static const struct attribute_group *_name##_groups[] = { \ &_name##_group, \ NULL, \ } #define ATTRIBUTE_GROUPS(_name) \ static const struct attribute_group _name##_group = { \ .attrs = _name##_attrs, \ }; \ __ATTRIBUTE_GROUPS(_name) #define BIN_ATTRIBUTE_GROUPS(_name) \ static const struct attribute_group _name##_group = { \ .bin_attrs_new = _name##_attrs, \ }; \ __ATTRIBUTE_GROUPS(_name) struct file; struct vm_area_struct; struct address_space; struct bin_attribute { struct attribute attr; size_t size; void *private; struct address_space *(*f_mapping)(void); ssize_t (*read)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t, size_t); ssize_t (*read_new)(struct file *, struct kobject *, const struct bin_attribute *, char *, loff_t, size_t); ssize_t (*write)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t, size_t); ssize_t (*write_new)(struct file *, struct kobject *, const struct bin_attribute *, char *, loff_t, size_t); loff_t (*llseek)(struct file *, struct kobject *, const struct bin_attribute *, loff_t, int); int (*mmap)(struct file *, struct kobject *, const struct bin_attribute *attr, struct vm_area_struct *vma); }; /** * sysfs_bin_attr_init - initialize a dynamically allocated bin_attribute * @attr: struct bin_attribute to initialize * * Initialize a dynamically allocated struct bin_attribute so we * can make lockdep happy. This is a new requirement for * attributes and initially this is only needed when lockdep is * enabled. Lockdep gives a nice error when your attribute is * added to sysfs if you don't have this. */ #define sysfs_bin_attr_init(bin_attr) sysfs_attr_init(&(bin_attr)->attr) typedef ssize_t __sysfs_bin_rw_handler_new(struct file *, struct kobject *, const struct bin_attribute *, char *, loff_t, size_t); /* macros to create static binary attributes easier */ #define __BIN_ATTR(_name, _mode, _read, _write, _size) { \ .attr = { .name = __stringify(_name), .mode = _mode }, \ .read = _Generic(_read, \ __sysfs_bin_rw_handler_new * : NULL, \ default : _read \ ), \ .read_new = _Generic(_read, \ __sysfs_bin_rw_handler_new * : _read, \ default : NULL \ ), \ .write = _Generic(_write, \ __sysfs_bin_rw_handler_new * : NULL, \ default : _write \ ), \ .write_new = _Generic(_write, \ __sysfs_bin_rw_handler_new * : _write, \ default : NULL \ ), \ .size = _size, \ } #define __BIN_ATTR_RO(_name, _size) \ __BIN_ATTR(_name, 0444, _name##_read, NULL, _size) #define __BIN_ATTR_WO(_name, _size) \ __BIN_ATTR(_name, 0200, NULL, _name##_write, _size) #define __BIN_ATTR_RW(_name, _size) \ __BIN_ATTR(_name, 0644, _name##_read, _name##_write, _size) #define __BIN_ATTR_NULL __ATTR_NULL #define BIN_ATTR(_name, _mode, _read, _write, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR(_name, _mode, _read, \ _write, _size) #define BIN_ATTR_RO(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_RO(_name, _size) #define BIN_ATTR_WO(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_WO(_name, _size) #define BIN_ATTR_RW(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_RW(_name, _size) #define __BIN_ATTR_ADMIN_RO(_name, _size) \ __BIN_ATTR(_name, 0400, _name##_read, NULL, _size) #define __BIN_ATTR_ADMIN_RW(_name, _size) \ __BIN_ATTR(_name, 0600, _name##_read, _name##_write, _size) #define BIN_ATTR_ADMIN_RO(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_ADMIN_RO(_name, _size) #define BIN_ATTR_ADMIN_RW(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_ADMIN_RW(_name, _size) #define __BIN_ATTR_SIMPLE_RO(_name, _mode) \ __BIN_ATTR(_name, _mode, sysfs_bin_attr_simple_read, NULL, 0) #define BIN_ATTR_SIMPLE_RO(_name) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_SIMPLE_RO(_name, 0444) #define BIN_ATTR_SIMPLE_ADMIN_RO(_name) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_SIMPLE_RO(_name, 0400) struct sysfs_ops { ssize_t (*show)(struct kobject *, struct attribute *, char *); ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t); }; #ifdef CONFIG_SYSFS int __must_check sysfs_create_dir_ns(struct kobject *kobj, const void *ns); void sysfs_remove_dir(struct kobject *kobj); int __must_check sysfs_rename_dir_ns(struct kobject *kobj, const char *new_name, const void *new_ns); int __must_check sysfs_move_dir_ns(struct kobject *kobj, struct kobject *new_parent_kobj, const void *new_ns); int __must_check sysfs_create_mount_point(struct kobject *parent_kobj, const char *name); void sysfs_remove_mount_point(struct kobject *parent_kobj, const char *name); int __must_check sysfs_create_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns); int __must_check sysfs_create_files(struct kobject *kobj, const struct attribute * const *attr); int __must_check sysfs_chmod_file(struct kobject *kobj, const struct attribute *attr, umode_t mode); struct kernfs_node *sysfs_break_active_protection(struct kobject *kobj, const struct attribute *attr); void sysfs_unbreak_active_protection(struct kernfs_node *kn); void sysfs_remove_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns); bool sysfs_remove_file_self(struct kobject *kobj, const struct attribute *attr); void sysfs_remove_files(struct kobject *kobj, const struct attribute * const *attr); int __must_check sysfs_create_bin_file(struct kobject *kobj, const struct bin_attribute *attr); void sysfs_remove_bin_file(struct kobject *kobj, const struct bin_attribute *attr); int __must_check sysfs_create_link(struct kobject *kobj, struct kobject *target, const char *name); int __must_check sysfs_create_link_nowarn(struct kobject *kobj, struct kobject *target, const char *name); void sysfs_remove_link(struct kobject *kobj, const char *name); int sysfs_rename_link_ns(struct kobject *kobj, struct kobject *target, const char *old_name, const char *new_name, const void *new_ns); void sysfs_delete_link(struct kobject *dir, struct kobject *targ, const char *name); int __must_check sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp); int __must_check sysfs_create_groups(struct kobject *kobj, const struct attribute_group **groups); int __must_check sysfs_update_groups(struct kobject *kobj, const struct attribute_group **groups); int sysfs_update_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_remove_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_remove_groups(struct kobject *kobj, const struct attribute_group **groups); int sysfs_add_file_to_group(struct kobject *kobj, const struct attribute *attr, const char *group); void sysfs_remove_file_from_group(struct kobject *kobj, const struct attribute *attr, const char *group); int sysfs_merge_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_unmerge_group(struct kobject *kobj, const struct attribute_group *grp); int sysfs_add_link_to_group(struct kobject *kobj, const char *group_name, struct kobject *target, const char *link_name); void sysfs_remove_link_from_group(struct kobject *kobj, const char *group_name, const char *link_name); int compat_only_sysfs_link_entry_to_kobj(struct kobject *kobj, struct kobject *target_kobj, const char *target_name, const char *symlink_name); void sysfs_notify(struct kobject *kobj, const char *dir, const char *attr); int __must_check sysfs_init(void); static inline void sysfs_enable_ns(struct kernfs_node *kn) { return kernfs_enable_ns(kn); } int sysfs_file_change_owner(struct kobject *kobj, const char *name, kuid_t kuid, kgid_t kgid); int sysfs_change_owner(struct kobject *kobj, kuid_t kuid, kgid_t kgid); int sysfs_link_change_owner(struct kobject *kobj, struct kobject *targ, const char *name, kuid_t kuid, kgid_t kgid); int sysfs_groups_change_owner(struct kobject *kobj, const struct attribute_group **groups, kuid_t kuid, kgid_t kgid); int sysfs_group_change_owner(struct kobject *kobj, const struct attribute_group *groups, kuid_t kuid, kgid_t kgid); __printf(2, 3) int sysfs_emit(char *buf, const char *fmt, ...); __printf(3, 4) int sysfs_emit_at(char *buf, int at, const char *fmt, ...); ssize_t sysfs_bin_attr_simple_read(struct file *file, struct kobject *kobj, const struct bin_attribute *attr, char *buf, loff_t off, size_t count); #else /* CONFIG_SYSFS */ static inline int sysfs_create_dir_ns(struct kobject *kobj, const void *ns) { return 0; } static inline void sysfs_remove_dir(struct kobject *kobj) { } static inline int sysfs_rename_dir_ns(struct kobject *kobj, const char *new_name, const void *new_ns) { return 0; } static inline int sysfs_move_dir_ns(struct kobject *kobj, struct kobject *new_parent_kobj, const void *new_ns) { return 0; } static inline int sysfs_create_mount_point(struct kobject *parent_kobj, const char *name) { return 0; } static inline void sysfs_remove_mount_point(struct kobject *parent_kobj, const char *name) { } static inline int sysfs_create_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns) { return 0; } static inline int sysfs_create_files(struct kobject *kobj, const struct attribute * const *attr) { return 0; } static inline int sysfs_chmod_file(struct kobject *kobj, const struct attribute *attr, umode_t mode) { return 0; } static inline struct kernfs_node * sysfs_break_active_protection(struct kobject *kobj, const struct attribute *attr) { return NULL; } static inline void sysfs_unbreak_active_protection(struct kernfs_node *kn) { } static inline void sysfs_remove_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns) { } static inline bool sysfs_remove_file_self(struct kobject *kobj, const struct attribute *attr) { return false; } static inline void sysfs_remove_files(struct kobject *kobj, const struct attribute * const *attr) { } static inline int sysfs_create_bin_file(struct kobject *kobj, const struct bin_attribute *attr) { return 0; } static inline void sysfs_remove_bin_file(struct kobject *kobj, const struct bin_attribute *attr) { } static inline int sysfs_create_link(struct kobject *kobj, struct kobject *target, const char *name) { return 0; } static inline int sysfs_create_link_nowarn(struct kobject *kobj, struct kobject *target, const char *name) { return 0; } static inline void sysfs_remove_link(struct kobject *kobj, const char *name) { } static inline int sysfs_rename_link_ns(struct kobject *k, struct kobject *t, const char *old_name, const char *new_name, const void *ns) { return 0; } static inline void sysfs_delete_link(struct kobject *k, struct kobject *t, const char *name) { } static inline int sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline int sysfs_create_groups(struct kobject *kobj, const struct attribute_group **groups) { return 0; } static inline int sysfs_update_groups(struct kobject *kobj, const struct attribute_group **groups) { return 0; } static inline int sysfs_update_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline void sysfs_remove_group(struct kobject *kobj, const struct attribute_group *grp) { } static inline void sysfs_remove_groups(struct kobject *kobj, const struct attribute_group **groups) { } static inline int sysfs_add_file_to_group(struct kobject *kobj, const struct attribute *attr, const char *group) { return 0; } static inline void sysfs_remove_file_from_group(struct kobject *kobj, const struct attribute *attr, const char *group) { } static inline int sysfs_merge_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline void sysfs_unmerge_group(struct kobject *kobj, const struct attribute_group *grp) { } static inline int sysfs_add_link_to_group(struct kobject *kobj, const char *group_name, struct kobject *target, const char *link_name) { return 0; } static inline void sysfs_remove_link_from_group(struct kobject *kobj, const char *group_name, const char *link_name) { } static inline int compat_only_sysfs_link_entry_to_kobj(struct kobject *kobj, struct kobject *target_kobj, const char *target_name, const char *symlink_name) { return 0; } static inline void sysfs_notify(struct kobject *kobj, const char *dir, const char *attr) { } static inline int __must_check sysfs_init(void) { return 0; } static inline void sysfs_enable_ns(struct kernfs_node *kn) { } static inline int sysfs_file_change_owner(struct kobject *kobj, const char *name, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_link_change_owner(struct kobject *kobj, struct kobject *targ, const char *name, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_change_owner(struct kobject *kobj, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_groups_change_owner(struct kobject *kobj, const struct attribute_group **groups, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_group_change_owner(struct kobject *kobj, const struct attribute_group *groups, kuid_t kuid, kgid_t kgid) { return 0; } __printf(2, 3) static inline int sysfs_emit(char *buf, const char *fmt, ...) { return 0; } __printf(3, 4) static inline int sysfs_emit_at(char *buf, int at, const char *fmt, ...) { return 0; } static inline ssize_t sysfs_bin_attr_simple_read(struct file *file, struct kobject *kobj, const struct bin_attribute *attr, char *buf, loff_t off, size_t count) { return 0; } #endif /* CONFIG_SYSFS */ static inline int __must_check sysfs_create_file(struct kobject *kobj, const struct attribute *attr) { return sysfs_create_file_ns(kobj, attr, NULL); } static inline void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr) { sysfs_remove_file_ns(kobj, attr, NULL); } static inline int sysfs_rename_link(struct kobject *kobj, struct kobject *target, const char *old_name, const char *new_name) { return sysfs_rename_link_ns(kobj, target, old_name, new_name, NULL); } static inline void sysfs_notify_dirent(struct kernfs_node *kn) { kernfs_notify(kn); } static inline struct kernfs_node *sysfs_get_dirent(struct kernfs_node *parent, const char *name) { return kernfs_find_and_get(parent, name); } static inline struct kernfs_node *sysfs_get(struct kernfs_node *kn) { kernfs_get(kn); return kn; } static inline void sysfs_put(struct kernfs_node *kn) { kernfs_put(kn); } #endif /* _SYSFS_H_ */ |
330 329 330 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | // SPDX-License-Identifier: GPL-2.0-only /* * Landlock LSM - Credential hooks * * Copyright © 2017-2020 Mickaël Salaün <mic@digikod.net> * Copyright © 2018-2020 ANSSI */ #include <linux/cred.h> #include <linux/lsm_hooks.h> #include "common.h" #include "cred.h" #include "ruleset.h" #include "setup.h" static void hook_cred_transfer(struct cred *const new, const struct cred *const old) { struct landlock_ruleset *const old_dom = landlock_cred(old)->domain; if (old_dom) { landlock_get_ruleset(old_dom); landlock_cred(new)->domain = old_dom; } } static int hook_cred_prepare(struct cred *const new, const struct cred *const old, const gfp_t gfp) { hook_cred_transfer(new, old); return 0; } static void hook_cred_free(struct cred *const cred) { struct landlock_ruleset *const dom = landlock_cred(cred)->domain; if (dom) landlock_put_ruleset_deferred(dom); } static struct security_hook_list landlock_hooks[] __ro_after_init = { LSM_HOOK_INIT(cred_prepare, hook_cred_prepare), LSM_HOOK_INIT(cred_transfer, hook_cred_transfer), LSM_HOOK_INIT(cred_free, hook_cred_free), }; __init void landlock_add_cred_hooks(void) { security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), &landlock_lsmid); } |
178 178 361 362 361 8 363 362 99 21 21 9 8 155 124 30 1 153 99 93 56 93 56 21 21 10 10 30 30 215 218 216 2 3 2 211 7 2 197 185 172 12 2 182 110 72 4 18 160 139 38 139 38 1 119 30 23 9 1 595 312 285 335 132 172 105 171 233 232 233 2 3 1 4 2 1 3 3 2 46 46 34 30 34 34 9 34 41 41 2 21 15 31 36 36 30 6 55 6 9 32 9 32 10 27 61 61 25 36 42 61 59 60 73 15 8 41 41 41 9 1 16 9 39 1 53 3 50 49 50 2 10 48 48 35 20 14 1 15 48 47 34 1 15 20 12 57 57 33 1 31 3 32 2 30 30 23 23 32 32 27 1 26 26 1 16 4 24 26 45 1 43 8 5 36 44 8 26 35 44 43 26 137 137 125 25 137 122 25 73 73 65 25 73 63 25 4 4 6 6 24 4 21 17 7 17 10 4 7 11 17 6 2 9 10 2 2 3 42 2 40 1 4 31 2 16 12 1 27 28 18 18 17 8 28 18 6 12 12 3 15 18 18 5 10 14 12 6 20 21 2 4 5 12 6 5 1 7 1 1 31 21 8 2 72 57 17 17 24 8 10 6 6 10 10 6 5 10 72 69 45 27 71 19 1 18 6 6 3 3 2 1 3 14 10 10 9 2 17 3 2 12 1 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016 Facebook */ #include <linux/bpf.h> #include <linux/btf.h> #include <linux/jhash.h> #include <linux/filter.h> #include <linux/rculist_nulls.h> #include <linux/rcupdate_wait.h> #include <linux/random.h> #include <uapi/linux/btf.h> #include <linux/rcupdate_trace.h> #include <linux/btf_ids.h> #include "percpu_freelist.h" #include "bpf_lru_list.h" #include "map_in_map.h" #include <linux/bpf_mem_alloc.h> #define HTAB_CREATE_FLAG_MASK \ (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) #define BATCH_OPS(_name) \ .map_lookup_batch = \ _name##_map_lookup_batch, \ .map_lookup_and_delete_batch = \ _name##_map_lookup_and_delete_batch, \ .map_update_batch = \ generic_map_update_batch, \ .map_delete_batch = \ generic_map_delete_batch /* * The bucket lock has two protection scopes: * * 1) Serializing concurrent operations from BPF programs on different * CPUs * * 2) Serializing concurrent operations from BPF programs and sys_bpf() * * BPF programs can execute in any context including perf, kprobes and * tracing. As there are almost no limits where perf, kprobes and tracing * can be invoked from the lock operations need to be protected against * deadlocks. Deadlocks can be caused by recursion and by an invocation in * the lock held section when functions which acquire this lock are invoked * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU * variable bpf_prog_active, which prevents BPF programs attached to perf * events, kprobes and tracing to be invoked before the prior invocation * from one of these contexts completed. sys_bpf() uses the same mechanism * by pinning the task to the current CPU and incrementing the recursion * protection across the map operation. * * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain * operations like memory allocations (even with GFP_ATOMIC) from atomic * contexts. This is required because even with GFP_ATOMIC the memory * allocator calls into code paths which acquire locks with long held lock * sections. To ensure the deterministic behaviour these locks are regular * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only * true atomic contexts on an RT kernel are the low level hardware * handling, scheduling, low level interrupt handling, NMIs etc. None of * these contexts should ever do memory allocations. * * As regular device interrupt handlers and soft interrupts are forced into * thread context, the existing code which does * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); * just works. * * In theory the BPF locks could be converted to regular spinlocks as well, * but the bucket locks and percpu_freelist locks can be taken from * arbitrary contexts (perf, kprobes, tracepoints) which are required to be * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, * because there is no memory allocation within the lock held sections. However * after hash map was fully converted to use bpf_mem_alloc, there will be * non-synchronous memory allocation for non-preallocated hash map, so it is * safe to always use raw spinlock for bucket lock. */ struct bucket { struct hlist_nulls_head head; raw_spinlock_t raw_lock; }; #define HASHTAB_MAP_LOCK_COUNT 8 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) struct bpf_htab { struct bpf_map map; struct bpf_mem_alloc ma; struct bpf_mem_alloc pcpu_ma; struct bucket *buckets; void *elems; union { struct pcpu_freelist freelist; struct bpf_lru lru; }; struct htab_elem *__percpu *extra_elems; /* number of elements in non-preallocated hashtable are kept * in either pcount or count */ struct percpu_counter pcount; atomic_t count; bool use_percpu_counter; u32 n_buckets; /* number of hash buckets */ u32 elem_size; /* size of each element in bytes */ u32 hashrnd; struct lock_class_key lockdep_key; int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; }; /* each htab element is struct htab_elem + key + value */ struct htab_elem { union { struct hlist_nulls_node hash_node; struct { void *padding; union { struct pcpu_freelist_node fnode; struct htab_elem *batch_flink; }; }; }; union { /* pointer to per-cpu pointer */ void *ptr_to_pptr; struct bpf_lru_node lru_node; }; u32 hash; char key[] __aligned(8); }; static inline bool htab_is_prealloc(const struct bpf_htab *htab) { return !(htab->map.map_flags & BPF_F_NO_PREALLOC); } static void htab_init_buckets(struct bpf_htab *htab) { unsigned int i; for (i = 0; i < htab->n_buckets; i++) { INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); raw_spin_lock_init(&htab->buckets[i].raw_lock); lockdep_set_class(&htab->buckets[i].raw_lock, &htab->lockdep_key); cond_resched(); } } static inline int htab_lock_bucket(const struct bpf_htab *htab, struct bucket *b, u32 hash, unsigned long *pflags) { unsigned long flags; hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); preempt_disable(); local_irq_save(flags); if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { __this_cpu_dec(*(htab->map_locked[hash])); local_irq_restore(flags); preempt_enable(); return -EBUSY; } raw_spin_lock(&b->raw_lock); *pflags = flags; return 0; } static inline void htab_unlock_bucket(const struct bpf_htab *htab, struct bucket *b, u32 hash, unsigned long flags) { hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); raw_spin_unlock(&b->raw_lock); __this_cpu_dec(*(htab->map_locked[hash])); local_irq_restore(flags); preempt_enable(); } static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); static bool htab_is_lru(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; } static bool htab_is_percpu(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; } static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, void __percpu *pptr) { *(void __percpu **)(l->key + key_size) = pptr; } static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) { return *(void __percpu **)(l->key + key_size); } static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) { return *(void **)(l->key + roundup(map->key_size, 8)); } static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) { return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); } static bool htab_has_extra_elems(struct bpf_htab *htab) { return !htab_is_percpu(htab) && !htab_is_lru(htab); } static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int i; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); for (i = 0; i < num_entries; i++) { struct htab_elem *elem; elem = get_htab_elem(htab, i); if (btf_record_has_field(htab->map.record, BPF_TIMER)) bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) bpf_obj_free_workqueue(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); cond_resched(); } } static void htab_free_prealloced_fields(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int i; if (IS_ERR_OR_NULL(htab->map.record)) return; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); for (i = 0; i < num_entries; i++) { struct htab_elem *elem; elem = get_htab_elem(htab, i); if (htab_is_percpu(htab)) { void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); int cpu; for_each_possible_cpu(cpu) { bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); cond_resched(); } } else { bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); cond_resched(); } cond_resched(); } } static void htab_free_elems(struct bpf_htab *htab) { int i; if (!htab_is_percpu(htab)) goto free_elems; for (i = 0; i < htab->map.max_entries; i++) { void __percpu *pptr; pptr = htab_elem_get_ptr(get_htab_elem(htab, i), htab->map.key_size); free_percpu(pptr); cond_resched(); } free_elems: bpf_map_area_free(htab->elems); } /* The LRU list has a lock (lru_lock). Each htab bucket has a lock * (bucket_lock). If both locks need to be acquired together, the lock * order is always lru_lock -> bucket_lock and this only happens in * bpf_lru_list.c logic. For example, certain code path of * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), * will acquire lru_lock first followed by acquiring bucket_lock. * * In hashtab.c, to avoid deadlock, lock acquisition of * bucket_lock followed by lru_lock is not allowed. In such cases, * bucket_lock needs to be released first before acquiring lru_lock. */ static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, u32 hash) { struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); struct htab_elem *l; if (node) { bpf_map_inc_elem_count(&htab->map); l = container_of(node, struct htab_elem, lru_node); memcpy(l->key, key, htab->map.key_size); return l; } return NULL; } static int prealloc_init(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int err = -ENOMEM, i; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, htab->map.numa_node); if (!htab->elems) return -ENOMEM; if (!htab_is_percpu(htab)) goto skip_percpu_elems; for (i = 0; i < num_entries; i++) { u32 size = round_up(htab->map.value_size, 8); void __percpu *pptr; pptr = bpf_map_alloc_percpu(&htab->map, size, 8, GFP_USER | __GFP_NOWARN); if (!pptr) goto free_elems; htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, pptr); cond_resched(); } skip_percpu_elems: if (htab_is_lru(htab)) err = bpf_lru_init(&htab->lru, htab->map.map_flags & BPF_F_NO_COMMON_LRU, offsetof(struct htab_elem, hash) - offsetof(struct htab_elem, lru_node), htab_lru_map_delete_node, htab); else err = pcpu_freelist_init(&htab->freelist); if (err) goto free_elems; if (htab_is_lru(htab)) bpf_lru_populate(&htab->lru, htab->elems, offsetof(struct htab_elem, lru_node), htab->elem_size, num_entries); else pcpu_freelist_populate(&htab->freelist, htab->elems + offsetof(struct htab_elem, fnode), htab->elem_size, num_entries); return 0; free_elems: htab_free_elems(htab); return err; } static void prealloc_destroy(struct bpf_htab *htab) { htab_free_elems(htab); if (htab_is_lru(htab)) bpf_lru_destroy(&htab->lru); else pcpu_freelist_destroy(&htab->freelist); } static int alloc_extra_elems(struct bpf_htab *htab) { struct htab_elem *__percpu *pptr, *l_new; struct pcpu_freelist_node *l; int cpu; pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, GFP_USER | __GFP_NOWARN); if (!pptr) return -ENOMEM; for_each_possible_cpu(cpu) { l = pcpu_freelist_pop(&htab->freelist); /* pop will succeed, since prealloc_init() * preallocated extra num_possible_cpus elements */ l_new = container_of(l, struct htab_elem, fnode); *per_cpu_ptr(pptr, cpu) = l_new; } htab->extra_elems = pptr; return 0; } /* Called from syscall */ static int htab_map_alloc_check(union bpf_attr *attr) { bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); /* percpu_lru means each cpu has its own LRU list. * it is different from BPF_MAP_TYPE_PERCPU_HASH where * the map's value itself is percpu. percpu_lru has * nothing to do with the map's value. */ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); int numa_node = bpf_map_attr_numa_node(attr); BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != offsetof(struct htab_elem, hash_node.pprev)); if (zero_seed && !capable(CAP_SYS_ADMIN)) /* Guard against local DoS, and discourage production use. */ return -EPERM; if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || !bpf_map_flags_access_ok(attr->map_flags)) return -EINVAL; if (!lru && percpu_lru) return -EINVAL; if (lru && !prealloc) return -ENOTSUPP; if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) return -EINVAL; /* check sanity of attributes. * value_size == 0 may be allowed in the future to use map as a set */ if (attr->max_entries == 0 || attr->key_size == 0 || attr->value_size == 0) return -EINVAL; if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - sizeof(struct htab_elem)) /* if key_size + value_size is bigger, the user space won't be * able to access the elements via bpf syscall. This check * also makes sure that the elem_size doesn't overflow and it's * kmalloc-able later in htab_map_update_elem() */ return -E2BIG; /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) return -E2BIG; return 0; } static struct bpf_map *htab_map_alloc(union bpf_attr *attr) { bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); /* percpu_lru means each cpu has its own LRU list. * it is different from BPF_MAP_TYPE_PERCPU_HASH where * the map's value itself is percpu. percpu_lru has * nothing to do with the map's value. */ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); struct bpf_htab *htab; int err, i; htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); if (!htab) return ERR_PTR(-ENOMEM); lockdep_register_key(&htab->lockdep_key); bpf_map_init_from_attr(&htab->map, attr); if (percpu_lru) { /* ensure each CPU's lru list has >=1 elements. * since we are at it, make each lru list has the same * number of elements. */ htab->map.max_entries = roundup(attr->max_entries, num_possible_cpus()); if (htab->map.max_entries < attr->max_entries) htab->map.max_entries = rounddown(attr->max_entries, num_possible_cpus()); } /* hash table size must be power of 2; roundup_pow_of_two() can overflow * into UB on 32-bit arches, so check that first */ err = -E2BIG; if (htab->map.max_entries > 1UL << 31) goto free_htab; htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); htab->elem_size = sizeof(struct htab_elem) + round_up(htab->map.key_size, 8); if (percpu) htab->elem_size += sizeof(void *); else htab->elem_size += round_up(htab->map.value_size, 8); /* check for u32 overflow */ if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) goto free_htab; err = bpf_map_init_elem_count(&htab->map); if (err) goto free_htab; err = -ENOMEM; htab->buckets = bpf_map_area_alloc(htab->n_buckets * sizeof(struct bucket), htab->map.numa_node); if (!htab->buckets) goto free_elem_count; for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, sizeof(int), sizeof(int), GFP_USER); if (!htab->map_locked[i]) goto free_map_locked; } if (htab->map.map_flags & BPF_F_ZERO_SEED) htab->hashrnd = 0; else htab->hashrnd = get_random_u32(); htab_init_buckets(htab); /* compute_batch_value() computes batch value as num_online_cpus() * 2 * and __percpu_counter_compare() needs * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() * for percpu_counter to be faster than atomic_t. In practice the average bpf * hash map size is 10k, which means that a system with 64 cpus will fill * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore * define our own batch count as 32 then 10k hash map can be filled up to 80%: * 10k - 8k > 32 _batch_ * 64 _cpus_ * and __percpu_counter_compare() will still be fast. At that point hash map * collisions will dominate its performance anyway. Assume that hash map filled * to 50+% isn't going to be O(1) and use the following formula to choose * between percpu_counter and atomic_t. */ #define PERCPU_COUNTER_BATCH 32 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) htab->use_percpu_counter = true; if (htab->use_percpu_counter) { err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); if (err) goto free_map_locked; } if (prealloc) { err = prealloc_init(htab); if (err) goto free_map_locked; if (!percpu && !lru) { /* lru itself can remove the least used element, so * there is no need for an extra elem during map_update. */ err = alloc_extra_elems(htab); if (err) goto free_prealloc; } } else { err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); if (err) goto free_map_locked; if (percpu) { err = bpf_mem_alloc_init(&htab->pcpu_ma, round_up(htab->map.value_size, 8), true); if (err) goto free_map_locked; } } return &htab->map; free_prealloc: prealloc_destroy(htab); free_map_locked: if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) free_percpu(htab->map_locked[i]); bpf_map_area_free(htab->buckets); bpf_mem_alloc_destroy(&htab->pcpu_ma); bpf_mem_alloc_destroy(&htab->ma); free_elem_count: bpf_map_free_elem_count(&htab->map); free_htab: lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); return ERR_PTR(err); } static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) { if (likely(key_len % 4 == 0)) return jhash2(key, key_len / 4, hashrnd); return jhash(key, key_len, hashrnd); } static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) { return &htab->buckets[hash & (htab->n_buckets - 1)]; } static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) { return &__select_bucket(htab, hash)->head; } /* this lookup function can only be called with bucket lock taken */ static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, void *key, u32 key_size) { struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l->hash == hash && !memcmp(&l->key, key, key_size)) return l; return NULL; } /* can be called without bucket lock. it will repeat the loop in * the unlikely event when elements moved from one bucket into another * while link list is being walked */ static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, u32 hash, void *key, u32 key_size, u32 n_buckets) { struct hlist_nulls_node *n; struct htab_elem *l; again: hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l->hash == hash && !memcmp(&l->key, key, key_size)) return l; if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) goto again; return NULL; } /* Called from syscall or from eBPF program directly, so * arguments have to match bpf_map_lookup_elem() exactly. * The return value is adjusted by BPF instructions * in htab_map_gen_lookup(). */ static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct htab_elem *l; u32 hash, key_size; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); head = select_bucket(htab, hash); l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); return l; } static void *htab_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) return l->key + round_up(map->key_size, 8); return NULL; } /* inline bpf_map_lookup_elem() call. * Instead of: * bpf_prog * bpf_map_lookup_elem * map->ops->map_lookup_elem * htab_map_lookup_elem * __htab_map_lookup_elem * do: * bpf_prog * __htab_map_lookup_elem */ static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); return insn - insn_buf; } static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, void *key, const bool mark) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) { if (mark) bpf_lru_node_set_ref(&l->lru_node); return l->key + round_up(map->key_size, 8); } return NULL; } static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) { return __htab_lru_map_lookup_elem(map, key, true); } static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) { return __htab_lru_map_lookup_elem(map, key, false); } static int htab_lru_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; const int ref_reg = BPF_REG_1; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, offsetof(struct htab_elem, lru_node) + offsetof(struct bpf_lru_node, ref)); *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); *insn++ = BPF_ST_MEM(BPF_B, ret, offsetof(struct htab_elem, lru_node) + offsetof(struct bpf_lru_node, ref), 1); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); return insn - insn_buf; } static void check_and_free_fields(struct bpf_htab *htab, struct htab_elem *elem) { if (htab_is_percpu(htab)) { void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); int cpu; for_each_possible_cpu(cpu) bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); } else { void *map_value = elem->key + round_up(htab->map.key_size, 8); bpf_obj_free_fields(htab->map.record, map_value); } } /* It is called from the bpf_lru_list when the LRU needs to delete * older elements from the htab. */ static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) { struct bpf_htab *htab = arg; struct htab_elem *l = NULL, *tgt_l; struct hlist_nulls_head *head; struct hlist_nulls_node *n; unsigned long flags; struct bucket *b; int ret; tgt_l = container_of(node, struct htab_elem, lru_node); b = __select_bucket(htab, tgt_l->hash); head = &b->head; ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); if (ret) return false; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l == tgt_l) { hlist_nulls_del_rcu(&l->hash_node); bpf_map_dec_elem_count(&htab->map); break; } htab_unlock_bucket(htab, b, tgt_l->hash, flags); if (l == tgt_l) check_and_free_fields(htab, l); return l == tgt_l; } /* Called from syscall */ static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct htab_elem *l, *next_l; u32 hash, key_size; int i = 0; WARN_ON_ONCE(!rcu_read_lock_held()); key_size = map->key_size; if (!key) goto find_first_elem; hash = htab_map_hash(key, key_size, htab->hashrnd); head = select_bucket(htab, hash); /* lookup the key */ l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); if (!l) goto find_first_elem; /* key was found, get next key in the same bucket */ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), struct htab_elem, hash_node); if (next_l) { /* if next elem in this hash list is non-zero, just return it */ memcpy(next_key, next_l->key, key_size); return 0; } /* no more elements in this hash list, go to the next bucket */ i = hash & (htab->n_buckets - 1); i++; find_first_elem: /* iterate over buckets */ for (; i < htab->n_buckets; i++) { head = select_bucket(htab, i); /* pick first element in the bucket */ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), struct htab_elem, hash_node); if (next_l) { /* if it's not empty, just return it */ memcpy(next_key, next_l->key, key_size); return 0; } } /* iterated over all buckets and all elements */ return -ENOENT; } static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) { check_and_free_fields(htab, l); if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); bpf_mem_cache_free(&htab->ma, l); } static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) { struct bpf_map *map = &htab->map; void *ptr; if (map->ops->map_fd_put_ptr) { ptr = fd_htab_map_get_ptr(map, l); map->ops->map_fd_put_ptr(map, ptr, true); } } static bool is_map_full(struct bpf_htab *htab) { if (htab->use_percpu_counter) return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, PERCPU_COUNTER_BATCH) >= 0; return atomic_read(&htab->count) >= htab->map.max_entries; } static void inc_elem_count(struct bpf_htab *htab) { bpf_map_inc_elem_count(&htab->map); if (htab->use_percpu_counter) percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); else atomic_inc(&htab->count); } static void dec_elem_count(struct bpf_htab *htab) { bpf_map_dec_elem_count(&htab->map); if (htab->use_percpu_counter) percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); else atomic_dec(&htab->count); } static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) { htab_put_fd_value(htab, l); if (htab_is_prealloc(htab)) { bpf_map_dec_elem_count(&htab->map); check_and_free_fields(htab, l); pcpu_freelist_push(&htab->freelist, &l->fnode); } else { dec_elem_count(htab); htab_elem_free(htab, l); } } static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, void *value, bool onallcpus) { if (!onallcpus) { /* copy true value_size bytes */ copy_map_value(&htab->map, this_cpu_ptr(pptr), value); } else { u32 size = round_up(htab->map.value_size, 8); int off = 0, cpu; for_each_possible_cpu(cpu) { copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); off += size; } } } static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, void *value, bool onallcpus) { /* When not setting the initial value on all cpus, zero-fill element * values for other cpus. Otherwise, bpf program has no way to ensure * known initial values for cpus other than current one * (onallcpus=false always when coming from bpf prog). */ if (!onallcpus) { int current_cpu = raw_smp_processor_id(); int cpu; for_each_possible_cpu(cpu) { if (cpu == current_cpu) copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); else /* Since elem is preallocated, we cannot touch special fields */ zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); } } else { pcpu_copy_value(htab, pptr, value, onallcpus); } } static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && BITS_PER_LONG == 64; } static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, void *value, u32 key_size, u32 hash, bool percpu, bool onallcpus, struct htab_elem *old_elem) { u32 size = htab->map.value_size; bool prealloc = htab_is_prealloc(htab); struct htab_elem *l_new, **pl_new; void __percpu *pptr; if (prealloc) { if (old_elem) { /* if we're updating the existing element, * use per-cpu extra elems to avoid freelist_pop/push */ pl_new = this_cpu_ptr(htab->extra_elems); l_new = *pl_new; *pl_new = old_elem; } else { struct pcpu_freelist_node *l; l = __pcpu_freelist_pop(&htab->freelist); if (!l) return ERR_PTR(-E2BIG); l_new = container_of(l, struct htab_elem, fnode); bpf_map_inc_elem_count(&htab->map); } } else { if (is_map_full(htab)) if (!old_elem) /* when map is full and update() is replacing * old element, it's ok to allocate, since * old element will be freed immediately. * Otherwise return an error */ return ERR_PTR(-E2BIG); inc_elem_count(htab); l_new = bpf_mem_cache_alloc(&htab->ma); if (!l_new) { l_new = ERR_PTR(-ENOMEM); goto dec_count; } } memcpy(l_new->key, key, key_size); if (percpu) { if (prealloc) { pptr = htab_elem_get_ptr(l_new, key_size); } else { /* alloc_percpu zero-fills */ void *ptr = bpf_mem_cache_alloc(&htab->pcpu_ma); if (!ptr) { bpf_mem_cache_free(&htab->ma, l_new); l_new = ERR_PTR(-ENOMEM); goto dec_count; } l_new->ptr_to_pptr = ptr; pptr = *(void __percpu **)ptr; } pcpu_init_value(htab, pptr, value, onallcpus); if (!prealloc) htab_elem_set_ptr(l_new, key_size, pptr); } else if (fd_htab_map_needs_adjust(htab)) { size = round_up(size, 8); memcpy(l_new->key + round_up(key_size, 8), value, size); } else { copy_map_value(&htab->map, l_new->key + round_up(key_size, 8), value); } l_new->hash = hash; return l_new; dec_count: dec_elem_count(htab); return l_new; } static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, u64 map_flags) { if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) /* elem already exists */ return -EEXIST; if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) /* elem doesn't exist, cannot update it */ return -ENOENT; return 0; } /* Called from syscall or from eBPF program */ static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; void *old_map_ptr; struct bucket *b; u32 key_size, hash; int ret; if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; if (unlikely(map_flags & BPF_F_LOCK)) { if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) return -EINVAL; /* find an element without taking the bucket lock */ l_old = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); ret = check_flags(htab, l_old, map_flags); if (ret) return ret; if (l_old) { /* grab the element lock and update value in place */ copy_map_value_locked(map, l_old->key + round_up(key_size, 8), value, false); return 0; } /* fall through, grab the bucket lock and lookup again. * 99.9% chance that the element won't be found, * but second lookup under lock has to be done. */ } ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { /* first lookup without the bucket lock didn't find the element, * but second lookup with the bucket lock found it. * This case is highly unlikely, but has to be dealt with: * grab the element lock in addition to the bucket lock * and update element in place */ copy_map_value_locked(map, l_old->key + round_up(key_size, 8), value, false); ret = 0; goto err; } l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, l_old); if (IS_ERR(l_new)) { /* all pre-allocated elements are in use or memory exhausted */ ret = PTR_ERR(l_new); goto err; } /* add new element to the head of the list, so that * concurrent search will find it before old elem */ hlist_nulls_add_head_rcu(&l_new->hash_node, head); if (l_old) { hlist_nulls_del_rcu(&l_old->hash_node); /* l_old has already been stashed in htab->extra_elems, free * its special fields before it is available for reuse. Also * save the old map pointer in htab of maps before unlock * and release it after unlock. */ old_map_ptr = NULL; if (htab_is_prealloc(htab)) { if (map->ops->map_fd_put_ptr) old_map_ptr = fd_htab_map_get_ptr(map, l_old); check_and_free_fields(htab, l_old); } } htab_unlock_bucket(htab, b, hash, flags); if (l_old) { if (old_map_ptr) map->ops->map_fd_put_ptr(map, old_map_ptr, true); if (!htab_is_prealloc(htab)) free_htab_elem(htab, l_old); } return 0; err: htab_unlock_bucket(htab, b, hash, flags); return ret; } static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) { check_and_free_fields(htab, elem); bpf_map_dec_elem_count(&htab->map); bpf_lru_push_free(&htab->lru, &elem->lru_node); } static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new, *l_old = NULL; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; /* For LRU, we need to alloc before taking bucket's * spinlock because getting free nodes from LRU may need * to remove older elements from htab and this removal * operation will need a bucket lock. */ l_new = prealloc_lru_pop(htab, key, hash); if (!l_new) return -ENOMEM; copy_map_value(&htab->map, l_new->key + round_up(map->key_size, 8), value); ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) goto err_lock_bucket; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; /* add new element to the head of the list, so that * concurrent search will find it before old elem */ hlist_nulls_add_head_rcu(&l_new->hash_node, head); if (l_old) { bpf_lru_node_set_ref(&l_new->lru_node); hlist_nulls_del_rcu(&l_old->hash_node); } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); err_lock_bucket: if (ret) htab_lru_push_free(htab, l_new); else if (l_old) htab_lru_push_free(htab, l_old); return ret; } static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags, bool onallcpus) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (l_old) { /* per-cpu hash map can update value in-place */ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), value, onallcpus); } else { l_new = alloc_htab_elem(htab, key, value, key_size, hash, true, onallcpus, NULL); if (IS_ERR(l_new)) { ret = PTR_ERR(l_new); goto err; } hlist_nulls_add_head_rcu(&l_new->hash_node, head); } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); return ret; } static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags, bool onallcpus) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; /* For LRU, we need to alloc before taking bucket's * spinlock because LRU's elem alloc may need * to remove older elem from htab and this removal * operation will need a bucket lock. */ if (map_flags != BPF_EXIST) { l_new = prealloc_lru_pop(htab, key, hash); if (!l_new) return -ENOMEM; } ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) goto err_lock_bucket; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (l_old) { bpf_lru_node_set_ref(&l_old->lru_node); /* per-cpu hash map can update value in-place */ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), value, onallcpus); } else { pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), value, onallcpus); hlist_nulls_add_head_rcu(&l_new->hash_node, head); l_new = NULL; } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); err_lock_bucket: if (l_new) { bpf_map_dec_elem_count(&htab->map); bpf_lru_push_free(&htab->lru, &l_new->lru_node); } return ret; } static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __htab_percpu_map_update_elem(map, key, value, map_flags, false); } static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, false); } /* Called from syscall or from eBPF program */ static long htab_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct bucket *b; struct htab_elem *l; unsigned long flags; u32 hash, key_size; int ret; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (l) hlist_nulls_del_rcu(&l->hash_node); else ret = -ENOENT; htab_unlock_bucket(htab, b, hash, flags); if (l) free_htab_elem(htab, l); return ret; } static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct bucket *b; struct htab_elem *l; unsigned long flags; u32 hash, key_size; int ret; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (l) hlist_nulls_del_rcu(&l->hash_node); else ret = -ENOENT; htab_unlock_bucket(htab, b, hash, flags); if (l) htab_lru_push_free(htab, l); return ret; } static void delete_all_elements(struct bpf_htab *htab) { int i; /* It's called from a worker thread and migration has been disabled, * therefore, it is OK to invoke bpf_mem_cache_free() directly. */ for (i = 0; i < htab->n_buckets; i++) { struct hlist_nulls_head *head = select_bucket(htab, i); struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { hlist_nulls_del_rcu(&l->hash_node); htab_elem_free(htab, l); } cond_resched(); } } static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab) { int i; rcu_read_lock(); for (i = 0; i < htab->n_buckets; i++) { struct hlist_nulls_head *head = select_bucket(htab, i); struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry(l, n, head, hash_node) { /* We only free timer on uref dropping to zero */ if (btf_record_has_field(htab->map.record, BPF_TIMER)) bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) bpf_obj_free_workqueue(htab->map.record, l->key + round_up(htab->map.key_size, 8)); } cond_resched_rcu(); } rcu_read_unlock(); } static void htab_map_free_timers_and_wq(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); /* We only free timer and workqueue on uref dropping to zero */ if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) { if (!htab_is_prealloc(htab)) htab_free_malloced_timers_and_wq(htab); else htab_free_prealloced_timers_and_wq(htab); } } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void htab_map_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); int i; /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. * bpf_free_used_maps() is called after bpf prog is no longer executing. * There is no need to synchronize_rcu() here to protect map elements. */ /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it * underneath and is responsible for waiting for callbacks to finish * during bpf_mem_alloc_destroy(). */ if (!htab_is_prealloc(htab)) { delete_all_elements(htab); } else { htab_free_prealloced_fields(htab); prealloc_destroy(htab); } bpf_map_free_elem_count(map); free_percpu(htab->extra_elems); bpf_map_area_free(htab->buckets); bpf_mem_alloc_destroy(&htab->pcpu_ma); bpf_mem_alloc_destroy(&htab->ma); if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) free_percpu(htab->map_locked[i]); lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); } static void htab_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void *value; rcu_read_lock(); value = htab_map_lookup_elem(map, key); if (!value) { rcu_read_unlock(); return; } btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); seq_puts(m, ": "); btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); seq_putc(m, '\n'); rcu_read_unlock(); } static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, bool is_lru_map, bool is_percpu, u64 flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; unsigned long bflags; struct htab_elem *l; u32 hash, key_size; struct bucket *b; int ret; key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &bflags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (!l) { ret = -ENOENT; goto out_unlock; } if (is_percpu) { u32 roundup_value_size = round_up(map->value_size, 8); void __percpu *pptr; int off = 0, cpu; pptr = htab_elem_get_ptr(l, key_size); for_each_possible_cpu(cpu) { copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(&htab->map, value + off); off += roundup_value_size; } } else { u32 roundup_key_size = round_up(map->key_size, 8); if (flags & BPF_F_LOCK) copy_map_value_locked(map, value, l->key + roundup_key_size, true); else copy_map_value(map, value, l->key + roundup_key_size); /* Zeroing special fields in the temp buffer */ check_and_init_map_value(map, value); } hlist_nulls_del_rcu(&l->hash_node); out_unlock: htab_unlock_bucket(htab, b, hash, bflags); if (l) { if (is_lru_map) htab_lru_push_free(htab, l); else free_htab_elem(htab, l); } return ret; } static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, false, false, flags); } static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, false, true, flags); } static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, true, false, flags); } static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, true, true, flags); } static int __htab_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr, bool do_delete, bool is_lru_map, bool is_percpu) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); u32 bucket_cnt, total, key_size, value_size, roundup_key_size; void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; void __user *uvalues = u64_to_user_ptr(attr->batch.values); void __user *ukeys = u64_to_user_ptr(attr->batch.keys); void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); u32 batch, max_count, size, bucket_size, map_id; struct htab_elem *node_to_free = NULL; u64 elem_map_flags, map_flags; struct hlist_nulls_head *head; struct hlist_nulls_node *n; unsigned long flags = 0; bool locked = false; struct htab_elem *l; struct bucket *b; int ret = 0; elem_map_flags = attr->batch.elem_flags; if ((elem_map_flags & ~BPF_F_LOCK) || ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) return -EINVAL; map_flags = attr->batch.flags; if (map_flags) return -EINVAL; max_count = attr->batch.count; if (!max_count) return 0; if (put_user(0, &uattr->batch.count)) return -EFAULT; batch = 0; if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) return -EFAULT; if (batch >= htab->n_buckets) return -ENOENT; key_size = htab->map.key_size; roundup_key_size = round_up(htab->map.key_size, 8); value_size = htab->map.value_size; size = round_up(value_size, 8); if (is_percpu) value_size = size * num_possible_cpus(); total = 0; /* while experimenting with hash tables with sizes ranging from 10 to * 1000, it was observed that a bucket can have up to 5 entries. */ bucket_size = 5; alloc: /* We cannot do copy_from_user or copy_to_user inside * the rcu_read_lock. Allocate enough space here. */ keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); if (!keys || !values) { ret = -ENOMEM; goto after_loop; } again: bpf_disable_instrumentation(); rcu_read_lock(); again_nocopy: dst_key = keys; dst_val = values; b = &htab->buckets[batch]; head = &b->head; /* do not grab the lock unless need it (bucket_cnt > 0). */ if (locked) { ret = htab_lock_bucket(htab, b, batch, &flags); if (ret) { rcu_read_unlock(); bpf_enable_instrumentation(); goto after_loop; } } bucket_cnt = 0; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) bucket_cnt++; if (bucket_cnt && !locked) { locked = true; goto again_nocopy; } if (bucket_cnt > (max_count - total)) { if (total == 0) ret = -ENOSPC; /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ htab_unlock_bucket(htab, b, batch, flags); rcu_read_unlock(); bpf_enable_instrumentation(); goto after_loop; } if (bucket_cnt > bucket_size) { bucket_size = bucket_cnt; /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ htab_unlock_bucket(htab, b, batch, flags); rcu_read_unlock(); bpf_enable_instrumentation(); kvfree(keys); kvfree(values); goto alloc; } /* Next block is only safe to run if you have grabbed the lock */ if (!locked) goto next_batch; hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { memcpy(dst_key, l->key, key_size); if (is_percpu) { int off = 0, cpu; void __percpu *pptr; pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(&htab->map, dst_val + off); off += size; } } else { value = l->key + roundup_key_size; if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { struct bpf_map **inner_map = value; /* Actual value is the id of the inner map */ map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); value = &map_id; } if (elem_map_flags & BPF_F_LOCK) copy_map_value_locked(map, dst_val, value, true); else copy_map_value(map, dst_val, value); /* Zeroing special fields in the temp buffer */ check_and_init_map_value(map, dst_val); } if (do_delete) { hlist_nulls_del_rcu(&l->hash_node); /* bpf_lru_push_free() will acquire lru_lock, which * may cause deadlock. See comments in function * prealloc_lru_pop(). Let us do bpf_lru_push_free() * after releasing the bucket lock. * * For htab of maps, htab_put_fd_value() in * free_htab_elem() may acquire a spinlock with bucket * lock being held and it violates the lock rule, so * invoke free_htab_elem() after unlock as well. */ l->batch_flink = node_to_free; node_to_free = l; } dst_key += key_size; dst_val += value_size; } htab_unlock_bucket(htab, b, batch, flags); locked = false; while (node_to_free) { l = node_to_free; node_to_free = node_to_free->batch_flink; if (is_lru_map) htab_lru_push_free(htab, l); else free_htab_elem(htab, l); } next_batch: /* If we are not copying data, we can go to next bucket and avoid * unlocking the rcu. */ if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { batch++; goto again_nocopy; } rcu_read_unlock(); bpf_enable_instrumentation(); if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, key_size * bucket_cnt) || copy_to_user(uvalues + total * value_size, values, value_size * bucket_cnt))) { ret = -EFAULT; goto after_loop; } total += bucket_cnt; batch++; if (batch >= htab->n_buckets) { ret = -ENOENT; goto after_loop; } goto again; after_loop: if (ret == -EFAULT) goto out; /* copy # of entries and next batch */ ubatch = u64_to_user_ptr(attr->batch.out_batch); if (copy_to_user(ubatch, &batch, sizeof(batch)) || put_user(total, &uattr->batch.count)) ret = -EFAULT; out: kvfree(keys); kvfree(values); return ret; } static int htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, false, true); } static int htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, false, true); } static int htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, false, false); } static int htab_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, false, false); } static int htab_lru_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, true, true); } static int htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, true, true); } static int htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, true, false); } static int htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, true, false); } struct bpf_iter_seq_hash_map_info { struct bpf_map *map; struct bpf_htab *htab; void *percpu_value_buf; // non-zero means percpu hash u32 bucket_id; u32 skip_elems; }; static struct htab_elem * bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, struct htab_elem *prev_elem) { const struct bpf_htab *htab = info->htab; u32 skip_elems = info->skip_elems; u32 bucket_id = info->bucket_id; struct hlist_nulls_head *head; struct hlist_nulls_node *n; struct htab_elem *elem; struct bucket *b; u32 i, count; if (bucket_id >= htab->n_buckets) return NULL; /* try to find next elem in the same bucket */ if (prev_elem) { /* no update/deletion on this bucket, prev_elem should be still valid * and we won't skip elements. */ n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); if (elem) return elem; /* not found, unlock and go to the next bucket */ b = &htab->buckets[bucket_id++]; rcu_read_unlock(); skip_elems = 0; } for (i = bucket_id; i < htab->n_buckets; i++) { b = &htab->buckets[i]; rcu_read_lock(); count = 0; head = &b->head; hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { if (count >= skip_elems) { info->bucket_id = i; info->skip_elems = count; return elem; } count++; } rcu_read_unlock(); skip_elems = 0; } info->bucket_id = i; info->skip_elems = 0; return NULL; } static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_iter_seq_hash_map_info *info = seq->private; struct htab_elem *elem; elem = bpf_hash_map_seq_find_next(info, NULL); if (!elem) return NULL; if (*pos == 0) ++*pos; return elem; } static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_hash_map_info *info = seq->private; ++*pos; ++info->skip_elems; return bpf_hash_map_seq_find_next(info, v); } static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) { struct bpf_iter_seq_hash_map_info *info = seq->private; u32 roundup_key_size, roundup_value_size; struct bpf_iter__bpf_map_elem ctx = {}; struct bpf_map *map = info->map; struct bpf_iter_meta meta; int ret = 0, off = 0, cpu; struct bpf_prog *prog; void __percpu *pptr; meta.seq = seq; prog = bpf_iter_get_info(&meta, elem == NULL); if (prog) { ctx.meta = &meta; ctx.map = info->map; if (elem) { roundup_key_size = round_up(map->key_size, 8); ctx.key = elem->key; if (!info->percpu_value_buf) { ctx.value = elem->key + roundup_key_size; } else { roundup_value_size = round_up(map->value_size, 8); pptr = htab_elem_get_ptr(elem, map->key_size); for_each_possible_cpu(cpu) { copy_map_value_long(map, info->percpu_value_buf + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(map, info->percpu_value_buf + off); off += roundup_value_size; } ctx.value = info->percpu_value_buf; } } ret = bpf_iter_run_prog(prog, &ctx); } return ret; } static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) { return __bpf_hash_map_seq_show(seq, v); } static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) { if (!v) (void)__bpf_hash_map_seq_show(seq, NULL); else rcu_read_unlock(); } static int bpf_iter_init_hash_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_hash_map_info *seq_info = priv_data; struct bpf_map *map = aux->map; void *value_buf; u32 buf_size; if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { buf_size = round_up(map->value_size, 8) * num_possible_cpus(); value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); if (!value_buf) return -ENOMEM; seq_info->percpu_value_buf = value_buf; } bpf_map_inc_with_uref(map); seq_info->map = map; seq_info->htab = container_of(map, struct bpf_htab, map); return 0; } static void bpf_iter_fini_hash_map(void *priv_data) { struct bpf_iter_seq_hash_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); kfree(seq_info->percpu_value_buf); } static const struct seq_operations bpf_hash_map_seq_ops = { .start = bpf_hash_map_seq_start, .next = bpf_hash_map_seq_next, .stop = bpf_hash_map_seq_stop, .show = bpf_hash_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_hash_map_seq_ops, .init_seq_private = bpf_iter_init_hash_map, .fini_seq_private = bpf_iter_fini_hash_map, .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), }; static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, void *callback_ctx, u64 flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct hlist_nulls_node *n; struct htab_elem *elem; u32 roundup_key_size; int i, num_elems = 0; void __percpu *pptr; struct bucket *b; void *key, *val; bool is_percpu; u64 ret = 0; cant_migrate(); if (flags != 0) return -EINVAL; is_percpu = htab_is_percpu(htab); roundup_key_size = round_up(map->key_size, 8); /* migration has been disabled, so percpu value prepared here will be * the same as the one seen by the bpf program with * bpf_map_lookup_elem(). */ for (i = 0; i < htab->n_buckets; i++) { b = &htab->buckets[i]; rcu_read_lock(); head = &b->head; hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { key = elem->key; if (is_percpu) { /* current cpu value for percpu map */ pptr = htab_elem_get_ptr(elem, map->key_size); val = this_cpu_ptr(pptr); } else { val = elem->key + roundup_key_size; } num_elems++; ret = callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)val, (u64)(long)callback_ctx, 0); /* return value: 0 - continue, 1 - stop and return */ if (ret) { rcu_read_unlock(); goto out; } } rcu_read_unlock(); } out: return num_elems; } static u64 htab_map_mem_usage(const struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); u32 value_size = round_up(htab->map.value_size, 8); bool prealloc = htab_is_prealloc(htab); bool percpu = htab_is_percpu(htab); bool lru = htab_is_lru(htab); u64 num_entries; u64 usage = sizeof(struct bpf_htab); usage += sizeof(struct bucket) * htab->n_buckets; usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; if (prealloc) { num_entries = map->max_entries; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); usage += htab->elem_size * num_entries; if (percpu) usage += value_size * num_possible_cpus() * num_entries; else if (!lru) usage += sizeof(struct htab_elem *) * num_possible_cpus(); } else { #define LLIST_NODE_SZ sizeof(struct llist_node) num_entries = htab->use_percpu_counter ? percpu_counter_sum(&htab->pcount) : atomic_read(&htab->count); usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; if (percpu) { usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; usage += value_size * num_possible_cpus() * num_entries; } } return usage; } BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) const struct bpf_map_ops htab_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_release_uref = htab_map_free_timers_and_wq, .map_lookup_elem = htab_map_lookup_elem, .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, .map_update_elem = htab_map_update_elem, .map_delete_elem = htab_map_delete_elem, .map_gen_lookup = htab_map_gen_lookup, .map_seq_show_elem = htab_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, .map_mem_usage = htab_map_mem_usage, BATCH_OPS(htab), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; const struct bpf_map_ops htab_lru_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_release_uref = htab_map_free_timers_and_wq, .map_lookup_elem = htab_lru_map_lookup_elem, .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, .map_update_elem = htab_lru_map_update_elem, .map_delete_elem = htab_lru_map_delete_elem, .map_gen_lookup = htab_lru_map_gen_lookup, .map_seq_show_elem = htab_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, .map_mem_usage = htab_map_mem_usage, BATCH_OPS(htab_lru), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; /* Called from eBPF program */ static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); else return NULL; } /* inline bpf_map_lookup_elem() call for per-CPU hashmap */ static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; if (!bpf_jit_supports_percpu_insn()) return -EOPNOTSUPP; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, offsetof(struct htab_elem, key) + map->key_size); *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); return insn - insn_buf; } static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) { struct htab_elem *l; if (cpu >= nr_cpu_ids) return NULL; l = __htab_map_lookup_elem(map, key); if (l) return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); else return NULL; } static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) { bpf_lru_node_set_ref(&l->lru_node); return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); } return NULL; } static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) { struct htab_elem *l; if (cpu >= nr_cpu_ids) return NULL; l = __htab_map_lookup_elem(map, key); if (l) { bpf_lru_node_set_ref(&l->lru_node); return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); } return NULL; } int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) { struct htab_elem *l; void __percpu *pptr; int ret = -ENOENT; int cpu, off = 0; u32 size; /* per_cpu areas are zero-filled and bpf programs can only * access 'value_size' of them, so copying rounded areas * will not leak any kernel data */ size = round_up(map->value_size, 8); rcu_read_lock(); l = __htab_map_lookup_elem(map, key); if (!l) goto out; /* We do not mark LRU map element here in order to not mess up * eviction heuristics when user space does a map walk. */ pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(map, value + off); off += size; } ret = 0; out: rcu_read_unlock(); return ret; } int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); int ret; rcu_read_lock(); if (htab_is_lru(htab)) ret = __htab_lru_percpu_map_update_elem(map, key, value, map_flags, true); else ret = __htab_percpu_map_update_elem(map, key, value, map_flags, true); rcu_read_unlock(); return ret; } static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { struct htab_elem *l; void __percpu *pptr; int cpu; rcu_read_lock(); l = __htab_map_lookup_elem(map, key); if (!l) { rcu_read_unlock(); return; } btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); seq_puts(m, ": {\n"); pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { seq_printf(m, "\tcpu%d: ", cpu); btf_type_seq_show(map->btf, map->btf_value_type_id, per_cpu_ptr(pptr, cpu), m); seq_putc(m, '\n'); } seq_puts(m, "}\n"); rcu_read_unlock(); } const struct bpf_map_ops htab_percpu_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_percpu_map_lookup_elem, .map_gen_lookup = htab_percpu_map_gen_lookup, .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, .map_update_elem = htab_percpu_map_update_elem, .map_delete_elem = htab_map_delete_elem, .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, .map_seq_show_elem = htab_percpu_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, .map_mem_usage = htab_map_mem_usage, BATCH_OPS(htab_percpu), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; const struct bpf_map_ops htab_lru_percpu_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_lru_percpu_map_lookup_elem, .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, .map_update_elem = htab_lru_percpu_map_update_elem, .map_delete_elem = htab_lru_map_delete_elem, .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, .map_seq_show_elem = htab_percpu_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, .map_mem_usage = htab_map_mem_usage, BATCH_OPS(htab_lru_percpu), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; static int fd_htab_map_alloc_check(union bpf_attr *attr) { if (attr->value_size != sizeof(u32)) return -EINVAL; return htab_map_alloc_check(attr); } static void fd_htab_map_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_node *n; struct hlist_nulls_head *head; struct htab_elem *l; int i; for (i = 0; i < htab->n_buckets; i++) { head = select_bucket(htab, i); hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { void *ptr = fd_htab_map_get_ptr(map, l); map->ops->map_fd_put_ptr(map, ptr, false); } } htab_map_free(map); } /* only called from syscall */ int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) { void **ptr; int ret = 0; if (!map->ops->map_fd_sys_lookup_elem) return -ENOTSUPP; rcu_read_lock(); ptr = htab_map_lookup_elem(map, key); if (ptr) *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); else ret = -ENOENT; rcu_read_unlock(); return ret; } /* only called from syscall */ int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags) { void *ptr; int ret; u32 ufd = *(u32 *)value; ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); if (IS_ERR(ptr)) return PTR_ERR(ptr); /* The htab bucket lock is always held during update operations in fd * htab map, and the following rcu_read_lock() is only used to avoid * the WARN_ON_ONCE in htab_map_update_elem(). */ rcu_read_lock(); ret = htab_map_update_elem(map, key, &ptr, map_flags); rcu_read_unlock(); if (ret) map->ops->map_fd_put_ptr(map, ptr, false); return ret; } static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) { struct bpf_map *map, *inner_map_meta; inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); if (IS_ERR(inner_map_meta)) return inner_map_meta; map = htab_map_alloc(attr); if (IS_ERR(map)) { bpf_map_meta_free(inner_map_meta); return map; } map->inner_map_meta = inner_map_meta; return map; } static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_map **inner_map = htab_map_lookup_elem(map, key); if (!inner_map) return NULL; return READ_ONCE(*inner_map); } static int htab_of_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); return insn - insn_buf; } static void htab_of_map_free(struct bpf_map *map) { bpf_map_meta_free(map->inner_map_meta); fd_htab_map_free(map); } const struct bpf_map_ops htab_of_maps_map_ops = { .map_alloc_check = fd_htab_map_alloc_check, .map_alloc = htab_of_map_alloc, .map_free = htab_of_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_of_map_lookup_elem, .map_delete_elem = htab_map_delete_elem, .map_fd_get_ptr = bpf_map_fd_get_ptr, .map_fd_put_ptr = bpf_map_fd_put_ptr, .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, .map_gen_lookup = htab_of_map_gen_lookup, .map_check_btf = map_check_no_btf, .map_mem_usage = htab_map_mem_usage, BATCH_OPS(htab), .map_btf_id = &htab_map_btf_ids[0], }; |
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/ethtool_netlink.h> #include <net/udp_tunnel.h> #include <net/vxlan.h> #include "bitset.h" #include "common.h" #include "netlink.h" const struct nla_policy ethnl_tunnel_info_get_policy[] = { [ETHTOOL_A_TUNNEL_INFO_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), }; static_assert(ETHTOOL_UDP_TUNNEL_TYPE_VXLAN == ilog2(UDP_TUNNEL_TYPE_VXLAN)); static_assert(ETHTOOL_UDP_TUNNEL_TYPE_GENEVE == ilog2(UDP_TUNNEL_TYPE_GENEVE)); static_assert(ETHTOOL_UDP_TUNNEL_TYPE_VXLAN_GPE == ilog2(UDP_TUNNEL_TYPE_VXLAN_GPE)); static ssize_t ethnl_udp_table_reply_size(unsigned int types, bool compact) { ssize_t size; size = ethnl_bitset32_size(&types, NULL, __ETHTOOL_UDP_TUNNEL_TYPE_CNT, udp_tunnel_type_names, compact); if (size < 0) return size; return size + nla_total_size(0) + /* _UDP_TABLE */ nla_total_size(sizeof(u32)); /* _UDP_TABLE_SIZE */ } static ssize_t ethnl_tunnel_info_reply_size(const struct ethnl_req_info *req_base, struct netlink_ext_ack *extack) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct udp_tunnel_nic_info *info; unsigned int i; ssize_t ret; size_t size; info = req_base->dev->udp_tunnel_nic_info; if (!info) { NL_SET_ERR_MSG(extack, "device does not report tunnel offload info"); return -EOPNOTSUPP; } size = nla_total_size(0); /* _INFO_UDP_PORTS */ for (i = 0; i < UDP_TUNNEL_NIC_MAX_TABLES; i++) { if (!info->tables[i].n_entries) break; ret = ethnl_udp_table_reply_size(info->tables[i].tunnel_types, compact); if (ret < 0) return ret; size += ret; size += udp_tunnel_nic_dump_size(req_base->dev, i); } if (info->flags & UDP_TUNNEL_NIC_INFO_STATIC_IANA_VXLAN) { ret = ethnl_udp_table_reply_size(0, compact); if (ret < 0) return ret; size += ret; size += nla_total_size(0) + /* _TABLE_ENTRY */ nla_total_size(sizeof(__be16)) + /* _ENTRY_PORT */ nla_total_size(sizeof(u32)); /* _ENTRY_TYPE */ } return size; } static int ethnl_tunnel_info_fill_reply(const struct ethnl_req_info *req_base, struct sk_buff *skb) { bool compact = req_base->flags & ETHTOOL_FLAG_COMPACT_BITSETS; const struct udp_tunnel_nic_info *info; struct nlattr *ports, *table, *entry; unsigned int i; info = req_base->dev->udp_tunnel_nic_info; if (!info) return -EOPNOTSUPP; ports = nla_nest_start(skb, ETHTOOL_A_TUNNEL_INFO_UDP_PORTS); if (!ports) return -EMSGSIZE; for (i = 0; i < UDP_TUNNEL_NIC_MAX_TABLES; i++) { if (!info->tables[i].n_entries) break; table = nla_nest_start(skb, ETHTOOL_A_TUNNEL_UDP_TABLE); if (!table) goto err_cancel_ports; if (nla_put_u32(skb, ETHTOOL_A_TUNNEL_UDP_TABLE_SIZE, info->tables[i].n_entries)) goto err_cancel_table; if (ethnl_put_bitset32(skb, ETHTOOL_A_TUNNEL_UDP_TABLE_TYPES, &info->tables[i].tunnel_types, NULL, __ETHTOOL_UDP_TUNNEL_TYPE_CNT, udp_tunnel_type_names, compact)) goto err_cancel_table; if (udp_tunnel_nic_dump_write(req_base->dev, i, skb)) goto err_cancel_table; nla_nest_end(skb, table); } if (info->flags & UDP_TUNNEL_NIC_INFO_STATIC_IANA_VXLAN) { u32 zero = 0; table = nla_nest_start(skb, ETHTOOL_A_TUNNEL_UDP_TABLE); if (!table) goto err_cancel_ports; if (nla_put_u32(skb, ETHTOOL_A_TUNNEL_UDP_TABLE_SIZE, 1)) goto err_cancel_table; if (ethnl_put_bitset32(skb, ETHTOOL_A_TUNNEL_UDP_TABLE_TYPES, &zero, NULL, __ETHTOOL_UDP_TUNNEL_TYPE_CNT, udp_tunnel_type_names, compact)) goto err_cancel_table; entry = nla_nest_start(skb, ETHTOOL_A_TUNNEL_UDP_TABLE_ENTRY); if (!entry) goto err_cancel_entry; if (nla_put_be16(skb, ETHTOOL_A_TUNNEL_UDP_ENTRY_PORT, htons(IANA_VXLAN_UDP_PORT)) || nla_put_u32(skb, ETHTOOL_A_TUNNEL_UDP_ENTRY_TYPE, ilog2(UDP_TUNNEL_TYPE_VXLAN))) goto err_cancel_entry; nla_nest_end(skb, entry); nla_nest_end(skb, table); } nla_nest_end(skb, ports); return 0; err_cancel_entry: nla_nest_cancel(skb, entry); err_cancel_table: nla_nest_cancel(skb, table); err_cancel_ports: nla_nest_cancel(skb, ports); return -EMSGSIZE; } int ethnl_tunnel_info_doit(struct sk_buff *skb, struct genl_info *info) { struct ethnl_req_info req_info = {}; struct nlattr **tb = info->attrs; struct sk_buff *rskb; void *reply_payload; int reply_len; int ret; ret = ethnl_parse_header_dev_get(&req_info, tb[ETHTOOL_A_TUNNEL_INFO_HEADER], genl_info_net(info), info->extack, true); if (ret < 0) return ret; rtnl_lock(); ret = ethnl_tunnel_info_reply_size(&req_info, info->extack); if (ret < 0) goto err_unlock_rtnl; reply_len = ret + ethnl_reply_header_size(); rskb = ethnl_reply_init(reply_len, req_info.dev, ETHTOOL_MSG_TUNNEL_INFO_GET_REPLY, ETHTOOL_A_TUNNEL_INFO_HEADER, info, &reply_payload); if (!rskb) { ret = -ENOMEM; goto err_unlock_rtnl; } ret = ethnl_tunnel_info_fill_reply(&req_info, rskb); if (ret) goto err_free_msg; rtnl_unlock(); ethnl_parse_header_dev_put(&req_info); genlmsg_end(rskb, reply_payload); return genlmsg_reply(rskb, info); err_free_msg: nlmsg_free(rskb); err_unlock_rtnl: rtnl_unlock(); ethnl_parse_header_dev_put(&req_info); return ret; } struct ethnl_tunnel_info_dump_ctx { struct ethnl_req_info req_info; unsigned long ifindex; }; int ethnl_tunnel_info_start(struct netlink_callback *cb) { const struct genl_dumpit_info *info = genl_dumpit_info(cb); struct ethnl_tunnel_info_dump_ctx *ctx = (void *)cb->ctx; struct nlattr **tb = info->info.attrs; int ret; BUILD_BUG_ON(sizeof(*ctx) > sizeof(cb->ctx)); memset(ctx, 0, sizeof(*ctx)); ret = ethnl_parse_header_dev_get(&ctx->req_info, tb[ETHTOOL_A_TUNNEL_INFO_HEADER], sock_net(cb->skb->sk), cb->extack, false); if (ctx->req_info.dev) { ethnl_parse_header_dev_put(&ctx->req_info); ctx->req_info.dev = NULL; } return ret; } int ethnl_tunnel_info_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct ethnl_tunnel_info_dump_ctx *ctx = (void *)cb->ctx; struct net *net = sock_net(skb->sk); struct net_device *dev; int ret = 0; void *ehdr; rtnl_lock(); for_each_netdev_dump(net, dev, ctx->ifindex) { ehdr = ethnl_dump_put(skb, cb, ETHTOOL_MSG_TUNNEL_INFO_GET_REPLY); if (!ehdr) { ret = -EMSGSIZE; break; } ret = ethnl_fill_reply_header(skb, dev, ETHTOOL_A_TUNNEL_INFO_HEADER); if (ret < 0) { genlmsg_cancel(skb, ehdr); break; } ctx->req_info.dev = dev; ret = ethnl_tunnel_info_fill_reply(&ctx->req_info, skb); ctx->req_info.dev = NULL; if (ret < 0) { genlmsg_cancel(skb, ehdr); if (ret == -EOPNOTSUPP) continue; break; } genlmsg_end(skb, ehdr); } rtnl_unlock(); if (ret == -EMSGSIZE && skb->len) return skb->len; return ret; } |
2 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Linux I2C core * * Copyright (C) 1995-99 Simon G. Vogl * With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> * Mux support by Rodolfo Giometti <giometti@enneenne.com> and * Michael Lawnick <michael.lawnick.ext@nsn.com> * * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org> */ #define pr_fmt(fmt) "i2c-core: " fmt #include <dt-bindings/i2c/i2c.h> #include <linux/acpi.h> #include <linux/clk/clk-conf.h> #include <linux/completion.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/i2c-smbus.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irqflags.h> #include <linux/jump_label.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/pinctrl/consumer.h> #include <linux/pinctrl/devinfo.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/pm_wakeirq.h> #include <linux/property.h> #include <linux/rwsem.h> #include <linux/slab.h> #include "i2c-core.h" #define CREATE_TRACE_POINTS #include <trace/events/i2c.h> #define I2C_ADDR_OFFSET_TEN_BIT 0xa000 #define I2C_ADDR_OFFSET_SLAVE 0x1000 #define I2C_ADDR_7BITS_MAX 0x77 #define I2C_ADDR_7BITS_COUNT (I2C_ADDR_7BITS_MAX + 1) #define I2C_ADDR_DEVICE_ID 0x7c /* * core_lock protects i2c_adapter_idr, and guarantees that device detection, * deletion of detected devices are serialized */ static DEFINE_MUTEX(core_lock); static DEFINE_IDR(i2c_adapter_idr); static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver); static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key); static bool is_registered; static struct dentry *i2c_debugfs_root; int i2c_transfer_trace_reg(void) { static_branch_inc(&i2c_trace_msg_key); return 0; } void i2c_transfer_trace_unreg(void) { static_branch_dec(&i2c_trace_msg_key); } const char *i2c_freq_mode_string(u32 bus_freq_hz) { switch (bus_freq_hz) { case I2C_MAX_STANDARD_MODE_FREQ: return "Standard Mode (100 kHz)"; case I2C_MAX_FAST_MODE_FREQ: return "Fast Mode (400 kHz)"; case I2C_MAX_FAST_MODE_PLUS_FREQ: return "Fast Mode Plus (1.0 MHz)"; case I2C_MAX_TURBO_MODE_FREQ: return "Turbo Mode (1.4 MHz)"; case I2C_MAX_HIGH_SPEED_MODE_FREQ: return "High Speed Mode (3.4 MHz)"; case I2C_MAX_ULTRA_FAST_MODE_FREQ: return "Ultra Fast Mode (5.0 MHz)"; default: return "Unknown Mode"; } } EXPORT_SYMBOL_GPL(i2c_freq_mode_string); const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, const struct i2c_client *client) { if (!(id && client)) return NULL; while (id->name[0]) { if (strcmp(client->name, id->name) == 0) return id; id++; } return NULL; } EXPORT_SYMBOL_GPL(i2c_match_id); const void *i2c_get_match_data(const struct i2c_client *client) { struct i2c_driver *driver = to_i2c_driver(client->dev.driver); const struct i2c_device_id *match; const void *data; data = device_get_match_data(&client->dev); if (!data) { match = i2c_match_id(driver->id_table, client); if (!match) return NULL; data = (const void *)match->driver_data; } return data; } EXPORT_SYMBOL(i2c_get_match_data); static int i2c_device_match(struct device *dev, const struct device_driver *drv) { struct i2c_client *client = i2c_verify_client(dev); const struct i2c_driver *driver; /* Attempt an OF style match */ if (i2c_of_match_device(drv->of_match_table, client)) return 1; /* Then ACPI style match */ if (acpi_driver_match_device(dev, drv)) return 1; driver = to_i2c_driver(drv); /* Finally an I2C match */ if (i2c_match_id(driver->id_table, client)) return 1; return 0; } static int i2c_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct i2c_client *client = to_i2c_client(dev); int rc; rc = of_device_uevent_modalias(dev, env); if (rc != -ENODEV) return rc; rc = acpi_device_uevent_modalias(dev, env); if (rc != -ENODEV) return rc; return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name); } /* i2c bus recovery routines */ static int get_scl_gpio_value(struct i2c_adapter *adap) { return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod); } static void set_scl_gpio_value(struct i2c_adapter *adap, int val) { gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val); } static int get_sda_gpio_value(struct i2c_adapter *adap) { return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod); } static void set_sda_gpio_value(struct i2c_adapter *adap, int val) { gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val); } static int i2c_generic_bus_free(struct i2c_adapter *adap) { struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; int ret = -EOPNOTSUPP; if (bri->get_bus_free) ret = bri->get_bus_free(adap); else if (bri->get_sda) ret = bri->get_sda(adap); if (ret < 0) return ret; return ret ? 0 : -EBUSY; } /* * We are generating clock pulses. ndelay() determines durating of clk pulses. * We will generate clock with rate 100 KHz and so duration of both clock levels * is: delay in ns = (10^6 / 100) / 2 */ #define RECOVERY_NDELAY 5000 #define RECOVERY_CLK_CNT 9 int i2c_generic_scl_recovery(struct i2c_adapter *adap) { struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; int i = 0, scl = 1, ret = 0; if (bri->prepare_recovery) bri->prepare_recovery(adap); if (bri->pinctrl) pinctrl_select_state(bri->pinctrl, bri->pins_gpio); /* * If we can set SDA, we will always create a STOP to ensure additional * pulses will do no harm. This is achieved by letting SDA follow SCL * half a cycle later. Check the 'incomplete_write_byte' fault injector * for details. Note that we must honour tsu:sto, 4us, but lets use 5us * here for simplicity. */ bri->set_scl(adap, scl); ndelay(RECOVERY_NDELAY); if (bri->set_sda) bri->set_sda(adap, scl); ndelay(RECOVERY_NDELAY / 2); /* * By this time SCL is high, as we need to give 9 falling-rising edges */ while (i++ < RECOVERY_CLK_CNT * 2) { if (scl) { /* SCL shouldn't be low here */ if (!bri->get_scl(adap)) { dev_err(&adap->dev, "SCL is stuck low, exit recovery\n"); ret = -EBUSY; break; } } scl = !scl; bri->set_scl(adap, scl); /* Creating STOP again, see above */ if (scl) { /* Honour minimum tsu:sto */ ndelay(RECOVERY_NDELAY); } else { /* Honour minimum tf and thd:dat */ ndelay(RECOVERY_NDELAY / 2); } if (bri->set_sda) bri->set_sda(adap, scl); ndelay(RECOVERY_NDELAY / 2); if (scl) { ret = i2c_generic_bus_free(adap); if (ret == 0) break; } } /* If we can't check bus status, assume recovery worked */ if (ret == -EOPNOTSUPP) ret = 0; if (bri->unprepare_recovery) bri->unprepare_recovery(adap); if (bri->pinctrl) pinctrl_select_state(bri->pinctrl, bri->pins_default); return ret; } EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery); int i2c_recover_bus(struct i2c_adapter *adap) { if (!adap->bus_recovery_info) return -EBUSY; dev_dbg(&adap->dev, "Trying i2c bus recovery\n"); return adap->bus_recovery_info->recover_bus(adap); } EXPORT_SYMBOL_GPL(i2c_recover_bus); static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap) { struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; struct device *dev = &adap->dev; struct pinctrl *p = bri->pinctrl ?: dev_pinctrl(dev->parent); bri->pinctrl = p; /* * we can't change states without pinctrl, so remove the states if * populated */ if (!p) { bri->pins_default = NULL; bri->pins_gpio = NULL; return; } if (!bri->pins_default) { bri->pins_default = pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT); if (IS_ERR(bri->pins_default)) { dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n"); bri->pins_default = NULL; } } if (!bri->pins_gpio) { bri->pins_gpio = pinctrl_lookup_state(p, "gpio"); if (IS_ERR(bri->pins_gpio)) bri->pins_gpio = pinctrl_lookup_state(p, "recovery"); if (IS_ERR(bri->pins_gpio)) { dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n"); bri->pins_gpio = NULL; } } /* for pinctrl state changes, we need all the information */ if (bri->pins_default && bri->pins_gpio) { dev_info(dev, "using pinctrl states for GPIO recovery"); } else { bri->pinctrl = NULL; bri->pins_default = NULL; bri->pins_gpio = NULL; } } static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap) { struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; struct device *dev = &adap->dev; struct gpio_desc *gpiod; int ret = 0; /* * don't touch the recovery information if the driver is not using * generic SCL recovery */ if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery) return 0; /* * pins might be taken as GPIO, so we should inform pinctrl about * this and move the state to GPIO */ if (bri->pinctrl) pinctrl_select_state(bri->pinctrl, bri->pins_gpio); /* * if there is incomplete or no recovery information, see if generic * GPIO recovery is available */ if (!bri->scl_gpiod) { gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN); if (PTR_ERR(gpiod) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto cleanup_pinctrl_state; } if (!IS_ERR(gpiod)) { bri->scl_gpiod = gpiod; bri->recover_bus = i2c_generic_scl_recovery; dev_info(dev, "using generic GPIOs for recovery\n"); } } /* SDA GPIOD line is optional, so we care about DEFER only */ if (!bri->sda_gpiod) { /* * We have SCL. Pull SCL low and wait a bit so that SDA glitches * have no effect. */ gpiod_direction_output(bri->scl_gpiod, 0); udelay(10); gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN); /* Wait a bit in case of a SDA glitch, and then release SCL. */ udelay(10); gpiod_direction_output(bri->scl_gpiod, 1); if (PTR_ERR(gpiod) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto cleanup_pinctrl_state; } if (!IS_ERR(gpiod)) bri->sda_gpiod = gpiod; } cleanup_pinctrl_state: /* change the state of the pins back to their default state */ if (bri->pinctrl) pinctrl_select_state(bri->pinctrl, bri->pins_default); return ret; } static int i2c_gpio_init_recovery(struct i2c_adapter *adap) { i2c_gpio_init_pinctrl_recovery(adap); return i2c_gpio_init_generic_recovery(adap); } static int i2c_init_recovery(struct i2c_adapter *adap) { struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; bool is_error_level = true; char *err_str; if (!bri) return 0; if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER) return -EPROBE_DEFER; if (!bri->recover_bus) { err_str = "no suitable method provided"; is_error_level = false; goto err; } if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) { bri->get_scl = get_scl_gpio_value; bri->set_scl = set_scl_gpio_value; if (bri->sda_gpiod) { bri->get_sda = get_sda_gpio_value; /* FIXME: add proper flag instead of '0' once available */ if (gpiod_get_direction(bri->sda_gpiod) == 0) bri->set_sda = set_sda_gpio_value; } } else if (bri->recover_bus == i2c_generic_scl_recovery) { /* Generic SCL recovery */ if (!bri->set_scl || !bri->get_scl) { err_str = "no {get|set}_scl() found"; goto err; } if (!bri->set_sda && !bri->get_sda) { err_str = "either get_sda() or set_sda() needed"; goto err; } } return 0; err: if (is_error_level) dev_err(&adap->dev, "Not using recovery: %s\n", err_str); else dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str); adap->bus_recovery_info = NULL; return -EINVAL; } static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client) { struct i2c_adapter *adap = client->adapter; unsigned int irq; if (!adap->host_notify_domain) return -ENXIO; if (client->flags & I2C_CLIENT_TEN) return -EINVAL; irq = irq_create_mapping(adap->host_notify_domain, client->addr); return irq > 0 ? irq : -ENXIO; } static int i2c_device_probe(struct device *dev) { struct i2c_client *client = i2c_verify_client(dev); struct i2c_driver *driver; bool do_power_on; int status; if (!client) return 0; client->irq = client->init_irq; if (!client->irq) { int irq = -ENOENT; if (client->flags & I2C_CLIENT_HOST_NOTIFY) { dev_dbg(dev, "Using Host Notify IRQ\n"); /* Keep adapter active when Host Notify is required */ pm_runtime_get_sync(&client->adapter->dev); irq = i2c_smbus_host_notify_to_irq(client); } else if (dev->of_node) { irq = of_irq_get_byname(dev->of_node, "irq"); if (irq == -EINVAL || irq == -ENODATA) irq = of_irq_get(dev->of_node, 0); } else if (ACPI_COMPANION(dev)) { bool wake_capable; irq = i2c_acpi_get_irq(client, &wake_capable); if (irq > 0 && wake_capable) client->flags |= I2C_CLIENT_WAKE; } if (irq == -EPROBE_DEFER) { status = irq; goto put_sync_adapter; } if (irq < 0) irq = 0; client->irq = irq; } driver = to_i2c_driver(dev->driver); /* * An I2C ID table is not mandatory, if and only if, a suitable OF * or ACPI ID table is supplied for the probing device. */ if (!driver->id_table && !acpi_driver_match_device(dev, dev->driver) && !i2c_of_match_device(dev->driver->of_match_table, client)) { status = -ENODEV; goto put_sync_adapter; } if (client->flags & I2C_CLIENT_WAKE) { int wakeirq; wakeirq = of_irq_get_byname(dev->of_node, "wakeup"); if (wakeirq == -EPROBE_DEFER) { status = wakeirq; goto put_sync_adapter; } device_init_wakeup(&client->dev, true); if (wakeirq > 0 && wakeirq != client->irq) status = dev_pm_set_dedicated_wake_irq(dev, wakeirq); else if (client->irq > 0) status = dev_pm_set_wake_irq(dev, client->irq); else status = 0; if (status) dev_warn(&client->dev, "failed to set up wakeup irq\n"); } dev_dbg(dev, "probe\n"); status = of_clk_set_defaults(dev->of_node, false); if (status < 0) goto err_clear_wakeup_irq; do_power_on = !i2c_acpi_waive_d0_probe(dev); status = dev_pm_domain_attach(&client->dev, do_power_on); if (status) goto err_clear_wakeup_irq; client->devres_group_id = devres_open_group(&client->dev, NULL, GFP_KERNEL); if (!client->devres_group_id) { status = -ENOMEM; goto err_detach_pm_domain; } client->debugfs = debugfs_create_dir(dev_name(&client->dev), client->adapter->debugfs); if (driver->probe) status = driver->probe(client); else status = -EINVAL; /* * Note that we are not closing the devres group opened above so * even resources that were attached to the device after probe is * run are released when i2c_device_remove() is executed. This is * needed as some drivers would allocate additional resources, * for example when updating firmware. */ if (status) goto err_release_driver_resources; return 0; err_release_driver_resources: debugfs_remove_recursive(client->debugfs); devres_release_group(&client->dev, client->devres_group_id); err_detach_pm_domain: dev_pm_domain_detach(&client->dev, do_power_on); err_clear_wakeup_irq: dev_pm_clear_wake_irq(&client->dev); device_init_wakeup(&client->dev, false); put_sync_adapter: if (client->flags & I2C_CLIENT_HOST_NOTIFY) pm_runtime_put_sync(&client->adapter->dev); return status; } static void i2c_device_remove(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct i2c_driver *driver; driver = to_i2c_driver(dev->driver); if (driver->remove) { dev_dbg(dev, "remove\n"); driver->remove(client); } debugfs_remove_recursive(client->debugfs); devres_release_group(&client->dev, client->devres_group_id); dev_pm_domain_detach(&client->dev, true); dev_pm_clear_wake_irq(&client->dev); device_init_wakeup(&client->dev, false); client->irq = 0; if (client->flags & I2C_CLIENT_HOST_NOTIFY) pm_runtime_put(&client->adapter->dev); } static void i2c_device_shutdown(struct device *dev) { struct i2c_client *client = i2c_verify_client(dev); struct i2c_driver *driver; if (!client || !dev->driver) return; driver = to_i2c_driver(dev->driver); if (driver->shutdown) driver->shutdown(client); else if (client->irq > 0) disable_irq(client->irq); } static void i2c_client_dev_release(struct device *dev) { kfree(to_i2c_client(dev)); } static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", dev->type == &i2c_client_type ? to_i2c_client(dev)->name : to_i2c_adapter(dev)->name); } static DEVICE_ATTR_RO(name); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); int len; len = of_device_modalias(dev, buf, PAGE_SIZE); if (len != -ENODEV) return len; len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); if (len != -ENODEV) return len; return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name); } static DEVICE_ATTR_RO(modalias); static struct attribute *i2c_dev_attrs[] = { &dev_attr_name.attr, /* modalias helps coldplug: modprobe $(cat .../modalias) */ &dev_attr_modalias.attr, NULL }; ATTRIBUTE_GROUPS(i2c_dev); const struct bus_type i2c_bus_type = { .name = "i2c", .match = i2c_device_match, .probe = i2c_device_probe, .remove = i2c_device_remove, .shutdown = i2c_device_shutdown, }; EXPORT_SYMBOL_GPL(i2c_bus_type); const struct device_type i2c_client_type = { .groups = i2c_dev_groups, .uevent = i2c_device_uevent, .release = i2c_client_dev_release, }; EXPORT_SYMBOL_GPL(i2c_client_type); /** * i2c_verify_client - return parameter as i2c_client, or NULL * @dev: device, probably from some driver model iterator * * When traversing the driver model tree, perhaps using driver model * iterators like @device_for_each_child(), you can't assume very much * about the nodes you find. Use this function to avoid oopses caused * by wrongly treating some non-I2C device as an i2c_client. */ struct i2c_client *i2c_verify_client(struct device *dev) { return (dev->type == &i2c_client_type) ? to_i2c_client(dev) : NULL; } EXPORT_SYMBOL(i2c_verify_client); /* Return a unique address which takes the flags of the client into account */ static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client) { unsigned short addr = client->addr; /* For some client flags, add an arbitrary offset to avoid collisions */ if (client->flags & I2C_CLIENT_TEN) addr |= I2C_ADDR_OFFSET_TEN_BIT; if (client->flags & I2C_CLIENT_SLAVE) addr |= I2C_ADDR_OFFSET_SLAVE; return addr; } /* This is a permissive address validity check, I2C address map constraints * are purposely not enforced, except for the general call address. */ static int i2c_check_addr_validity(unsigned int addr, unsigned short flags) { if (flags & I2C_CLIENT_TEN) { /* 10-bit address, all values are valid */ if (addr > 0x3ff) return -EINVAL; } else { /* 7-bit address, reject the general call address */ if (addr == 0x00 || addr > 0x7f) return -EINVAL; } return 0; } /* And this is a strict address validity check, used when probing. If a * device uses a reserved address, then it shouldn't be probed. 7-bit * addressing is assumed, 10-bit address devices are rare and should be * explicitly enumerated. */ int i2c_check_7bit_addr_validity_strict(unsigned short addr) { /* * Reserved addresses per I2C specification: * 0x00 General call address / START byte * 0x01 CBUS address * 0x02 Reserved for different bus format * 0x03 Reserved for future purposes * 0x04-0x07 Hs-mode master code * 0x78-0x7b 10-bit slave addressing * 0x7c-0x7f Reserved for future purposes */ if (addr < 0x08 || addr > 0x77) return -EINVAL; return 0; } static int __i2c_check_addr_busy(struct device *dev, void *addrp) { struct i2c_client *client = i2c_verify_client(dev); int addr = *(int *)addrp; if (client && i2c_encode_flags_to_addr(client) == addr) return -EBUSY; return 0; } /* walk up mux tree */ static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr) { struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); int result; result = device_for_each_child(&adapter->dev, &addr, __i2c_check_addr_busy); if (!result && parent) result = i2c_check_mux_parents(parent, addr); return result; } /* recurse down mux tree */ static int i2c_check_mux_children(struct device *dev, void *addrp) { int result; if (dev->type == &i2c_adapter_type) result = device_for_each_child(dev, addrp, i2c_check_mux_children); else result = __i2c_check_addr_busy(dev, addrp); return result; } static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr) { struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); int result = 0; if (parent) result = i2c_check_mux_parents(parent, addr); if (!result) result = device_for_each_child(&adapter->dev, &addr, i2c_check_mux_children); return result; } /** * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment * @adapter: Target I2C bus segment * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT * locks only this branch in the adapter tree */ static void i2c_adapter_lock_bus(struct i2c_adapter *adapter, unsigned int flags) { rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter)); } /** * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment * @adapter: Target I2C bus segment * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT * trylocks only this branch in the adapter tree */ static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter, unsigned int flags) { return rt_mutex_trylock(&adapter->bus_lock); } /** * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment * @adapter: Target I2C bus segment * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT * unlocks only this branch in the adapter tree */ static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter, unsigned int flags) { rt_mutex_unlock(&adapter->bus_lock); } static void i2c_dev_set_name(struct i2c_adapter *adap, struct i2c_client *client, struct i2c_board_info const *info) { struct acpi_device *adev = ACPI_COMPANION(&client->dev); if (info && info->dev_name) { dev_set_name(&client->dev, "i2c-%s", info->dev_name); return; } if (adev) { dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev)); return; } dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), i2c_encode_flags_to_addr(client)); } int i2c_dev_irq_from_resources(const struct resource *resources, unsigned int num_resources) { struct irq_data *irqd; int i; for (i = 0; i < num_resources; i++) { const struct resource *r = &resources[i]; if (resource_type(r) != IORESOURCE_IRQ) continue; if (r->flags & IORESOURCE_BITS) { irqd = irq_get_irq_data(r->start); if (!irqd) break; irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); } return r->start; } return 0; } /* * Serialize device instantiation in case it can be instantiated explicitly * and by auto-detection */ static int i2c_lock_addr(struct i2c_adapter *adap, unsigned short addr, unsigned short flags) { if (!(flags & I2C_CLIENT_TEN) && test_and_set_bit(addr, adap->addrs_in_instantiation)) return -EBUSY; return 0; } static void i2c_unlock_addr(struct i2c_adapter *adap, unsigned short addr, unsigned short flags) { if (!(flags & I2C_CLIENT_TEN)) clear_bit(addr, adap->addrs_in_instantiation); } /** * i2c_new_client_device - instantiate an i2c device * @adap: the adapter managing the device * @info: describes one I2C device; bus_num is ignored * Context: can sleep * * Create an i2c device. Binding is handled through driver model * probe()/remove() methods. A driver may be bound to this device when we * return from this function, or any later moment (e.g. maybe hotplugging will * load the driver module). This call is not appropriate for use by mainboard * initialization logic, which usually runs during an arch_initcall() long * before any i2c_adapter could exist. * * This returns the new i2c client, which may be saved for later use with * i2c_unregister_device(); or an ERR_PTR to describe the error. */ struct i2c_client * i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info) { struct i2c_client *client; bool need_put = false; int status; client = kzalloc(sizeof *client, GFP_KERNEL); if (!client) return ERR_PTR(-ENOMEM); client->adapter = adap; client->dev.platform_data = info->platform_data; client->flags = info->flags; client->addr = info->addr; client->init_irq = info->irq; if (!client->init_irq) client->init_irq = i2c_dev_irq_from_resources(info->resources, info->num_resources); strscpy(client->name, info->type, sizeof(client->name)); status = i2c_check_addr_validity(client->addr, client->flags); if (status) { dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); goto out_err_silent; } status = i2c_lock_addr(adap, client->addr, client->flags); if (status) goto out_err_silent; /* Check for address business */ status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client)); if (status) goto out_err; client->dev.parent = &client->adapter->dev; client->dev.bus = &i2c_bus_type; client->dev.type = &i2c_client_type; client->dev.of_node = of_node_get(info->of_node); client->dev.fwnode = info->fwnode; device_enable_async_suspend(&client->dev); if (info->swnode) { status = device_add_software_node(&client->dev, info->swnode); if (status) { dev_err(&adap->dev, "Failed to add software node to client %s: %d\n", client->name, status); goto out_err_put_of_node; } } i2c_dev_set_name(adap, client, info); status = device_register(&client->dev); if (status) goto out_remove_swnode; dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", client->name, dev_name(&client->dev)); i2c_unlock_addr(adap, client->addr, client->flags); return client; out_remove_swnode: device_remove_software_node(&client->dev); need_put = true; out_err_put_of_node: of_node_put(info->of_node); out_err: dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x (%d)\n", client->name, client->addr, status); i2c_unlock_addr(adap, client->addr, client->flags); out_err_silent: if (need_put) put_device(&client->dev); else kfree(client); return ERR_PTR(status); } EXPORT_SYMBOL_GPL(i2c_new_client_device); /** * i2c_unregister_device - reverse effect of i2c_new_*_device() * @client: value returned from i2c_new_*_device() * Context: can sleep */ void i2c_unregister_device(struct i2c_client *client) { if (IS_ERR_OR_NULL(client)) return; if (client->dev.of_node) { of_node_clear_flag(client->dev.of_node, OF_POPULATED); of_node_put(client->dev.of_node); } if (ACPI_COMPANION(&client->dev)) acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev)); device_remove_software_node(&client->dev); device_unregister(&client->dev); } EXPORT_SYMBOL_GPL(i2c_unregister_device); /** * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client * * Look up and return the &struct i2c_client corresponding to the @fwnode. * If no client can be found, or @fwnode is NULL, this returns NULL. * * The user must call put_device(&client->dev) once done with the i2c client. */ struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode) { struct i2c_client *client; struct device *dev; if (!fwnode) return NULL; dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode); if (!dev) return NULL; client = i2c_verify_client(dev); if (!client) put_device(dev); return client; } EXPORT_SYMBOL(i2c_find_device_by_fwnode); static const struct i2c_device_id dummy_id[] = { { "dummy", }, { "smbus_host_notify", }, { } }; static int dummy_probe(struct i2c_client *client) { return 0; } static struct i2c_driver dummy_driver = { .driver.name = "dummy", .probe = dummy_probe, .id_table = dummy_id, }; /** * i2c_new_dummy_device - return a new i2c device bound to a dummy driver * @adapter: the adapter managing the device * @address: seven bit address to be used * Context: can sleep * * This returns an I2C client bound to the "dummy" driver, intended for use * with devices that consume multiple addresses. Examples of such chips * include various EEPROMS (like 24c04 and 24c08 models). * * These dummy devices have two main uses. First, most I2C and SMBus calls * except i2c_transfer() need a client handle; the dummy will be that handle. * And second, this prevents the specified address from being bound to a * different driver. * * This returns the new i2c client, which should be saved for later use with * i2c_unregister_device(); or an ERR_PTR to describe the error. */ struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address) { struct i2c_board_info info = { I2C_BOARD_INFO("dummy", address), }; return i2c_new_client_device(adapter, &info); } EXPORT_SYMBOL_GPL(i2c_new_dummy_device); static void devm_i2c_release_dummy(void *client) { i2c_unregister_device(client); } /** * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver * @dev: device the managed resource is bound to * @adapter: the adapter managing the device * @address: seven bit address to be used * Context: can sleep * * This is the device-managed version of @i2c_new_dummy_device. It returns the * new i2c client or an ERR_PTR in case of an error. */ struct i2c_client *devm_i2c_new_dummy_device(struct device *dev, struct i2c_adapter *adapter, u16 address) { struct i2c_client *client; int ret; client = i2c_new_dummy_device(adapter, address); if (IS_ERR(client)) return client; ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client); if (ret) return ERR_PTR(ret); return client; } EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device); /** * i2c_new_ancillary_device - Helper to get the instantiated secondary address * and create the associated device * @client: Handle to the primary client * @name: Handle to specify which secondary address to get * @default_addr: Used as a fallback if no secondary address was specified * Context: can sleep * * I2C clients can be composed of multiple I2C slaves bound together in a single * component. The I2C client driver then binds to the master I2C slave and needs * to create I2C dummy clients to communicate with all the other slaves. * * This function creates and returns an I2C dummy client whose I2C address is * retrieved from the platform firmware based on the given slave name. If no * address is specified by the firmware default_addr is used. * * On DT-based platforms the address is retrieved from the "reg" property entry * cell whose "reg-names" value matches the slave name. * * This returns the new i2c client, which should be saved for later use with * i2c_unregister_device(); or an ERR_PTR to describe the error. */ struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client, const char *name, u16 default_addr) { struct device_node *np = client->dev.of_node; u32 addr = default_addr; int i; if (np) { i = of_property_match_string(np, "reg-names", name); if (i >= 0) of_property_read_u32_index(np, "reg", i, &addr); } dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr); return i2c_new_dummy_device(client->adapter, addr); } EXPORT_SYMBOL_GPL(i2c_new_ancillary_device); /* ------------------------------------------------------------------------- */ /* I2C bus adapters -- one roots each I2C or SMBUS segment */ static void i2c_adapter_dev_release(struct device *dev) { struct i2c_adapter *adap = to_i2c_adapter(dev); complete(&adap->dev_released); } unsigned int i2c_adapter_depth(struct i2c_adapter *adapter) { unsigned int depth = 0; struct device *parent; for (parent = adapter->dev.parent; parent; parent = parent->parent) if (parent->type == &i2c_adapter_type) depth++; WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES, "adapter depth exceeds lockdep subclass limit\n"); return depth; } EXPORT_SYMBOL_GPL(i2c_adapter_depth); /* * Let users instantiate I2C devices through sysfs. This can be used when * platform initialization code doesn't contain the proper data for * whatever reason. Also useful for drivers that do device detection and * detection fails, either because the device uses an unexpected address, * or this is a compatible device with different ID register values. * * Parameter checking may look overzealous, but we really don't want * the user to provide incorrect parameters. */ static ssize_t new_device_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_adapter *adap = to_i2c_adapter(dev); struct i2c_board_info info; struct i2c_client *client; char *blank, end; int res; memset(&info, 0, sizeof(struct i2c_board_info)); blank = strchr(buf, ' '); if (!blank) { dev_err(dev, "%s: Missing parameters\n", "new_device"); return -EINVAL; } if (blank - buf > I2C_NAME_SIZE - 1) { dev_err(dev, "%s: Invalid device name\n", "new_device"); return -EINVAL; } memcpy(info.type, buf, blank - buf); /* Parse remaining parameters, reject extra parameters */ res = sscanf(++blank, "%hi%c", &info.addr, &end); if (res < 1) { dev_err(dev, "%s: Can't parse I2C address\n", "new_device"); return -EINVAL; } if (res > 1 && end != '\n') { dev_err(dev, "%s: Extra parameters\n", "new_device"); return -EINVAL; } if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) { info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT; info.flags |= I2C_CLIENT_TEN; } if (info.addr & I2C_ADDR_OFFSET_SLAVE) { info.addr &= ~I2C_ADDR_OFFSET_SLAVE; info.flags |= I2C_CLIENT_SLAVE; } client = i2c_new_client_device(adap, &info); if (IS_ERR(client)) return PTR_ERR(client); /* Keep track of the added device */ mutex_lock(&adap->userspace_clients_lock); list_add_tail(&client->detected, &adap->userspace_clients); mutex_unlock(&adap->userspace_clients_lock); dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device", info.type, info.addr); return count; } static DEVICE_ATTR_WO(new_device); /* * And of course let the users delete the devices they instantiated, if * they got it wrong. This interface can only be used to delete devices * instantiated by i2c_sysfs_new_device above. This guarantees that we * don't delete devices to which some kernel code still has references. * * Parameter checking may look overzealous, but we really don't want * the user to delete the wrong device. */ static ssize_t delete_device_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_adapter *adap = to_i2c_adapter(dev); struct i2c_client *client, *next; unsigned short addr; char end; int res; /* Parse parameters, reject extra parameters */ res = sscanf(buf, "%hi%c", &addr, &end); if (res < 1) { dev_err(dev, "%s: Can't parse I2C address\n", "delete_device"); return -EINVAL; } if (res > 1 && end != '\n') { dev_err(dev, "%s: Extra parameters\n", "delete_device"); return -EINVAL; } /* Make sure the device was added through sysfs */ res = -ENOENT; mutex_lock_nested(&adap->userspace_clients_lock, i2c_adapter_depth(adap)); list_for_each_entry_safe(client, next, &adap->userspace_clients, detected) { if (i2c_encode_flags_to_addr(client) == addr) { dev_info(dev, "%s: Deleting device %s at 0x%02hx\n", "delete_device", client->name, client->addr); list_del(&client->detected); i2c_unregister_device(client); res = count; break; } } mutex_unlock(&adap->userspace_clients_lock); if (res < 0) dev_err(dev, "%s: Can't find device in list\n", "delete_device"); return res; } static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL, delete_device_store); static struct attribute *i2c_adapter_attrs[] = { &dev_attr_name.attr, &dev_attr_new_device.attr, &dev_attr_delete_device.attr, NULL }; ATTRIBUTE_GROUPS(i2c_adapter); const struct device_type i2c_adapter_type = { .groups = i2c_adapter_groups, .release = i2c_adapter_dev_release, }; EXPORT_SYMBOL_GPL(i2c_adapter_type); /** * i2c_verify_adapter - return parameter as i2c_adapter or NULL * @dev: device, probably from some driver model iterator * * When traversing the driver model tree, perhaps using driver model * iterators like @device_for_each_child(), you can't assume very much * about the nodes you find. Use this function to avoid oopses caused * by wrongly treating some non-I2C device as an i2c_adapter. */ struct i2c_adapter *i2c_verify_adapter(struct device *dev) { return (dev->type == &i2c_adapter_type) ? to_i2c_adapter(dev) : NULL; } EXPORT_SYMBOL(i2c_verify_adapter); static void i2c_scan_static_board_info(struct i2c_adapter *adapter) { struct i2c_devinfo *devinfo; down_read(&__i2c_board_lock); list_for_each_entry(devinfo, &__i2c_board_list, list) { if (devinfo->busnum == adapter->nr && IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info))) dev_err(&adapter->dev, "Can't create device at 0x%02x\n", devinfo->board_info.addr); } up_read(&__i2c_board_lock); } static int i2c_do_add_adapter(struct i2c_driver *driver, struct i2c_adapter *adap) { /* Detect supported devices on that bus, and instantiate them */ i2c_detect(adap, driver); return 0; } static int __process_new_adapter(struct device_driver *d, void *data) { return i2c_do_add_adapter(to_i2c_driver(d), data); } static const struct i2c_lock_operations i2c_adapter_lock_ops = { .lock_bus = i2c_adapter_lock_bus, .trylock_bus = i2c_adapter_trylock_bus, .unlock_bus = i2c_adapter_unlock_bus, }; static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap) { struct irq_domain *domain = adap->host_notify_domain; irq_hw_number_t hwirq; if (!domain) return; for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++) irq_dispose_mapping(irq_find_mapping(domain, hwirq)); irq_domain_remove(domain); adap->host_notify_domain = NULL; } static int i2c_host_notify_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw_irq_num) { irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq); return 0; } static const struct irq_domain_ops i2c_host_notify_irq_ops = { .map = i2c_host_notify_irq_map, }; static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap) { struct irq_domain *domain; if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY)) return 0; domain = irq_domain_create_linear(adap->dev.parent->fwnode, I2C_ADDR_7BITS_COUNT, &i2c_host_notify_irq_ops, adap); if (!domain) return -ENOMEM; adap->host_notify_domain = domain; return 0; } /** * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct * I2C client. * @adap: the adapter * @addr: the I2C address of the notifying device * Context: can't sleep * * Helper function to be called from an I2C bus driver's interrupt * handler. It will schedule the Host Notify IRQ. */ int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr) { int irq; if (!adap) return -EINVAL; dev_dbg(&adap->dev, "Detected HostNotify from address 0x%02x", addr); irq = irq_find_mapping(adap->host_notify_domain, addr); if (irq <= 0) return -ENXIO; generic_handle_irq_safe(irq); return 0; } EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify); static int i2c_register_adapter(struct i2c_adapter *adap) { int res = -EINVAL; /* Can't register until after driver model init */ if (WARN_ON(!is_registered)) { res = -EAGAIN; goto out_list; } /* Sanity checks */ if (WARN(!adap->name[0], "i2c adapter has no name")) goto out_list; if (!adap->algo) { pr_err("adapter '%s': no algo supplied!\n", adap->name); goto out_list; } if (!adap->lock_ops) adap->lock_ops = &i2c_adapter_lock_ops; adap->locked_flags = 0; rt_mutex_init(&adap->bus_lock); rt_mutex_init(&adap->mux_lock); mutex_init(&adap->userspace_clients_lock); INIT_LIST_HEAD(&adap->userspace_clients); /* Set default timeout to 1 second if not already set */ if (adap->timeout == 0) adap->timeout = HZ; /* register soft irqs for Host Notify */ res = i2c_setup_host_notify_irq_domain(adap); if (res) { pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n", adap->name, res); goto out_list; } dev_set_name(&adap->dev, "i2c-%d", adap->nr); adap->dev.bus = &i2c_bus_type; adap->dev.type = &i2c_adapter_type; device_initialize(&adap->dev); /* * This adapter can be used as a parent immediately after device_add(), * setup runtime-pm (especially ignore-children) before hand. */ device_enable_async_suspend(&adap->dev); pm_runtime_no_callbacks(&adap->dev); pm_suspend_ignore_children(&adap->dev, true); pm_runtime_enable(&adap->dev); res = device_add(&adap->dev); if (res) { pr_err("adapter '%s': can't register device (%d)\n", adap->name, res); put_device(&adap->dev); goto out_list; } adap->debugfs = debugfs_create_dir(dev_name(&adap->dev), i2c_debugfs_root); res = i2c_setup_smbus_alert(adap); if (res) goto out_reg; res = i2c_init_recovery(adap); if (res == -EPROBE_DEFER) goto out_reg; dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name); /* create pre-declared device nodes */ of_i2c_register_devices(adap); i2c_acpi_install_space_handler(adap); i2c_acpi_register_devices(adap); if (adap->nr < __i2c_first_dynamic_bus_num) i2c_scan_static_board_info(adap); /* Notify drivers */ mutex_lock(&core_lock); bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); mutex_unlock(&core_lock); return 0; out_reg: debugfs_remove_recursive(adap->debugfs); init_completion(&adap->dev_released); device_unregister(&adap->dev); wait_for_completion(&adap->dev_released); out_list: mutex_lock(&core_lock); idr_remove(&i2c_adapter_idr, adap->nr); mutex_unlock(&core_lock); return res; } /** * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1 * @adap: the adapter to register (with adap->nr initialized) * Context: can sleep * * See i2c_add_numbered_adapter() for details. */ static int __i2c_add_numbered_adapter(struct i2c_adapter *adap) { int id; mutex_lock(&core_lock); id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL); mutex_unlock(&core_lock); if (WARN(id < 0, "couldn't get idr")) return id == -ENOSPC ? -EBUSY : id; return i2c_register_adapter(adap); } /** * i2c_add_adapter - declare i2c adapter, use dynamic bus number * @adapter: the adapter to add * Context: can sleep * * This routine is used to declare an I2C adapter when its bus number * doesn't matter or when its bus number is specified by an dt alias. * Examples of bases when the bus number doesn't matter: I2C adapters * dynamically added by USB links or PCI plugin cards. * * When this returns zero, a new bus number was allocated and stored * in adap->nr, and the specified adapter became available for clients. * Otherwise, a negative errno value is returned. */ int i2c_add_adapter(struct i2c_adapter *adapter) { struct device *dev = &adapter->dev; int id; if (dev->of_node) { id = of_alias_get_id(dev->of_node, "i2c"); if (id >= 0) { adapter->nr = id; return __i2c_add_numbered_adapter(adapter); } } mutex_lock(&core_lock); id = idr_alloc(&i2c_adapter_idr, adapter, __i2c_first_dynamic_bus_num, 0, GFP_KERNEL); mutex_unlock(&core_lock); if (WARN(id < 0, "couldn't get idr")) return id; adapter->nr = id; return i2c_register_adapter(adapter); } EXPORT_SYMBOL(i2c_add_adapter); /** * i2c_add_numbered_adapter - declare i2c adapter, use static bus number * @adap: the adapter to register (with adap->nr initialized) * Context: can sleep * * This routine is used to declare an I2C adapter when its bus number * matters. For example, use it for I2C adapters from system-on-chip CPUs, * or otherwise built in to the system's mainboard, and where i2c_board_info * is used to properly configure I2C devices. * * If the requested bus number is set to -1, then this function will behave * identically to i2c_add_adapter, and will dynamically assign a bus number. * * If no devices have pre-been declared for this bus, then be sure to * register the adapter before any dynamically allocated ones. Otherwise * the required bus ID may not be available. * * When this returns zero, the specified adapter became available for * clients using the bus number provided in adap->nr. Also, the table * of I2C devices pre-declared using i2c_register_board_info() is scanned, * and the appropriate driver model device nodes are created. Otherwise, a * negative errno value is returned. */ int i2c_add_numbered_adapter(struct i2c_adapter *adap) { if (adap->nr == -1) /* -1 means dynamically assign bus id */ return i2c_add_adapter(adap); return __i2c_add_numbered_adapter(adap); } EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter); static void i2c_do_del_adapter(struct i2c_driver *driver, struct i2c_adapter *adapter) { struct i2c_client *client, *_n; /* Remove the devices we created ourselves as the result of hardware * probing (using a driver's detect method) */ list_for_each_entry_safe(client, _n, &driver->clients, detected) { if (client->adapter == adapter) { dev_dbg(&adapter->dev, "Removing %s at 0x%x\n", client->name, client->addr); list_del(&client->detected); i2c_unregister_device(client); } } } static int __unregister_client(struct device *dev, void *dummy) { struct i2c_client *client = i2c_verify_client(dev); if (client && strcmp(client->name, "dummy")) i2c_unregister_device(client); return 0; } static int __unregister_dummy(struct device *dev, void *dummy) { struct i2c_client *client = i2c_verify_client(dev); i2c_unregister_device(client); return 0; } static int __process_removed_adapter(struct device_driver *d, void *data) { i2c_do_del_adapter(to_i2c_driver(d), data); return 0; } /** * i2c_del_adapter - unregister I2C adapter * @adap: the adapter being unregistered * Context: can sleep * * This unregisters an I2C adapter which was previously registered * by @i2c_add_adapter or @i2c_add_numbered_adapter. */ void i2c_del_adapter(struct i2c_adapter *adap) { struct i2c_adapter *found; struct i2c_client *client, *next; /* First make sure that this adapter was ever added */ mutex_lock(&core_lock); found = idr_find(&i2c_adapter_idr, adap->nr); mutex_unlock(&core_lock); if (found != adap) { pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name); return; } i2c_acpi_remove_space_handler(adap); /* Tell drivers about this removal */ mutex_lock(&core_lock); bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_removed_adapter); mutex_unlock(&core_lock); /* Remove devices instantiated from sysfs */ mutex_lock_nested(&adap->userspace_clients_lock, i2c_adapter_depth(adap)); list_for_each_entry_safe(client, next, &adap->userspace_clients, detected) { dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name, client->addr); list_del(&client->detected); i2c_unregister_device(client); } mutex_unlock(&adap->userspace_clients_lock); /* Detach any active clients. This can't fail, thus we do not * check the returned value. This is a two-pass process, because * we can't remove the dummy devices during the first pass: they * could have been instantiated by real devices wishing to clean * them up properly, so we give them a chance to do that first. */ device_for_each_child(&adap->dev, NULL, __unregister_client); device_for_each_child(&adap->dev, NULL, __unregister_dummy); /* device name is gone after device_unregister */ dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name); pm_runtime_disable(&adap->dev); i2c_host_notify_irq_teardown(adap); debugfs_remove_recursive(adap->debugfs); /* wait until all references to the device are gone * * FIXME: This is old code and should ideally be replaced by an * alternative which results in decoupling the lifetime of the struct * device from the i2c_adapter, like spi or netdev do. Any solution * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled! */ init_completion(&adap->dev_released); device_unregister(&adap->dev); wait_for_completion(&adap->dev_released); /* free bus id */ mutex_lock(&core_lock); idr_remove(&i2c_adapter_idr, adap->nr); mutex_unlock(&core_lock); /* Clear the device structure in case this adapter is ever going to be added again */ memset(&adap->dev, 0, sizeof(adap->dev)); } EXPORT_SYMBOL(i2c_del_adapter); static void devm_i2c_del_adapter(void *adapter) { i2c_del_adapter(adapter); } /** * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter() * @dev: managing device for adding this I2C adapter * @adapter: the adapter to add * Context: can sleep * * Add adapter with dynamic bus number, same with i2c_add_adapter() * but the adapter will be auto deleted on driver detach. */ int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter) { int ret; ret = i2c_add_adapter(adapter); if (ret) return ret; return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter); } EXPORT_SYMBOL_GPL(devm_i2c_add_adapter); static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data) { if (dev_fwnode(dev) == data) return 1; if (dev->parent && dev_fwnode(dev->parent) == data) return 1; return 0; } /** * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter * * Look up and return the &struct i2c_adapter corresponding to the @fwnode. * If no adapter can be found, or @fwnode is NULL, this returns NULL. * * The user must call put_device(&adapter->dev) once done with the i2c adapter. */ struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode) { struct i2c_adapter *adapter; struct device *dev; if (!fwnode) return NULL; dev = bus_find_device(&i2c_bus_type, NULL, fwnode, i2c_dev_or_parent_fwnode_match); if (!dev) return NULL; adapter = i2c_verify_adapter(dev); if (!adapter) put_device(dev); return adapter; } EXPORT_SYMBOL(i2c_find_adapter_by_fwnode); /** * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter * * Look up and return the &struct i2c_adapter corresponding to the @fwnode, * and increment the adapter module's use count. If no adapter can be found, * or @fwnode is NULL, this returns NULL. * * The user must call i2c_put_adapter(adapter) once done with the i2c adapter. * Note that this is different from i2c_find_adapter_by_node(). */ struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode) { struct i2c_adapter *adapter; adapter = i2c_find_adapter_by_fwnode(fwnode); if (!adapter) return NULL; if (!try_module_get(adapter->owner)) { put_device(&adapter->dev); adapter = NULL; } return adapter; } EXPORT_SYMBOL(i2c_get_adapter_by_fwnode); static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p, u32 def_val, bool use_def) { int ret; ret = device_property_read_u32(dev, prop_name, cur_val_p); if (ret && use_def) *cur_val_p = def_val; dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p); } /** * i2c_parse_fw_timings - get I2C related timing parameters from firmware * @dev: The device to scan for I2C timing properties * @t: the i2c_timings struct to be filled with values * @use_defaults: bool to use sane defaults derived from the I2C specification * when properties are not found, otherwise don't update * * Scan the device for the generic I2C properties describing timing parameters * for the signal and fill the given struct with the results. If a property was * not found and use_defaults was true, then maximum timings are assumed which * are derived from the I2C specification. If use_defaults is not used, the * results will be as before, so drivers can apply their own defaults before * calling this helper. The latter is mainly intended for avoiding regressions * of existing drivers which want to switch to this function. New drivers * almost always should use the defaults. */ void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults) { bool u = use_defaults; u32 d; i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz, I2C_MAX_STANDARD_MODE_FREQ, u); d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 : t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u); d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u); i2c_parse_timing(dev, "i2c-scl-internal-delay-ns", &t->scl_int_delay_ns, 0, u); i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns, t->scl_fall_ns, u); i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u); i2c_parse_timing(dev, "i2c-digital-filter-width-ns", &t->digital_filter_width_ns, 0, u); i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency", &t->analog_filter_cutoff_freq_hz, 0, u); } EXPORT_SYMBOL_GPL(i2c_parse_fw_timings); /* ------------------------------------------------------------------------- */ int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data)) { int res; mutex_lock(&core_lock); res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn); mutex_unlock(&core_lock); return res; } EXPORT_SYMBOL_GPL(i2c_for_each_dev); static int __process_new_driver(struct device *dev, void *data) { if (dev->type != &i2c_adapter_type) return 0; return i2c_do_add_adapter(data, to_i2c_adapter(dev)); } /* * An i2c_driver is used with one or more i2c_client (device) nodes to access * i2c slave chips, on a bus instance associated with some i2c_adapter. */ int i2c_register_driver(struct module *owner, struct i2c_driver *driver) { int res; /* Can't register until after driver model init */ if (WARN_ON(!is_registered)) return -EAGAIN; /* add the driver to the list of i2c drivers in the driver core */ driver->driver.owner = owner; driver->driver.bus = &i2c_bus_type; INIT_LIST_HEAD(&driver->clients); /* When registration returns, the driver core * will have called probe() for all matching-but-unbound devices. */ res = driver_register(&driver->driver); if (res) return res; pr_debug("driver [%s] registered\n", driver->driver.name); /* Walk the adapters that are already present */ i2c_for_each_dev(driver, __process_new_driver); return 0; } EXPORT_SYMBOL(i2c_register_driver); static int __process_removed_driver(struct device *dev, void *data) { if (dev->type == &i2c_adapter_type) i2c_do_del_adapter(data, to_i2c_adapter(dev)); return 0; } /** * i2c_del_driver - unregister I2C driver * @driver: the driver being unregistered * Context: can sleep */ void i2c_del_driver(struct i2c_driver *driver) { i2c_for_each_dev(driver, __process_removed_driver); driver_unregister(&driver->driver); pr_debug("driver [%s] unregistered\n", driver->driver.name); } EXPORT_SYMBOL(i2c_del_driver); /* ------------------------------------------------------------------------- */ struct i2c_cmd_arg { unsigned cmd; void *arg; }; static int i2c_cmd(struct device *dev, void *_arg) { struct i2c_client *client = i2c_verify_client(dev); struct i2c_cmd_arg *arg = _arg; struct i2c_driver *driver; if (!client || !client->dev.driver) return 0; driver = to_i2c_driver(client->dev.driver); if (driver->command) driver->command(client, arg->cmd, arg->arg); return 0; } void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg) { struct i2c_cmd_arg cmd_arg; cmd_arg.cmd = cmd; cmd_arg.arg = arg; device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd); } EXPORT_SYMBOL(i2c_clients_command); static int __init i2c_init(void) { int retval; retval = of_alias_get_highest_id("i2c"); down_write(&__i2c_board_lock); if (retval >= __i2c_first_dynamic_bus_num) __i2c_first_dynamic_bus_num = retval + 1; up_write(&__i2c_board_lock); retval = bus_register(&i2c_bus_type); if (retval) return retval; is_registered = true; i2c_debugfs_root = debugfs_create_dir("i2c", NULL); retval = i2c_add_driver(&dummy_driver); if (retval) goto class_err; if (IS_ENABLED(CONFIG_OF_DYNAMIC)) WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier)); if (IS_ENABLED(CONFIG_ACPI)) WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier)); return 0; class_err: is_registered = false; bus_unregister(&i2c_bus_type); return retval; } static void __exit i2c_exit(void) { if (IS_ENABLED(CONFIG_ACPI)) WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier)); if (IS_ENABLED(CONFIG_OF_DYNAMIC)) WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier)); i2c_del_driver(&dummy_driver); debugfs_remove_recursive(i2c_debugfs_root); bus_unregister(&i2c_bus_type); tracepoint_synchronize_unregister(); } /* We must initialize early, because some subsystems register i2c drivers * in subsys_initcall() code, but are linked (and initialized) before i2c. */ postcore_initcall(i2c_init); module_exit(i2c_exit); /* ---------------------------------------------------- * the functional interface to the i2c busses. * ---------------------------------------------------- */ /* Check if val is exceeding the quirk IFF quirk is non 0 */ #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk))) static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg) { dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n", err_msg, msg->addr, msg->len, msg->flags & I2C_M_RD ? "read" : "write"); return -EOPNOTSUPP; } static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { const struct i2c_adapter_quirks *q = adap->quirks; int max_num = q->max_num_msgs, i; bool do_len_check = true; if (q->flags & I2C_AQ_COMB) { max_num = 2; /* special checks for combined messages */ if (num == 2) { if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD) return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write"); if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD)) return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read"); if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr) return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr"); if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len)) return i2c_quirk_error(adap, &msgs[0], "msg too long"); if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len)) return i2c_quirk_error(adap, &msgs[1], "msg too long"); do_len_check = false; } } if (i2c_quirk_exceeded(num, max_num)) return i2c_quirk_error(adap, &msgs[0], "too many messages"); for (i = 0; i < num; i++) { u16 len = msgs[i].len; if (msgs[i].flags & I2C_M_RD) { if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len)) return i2c_quirk_error(adap, &msgs[i], "msg too long"); if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0) return i2c_quirk_error(adap, &msgs[i], "no zero length"); } else { if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len)) return i2c_quirk_error(adap, &msgs[i], "msg too long"); if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0) return i2c_quirk_error(adap, &msgs[i], "no zero length"); } } return 0; } /** * __i2c_transfer - unlocked flavor of i2c_transfer * @adap: Handle to I2C bus * @msgs: One or more messages to execute before STOP is issued to * terminate the operation; each message begins with a START. * @num: Number of messages to be executed. * * Returns negative errno, else the number of messages executed. * * Adapter lock must be held when calling this function. No debug logging * takes place. */ int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { unsigned long orig_jiffies; int ret, try; if (!adap->algo->master_xfer) { dev_dbg(&adap->dev, "I2C level transfers not supported\n"); return -EOPNOTSUPP; } if (WARN_ON(!msgs || num < 1)) return -EINVAL; ret = __i2c_check_suspended(adap); if (ret) return ret; if (adap->quirks && i2c_check_for_quirks(adap, msgs, num)) return -EOPNOTSUPP; /* * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets * enabled. This is an efficient way of keeping the for-loop from * being executed when not needed. */ if (static_branch_unlikely(&i2c_trace_msg_key)) { int i; for (i = 0; i < num; i++) if (msgs[i].flags & I2C_M_RD) trace_i2c_read(adap, &msgs[i], i); else trace_i2c_write(adap, &msgs[i], i); } /* Retry automatically on arbitration loss */ orig_jiffies = jiffies; for (ret = 0, try = 0; try <= adap->retries; try++) { if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic) ret = adap->algo->master_xfer_atomic(adap, msgs, num); else ret = adap->algo->master_xfer(adap, msgs, num); if (ret != -EAGAIN) break; if (time_after(jiffies, orig_jiffies + adap->timeout)) break; } if (static_branch_unlikely(&i2c_trace_msg_key)) { int i; for (i = 0; i < ret; i++) if (msgs[i].flags & I2C_M_RD) trace_i2c_reply(adap, &msgs[i], i); trace_i2c_result(adap, num, ret); } return ret; } EXPORT_SYMBOL(__i2c_transfer); /** * i2c_transfer - execute a single or combined I2C message * @adap: Handle to I2C bus * @msgs: One or more messages to execute before STOP is issued to * terminate the operation; each message begins with a START. * @num: Number of messages to be executed. * * Returns negative errno, else the number of messages executed. * * Note that there is no requirement that each message be sent to * the same slave address, although that is the most common model. */ int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { int ret; /* REVISIT the fault reporting model here is weak: * * - When we get an error after receiving N bytes from a slave, * there is no way to report "N". * * - When we get a NAK after transmitting N bytes to a slave, * there is no way to report "N" ... or to let the master * continue executing the rest of this combined message, if * that's the appropriate response. * * - When for example "num" is two and we successfully complete * the first message but get an error part way through the * second, it's unclear whether that should be reported as * one (discarding status on the second message) or errno * (discarding status on the first one). */ ret = __i2c_lock_bus_helper(adap); if (ret) return ret; ret = __i2c_transfer(adap, msgs, num); i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); return ret; } EXPORT_SYMBOL(i2c_transfer); /** * i2c_transfer_buffer_flags - issue a single I2C message transferring data * to/from a buffer * @client: Handle to slave device * @buf: Where the data is stored * @count: How many bytes to transfer, must be less than 64k since msg.len is u16 * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads * * Returns negative errno, or else the number of bytes transferred. */ int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf, int count, u16 flags) { int ret; struct i2c_msg msg = { .addr = client->addr, .flags = flags | (client->flags & I2C_M_TEN), .len = count, .buf = buf, }; ret = i2c_transfer(client->adapter, &msg, 1); /* * If everything went ok (i.e. 1 msg transferred), return #bytes * transferred, else error code. */ return (ret == 1) ? count : ret; } EXPORT_SYMBOL(i2c_transfer_buffer_flags); /** * i2c_get_device_id - get manufacturer, part id and die revision of a device * @client: The device to query * @id: The queried information * * Returns negative errno on error, zero on success. */ int i2c_get_device_id(const struct i2c_client *client, struct i2c_device_identity *id) { struct i2c_adapter *adap = client->adapter; union i2c_smbus_data raw_id; int ret; if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) return -EOPNOTSUPP; raw_id.block[0] = 3; ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0, I2C_SMBUS_READ, client->addr << 1, I2C_SMBUS_I2C_BLOCK_DATA, &raw_id); if (ret) return ret; id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4); id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3); id->die_revision = raw_id.block[3] & 0x7; return 0; } EXPORT_SYMBOL_GPL(i2c_get_device_id); /** * i2c_client_get_device_id - get the driver match table entry of a device * @client: the device to query. The device must be bound to a driver * * Returns a pointer to the matching entry if found, NULL otherwise. */ const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client) { const struct i2c_driver *drv = to_i2c_driver(client->dev.driver); return i2c_match_id(drv->id_table, client); } EXPORT_SYMBOL_GPL(i2c_client_get_device_id); /* ---------------------------------------------------- * the i2c address scanning function * Will not work for 10-bit addresses! * ---------------------------------------------------- */ /* * Legacy default probe function, mostly relevant for SMBus. The default * probe method is a quick write, but it is known to corrupt the 24RF08 * EEPROMs due to a state machine bug, and could also irreversibly * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f, * we use a short byte read instead. Also, some bus drivers don't implement * quick write, so we fallback to a byte read in that case too. * On x86, there is another special case for FSC hardware monitoring chips, * which want regular byte reads (address 0x73.) Fortunately, these are the * only known chips using this I2C address on PC hardware. * Returns 1 if probe succeeded, 0 if not. */ static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr) { int err; union i2c_smbus_data dummy; #ifdef CONFIG_X86 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON) && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA)) err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE_DATA, &dummy); else #endif if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50) && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK)) err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0, I2C_SMBUS_QUICK, NULL); else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE, &dummy); else { dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n", addr); err = -EOPNOTSUPP; } return err >= 0; } static int i2c_detect_address(struct i2c_client *temp_client, struct i2c_driver *driver) { struct i2c_board_info info; struct i2c_adapter *adapter = temp_client->adapter; int addr = temp_client->addr; int err; /* Make sure the address is valid */ err = i2c_check_7bit_addr_validity_strict(addr); if (err) { dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", addr); return err; } /* Skip if already in use (7 bit, no need to encode flags) */ if (i2c_check_addr_busy(adapter, addr)) return 0; /* Make sure there is something at this address */ if (!i2c_default_probe(adapter, addr)) return 0; /* Finally call the custom detection function */ memset(&info, 0, sizeof(struct i2c_board_info)); info.addr = addr; err = driver->detect(temp_client, &info); if (err) { /* -ENODEV is returned if the detection fails. We catch it here as this isn't an error. */ return err == -ENODEV ? 0 : err; } /* Consistency check */ if (info.type[0] == '\0') { dev_err(&adapter->dev, "%s detection function provided no name for 0x%x\n", driver->driver.name, addr); } else { struct i2c_client *client; /* Detection succeeded, instantiate the device */ if (adapter->class & I2C_CLASS_DEPRECATED) dev_warn(&adapter->dev, "This adapter will soon drop class based instantiation of devices. " "Please make sure client 0x%02x gets instantiated by other means. " "Check 'Documentation/i2c/instantiating-devices.rst' for details.\n", info.addr); dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n", info.type, info.addr); client = i2c_new_client_device(adapter, &info); if (!IS_ERR(client)) list_add_tail(&client->detected, &driver->clients); else dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n", info.type, info.addr); } return 0; } static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver) { const unsigned short *address_list; struct i2c_client temp_client; int i, err = 0; address_list = driver->address_list; if (!driver->detect || !address_list) return 0; /* Warn that the adapter lost class based instantiation */ if (adapter->class == I2C_CLASS_DEPRECATED) { dev_dbg(&adapter->dev, "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. " "If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n", driver->driver.name); return 0; } /* Stop here if the classes do not match */ if (!(adapter->class & driver->class)) return 0; /* Set up a temporary client to help detect callback */ memset(&temp_client, 0, sizeof(temp_client)); temp_client.adapter = adapter; for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) { dev_dbg(&adapter->dev, "found normal entry for adapter %d, addr 0x%02x\n", i2c_adapter_id(adapter), address_list[i]); temp_client.addr = address_list[i]; err = i2c_detect_address(&temp_client, driver); if (unlikely(err)) break; } return err; } int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr) { return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_QUICK, NULL) >= 0; } EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read); struct i2c_client * i2c_new_scanned_device(struct i2c_adapter *adap, struct i2c_board_info *info, unsigned short const *addr_list, int (*probe)(struct i2c_adapter *adap, unsigned short addr)) { int i; if (!probe) probe = i2c_default_probe; for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { /* Check address validity */ if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) { dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n", addr_list[i]); continue; } /* Check address availability (7 bit, no need to encode flags) */ if (i2c_check_addr_busy(adap, addr_list[i])) { dev_dbg(&adap->dev, "Address 0x%02x already in use, not probing\n", addr_list[i]); continue; } /* Test address responsiveness */ if (probe(adap, addr_list[i])) break; } if (addr_list[i] == I2C_CLIENT_END) { dev_dbg(&adap->dev, "Probing failed, no device found\n"); return ERR_PTR(-ENODEV); } info->addr = addr_list[i]; return i2c_new_client_device(adap, info); } EXPORT_SYMBOL_GPL(i2c_new_scanned_device); struct i2c_adapter *i2c_get_adapter(int nr) { struct i2c_adapter *adapter; mutex_lock(&core_lock); adapter = idr_find(&i2c_adapter_idr, nr); if (!adapter) goto exit; if (try_module_get(adapter->owner)) get_device(&adapter->dev); else adapter = NULL; exit: mutex_unlock(&core_lock); return adapter; } EXPORT_SYMBOL(i2c_get_adapter); void i2c_put_adapter(struct i2c_adapter *adap) { if (!adap) return; module_put(adap->owner); /* Should be last, otherwise we risk use-after-free with 'adap' */ put_device(&adap->dev); } EXPORT_SYMBOL(i2c_put_adapter); /** * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg * @msg: the message to be checked * @threshold: the minimum number of bytes for which using DMA makes sense. * Should at least be 1. * * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO. * Or a valid pointer to be used with DMA. After use, release it by * calling i2c_put_dma_safe_msg_buf(). * * This function must only be called from process context! */ u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold) { /* also skip 0-length msgs for bogus thresholds of 0 */ if (!threshold) pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n", msg->addr); if (msg->len < threshold || msg->len == 0) return NULL; if (msg->flags & I2C_M_DMA_SAFE) return msg->buf; pr_debug("using bounce buffer for addr=0x%02x, len=%d\n", msg->addr, msg->len); if (msg->flags & I2C_M_RD) return kzalloc(msg->len, GFP_KERNEL); else return kmemdup(msg->buf, msg->len, GFP_KERNEL); } EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf); /** * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL. * @msg: the message which the buffer corresponds to * @xferred: bool saying if the message was transferred */ void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred) { if (!buf || buf == msg->buf) return; if (xferred && msg->flags & I2C_M_RD) memcpy(msg->buf, buf, msg->len); kfree(buf); } EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf); MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>"); MODULE_DESCRIPTION("I2C-Bus main module"); MODULE_LICENSE("GPL"); |
19 19 2 2 13 2 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | // SPDX-License-Identifier: GPL-2.0-or-later /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #include <linux/types.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/module.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/lwtunnel.h> #include <net/netevent.h> #include <net/netns/generic.h> #include <net/ip6_fib.h> #include <net/route.h> #include <net/seg6.h> #include <linux/seg6.h> #include <linux/seg6_iptunnel.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/dst_cache.h> #ifdef CONFIG_IPV6_SEG6_HMAC #include <net/seg6_hmac.h> #endif #include <linux/netfilter.h> static size_t seg6_lwt_headroom(struct seg6_iptunnel_encap *tuninfo) { int head = 0; switch (tuninfo->mode) { case SEG6_IPTUN_MODE_INLINE: break; case SEG6_IPTUN_MODE_ENCAP: case SEG6_IPTUN_MODE_ENCAP_RED: head = sizeof(struct ipv6hdr); break; case SEG6_IPTUN_MODE_L2ENCAP: case SEG6_IPTUN_MODE_L2ENCAP_RED: return 0; } return ((tuninfo->srh->hdrlen + 1) << 3) + head; } struct seg6_lwt { struct dst_cache cache; struct seg6_iptunnel_encap tuninfo[]; }; static inline struct seg6_lwt *seg6_lwt_lwtunnel(struct lwtunnel_state *lwt) { return (struct seg6_lwt *)lwt->data; } static inline struct seg6_iptunnel_encap * seg6_encap_lwtunnel(struct lwtunnel_state *lwt) { return seg6_lwt_lwtunnel(lwt)->tuninfo; } static const struct nla_policy seg6_iptunnel_policy[SEG6_IPTUNNEL_MAX + 1] = { [SEG6_IPTUNNEL_SRH] = { .type = NLA_BINARY }, }; static int nla_put_srh(struct sk_buff *skb, int attrtype, struct seg6_iptunnel_encap *tuninfo) { struct seg6_iptunnel_encap *data; struct nlattr *nla; int len; len = SEG6_IPTUN_ENCAP_SIZE(tuninfo); nla = nla_reserve(skb, attrtype, len); if (!nla) return -EMSGSIZE; data = nla_data(nla); memcpy(data, tuninfo, len); return 0; } static void set_tun_src(struct net *net, struct net_device *dev, struct in6_addr *daddr, struct in6_addr *saddr) { struct seg6_pernet_data *sdata = seg6_pernet(net); struct in6_addr *tun_src; rcu_read_lock(); tun_src = rcu_dereference(sdata->tun_src); if (!ipv6_addr_any(tun_src)) { memcpy(saddr, tun_src, sizeof(struct in6_addr)); } else { ipv6_dev_get_saddr(net, dev, daddr, IPV6_PREFER_SRC_PUBLIC, saddr); } rcu_read_unlock(); } /* Compute flowlabel for outer IPv6 header */ static __be32 seg6_make_flowlabel(struct net *net, struct sk_buff *skb, struct ipv6hdr *inner_hdr) { int do_flowlabel = net->ipv6.sysctl.seg6_flowlabel; __be32 flowlabel = 0; u32 hash; if (do_flowlabel > 0) { hash = skb_get_hash(skb); hash = rol32(hash, 16); flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; } else if (!do_flowlabel && skb->protocol == htons(ETH_P_IPV6)) { flowlabel = ip6_flowlabel(inner_hdr); } return flowlabel; } static int __seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto, struct dst_entry *cache_dst) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct ipv6hdr *hdr, *inner_hdr; struct ipv6_sr_hdr *isrh; int hdrlen, tot_len, err; __be32 flowlabel; hdrlen = (osrh->hdrlen + 1) << 3; tot_len = hdrlen + sizeof(*hdr); err = skb_cow_head(skb, tot_len + dst_dev_overhead(cache_dst, skb)); if (unlikely(err)) return err; inner_hdr = ipv6_hdr(skb); flowlabel = seg6_make_flowlabel(net, skb, inner_hdr); skb_push(skb, tot_len); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); /* inherit tc, flowlabel and hlim * hlim will be decremented in ip6_forward() afterwards and * decapsulation will overwrite inner hlim with outer hlim */ if (skb->protocol == htons(ETH_P_IPV6)) { ip6_flow_hdr(hdr, ip6_tclass(ip6_flowinfo(inner_hdr)), flowlabel); hdr->hop_limit = inner_hdr->hop_limit; } else { ip6_flow_hdr(hdr, 0, flowlabel); hdr->hop_limit = ip6_dst_hoplimit(skb_dst(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); /* the control block has been erased, so we have to set the * iif once again. * We read the receiving interface index directly from the * skb->skb_iif as it is done in the IPv4 receiving path (i.e.: * ip_rcv_core(...)). */ IP6CB(skb)->iif = skb->skb_iif; } hdr->nexthdr = NEXTHDR_ROUTING; isrh = (void *)hdr + sizeof(*hdr); memcpy(isrh, osrh, hdrlen); isrh->nexthdr = proto; hdr->daddr = isrh->segments[isrh->first_segment]; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); #ifdef CONFIG_IPV6_SEG6_HMAC if (sr_has_hmac(isrh)) { err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, tot_len); return 0; } /* encapsulate an IPv6 packet within an outer IPv6 header with a given SRH */ int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto) { return __seg6_do_srh_encap(skb, osrh, proto, NULL); } EXPORT_SYMBOL_GPL(seg6_do_srh_encap); /* encapsulate an IPv6 packet within an outer IPv6 header with reduced SRH */ static int seg6_do_srh_encap_red(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto, struct dst_entry *cache_dst) { __u8 first_seg = osrh->first_segment; struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct ipv6hdr *hdr, *inner_hdr; int hdrlen = ipv6_optlen(osrh); int red_tlv_offset, tlv_offset; struct ipv6_sr_hdr *isrh; bool skip_srh = false; __be32 flowlabel; int tot_len, err; int red_hdrlen; int tlvs_len; if (first_seg > 0) { red_hdrlen = hdrlen - sizeof(struct in6_addr); } else { /* NOTE: if tag/flags and/or other TLVs are introduced in the * seg6_iptunnel infrastructure, they should be considered when * deciding to skip the SRH. */ skip_srh = !sr_has_hmac(osrh); red_hdrlen = skip_srh ? 0 : hdrlen; } tot_len = red_hdrlen + sizeof(struct ipv6hdr); err = skb_cow_head(skb, tot_len + dst_dev_overhead(cache_dst, skb)); if (unlikely(err)) return err; inner_hdr = ipv6_hdr(skb); flowlabel = seg6_make_flowlabel(net, skb, inner_hdr); skb_push(skb, tot_len); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); /* based on seg6_do_srh_encap() */ if (skb->protocol == htons(ETH_P_IPV6)) { ip6_flow_hdr(hdr, ip6_tclass(ip6_flowinfo(inner_hdr)), flowlabel); hdr->hop_limit = inner_hdr->hop_limit; } else { ip6_flow_hdr(hdr, 0, flowlabel); hdr->hop_limit = ip6_dst_hoplimit(skb_dst(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); IP6CB(skb)->iif = skb->skb_iif; } /* no matter if we have to skip the SRH or not, the first segment * always comes in the pushed IPv6 header. */ hdr->daddr = osrh->segments[first_seg]; if (skip_srh) { hdr->nexthdr = proto; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); goto out; } /* we cannot skip the SRH, slow path */ hdr->nexthdr = NEXTHDR_ROUTING; isrh = (void *)hdr + sizeof(struct ipv6hdr); if (unlikely(!first_seg)) { /* this is a very rare case; we have only one SID but * we cannot skip the SRH since we are carrying some * other info. */ memcpy(isrh, osrh, hdrlen); goto srcaddr; } tlv_offset = sizeof(*osrh) + (first_seg + 1) * sizeof(struct in6_addr); red_tlv_offset = tlv_offset - sizeof(struct in6_addr); memcpy(isrh, osrh, red_tlv_offset); tlvs_len = hdrlen - tlv_offset; if (unlikely(tlvs_len > 0)) { const void *s = (const void *)osrh + tlv_offset; void *d = (void *)isrh + red_tlv_offset; memcpy(d, s, tlvs_len); } --isrh->first_segment; isrh->hdrlen -= 2; srcaddr: isrh->nexthdr = proto; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); #ifdef CONFIG_IPV6_SEG6_HMAC if (unlikely(!skip_srh && sr_has_hmac(isrh))) { err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif out: hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, tot_len); return 0; } static int __seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, struct dst_entry *cache_dst) { struct ipv6hdr *hdr, *oldhdr; struct ipv6_sr_hdr *isrh; int hdrlen, err; hdrlen = (osrh->hdrlen + 1) << 3; err = skb_cow_head(skb, hdrlen + dst_dev_overhead(cache_dst, skb)); if (unlikely(err)) return err; oldhdr = ipv6_hdr(skb); skb_pull(skb, sizeof(struct ipv6hdr)); skb_postpull_rcsum(skb, skb_network_header(skb), sizeof(struct ipv6hdr)); skb_push(skb, sizeof(struct ipv6hdr) + hdrlen); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); memmove(hdr, oldhdr, sizeof(*hdr)); isrh = (void *)hdr + sizeof(*hdr); memcpy(isrh, osrh, hdrlen); isrh->nexthdr = hdr->nexthdr; hdr->nexthdr = NEXTHDR_ROUTING; isrh->segments[0] = hdr->daddr; hdr->daddr = isrh->segments[isrh->first_segment]; #ifdef CONFIG_IPV6_SEG6_HMAC if (sr_has_hmac(isrh)) { struct net *net = dev_net(skb_dst(skb)->dev); err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, sizeof(struct ipv6hdr) + hdrlen); return 0; } static int seg6_do_srh(struct sk_buff *skb, struct dst_entry *cache_dst) { struct dst_entry *dst = skb_dst(skb); struct seg6_iptunnel_encap *tinfo; int proto, err = 0; tinfo = seg6_encap_lwtunnel(dst->lwtstate); switch (tinfo->mode) { case SEG6_IPTUN_MODE_INLINE: if (skb->protocol != htons(ETH_P_IPV6)) return -EINVAL; err = __seg6_do_srh_inline(skb, tinfo->srh, cache_dst); if (err) return err; break; case SEG6_IPTUN_MODE_ENCAP: case SEG6_IPTUN_MODE_ENCAP_RED: err = iptunnel_handle_offloads(skb, SKB_GSO_IPXIP6); if (err) return err; if (skb->protocol == htons(ETH_P_IPV6)) proto = IPPROTO_IPV6; else if (skb->protocol == htons(ETH_P_IP)) proto = IPPROTO_IPIP; else return -EINVAL; if (tinfo->mode == SEG6_IPTUN_MODE_ENCAP) err = __seg6_do_srh_encap(skb, tinfo->srh, proto, cache_dst); else err = seg6_do_srh_encap_red(skb, tinfo->srh, proto, cache_dst); if (err) return err; skb_set_inner_transport_header(skb, skb_transport_offset(skb)); skb_set_inner_protocol(skb, skb->protocol); skb->protocol = htons(ETH_P_IPV6); break; case SEG6_IPTUN_MODE_L2ENCAP: case SEG6_IPTUN_MODE_L2ENCAP_RED: if (!skb_mac_header_was_set(skb)) return -EINVAL; if (pskb_expand_head(skb, skb->mac_len, 0, GFP_ATOMIC) < 0) return -ENOMEM; skb_mac_header_rebuild(skb); skb_push(skb, skb->mac_len); if (tinfo->mode == SEG6_IPTUN_MODE_L2ENCAP) err = __seg6_do_srh_encap(skb, tinfo->srh, IPPROTO_ETHERNET, cache_dst); else err = seg6_do_srh_encap_red(skb, tinfo->srh, IPPROTO_ETHERNET, cache_dst); if (err) return err; skb->protocol = htons(ETH_P_IPV6); break; } skb_set_transport_header(skb, sizeof(struct ipv6hdr)); nf_reset_ct(skb); return 0; } /* insert an SRH within an IPv6 packet, just after the IPv6 header */ int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh) { return __seg6_do_srh_inline(skb, osrh, NULL); } EXPORT_SYMBOL_GPL(seg6_do_srh_inline); static int seg6_input_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { return dst_input(skb); } static int seg6_input_core(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct seg6_lwt *slwt; int err; slwt = seg6_lwt_lwtunnel(orig_dst->lwtstate); local_bh_disable(); dst = dst_cache_get(&slwt->cache); local_bh_enable(); err = seg6_do_srh(skb, dst); if (unlikely(err)) { dst_release(dst); goto drop; } if (!dst) { ip6_route_input(skb); dst = skb_dst(skb); if (!dst->error) { local_bh_disable(); dst_cache_set_ip6(&slwt->cache, dst, &ipv6_hdr(skb)->saddr); local_bh_enable(); } err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) goto drop; } else { skb_dst_drop(skb); skb_dst_set(skb, dst); } if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, dev_net(skb->dev), NULL, skb, NULL, skb_dst(skb)->dev, seg6_input_finish); return seg6_input_finish(dev_net(skb->dev), NULL, skb); drop: kfree_skb(skb); return err; } static int seg6_input_nf(struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; struct net *net = dev_net(skb->dev); switch (skb->protocol) { case htons(ETH_P_IP): return NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, NULL, skb, NULL, dev, seg6_input_core); case htons(ETH_P_IPV6): return NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, NULL, skb, NULL, dev, seg6_input_core); } return -EINVAL; } static int seg6_input(struct sk_buff *skb) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return seg6_input_nf(skb); return seg6_input_core(dev_net(skb->dev), NULL, skb); } static int seg6_output_core(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct seg6_lwt *slwt; int err; slwt = seg6_lwt_lwtunnel(orig_dst->lwtstate); local_bh_disable(); dst = dst_cache_get(&slwt->cache); local_bh_enable(); err = seg6_do_srh(skb, dst); if (unlikely(err)) goto drop; if (unlikely(!dst)) { struct ipv6hdr *hdr = ipv6_hdr(skb); struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.daddr = hdr->daddr; fl6.saddr = hdr->saddr; fl6.flowlabel = ip6_flowinfo(hdr); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = hdr->nexthdr; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { err = dst->error; goto drop; } /* cache only if we don't create a dst reference loop */ if (orig_dst->lwtstate != dst->lwtstate) { local_bh_disable(); dst_cache_set_ip6(&slwt->cache, dst, &fl6.saddr); local_bh_enable(); } err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) goto drop; } skb_dst_drop(skb); skb_dst_set(skb, dst); if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); return dst_output(net, sk, skb); drop: dst_release(dst); kfree_skb(skb); return err; } static int seg6_output_nf(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; switch (skb->protocol) { case htons(ETH_P_IP): return NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, seg6_output_core); case htons(ETH_P_IPV6): return NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, seg6_output_core); } return -EINVAL; } static int seg6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return seg6_output_nf(net, sk, skb); return seg6_output_core(net, sk, skb); } static int seg6_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct nlattr *tb[SEG6_IPTUNNEL_MAX + 1]; struct seg6_iptunnel_encap *tuninfo; struct lwtunnel_state *newts; int tuninfo_len, min_size; struct seg6_lwt *slwt; int err; if (family != AF_INET && family != AF_INET6) return -EINVAL; err = nla_parse_nested_deprecated(tb, SEG6_IPTUNNEL_MAX, nla, seg6_iptunnel_policy, extack); if (err < 0) return err; if (!tb[SEG6_IPTUNNEL_SRH]) return -EINVAL; tuninfo = nla_data(tb[SEG6_IPTUNNEL_SRH]); tuninfo_len = nla_len(tb[SEG6_IPTUNNEL_SRH]); /* tuninfo must contain at least the iptunnel encap structure, * the SRH and one segment */ min_size = sizeof(*tuninfo) + sizeof(struct ipv6_sr_hdr) + sizeof(struct in6_addr); if (tuninfo_len < min_size) return -EINVAL; switch (tuninfo->mode) { case SEG6_IPTUN_MODE_INLINE: if (family != AF_INET6) return -EINVAL; break; case SEG6_IPTUN_MODE_ENCAP: break; case SEG6_IPTUN_MODE_L2ENCAP: break; case SEG6_IPTUN_MODE_ENCAP_RED: break; case SEG6_IPTUN_MODE_L2ENCAP_RED: break; default: return -EINVAL; } /* verify that SRH is consistent */ if (!seg6_validate_srh(tuninfo->srh, tuninfo_len - sizeof(*tuninfo), false)) return -EINVAL; newts = lwtunnel_state_alloc(tuninfo_len + sizeof(*slwt)); if (!newts) return -ENOMEM; slwt = seg6_lwt_lwtunnel(newts); err = dst_cache_init(&slwt->cache, GFP_ATOMIC); if (err) { kfree(newts); return err; } memcpy(&slwt->tuninfo, tuninfo, tuninfo_len); newts->type = LWTUNNEL_ENCAP_SEG6; newts->flags |= LWTUNNEL_STATE_INPUT_REDIRECT; if (tuninfo->mode != SEG6_IPTUN_MODE_L2ENCAP) newts->flags |= LWTUNNEL_STATE_OUTPUT_REDIRECT; newts->headroom = seg6_lwt_headroom(tuninfo); *ts = newts; return 0; } static void seg6_destroy_state(struct lwtunnel_state *lwt) { dst_cache_destroy(&seg6_lwt_lwtunnel(lwt)->cache); } static int seg6_fill_encap_info(struct sk_buff *skb, struct lwtunnel_state *lwtstate) { struct seg6_iptunnel_encap *tuninfo = seg6_encap_lwtunnel(lwtstate); if (nla_put_srh(skb, SEG6_IPTUNNEL_SRH, tuninfo)) return -EMSGSIZE; return 0; } static int seg6_encap_nlsize(struct lwtunnel_state *lwtstate) { struct seg6_iptunnel_encap *tuninfo = seg6_encap_lwtunnel(lwtstate); return nla_total_size(SEG6_IPTUN_ENCAP_SIZE(tuninfo)); } static int seg6_encap_cmp(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct seg6_iptunnel_encap *a_hdr = seg6_encap_lwtunnel(a); struct seg6_iptunnel_encap *b_hdr = seg6_encap_lwtunnel(b); int len = SEG6_IPTUN_ENCAP_SIZE(a_hdr); if (len != SEG6_IPTUN_ENCAP_SIZE(b_hdr)) return 1; return memcmp(a_hdr, b_hdr, len); } static const struct lwtunnel_encap_ops seg6_iptun_ops = { .build_state = seg6_build_state, .destroy_state = seg6_destroy_state, .output = seg6_output, .input = seg6_input, .fill_encap = seg6_fill_encap_info, .get_encap_size = seg6_encap_nlsize, .cmp_encap = seg6_encap_cmp, .owner = THIS_MODULE, }; int __init seg6_iptunnel_init(void) { return lwtunnel_encap_add_ops(&seg6_iptun_ops, LWTUNNEL_ENCAP_SEG6); } void seg6_iptunnel_exit(void) { lwtunnel_encap_del_ops(&seg6_iptun_ops, LWTUNNEL_ENCAP_SEG6); } |
727 350 350 348 431 22 328 349 7 7 1 12 2 27 7 32 58 58 58 58 57 58 17 57 50 164 165 165 162 4 165 19 506 12 395 395 396 459 462 463 289 292 291 289 292 291 168 392 397 396 395 38 361 76 102 456 58 514 39 39 39 39 39 39 39 39 39 147 148 148 3 148 514 518 518 516 515 7 517 517 516 518 39 516 513 384 14 71 472 502 487 18 500 499 501 5 8 14 488 15 1 1 15 15 15 15 10 5 5 5 2 394 397 2 395 1 1 2 362 363 362 362 363 363 362 360 1 1 1 1 4 144 150 178 150 64 1 1 6 171 171 65 150 178 6 2 7 32 32 32 7 3 1 3 3 1 4 4 12 2 2 9 12 5 19 21 2 15 4 5 11 3 7 15 15 9 6 2 17 1 5 1 1 1 1 1 2 21 19 13 32 6 27 32 232 362 362 5 232 237 236 236 274 274 275 242 21 432 431 432 432 431 175 175 174 67 3 45 19 14 14 1 1 3 9 1 1 5 1 2 60 58 1 3 1 53 7 5 47 1 1 44 8 5 5 5 1 36 3 32 7 3 29 3 25 7 20 2 20 20 1 1 1 1 9 2 1 1 1 1 1 1 20 17 1 1 20 20 20 20 20 3 4 2 18 20 18 10 1 1 3 5 5 5 21 21 11 21 1 21 20 20 20 16 20 386 3 3 34 383 384 384 3 1 1 1 1 9 5 14 13 13 13 13 13 13 13 10 11 11 11 9 1 1 1 24 11 11 11 6 11 24 2 22 24 12 24 24 24 24 16 11 13 24 24 1 3 3 1 3 1 2 2 11 11 1 1 1 376 374 375 375 373 469 466 460 465 461 469 213 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Generic address resolution entity * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * Fixes: * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. * Harald Welte Add neighbour cache statistics like rtstat */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/times.h> #include <net/net_namespace.h> #include <net/neighbour.h> #include <net/arp.h> #include <net/dst.h> #include <net/sock.h> #include <net/netevent.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <linux/random.h> #include <linux/string.h> #include <linux/log2.h> #include <linux/inetdevice.h> #include <net/addrconf.h> #include <trace/events/neigh.h> #define NEIGH_DEBUG 1 #define neigh_dbg(level, fmt, ...) \ do { \ if (level <= NEIGH_DEBUG) \ pr_debug(fmt, ##__VA_ARGS__); \ } while (0) #define PNEIGH_HASHMASK 0xF static void neigh_timer_handler(struct timer_list *t); static void __neigh_notify(struct neighbour *n, int type, int flags, u32 pid); static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, struct net_device *dev); #ifdef CONFIG_PROC_FS static const struct seq_operations neigh_stat_seq_ops; #endif static struct hlist_head *neigh_get_dev_table(struct net_device *dev, int family) { int i; switch (family) { default: DEBUG_NET_WARN_ON_ONCE(1); fallthrough; /* to avoid panic by null-ptr-deref */ case AF_INET: i = NEIGH_ARP_TABLE; break; case AF_INET6: i = NEIGH_ND_TABLE; break; } return &dev->neighbours[i]; } /* Neighbour hash table buckets are protected with rwlock tbl->lock. - All the scans/updates to hash buckets MUST be made under this lock. - NOTHING clever should be made under this lock: no callbacks to protocol backends, no attempts to send something to network. It will result in deadlocks, if backend/driver wants to use neighbour cache. - If the entry requires some non-trivial actions, increase its reference count and release table lock. Neighbour entries are protected: - with reference count. - with rwlock neigh->lock Reference count prevents destruction. neigh->lock mainly serializes ll address data and its validity state. However, the same lock is used to protect another entry fields: - timer - resolution queue Again, nothing clever shall be made under neigh->lock, the most complicated procedure, which we allow is dev->hard_header. It is supposed, that dev->hard_header is simplistic and does not make callbacks to neighbour tables. */ static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) { kfree_skb(skb); return -ENETDOWN; } static void neigh_cleanup_and_release(struct neighbour *neigh) { trace_neigh_cleanup_and_release(neigh, 0); __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); neigh_release(neigh); } /* * It is random distribution in the interval (1/2)*base...(3/2)*base. * It corresponds to default IPv6 settings and is not overridable, * because it is really reasonable choice. */ unsigned long neigh_rand_reach_time(unsigned long base) { return base ? get_random_u32_below(base) + (base >> 1) : 0; } EXPORT_SYMBOL(neigh_rand_reach_time); static void neigh_mark_dead(struct neighbour *n) { n->dead = 1; if (!list_empty(&n->gc_list)) { list_del_init(&n->gc_list); atomic_dec(&n->tbl->gc_entries); } if (!list_empty(&n->managed_list)) list_del_init(&n->managed_list); } static void neigh_update_gc_list(struct neighbour *n) { bool on_gc_list, exempt_from_gc; write_lock_bh(&n->tbl->lock); write_lock(&n->lock); if (n->dead) goto out; /* remove from the gc list if new state is permanent or if neighbor * is externally learned; otherwise entry should be on the gc list */ exempt_from_gc = n->nud_state & NUD_PERMANENT || n->flags & NTF_EXT_LEARNED; on_gc_list = !list_empty(&n->gc_list); if (exempt_from_gc && on_gc_list) { list_del_init(&n->gc_list); atomic_dec(&n->tbl->gc_entries); } else if (!exempt_from_gc && !on_gc_list) { /* add entries to the tail; cleaning removes from the front */ list_add_tail(&n->gc_list, &n->tbl->gc_list); atomic_inc(&n->tbl->gc_entries); } out: write_unlock(&n->lock); write_unlock_bh(&n->tbl->lock); } static void neigh_update_managed_list(struct neighbour *n) { bool on_managed_list, add_to_managed; write_lock_bh(&n->tbl->lock); write_lock(&n->lock); if (n->dead) goto out; add_to_managed = n->flags & NTF_MANAGED; on_managed_list = !list_empty(&n->managed_list); if (!add_to_managed && on_managed_list) list_del_init(&n->managed_list); else if (add_to_managed && !on_managed_list) list_add_tail(&n->managed_list, &n->tbl->managed_list); out: write_unlock(&n->lock); write_unlock_bh(&n->tbl->lock); } static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify, bool *gc_update, bool *managed_update) { u32 ndm_flags, old_flags = neigh->flags; if (!(flags & NEIGH_UPDATE_F_ADMIN)) return; ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0; if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) { if (ndm_flags & NTF_EXT_LEARNED) neigh->flags |= NTF_EXT_LEARNED; else neigh->flags &= ~NTF_EXT_LEARNED; *notify = 1; *gc_update = true; } if ((old_flags ^ ndm_flags) & NTF_MANAGED) { if (ndm_flags & NTF_MANAGED) neigh->flags |= NTF_MANAGED; else neigh->flags &= ~NTF_MANAGED; *notify = 1; *managed_update = true; } } bool neigh_remove_one(struct neighbour *n) { bool retval = false; write_lock(&n->lock); if (refcount_read(&n->refcnt) == 1) { hlist_del_rcu(&n->hash); hlist_del_rcu(&n->dev_list); neigh_mark_dead(n); retval = true; } write_unlock(&n->lock); if (retval) neigh_cleanup_and_release(n); return retval; } static int neigh_forced_gc(struct neigh_table *tbl) { int max_clean = atomic_read(&tbl->gc_entries) - READ_ONCE(tbl->gc_thresh2); u64 tmax = ktime_get_ns() + NSEC_PER_MSEC; unsigned long tref = jiffies - 5 * HZ; struct neighbour *n, *tmp; int shrunk = 0; int loop = 0; NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); write_lock_bh(&tbl->lock); list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { if (refcount_read(&n->refcnt) == 1) { bool remove = false; write_lock(&n->lock); if ((n->nud_state == NUD_FAILED) || (n->nud_state == NUD_NOARP) || (tbl->is_multicast && tbl->is_multicast(n->primary_key)) || !time_in_range(n->updated, tref, jiffies)) remove = true; write_unlock(&n->lock); if (remove && neigh_remove_one(n)) shrunk++; if (shrunk >= max_clean) break; if (++loop == 16) { if (ktime_get_ns() > tmax) goto unlock; loop = 0; } } } WRITE_ONCE(tbl->last_flush, jiffies); unlock: write_unlock_bh(&tbl->lock); return shrunk; } static void neigh_add_timer(struct neighbour *n, unsigned long when) { /* Use safe distance from the jiffies - LONG_MAX point while timer * is running in DELAY/PROBE state but still show to user space * large times in the past. */ unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ); neigh_hold(n); if (!time_in_range(n->confirmed, mint, jiffies)) n->confirmed = mint; if (time_before(n->used, n->confirmed)) n->used = n->confirmed; if (unlikely(mod_timer(&n->timer, when))) { printk("NEIGH: BUG, double timer add, state is %x\n", n->nud_state); dump_stack(); } } static int neigh_del_timer(struct neighbour *n) { if ((n->nud_state & NUD_IN_TIMER) && del_timer(&n->timer)) { neigh_release(n); return 1; } return 0; } static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, int family) { switch (family) { case AF_INET: return __in_dev_arp_parms_get_rcu(dev); case AF_INET6: return __in6_dev_nd_parms_get_rcu(dev); } return NULL; } static void neigh_parms_qlen_dec(struct net_device *dev, int family) { struct neigh_parms *p; rcu_read_lock(); p = neigh_get_dev_parms_rcu(dev, family); if (p) p->qlen--; rcu_read_unlock(); } static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net, int family) { struct sk_buff_head tmp; unsigned long flags; struct sk_buff *skb; skb_queue_head_init(&tmp); spin_lock_irqsave(&list->lock, flags); skb = skb_peek(list); while (skb != NULL) { struct sk_buff *skb_next = skb_peek_next(skb, list); struct net_device *dev = skb->dev; if (net == NULL || net_eq(dev_net(dev), net)) { neigh_parms_qlen_dec(dev, family); __skb_unlink(skb, list); __skb_queue_tail(&tmp, skb); } skb = skb_next; } spin_unlock_irqrestore(&list->lock, flags); while ((skb = __skb_dequeue(&tmp))) { dev_put(skb->dev); kfree_skb(skb); } } static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, bool skip_perm) { struct hlist_head *dev_head; struct hlist_node *tmp; struct neighbour *n; dev_head = neigh_get_dev_table(dev, tbl->family); hlist_for_each_entry_safe(n, tmp, dev_head, dev_list) { if (skip_perm && n->nud_state & NUD_PERMANENT) continue; hlist_del_rcu(&n->hash); hlist_del_rcu(&n->dev_list); write_lock(&n->lock); neigh_del_timer(n); neigh_mark_dead(n); if (refcount_read(&n->refcnt) != 1) { /* The most unpleasant situation. * We must destroy neighbour entry, * but someone still uses it. * * The destroy will be delayed until * the last user releases us, but * we must kill timers etc. and move * it to safe state. */ __skb_queue_purge(&n->arp_queue); n->arp_queue_len_bytes = 0; WRITE_ONCE(n->output, neigh_blackhole); if (n->nud_state & NUD_VALID) n->nud_state = NUD_NOARP; else n->nud_state = NUD_NONE; neigh_dbg(2, "neigh %p is stray\n", n); } write_unlock(&n->lock); neigh_cleanup_and_release(n); } } void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) { write_lock_bh(&tbl->lock); neigh_flush_dev(tbl, dev, false); write_unlock_bh(&tbl->lock); } EXPORT_SYMBOL(neigh_changeaddr); static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, bool skip_perm) { write_lock_bh(&tbl->lock); neigh_flush_dev(tbl, dev, skip_perm); pneigh_ifdown_and_unlock(tbl, dev); pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL, tbl->family); if (skb_queue_empty_lockless(&tbl->proxy_queue)) del_timer_sync(&tbl->proxy_timer); return 0; } int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) { __neigh_ifdown(tbl, dev, true); return 0; } EXPORT_SYMBOL(neigh_carrier_down); int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) { __neigh_ifdown(tbl, dev, false); return 0; } EXPORT_SYMBOL(neigh_ifdown); static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev, u32 flags, bool exempt_from_gc) { struct neighbour *n = NULL; unsigned long now = jiffies; int entries, gc_thresh3; if (exempt_from_gc) goto do_alloc; entries = atomic_inc_return(&tbl->gc_entries) - 1; gc_thresh3 = READ_ONCE(tbl->gc_thresh3); if (entries >= gc_thresh3 || (entries >= READ_ONCE(tbl->gc_thresh2) && time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) { if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) { net_info_ratelimited("%s: neighbor table overflow!\n", tbl->id); NEIGH_CACHE_STAT_INC(tbl, table_fulls); goto out_entries; } } do_alloc: n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); if (!n) goto out_entries; __skb_queue_head_init(&n->arp_queue); rwlock_init(&n->lock); seqlock_init(&n->ha_lock); n->updated = n->used = now; n->nud_state = NUD_NONE; n->output = neigh_blackhole; n->flags = flags; seqlock_init(&n->hh.hh_lock); n->parms = neigh_parms_clone(&tbl->parms); timer_setup(&n->timer, neigh_timer_handler, 0); NEIGH_CACHE_STAT_INC(tbl, allocs); n->tbl = tbl; refcount_set(&n->refcnt, 1); n->dead = 1; INIT_LIST_HEAD(&n->gc_list); INIT_LIST_HEAD(&n->managed_list); atomic_inc(&tbl->entries); out: return n; out_entries: if (!exempt_from_gc) atomic_dec(&tbl->gc_entries); goto out; } static void neigh_get_hash_rnd(u32 *x) { *x = get_random_u32() | 1; } static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) { size_t size = (1 << shift) * sizeof(struct hlist_head); struct hlist_head *hash_heads; struct neigh_hash_table *ret; int i; ret = kmalloc(sizeof(*ret), GFP_ATOMIC); if (!ret) return NULL; hash_heads = kvzalloc(size, GFP_ATOMIC); if (!hash_heads) { kfree(ret); return NULL; } ret->hash_heads = hash_heads; ret->hash_shift = shift; for (i = 0; i < NEIGH_NUM_HASH_RND; i++) neigh_get_hash_rnd(&ret->hash_rnd[i]); return ret; } static void neigh_hash_free_rcu(struct rcu_head *head) { struct neigh_hash_table *nht = container_of(head, struct neigh_hash_table, rcu); kvfree(nht->hash_heads); kfree(nht); } static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, unsigned long new_shift) { unsigned int i, hash; struct neigh_hash_table *new_nht, *old_nht; NEIGH_CACHE_STAT_INC(tbl, hash_grows); old_nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); new_nht = neigh_hash_alloc(new_shift); if (!new_nht) return old_nht; for (i = 0; i < (1 << old_nht->hash_shift); i++) { struct hlist_node *tmp; struct neighbour *n; neigh_for_each_in_bucket_safe(n, tmp, &old_nht->hash_heads[i]) { hash = tbl->hash(n->primary_key, n->dev, new_nht->hash_rnd); hash >>= (32 - new_nht->hash_shift); hlist_del_rcu(&n->hash); hlist_add_head_rcu(&n->hash, &new_nht->hash_heads[hash]); } } rcu_assign_pointer(tbl->nht, new_nht); call_rcu(&old_nht->rcu, neigh_hash_free_rcu); return new_nht; } struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { struct neighbour *n; NEIGH_CACHE_STAT_INC(tbl, lookups); rcu_read_lock(); n = __neigh_lookup_noref(tbl, pkey, dev); if (n) { if (!refcount_inc_not_zero(&n->refcnt)) n = NULL; NEIGH_CACHE_STAT_INC(tbl, hits); } rcu_read_unlock(); return n; } EXPORT_SYMBOL(neigh_lookup); static struct neighbour * ___neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, u32 flags, bool exempt_from_gc, bool want_ref) { u32 hash_val, key_len = tbl->key_len; struct neighbour *n1, *rc, *n; struct neigh_hash_table *nht; int error; n = neigh_alloc(tbl, dev, flags, exempt_from_gc); trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); if (!n) { rc = ERR_PTR(-ENOBUFS); goto out; } memcpy(n->primary_key, pkey, key_len); n->dev = dev; netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC); /* Protocol specific setup. */ if (tbl->constructor && (error = tbl->constructor(n)) < 0) { rc = ERR_PTR(error); goto out_neigh_release; } if (dev->netdev_ops->ndo_neigh_construct) { error = dev->netdev_ops->ndo_neigh_construct(dev, n); if (error < 0) { rc = ERR_PTR(error); goto out_neigh_release; } } /* Device specific setup. */ if (n->parms->neigh_setup && (error = n->parms->neigh_setup(n)) < 0) { rc = ERR_PTR(error); goto out_neigh_release; } n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) nht = neigh_hash_grow(tbl, nht->hash_shift + 1); hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); if (n->parms->dead) { rc = ERR_PTR(-EINVAL); goto out_tbl_unlock; } neigh_for_each_in_bucket(n1, &nht->hash_heads[hash_val]) { if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { if (want_ref) neigh_hold(n1); rc = n1; goto out_tbl_unlock; } } n->dead = 0; if (!exempt_from_gc) list_add_tail(&n->gc_list, &n->tbl->gc_list); if (n->flags & NTF_MANAGED) list_add_tail(&n->managed_list, &n->tbl->managed_list); if (want_ref) neigh_hold(n); hlist_add_head_rcu(&n->hash, &nht->hash_heads[hash_val]); hlist_add_head_rcu(&n->dev_list, neigh_get_dev_table(dev, tbl->family)); write_unlock_bh(&tbl->lock); neigh_dbg(2, "neigh %p is created\n", n); rc = n; out: return rc; out_tbl_unlock: write_unlock_bh(&tbl->lock); out_neigh_release: if (!exempt_from_gc) atomic_dec(&tbl->gc_entries); neigh_release(n); goto out; } struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, bool want_ref) { bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK); return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref); } EXPORT_SYMBOL(__neigh_create); static u32 pneigh_hash(const void *pkey, unsigned int key_len) { u32 hash_val = *(u32 *)(pkey + key_len - 4); hash_val ^= (hash_val >> 16); hash_val ^= hash_val >> 8; hash_val ^= hash_val >> 4; hash_val &= PNEIGH_HASHMASK; return hash_val; } static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, struct net *net, const void *pkey, unsigned int key_len, struct net_device *dev) { while (n) { if (!memcmp(n->key, pkey, key_len) && net_eq(pneigh_net(n), net) && (n->dev == dev || !n->dev)) return n; n = n->next; } return NULL; } struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev) { unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); return __pneigh_lookup_1(tbl->phash_buckets[hash_val], net, pkey, key_len, dev); } EXPORT_SYMBOL_GPL(__pneigh_lookup); struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev, int creat) { struct pneigh_entry *n; unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); read_lock_bh(&tbl->lock); n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], net, pkey, key_len, dev); read_unlock_bh(&tbl->lock); if (n || !creat) goto out; ASSERT_RTNL(); n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL); if (!n) goto out; write_pnet(&n->net, net); memcpy(n->key, pkey, key_len); n->dev = dev; netdev_hold(dev, &n->dev_tracker, GFP_KERNEL); if (tbl->pconstructor && tbl->pconstructor(n)) { netdev_put(dev, &n->dev_tracker); kfree(n); n = NULL; goto out; } write_lock_bh(&tbl->lock); n->next = tbl->phash_buckets[hash_val]; tbl->phash_buckets[hash_val] = n; write_unlock_bh(&tbl->lock); out: return n; } EXPORT_SYMBOL(pneigh_lookup); int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev) { struct pneigh_entry *n, **np; unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); write_lock_bh(&tbl->lock); for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; np = &n->next) { if (!memcmp(n->key, pkey, key_len) && n->dev == dev && net_eq(pneigh_net(n), net)) { *np = n->next; write_unlock_bh(&tbl->lock); if (tbl->pdestructor) tbl->pdestructor(n); netdev_put(n->dev, &n->dev_tracker); kfree(n); return 0; } } write_unlock_bh(&tbl->lock); return -ENOENT; } static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, struct net_device *dev) { struct pneigh_entry *n, **np, *freelist = NULL; u32 h; for (h = 0; h <= PNEIGH_HASHMASK; h++) { np = &tbl->phash_buckets[h]; while ((n = *np) != NULL) { if (!dev || n->dev == dev) { *np = n->next; n->next = freelist; freelist = n; continue; } np = &n->next; } } write_unlock_bh(&tbl->lock); while ((n = freelist)) { freelist = n->next; n->next = NULL; if (tbl->pdestructor) tbl->pdestructor(n); netdev_put(n->dev, &n->dev_tracker); kfree(n); } return -ENOENT; } static void neigh_parms_destroy(struct neigh_parms *parms); static inline void neigh_parms_put(struct neigh_parms *parms) { if (refcount_dec_and_test(&parms->refcnt)) neigh_parms_destroy(parms); } /* * neighbour must already be out of the table; * */ void neigh_destroy(struct neighbour *neigh) { struct net_device *dev = neigh->dev; NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); if (!neigh->dead) { pr_warn("Destroying alive neighbour %p\n", neigh); dump_stack(); return; } if (neigh_del_timer(neigh)) pr_warn("Impossible event\n"); write_lock_bh(&neigh->lock); __skb_queue_purge(&neigh->arp_queue); write_unlock_bh(&neigh->lock); neigh->arp_queue_len_bytes = 0; if (dev->netdev_ops->ndo_neigh_destroy) dev->netdev_ops->ndo_neigh_destroy(dev, neigh); netdev_put(dev, &neigh->dev_tracker); neigh_parms_put(neigh->parms); neigh_dbg(2, "neigh %p is destroyed\n", neigh); atomic_dec(&neigh->tbl->entries); kfree_rcu(neigh, rcu); } EXPORT_SYMBOL(neigh_destroy); /* Neighbour state is suspicious; disable fast path. Called with write_locked neigh. */ static void neigh_suspect(struct neighbour *neigh) { neigh_dbg(2, "neigh %p is suspected\n", neigh); WRITE_ONCE(neigh->output, neigh->ops->output); } /* Neighbour state is OK; enable fast path. Called with write_locked neigh. */ static void neigh_connect(struct neighbour *neigh) { neigh_dbg(2, "neigh %p is connected\n", neigh); WRITE_ONCE(neigh->output, neigh->ops->connected_output); } static void neigh_periodic_work(struct work_struct *work) { struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); struct neigh_hash_table *nht; struct hlist_node *tmp; struct neighbour *n; unsigned int i; NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); /* * periodically recompute ReachableTime from random function */ if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { struct neigh_parms *p; WRITE_ONCE(tbl->last_rand, jiffies); list_for_each_entry(p, &tbl->parms_list, list) p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); } if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1)) goto out; for (i = 0 ; i < (1 << nht->hash_shift); i++) { neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[i]) { unsigned int state; write_lock(&n->lock); state = n->nud_state; if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || (n->flags & NTF_EXT_LEARNED)) { write_unlock(&n->lock); continue; } if (time_before(n->used, n->confirmed) && time_is_before_eq_jiffies(n->confirmed)) n->used = n->confirmed; if (refcount_read(&n->refcnt) == 1 && (state == NUD_FAILED || !time_in_range_open(jiffies, n->used, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { hlist_del_rcu(&n->hash); hlist_del_rcu(&n->dev_list); neigh_mark_dead(n); write_unlock(&n->lock); neigh_cleanup_and_release(n); continue; } write_unlock(&n->lock); } /* * It's fine to release lock here, even if hash table * grows while we are preempted. */ write_unlock_bh(&tbl->lock); cond_resched(); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); } out: /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 * BASE_REACHABLE_TIME. */ queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); write_unlock_bh(&tbl->lock); } static __inline__ int neigh_max_probes(struct neighbour *n) { struct neigh_parms *p = n->parms; return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : NEIGH_VAR(p, MCAST_PROBES)); } static void neigh_invalidate(struct neighbour *neigh) __releases(neigh->lock) __acquires(neigh->lock) { struct sk_buff *skb; NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); neigh_dbg(2, "neigh %p is failed\n", neigh); neigh->updated = jiffies; /* It is very thin place. report_unreachable is very complicated routine. Particularly, it can hit the same neighbour entry! So that, we try to be accurate and avoid dead loop. --ANK */ while (neigh->nud_state == NUD_FAILED && (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { write_unlock(&neigh->lock); neigh->ops->error_report(neigh, skb); write_lock(&neigh->lock); } __skb_queue_purge(&neigh->arp_queue); neigh->arp_queue_len_bytes = 0; } static void neigh_probe(struct neighbour *neigh) __releases(neigh->lock) { struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); /* keep skb alive even if arp_queue overflows */ if (skb) skb = skb_clone(skb, GFP_ATOMIC); write_unlock(&neigh->lock); if (neigh->ops->solicit) neigh->ops->solicit(neigh, skb); atomic_inc(&neigh->probes); consume_skb(skb); } /* Called when a timer expires for a neighbour entry. */ static void neigh_timer_handler(struct timer_list *t) { unsigned long now, next; struct neighbour *neigh = from_timer(neigh, t, timer); unsigned int state; int notify = 0; write_lock(&neigh->lock); state = neigh->nud_state; now = jiffies; next = now + HZ; if (!(state & NUD_IN_TIMER)) goto out; if (state & NUD_REACHABLE) { if (time_before_eq(now, neigh->confirmed + neigh->parms->reachable_time)) { neigh_dbg(2, "neigh %p is still alive\n", neigh); next = neigh->confirmed + neigh->parms->reachable_time; } else if (time_before_eq(now, neigh->used + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { neigh_dbg(2, "neigh %p is delayed\n", neigh); WRITE_ONCE(neigh->nud_state, NUD_DELAY); neigh->updated = jiffies; neigh_suspect(neigh); next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); } else { neigh_dbg(2, "neigh %p is suspected\n", neigh); WRITE_ONCE(neigh->nud_state, NUD_STALE); neigh->updated = jiffies; neigh_suspect(neigh); notify = 1; } } else if (state & NUD_DELAY) { if (time_before_eq(now, neigh->confirmed + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { neigh_dbg(2, "neigh %p is now reachable\n", neigh); WRITE_ONCE(neigh->nud_state, NUD_REACHABLE); neigh->updated = jiffies; neigh_connect(neigh); notify = 1; next = neigh->confirmed + neigh->parms->reachable_time; } else { neigh_dbg(2, "neigh %p is probed\n", neigh); WRITE_ONCE(neigh->nud_state, NUD_PROBE); neigh->updated = jiffies; atomic_set(&neigh->probes, 0); notify = 1; next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); } } else { /* NUD_PROBE|NUD_INCOMPLETE */ next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); } if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { WRITE_ONCE(neigh->nud_state, NUD_FAILED); notify = 1; neigh_invalidate(neigh); goto out; } if (neigh->nud_state & NUD_IN_TIMER) { if (time_before(next, jiffies + HZ/100)) next = jiffies + HZ/100; if (!mod_timer(&neigh->timer, next)) neigh_hold(neigh); } if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { neigh_probe(neigh); } else { out: write_unlock(&neigh->lock); } if (notify) neigh_update_notify(neigh, 0); trace_neigh_timer_handler(neigh, 0); neigh_release(neigh); } int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb, const bool immediate_ok) { int rc; bool immediate_probe = false; write_lock_bh(&neigh->lock); rc = 0; if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) goto out_unlock_bh; if (neigh->dead) goto out_dead; if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + NEIGH_VAR(neigh->parms, APP_PROBES)) { unsigned long next, now = jiffies; atomic_set(&neigh->probes, NEIGH_VAR(neigh->parms, UCAST_PROBES)); neigh_del_timer(neigh); WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE); neigh->updated = now; if (!immediate_ok) { next = now + 1; } else { immediate_probe = true; next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ / 100); } neigh_add_timer(neigh, next); } else { WRITE_ONCE(neigh->nud_state, NUD_FAILED); neigh->updated = jiffies; write_unlock_bh(&neigh->lock); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED); return 1; } } else if (neigh->nud_state & NUD_STALE) { neigh_dbg(2, "neigh %p is delayed\n", neigh); neigh_del_timer(neigh); WRITE_ONCE(neigh->nud_state, NUD_DELAY); neigh->updated = jiffies; neigh_add_timer(neigh, jiffies + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); } if (neigh->nud_state == NUD_INCOMPLETE) { if (skb) { while (neigh->arp_queue_len_bytes + skb->truesize > NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { struct sk_buff *buff; buff = __skb_dequeue(&neigh->arp_queue); if (!buff) break; neigh->arp_queue_len_bytes -= buff->truesize; kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL); NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); } skb_dst_force(skb); __skb_queue_tail(&neigh->arp_queue, skb); neigh->arp_queue_len_bytes += skb->truesize; } rc = 1; } out_unlock_bh: if (immediate_probe) neigh_probe(neigh); else write_unlock(&neigh->lock); local_bh_enable(); trace_neigh_event_send_done(neigh, rc); return rc; out_dead: if (neigh->nud_state & NUD_STALE) goto out_unlock_bh; write_unlock_bh(&neigh->lock); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD); trace_neigh_event_send_dead(neigh, 1); return 1; } EXPORT_SYMBOL(__neigh_event_send); static void neigh_update_hhs(struct neighbour *neigh) { struct hh_cache *hh; void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) = NULL; if (neigh->dev->header_ops) update = neigh->dev->header_ops->cache_update; if (update) { hh = &neigh->hh; if (READ_ONCE(hh->hh_len)) { write_seqlock_bh(&hh->hh_lock); update(hh, neigh->dev, neigh->ha); write_sequnlock_bh(&hh->hh_lock); } } } /* Generic update routine. -- lladdr is new lladdr or NULL, if it is not supplied. -- new is new state. -- flags NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, if it is different. NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" lladdr instead of overriding it if it is different. NEIGH_UPDATE_F_ADMIN means that the change is administrative. NEIGH_UPDATE_F_USE means that the entry is user triggered. NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed. NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing NTF_ROUTER flag. NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as a router. Caller MUST hold reference count on the entry. */ static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid, struct netlink_ext_ack *extack) { bool gc_update = false, managed_update = false; int update_isrouter = 0; struct net_device *dev; int err, notify = 0; u8 old; trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); write_lock_bh(&neigh->lock); dev = neigh->dev; old = neigh->nud_state; err = -EPERM; if (neigh->dead) { NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); new = old; goto out; } if (!(flags & NEIGH_UPDATE_F_ADMIN) && (old & (NUD_NOARP | NUD_PERMANENT))) goto out; neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update); if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) { new = old & ~NUD_PERMANENT; WRITE_ONCE(neigh->nud_state, new); err = 0; goto out; } if (!(new & NUD_VALID)) { neigh_del_timer(neigh); if (old & NUD_CONNECTED) neigh_suspect(neigh); WRITE_ONCE(neigh->nud_state, new); err = 0; notify = old & NUD_VALID; if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && (new & NUD_FAILED)) { neigh_invalidate(neigh); notify = 1; } goto out; } /* Compare new lladdr with cached one */ if (!dev->addr_len) { /* First case: device needs no address. */ lladdr = neigh->ha; } else if (lladdr) { /* The second case: if something is already cached and a new address is proposed: - compare new & old - if they are different, check override flag */ if ((old & NUD_VALID) && !memcmp(lladdr, neigh->ha, dev->addr_len)) lladdr = neigh->ha; } else { /* No address is supplied; if we know something, use it, otherwise discard the request. */ err = -EINVAL; if (!(old & NUD_VALID)) { NL_SET_ERR_MSG(extack, "No link layer address given"); goto out; } lladdr = neigh->ha; } /* Update confirmed timestamp for neighbour entry after we * received ARP packet even if it doesn't change IP to MAC binding. */ if (new & NUD_CONNECTED) neigh->confirmed = jiffies; /* If entry was valid and address is not changed, do not change entry state, if new one is STALE. */ err = 0; update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; if (old & NUD_VALID) { if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { update_isrouter = 0; if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && (old & NUD_CONNECTED)) { lladdr = neigh->ha; new = NUD_STALE; } else goto out; } else { if (lladdr == neigh->ha && new == NUD_STALE && !(flags & NEIGH_UPDATE_F_ADMIN)) new = old; } } /* Update timestamp only once we know we will make a change to the * neighbour entry. Otherwise we risk to move the locktime window with * noop updates and ignore relevant ARP updates. */ if (new != old || lladdr != neigh->ha) neigh->updated = jiffies; if (new != old) { neigh_del_timer(neigh); if (new & NUD_PROBE) atomic_set(&neigh->probes, 0); if (new & NUD_IN_TIMER) neigh_add_timer(neigh, (jiffies + ((new & NUD_REACHABLE) ? neigh->parms->reachable_time : 0))); WRITE_ONCE(neigh->nud_state, new); notify = 1; } if (lladdr != neigh->ha) { write_seqlock(&neigh->ha_lock); memcpy(&neigh->ha, lladdr, dev->addr_len); write_sequnlock(&neigh->ha_lock); neigh_update_hhs(neigh); if (!(new & NUD_CONNECTED)) neigh->confirmed = jiffies - (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); notify = 1; } if (new == old) goto out; if (new & NUD_CONNECTED) neigh_connect(neigh); else neigh_suspect(neigh); if (!(old & NUD_VALID)) { struct sk_buff *skb; /* Again: avoid dead loop if something went wrong */ while (neigh->nud_state & NUD_VALID && (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { struct dst_entry *dst = skb_dst(skb); struct neighbour *n2, *n1 = neigh; write_unlock_bh(&neigh->lock); rcu_read_lock(); /* Why not just use 'neigh' as-is? The problem is that * things such as shaper, eql, and sch_teql can end up * using alternative, different, neigh objects to output * the packet in the output path. So what we need to do * here is re-lookup the top-level neigh in the path so * we can reinject the packet there. */ n2 = NULL; if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { n2 = dst_neigh_lookup_skb(dst, skb); if (n2) n1 = n2; } READ_ONCE(n1->output)(n1, skb); if (n2) neigh_release(n2); rcu_read_unlock(); write_lock_bh(&neigh->lock); } __skb_queue_purge(&neigh->arp_queue); neigh->arp_queue_len_bytes = 0; } out: if (update_isrouter) neigh_update_is_router(neigh, flags, ¬ify); write_unlock_bh(&neigh->lock); if (((new ^ old) & NUD_PERMANENT) || gc_update) neigh_update_gc_list(neigh); if (managed_update) neigh_update_managed_list(neigh); if (notify) neigh_update_notify(neigh, nlmsg_pid); trace_neigh_update_done(neigh, err); return err; } int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid) { return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); } EXPORT_SYMBOL(neigh_update); /* Update the neigh to listen temporarily for probe responses, even if it is * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. */ void __neigh_set_probe_once(struct neighbour *neigh) { if (neigh->dead) return; neigh->updated = jiffies; if (!(neigh->nud_state & NUD_FAILED)) return; WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE); atomic_set(&neigh->probes, neigh_max_probes(neigh)); neigh_add_timer(neigh, jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100)); } EXPORT_SYMBOL(__neigh_set_probe_once); struct neighbour *neigh_event_ns(struct neigh_table *tbl, u8 *lladdr, void *saddr, struct net_device *dev) { struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, lladdr || !dev->addr_len); if (neigh) neigh_update(neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_OVERRIDE, 0); return neigh; } EXPORT_SYMBOL(neigh_event_ns); /* called with read_lock_bh(&n->lock); */ static void neigh_hh_init(struct neighbour *n) { struct net_device *dev = n->dev; __be16 prot = n->tbl->protocol; struct hh_cache *hh = &n->hh; write_lock_bh(&n->lock); /* Only one thread can come in here and initialize the * hh_cache entry. */ if (!hh->hh_len) dev->header_ops->cache(n, hh, prot); write_unlock_bh(&n->lock); } /* Slow and careful. */ int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) { int rc = 0; if (!neigh_event_send(neigh, skb)) { int err; struct net_device *dev = neigh->dev; unsigned int seq; if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) neigh_hh_init(neigh); do { __skb_pull(skb, skb_network_offset(skb)); seq = read_seqbegin(&neigh->ha_lock); err = dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len); } while (read_seqretry(&neigh->ha_lock, seq)); if (err >= 0) rc = dev_queue_xmit(skb); else goto out_kfree_skb; } out: return rc; out_kfree_skb: rc = -EINVAL; kfree_skb(skb); goto out; } EXPORT_SYMBOL(neigh_resolve_output); /* As fast as possible without hh cache */ int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) { struct net_device *dev = neigh->dev; unsigned int seq; int err; do { __skb_pull(skb, skb_network_offset(skb)); seq = read_seqbegin(&neigh->ha_lock); err = dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len); } while (read_seqretry(&neigh->ha_lock, seq)); if (err >= 0) err = dev_queue_xmit(skb); else { err = -EINVAL; kfree_skb(skb); } return err; } EXPORT_SYMBOL(neigh_connected_output); int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) { return dev_queue_xmit(skb); } EXPORT_SYMBOL(neigh_direct_output); static void neigh_managed_work(struct work_struct *work) { struct neigh_table *tbl = container_of(work, struct neigh_table, managed_work.work); struct neighbour *neigh; write_lock_bh(&tbl->lock); list_for_each_entry(neigh, &tbl->managed_list, managed_list) neigh_event_send_probe(neigh, NULL, false); queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS)); write_unlock_bh(&tbl->lock); } static void neigh_proxy_process(struct timer_list *t) { struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); long sched_next = 0; unsigned long now = jiffies; struct sk_buff *skb, *n; spin_lock(&tbl->proxy_queue.lock); skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { long tdif = NEIGH_CB(skb)->sched_next - now; if (tdif <= 0) { struct net_device *dev = skb->dev; neigh_parms_qlen_dec(dev, tbl->family); __skb_unlink(skb, &tbl->proxy_queue); if (tbl->proxy_redo && netif_running(dev)) { rcu_read_lock(); tbl->proxy_redo(skb); rcu_read_unlock(); } else { kfree_skb(skb); } dev_put(dev); } else if (!sched_next || tdif < sched_next) sched_next = tdif; } del_timer(&tbl->proxy_timer); if (sched_next) mod_timer(&tbl->proxy_timer, jiffies + sched_next); spin_unlock(&tbl->proxy_queue.lock); } static unsigned long neigh_proxy_delay(struct neigh_parms *p) { /* If proxy_delay is zero, do not call get_random_u32_below() * as it is undefined behavior. */ unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY); return proxy_delay ? jiffies + get_random_u32_below(proxy_delay) : jiffies; } void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, struct sk_buff *skb) { unsigned long sched_next = neigh_proxy_delay(p); if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) { kfree_skb(skb); return; } NEIGH_CB(skb)->sched_next = sched_next; NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; spin_lock(&tbl->proxy_queue.lock); if (del_timer(&tbl->proxy_timer)) { if (time_before(tbl->proxy_timer.expires, sched_next)) sched_next = tbl->proxy_timer.expires; } skb_dst_drop(skb); dev_hold(skb->dev); __skb_queue_tail(&tbl->proxy_queue, skb); p->qlen++; mod_timer(&tbl->proxy_timer, sched_next); spin_unlock(&tbl->proxy_queue.lock); } EXPORT_SYMBOL(pneigh_enqueue); static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, struct net *net, int ifindex) { struct neigh_parms *p; list_for_each_entry(p, &tbl->parms_list, list) { if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || (!p->dev && !ifindex && net_eq(net, &init_net))) return p; } return NULL; } struct neigh_parms *neigh_parms_alloc(struct net_device *dev, struct neigh_table *tbl) { struct neigh_parms *p; struct net *net = dev_net(dev); const struct net_device_ops *ops = dev->netdev_ops; p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); if (p) { p->tbl = tbl; refcount_set(&p->refcnt, 1); p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); p->qlen = 0; netdev_hold(dev, &p->dev_tracker, GFP_KERNEL); p->dev = dev; write_pnet(&p->net, net); p->sysctl_table = NULL; if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { netdev_put(dev, &p->dev_tracker); kfree(p); return NULL; } write_lock_bh(&tbl->lock); list_add(&p->list, &tbl->parms.list); write_unlock_bh(&tbl->lock); neigh_parms_data_state_cleanall(p); } return p; } EXPORT_SYMBOL(neigh_parms_alloc); static void neigh_rcu_free_parms(struct rcu_head *head) { struct neigh_parms *parms = container_of(head, struct neigh_parms, rcu_head); neigh_parms_put(parms); } void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) { if (!parms || parms == &tbl->parms) return; write_lock_bh(&tbl->lock); list_del(&parms->list); parms->dead = 1; write_unlock_bh(&tbl->lock); netdev_put(parms->dev, &parms->dev_tracker); call_rcu(&parms->rcu_head, neigh_rcu_free_parms); } EXPORT_SYMBOL(neigh_parms_release); static void neigh_parms_destroy(struct neigh_parms *parms) { kfree(parms); } static struct lock_class_key neigh_table_proxy_queue_class; static struct neigh_table __rcu *neigh_tables[NEIGH_NR_TABLES] __read_mostly; void neigh_table_init(int index, struct neigh_table *tbl) { unsigned long now = jiffies; unsigned long phsize; INIT_LIST_HEAD(&tbl->parms_list); INIT_LIST_HEAD(&tbl->gc_list); INIT_LIST_HEAD(&tbl->managed_list); list_add(&tbl->parms.list, &tbl->parms_list); write_pnet(&tbl->parms.net, &init_net); refcount_set(&tbl->parms.refcnt, 1); tbl->parms.reachable_time = neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); tbl->parms.qlen = 0; tbl->stats = alloc_percpu(struct neigh_statistics); if (!tbl->stats) panic("cannot create neighbour cache statistics"); #ifdef CONFIG_PROC_FS if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, &neigh_stat_seq_ops, tbl)) panic("cannot create neighbour proc dir entry"); #endif RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); if (!tbl->nht || !tbl->phash_buckets) panic("cannot allocate neighbour cache hashes"); if (!tbl->entry_size) tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + tbl->key_len, NEIGH_PRIV_ALIGN); else WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); rwlock_init(&tbl->lock); INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, tbl->parms.reachable_time); INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work); queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0); timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); skb_queue_head_init_class(&tbl->proxy_queue, &neigh_table_proxy_queue_class); tbl->last_flush = now; tbl->last_rand = now + tbl->parms.reachable_time * 20; rcu_assign_pointer(neigh_tables[index], tbl); } EXPORT_SYMBOL(neigh_table_init); /* * Only called from ndisc_cleanup(), which means this is dead code * because we no longer can unload IPv6 module. */ int neigh_table_clear(int index, struct neigh_table *tbl) { RCU_INIT_POINTER(neigh_tables[index], NULL); synchronize_rcu(); /* It is not clean... Fix it to unload IPv6 module safely */ cancel_delayed_work_sync(&tbl->managed_work); cancel_delayed_work_sync(&tbl->gc_work); del_timer_sync(&tbl->proxy_timer); pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family); neigh_ifdown(tbl, NULL); if (atomic_read(&tbl->entries)) pr_crit("neighbour leakage\n"); call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, neigh_hash_free_rcu); tbl->nht = NULL; kfree(tbl->phash_buckets); tbl->phash_buckets = NULL; remove_proc_entry(tbl->id, init_net.proc_net_stat); free_percpu(tbl->stats); tbl->stats = NULL; return 0; } EXPORT_SYMBOL(neigh_table_clear); static struct neigh_table *neigh_find_table(int family) { struct neigh_table *tbl = NULL; switch (family) { case AF_INET: tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ARP_TABLE]); break; case AF_INET6: tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ND_TABLE]); break; } return tbl; } const struct nla_policy nda_policy[NDA_MAX+1] = { [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, [NDA_PROBES] = { .type = NLA_U32 }, [NDA_VLAN] = { .type = NLA_U16 }, [NDA_PORT] = { .type = NLA_U16 }, [NDA_VNI] = { .type = NLA_U32 }, [NDA_IFINDEX] = { .type = NLA_U32 }, [NDA_MASTER] = { .type = NLA_U32 }, [NDA_PROTOCOL] = { .type = NLA_U8 }, [NDA_NH_ID] = { .type = NLA_U32 }, [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK), [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, }; static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct ndmsg *ndm; struct nlattr *dst_attr; struct neigh_table *tbl; struct neighbour *neigh; struct net_device *dev = NULL; int err = -EINVAL; ASSERT_RTNL(); if (nlmsg_len(nlh) < sizeof(*ndm)) goto out; dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); if (!dst_attr) { NL_SET_ERR_MSG(extack, "Network address not specified"); goto out; } ndm = nlmsg_data(nlh); if (ndm->ndm_ifindex) { dev = __dev_get_by_index(net, ndm->ndm_ifindex); if (dev == NULL) { err = -ENODEV; goto out; } } tbl = neigh_find_table(ndm->ndm_family); if (tbl == NULL) return -EAFNOSUPPORT; if (nla_len(dst_attr) < (int)tbl->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address"); goto out; } if (ndm->ndm_flags & NTF_PROXY) { err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); goto out; } if (dev == NULL) goto out; neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); if (neigh == NULL) { err = -ENOENT; goto out; } err = __neigh_update(neigh, NULL, NUD_FAILED, NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, NETLINK_CB(skb).portid, extack); write_lock_bh(&tbl->lock); neigh_release(neigh); neigh_remove_one(neigh); write_unlock_bh(&tbl->lock); out: return err; } static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_OVERRIDE_ISROUTER; struct net *net = sock_net(skb->sk); struct ndmsg *ndm; struct nlattr *tb[NDA_MAX+1]; struct neigh_table *tbl; struct net_device *dev = NULL; struct neighbour *neigh; void *dst, *lladdr; u8 protocol = 0; u32 ndm_flags; int err; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, nda_policy, extack); if (err < 0) goto out; err = -EINVAL; if (!tb[NDA_DST]) { NL_SET_ERR_MSG(extack, "Network address not specified"); goto out; } ndm = nlmsg_data(nlh); ndm_flags = ndm->ndm_flags; if (tb[NDA_FLAGS_EXT]) { u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]); BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE < (sizeof(ndm->ndm_flags) * BITS_PER_BYTE + hweight32(NTF_EXT_MASK))); ndm_flags |= (ext << NTF_EXT_SHIFT); } if (ndm->ndm_ifindex) { dev = __dev_get_by_index(net, ndm->ndm_ifindex); if (dev == NULL) { err = -ENODEV; goto out; } if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { NL_SET_ERR_MSG(extack, "Invalid link address"); goto out; } } tbl = neigh_find_table(ndm->ndm_family); if (tbl == NULL) return -EAFNOSUPPORT; if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address"); goto out; } dst = nla_data(tb[NDA_DST]); lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; if (tb[NDA_PROTOCOL]) protocol = nla_get_u8(tb[NDA_PROTOCOL]); if (ndm_flags & NTF_PROXY) { struct pneigh_entry *pn; if (ndm_flags & NTF_MANAGED) { NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination"); goto out; } err = -ENOBUFS; pn = pneigh_lookup(tbl, net, dst, dev, 1); if (pn) { pn->flags = ndm_flags; if (protocol) pn->protocol = protocol; err = 0; } goto out; } if (!dev) { NL_SET_ERR_MSG(extack, "Device not specified"); goto out; } if (tbl->allow_add && !tbl->allow_add(dev, extack)) { err = -EINVAL; goto out; } neigh = neigh_lookup(tbl, dst, dev); if (neigh == NULL) { bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT; bool exempt_from_gc = ndm_permanent || ndm_flags & NTF_EXT_LEARNED; if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { err = -ENOENT; goto out; } if (ndm_permanent && (ndm_flags & NTF_MANAGED)) { NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry"); err = -EINVAL; goto out; } neigh = ___neigh_create(tbl, dst, dev, ndm_flags & (NTF_EXT_LEARNED | NTF_MANAGED), exempt_from_gc, true); if (IS_ERR(neigh)) { err = PTR_ERR(neigh); goto out; } } else { if (nlh->nlmsg_flags & NLM_F_EXCL) { err = -EEXIST; neigh_release(neigh); goto out; } if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) flags &= ~(NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_OVERRIDE_ISROUTER); } if (protocol) neigh->protocol = protocol; if (ndm_flags & NTF_EXT_LEARNED) flags |= NEIGH_UPDATE_F_EXT_LEARNED; if (ndm_flags & NTF_ROUTER) flags |= NEIGH_UPDATE_F_ISROUTER; if (ndm_flags & NTF_MANAGED) flags |= NEIGH_UPDATE_F_MANAGED; if (ndm_flags & NTF_USE) flags |= NEIGH_UPDATE_F_USE; err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, NETLINK_CB(skb).portid, extack); if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) { neigh_event_send(neigh, NULL); err = 0; } neigh_release(neigh); out: return err; } static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, NDTA_PARMS); if (nest == NULL) return -ENOBUFS; if ((parms->dev && nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || /* approximative value for deprecated QUEUE_LEN (in packets) */ nla_put_u32(skb, NDTPA_QUEUE_LEN, NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || nla_put_u32(skb, NDTPA_UCAST_PROBES, NEIGH_VAR(parms, UCAST_PROBES)) || nla_put_u32(skb, NDTPA_MCAST_PROBES, NEIGH_VAR(parms, MCAST_PROBES)) || nla_put_u32(skb, NDTPA_MCAST_REPROBES, NEIGH_VAR(parms, MCAST_REPROBES)) || nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, NDTPA_PAD) || nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_GC_STALETIME, NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_RETRANS_TIME, NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_PROXY_DELAY, NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_LOCKTIME, NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS, NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD)) goto nla_put_failure; return nla_nest_end(skb, nest); nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, u32 pid, u32 seq, int type, int flags) { struct nlmsghdr *nlh; struct ndtmsg *ndtmsg; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); if (nlh == NULL) return -EMSGSIZE; ndtmsg = nlmsg_data(nlh); read_lock_bh(&tbl->lock); ndtmsg->ndtm_family = tbl->family; ndtmsg->ndtm_pad1 = 0; ndtmsg->ndtm_pad2 = 0; if (nla_put_string(skb, NDTA_NAME, tbl->id) || nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval), NDTA_PAD) || nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) || nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) || nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3))) goto nla_put_failure; { unsigned long now = jiffies; long flush_delta = now - READ_ONCE(tbl->last_flush); long rand_delta = now - READ_ONCE(tbl->last_rand); struct neigh_hash_table *nht; struct ndt_config ndc = { .ndtc_key_len = tbl->key_len, .ndtc_entry_size = tbl->entry_size, .ndtc_entries = atomic_read(&tbl->entries), .ndtc_last_flush = jiffies_to_msecs(flush_delta), .ndtc_last_rand = jiffies_to_msecs(rand_delta), .ndtc_proxy_qlen = READ_ONCE(tbl->proxy_queue.qlen), }; rcu_read_lock(); nht = rcu_dereference(tbl->nht); ndc.ndtc_hash_rnd = nht->hash_rnd[0]; ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); rcu_read_unlock(); if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) goto nla_put_failure; } { int cpu; struct ndt_stats ndst; memset(&ndst, 0, sizeof(ndst)); for_each_possible_cpu(cpu) { struct neigh_statistics *st; st = per_cpu_ptr(tbl->stats, cpu); ndst.ndts_allocs += READ_ONCE(st->allocs); ndst.ndts_destroys += READ_ONCE(st->destroys); ndst.ndts_hash_grows += READ_ONCE(st->hash_grows); ndst.ndts_res_failed += READ_ONCE(st->res_failed); ndst.ndts_lookups += READ_ONCE(st->lookups); ndst.ndts_hits += READ_ONCE(st->hits); ndst.ndts_rcv_probes_mcast += READ_ONCE(st->rcv_probes_mcast); ndst.ndts_rcv_probes_ucast += READ_ONCE(st->rcv_probes_ucast); ndst.ndts_periodic_gc_runs += READ_ONCE(st->periodic_gc_runs); ndst.ndts_forced_gc_runs += READ_ONCE(st->forced_gc_runs); ndst.ndts_table_fulls += READ_ONCE(st->table_fulls); } if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, NDTA_PAD)) goto nla_put_failure; } BUG_ON(tbl->parms.dev); if (neightbl_fill_parms(skb, &tbl->parms) < 0) goto nla_put_failure; read_unlock_bh(&tbl->lock); nlmsg_end(skb, nlh); return 0; nla_put_failure: read_unlock_bh(&tbl->lock); nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int neightbl_fill_param_info(struct sk_buff *skb, struct neigh_table *tbl, struct neigh_parms *parms, u32 pid, u32 seq, int type, unsigned int flags) { struct ndtmsg *ndtmsg; struct nlmsghdr *nlh; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); if (nlh == NULL) return -EMSGSIZE; ndtmsg = nlmsg_data(nlh); read_lock_bh(&tbl->lock); ndtmsg->ndtm_family = tbl->family; ndtmsg->ndtm_pad1 = 0; ndtmsg->ndtm_pad2 = 0; if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || neightbl_fill_parms(skb, parms) < 0) goto errout; read_unlock_bh(&tbl->lock); nlmsg_end(skb, nlh); return 0; errout: read_unlock_bh(&tbl->lock); nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { [NDTA_NAME] = { .type = NLA_STRING }, [NDTA_THRESH1] = { .type = NLA_U32 }, [NDTA_THRESH2] = { .type = NLA_U32 }, [NDTA_THRESH3] = { .type = NLA_U32 }, [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, [NDTA_PARMS] = { .type = NLA_NESTED }, }; static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { [NDTPA_IFINDEX] = { .type = NLA_U32 }, [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, [NDTPA_APP_PROBES] = { .type = NLA_U32 }, [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, [NDTPA_LOCKTIME] = { .type = NLA_U64 }, [NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 }, }; static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct neigh_table *tbl; struct ndtmsg *ndtmsg; struct nlattr *tb[NDTA_MAX+1]; bool found = false; int err, tidx; err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, nl_neightbl_policy, extack); if (err < 0) goto errout; if (tb[NDTA_NAME] == NULL) { err = -EINVAL; goto errout; } ndtmsg = nlmsg_data(nlh); for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { tbl = rcu_dereference_rtnl(neigh_tables[tidx]); if (!tbl) continue; if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) continue; if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { found = true; break; } } if (!found) return -ENOENT; /* * We acquire tbl->lock to be nice to the periodic timers and * make sure they always see a consistent set of values. */ write_lock_bh(&tbl->lock); if (tb[NDTA_PARMS]) { struct nlattr *tbp[NDTPA_MAX+1]; struct neigh_parms *p; int i, ifindex = 0; err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, tb[NDTA_PARMS], nl_ntbl_parm_policy, extack); if (err < 0) goto errout_tbl_lock; if (tbp[NDTPA_IFINDEX]) ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); p = lookup_neigh_parms(tbl, net, ifindex); if (p == NULL) { err = -ENOENT; goto errout_tbl_lock; } for (i = 1; i <= NDTPA_MAX; i++) { if (tbp[i] == NULL) continue; switch (i) { case NDTPA_QUEUE_LEN: NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, nla_get_u32(tbp[i]) * SKB_TRUESIZE(ETH_FRAME_LEN)); break; case NDTPA_QUEUE_LENBYTES: NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, nla_get_u32(tbp[i])); break; case NDTPA_PROXY_QLEN: NEIGH_VAR_SET(p, PROXY_QLEN, nla_get_u32(tbp[i])); break; case NDTPA_APP_PROBES: NEIGH_VAR_SET(p, APP_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_UCAST_PROBES: NEIGH_VAR_SET(p, UCAST_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_MCAST_PROBES: NEIGH_VAR_SET(p, MCAST_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_MCAST_REPROBES: NEIGH_VAR_SET(p, MCAST_REPROBES, nla_get_u32(tbp[i])); break; case NDTPA_BASE_REACHABLE_TIME: NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, nla_get_msecs(tbp[i])); /* update reachable_time as well, otherwise, the change will * only be effective after the next time neigh_periodic_work * decides to recompute it (can be multiple minutes) */ p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); break; case NDTPA_GC_STALETIME: NEIGH_VAR_SET(p, GC_STALETIME, nla_get_msecs(tbp[i])); break; case NDTPA_DELAY_PROBE_TIME: NEIGH_VAR_SET(p, DELAY_PROBE_TIME, nla_get_msecs(tbp[i])); call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); break; case NDTPA_INTERVAL_PROBE_TIME_MS: NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS, nla_get_msecs(tbp[i])); break; case NDTPA_RETRANS_TIME: NEIGH_VAR_SET(p, RETRANS_TIME, nla_get_msecs(tbp[i])); break; case NDTPA_ANYCAST_DELAY: NEIGH_VAR_SET(p, ANYCAST_DELAY, nla_get_msecs(tbp[i])); break; case NDTPA_PROXY_DELAY: NEIGH_VAR_SET(p, PROXY_DELAY, nla_get_msecs(tbp[i])); break; case NDTPA_LOCKTIME: NEIGH_VAR_SET(p, LOCKTIME, nla_get_msecs(tbp[i])); break; } } } err = -ENOENT; if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && !net_eq(net, &init_net)) goto errout_tbl_lock; if (tb[NDTA_THRESH1]) WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1])); if (tb[NDTA_THRESH2]) WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2])); if (tb[NDTA_THRESH3]) WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3])); if (tb[NDTA_GC_INTERVAL]) WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL])); err = 0; errout_tbl_lock: write_unlock_bh(&tbl->lock); errout: return err; } static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct ndtmsg *ndtm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); return -EINVAL; } ndtm = nlmsg_data(nlh); if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); return -EINVAL; } if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); return -EINVAL; } return 0; } static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct net *net = sock_net(skb->sk); int family, tidx, nidx = 0; int tbl_skip = cb->args[0]; int neigh_skip = cb->args[1]; struct neigh_table *tbl; if (cb->strict_check) { int err = neightbl_valid_dump_info(nlh, cb->extack); if (err < 0) return err; } family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { struct neigh_parms *p; tbl = rcu_dereference_rtnl(neigh_tables[tidx]); if (!tbl) continue; if (tidx < tbl_skip || (family && tbl->family != family)) continue; if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNEIGHTBL, NLM_F_MULTI) < 0) break; nidx = 0; p = list_next_entry(&tbl->parms, list); list_for_each_entry_from(p, &tbl->parms_list, list) { if (!net_eq(neigh_parms_net(p), net)) continue; if (nidx < neigh_skip) goto next; if (neightbl_fill_param_info(skb, tbl, p, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNEIGHTBL, NLM_F_MULTI) < 0) goto out; next: nidx++; } neigh_skip = 0; } out: cb->args[0] = tidx; cb->args[1] = nidx; return skb->len; } static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, u32 pid, u32 seq, int type, unsigned int flags) { u32 neigh_flags, neigh_flags_ext; unsigned long now = jiffies; struct nda_cacheinfo ci; struct nlmsghdr *nlh; struct ndmsg *ndm; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); if (nlh == NULL) return -EMSGSIZE; neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT; neigh_flags = neigh->flags & NTF_OLD_MASK; ndm = nlmsg_data(nlh); ndm->ndm_family = neigh->ops->family; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = neigh_flags; ndm->ndm_type = neigh->type; ndm->ndm_ifindex = neigh->dev->ifindex; if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) goto nla_put_failure; read_lock_bh(&neigh->lock); ndm->ndm_state = neigh->nud_state; if (neigh->nud_state & NUD_VALID) { char haddr[MAX_ADDR_LEN]; neigh_ha_snapshot(haddr, neigh, neigh->dev); if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { read_unlock_bh(&neigh->lock); goto nla_put_failure; } } ci.ndm_used = jiffies_to_clock_t(now - neigh->used); ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; read_unlock_bh(&neigh->lock); if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) goto nla_put_failure; if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) goto nla_put_failure; if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, u32 pid, u32 seq, int type, unsigned int flags, struct neigh_table *tbl) { u32 neigh_flags, neigh_flags_ext; struct nlmsghdr *nlh; struct ndmsg *ndm; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); if (nlh == NULL) return -EMSGSIZE; neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT; neigh_flags = pn->flags & NTF_OLD_MASK; ndm = nlmsg_data(nlh); ndm->ndm_family = tbl->family; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = neigh_flags | NTF_PROXY; ndm->ndm_type = RTN_UNICAST; ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; ndm->ndm_state = NUD_NONE; if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) goto nla_put_failure; if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) goto nla_put_failure; if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) { call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); } static bool neigh_master_filtered(struct net_device *dev, int master_idx) { struct net_device *master; if (!master_idx) return false; master = dev ? netdev_master_upper_dev_get_rcu(dev) : NULL; /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another * invalid value for ifindex to denote "no master". */ if (master_idx == -1) return !!master; if (!master || master->ifindex != master_idx) return true; return false; } static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) { if (filter_idx && (!dev || dev->ifindex != filter_idx)) return true; return false; } struct neigh_dump_filter { int master_idx; int dev_idx; }; static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, struct netlink_callback *cb, struct neigh_dump_filter *filter) { struct net *net = sock_net(skb->sk); struct neighbour *n; int err = 0, h, s_h = cb->args[1]; int idx, s_idx = idx = cb->args[2]; struct neigh_hash_table *nht; unsigned int flags = NLM_F_MULTI; if (filter->dev_idx || filter->master_idx) flags |= NLM_F_DUMP_FILTERED; nht = rcu_dereference(tbl->nht); for (h = s_h; h < (1 << nht->hash_shift); h++) { if (h > s_h) s_idx = 0; idx = 0; neigh_for_each_in_bucket_rcu(n, &nht->hash_heads[h]) { if (idx < s_idx || !net_eq(dev_net(n->dev), net)) goto next; if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || neigh_master_filtered(n->dev, filter->master_idx)) goto next; err = neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWNEIGH, flags); if (err < 0) goto out; next: idx++; } } out: cb->args[1] = h; cb->args[2] = idx; return err; } static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, struct netlink_callback *cb, struct neigh_dump_filter *filter) { struct pneigh_entry *n; struct net *net = sock_net(skb->sk); int err = 0, h, s_h = cb->args[3]; int idx, s_idx = idx = cb->args[4]; unsigned int flags = NLM_F_MULTI; if (filter->dev_idx || filter->master_idx) flags |= NLM_F_DUMP_FILTERED; read_lock_bh(&tbl->lock); for (h = s_h; h <= PNEIGH_HASHMASK; h++) { if (h > s_h) s_idx = 0; for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { if (idx < s_idx || pneigh_net(n) != net) goto next; if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || neigh_master_filtered(n->dev, filter->master_idx)) goto next; err = pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWNEIGH, flags, tbl); if (err < 0) { read_unlock_bh(&tbl->lock); goto out; } next: idx++; } } read_unlock_bh(&tbl->lock); out: cb->args[3] = h; cb->args[4] = idx; return err; } static int neigh_valid_dump_req(const struct nlmsghdr *nlh, bool strict_check, struct neigh_dump_filter *filter, struct netlink_ext_ack *extack) { struct nlattr *tb[NDA_MAX + 1]; int err, i; if (strict_check) { struct ndmsg *ndm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); return -EINVAL; } ndm = nlmsg_data(nlh); if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || ndm->ndm_state || ndm->ndm_type) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); return -EINVAL; } if (ndm->ndm_flags & ~NTF_PROXY) { NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); } else { err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); } if (err < 0) return err; for (i = 0; i <= NDA_MAX; ++i) { if (!tb[i]) continue; /* all new attributes should require strict_check */ switch (i) { case NDA_IFINDEX: filter->dev_idx = nla_get_u32(tb[i]); break; case NDA_MASTER: filter->master_idx = nla_get_u32(tb[i]); break; default: if (strict_check) { NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); return -EINVAL; } } } return 0; } static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct neigh_dump_filter filter = {}; struct neigh_table *tbl; int t, family, s_t; int proxy = 0; int err; family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; /* check for full ndmsg structure presence, family member is * the same for both structures */ if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) proxy = 1; err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); if (err < 0 && cb->strict_check) return err; err = 0; s_t = cb->args[0]; rcu_read_lock(); for (t = 0; t < NEIGH_NR_TABLES; t++) { tbl = rcu_dereference(neigh_tables[t]); if (!tbl) continue; if (t < s_t || (family && tbl->family != family)) continue; if (t > s_t) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (proxy) err = pneigh_dump_table(tbl, skb, cb, &filter); else err = neigh_dump_table(tbl, skb, cb, &filter); if (err < 0) break; } rcu_read_unlock(); cb->args[0] = t; return err; } static int neigh_valid_get_req(const struct nlmsghdr *nlh, struct neigh_table **tbl, void **dst, int *dev_idx, u8 *ndm_flags, struct netlink_ext_ack *extack) { struct nlattr *tb[NDA_MAX + 1]; struct ndmsg *ndm; int err, i; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); return -EINVAL; } ndm = nlmsg_data(nlh); if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || ndm->ndm_type) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); return -EINVAL; } if (ndm->ndm_flags & ~NTF_PROXY) { NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); if (err < 0) return err; *ndm_flags = ndm->ndm_flags; *dev_idx = ndm->ndm_ifindex; *tbl = neigh_find_table(ndm->ndm_family); if (*tbl == NULL) { NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); return -EAFNOSUPPORT; } for (i = 0; i <= NDA_MAX; ++i) { if (!tb[i]) continue; switch (i) { case NDA_DST: if (nla_len(tb[i]) != (int)(*tbl)->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); return -EINVAL; } *dst = nla_data(tb[i]); break; default: NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); return -EINVAL; } } return 0; } static inline size_t neigh_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ + nla_total_size(sizeof(struct nda_cacheinfo)) + nla_total_size(4) /* NDA_PROBES */ + nla_total_size(4) /* NDA_FLAGS_EXT */ + nla_total_size(1); /* NDA_PROTOCOL */ } static int neigh_get_reply(struct net *net, struct neighbour *neigh, u32 pid, u32 seq) { struct sk_buff *skb; int err = 0; skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); if (!skb) return -ENOBUFS; err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); if (err) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, pid); errout: return err; } static inline size_t pneigh_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ + nla_total_size(4) /* NDA_FLAGS_EXT */ + nla_total_size(1); /* NDA_PROTOCOL */ } static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, u32 pid, u32 seq, struct neigh_table *tbl) { struct sk_buff *skb; int err = 0; skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); if (!skb) return -ENOBUFS; err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); if (err) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, pid); errout: return err; } static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct net_device *dev = NULL; struct neigh_table *tbl = NULL; struct neighbour *neigh; void *dst = NULL; u8 ndm_flags = 0; int dev_idx = 0; int err; err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, extack); if (err < 0) return err; if (dev_idx) { dev = __dev_get_by_index(net, dev_idx); if (!dev) { NL_SET_ERR_MSG(extack, "Unknown device ifindex"); return -ENODEV; } } if (!dst) { NL_SET_ERR_MSG(extack, "Network address not specified"); return -EINVAL; } if (ndm_flags & NTF_PROXY) { struct pneigh_entry *pn; pn = pneigh_lookup(tbl, net, dst, dev, 0); if (!pn) { NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); return -ENOENT; } return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, tbl); } if (!dev) { NL_SET_ERR_MSG(extack, "No device specified"); return -EINVAL; } neigh = neigh_lookup(tbl, dst, dev); if (!neigh) { NL_SET_ERR_MSG(extack, "Neighbour entry not found"); return -ENOENT; } err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq); neigh_release(neigh); return err; } void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) { int chain; struct neigh_hash_table *nht; rcu_read_lock(); nht = rcu_dereference(tbl->nht); read_lock_bh(&tbl->lock); /* avoid resizes */ for (chain = 0; chain < (1 << nht->hash_shift); chain++) { struct neighbour *n; neigh_for_each_in_bucket(n, &nht->hash_heads[chain]) cb(n, cookie); } read_unlock_bh(&tbl->lock); rcu_read_unlock(); } EXPORT_SYMBOL(neigh_for_each); /* The tbl->lock must be held as a writer and BH disabled. */ void __neigh_for_each_release(struct neigh_table *tbl, int (*cb)(struct neighbour *)) { struct neigh_hash_table *nht; int chain; nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); for (chain = 0; chain < (1 << nht->hash_shift); chain++) { struct hlist_node *tmp; struct neighbour *n; neigh_for_each_in_bucket_safe(n, tmp, &nht->hash_heads[chain]) { int release; write_lock(&n->lock); release = cb(n); if (release) { hlist_del_rcu(&n->hash); hlist_del_rcu(&n->dev_list); neigh_mark_dead(n); } write_unlock(&n->lock); if (release) neigh_cleanup_and_release(n); } } } EXPORT_SYMBOL(__neigh_for_each_release); int neigh_xmit(int index, struct net_device *dev, const void *addr, struct sk_buff *skb) { int err = -EAFNOSUPPORT; if (likely(index < NEIGH_NR_TABLES)) { struct neigh_table *tbl; struct neighbour *neigh; rcu_read_lock(); tbl = rcu_dereference(neigh_tables[index]); if (!tbl) goto out_unlock; if (index == NEIGH_ARP_TABLE) { u32 key = *((u32 *)addr); neigh = __ipv4_neigh_lookup_noref(dev, key); } else { neigh = __neigh_lookup_noref(tbl, addr, dev); } if (!neigh) neigh = __neigh_create(tbl, addr, dev, false); err = PTR_ERR(neigh); if (IS_ERR(neigh)) { rcu_read_unlock(); goto out_kfree_skb; } err = READ_ONCE(neigh->output)(neigh, skb); out_unlock: rcu_read_unlock(); } else if (index == NEIGH_LINK_TABLE) { err = dev_hard_header(skb, dev, ntohs(skb->protocol), addr, NULL, skb->len); if (err < 0) goto out_kfree_skb; err = dev_queue_xmit(skb); } out: return err; out_kfree_skb: kfree_skb(skb); goto out; } EXPORT_SYMBOL(neigh_xmit); #ifdef CONFIG_PROC_FS static struct neighbour *neigh_get_valid(struct seq_file *seq, struct neighbour *n, loff_t *pos) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); if (!net_eq(dev_net(n->dev), net)) return NULL; if (state->neigh_sub_iter) { loff_t fakep = 0; void *v; v = state->neigh_sub_iter(state, n, pos ? pos : &fakep); if (!v) return NULL; if (pos) return v; } if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) return n; if (READ_ONCE(n->nud_state) & ~NUD_NOARP) return n; return NULL; } static struct neighbour *neigh_get_first(struct seq_file *seq) { struct neigh_seq_state *state = seq->private; struct neigh_hash_table *nht = state->nht; struct neighbour *n, *tmp; state->flags &= ~NEIGH_SEQ_IS_PNEIGH; while (++state->bucket < (1 << nht->hash_shift)) { neigh_for_each_in_bucket(n, &nht->hash_heads[state->bucket]) { tmp = neigh_get_valid(seq, n, NULL); if (tmp) return tmp; } } return NULL; } static struct neighbour *neigh_get_next(struct seq_file *seq, struct neighbour *n, loff_t *pos) { struct neigh_seq_state *state = seq->private; struct neighbour *tmp; if (state->neigh_sub_iter) { void *v = state->neigh_sub_iter(state, n, pos); if (v) return n; } hlist_for_each_entry_continue(n, hash) { tmp = neigh_get_valid(seq, n, pos); if (tmp) { n = tmp; goto out; } } n = neigh_get_first(seq); out: if (n && pos) --(*pos); return n; } static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) { struct neighbour *n = neigh_get_first(seq); if (n) { --(*pos); while (*pos) { n = neigh_get_next(seq, n, pos); if (!n) break; } } return *pos ? NULL : n; } static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_table *tbl = state->tbl; struct pneigh_entry *pn = NULL; int bucket; state->flags |= NEIGH_SEQ_IS_PNEIGH; for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { pn = tbl->phash_buckets[bucket]; while (pn && !net_eq(pneigh_net(pn), net)) pn = pn->next; if (pn) break; } state->bucket = bucket; return pn; } static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, struct pneigh_entry *pn, loff_t *pos) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_table *tbl = state->tbl; do { pn = pn->next; } while (pn && !net_eq(pneigh_net(pn), net)); while (!pn) { if (++state->bucket > PNEIGH_HASHMASK) break; pn = tbl->phash_buckets[state->bucket]; while (pn && !net_eq(pneigh_net(pn), net)) pn = pn->next; if (pn) break; } if (pn && pos) --(*pos); return pn; } static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) { struct pneigh_entry *pn = pneigh_get_first(seq); if (pn) { --(*pos); while (*pos) { pn = pneigh_get_next(seq, pn, pos); if (!pn) break; } } return *pos ? NULL : pn; } static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) { struct neigh_seq_state *state = seq->private; void *rc; loff_t idxpos = *pos; rc = neigh_get_idx(seq, &idxpos); if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) rc = pneigh_get_idx(seq, &idxpos); return rc; } void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) __acquires(tbl->lock) __acquires(rcu) { struct neigh_seq_state *state = seq->private; state->tbl = tbl; state->bucket = -1; state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); rcu_read_lock(); state->nht = rcu_dereference(tbl->nht); read_lock_bh(&tbl->lock); return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; } EXPORT_SYMBOL(neigh_seq_start); void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct neigh_seq_state *state; void *rc; if (v == SEQ_START_TOKEN) { rc = neigh_get_first(seq); goto out; } state = seq->private; if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { rc = neigh_get_next(seq, v, NULL); if (rc) goto out; if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) rc = pneigh_get_first(seq); } else { BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); rc = pneigh_get_next(seq, v, NULL); } out: ++(*pos); return rc; } EXPORT_SYMBOL(neigh_seq_next); void neigh_seq_stop(struct seq_file *seq, void *v) __releases(tbl->lock) __releases(rcu) { struct neigh_seq_state *state = seq->private; struct neigh_table *tbl = state->tbl; read_unlock_bh(&tbl->lock); rcu_read_unlock(); } EXPORT_SYMBOL(neigh_seq_stop); /* statistics via seq_file */ static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) { struct neigh_table *tbl = pde_data(file_inode(seq->file)); int cpu; if (*pos == 0) return SEQ_START_TOKEN; for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return per_cpu_ptr(tbl->stats, cpu); } return NULL; } static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct neigh_table *tbl = pde_data(file_inode(seq->file)); int cpu; for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return per_cpu_ptr(tbl->stats, cpu); } (*pos)++; return NULL; } static void neigh_stat_seq_stop(struct seq_file *seq, void *v) { } static int neigh_stat_seq_show(struct seq_file *seq, void *v) { struct neigh_table *tbl = pde_data(file_inode(seq->file)); struct neigh_statistics *st = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); return 0; } seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " "%08lx %08lx %08lx " "%08lx %08lx %08lx\n", atomic_read(&tbl->entries), st->allocs, st->destroys, st->hash_grows, st->lookups, st->hits, st->res_failed, st->rcv_probes_mcast, st->rcv_probes_ucast, st->periodic_gc_runs, st->forced_gc_runs, st->unres_discards, st->table_fulls ); return 0; } static const struct seq_operations neigh_stat_seq_ops = { .start = neigh_stat_seq_start, .next = neigh_stat_seq_next, .stop = neigh_stat_seq_stop, .show = neigh_stat_seq_show, }; #endif /* CONFIG_PROC_FS */ static void __neigh_notify(struct neighbour *n, int type, int flags, u32 pid) { struct sk_buff *skb; int err = -ENOBUFS; struct net *net; rcu_read_lock(); net = dev_net_rcu(n->dev); skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); if (skb == NULL) goto errout; err = neigh_fill_info(skb, n, pid, 0, type, flags); if (err < 0) { /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); goto out; errout: rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); out: rcu_read_unlock(); } void neigh_app_ns(struct neighbour *n) { __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); } EXPORT_SYMBOL(neigh_app_ns); #ifdef CONFIG_SYSCTL static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); static int proc_unres_qlen(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int size, ret; struct ctl_table tmp = *ctl; tmp.extra1 = SYSCTL_ZERO; tmp.extra2 = &unres_qlen_max; tmp.data = &size; size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && !ret) *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); return ret; } static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, int index) { struct net_device *dev; int family = neigh_parms_family(p); rcu_read_lock(); for_each_netdev_rcu(net, dev) { struct neigh_parms *dst_p = neigh_get_dev_parms_rcu(dev, family); if (dst_p && !test_bit(index, dst_p->data_state)) dst_p->data[index] = p->data[index]; } rcu_read_unlock(); } static void neigh_proc_update(const struct ctl_table *ctl, int write) { struct net_device *dev = ctl->extra1; struct neigh_parms *p = ctl->extra2; struct net *net = neigh_parms_net(p); int index = (int *) ctl->data - p->data; if (!write) return; set_bit(index, p->data_state); if (index == NEIGH_VAR_DELAY_PROBE_TIME) call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); if (!dev) /* NULL dev means this is default value */ neigh_copy_dflt_parms(net, p, index); } static int neigh_proc_dointvec_zero_intmax(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table tmp = *ctl; int ret; tmp.extra1 = SYSCTL_ZERO; tmp.extra2 = SYSCTL_INT_MAX; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } static int neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table tmp = *ctl; int ret; int min = msecs_to_jiffies(1); tmp.extra1 = &min; tmp.extra2 = NULL; ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec); int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); static int neigh_proc_dointvec_userhz_jiffies(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); static int neigh_proc_dointvec_unres_qlen(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } static int neigh_proc_base_reachable_time(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct neigh_parms *p = ctl->extra2; int ret; if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0) { /* update reachable_time as well, otherwise, the change will * only be effective after the next time neigh_periodic_work * decides to recompute it */ p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); } return ret; } #define NEIGH_PARMS_DATA_OFFSET(index) \ (&((struct neigh_parms *) 0)->data[index]) #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ [NEIGH_VAR_ ## attr] = { \ .procname = name, \ .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ .maxlen = sizeof(int), \ .mode = mval, \ .proc_handler = proc, \ } #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive) #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) static struct neigh_sysctl_table { struct ctl_table_header *sysctl_header; struct ctl_table neigh_vars[NEIGH_VAR_MAX]; } neigh_sysctl_template __read_mostly = { .neigh_vars = { NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS, "interval_probe_time_ms"), NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), [NEIGH_VAR_GC_INTERVAL] = { .procname = "gc_interval", .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, [NEIGH_VAR_GC_THRESH1] = { .procname = "gc_thresh1", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, [NEIGH_VAR_GC_THRESH2] = { .procname = "gc_thresh2", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, [NEIGH_VAR_GC_THRESH3] = { .procname = "gc_thresh3", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, }, }; int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, proc_handler *handler) { int i; struct neigh_sysctl_table *t; const char *dev_name_source; char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; char *p_name; size_t neigh_vars_size; t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT); if (!t) goto err; for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { t->neigh_vars[i].data += (long) p; t->neigh_vars[i].extra1 = dev; t->neigh_vars[i].extra2 = p; } neigh_vars_size = ARRAY_SIZE(t->neigh_vars); if (dev) { dev_name_source = dev->name; /* Terminate the table early */ neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1; } else { struct neigh_table *tbl = p->tbl; dev_name_source = "default"; t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; } if (handler) { /* RetransTime */ t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; /* ReachableTime */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; /* RetransTime (in milliseconds)*/ t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; /* ReachableTime (in milliseconds) */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; } else { /* Those handlers will update p->reachable_time after * base_reachable_time(_ms) is set to ensure the new timer starts being * applied after the next neighbour update instead of waiting for * neigh_periodic_work to update its value (can be multiple minutes) * So any handler that replaces them should do this as well */ /* ReachableTime */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = neigh_proc_base_reachable_time; /* ReachableTime (in milliseconds) */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = neigh_proc_base_reachable_time; } switch (neigh_parms_family(p)) { case AF_INET: p_name = "ipv4"; break; case AF_INET6: p_name = "ipv6"; break; default: BUG(); } snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", p_name, dev_name_source); t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p), neigh_path, t->neigh_vars, neigh_vars_size); if (!t->sysctl_header) goto free; p->sysctl_table = t; return 0; free: kfree(t); err: return -ENOBUFS; } EXPORT_SYMBOL(neigh_sysctl_register); void neigh_sysctl_unregister(struct neigh_parms *p) { if (p->sysctl_table) { struct neigh_sysctl_table *t = p->sysctl_table; p->sysctl_table = NULL; unregister_net_sysctl_table(t->sysctl_header); kfree(t); } } EXPORT_SYMBOL(neigh_sysctl_unregister); #endif /* CONFIG_SYSCTL */ static const struct rtnl_msg_handler neigh_rtnl_msg_handlers[] __initconst = { {.msgtype = RTM_NEWNEIGH, .doit = neigh_add}, {.msgtype = RTM_DELNEIGH, .doit = neigh_delete}, {.msgtype = RTM_GETNEIGH, .doit = neigh_get, .dumpit = neigh_dump_info, .flags = RTNL_FLAG_DUMP_UNLOCKED}, {.msgtype = RTM_GETNEIGHTBL, .dumpit = neightbl_dump_info}, {.msgtype = RTM_SETNEIGHTBL, .doit = neightbl_set}, }; static int __init neigh_init(void) { rtnl_register_many(neigh_rtnl_msg_handlers); return 0; } subsys_initcall(neigh_init); |
10 10 1 1 2 2 4 4 1030 1035 139 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2011, Intel Corporation. * * Description: Data Center Bridging netlink interface * Author: Lucy Liu <lucy.liu@intel.com> */ #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/slab.h> #include <net/netlink.h> #include <net/rtnetlink.h> #include <linux/dcbnl.h> #include <net/dcbevent.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <net/sock.h> /* Data Center Bridging (DCB) is a collection of Ethernet enhancements * intended to allow network traffic with differing requirements * (highly reliable, no drops vs. best effort vs. low latency) to operate * and co-exist on Ethernet. Current DCB features are: * * Enhanced Transmission Selection (aka Priority Grouping [PG]) - provides a * framework for assigning bandwidth guarantees to traffic classes. * * Priority-based Flow Control (PFC) - provides a flow control mechanism which * can work independently for each 802.1p priority. * * Congestion Notification - provides a mechanism for end-to-end congestion * control for protocols which do not have built-in congestion management. * * More information about the emerging standards for these Ethernet features * can be found at: http://www.ieee802.org/1/pages/dcbridges.html * * This file implements an rtnetlink interface to allow configuration of DCB * features for capable devices. */ /**************** DCB attribute policies *************************************/ /* DCB netlink attributes policy */ static const struct nla_policy dcbnl_rtnl_policy[DCB_ATTR_MAX + 1] = { [DCB_ATTR_IFNAME] = {.type = NLA_NUL_STRING, .len = IFNAMSIZ - 1}, [DCB_ATTR_STATE] = {.type = NLA_U8}, [DCB_ATTR_PFC_CFG] = {.type = NLA_NESTED}, [DCB_ATTR_PG_CFG] = {.type = NLA_NESTED}, [DCB_ATTR_SET_ALL] = {.type = NLA_U8}, [DCB_ATTR_PERM_HWADDR] = {.type = NLA_FLAG}, [DCB_ATTR_CAP] = {.type = NLA_NESTED}, [DCB_ATTR_PFC_STATE] = {.type = NLA_U8}, [DCB_ATTR_BCN] = {.type = NLA_NESTED}, [DCB_ATTR_APP] = {.type = NLA_NESTED}, [DCB_ATTR_IEEE] = {.type = NLA_NESTED}, [DCB_ATTR_DCBX] = {.type = NLA_U8}, [DCB_ATTR_FEATCFG] = {.type = NLA_NESTED}, }; /* DCB priority flow control to User Priority nested attributes */ static const struct nla_policy dcbnl_pfc_up_nest[DCB_PFC_UP_ATTR_MAX + 1] = { [DCB_PFC_UP_ATTR_0] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_1] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_2] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_3] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_4] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_5] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_6] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_7] = {.type = NLA_U8}, [DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG}, }; /* DCB priority grouping nested attributes */ static const struct nla_policy dcbnl_pg_nest[DCB_PG_ATTR_MAX + 1] = { [DCB_PG_ATTR_TC_0] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_1] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_2] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_3] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_4] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_5] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_6] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_7] = {.type = NLA_NESTED}, [DCB_PG_ATTR_TC_ALL] = {.type = NLA_NESTED}, [DCB_PG_ATTR_BW_ID_0] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_1] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_2] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_3] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_4] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_5] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_6] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_7] = {.type = NLA_U8}, [DCB_PG_ATTR_BW_ID_ALL] = {.type = NLA_FLAG}, }; /* DCB traffic class nested attributes. */ static const struct nla_policy dcbnl_tc_param_nest[DCB_TC_ATTR_PARAM_MAX + 1] = { [DCB_TC_ATTR_PARAM_PGID] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_UP_MAPPING] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_STRICT_PRIO] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_BW_PCT] = {.type = NLA_U8}, [DCB_TC_ATTR_PARAM_ALL] = {.type = NLA_FLAG}, }; /* DCB capabilities nested attributes. */ static const struct nla_policy dcbnl_cap_nest[DCB_CAP_ATTR_MAX + 1] = { [DCB_CAP_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_CAP_ATTR_PG] = {.type = NLA_U8}, [DCB_CAP_ATTR_PFC] = {.type = NLA_U8}, [DCB_CAP_ATTR_UP2TC] = {.type = NLA_U8}, [DCB_CAP_ATTR_PG_TCS] = {.type = NLA_U8}, [DCB_CAP_ATTR_PFC_TCS] = {.type = NLA_U8}, [DCB_CAP_ATTR_GSP] = {.type = NLA_U8}, [DCB_CAP_ATTR_BCN] = {.type = NLA_U8}, [DCB_CAP_ATTR_DCBX] = {.type = NLA_U8}, }; /* DCB capabilities nested attributes. */ static const struct nla_policy dcbnl_numtcs_nest[DCB_NUMTCS_ATTR_MAX + 1] = { [DCB_NUMTCS_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_NUMTCS_ATTR_PG] = {.type = NLA_U8}, [DCB_NUMTCS_ATTR_PFC] = {.type = NLA_U8}, }; /* DCB BCN nested attributes. */ static const struct nla_policy dcbnl_bcn_nest[DCB_BCN_ATTR_MAX + 1] = { [DCB_BCN_ATTR_RP_0] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_1] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_2] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_3] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_4] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_5] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_6] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_7] = {.type = NLA_U8}, [DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG}, [DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32}, [DCB_BCN_ATTR_BCNA_1] = {.type = NLA_U32}, [DCB_BCN_ATTR_ALPHA] = {.type = NLA_U32}, [DCB_BCN_ATTR_BETA] = {.type = NLA_U32}, [DCB_BCN_ATTR_GD] = {.type = NLA_U32}, [DCB_BCN_ATTR_GI] = {.type = NLA_U32}, [DCB_BCN_ATTR_TMAX] = {.type = NLA_U32}, [DCB_BCN_ATTR_TD] = {.type = NLA_U32}, [DCB_BCN_ATTR_RMIN] = {.type = NLA_U32}, [DCB_BCN_ATTR_W] = {.type = NLA_U32}, [DCB_BCN_ATTR_RD] = {.type = NLA_U32}, [DCB_BCN_ATTR_RU] = {.type = NLA_U32}, [DCB_BCN_ATTR_WRTT] = {.type = NLA_U32}, [DCB_BCN_ATTR_RI] = {.type = NLA_U32}, [DCB_BCN_ATTR_C] = {.type = NLA_U32}, [DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG}, }; /* DCB APP nested attributes. */ static const struct nla_policy dcbnl_app_nest[DCB_APP_ATTR_MAX + 1] = { [DCB_APP_ATTR_IDTYPE] = {.type = NLA_U8}, [DCB_APP_ATTR_ID] = {.type = NLA_U16}, [DCB_APP_ATTR_PRIORITY] = {.type = NLA_U8}, }; /* IEEE 802.1Qaz nested attributes. */ static const struct nla_policy dcbnl_ieee_policy[DCB_ATTR_IEEE_MAX + 1] = { [DCB_ATTR_IEEE_ETS] = {.len = sizeof(struct ieee_ets)}, [DCB_ATTR_IEEE_PFC] = {.len = sizeof(struct ieee_pfc)}, [DCB_ATTR_IEEE_APP_TABLE] = {.type = NLA_NESTED}, [DCB_ATTR_IEEE_MAXRATE] = {.len = sizeof(struct ieee_maxrate)}, [DCB_ATTR_IEEE_QCN] = {.len = sizeof(struct ieee_qcn)}, [DCB_ATTR_IEEE_QCN_STATS] = {.len = sizeof(struct ieee_qcn_stats)}, [DCB_ATTR_DCB_BUFFER] = {.len = sizeof(struct dcbnl_buffer)}, [DCB_ATTR_DCB_APP_TRUST_TABLE] = {.type = NLA_NESTED}, }; /* DCB number of traffic classes nested attributes. */ static const struct nla_policy dcbnl_featcfg_nest[DCB_FEATCFG_ATTR_MAX + 1] = { [DCB_FEATCFG_ATTR_ALL] = {.type = NLA_FLAG}, [DCB_FEATCFG_ATTR_PG] = {.type = NLA_U8}, [DCB_FEATCFG_ATTR_PFC] = {.type = NLA_U8}, [DCB_FEATCFG_ATTR_APP] = {.type = NLA_U8}, }; static LIST_HEAD(dcb_app_list); static LIST_HEAD(dcb_rewr_list); static DEFINE_SPINLOCK(dcb_lock); static enum ieee_attrs_app dcbnl_app_attr_type_get(u8 selector) { switch (selector) { case IEEE_8021QAZ_APP_SEL_ETHERTYPE: case IEEE_8021QAZ_APP_SEL_STREAM: case IEEE_8021QAZ_APP_SEL_DGRAM: case IEEE_8021QAZ_APP_SEL_ANY: case IEEE_8021QAZ_APP_SEL_DSCP: return DCB_ATTR_IEEE_APP; case DCB_APP_SEL_PCP: return DCB_ATTR_DCB_APP; default: return DCB_ATTR_IEEE_APP_UNSPEC; } } static bool dcbnl_app_attr_type_validate(enum ieee_attrs_app type) { switch (type) { case DCB_ATTR_IEEE_APP: case DCB_ATTR_DCB_APP: return true; default: return false; } } static bool dcbnl_app_selector_validate(enum ieee_attrs_app type, u8 selector) { return dcbnl_app_attr_type_get(selector) == type; } static struct sk_buff *dcbnl_newmsg(int type, u8 cmd, u32 port, u32 seq, u32 flags, struct nlmsghdr **nlhp) { struct sk_buff *skb; struct dcbmsg *dcb; struct nlmsghdr *nlh; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return NULL; nlh = nlmsg_put(skb, port, seq, type, sizeof(*dcb), flags); BUG_ON(!nlh); dcb = nlmsg_data(nlh); dcb->dcb_family = AF_UNSPEC; dcb->cmd = cmd; dcb->dcb_pad = 0; if (nlhp) *nlhp = nlh; return skb; } static int dcbnl_getstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { /* if (!tb[DCB_ATTR_STATE] || !netdev->dcbnl_ops->getstate) */ if (!netdev->dcbnl_ops->getstate) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_STATE, netdev->dcbnl_ops->getstate(netdev)); } static int dcbnl_getpfccfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_PFC_UP_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_PFC_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->getpfccfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_PFC_UP_ATTR_MAX, tb[DCB_ATTR_PFC_CFG], dcbnl_pfc_up_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_PFC_CFG); if (!nest) return -EMSGSIZE; if (data[DCB_PFC_UP_ATTR_ALL]) getall = 1; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { if (!getall && !data[i]) continue; netdev->dcbnl_ops->getpfccfg(netdev, i - DCB_PFC_UP_ATTR_0, &value); ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } nla_nest_end(skb, nest); return 0; } static int dcbnl_getperm_hwaddr(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 perm_addr[MAX_ADDR_LEN]; if (!netdev->dcbnl_ops->getpermhwaddr) return -EOPNOTSUPP; memset(perm_addr, 0, sizeof(perm_addr)); netdev->dcbnl_ops->getpermhwaddr(netdev, perm_addr); return nla_put(skb, DCB_ATTR_PERM_HWADDR, sizeof(perm_addr), perm_addr); } static int dcbnl_getcap(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_CAP_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_CAP]) return -EINVAL; if (!netdev->dcbnl_ops->getcap) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_CAP_ATTR_MAX, tb[DCB_ATTR_CAP], dcbnl_cap_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_CAP); if (!nest) return -EMSGSIZE; if (data[DCB_CAP_ATTR_ALL]) getall = 1; for (i = DCB_CAP_ATTR_ALL+1; i <= DCB_CAP_ATTR_MAX; i++) { if (!getall && !data[i]) continue; if (!netdev->dcbnl_ops->getcap(netdev, i, &value)) { ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } } nla_nest_end(skb, nest); return 0; } static int dcbnl_getnumtcs(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_NUMTCS_ATTR_MAX + 1], *nest; u8 value; int ret; int i; int getall = 0; if (!tb[DCB_ATTR_NUMTCS]) return -EINVAL; if (!netdev->dcbnl_ops->getnumtcs) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_NUMTCS_ATTR_MAX, tb[DCB_ATTR_NUMTCS], dcbnl_numtcs_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_NUMTCS); if (!nest) return -EMSGSIZE; if (data[DCB_NUMTCS_ATTR_ALL]) getall = 1; for (i = DCB_NUMTCS_ATTR_ALL+1; i <= DCB_NUMTCS_ATTR_MAX; i++) { if (!getall && !data[i]) continue; ret = netdev->dcbnl_ops->getnumtcs(netdev, i, &value); if (!ret) { ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); return ret; } } else return -EINVAL; } nla_nest_end(skb, nest); return 0; } static int dcbnl_setnumtcs(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_NUMTCS_ATTR_MAX + 1]; int ret; u8 value; int i; if (!tb[DCB_ATTR_NUMTCS]) return -EINVAL; if (!netdev->dcbnl_ops->setnumtcs) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_NUMTCS_ATTR_MAX, tb[DCB_ATTR_NUMTCS], dcbnl_numtcs_nest, NULL); if (ret) return ret; for (i = DCB_NUMTCS_ATTR_ALL+1; i <= DCB_NUMTCS_ATTR_MAX; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); ret = netdev->dcbnl_ops->setnumtcs(netdev, i, value); if (ret) break; } return nla_put_u8(skb, DCB_ATTR_NUMTCS, !!ret); } static int dcbnl_getpfcstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { if (!netdev->dcbnl_ops->getpfcstate) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_PFC_STATE, netdev->dcbnl_ops->getpfcstate(netdev)); } static int dcbnl_setpfcstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!tb[DCB_ATTR_PFC_STATE]) return -EINVAL; if (!netdev->dcbnl_ops->setpfcstate) return -EOPNOTSUPP; value = nla_get_u8(tb[DCB_ATTR_PFC_STATE]); netdev->dcbnl_ops->setpfcstate(netdev, value); return nla_put_u8(skb, DCB_ATTR_PFC_STATE, 0); } static int dcbnl_getapp(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *app_nest; struct nlattr *app_tb[DCB_APP_ATTR_MAX + 1]; u16 id; u8 up, idtype; int ret; if (!tb[DCB_ATTR_APP]) return -EINVAL; ret = nla_parse_nested_deprecated(app_tb, DCB_APP_ATTR_MAX, tb[DCB_ATTR_APP], dcbnl_app_nest, NULL); if (ret) return ret; /* all must be non-null */ if ((!app_tb[DCB_APP_ATTR_IDTYPE]) || (!app_tb[DCB_APP_ATTR_ID])) return -EINVAL; /* either by eth type or by socket number */ idtype = nla_get_u8(app_tb[DCB_APP_ATTR_IDTYPE]); if ((idtype != DCB_APP_IDTYPE_ETHTYPE) && (idtype != DCB_APP_IDTYPE_PORTNUM)) return -EINVAL; id = nla_get_u16(app_tb[DCB_APP_ATTR_ID]); if (netdev->dcbnl_ops->getapp) { ret = netdev->dcbnl_ops->getapp(netdev, idtype, id); if (ret < 0) return ret; else up = ret; } else { struct dcb_app app = { .selector = idtype, .protocol = id, }; up = dcb_getapp(netdev, &app); } app_nest = nla_nest_start_noflag(skb, DCB_ATTR_APP); if (!app_nest) return -EMSGSIZE; ret = nla_put_u8(skb, DCB_APP_ATTR_IDTYPE, idtype); if (ret) goto out_cancel; ret = nla_put_u16(skb, DCB_APP_ATTR_ID, id); if (ret) goto out_cancel; ret = nla_put_u8(skb, DCB_APP_ATTR_PRIORITY, up); if (ret) goto out_cancel; nla_nest_end(skb, app_nest); return 0; out_cancel: nla_nest_cancel(skb, app_nest); return ret; } static int dcbnl_setapp(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { int ret; u16 id; u8 up, idtype; struct nlattr *app_tb[DCB_APP_ATTR_MAX + 1]; if (!tb[DCB_ATTR_APP]) return -EINVAL; ret = nla_parse_nested_deprecated(app_tb, DCB_APP_ATTR_MAX, tb[DCB_ATTR_APP], dcbnl_app_nest, NULL); if (ret) return ret; /* all must be non-null */ if ((!app_tb[DCB_APP_ATTR_IDTYPE]) || (!app_tb[DCB_APP_ATTR_ID]) || (!app_tb[DCB_APP_ATTR_PRIORITY])) return -EINVAL; /* either by eth type or by socket number */ idtype = nla_get_u8(app_tb[DCB_APP_ATTR_IDTYPE]); if ((idtype != DCB_APP_IDTYPE_ETHTYPE) && (idtype != DCB_APP_IDTYPE_PORTNUM)) return -EINVAL; id = nla_get_u16(app_tb[DCB_APP_ATTR_ID]); up = nla_get_u8(app_tb[DCB_APP_ATTR_PRIORITY]); if (netdev->dcbnl_ops->setapp) { ret = netdev->dcbnl_ops->setapp(netdev, idtype, id, up); if (ret < 0) return ret; } else { struct dcb_app app; app.selector = idtype; app.protocol = id; app.priority = up; ret = dcb_setapp(netdev, &app); } ret = nla_put_u8(skb, DCB_ATTR_APP, ret); dcbnl_cee_notify(netdev, RTM_SETDCB, DCB_CMD_SAPP, seq, 0); return ret; } static int __dcbnl_pg_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, struct nlattr **tb, struct sk_buff *skb, int dir) { struct nlattr *pg_nest, *param_nest, *data; struct nlattr *pg_tb[DCB_PG_ATTR_MAX + 1]; struct nlattr *param_tb[DCB_TC_ATTR_PARAM_MAX + 1]; u8 prio, pgid, tc_pct, up_map; int ret; int getall = 0; int i; if (!tb[DCB_ATTR_PG_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->getpgtccfgtx || !netdev->dcbnl_ops->getpgtccfgrx || !netdev->dcbnl_ops->getpgbwgcfgtx || !netdev->dcbnl_ops->getpgbwgcfgrx) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(pg_tb, DCB_PG_ATTR_MAX, tb[DCB_ATTR_PG_CFG], dcbnl_pg_nest, NULL); if (ret) return ret; pg_nest = nla_nest_start_noflag(skb, DCB_ATTR_PG_CFG); if (!pg_nest) return -EMSGSIZE; if (pg_tb[DCB_PG_ATTR_TC_ALL]) getall = 1; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { if (!getall && !pg_tb[i]) continue; if (pg_tb[DCB_PG_ATTR_TC_ALL]) data = pg_tb[DCB_PG_ATTR_TC_ALL]; else data = pg_tb[i]; ret = nla_parse_nested_deprecated(param_tb, DCB_TC_ATTR_PARAM_MAX, data, dcbnl_tc_param_nest, NULL); if (ret) goto err_pg; param_nest = nla_nest_start_noflag(skb, i); if (!param_nest) goto err_pg; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (dir) { /* Rx */ netdev->dcbnl_ops->getpgtccfgrx(netdev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); } else { /* Tx */ netdev->dcbnl_ops->getpgtccfgtx(netdev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); } if (param_tb[DCB_TC_ATTR_PARAM_PGID] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_PGID, pgid); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_UP_MAPPING, up_map); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_STRICT_PRIO, prio); if (ret) goto err_param; } if (param_tb[DCB_TC_ATTR_PARAM_BW_PCT] || param_tb[DCB_TC_ATTR_PARAM_ALL]) { ret = nla_put_u8(skb, DCB_TC_ATTR_PARAM_BW_PCT, tc_pct); if (ret) goto err_param; } nla_nest_end(skb, param_nest); } if (pg_tb[DCB_PG_ATTR_BW_ID_ALL]) getall = 1; else getall = 0; for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { if (!getall && !pg_tb[i]) continue; tc_pct = DCB_ATTR_VALUE_UNDEFINED; if (dir) { /* Rx */ netdev->dcbnl_ops->getpgbwgcfgrx(netdev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); } else { /* Tx */ netdev->dcbnl_ops->getpgbwgcfgtx(netdev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); } ret = nla_put_u8(skb, i, tc_pct); if (ret) goto err_pg; } nla_nest_end(skb, pg_nest); return 0; err_param: nla_nest_cancel(skb, param_nest); err_pg: nla_nest_cancel(skb, pg_nest); return -EMSGSIZE; } static int dcbnl_pgtx_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_getcfg(netdev, nlh, tb, skb, 0); } static int dcbnl_pgrx_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_getcfg(netdev, nlh, tb, skb, 1); } static int dcbnl_setstate(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!tb[DCB_ATTR_STATE]) return -EINVAL; if (!netdev->dcbnl_ops->setstate) return -EOPNOTSUPP; value = nla_get_u8(tb[DCB_ATTR_STATE]); return nla_put_u8(skb, DCB_ATTR_STATE, netdev->dcbnl_ops->setstate(netdev, value)); } static int dcbnl_setpfccfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_PFC_UP_ATTR_MAX + 1]; int i; int ret; u8 value; if (!tb[DCB_ATTR_PFC_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->setpfccfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_PFC_UP_ATTR_MAX, tb[DCB_ATTR_PFC_CFG], dcbnl_pfc_up_nest, NULL); if (ret) return ret; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); netdev->dcbnl_ops->setpfccfg(netdev, data[i]->nla_type - DCB_PFC_UP_ATTR_0, value); } return nla_put_u8(skb, DCB_ATTR_PFC_CFG, 0); } static int dcbnl_setall(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { int ret; if (!tb[DCB_ATTR_SET_ALL]) return -EINVAL; if (!netdev->dcbnl_ops->setall) return -EOPNOTSUPP; ret = nla_put_u8(skb, DCB_ATTR_SET_ALL, netdev->dcbnl_ops->setall(netdev)); dcbnl_cee_notify(netdev, RTM_SETDCB, DCB_CMD_SET_ALL, seq, 0); return ret; } static int __dcbnl_pg_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb, int dir) { struct nlattr *pg_tb[DCB_PG_ATTR_MAX + 1]; struct nlattr *param_tb[DCB_TC_ATTR_PARAM_MAX + 1]; int ret; int i; u8 pgid; u8 up_map; u8 prio; u8 tc_pct; if (!tb[DCB_ATTR_PG_CFG]) return -EINVAL; if (!netdev->dcbnl_ops->setpgtccfgtx || !netdev->dcbnl_ops->setpgtccfgrx || !netdev->dcbnl_ops->setpgbwgcfgtx || !netdev->dcbnl_ops->setpgbwgcfgrx) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(pg_tb, DCB_PG_ATTR_MAX, tb[DCB_ATTR_PG_CFG], dcbnl_pg_nest, NULL); if (ret) return ret; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { if (!pg_tb[i]) continue; ret = nla_parse_nested_deprecated(param_tb, DCB_TC_ATTR_PARAM_MAX, pg_tb[i], dcbnl_tc_param_nest, NULL); if (ret) return ret; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO]) prio = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_STRICT_PRIO]); if (param_tb[DCB_TC_ATTR_PARAM_PGID]) pgid = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_PGID]); if (param_tb[DCB_TC_ATTR_PARAM_BW_PCT]) tc_pct = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_BW_PCT]); if (param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING]) up_map = nla_get_u8(param_tb[DCB_TC_ATTR_PARAM_UP_MAPPING]); /* dir: Tx = 0, Rx = 1 */ if (dir) { /* Rx */ netdev->dcbnl_ops->setpgtccfgrx(netdev, i - DCB_PG_ATTR_TC_0, prio, pgid, tc_pct, up_map); } else { /* Tx */ netdev->dcbnl_ops->setpgtccfgtx(netdev, i - DCB_PG_ATTR_TC_0, prio, pgid, tc_pct, up_map); } } for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { if (!pg_tb[i]) continue; tc_pct = nla_get_u8(pg_tb[i]); /* dir: Tx = 0, Rx = 1 */ if (dir) { /* Rx */ netdev->dcbnl_ops->setpgbwgcfgrx(netdev, i - DCB_PG_ATTR_BW_ID_0, tc_pct); } else { /* Tx */ netdev->dcbnl_ops->setpgbwgcfgtx(netdev, i - DCB_PG_ATTR_BW_ID_0, tc_pct); } } return nla_put_u8(skb, DCB_ATTR_PG_CFG, 0); } static int dcbnl_pgtx_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_setcfg(netdev, nlh, seq, tb, skb, 0); } static int dcbnl_pgrx_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { return __dcbnl_pg_setcfg(netdev, nlh, seq, tb, skb, 1); } static int dcbnl_bcn_getcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *bcn_nest; struct nlattr *bcn_tb[DCB_BCN_ATTR_MAX + 1]; u8 value_byte; u32 value_integer; int ret; bool getall = false; int i; if (!tb[DCB_ATTR_BCN]) return -EINVAL; if (!netdev->dcbnl_ops->getbcnrp || !netdev->dcbnl_ops->getbcncfg) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(bcn_tb, DCB_BCN_ATTR_MAX, tb[DCB_ATTR_BCN], dcbnl_bcn_nest, NULL); if (ret) return ret; bcn_nest = nla_nest_start_noflag(skb, DCB_ATTR_BCN); if (!bcn_nest) return -EMSGSIZE; if (bcn_tb[DCB_BCN_ATTR_ALL]) getall = true; for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { if (!getall && !bcn_tb[i]) continue; netdev->dcbnl_ops->getbcnrp(netdev, i - DCB_BCN_ATTR_RP_0, &value_byte); ret = nla_put_u8(skb, i, value_byte); if (ret) goto err_bcn; } for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { if (!getall && !bcn_tb[i]) continue; netdev->dcbnl_ops->getbcncfg(netdev, i, &value_integer); ret = nla_put_u32(skb, i, value_integer); if (ret) goto err_bcn; } nla_nest_end(skb, bcn_nest); return 0; err_bcn: nla_nest_cancel(skb, bcn_nest); return ret; } static int dcbnl_bcn_setcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_BCN_ATTR_MAX + 1]; int i; int ret; u8 value_byte; u32 value_int; if (!tb[DCB_ATTR_BCN]) return -EINVAL; if (!netdev->dcbnl_ops->setbcncfg || !netdev->dcbnl_ops->setbcnrp) return -EOPNOTSUPP; ret = nla_parse_nested_deprecated(data, DCB_BCN_ATTR_MAX, tb[DCB_ATTR_BCN], dcbnl_bcn_nest, NULL); if (ret) return ret; for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) { if (data[i] == NULL) continue; value_byte = nla_get_u8(data[i]); netdev->dcbnl_ops->setbcnrp(netdev, data[i]->nla_type - DCB_BCN_ATTR_RP_0, value_byte); } for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) { if (data[i] == NULL) continue; value_int = nla_get_u32(data[i]); netdev->dcbnl_ops->setbcncfg(netdev, i, value_int); } return nla_put_u8(skb, DCB_ATTR_BCN, 0); } static int dcbnl_build_peer_app(struct net_device *netdev, struct sk_buff* skb, int app_nested_type, int app_info_type, int app_entry_type) { struct dcb_peer_app_info info; struct dcb_app *table = NULL; const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; u16 app_count; int err; /** * retrieve the peer app configuration form the driver. If the driver * handlers fail exit without doing anything */ err = ops->peer_getappinfo(netdev, &info, &app_count); if (!err && app_count) { table = kmalloc_array(app_count, sizeof(struct dcb_app), GFP_KERNEL); if (!table) return -ENOMEM; err = ops->peer_getapptable(netdev, table); } if (!err) { u16 i; struct nlattr *app; /** * build the message, from here on the only possible failure * is due to the skb size */ err = -EMSGSIZE; app = nla_nest_start_noflag(skb, app_nested_type); if (!app) goto nla_put_failure; if (app_info_type && nla_put(skb, app_info_type, sizeof(info), &info)) goto nla_put_failure; for (i = 0; i < app_count; i++) { if (nla_put(skb, app_entry_type, sizeof(struct dcb_app), &table[i])) goto nla_put_failure; } nla_nest_end(skb, app); } err = 0; nla_put_failure: kfree(table); return err; } static int dcbnl_getapptrust(struct net_device *netdev, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; enum ieee_attrs_app type; struct nlattr *apptrust; int nselectors, err, i; u8 *selectors; selectors = kzalloc(IEEE_8021QAZ_APP_SEL_MAX + 1, GFP_KERNEL); if (!selectors) return -ENOMEM; err = ops->dcbnl_getapptrust(netdev, selectors, &nselectors); if (err) { err = 0; goto out; } apptrust = nla_nest_start(skb, DCB_ATTR_DCB_APP_TRUST_TABLE); if (!apptrust) { err = -EMSGSIZE; goto out; } for (i = 0; i < nselectors; i++) { type = dcbnl_app_attr_type_get(selectors[i]); err = nla_put_u8(skb, type, selectors[i]); if (err) { nla_nest_cancel(skb, apptrust); goto out; } } nla_nest_end(skb, apptrust); out: kfree(selectors); return err; } /* Set or delete APP table or rewrite table entries. The APP struct is validated * and the appropriate callback function is called. */ static int dcbnl_app_table_setdel(struct nlattr *attr, struct net_device *netdev, int (*setdel)(struct net_device *dev, struct dcb_app *app)) { struct dcb_app *app_data; enum ieee_attrs_app type; struct nlattr *attr_itr; int rem, err; nla_for_each_nested(attr_itr, attr, rem) { type = nla_type(attr_itr); if (!dcbnl_app_attr_type_validate(type)) continue; if (nla_len(attr_itr) < sizeof(struct dcb_app)) return -ERANGE; app_data = nla_data(attr_itr); if (!dcbnl_app_selector_validate(type, app_data->selector)) return -EINVAL; err = setdel(netdev, app_data); if (err) return err; } return 0; } /* Handle IEEE 802.1Qaz/802.1Qau/802.1Qbb GET commands. */ static int dcbnl_ieee_fill(struct sk_buff *skb, struct net_device *netdev) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee, *app, *rewr; struct dcb_app_type *itr; int dcbx; int err; if (nla_put_string(skb, DCB_ATTR_IFNAME, netdev->name)) return -EMSGSIZE; ieee = nla_nest_start_noflag(skb, DCB_ATTR_IEEE); if (!ieee) return -EMSGSIZE; if (ops->ieee_getets) { struct ieee_ets ets; memset(&ets, 0, sizeof(ets)); err = ops->ieee_getets(netdev, &ets); if (!err && nla_put(skb, DCB_ATTR_IEEE_ETS, sizeof(ets), &ets)) return -EMSGSIZE; } if (ops->ieee_getmaxrate) { struct ieee_maxrate maxrate; memset(&maxrate, 0, sizeof(maxrate)); err = ops->ieee_getmaxrate(netdev, &maxrate); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_MAXRATE, sizeof(maxrate), &maxrate); if (err) return -EMSGSIZE; } } if (ops->ieee_getqcn) { struct ieee_qcn qcn; memset(&qcn, 0, sizeof(qcn)); err = ops->ieee_getqcn(netdev, &qcn); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_QCN, sizeof(qcn), &qcn); if (err) return -EMSGSIZE; } } if (ops->ieee_getqcnstats) { struct ieee_qcn_stats qcn_stats; memset(&qcn_stats, 0, sizeof(qcn_stats)); err = ops->ieee_getqcnstats(netdev, &qcn_stats); if (!err) { err = nla_put(skb, DCB_ATTR_IEEE_QCN_STATS, sizeof(qcn_stats), &qcn_stats); if (err) return -EMSGSIZE; } } if (ops->ieee_getpfc) { struct ieee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->ieee_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_IEEE_PFC, sizeof(pfc), &pfc)) return -EMSGSIZE; } if (ops->dcbnl_getbuffer) { struct dcbnl_buffer buffer; memset(&buffer, 0, sizeof(buffer)); err = ops->dcbnl_getbuffer(netdev, &buffer); if (!err && nla_put(skb, DCB_ATTR_DCB_BUFFER, sizeof(buffer), &buffer)) return -EMSGSIZE; } app = nla_nest_start_noflag(skb, DCB_ATTR_IEEE_APP_TABLE); if (!app) return -EMSGSIZE; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == netdev->ifindex) { enum ieee_attrs_app type = dcbnl_app_attr_type_get(itr->app.selector); err = nla_put(skb, type, sizeof(itr->app), &itr->app); if (err) { spin_unlock_bh(&dcb_lock); return -EMSGSIZE; } } } if (netdev->dcbnl_ops->getdcbx) dcbx = netdev->dcbnl_ops->getdcbx(netdev); else dcbx = -EOPNOTSUPP; spin_unlock_bh(&dcb_lock); nla_nest_end(skb, app); rewr = nla_nest_start(skb, DCB_ATTR_DCB_REWR_TABLE); if (!rewr) return -EMSGSIZE; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == netdev->ifindex) { enum ieee_attrs_app type = dcbnl_app_attr_type_get(itr->app.selector); err = nla_put(skb, type, sizeof(itr->app), &itr->app); if (err) { spin_unlock_bh(&dcb_lock); nla_nest_cancel(skb, rewr); return -EMSGSIZE; } } } spin_unlock_bh(&dcb_lock); nla_nest_end(skb, rewr); if (ops->dcbnl_getapptrust) { err = dcbnl_getapptrust(netdev, skb); if (err) return err; } /* get peer info if available */ if (ops->ieee_peer_getets) { struct ieee_ets ets; memset(&ets, 0, sizeof(ets)); err = ops->ieee_peer_getets(netdev, &ets); if (!err && nla_put(skb, DCB_ATTR_IEEE_PEER_ETS, sizeof(ets), &ets)) return -EMSGSIZE; } if (ops->ieee_peer_getpfc) { struct ieee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->ieee_peer_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_IEEE_PEER_PFC, sizeof(pfc), &pfc)) return -EMSGSIZE; } if (ops->peer_getappinfo && ops->peer_getapptable) { err = dcbnl_build_peer_app(netdev, skb, DCB_ATTR_IEEE_PEER_APP, DCB_ATTR_IEEE_APP_UNSPEC, DCB_ATTR_IEEE_APP); if (err) return -EMSGSIZE; } nla_nest_end(skb, ieee); if (dcbx >= 0) { err = nla_put_u8(skb, DCB_ATTR_DCBX, dcbx); if (err) return -EMSGSIZE; } return 0; } static int dcbnl_cee_pg_fill(struct sk_buff *skb, struct net_device *dev, int dir) { u8 pgid, up_map, prio, tc_pct; const struct dcbnl_rtnl_ops *ops = dev->dcbnl_ops; int i = dir ? DCB_ATTR_CEE_TX_PG : DCB_ATTR_CEE_RX_PG; struct nlattr *pg = nla_nest_start_noflag(skb, i); if (!pg) return -EMSGSIZE; for (i = DCB_PG_ATTR_TC_0; i <= DCB_PG_ATTR_TC_7; i++) { struct nlattr *tc_nest = nla_nest_start_noflag(skb, i); if (!tc_nest) return -EMSGSIZE; pgid = DCB_ATTR_VALUE_UNDEFINED; prio = DCB_ATTR_VALUE_UNDEFINED; tc_pct = DCB_ATTR_VALUE_UNDEFINED; up_map = DCB_ATTR_VALUE_UNDEFINED; if (!dir) ops->getpgtccfgrx(dev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); else ops->getpgtccfgtx(dev, i - DCB_PG_ATTR_TC_0, &prio, &pgid, &tc_pct, &up_map); if (nla_put_u8(skb, DCB_TC_ATTR_PARAM_PGID, pgid) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_UP_MAPPING, up_map) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_STRICT_PRIO, prio) || nla_put_u8(skb, DCB_TC_ATTR_PARAM_BW_PCT, tc_pct)) return -EMSGSIZE; nla_nest_end(skb, tc_nest); } for (i = DCB_PG_ATTR_BW_ID_0; i <= DCB_PG_ATTR_BW_ID_7; i++) { tc_pct = DCB_ATTR_VALUE_UNDEFINED; if (!dir) ops->getpgbwgcfgrx(dev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); else ops->getpgbwgcfgtx(dev, i - DCB_PG_ATTR_BW_ID_0, &tc_pct); if (nla_put_u8(skb, i, tc_pct)) return -EMSGSIZE; } nla_nest_end(skb, pg); return 0; } static int dcbnl_cee_fill(struct sk_buff *skb, struct net_device *netdev) { struct nlattr *cee, *app; struct dcb_app_type *itr; const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; int dcbx, i, err = -EMSGSIZE; u8 value; if (nla_put_string(skb, DCB_ATTR_IFNAME, netdev->name)) goto nla_put_failure; cee = nla_nest_start_noflag(skb, DCB_ATTR_CEE); if (!cee) goto nla_put_failure; /* local pg */ if (ops->getpgtccfgtx && ops->getpgbwgcfgtx) { err = dcbnl_cee_pg_fill(skb, netdev, 1); if (err) goto nla_put_failure; } if (ops->getpgtccfgrx && ops->getpgbwgcfgrx) { err = dcbnl_cee_pg_fill(skb, netdev, 0); if (err) goto nla_put_failure; } /* local pfc */ if (ops->getpfccfg) { struct nlattr *pfc_nest = nla_nest_start_noflag(skb, DCB_ATTR_CEE_PFC); if (!pfc_nest) goto nla_put_failure; for (i = DCB_PFC_UP_ATTR_0; i <= DCB_PFC_UP_ATTR_7; i++) { ops->getpfccfg(netdev, i - DCB_PFC_UP_ATTR_0, &value); if (nla_put_u8(skb, i, value)) goto nla_put_failure; } nla_nest_end(skb, pfc_nest); } /* local app */ spin_lock_bh(&dcb_lock); app = nla_nest_start_noflag(skb, DCB_ATTR_CEE_APP_TABLE); if (!app) goto dcb_unlock; list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == netdev->ifindex) { struct nlattr *app_nest = nla_nest_start_noflag(skb, DCB_ATTR_APP); if (!app_nest) goto dcb_unlock; err = nla_put_u8(skb, DCB_APP_ATTR_IDTYPE, itr->app.selector); if (err) goto dcb_unlock; err = nla_put_u16(skb, DCB_APP_ATTR_ID, itr->app.protocol); if (err) goto dcb_unlock; err = nla_put_u8(skb, DCB_APP_ATTR_PRIORITY, itr->app.priority); if (err) goto dcb_unlock; nla_nest_end(skb, app_nest); } } nla_nest_end(skb, app); if (netdev->dcbnl_ops->getdcbx) dcbx = netdev->dcbnl_ops->getdcbx(netdev); else dcbx = -EOPNOTSUPP; spin_unlock_bh(&dcb_lock); /* features flags */ if (ops->getfeatcfg) { struct nlattr *feat = nla_nest_start_noflag(skb, DCB_ATTR_CEE_FEAT); if (!feat) goto nla_put_failure; for (i = DCB_FEATCFG_ATTR_ALL + 1; i <= DCB_FEATCFG_ATTR_MAX; i++) if (!ops->getfeatcfg(netdev, i, &value) && nla_put_u8(skb, i, value)) goto nla_put_failure; nla_nest_end(skb, feat); } /* peer info if available */ if (ops->cee_peer_getpg) { struct cee_pg pg; memset(&pg, 0, sizeof(pg)); err = ops->cee_peer_getpg(netdev, &pg); if (!err && nla_put(skb, DCB_ATTR_CEE_PEER_PG, sizeof(pg), &pg)) goto nla_put_failure; } if (ops->cee_peer_getpfc) { struct cee_pfc pfc; memset(&pfc, 0, sizeof(pfc)); err = ops->cee_peer_getpfc(netdev, &pfc); if (!err && nla_put(skb, DCB_ATTR_CEE_PEER_PFC, sizeof(pfc), &pfc)) goto nla_put_failure; } if (ops->peer_getappinfo && ops->peer_getapptable) { err = dcbnl_build_peer_app(netdev, skb, DCB_ATTR_CEE_PEER_APP_TABLE, DCB_ATTR_CEE_PEER_APP_INFO, DCB_ATTR_CEE_PEER_APP); if (err) goto nla_put_failure; } nla_nest_end(skb, cee); /* DCBX state */ if (dcbx >= 0) { err = nla_put_u8(skb, DCB_ATTR_DCBX, dcbx); if (err) goto nla_put_failure; } return 0; dcb_unlock: spin_unlock_bh(&dcb_lock); nla_put_failure: err = -EMSGSIZE; return err; } static int dcbnl_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid, int dcbx_ver) { struct net *net = dev_net(dev); struct sk_buff *skb; struct nlmsghdr *nlh; const struct dcbnl_rtnl_ops *ops = dev->dcbnl_ops; int err; if (!ops) return -EOPNOTSUPP; skb = dcbnl_newmsg(event, cmd, portid, seq, 0, &nlh); if (!skb) return -ENOMEM; if (dcbx_ver == DCB_CAP_DCBX_VER_IEEE) err = dcbnl_ieee_fill(skb, dev); else err = dcbnl_cee_fill(skb, dev); if (err < 0) { /* Report error to broadcast listeners */ nlmsg_free(skb); rtnl_set_sk_err(net, RTNLGRP_DCB, err); } else { /* End nlmsg and notify broadcast listeners */ nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_DCB, NULL, GFP_KERNEL); } return err; } int dcbnl_ieee_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid) { return dcbnl_notify(dev, event, cmd, seq, portid, DCB_CAP_DCBX_VER_IEEE); } EXPORT_SYMBOL(dcbnl_ieee_notify); int dcbnl_cee_notify(struct net_device *dev, int event, int cmd, u32 seq, u32 portid) { return dcbnl_notify(dev, event, cmd, seq, portid, DCB_CAP_DCBX_VER_CEE); } EXPORT_SYMBOL(dcbnl_cee_notify); /* Handle IEEE 802.1Qaz/802.1Qau/802.1Qbb SET commands. * If any requested operation can not be completed * the entire msg is aborted and error value is returned. * No attempt is made to reconcile the case where only part of the * cmd can be completed. */ static int dcbnl_ieee_set(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee[DCB_ATTR_IEEE_MAX + 1]; int prio; int err; if (!ops) return -EOPNOTSUPP; if (!tb[DCB_ATTR_IEEE]) return -EINVAL; err = nla_parse_nested_deprecated(ieee, DCB_ATTR_IEEE_MAX, tb[DCB_ATTR_IEEE], dcbnl_ieee_policy, NULL); if (err) return err; if (ieee[DCB_ATTR_IEEE_ETS] && ops->ieee_setets) { struct ieee_ets *ets = nla_data(ieee[DCB_ATTR_IEEE_ETS]); err = ops->ieee_setets(netdev, ets); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_MAXRATE] && ops->ieee_setmaxrate) { struct ieee_maxrate *maxrate = nla_data(ieee[DCB_ATTR_IEEE_MAXRATE]); err = ops->ieee_setmaxrate(netdev, maxrate); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_QCN] && ops->ieee_setqcn) { struct ieee_qcn *qcn = nla_data(ieee[DCB_ATTR_IEEE_QCN]); err = ops->ieee_setqcn(netdev, qcn); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_PFC] && ops->ieee_setpfc) { struct ieee_pfc *pfc = nla_data(ieee[DCB_ATTR_IEEE_PFC]); err = ops->ieee_setpfc(netdev, pfc); if (err) goto err; } if (ieee[DCB_ATTR_DCB_BUFFER] && ops->dcbnl_setbuffer) { struct dcbnl_buffer *buffer = nla_data(ieee[DCB_ATTR_DCB_BUFFER]); for (prio = 0; prio < ARRAY_SIZE(buffer->prio2buffer); prio++) { if (buffer->prio2buffer[prio] >= DCBX_MAX_BUFFERS) { err = -EINVAL; goto err; } } err = ops->dcbnl_setbuffer(netdev, buffer); if (err) goto err; } if (ieee[DCB_ATTR_DCB_REWR_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_DCB_REWR_TABLE], netdev, ops->dcbnl_setrewr ?: dcb_setrewr); if (err) goto err; } if (ieee[DCB_ATTR_IEEE_APP_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_IEEE_APP_TABLE], netdev, ops->ieee_setapp ?: dcb_ieee_setapp); if (err) goto err; } if (ieee[DCB_ATTR_DCB_APP_TRUST_TABLE]) { u8 selectors[IEEE_8021QAZ_APP_SEL_MAX + 1] = {0}; struct nlattr *attr; int nselectors = 0; int rem; if (!ops->dcbnl_setapptrust) { err = -EOPNOTSUPP; goto err; } nla_for_each_nested(attr, ieee[DCB_ATTR_DCB_APP_TRUST_TABLE], rem) { enum ieee_attrs_app type = nla_type(attr); u8 selector; int i; if (!dcbnl_app_attr_type_validate(type) || nla_len(attr) != 1 || nselectors >= sizeof(selectors)) { err = -EINVAL; goto err; } selector = nla_get_u8(attr); if (!dcbnl_app_selector_validate(type, selector)) { err = -EINVAL; goto err; } /* Duplicate selector ? */ for (i = 0; i < nselectors; i++) { if (selectors[i] == selector) { err = -EINVAL; goto err; } } selectors[nselectors++] = selector; } err = ops->dcbnl_setapptrust(netdev, selectors, nselectors); if (err) goto err; } err: err = nla_put_u8(skb, DCB_ATTR_IEEE, err); dcbnl_ieee_notify(netdev, RTM_SETDCB, DCB_CMD_IEEE_SET, seq, 0); return err; } static int dcbnl_ieee_get(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; if (!ops) return -EOPNOTSUPP; return dcbnl_ieee_fill(skb, netdev); } static int dcbnl_ieee_del(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; struct nlattr *ieee[DCB_ATTR_IEEE_MAX + 1]; int err; if (!ops) return -EOPNOTSUPP; if (!tb[DCB_ATTR_IEEE]) return -EINVAL; err = nla_parse_nested_deprecated(ieee, DCB_ATTR_IEEE_MAX, tb[DCB_ATTR_IEEE], dcbnl_ieee_policy, NULL); if (err) return err; if (ieee[DCB_ATTR_IEEE_APP_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_IEEE_APP_TABLE], netdev, ops->ieee_delapp ?: dcb_ieee_delapp); if (err) goto err; } if (ieee[DCB_ATTR_DCB_REWR_TABLE]) { err = dcbnl_app_table_setdel(ieee[DCB_ATTR_DCB_REWR_TABLE], netdev, ops->dcbnl_delrewr ?: dcb_delrewr); if (err) goto err; } err: err = nla_put_u8(skb, DCB_ATTR_IEEE, err); dcbnl_ieee_notify(netdev, RTM_SETDCB, DCB_CMD_IEEE_DEL, seq, 0); return err; } /* DCBX configuration */ static int dcbnl_getdcbx(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { if (!netdev->dcbnl_ops->getdcbx) return -EOPNOTSUPP; return nla_put_u8(skb, DCB_ATTR_DCBX, netdev->dcbnl_ops->getdcbx(netdev)); } static int dcbnl_setdcbx(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { u8 value; if (!netdev->dcbnl_ops->setdcbx) return -EOPNOTSUPP; if (!tb[DCB_ATTR_DCBX]) return -EINVAL; value = nla_get_u8(tb[DCB_ATTR_DCBX]); return nla_put_u8(skb, DCB_ATTR_DCBX, netdev->dcbnl_ops->setdcbx(netdev, value)); } static int dcbnl_getfeatcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_FEATCFG_ATTR_MAX + 1], *nest; u8 value; int ret, i; int getall = 0; if (!netdev->dcbnl_ops->getfeatcfg) return -EOPNOTSUPP; if (!tb[DCB_ATTR_FEATCFG]) return -EINVAL; ret = nla_parse_nested_deprecated(data, DCB_FEATCFG_ATTR_MAX, tb[DCB_ATTR_FEATCFG], dcbnl_featcfg_nest, NULL); if (ret) return ret; nest = nla_nest_start_noflag(skb, DCB_ATTR_FEATCFG); if (!nest) return -EMSGSIZE; if (data[DCB_FEATCFG_ATTR_ALL]) getall = 1; for (i = DCB_FEATCFG_ATTR_ALL+1; i <= DCB_FEATCFG_ATTR_MAX; i++) { if (!getall && !data[i]) continue; ret = netdev->dcbnl_ops->getfeatcfg(netdev, i, &value); if (!ret) ret = nla_put_u8(skb, i, value); if (ret) { nla_nest_cancel(skb, nest); goto nla_put_failure; } } nla_nest_end(skb, nest); nla_put_failure: return ret; } static int dcbnl_setfeatcfg(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { struct nlattr *data[DCB_FEATCFG_ATTR_MAX + 1]; int ret, i; u8 value; if (!netdev->dcbnl_ops->setfeatcfg) return -ENOTSUPP; if (!tb[DCB_ATTR_FEATCFG]) return -EINVAL; ret = nla_parse_nested_deprecated(data, DCB_FEATCFG_ATTR_MAX, tb[DCB_ATTR_FEATCFG], dcbnl_featcfg_nest, NULL); if (ret) goto err; for (i = DCB_FEATCFG_ATTR_ALL+1; i <= DCB_FEATCFG_ATTR_MAX; i++) { if (data[i] == NULL) continue; value = nla_get_u8(data[i]); ret = netdev->dcbnl_ops->setfeatcfg(netdev, i, value); if (ret) goto err; } err: ret = nla_put_u8(skb, DCB_ATTR_FEATCFG, ret); return ret; } /* Handle CEE DCBX GET commands. */ static int dcbnl_cee_get(struct net_device *netdev, struct nlmsghdr *nlh, u32 seq, struct nlattr **tb, struct sk_buff *skb) { const struct dcbnl_rtnl_ops *ops = netdev->dcbnl_ops; if (!ops) return -EOPNOTSUPP; return dcbnl_cee_fill(skb, netdev); } struct reply_func { /* reply netlink message type */ int type; /* function to fill message contents */ int (*cb)(struct net_device *, struct nlmsghdr *, u32, struct nlattr **, struct sk_buff *); }; static const struct reply_func reply_funcs[DCB_CMD_MAX+1] = { [DCB_CMD_GSTATE] = { RTM_GETDCB, dcbnl_getstate }, [DCB_CMD_SSTATE] = { RTM_SETDCB, dcbnl_setstate }, [DCB_CMD_PFC_GCFG] = { RTM_GETDCB, dcbnl_getpfccfg }, [DCB_CMD_PFC_SCFG] = { RTM_SETDCB, dcbnl_setpfccfg }, [DCB_CMD_GPERM_HWADDR] = { RTM_GETDCB, dcbnl_getperm_hwaddr }, [DCB_CMD_GCAP] = { RTM_GETDCB, dcbnl_getcap }, [DCB_CMD_GNUMTCS] = { RTM_GETDCB, dcbnl_getnumtcs }, [DCB_CMD_SNUMTCS] = { RTM_SETDCB, dcbnl_setnumtcs }, [DCB_CMD_PFC_GSTATE] = { RTM_GETDCB, dcbnl_getpfcstate }, [DCB_CMD_PFC_SSTATE] = { RTM_SETDCB, dcbnl_setpfcstate }, [DCB_CMD_GAPP] = { RTM_GETDCB, dcbnl_getapp }, [DCB_CMD_SAPP] = { RTM_SETDCB, dcbnl_setapp }, [DCB_CMD_PGTX_GCFG] = { RTM_GETDCB, dcbnl_pgtx_getcfg }, [DCB_CMD_PGTX_SCFG] = { RTM_SETDCB, dcbnl_pgtx_setcfg }, [DCB_CMD_PGRX_GCFG] = { RTM_GETDCB, dcbnl_pgrx_getcfg }, [DCB_CMD_PGRX_SCFG] = { RTM_SETDCB, dcbnl_pgrx_setcfg }, [DCB_CMD_SET_ALL] = { RTM_SETDCB, dcbnl_setall }, [DCB_CMD_BCN_GCFG] = { RTM_GETDCB, dcbnl_bcn_getcfg }, [DCB_CMD_BCN_SCFG] = { RTM_SETDCB, dcbnl_bcn_setcfg }, [DCB_CMD_IEEE_GET] = { RTM_GETDCB, dcbnl_ieee_get }, [DCB_CMD_IEEE_SET] = { RTM_SETDCB, dcbnl_ieee_set }, [DCB_CMD_IEEE_DEL] = { RTM_SETDCB, dcbnl_ieee_del }, [DCB_CMD_GDCBX] = { RTM_GETDCB, dcbnl_getdcbx }, [DCB_CMD_SDCBX] = { RTM_SETDCB, dcbnl_setdcbx }, [DCB_CMD_GFEATCFG] = { RTM_GETDCB, dcbnl_getfeatcfg }, [DCB_CMD_SFEATCFG] = { RTM_SETDCB, dcbnl_setfeatcfg }, [DCB_CMD_CEE_GET] = { RTM_GETDCB, dcbnl_cee_get }, }; static int dcb_doit(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct net_device *netdev; struct dcbmsg *dcb = nlmsg_data(nlh); struct nlattr *tb[DCB_ATTR_MAX + 1]; u32 portid = NETLINK_CB(skb).portid; int ret = -EINVAL; struct sk_buff *reply_skb; struct nlmsghdr *reply_nlh = NULL; const struct reply_func *fn; if ((nlh->nlmsg_type == RTM_SETDCB) && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; ret = nlmsg_parse_deprecated(nlh, sizeof(*dcb), tb, DCB_ATTR_MAX, dcbnl_rtnl_policy, extack); if (ret < 0) return ret; if (dcb->cmd > DCB_CMD_MAX) return -EINVAL; /* check if a reply function has been defined for the command */ fn = &reply_funcs[dcb->cmd]; if (!fn->cb) return -EOPNOTSUPP; if (fn->type == RTM_SETDCB && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; if (!tb[DCB_ATTR_IFNAME]) return -EINVAL; netdev = __dev_get_by_name(net, nla_data(tb[DCB_ATTR_IFNAME])); if (!netdev) return -ENODEV; if (!netdev->dcbnl_ops) return -EOPNOTSUPP; reply_skb = dcbnl_newmsg(fn->type, dcb->cmd, portid, nlh->nlmsg_seq, nlh->nlmsg_flags, &reply_nlh); if (!reply_skb) return -ENOMEM; ret = fn->cb(netdev, nlh, nlh->nlmsg_seq, tb, reply_skb); if (ret < 0) { nlmsg_free(reply_skb); goto out; } nlmsg_end(reply_skb, reply_nlh); ret = rtnl_unicast(reply_skb, net, portid); out: return ret; } static struct dcb_app_type *dcb_rewr_lookup(const struct dcb_app *app, int ifindex, int proto) { struct dcb_app_type *itr; list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->app.selector == app->selector && itr->app.priority == app->priority && itr->ifindex == ifindex && ((proto == -1) || itr->app.protocol == proto)) return itr; } return NULL; } static struct dcb_app_type *dcb_app_lookup(const struct dcb_app *app, int ifindex, int prio) { struct dcb_app_type *itr; list_for_each_entry(itr, &dcb_app_list, list) { if (itr->app.selector == app->selector && itr->app.protocol == app->protocol && itr->ifindex == ifindex && ((prio == -1) || itr->app.priority == prio)) return itr; } return NULL; } static int dcb_app_add(struct list_head *list, const struct dcb_app *app, int ifindex) { struct dcb_app_type *entry; entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return -ENOMEM; memcpy(&entry->app, app, sizeof(*app)); entry->ifindex = ifindex; list_add(&entry->list, list); return 0; } /** * dcb_getapp - retrieve the DCBX application user priority * @dev: network interface * @app: application to get user priority of * * On success returns a non-zero 802.1p user priority bitmap * otherwise returns 0 as the invalid user priority bitmap to * indicate an error. */ u8 dcb_getapp(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u8 prio = 0; spin_lock_bh(&dcb_lock); itr = dcb_app_lookup(app, dev->ifindex, -1); if (itr) prio = itr->app.priority; spin_unlock_bh(&dcb_lock); return prio; } EXPORT_SYMBOL(dcb_getapp); /** * dcb_setapp - add CEE dcb application data to app list * @dev: network interface * @new: application data to add * * Priority 0 is an invalid priority in CEE spec. This routine * removes applications from the app list if the priority is * set to zero. Priority is expected to be 8-bit 802.1p user priority bitmap */ int dcb_setapp(struct net_device *dev, struct dcb_app *new) { struct dcb_app_type *itr; struct dcb_app_type event; int err = 0; event.ifindex = dev->ifindex; memcpy(&event.app, new, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and replace */ itr = dcb_app_lookup(new, dev->ifindex, -1); if (itr) { if (new->priority) itr->app.priority = new->priority; else { list_del(&itr->list); kfree(itr); } goto out; } /* App type does not exist add new application type */ if (new->priority) err = dcb_app_add(&dcb_app_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_setapp); /** * dcb_ieee_getapp_mask - retrieve the IEEE DCB application priority * @dev: network interface * @app: where to store the retrieve application data * * Helper routine which on success returns a non-zero 802.1Qaz user * priority bitmap otherwise returns 0 to indicate the dcb_app was * not found in APP list. */ u8 dcb_ieee_getapp_mask(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u8 prio = 0; spin_lock_bh(&dcb_lock); itr = dcb_app_lookup(app, dev->ifindex, -1); if (itr) prio |= 1 << itr->app.priority; spin_unlock_bh(&dcb_lock); return prio; } EXPORT_SYMBOL(dcb_ieee_getapp_mask); /* Get protocol value from rewrite entry. */ u16 dcb_getrewr(struct net_device *dev, struct dcb_app *app) { struct dcb_app_type *itr; u16 proto = 0; spin_lock_bh(&dcb_lock); itr = dcb_rewr_lookup(app, dev->ifindex, -1); if (itr) proto = itr->app.protocol; spin_unlock_bh(&dcb_lock); return proto; } EXPORT_SYMBOL(dcb_getrewr); /* Add rewrite entry to the rewrite list. */ int dcb_setrewr(struct net_device *dev, struct dcb_app *new) { int err; spin_lock_bh(&dcb_lock); /* Search for existing match and abort if found. */ if (dcb_rewr_lookup(new, dev->ifindex, new->protocol)) { err = -EEXIST; goto out; } err = dcb_app_add(&dcb_rewr_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); return err; } EXPORT_SYMBOL(dcb_setrewr); /* Delete rewrite entry from the rewrite list. */ int dcb_delrewr(struct net_device *dev, struct dcb_app *del) { struct dcb_app_type *itr; int err = -ENOENT; spin_lock_bh(&dcb_lock); /* Search for existing match and remove it. */ itr = dcb_rewr_lookup(del, dev->ifindex, del->protocol); if (itr) { list_del(&itr->list); kfree(itr); err = 0; } spin_unlock_bh(&dcb_lock); return err; } EXPORT_SYMBOL(dcb_delrewr); /** * dcb_ieee_setapp - add IEEE dcb application data to app list * @dev: network interface * @new: application data to add * * This adds Application data to the list. Multiple application * entries may exists for the same selector and protocol as long * as the priorities are different. Priority is expected to be a * 3-bit unsigned integer */ int dcb_ieee_setapp(struct net_device *dev, struct dcb_app *new) { struct dcb_app_type event; int err = 0; event.ifindex = dev->ifindex; memcpy(&event.app, new, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and abort if found */ if (dcb_app_lookup(new, dev->ifindex, new->priority)) { err = -EEXIST; goto out; } err = dcb_app_add(&dcb_app_list, new, dev->ifindex); out: spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_ieee_setapp); /** * dcb_ieee_delapp - delete IEEE dcb application data from list * @dev: network interface * @del: application data to delete * * This removes a matching APP data from the APP list */ int dcb_ieee_delapp(struct net_device *dev, struct dcb_app *del) { struct dcb_app_type *itr; struct dcb_app_type event; int err = -ENOENT; event.ifindex = dev->ifindex; memcpy(&event.app, del, sizeof(event.app)); if (dev->dcbnl_ops->getdcbx) event.dcbx = dev->dcbnl_ops->getdcbx(dev); spin_lock_bh(&dcb_lock); /* Search for existing match and remove it. */ if ((itr = dcb_app_lookup(del, dev->ifindex, del->priority))) { list_del(&itr->list); kfree(itr); err = 0; } spin_unlock_bh(&dcb_lock); if (!err) call_dcbevent_notifiers(DCB_APP_EVENT, &event); return err; } EXPORT_SYMBOL(dcb_ieee_delapp); /* dcb_getrewr_prio_pcp_mask_map - For a given device, find mapping from * priorities to the PCP and DEI values assigned to that priority. */ void dcb_getrewr_prio_pcp_mask_map(const struct net_device *dev, struct dcb_rewr_prio_pcp_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == ifindex && itr->app.selector == DCB_APP_SEL_PCP && itr->app.protocol < 16 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1 << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_getrewr_prio_pcp_mask_map); /* dcb_getrewr_prio_dscp_mask_map - For a given device, find mapping from * priorities to the DSCP values assigned to that priority. */ void dcb_getrewr_prio_dscp_mask_map(const struct net_device *dev, struct dcb_ieee_app_prio_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_rewr_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1ULL << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_getrewr_prio_dscp_mask_map); /* * dcb_ieee_getapp_prio_dscp_mask_map - For a given device, find mapping from * priorities to the DSCP values assigned to that priority. Initialize p_map * such that each map element holds a bit mask of DSCP values configured for * that priority by APP entries. */ void dcb_ieee_getapp_prio_dscp_mask_map(const struct net_device *dev, struct dcb_ieee_app_prio_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 prio; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) { prio = itr->app.priority; p_map->map[prio] |= 1ULL << itr->app.protocol; } } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_ieee_getapp_prio_dscp_mask_map); /* * dcb_ieee_getapp_dscp_prio_mask_map - For a given device, find mapping from * DSCP values to the priorities assigned to that DSCP value. Initialize p_map * such that each map element holds a bit mask of priorities configured for a * given DSCP value by APP entries. */ void dcb_ieee_getapp_dscp_prio_mask_map(const struct net_device *dev, struct dcb_ieee_app_dscp_map *p_map) { int ifindex = dev->ifindex; struct dcb_app_type *itr; memset(p_map->map, 0, sizeof(p_map->map)); spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_DSCP && itr->app.protocol < 64 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) p_map->map[itr->app.protocol] |= 1 << itr->app.priority; } spin_unlock_bh(&dcb_lock); } EXPORT_SYMBOL(dcb_ieee_getapp_dscp_prio_mask_map); /* * Per 802.1Q-2014, the selector value of 1 is used for matching on Ethernet * type, with valid PID values >= 1536. A special meaning is then assigned to * protocol value of 0: "default priority. For use when priority is not * otherwise specified". * * dcb_ieee_getapp_default_prio_mask - For a given device, find all APP entries * of the form {$PRIO, ETHERTYPE, 0} and construct a bit mask of all default * priorities set by these entries. */ u8 dcb_ieee_getapp_default_prio_mask(const struct net_device *dev) { int ifindex = dev->ifindex; struct dcb_app_type *itr; u8 mask = 0; spin_lock_bh(&dcb_lock); list_for_each_entry(itr, &dcb_app_list, list) { if (itr->ifindex == ifindex && itr->app.selector == IEEE_8021QAZ_APP_SEL_ETHERTYPE && itr->app.protocol == 0 && itr->app.priority < IEEE_8021QAZ_MAX_TCS) mask |= 1 << itr->app.priority; } spin_unlock_bh(&dcb_lock); return mask; } EXPORT_SYMBOL(dcb_ieee_getapp_default_prio_mask); static void dcbnl_flush_dev(struct net_device *dev) { struct dcb_app_type *itr, *tmp; spin_lock_bh(&dcb_lock); list_for_each_entry_safe(itr, tmp, &dcb_app_list, list) { if (itr->ifindex == dev->ifindex) { list_del(&itr->list); kfree(itr); } } spin_unlock_bh(&dcb_lock); } static int dcbnl_netdevice_event(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); switch (event) { case NETDEV_UNREGISTER: if (!dev->dcbnl_ops) return NOTIFY_DONE; dcbnl_flush_dev(dev); return NOTIFY_OK; default: return NOTIFY_DONE; } } static struct notifier_block dcbnl_nb __read_mostly = { .notifier_call = dcbnl_netdevice_event, }; static const struct rtnl_msg_handler dcbnl_rtnl_msg_handlers[] __initconst = { {.msgtype = RTM_GETDCB, .doit = dcb_doit}, {.msgtype = RTM_SETDCB, .doit = dcb_doit}, }; static int __init dcbnl_init(void) { int err; err = register_netdevice_notifier(&dcbnl_nb); if (err) return err; rtnl_register_many(dcbnl_rtnl_msg_handlers); return 0; } device_initcall(dcbnl_init); |
16 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | // SPDX-License-Identifier: GPL-2.0-only /* * crc16.c */ #include <linux/types.h> #include <linux/module.h> #include <linux/crc16.h> /** CRC table for the CRC-16. The poly is 0x8005 (x^16 + x^15 + x^2 + 1) */ u16 const crc16_table[256] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; EXPORT_SYMBOL(crc16_table); /** * crc16 - compute the CRC-16 for the data buffer * @crc: previous CRC value * @buffer: data pointer * @len: number of bytes in the buffer * * Returns the updated CRC value. */ u16 crc16(u16 crc, u8 const *buffer, size_t len) { while (len--) crc = crc16_byte(crc, *buffer++); return crc; } EXPORT_SYMBOL(crc16); MODULE_DESCRIPTION("CRC16 calculations"); MODULE_LICENSE("GPL"); |
1464 1462 144 144 145 137 9 145 5 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/exit.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/sched/autogroup.h> #include <linux/sched/mm.h> #include <linux/sched/stat.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/sched/cputime.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/capability.h> #include <linux/completion.h> #include <linux/personality.h> #include <linux/tty.h> #include <linux/iocontext.h> #include <linux/key.h> #include <linux/cpu.h> #include <linux/acct.h> #include <linux/tsacct_kern.h> #include <linux/file.h> #include <linux/freezer.h> #include <linux/binfmts.h> #include <linux/nsproxy.h> #include <linux/pid_namespace.h> #include <linux/ptrace.h> #include <linux/profile.h> #include <linux/mount.h> #include <linux/proc_fs.h> #include <linux/kthread.h> #include <linux/mempolicy.h> #include <linux/taskstats_kern.h> #include <linux/delayacct.h> #include <linux/cgroup.h> #include <linux/syscalls.h> #include <linux/signal.h> #include <linux/posix-timers.h> #include <linux/cn_proc.h> #include <linux/mutex.h> #include <linux/futex.h> #include <linux/pipe_fs_i.h> #include <linux/audit.h> /* for audit_free() */ #include <linux/resource.h> #include <linux/task_io_accounting_ops.h> #include <linux/blkdev.h> #include <linux/task_work.h> #include <linux/fs_struct.h> #include <linux/init_task.h> #include <linux/perf_event.h> #include <trace/events/sched.h> #include <linux/hw_breakpoint.h> #include <linux/oom.h> #include <linux/writeback.h> #include <linux/shm.h> #include <linux/kcov.h> #include <linux/kmsan.h> #include <linux/random.h> #include <linux/rcuwait.h> #include <linux/compat.h> #include <linux/io_uring.h> #include <linux/kprobes.h> #include <linux/rethook.h> #include <linux/sysfs.h> #include <linux/user_events.h> #include <linux/uaccess.h> #include <uapi/linux/wait.h> #include <asm/unistd.h> #include <asm/mmu_context.h> #include "exit.h" /* * The default value should be high enough to not crash a system that randomly * crashes its kernel from time to time, but low enough to at least not permit * overflowing 32-bit refcounts or the ldsem writer count. */ static unsigned int oops_limit = 10000; #ifdef CONFIG_SYSCTL static const struct ctl_table kern_exit_table[] = { { .procname = "oops_limit", .data = &oops_limit, .maxlen = sizeof(oops_limit), .mode = 0644, .proc_handler = proc_douintvec, }, }; static __init int kernel_exit_sysctls_init(void) { register_sysctl_init("kernel", kern_exit_table); return 0; } late_initcall(kernel_exit_sysctls_init); #endif static atomic_t oops_count = ATOMIC_INIT(0); #ifdef CONFIG_SYSFS static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, char *page) { return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); } static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); static __init int kernel_exit_sysfs_init(void) { sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); return 0; } late_initcall(kernel_exit_sysfs_init); #endif static void __unhash_process(struct task_struct *p, bool group_dead) { nr_threads--; detach_pid(p, PIDTYPE_PID); if (group_dead) { detach_pid(p, PIDTYPE_TGID); detach_pid(p, PIDTYPE_PGID); detach_pid(p, PIDTYPE_SID); list_del_rcu(&p->tasks); list_del_init(&p->sibling); __this_cpu_dec(process_counts); } list_del_rcu(&p->thread_node); } /* * This function expects the tasklist_lock write-locked. */ static void __exit_signal(struct task_struct *tsk) { struct signal_struct *sig = tsk->signal; bool group_dead = thread_group_leader(tsk); struct sighand_struct *sighand; struct tty_struct *tty; u64 utime, stime; sighand = rcu_dereference_check(tsk->sighand, lockdep_tasklist_lock_is_held()); spin_lock(&sighand->siglock); #ifdef CONFIG_POSIX_TIMERS posix_cpu_timers_exit(tsk); if (group_dead) posix_cpu_timers_exit_group(tsk); #endif if (group_dead) { tty = sig->tty; sig->tty = NULL; } else { /* * If there is any task waiting for the group exit * then notify it: */ if (sig->notify_count > 0 && !--sig->notify_count) wake_up_process(sig->group_exec_task); if (tsk == sig->curr_target) sig->curr_target = next_thread(tsk); } add_device_randomness((const void*) &tsk->se.sum_exec_runtime, sizeof(unsigned long long)); /* * Accumulate here the counters for all threads as they die. We could * skip the group leader because it is the last user of signal_struct, * but we want to avoid the race with thread_group_cputime() which can * see the empty ->thread_head list. */ task_cputime(tsk, &utime, &stime); write_seqlock(&sig->stats_lock); sig->utime += utime; sig->stime += stime; sig->gtime += task_gtime(tsk); sig->min_flt += tsk->min_flt; sig->maj_flt += tsk->maj_flt; sig->nvcsw += tsk->nvcsw; sig->nivcsw += tsk->nivcsw; sig->inblock += task_io_get_inblock(tsk); sig->oublock += task_io_get_oublock(tsk); task_io_accounting_add(&sig->ioac, &tsk->ioac); sig->sum_sched_runtime += tsk->se.sum_exec_runtime; sig->nr_threads--; __unhash_process(tsk, group_dead); write_sequnlock(&sig->stats_lock); /* * Do this under ->siglock, we can race with another thread * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. */ flush_sigqueue(&tsk->pending); tsk->sighand = NULL; spin_unlock(&sighand->siglock); __cleanup_sighand(sighand); clear_tsk_thread_flag(tsk, TIF_SIGPENDING); if (group_dead) { flush_sigqueue(&sig->shared_pending); tty_kref_put(tty); } } static void delayed_put_task_struct(struct rcu_head *rhp) { struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); kprobe_flush_task(tsk); rethook_flush_task(tsk); perf_event_delayed_put(tsk); trace_sched_process_free(tsk); put_task_struct(tsk); } void put_task_struct_rcu_user(struct task_struct *task) { if (refcount_dec_and_test(&task->rcu_users)) call_rcu(&task->rcu, delayed_put_task_struct); } void __weak release_thread(struct task_struct *dead_task) { } void release_task(struct task_struct *p) { struct task_struct *leader; struct pid *thread_pid; int zap_leader; repeat: /* don't need to get the RCU readlock here - the process is dead and * can't be modifying its own credentials. But shut RCU-lockdep up */ rcu_read_lock(); dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); rcu_read_unlock(); cgroup_release(p); write_lock_irq(&tasklist_lock); ptrace_release_task(p); thread_pid = get_pid(p->thread_pid); __exit_signal(p); /* * If we are the last non-leader member of the thread * group, and the leader is zombie, then notify the * group leader's parent process. (if it wants notification.) */ zap_leader = 0; leader = p->group_leader; if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { /* * If we were the last child thread and the leader has * exited already, and the leader's parent ignores SIGCHLD, * then we are the one who should release the leader. */ zap_leader = do_notify_parent(leader, leader->exit_signal); if (zap_leader) leader->exit_state = EXIT_DEAD; } write_unlock_irq(&tasklist_lock); proc_flush_pid(thread_pid); put_pid(thread_pid); release_thread(p); put_task_struct_rcu_user(p); p = leader; if (unlikely(zap_leader)) goto repeat; } int rcuwait_wake_up(struct rcuwait *w) { int ret = 0; struct task_struct *task; rcu_read_lock(); /* * Order condition vs @task, such that everything prior to the load * of @task is visible. This is the condition as to why the user called * rcuwait_wake() in the first place. Pairs with set_current_state() * barrier (A) in rcuwait_wait_event(). * * WAIT WAKE * [S] tsk = current [S] cond = true * MB (A) MB (B) * [L] cond [L] tsk */ smp_mb(); /* (B) */ task = rcu_dereference(w->task); if (task) ret = wake_up_process(task); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(rcuwait_wake_up); /* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52. Orphaned process groups are not to be affected * by terminal-generated stop signals. Newly orphaned process groups are * to receive a SIGHUP and a SIGCONT. * * "I ask you, have you ever known what it is to be an orphan?" */ static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) { struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if ((p == ignored_task) || (p->exit_state && thread_group_empty(p)) || is_global_init(p->real_parent)) continue; if (task_pgrp(p->real_parent) != pgrp && task_session(p->real_parent) == task_session(p)) return 0; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return 1; } int is_current_pgrp_orphaned(void) { int retval; read_lock(&tasklist_lock); retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); read_unlock(&tasklist_lock); return retval; } static bool has_stopped_jobs(struct pid *pgrp) { struct task_struct *p; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { if (p->signal->flags & SIGNAL_STOP_STOPPED) return true; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return false; } /* * Check to see if any process groups have become orphaned as * a result of our exiting, and if they have any stopped jobs, * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ static void kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) { struct pid *pgrp = task_pgrp(tsk); struct task_struct *ignored_task = tsk; if (!parent) /* exit: our father is in a different pgrp than * we are and we were the only connection outside. */ parent = tsk->real_parent; else /* reparent: our child is in a different pgrp than * we are, and it was the only connection outside. */ ignored_task = NULL; if (task_pgrp(parent) != pgrp && task_session(parent) == task_session(tsk) && will_become_orphaned_pgrp(pgrp, ignored_task) && has_stopped_jobs(pgrp)) { __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); } } static void coredump_task_exit(struct task_struct *tsk) { struct core_state *core_state; /* * Serialize with any possible pending coredump. * We must hold siglock around checking core_state * and setting PF_POSTCOREDUMP. The core-inducing thread * will increment ->nr_threads for each thread in the * group without PF_POSTCOREDUMP set. */ spin_lock_irq(&tsk->sighand->siglock); tsk->flags |= PF_POSTCOREDUMP; core_state = tsk->signal->core_state; spin_unlock_irq(&tsk->sighand->siglock); if (core_state) { struct core_thread self; self.task = current; if (self.task->flags & PF_SIGNALED) self.next = xchg(&core_state->dumper.next, &self); else self.task = NULL; /* * Implies mb(), the result of xchg() must be visible * to core_state->dumper. */ if (atomic_dec_and_test(&core_state->nr_threads)) complete(&core_state->startup); for (;;) { set_current_state(TASK_IDLE|TASK_FREEZABLE); if (!self.task) /* see coredump_finish() */ break; schedule(); } __set_current_state(TASK_RUNNING); } } #ifdef CONFIG_MEMCG /* drops tasklist_lock if succeeds */ static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) { bool ret = false; task_lock(tsk); if (likely(tsk->mm == mm)) { /* tsk can't pass exit_mm/exec_mmap and exit */ read_unlock(&tasklist_lock); WRITE_ONCE(mm->owner, tsk); lru_gen_migrate_mm(mm); ret = true; } task_unlock(tsk); return ret; } static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) { struct task_struct *t; for_each_thread(g, t) { struct mm_struct *t_mm = READ_ONCE(t->mm); if (t_mm == mm) { if (__try_to_set_owner(t, mm)) return true; } else if (t_mm) break; } return false; } /* * A task is exiting. If it owned this mm, find a new owner for the mm. */ void mm_update_next_owner(struct mm_struct *mm) { struct task_struct *g, *p = current; /* * If the exiting or execing task is not the owner, it's * someone else's problem. */ if (mm->owner != p) return; /* * The current owner is exiting/execing and there are no other * candidates. Do not leave the mm pointing to a possibly * freed task structure. */ if (atomic_read(&mm->mm_users) <= 1) { WRITE_ONCE(mm->owner, NULL); return; } read_lock(&tasklist_lock); /* * Search in the children */ list_for_each_entry(g, &p->children, sibling) { if (try_to_set_owner(g, mm)) goto ret; } /* * Search in the siblings */ list_for_each_entry(g, &p->real_parent->children, sibling) { if (try_to_set_owner(g, mm)) goto ret; } /* * Search through everything else, we should not get here often. */ for_each_process(g) { if (atomic_read(&mm->mm_users) <= 1) break; if (g->flags & PF_KTHREAD) continue; if (try_to_set_owner(g, mm)) goto ret; } read_unlock(&tasklist_lock); /* * We found no owner yet mm_users > 1: this implies that we are * most likely racing with swapoff (try_to_unuse()) or /proc or * ptrace or page migration (get_task_mm()). Mark owner as NULL. */ WRITE_ONCE(mm->owner, NULL); ret: return; } #endif /* CONFIG_MEMCG */ /* * Turn us into a lazy TLB process if we * aren't already.. */ static void exit_mm(void) { struct mm_struct *mm = current->mm; exit_mm_release(current, mm); if (!mm) return; mmap_read_lock(mm); mmgrab_lazy_tlb(mm); BUG_ON(mm != current->active_mm); /* more a memory barrier than a real lock */ task_lock(current); /* * When a thread stops operating on an address space, the loop * in membarrier_private_expedited() may not observe that * tsk->mm, and the loop in membarrier_global_expedited() may * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED * rq->membarrier_state, so those would not issue an IPI. * Membarrier requires a memory barrier after accessing * user-space memory, before clearing tsk->mm or the * rq->membarrier_state. */ smp_mb__after_spinlock(); local_irq_disable(); current->mm = NULL; membarrier_update_current_mm(NULL); enter_lazy_tlb(mm, current); local_irq_enable(); task_unlock(current); mmap_read_unlock(mm); mm_update_next_owner(mm); mmput(mm); if (test_thread_flag(TIF_MEMDIE)) exit_oom_victim(); } static struct task_struct *find_alive_thread(struct task_struct *p) { struct task_struct *t; for_each_thread(p, t) { if (!(t->flags & PF_EXITING)) return t; } return NULL; } static struct task_struct *find_child_reaper(struct task_struct *father, struct list_head *dead) __releases(&tasklist_lock) __acquires(&tasklist_lock) { struct pid_namespace *pid_ns = task_active_pid_ns(father); struct task_struct *reaper = pid_ns->child_reaper; struct task_struct *p, *n; if (likely(reaper != father)) return reaper; reaper = find_alive_thread(father); if (reaper) { pid_ns->child_reaper = reaper; return reaper; } write_unlock_irq(&tasklist_lock); list_for_each_entry_safe(p, n, dead, ptrace_entry) { list_del_init(&p->ptrace_entry); release_task(p); } zap_pid_ns_processes(pid_ns); write_lock_irq(&tasklist_lock); return father; } /* * When we die, we re-parent all our children, and try to: * 1. give them to another thread in our thread group, if such a member exists * 2. give it to the first ancestor process which prctl'd itself as a * child_subreaper for its children (like a service manager) * 3. give it to the init process (PID 1) in our pid namespace */ static struct task_struct *find_new_reaper(struct task_struct *father, struct task_struct *child_reaper) { struct task_struct *thread, *reaper; thread = find_alive_thread(father); if (thread) return thread; if (father->signal->has_child_subreaper) { unsigned int ns_level = task_pid(father)->level; /* * Find the first ->is_child_subreaper ancestor in our pid_ns. * We can't check reaper != child_reaper to ensure we do not * cross the namespaces, the exiting parent could be injected * by setns() + fork(). * We check pid->level, this is slightly more efficient than * task_active_pid_ns(reaper) != task_active_pid_ns(father). */ for (reaper = father->real_parent; task_pid(reaper)->level == ns_level; reaper = reaper->real_parent) { if (reaper == &init_task) break; if (!reaper->signal->is_child_subreaper) continue; thread = find_alive_thread(reaper); if (thread) return thread; } } return child_reaper; } /* * Any that need to be release_task'd are put on the @dead list. */ static void reparent_leader(struct task_struct *father, struct task_struct *p, struct list_head *dead) { if (unlikely(p->exit_state == EXIT_DEAD)) return; /* We don't want people slaying init. */ p->exit_signal = SIGCHLD; /* If it has exited notify the new parent about this child's death. */ if (!p->ptrace && p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { if (do_notify_parent(p, p->exit_signal)) { p->exit_state = EXIT_DEAD; list_add(&p->ptrace_entry, dead); } } kill_orphaned_pgrp(p, father); } /* * This does two things: * * A. Make init inherit all the child processes * B. Check to see if any process groups have become orphaned * as a result of our exiting, and if they have any stopped * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) */ static void forget_original_parent(struct task_struct *father, struct list_head *dead) { struct task_struct *p, *t, *reaper; if (unlikely(!list_empty(&father->ptraced))) exit_ptrace(father, dead); /* Can drop and reacquire tasklist_lock */ reaper = find_child_reaper(father, dead); if (list_empty(&father->children)) return; reaper = find_new_reaper(father, reaper); list_for_each_entry(p, &father->children, sibling) { for_each_thread(p, t) { RCU_INIT_POINTER(t->real_parent, reaper); BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); if (likely(!t->ptrace)) t->parent = t->real_parent; if (t->pdeath_signal) group_send_sig_info(t->pdeath_signal, SEND_SIG_NOINFO, t, PIDTYPE_TGID); } /* * If this is a threaded reparent there is no need to * notify anyone anything has happened. */ if (!same_thread_group(reaper, father)) reparent_leader(father, p, dead); } list_splice_tail_init(&father->children, &reaper->children); } /* * Send signals to all our closest relatives so that they know * to properly mourn us.. */ static void exit_notify(struct task_struct *tsk, int group_dead) { bool autoreap; struct task_struct *p, *n; LIST_HEAD(dead); write_lock_irq(&tasklist_lock); forget_original_parent(tsk, &dead); if (group_dead) kill_orphaned_pgrp(tsk->group_leader, NULL); tsk->exit_state = EXIT_ZOMBIE; /* * sub-thread or delay_group_leader(), wake up the * PIDFD_THREAD waiters. */ if (!thread_group_empty(tsk)) do_notify_pidfd(tsk); if (unlikely(tsk->ptrace)) { int sig = thread_group_leader(tsk) && thread_group_empty(tsk) && !ptrace_reparented(tsk) ? tsk->exit_signal : SIGCHLD; autoreap = do_notify_parent(tsk, sig); } else if (thread_group_leader(tsk)) { autoreap = thread_group_empty(tsk) && do_notify_parent(tsk, tsk->exit_signal); } else { autoreap = true; } if (autoreap) { tsk->exit_state = EXIT_DEAD; list_add(&tsk->ptrace_entry, &dead); } /* mt-exec, de_thread() is waiting for group leader */ if (unlikely(tsk->signal->notify_count < 0)) wake_up_process(tsk->signal->group_exec_task); write_unlock_irq(&tasklist_lock); list_for_each_entry_safe(p, n, &dead, ptrace_entry) { list_del_init(&p->ptrace_entry); release_task(p); } } #ifdef CONFIG_DEBUG_STACK_USAGE unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } /* Count the maximum pages reached in kernel stacks */ static inline void kstack_histogram(unsigned long used_stack) { #ifdef CONFIG_VM_EVENT_COUNTERS if (used_stack <= 1024) count_vm_event(KSTACK_1K); #if THREAD_SIZE > 1024 else if (used_stack <= 2048) count_vm_event(KSTACK_2K); #endif #if THREAD_SIZE > 2048 else if (used_stack <= 4096) count_vm_event(KSTACK_4K); #endif #if THREAD_SIZE > 4096 else if (used_stack <= 8192) count_vm_event(KSTACK_8K); #endif #if THREAD_SIZE > 8192 else if (used_stack <= 16384) count_vm_event(KSTACK_16K); #endif #if THREAD_SIZE > 16384 else if (used_stack <= 32768) count_vm_event(KSTACK_32K); #endif #if THREAD_SIZE > 32768 else if (used_stack <= 65536) count_vm_event(KSTACK_64K); #endif #if THREAD_SIZE > 65536 else count_vm_event(KSTACK_REST); #endif #endif /* CONFIG_VM_EVENT_COUNTERS */ } static void check_stack_usage(void) { static DEFINE_SPINLOCK(low_water_lock); static int lowest_to_date = THREAD_SIZE; unsigned long free; free = stack_not_used(current); kstack_histogram(THREAD_SIZE - free); if (free >= lowest_to_date) return; spin_lock(&low_water_lock); if (free < lowest_to_date) { pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", current->comm, task_pid_nr(current), free); lowest_to_date = free; } spin_unlock(&low_water_lock); } #else static inline void check_stack_usage(void) {} #endif static void synchronize_group_exit(struct task_struct *tsk, long code) { struct sighand_struct *sighand = tsk->sighand; struct signal_struct *signal = tsk->signal; spin_lock_irq(&sighand->siglock); signal->quick_threads--; if ((signal->quick_threads == 0) && !(signal->flags & SIGNAL_GROUP_EXIT)) { signal->flags = SIGNAL_GROUP_EXIT; signal->group_exit_code = code; signal->group_stop_count = 0; } spin_unlock_irq(&sighand->siglock); } void __noreturn do_exit(long code) { struct task_struct *tsk = current; int group_dead; WARN_ON(irqs_disabled()); synchronize_group_exit(tsk, code); WARN_ON(tsk->plug); kcov_task_exit(tsk); kmsan_task_exit(tsk); coredump_task_exit(tsk); ptrace_event(PTRACE_EVENT_EXIT, code); user_events_exit(tsk); io_uring_files_cancel(); exit_signals(tsk); /* sets PF_EXITING */ seccomp_filter_release(tsk); acct_update_integrals(tsk); group_dead = atomic_dec_and_test(&tsk->signal->live); if (group_dead) { /* * If the last thread of global init has exited, panic * immediately to get a useable coredump. */ if (unlikely(is_global_init(tsk))) panic("Attempted to kill init! exitcode=0x%08x\n", tsk->signal->group_exit_code ?: (int)code); #ifdef CONFIG_POSIX_TIMERS hrtimer_cancel(&tsk->signal->real_timer); exit_itimers(tsk); #endif if (tsk->mm) setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); } acct_collect(code, group_dead); if (group_dead) tty_audit_exit(); audit_free(tsk); tsk->exit_code = code; taskstats_exit(tsk, group_dead); exit_mm(); if (group_dead) acct_process(); trace_sched_process_exit(tsk); exit_sem(tsk); exit_shm(tsk); exit_files(tsk); exit_fs(tsk); if (group_dead) disassociate_ctty(1); exit_task_namespaces(tsk); exit_task_work(tsk); exit_thread(tsk); /* * Flush inherited counters to the parent - before the parent * gets woken up by child-exit notifications. * * because of cgroup mode, must be called before cgroup_exit() */ perf_event_exit_task(tsk); sched_autogroup_exit_task(tsk); cgroup_exit(tsk); /* * FIXME: do that only when needed, using sched_exit tracepoint */ flush_ptrace_hw_breakpoint(tsk); exit_tasks_rcu_start(); exit_notify(tsk, group_dead); proc_exit_connector(tsk); mpol_put_task_policy(tsk); #ifdef CONFIG_FUTEX if (unlikely(current->pi_state_cache)) kfree(current->pi_state_cache); #endif /* * Make sure we are holding no locks: */ debug_check_no_locks_held(); if (tsk->io_context) exit_io_context(tsk); if (tsk->splice_pipe) free_pipe_info(tsk->splice_pipe); if (tsk->task_frag.page) put_page(tsk->task_frag.page); exit_task_stack_account(tsk); check_stack_usage(); preempt_disable(); if (tsk->nr_dirtied) __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); exit_rcu(); exit_tasks_rcu_finish(); lockdep_free_task(tsk); do_task_dead(); } void __noreturn make_task_dead(int signr) { /* * Take the task off the cpu after something catastrophic has * happened. * * We can get here from a kernel oops, sometimes with preemption off. * Start by checking for critical errors. * Then fix up important state like USER_DS and preemption. * Then do everything else. */ struct task_struct *tsk = current; unsigned int limit; if (unlikely(in_interrupt())) panic("Aiee, killing interrupt handler!"); if (unlikely(!tsk->pid)) panic("Attempted to kill the idle task!"); if (unlikely(irqs_disabled())) { pr_info("note: %s[%d] exited with irqs disabled\n", current->comm, task_pid_nr(current)); local_irq_enable(); } if (unlikely(in_atomic())) { pr_info("note: %s[%d] exited with preempt_count %d\n", current->comm, task_pid_nr(current), preempt_count()); preempt_count_set(PREEMPT_ENABLED); } /* * Every time the system oopses, if the oops happens while a reference * to an object was held, the reference leaks. * If the oops doesn't also leak memory, repeated oopsing can cause * reference counters to wrap around (if they're not using refcount_t). * This means that repeated oopsing can make unexploitable-looking bugs * exploitable through repeated oopsing. * To make sure this can't happen, place an upper bound on how often the * kernel may oops without panic(). */ limit = READ_ONCE(oops_limit); if (atomic_inc_return(&oops_count) >= limit && limit) panic("Oopsed too often (kernel.oops_limit is %d)", limit); /* * We're taking recursive faults here in make_task_dead. Safest is to just * leave this task alone and wait for reboot. */ if (unlikely(tsk->flags & PF_EXITING)) { pr_alert("Fixing recursive fault but reboot is needed!\n"); futex_exit_recursive(tsk); tsk->exit_state = EXIT_DEAD; refcount_inc(&tsk->rcu_users); do_task_dead(); } do_exit(signr); } SYSCALL_DEFINE1(exit, int, error_code) { do_exit((error_code&0xff)<<8); } /* * Take down every thread in the group. This is called by fatal signals * as well as by sys_exit_group (below). */ void __noreturn do_group_exit(int exit_code) { struct signal_struct *sig = current->signal; if (sig->flags & SIGNAL_GROUP_EXIT) exit_code = sig->group_exit_code; else if (sig->group_exec_task) exit_code = 0; else { struct sighand_struct *const sighand = current->sighand; spin_lock_irq(&sighand->siglock); if (sig->flags & SIGNAL_GROUP_EXIT) /* Another thread got here before we took the lock. */ exit_code = sig->group_exit_code; else if (sig->group_exec_task) exit_code = 0; else { sig->group_exit_code = exit_code; sig->flags = SIGNAL_GROUP_EXIT; zap_other_threads(current); } spin_unlock_irq(&sighand->siglock); } do_exit(exit_code); /* NOTREACHED */ } /* * this kills every thread in the thread group. Note that any externally * wait4()-ing process will get the correct exit code - even if this * thread is not the thread group leader. */ SYSCALL_DEFINE1(exit_group, int, error_code) { do_group_exit((error_code & 0xff) << 8); /* NOTREACHED */ return 0; } static int eligible_pid(struct wait_opts *wo, struct task_struct *p) { return wo->wo_type == PIDTYPE_MAX || task_pid_type(p, wo->wo_type) == wo->wo_pid; } static int eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) { if (!eligible_pid(wo, p)) return 0; /* * Wait for all children (clone and not) if __WALL is set or * if it is traced by us. */ if (ptrace || (wo->wo_flags & __WALL)) return 1; /* * Otherwise, wait for clone children *only* if __WCLONE is set; * otherwise, wait for non-clone children *only*. * * Note: a "clone" child here is one that reports to its parent * using a signal other than SIGCHLD, or a non-leader thread which * we can only see if it is traced by us. */ if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) return 0; return 1; } /* * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) { int state, status; pid_t pid = task_pid_vnr(p); uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); struct waitid_info *infop; if (!likely(wo->wo_flags & WEXITED)) return 0; if (unlikely(wo->wo_flags & WNOWAIT)) { status = (p->signal->flags & SIGNAL_GROUP_EXIT) ? p->signal->group_exit_code : p->exit_code; get_task_struct(p); read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); goto out_info; } /* * Move the task's state to DEAD/TRACE, only one thread can do this. */ state = (ptrace_reparented(p) && thread_group_leader(p)) ? EXIT_TRACE : EXIT_DEAD; if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) return 0; /* * We own this thread, nobody else can reap it. */ read_unlock(&tasklist_lock); sched_annotate_sleep(); /* * Check thread_group_leader() to exclude the traced sub-threads. */ if (state == EXIT_DEAD && thread_group_leader(p)) { struct signal_struct *sig = p->signal; struct signal_struct *psig = current->signal; unsigned long maxrss; u64 tgutime, tgstime; /* * The resource counters for the group leader are in its * own task_struct. Those for dead threads in the group * are in its signal_struct, as are those for the child * processes it has previously reaped. All these * accumulate in the parent's signal_struct c* fields. * * We don't bother to take a lock here to protect these * p->signal fields because the whole thread group is dead * and nobody can change them. * * psig->stats_lock also protects us from our sub-threads * which can reap other children at the same time. * * We use thread_group_cputime_adjusted() to get times for * the thread group, which consolidates times for all threads * in the group including the group leader. */ thread_group_cputime_adjusted(p, &tgutime, &tgstime); write_seqlock_irq(&psig->stats_lock); psig->cutime += tgutime + sig->cutime; psig->cstime += tgstime + sig->cstime; psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; psig->cmin_flt += p->min_flt + sig->min_flt + sig->cmin_flt; psig->cmaj_flt += p->maj_flt + sig->maj_flt + sig->cmaj_flt; psig->cnvcsw += p->nvcsw + sig->nvcsw + sig->cnvcsw; psig->cnivcsw += p->nivcsw + sig->nivcsw + sig->cnivcsw; psig->cinblock += task_io_get_inblock(p) + sig->inblock + sig->cinblock; psig->coublock += task_io_get_oublock(p) + sig->oublock + sig->coublock; maxrss = max(sig->maxrss, sig->cmaxrss); if (psig->cmaxrss < maxrss) psig->cmaxrss = maxrss; task_io_accounting_add(&psig->ioac, &p->ioac); task_io_accounting_add(&psig->ioac, &sig->ioac); write_sequnlock_irq(&psig->stats_lock); } if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); status = (p->signal->flags & SIGNAL_GROUP_EXIT) ? p->signal->group_exit_code : p->exit_code; wo->wo_stat = status; if (state == EXIT_TRACE) { write_lock_irq(&tasklist_lock); /* We dropped tasklist, ptracer could die and untrace */ ptrace_unlink(p); /* If parent wants a zombie, don't release it now */ state = EXIT_ZOMBIE; if (do_notify_parent(p, p->exit_signal)) state = EXIT_DEAD; p->exit_state = state; write_unlock_irq(&tasklist_lock); } if (state == EXIT_DEAD) release_task(p); out_info: infop = wo->wo_info; if (infop) { if ((status & 0x7f) == 0) { infop->cause = CLD_EXITED; infop->status = status >> 8; } else { infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; infop->status = status & 0x7f; } infop->pid = pid; infop->uid = uid; } return pid; } static int *task_stopped_code(struct task_struct *p, bool ptrace) { if (ptrace) { if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) return &p->exit_code; } else { if (p->signal->flags & SIGNAL_STOP_STOPPED) return &p->signal->group_exit_code; } return NULL; } /** * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED * @wo: wait options * @ptrace: is the wait for ptrace * @p: task to wait for * * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. * * CONTEXT: * read_lock(&tasklist_lock), which is released if return value is * non-zero. Also, grabs and releases @p->sighand->siglock. * * RETURNS: * 0 if wait condition didn't exist and search for other wait conditions * should continue. Non-zero return, -errno on failure and @p's pid on * success, implies that tasklist_lock is released and wait condition * search should terminate. */ static int wait_task_stopped(struct wait_opts *wo, int ptrace, struct task_struct *p) { struct waitid_info *infop; int exit_code, *p_code, why; uid_t uid = 0; /* unneeded, required by compiler */ pid_t pid; /* * Traditionally we see ptrace'd stopped tasks regardless of options. */ if (!ptrace && !(wo->wo_flags & WUNTRACED)) return 0; if (!task_stopped_code(p, ptrace)) return 0; exit_code = 0; spin_lock_irq(&p->sighand->siglock); p_code = task_stopped_code(p, ptrace); if (unlikely(!p_code)) goto unlock_sig; exit_code = *p_code; if (!exit_code) goto unlock_sig; if (!unlikely(wo->wo_flags & WNOWAIT)) *p_code = 0; uid = from_kuid_munged(current_user_ns(), task_uid(p)); unlock_sig: spin_unlock_irq(&p->sighand->siglock); if (!exit_code) return 0; /* * Now we are pretty sure this task is interesting. * Make sure it doesn't get reaped out from under us while we * give up the lock and then examine it below. We don't want to * keep holding onto the tasklist_lock while we call getrusage and * possibly take page faults for user memory. */ get_task_struct(p); pid = task_pid_vnr(p); why = ptrace ? CLD_TRAPPED : CLD_STOPPED; read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); if (likely(!(wo->wo_flags & WNOWAIT))) wo->wo_stat = (exit_code << 8) | 0x7f; infop = wo->wo_info; if (infop) { infop->cause = why; infop->status = exit_code; infop->pid = pid; infop->uid = uid; } return pid; } /* * Handle do_wait work for one task in a live, non-stopped state. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold * the lock and this task is uninteresting. If we return nonzero, we have * released the lock and the system call should return. */ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) { struct waitid_info *infop; pid_t pid; uid_t uid; if (!unlikely(wo->wo_flags & WCONTINUED)) return 0; if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) return 0; spin_lock_irq(&p->sighand->siglock); /* Re-check with the lock held. */ if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { spin_unlock_irq(&p->sighand->siglock); return 0; } if (!unlikely(wo->wo_flags & WNOWAIT)) p->signal->flags &= ~SIGNAL_STOP_CONTINUED; uid = from_kuid_munged(current_user_ns(), task_uid(p)); spin_unlock_irq(&p->sighand->siglock); pid = task_pid_vnr(p); get_task_struct(p); read_unlock(&tasklist_lock); sched_annotate_sleep(); if (wo->wo_rusage) getrusage(p, RUSAGE_BOTH, wo->wo_rusage); put_task_struct(p); infop = wo->wo_info; if (!infop) { wo->wo_stat = 0xffff; } else { infop->cause = CLD_CONTINUED; infop->pid = pid; infop->uid = uid; infop->status = SIGCONT; } return pid; } /* * Consider @p for a wait by @parent. * * -ECHILD should be in ->notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; * then ->notask_error is 0 if @p is an eligible child, * or still -ECHILD. */ static int wait_consider_task(struct wait_opts *wo, int ptrace, struct task_struct *p) { /* * We can race with wait_task_zombie() from another thread. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition * can't confuse the checks below. */ int exit_state = READ_ONCE(p->exit_state); int ret; if (unlikely(exit_state == EXIT_DEAD)) return 0; ret = eligible_child(wo, ptrace, p); if (!ret) return ret; if (unlikely(exit_state == EXIT_TRACE)) { /* * ptrace == 0 means we are the natural parent. In this case * we should clear notask_error, debugger will notify us. */ if (likely(!ptrace)) wo->notask_error = 0; return 0; } if (likely(!ptrace) && unlikely(p->ptrace)) { /* * If it is traced by its real parent's group, just pretend * the caller is ptrace_do_wait() and reap this child if it * is zombie. * * This also hides group stop state from real parent; otherwise * a single stop can be reported twice as group and ptrace stop. * If a ptracer wants to distinguish these two events for its * own children it should create a separate process which takes * the role of real parent. */ if (!ptrace_reparented(p)) ptrace = 1; } /* slay zombie? */ if (exit_state == EXIT_ZOMBIE) { /* we don't reap group leaders with subthreads */ if (!delay_group_leader(p)) { /* * A zombie ptracee is only visible to its ptracer. * Notification and reaping will be cascaded to the * real parent when the ptracer detaches. */ if (unlikely(ptrace) || likely(!p->ptrace)) return wait_task_zombie(wo, p); } /* * Allow access to stopped/continued state via zombie by * falling through. Clearing of notask_error is complex. * * When !@ptrace: * * If WEXITED is set, notask_error should naturally be * cleared. If not, subset of WSTOPPED|WCONTINUED is set, * so, if there are live subthreads, there are events to * wait for. If all subthreads are dead, it's still safe * to clear - this function will be called again in finite * amount time once all the subthreads are released and * will then return without clearing. * * When @ptrace: * * Stopped state is per-task and thus can't change once the * target task dies. Only continued and exited can happen. * Clear notask_error if WCONTINUED | WEXITED. */ if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) wo->notask_error = 0; } else { /* * @p is alive and it's gonna stop, continue or exit, so * there always is something to wait for. */ wo->notask_error = 0; } /* * Wait for stopped. Depending on @ptrace, different stopped state * is used and the two don't interact with each other. */ ret = wait_task_stopped(wo, ptrace, p); if (ret) return ret; /* * Wait for continued. There's only one continued state and the * ptracer can consume it which can confuse the real parent. Don't * use WCONTINUED from ptracer. You don't need or want it. */ return wait_task_continued(wo, p); } /* * Do the work of do_wait() for one thread in the group, @tsk. * * -ECHILD should be in ->notask_error before the first call. * Returns nonzero for a final return, when we have unlocked tasklist_lock. * Returns zero if the search for a child should continue; then * ->notask_error is 0 if there were any eligible children, * or still -ECHILD. */ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) { struct task_struct *p; list_for_each_entry(p, &tsk->children, sibling) { int ret = wait_consider_task(wo, 0, p); if (ret) return ret; } return 0; } static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) { struct task_struct *p; list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { int ret = wait_consider_task(wo, 1, p); if (ret) return ret; } return 0; } bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) { if (!eligible_pid(wo, p)) return false; if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) return false; return true; } static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { struct wait_opts *wo = container_of(wait, struct wait_opts, child_wait); struct task_struct *p = key; if (pid_child_should_wake(wo, p)) return default_wake_function(wait, mode, sync, key); return 0; } void __wake_up_parent(struct task_struct *p, struct task_struct *parent) { __wake_up_sync_key(&parent->signal->wait_chldexit, TASK_INTERRUPTIBLE, p); } static bool is_effectively_child(struct wait_opts *wo, bool ptrace, struct task_struct *target) { struct task_struct *parent = !ptrace ? target->real_parent : target->parent; return current == parent || (!(wo->wo_flags & __WNOTHREAD) && same_thread_group(current, parent)); } /* * Optimization for waiting on PIDTYPE_PID. No need to iterate through child * and tracee lists to find the target task. */ static int do_wait_pid(struct wait_opts *wo) { bool ptrace; struct task_struct *target; int retval; ptrace = false; target = pid_task(wo->wo_pid, PIDTYPE_TGID); if (target && is_effectively_child(wo, ptrace, target)) { retval = wait_consider_task(wo, ptrace, target); if (retval) return retval; } ptrace = true; target = pid_task(wo->wo_pid, PIDTYPE_PID); if (target && target->ptrace && is_effectively_child(wo, ptrace, target)) { retval = wait_consider_task(wo, ptrace, target); if (retval) return retval; } return 0; } long __do_wait(struct wait_opts *wo) { long retval; /* * If there is nothing that can match our criteria, just get out. * We will clear ->notask_error to zero if we see any child that * might later match our criteria, even if we are not able to reap * it yet. */ wo->notask_error = -ECHILD; if ((wo->wo_type < PIDTYPE_MAX) && (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) goto notask; read_lock(&tasklist_lock); if (wo->wo_type == PIDTYPE_PID) { retval = do_wait_pid(wo); if (retval) return retval; } else { struct task_struct *tsk = current; do { retval = do_wait_thread(wo, tsk); if (retval) return retval; retval = ptrace_do_wait(wo, tsk); if (retval) return retval; if (wo->wo_flags & __WNOTHREAD) break; } while_each_thread(current, tsk); } read_unlock(&tasklist_lock); notask: retval = wo->notask_error; if (!retval && !(wo->wo_flags & WNOHANG)) return -ERESTARTSYS; return retval; } static long do_wait(struct wait_opts *wo) { int retval; trace_sched_process_wait(wo->wo_pid); init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); wo->child_wait.private = current; add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); do { set_current_state(TASK_INTERRUPTIBLE); retval = __do_wait(wo); if (retval != -ERESTARTSYS) break; if (signal_pending(current)) break; schedule(); } while (1); __set_current_state(TASK_RUNNING); remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); return retval; } int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, struct waitid_info *infop, int options, struct rusage *ru) { unsigned int f_flags = 0; struct pid *pid = NULL; enum pid_type type; if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| __WNOTHREAD|__WCLONE|__WALL)) return -EINVAL; if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) return -EINVAL; switch (which) { case P_ALL: type = PIDTYPE_MAX; break; case P_PID: type = PIDTYPE_PID; if (upid <= 0) return -EINVAL; pid = find_get_pid(upid); break; case P_PGID: type = PIDTYPE_PGID; if (upid < 0) return -EINVAL; if (upid) pid = find_get_pid(upid); else pid = get_task_pid(current, PIDTYPE_PGID); break; case P_PIDFD: type = PIDTYPE_PID; if (upid < 0) return -EINVAL; pid = pidfd_get_pid(upid, &f_flags); if (IS_ERR(pid)) return PTR_ERR(pid); break; default: return -EINVAL; } wo->wo_type = type; wo->wo_pid = pid; wo->wo_flags = options; wo->wo_info = infop; wo->wo_rusage = ru; if (f_flags & O_NONBLOCK) wo->wo_flags |= WNOHANG; return 0; } static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, int options, struct rusage *ru) { struct wait_opts wo; long ret; ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); if (ret) return ret; ret = do_wait(&wo); if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) ret = -EAGAIN; put_pid(wo.wo_pid); return ret; } SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, infop, int, options, struct rusage __user *, ru) { struct rusage r; struct waitid_info info = {.status = 0}; long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); int signo = 0; if (err > 0) { signo = SIGCHLD; err = 0; if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) return -EFAULT; } if (!infop) return err; if (!user_write_access_begin(infop, sizeof(*infop))) return -EFAULT; unsafe_put_user(signo, &infop->si_signo, Efault); unsafe_put_user(0, &infop->si_errno, Efault); unsafe_put_user(info.cause, &infop->si_code, Efault); unsafe_put_user(info.pid, &infop->si_pid, Efault); unsafe_put_user(info.uid, &infop->si_uid, Efault); unsafe_put_user(info.status, &infop->si_status, Efault); user_write_access_end(); return err; Efault: user_write_access_end(); return -EFAULT; } long kernel_wait4(pid_t upid, int __user *stat_addr, int options, struct rusage *ru) { struct wait_opts wo; struct pid *pid = NULL; enum pid_type type; long ret; if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| __WNOTHREAD|__WCLONE|__WALL)) return -EINVAL; /* -INT_MIN is not defined */ if (upid == INT_MIN) return -ESRCH; if (upid == -1) type = PIDTYPE_MAX; else if (upid < 0) { type = PIDTYPE_PGID; pid = find_get_pid(-upid); } else if (upid == 0) { type = PIDTYPE_PGID; pid = get_task_pid(current, PIDTYPE_PGID); } else /* upid > 0 */ { type = PIDTYPE_PID; pid = find_get_pid(upid); } wo.wo_type = type; wo.wo_pid = pid; wo.wo_flags = options | WEXITED; wo.wo_info = NULL; wo.wo_stat = 0; wo.wo_rusage = ru; ret = do_wait(&wo); put_pid(pid); if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) ret = -EFAULT; return ret; } int kernel_wait(pid_t pid, int *stat) { struct wait_opts wo = { .wo_type = PIDTYPE_PID, .wo_pid = find_get_pid(pid), .wo_flags = WEXITED, }; int ret; ret = do_wait(&wo); if (ret > 0 && wo.wo_stat) *stat = wo.wo_stat; put_pid(wo.wo_pid); return ret; } SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, int, options, struct rusage __user *, ru) { struct rusage r; long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); if (err > 0) { if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) return -EFAULT; } return err; } #ifdef __ARCH_WANT_SYS_WAITPID /* * sys_waitpid() remains for compatibility. waitpid() should be * implemented by calling sys_wait4() from libc.a. */ SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) { return kernel_wait4(pid, stat_addr, options, NULL); } #endif #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(wait4, compat_pid_t, pid, compat_uint_t __user *, stat_addr, int, options, struct compat_rusage __user *, ru) { struct rusage r; long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); if (err > 0) { if (ru && put_compat_rusage(&r, ru)) return -EFAULT; } return err; } COMPAT_SYSCALL_DEFINE5(waitid, int, which, compat_pid_t, pid, struct compat_siginfo __user *, infop, int, options, struct compat_rusage __user *, uru) { struct rusage ru; struct waitid_info info = {.status = 0}; long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); int signo = 0; if (err > 0) { signo = SIGCHLD; err = 0; if (uru) { /* kernel_waitid() overwrites everything in ru */ if (COMPAT_USE_64BIT_TIME) err = copy_to_user(uru, &ru, sizeof(ru)); else err = put_compat_rusage(&ru, uru); if (err) return -EFAULT; } } if (!infop) return err; if (!user_write_access_begin(infop, sizeof(*infop))) return -EFAULT; unsafe_put_user(signo, &infop->si_signo, Efault); unsafe_put_user(0, &infop->si_errno, Efault); unsafe_put_user(info.cause, &infop->si_code, Efault); unsafe_put_user(info.pid, &infop->si_pid, Efault); unsafe_put_user(info.uid, &infop->si_uid, Efault); unsafe_put_user(info.status, &infop->si_status, Efault); user_write_access_end(); return err; Efault: user_write_access_end(); return -EFAULT; } #endif /* * This needs to be __function_aligned as GCC implicitly makes any * implementation of abort() cold and drops alignment specified by * -falign-functions=N. * * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 */ __weak __function_aligned void abort(void) { BUG(); /* if that doesn't kill us, halt */ panic("Oops failed to kill thread"); } EXPORT_SYMBOL(abort); |
52 54 54 52 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2002 Richard Henderson * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> * Copyright (C) 2024 Mike Rapoport IBM. */ #define pr_fmt(fmt) "execmem: " fmt #include <linux/mm.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/execmem.h> #include <linux/maple_tree.h> #include <linux/set_memory.h> #include <linux/moduleloader.h> #include <linux/text-patching.h> #include <asm/tlbflush.h> #include "internal.h" static struct execmem_info *execmem_info __ro_after_init; static struct execmem_info default_execmem_info __ro_after_init; #ifdef CONFIG_MMU static void *execmem_vmalloc(struct execmem_range *range, size_t size, pgprot_t pgprot, unsigned long vm_flags) { bool kasan = range->flags & EXECMEM_KASAN_SHADOW; gfp_t gfp_flags = GFP_KERNEL | __GFP_NOWARN; unsigned int align = range->alignment; unsigned long start = range->start; unsigned long end = range->end; void *p; if (kasan) vm_flags |= VM_DEFER_KMEMLEAK; if (vm_flags & VM_ALLOW_HUGE_VMAP) align = PMD_SIZE; p = __vmalloc_node_range(size, align, start, end, gfp_flags, pgprot, vm_flags, NUMA_NO_NODE, __builtin_return_address(0)); if (!p && range->fallback_start) { start = range->fallback_start; end = range->fallback_end; p = __vmalloc_node_range(size, align, start, end, gfp_flags, pgprot, vm_flags, NUMA_NO_NODE, __builtin_return_address(0)); } if (!p) { pr_warn_ratelimited("unable to allocate memory\n"); return NULL; } if (kasan && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) { vfree(p); return NULL; } return p; } struct vm_struct *execmem_vmap(size_t size) { struct execmem_range *range = &execmem_info->ranges[EXECMEM_MODULE_DATA]; struct vm_struct *area; area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC, range->start, range->end, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); if (!area && range->fallback_start) area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC, range->fallback_start, range->fallback_end, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); return area; } #else static void *execmem_vmalloc(struct execmem_range *range, size_t size, pgprot_t pgprot, unsigned long vm_flags) { return vmalloc(size); } #endif /* CONFIG_MMU */ #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX struct execmem_cache { struct mutex mutex; struct maple_tree busy_areas; struct maple_tree free_areas; }; static struct execmem_cache execmem_cache = { .mutex = __MUTEX_INITIALIZER(execmem_cache.mutex), .busy_areas = MTREE_INIT_EXT(busy_areas, MT_FLAGS_LOCK_EXTERN, execmem_cache.mutex), .free_areas = MTREE_INIT_EXT(free_areas, MT_FLAGS_LOCK_EXTERN, execmem_cache.mutex), }; static inline unsigned long mas_range_len(struct ma_state *mas) { return mas->last - mas->index + 1; } static int execmem_set_direct_map_valid(struct vm_struct *vm, bool valid) { unsigned int nr = (1 << get_vm_area_page_order(vm)); unsigned int updated = 0; int err = 0; for (int i = 0; i < vm->nr_pages; i += nr) { err = set_direct_map_valid_noflush(vm->pages[i], nr, valid); if (err) goto err_restore; updated += nr; } return 0; err_restore: for (int i = 0; i < updated; i += nr) set_direct_map_valid_noflush(vm->pages[i], nr, !valid); return err; } static void execmem_cache_clean(struct work_struct *work) { struct maple_tree *free_areas = &execmem_cache.free_areas; struct mutex *mutex = &execmem_cache.mutex; MA_STATE(mas, free_areas, 0, ULONG_MAX); void *area; mutex_lock(mutex); mas_for_each(&mas, area, ULONG_MAX) { size_t size = mas_range_len(&mas); if (IS_ALIGNED(size, PMD_SIZE) && IS_ALIGNED(mas.index, PMD_SIZE)) { struct vm_struct *vm = find_vm_area(area); execmem_set_direct_map_valid(vm, true); mas_store_gfp(&mas, NULL, GFP_KERNEL); vfree(area); } } mutex_unlock(mutex); } static DECLARE_WORK(execmem_cache_clean_work, execmem_cache_clean); static int execmem_cache_add(void *ptr, size_t size) { struct maple_tree *free_areas = &execmem_cache.free_areas; struct mutex *mutex = &execmem_cache.mutex; unsigned long addr = (unsigned long)ptr; MA_STATE(mas, free_areas, addr - 1, addr + 1); unsigned long lower, upper; void *area = NULL; int err; lower = addr; upper = addr + size - 1; mutex_lock(mutex); area = mas_walk(&mas); if (area && mas.last == addr - 1) lower = mas.index; area = mas_next(&mas, ULONG_MAX); if (area && mas.index == addr + size) upper = mas.last; mas_set_range(&mas, lower, upper); err = mas_store_gfp(&mas, (void *)lower, GFP_KERNEL); mutex_unlock(mutex); if (err) return err; return 0; } static bool within_range(struct execmem_range *range, struct ma_state *mas, size_t size) { unsigned long addr = mas->index; if (addr >= range->start && addr + size < range->end) return true; if (range->fallback_start && addr >= range->fallback_start && addr + size < range->fallback_end) return true; return false; } static void *__execmem_cache_alloc(struct execmem_range *range, size_t size) { struct maple_tree *free_areas = &execmem_cache.free_areas; struct maple_tree *busy_areas = &execmem_cache.busy_areas; MA_STATE(mas_free, free_areas, 0, ULONG_MAX); MA_STATE(mas_busy, busy_areas, 0, ULONG_MAX); struct mutex *mutex = &execmem_cache.mutex; unsigned long addr, last, area_size = 0; void *area, *ptr = NULL; int err; mutex_lock(mutex); mas_for_each(&mas_free, area, ULONG_MAX) { area_size = mas_range_len(&mas_free); if (area_size >= size && within_range(range, &mas_free, size)) break; } if (area_size < size) goto out_unlock; addr = mas_free.index; last = mas_free.last; /* insert allocated size to busy_areas at range [addr, addr + size) */ mas_set_range(&mas_busy, addr, addr + size - 1); err = mas_store_gfp(&mas_busy, (void *)addr, GFP_KERNEL); if (err) goto out_unlock; mas_store_gfp(&mas_free, NULL, GFP_KERNEL); if (area_size > size) { void *ptr = (void *)(addr + size); /* * re-insert remaining free size to free_areas at range * [addr + size, last] */ mas_set_range(&mas_free, addr + size, last); err = mas_store_gfp(&mas_free, ptr, GFP_KERNEL); if (err) { mas_store_gfp(&mas_busy, NULL, GFP_KERNEL); goto out_unlock; } } ptr = (void *)addr; out_unlock: mutex_unlock(mutex); return ptr; } static int execmem_cache_populate(struct execmem_range *range, size_t size) { unsigned long vm_flags = VM_ALLOW_HUGE_VMAP; unsigned long start, end; struct vm_struct *vm; size_t alloc_size; int err = -ENOMEM; void *p; alloc_size = round_up(size, PMD_SIZE); p = execmem_vmalloc(range, alloc_size, PAGE_KERNEL, vm_flags); if (!p) return err; vm = find_vm_area(p); if (!vm) goto err_free_mem; /* fill memory with instructions that will trap */ execmem_fill_trapping_insns(p, alloc_size, /* writable = */ true); start = (unsigned long)p; end = start + alloc_size; vunmap_range(start, end); err = execmem_set_direct_map_valid(vm, false); if (err) goto err_free_mem; err = vmap_pages_range_noflush(start, end, range->pgprot, vm->pages, PMD_SHIFT); if (err) goto err_free_mem; err = execmem_cache_add(p, alloc_size); if (err) goto err_free_mem; return 0; err_free_mem: vfree(p); return err; } static void *execmem_cache_alloc(struct execmem_range *range, size_t size) { void *p; int err; p = __execmem_cache_alloc(range, size); if (p) return p; err = execmem_cache_populate(range, size); if (err) return NULL; return __execmem_cache_alloc(range, size); } static bool execmem_cache_free(void *ptr) { struct maple_tree *busy_areas = &execmem_cache.busy_areas; struct mutex *mutex = &execmem_cache.mutex; unsigned long addr = (unsigned long)ptr; MA_STATE(mas, busy_areas, addr, addr); size_t size; void *area; mutex_lock(mutex); area = mas_walk(&mas); if (!area) { mutex_unlock(mutex); return false; } size = mas_range_len(&mas); mas_store_gfp(&mas, NULL, GFP_KERNEL); mutex_unlock(mutex); execmem_fill_trapping_insns(ptr, size, /* writable = */ false); execmem_cache_add(ptr, size); schedule_work(&execmem_cache_clean_work); return true; } #else /* CONFIG_ARCH_HAS_EXECMEM_ROX */ static void *execmem_cache_alloc(struct execmem_range *range, size_t size) { return NULL; } static bool execmem_cache_free(void *ptr) { return false; } #endif /* CONFIG_ARCH_HAS_EXECMEM_ROX */ void *execmem_alloc(enum execmem_type type, size_t size) { struct execmem_range *range = &execmem_info->ranges[type]; bool use_cache = range->flags & EXECMEM_ROX_CACHE; unsigned long vm_flags = VM_FLUSH_RESET_PERMS; pgprot_t pgprot = range->pgprot; void *p; if (use_cache) p = execmem_cache_alloc(range, size); else p = execmem_vmalloc(range, size, pgprot, vm_flags); return kasan_reset_tag(p); } void execmem_free(void *ptr) { /* * This memory may be RO, and freeing RO memory in an interrupt is not * supported by vmalloc. */ WARN_ON(in_interrupt()); if (!execmem_cache_free(ptr)) vfree(ptr); } void *execmem_update_copy(void *dst, const void *src, size_t size) { return text_poke_copy(dst, src, size); } bool execmem_is_rox(enum execmem_type type) { return !!(execmem_info->ranges[type].flags & EXECMEM_ROX_CACHE); } static bool execmem_validate(struct execmem_info *info) { struct execmem_range *r = &info->ranges[EXECMEM_DEFAULT]; if (!r->alignment || !r->start || !r->end || !pgprot_val(r->pgprot)) { pr_crit("Invalid parameters for execmem allocator, module loading will fail"); return false; } if (!IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX)) { for (int i = EXECMEM_DEFAULT; i < EXECMEM_TYPE_MAX; i++) { r = &info->ranges[i]; if (r->flags & EXECMEM_ROX_CACHE) { pr_warn_once("ROX cache is not supported\n"); r->flags &= ~EXECMEM_ROX_CACHE; } } } return true; } static void execmem_init_missing(struct execmem_info *info) { struct execmem_range *default_range = &info->ranges[EXECMEM_DEFAULT]; for (int i = EXECMEM_DEFAULT + 1; i < EXECMEM_TYPE_MAX; i++) { struct execmem_range *r = &info->ranges[i]; if (!r->start) { if (i == EXECMEM_MODULE_DATA) r->pgprot = PAGE_KERNEL; else r->pgprot = default_range->pgprot; r->alignment = default_range->alignment; r->start = default_range->start; r->end = default_range->end; r->flags = default_range->flags; r->fallback_start = default_range->fallback_start; r->fallback_end = default_range->fallback_end; } } } struct execmem_info * __weak execmem_arch_setup(void) { return NULL; } static void __init __execmem_init(void) { struct execmem_info *info = execmem_arch_setup(); if (!info) { info = execmem_info = &default_execmem_info; info->ranges[EXECMEM_DEFAULT].start = VMALLOC_START; info->ranges[EXECMEM_DEFAULT].end = VMALLOC_END; info->ranges[EXECMEM_DEFAULT].pgprot = PAGE_KERNEL_EXEC; info->ranges[EXECMEM_DEFAULT].alignment = 1; } if (!execmem_validate(info)) return; execmem_init_missing(info); execmem_info = info; } #ifdef CONFIG_ARCH_WANTS_EXECMEM_LATE static int __init execmem_late_init(void) { __execmem_init(); return 0; } core_initcall(execmem_late_init); #else void __init execmem_init(void) { __execmem_init(); } #endif |
11 20 18 20 20 20 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #ifndef _WG_QUEUEING_H #define _WG_QUEUEING_H #include "peer.h" #include <linux/types.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/ip_tunnels.h> struct wg_device; struct wg_peer; struct multicore_worker; struct crypt_queue; struct prev_queue; struct sk_buff; /* queueing.c APIs: */ int wg_packet_queue_init(struct crypt_queue *queue, work_func_t function, unsigned int len); void wg_packet_queue_free(struct crypt_queue *queue, bool purge); struct multicore_worker __percpu * wg_packet_percpu_multicore_worker_alloc(work_func_t function, void *ptr); /* receive.c APIs: */ void wg_packet_receive(struct wg_device *wg, struct sk_buff *skb); void wg_packet_handshake_receive_worker(struct work_struct *work); /* NAPI poll function: */ int wg_packet_rx_poll(struct napi_struct *napi, int budget); /* Workqueue worker: */ void wg_packet_decrypt_worker(struct work_struct *work); /* send.c APIs: */ void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer, bool is_retry); void wg_packet_send_handshake_response(struct wg_peer *peer); void wg_packet_send_handshake_cookie(struct wg_device *wg, struct sk_buff *initiating_skb, __le32 sender_index); void wg_packet_send_keepalive(struct wg_peer *peer); void wg_packet_purge_staged_packets(struct wg_peer *peer); void wg_packet_send_staged_packets(struct wg_peer *peer); /* Workqueue workers: */ void wg_packet_handshake_send_worker(struct work_struct *work); void wg_packet_tx_worker(struct work_struct *work); void wg_packet_encrypt_worker(struct work_struct *work); enum packet_state { PACKET_STATE_UNCRYPTED, PACKET_STATE_CRYPTED, PACKET_STATE_DEAD }; struct packet_cb { u64 nonce; struct noise_keypair *keypair; atomic_t state; u32 mtu; u8 ds; }; #define PACKET_CB(skb) ((struct packet_cb *)((skb)->cb)) #define PACKET_PEER(skb) (PACKET_CB(skb)->keypair->entry.peer) static inline bool wg_check_packet_protocol(struct sk_buff *skb) { __be16 real_protocol = ip_tunnel_parse_protocol(skb); return real_protocol && skb->protocol == real_protocol; } static inline void wg_reset_packet(struct sk_buff *skb, bool encapsulating) { u8 l4_hash = skb->l4_hash; u8 sw_hash = skb->sw_hash; u32 hash = skb->hash; skb_scrub_packet(skb, true); memset(&skb->headers, 0, sizeof(skb->headers)); if (encapsulating) { skb->l4_hash = l4_hash; skb->sw_hash = sw_hash; skb->hash = hash; } skb->queue_mapping = 0; skb->nohdr = 0; skb->peeked = 0; skb->mac_len = 0; skb->dev = NULL; #ifdef CONFIG_NET_SCHED skb->tc_index = 0; #endif skb_reset_redirect(skb); skb->hdr_len = skb_headroom(skb); skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb_probe_transport_header(skb); skb_reset_inner_headers(skb); } static inline int wg_cpumask_choose_online(int *stored_cpu, unsigned int id) { unsigned int cpu = *stored_cpu, cpu_index, i; if (unlikely(cpu >= nr_cpu_ids || !cpumask_test_cpu(cpu, cpu_online_mask))) { cpu_index = id % cpumask_weight(cpu_online_mask); cpu = cpumask_first(cpu_online_mask); for (i = 0; i < cpu_index; ++i) cpu = cpumask_next(cpu, cpu_online_mask); *stored_cpu = cpu; } return cpu; } /* This function is racy, in the sense that it's called while last_cpu is * unlocked, so it could return the same CPU twice. Adding locking or using * atomic sequence numbers is slower though, and the consequences of racing are * harmless, so live with it. */ static inline int wg_cpumask_next_online(int *last_cpu) { int cpu = cpumask_next(READ_ONCE(*last_cpu), cpu_online_mask); if (cpu >= nr_cpu_ids) cpu = cpumask_first(cpu_online_mask); WRITE_ONCE(*last_cpu, cpu); return cpu; } void wg_prev_queue_init(struct prev_queue *queue); /* Multi producer */ bool wg_prev_queue_enqueue(struct prev_queue *queue, struct sk_buff *skb); /* Single consumer */ struct sk_buff *wg_prev_queue_dequeue(struct prev_queue *queue); /* Single consumer */ static inline struct sk_buff *wg_prev_queue_peek(struct prev_queue *queue) { if (queue->peeked) return queue->peeked; queue->peeked = wg_prev_queue_dequeue(queue); return queue->peeked; } /* Single consumer */ static inline void wg_prev_queue_drop_peeked(struct prev_queue *queue) { queue->peeked = NULL; } static inline int wg_queue_enqueue_per_device_and_peer( struct crypt_queue *device_queue, struct prev_queue *peer_queue, struct sk_buff *skb, struct workqueue_struct *wq) { int cpu; atomic_set_release(&PACKET_CB(skb)->state, PACKET_STATE_UNCRYPTED); /* We first queue this up for the peer ingestion, but the consumer * will wait for the state to change to CRYPTED or DEAD before. */ if (unlikely(!wg_prev_queue_enqueue(peer_queue, skb))) return -ENOSPC; /* Then we queue it up in the device queue, which consumes the * packet as soon as it can. */ cpu = wg_cpumask_next_online(&device_queue->last_cpu); if (unlikely(ptr_ring_produce_bh(&device_queue->ring, skb))) return -EPIPE; queue_work_on(cpu, wq, &per_cpu_ptr(device_queue->worker, cpu)->work); return 0; } static inline void wg_queue_enqueue_per_peer_tx(struct sk_buff *skb, enum packet_state state) { /* We take a reference, because as soon as we call atomic_set, the * peer can be freed from below us. */ struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); atomic_set_release(&PACKET_CB(skb)->state, state); queue_work_on(wg_cpumask_choose_online(&peer->serial_work_cpu, peer->internal_id), peer->device->packet_crypt_wq, &peer->transmit_packet_work); wg_peer_put(peer); } static inline void wg_queue_enqueue_per_peer_rx(struct sk_buff *skb, enum packet_state state) { /* We take a reference, because as soon as we call atomic_set, the * peer can be freed from below us. */ struct wg_peer *peer = wg_peer_get(PACKET_PEER(skb)); atomic_set_release(&PACKET_CB(skb)->state, state); napi_schedule(&peer->napi); wg_peer_put(peer); } #ifdef DEBUG bool wg_packet_counter_selftest(void); #endif #endif /* _WG_QUEUEING_H */ |
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); static __always_inline bool get_stack_guard_info(unsigned long *stack, struct stack_info *info) { /* make sure it's not in the stack proper */ if (get_stack_info_noinstr(stack, current, info)) return false; /* but if it is in the page below it, we hit a guard */ return get_stack_info_noinstr((void *)stack + PAGE_SIZE, current, info); } const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */ |
14 14 24 24 24 24 4 44 44 43 48 48 48 48 48 48 48 48 48 48 55 55 52 10 10 52 52 52 52 52 48 48 52 52 10 52 52 52 17 52 17 35 55 54 52 35 34 2 52 51 52 52 52 52 52 52 70 70 70 70 69 69 70 70 70 70 70 22 11 17 17 17 17 22 22 22 22 22 22 17 11 11 11 22 26 47 47 47 47 47 47 47 47 18 18 22 22 22 22 22 22 22 22 22 22 22 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2024 Intel Corporation * * utilities for mac80211 */ #include <net/mac80211.h> #include <linux/netdevice.h> #include <linux/export.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/bitmap.h> #include <linux/crc32.h> #include <net/net_namespace.h> #include <net/cfg80211.h> #include <net/rtnetlink.h> #include <kunit/visibility.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "mesh.h" #include "wme.h" #include "led.h" #include "wep.h" /* privid for wiphys to determine whether they belong to us or not */ const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) { struct ieee80211_local *local; local = wiphy_priv(wiphy); return &local->hw; } EXPORT_SYMBOL(wiphy_to_ieee80211_hw); const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { .mode = IEEE80211_CONN_MODE_EHT, .bw_limit = IEEE80211_CONN_BW_LIMIT_320, }; u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, enum nl80211_iftype type) { __le16 fc = hdr->frame_control; if (ieee80211_is_data(fc)) { if (len < 24) /* drop incorrect hdr len (data) */ return NULL; if (ieee80211_has_a4(fc)) return NULL; if (ieee80211_has_tods(fc)) return hdr->addr1; if (ieee80211_has_fromds(fc)) return hdr->addr2; return hdr->addr3; } if (ieee80211_is_s1g_beacon(fc)) { struct ieee80211_ext *ext = (void *) hdr; return ext->u.s1g_beacon.sa; } if (ieee80211_is_mgmt(fc)) { if (len < 24) /* drop incorrect hdr len (mgmt) */ return NULL; return hdr->addr3; } if (ieee80211_is_ctl(fc)) { if (ieee80211_is_pspoll(fc)) return hdr->addr1; if (ieee80211_is_back_req(fc)) { switch (type) { case NL80211_IFTYPE_STATION: return hdr->addr2; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: return hdr->addr1; default: break; /* fall through to the return */ } } } return NULL; } EXPORT_SYMBOL(ieee80211_get_bssid); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; skb_queue_walk(&tx->skbs, skb) { hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * DIV_ROUND_UP() operations. */ if (band == NL80211_BAND_5GHZ || erp) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 18.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ dur = 16; /* SIFS + signal ext */ dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ /* rates should already consider the channel bandwidth, * don't apply divisor again. */ dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 usec or 24 usec with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); } return dur; } /* Exported duration function for driver use */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_band band, size_t frame_len, struct ieee80211_rate *rate) { struct ieee80211_sub_if_data *sdata; u16 dur; int erp; bool short_preamble = false; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; } dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_generic_frame_duration); __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; } bitrate = rate->bitrate; /* CTS duration */ dur = ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble); /* Data frame duration */ dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble); /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_rts_duration); __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; } bitrate = rate->bitrate; /* Data frame duration */ dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble); if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble); } return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_ctstoself_duration); static void wake_tx_push_queue(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_txq *queue) { struct ieee80211_tx_control control = { .sta = queue->sta, }; struct sk_buff *skb; while (1) { skb = ieee80211_tx_dequeue(&local->hw, queue); if (!skb) break; drv_tx(local, &control, skb); } } /* wake_tx_queue handler for driver not implementing a custom one*/ void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); struct ieee80211_txq *queue; spin_lock(&local->handle_wake_tx_queue_lock); /* Use ieee80211_next_txq() for airtime fairness accounting */ ieee80211_txq_schedule_start(hw, txq->ac); while ((queue = ieee80211_next_txq(hw, txq->ac))) { wake_tx_push_queue(local, sdata, queue); ieee80211_return_txq(hw, queue, false); } ieee80211_txq_schedule_end(hw, txq->ac); spin_unlock(&local->handle_wake_tx_queue_lock); } EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif *vif = &sdata->vif; struct fq *fq = &local->fq; struct ps_data *ps = NULL; struct txq_info *txqi; struct sta_info *sta; int i; local_bh_disable(); spin_lock(&fq->lock); if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct ieee80211_txq *txq = sta->sta.txq[i]; if (!txq) continue; txqi = to_txq_info(txq); if (ac != txq->ac) continue; if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags)) continue; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); spin_lock(&fq->lock); } } if (!vif->txq) goto out; txqi = to_txq_info(vif->txq); if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) goto out; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); local_bh_enable(); return; out: spin_unlock(&fq->lock); local_bh_enable(); } static void __releases(&local->queue_stop_reason_lock) __acquires(&local->queue_stop_reason_lock) _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) { struct ieee80211_sub_if_data *sdata; int n_acs = IEEE80211_NUM_ACS; int i; rcu_read_lock(); if (local->hw.queues < IEEE80211_NUM_ACS) n_acs = 1; for (i = 0; i < local->hw.queues; i++) { if (local->queue_stop_reasons[i]) continue; spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); list_for_each_entry_rcu(sdata, &local->interfaces, list) { int ac; for (ac = 0; ac < n_acs; ac++) { int ac_queue = sdata->vif.hw_queue[ac]; if (ac_queue == i || sdata->vif.cab_queue == i) __ieee80211_wake_txqs(sdata, ac); } } spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); } rcu_read_unlock(); } void ieee80211_wake_txqs(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, wake_txqs_tasklet); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); _ieee80211_wake_txqs(local, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted, unsigned long *flags) { struct ieee80211_local *local = hw_to_local(hw); if (WARN_ON(queue >= hw->queues)) return; if (!test_bit(reason, &local->queue_stop_reasons[queue])) return; if (!refcounted) { local->q_stop_reasons[queue][reason] = 0; } else { local->q_stop_reasons[queue][reason]--; if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) local->q_stop_reasons[queue][reason] = 0; } if (local->q_stop_reasons[queue][reason] == 0) __clear_bit(reason, &local->queue_stop_reasons[queue]); trace_wake_queue(local, queue, reason, local->q_stop_reasons[queue][reason]); if (local->queue_stop_reasons[queue] != 0) /* someone still has this queue stopped */ return; if (!skb_queue_empty(&local->pending[queue])) tasklet_schedule(&local->tx_pending_tasklet); /* * Calling _ieee80211_wake_txqs here can be a problem because it may * release queue_stop_reason_lock which has been taken by * __ieee80211_wake_queue's caller. It is certainly not very nice to * release someone's lock, but it is fine because all the callers of * __ieee80211_wake_queue call it right before releasing the lock. */ if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) tasklet_schedule(&local->wake_txqs_tasklet); else _ieee80211_wake_txqs(local, flags); } void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) { ieee80211_wake_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queue); static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); if (WARN_ON(queue >= hw->queues)) return; if (!refcounted) local->q_stop_reasons[queue][reason] = 1; else local->q_stop_reasons[queue][reason]++; trace_stop_queue(local, queue, reason, local->q_stop_reasons[queue][reason]); set_bit(reason, &local->queue_stop_reasons[queue]); } void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) { ieee80211_stop_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queue); void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_hw *hw = &local->hw; unsigned long flags; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int queue = info->hw_queue; if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); return; } spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs) { struct ieee80211_hw *hw = &local->hw; struct sk_buff *skb; unsigned long flags; int queue, i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); while ((skb = skb_dequeue(skbs))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } queue = info->hw_queue; __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); } for (i = 0; i < hw->queues; i++) __ieee80211_wake_queue(hw, i, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_stop_queue(hw, i, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues(struct ieee80211_hw *hw) { ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queues); int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int ret; if (WARN_ON(queue >= hw->queues)) return true; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, &local->queue_stop_reasons[queue]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return ret; } EXPORT_SYMBOL(ieee80211_queue_stopped); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queues(struct ieee80211_hw *hw) { ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queues); unsigned int ieee80211_get_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { unsigned int queues; if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { int ac; queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) queues |= BIT(sdata->vif.hw_queue[ac]); if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) queues |= BIT(sdata->vif.cab_queue); } else { /* all queues */ queues = BIT(local->hw.queues) - 1; } return queues; } void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop) { if (!local->ops->flush) return; /* * If no queue was set, or if the HW doesn't support * IEEE80211_HW_QUEUE_CONTROL - flush all queues */ if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) queues = ieee80211_get_vif_queues(local, sdata); ieee80211_stop_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); if (drop) { struct sta_info *sta; /* Purge the queues, so the frames on them won't be * sent during __ieee80211_wake_queue() */ list_for_each_entry(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; ieee80211_purge_sta_txqs(sta); } } drv_flush(local, sdata, queues, drop); ieee80211_wake_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); } void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop) { __ieee80211_flush_queues(local, sdata, 0, drop); } static void __iterate_interfaces(struct ieee80211_local *local, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_sub_if_data *sdata; bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; list_for_each_entry_rcu(sdata, &local->interfaces, list, lockdep_is_held(&local->iflist_mtx) || lockdep_is_held(&local->hw.wiphy->mtx)) { switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) continue; break; case NL80211_IFTYPE_AP_VLAN: continue; default: break; } if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) continue; if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) continue; if (ieee80211_sdata_running(sdata) || !active_only) iterator(data, sdata->vif.addr, &sdata->vif); } sdata = rcu_dereference_check(local->monitor_sdata, lockdep_is_held(&local->iflist_mtx) || lockdep_is_held(&local->hw.wiphy->mtx)); if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || sdata->flags & IEEE80211_SDATA_IN_DRIVER)) iterator(data, sdata->vif.addr, &sdata->vif); } void ieee80211_iterate_interfaces( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); mutex_lock(&local->iflist_mtx); __iterate_interfaces(local, iter_flags, iterator, data); mutex_unlock(&local->iflist_mtx); } EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); void ieee80211_iterate_active_interfaces_atomic( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); void ieee80211_iterate_active_interfaces_mtx( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); lockdep_assert_wiphy(hw->wiphy); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); static void __iterate_stations(struct ieee80211_local *local, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct sta_info *sta; list_for_each_entry_rcu(sta, &local->sta_list, list, lockdep_is_held(&local->hw.wiphy->mtx)) { if (!sta->uploaded) continue; iterator(data, &sta->sta); } } void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_stations(local, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct ieee80211_local *local = hw_to_local(hw); lockdep_assert_wiphy(local->hw.wiphy); __iterate_stations(local, iterator, data); } EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (!ieee80211_sdata_running(sdata) || !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) return NULL; return &sdata->vif; } EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) { if (!vif) return NULL; return &vif_to_sdata(vif)->wdev; } EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); /* * Nothing should have been stuffed into the workqueue during * the suspend->resume cycle. Since we can't check each caller * of this function if we are already quiescing / suspended, * check here and don't WARN since this can actually happen when * the rx path (for example) is racing against __ieee80211_suspend * and suspending / quiescing was set after the rx path checked * them. */ static bool ieee80211_can_queue_work(struct ieee80211_local *local) { if (local->quiescing || (local->suspended && !local->resuming)) { pr_warn("queueing ieee80211 work while going to suspend\n"); return false; } return true; } void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_work(local->workqueue, work); } EXPORT_SYMBOL(ieee80211_queue_work); void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, struct delayed_work *dwork, unsigned long delay) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_delayed_work(local->workqueue, dwork, delay); } EXPORT_SYMBOL(ieee80211_queue_delayed_work); void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac) { struct ieee80211_chanctx_conf *chanctx_conf; const struct ieee80211_reg_rule *rrule; const struct ieee80211_wmm_ac *wmm_ac; u16 center_freq = 0; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_STATION) return; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) center_freq = chanctx_conf->def.chan->center_freq; if (!center_freq) { rcu_read_unlock(); return; } rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { rcu_read_unlock(); return; } if (sdata->vif.type == NL80211_IFTYPE_AP) wmm_ac = &rrule->wmm_rule.ap[ac]; else wmm_ac = &rrule->wmm_rule.client[ac]; qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); rcu_read_unlock(); } void ieee80211_set_wmm_default(struct ieee80211_link_data *link, bool bss_notify, bool enable_qos) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_tx_queue_params qparam; struct ieee80211_chanctx_conf *chanctx_conf; int ac; bool use_11b; bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ int aCWmin, aCWmax; if (!local->ops->conf_tx) return; if (local->hw.queues < IEEE80211_NUM_ACS) return; memset(&qparam, 0, sizeof(qparam)); rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); use_11b = (chanctx_conf && chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && !link->operating_11g_mode; rcu_read_unlock(); is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); /* Set defaults according to 802.11-2007 Table 7-37 */ aCWmax = 1023; if (use_11b) aCWmin = 31; else aCWmin = 15; /* Configure old 802.11b/g medium access rules. */ qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; qparam.aifs = 2; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { /* Update if QoS is enabled. */ if (enable_qos) { switch (ac) { case IEEE80211_AC_BK: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 9; else qparam.aifs = 7; break; /* never happens but let's not leave undefined */ default: case IEEE80211_AC_BE: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 6; else qparam.aifs = 3; break; case IEEE80211_AC_VI: qparam.cw_max = aCWmin; qparam.cw_min = (aCWmin + 1) / 2 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 6016/32; else qparam.txop = 3008/32; if (is_ocb) qparam.aifs = 3; else qparam.aifs = 2; break; case IEEE80211_AC_VO: qparam.cw_max = (aCWmin + 1) / 2 - 1; qparam.cw_min = (aCWmin + 1) / 4 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 3264/32; else qparam.txop = 1504/32; qparam.aifs = 2; break; } } ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); qparam.uapsd = false; link->tx_conf[ac] = qparam; drv_conf_tx(local, link, ac, &qparam); } if (sdata->vif.type != NL80211_IFTYPE_MONITOR && sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) { link->conf->qos = enable_qos; if (bss_notify) ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_QOS); } } void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *da, const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; bool multi_link = ieee80211_vif_is_mld(&sdata->vif); struct { u8 id; u8 len; u8 ext_id; struct ieee80211_multi_link_elem ml; struct ieee80211_mle_basic_common_info basic; } __packed mle = { .id = WLAN_EID_EXTENSION, .len = sizeof(mle) - 2, .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), .basic.len = sizeof(mle.basic), }; int err; memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + multi_link * sizeof(mle)); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); mgmt = skb_put_zero(skb, 24 + 6); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); mgmt->u.auth.status_code = cpu_to_le16(status); if (extra) skb_put_data(skb, extra, extra_len); if (multi_link) skb_put_data(skb, &mle, sizeof(mle)); if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); if (WARN_ON(err)) { kfree_skb(skb); return; } } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | tx_flags; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt = (void *)frame_buf; /* build frame */ mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); mgmt->duration = 0; /* initialize only */ mgmt->seq_ctrl = 0; /* initialize only */ memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); /* u.deauth.reason_code == u.disassoc.reason_code */ mgmt->u.deauth.reason_code = cpu_to_le16(reason); if (send_frame) { skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_DEAUTH_FRAME_LEN); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); /* copy in frame */ skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); if (sdata->vif.type != NL80211_IFTYPE_STATION || !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } } static int ieee80211_put_s1g_cap(struct sk_buff *skb, struct ieee80211_sta_s1g_cap *s1g_cap) { if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) return -ENOBUFS; skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); return 0; } static int ieee80211_put_preq_ies_band(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, const u8 *ie, size_t ie_len, size_t *offset, enum nl80211_band band, u32 rate_mask, struct cfg80211_chan_def *chandef, u32 flags) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; int i, err; size_t noffset; u32 rate_flags; bool have_80mhz = false; *offset = 0; sband = local->hw.wiphy->bands[band]; if (WARN_ON_ONCE(!sband)) return 0; rate_flags = ieee80211_chandef_rate_flags(chandef); /* For direct scan add S1G IE and consider its override bits */ if (band == NL80211_BAND_S1GHZ) return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, ~rate_mask, WLAN_EID_SUPP_RATES); if (err) return err; /* insert "request information" if in custom IEs */ if (ie && ie_len) { static const u8 before_extrates[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_REQUEST, }; noffset = ieee80211_ie_split(ie, ie_len, before_extrates, ARRAY_SIZE(before_extrates), *offset); if (skb_tailroom(skb) < noffset - *offset) return -ENOBUFS; skb_put_data(skb, ie + *offset, noffset - *offset); *offset = noffset; } err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, ~rate_mask, WLAN_EID_EXT_SUPP_RATES); if (err) return err; if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { if (skb_tailroom(skb) < 3) return -ENOBUFS; skb_put_u8(skb, WLAN_EID_DS_PARAMS); skb_put_u8(skb, 1); skb_put_u8(skb, ieee80211_frequency_to_channel(chandef->chan->center_freq)); } if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) return 0; /* insert custom IEs that go before HT */ if (ie && ie_len) { static const u8 before_ht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_DS_PARAMS, WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; noffset = ieee80211_ie_split(ie, ie_len, before_ht, ARRAY_SIZE(before_ht), *offset); if (skb_tailroom(skb) < noffset - *offset) return -ENOBUFS; skb_put_data(skb, ie + *offset, noffset - *offset); *offset = noffset; } if (sband->ht_cap.ht_supported) { u8 *pos; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) return -ENOBUFS; pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, sband->ht_cap.cap); } /* insert custom IEs that go before VHT */ if (ie && ie_len) { static const u8 before_vht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_SSID_LIST, WLAN_EID_CHANNEL_USAGE, WLAN_EID_INTERWORKING, WLAN_EID_MESH_ID, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; noffset = ieee80211_ie_split(ie, ie_len, before_vht, ARRAY_SIZE(before_vht), *offset); if (skb_tailroom(skb) < noffset - *offset) return -ENOBUFS; skb_put_data(skb, ie + *offset, noffset - *offset); *offset = noffset; } /* Check if any channel in this sband supports at least 80 MHz */ for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (sband->vht_cap.vht_supported && have_80mhz) { u8 *pos; if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) return -ENOBUFS; pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); } /* insert custom IEs that go before HE */ if (ie && ie_len) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, WLAN_EID_AP_CSN, /* TODO: add 11ah/11aj/11ak elements */ }; noffset = ieee80211_ie_split(ie, ie_len, before_he, ARRAY_SIZE(before_he), *offset); if (skb_tailroom(skb) < noffset - *offset) return -ENOBUFS; skb_put_data(skb, ie + *offset, noffset - *offset); *offset = noffset; } if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), IEEE80211_CHAN_NO_HE)) { err = ieee80211_put_he_cap(skb, sdata, sband, NULL); if (err) return err; } if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), IEEE80211_CHAN_NO_HE | IEEE80211_CHAN_NO_EHT)) { err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); if (err) return err; } err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); if (err) return err; /* * If adding more here, adjust code in main.c * that calculates local->scan_ies_len. */ return 0; } static int ieee80211_put_preq_ies(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags) { size_t custom_ie_offset = 0; int i, err; memset(ie_desc, 0, sizeof(*ie_desc)); for (i = 0; i < NUM_NL80211_BANDS; i++) { if (bands_used & BIT(i)) { ie_desc->ies[i] = skb_tail_pointer(skb); err = ieee80211_put_preq_ies_band(skb, sdata, ie, ie_len, &custom_ie_offset, i, rate_masks[i], chandef, flags); if (err) return err; ie_desc->len[i] = skb_tail_pointer(skb) - ie_desc->ies[i]; } } /* add any remaining custom IEs */ if (ie && ie_len) { if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, "not enough space for preq custom IEs\n")) return -ENOBUFS; ie_desc->common_ies = skb_tail_pointer(skb); skb_put_data(skb, ie + custom_ie_offset, ie_len - custom_ie_offset); ie_desc->common_ie_len = skb_tail_pointer(skb) - ie_desc->common_ies; } return 0; }; int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags) { struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); uintptr_t offs; int ret, i; u8 *start; if (!skb) return -ENOMEM; start = skb_tail_pointer(skb); memset(start, 0, skb_tailroom(skb)); ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, bands_used, rate_masks, chandef, flags); if (ret < 0) { goto out; } if (skb->len > buffer_len) { ret = -ENOBUFS; goto out; } memcpy(buffer, start, skb->len); /* adjust ie_desc for copy */ for (i = 0; i < NUM_NL80211_BANDS; i++) { offs = ie_desc->ies[i] - start; ie_desc->ies[i] = buffer + offs; } offs = ie_desc->common_ies - start; ie_desc->common_ies = buffer + offs; ret = skb->len; out: consume_skb(skb); return ret; } struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags) { struct ieee80211_local *local = sdata->local; struct cfg80211_chan_def chandef; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u32 rate_masks[NUM_NL80211_BANDS] = {}; struct ieee80211_scan_ies dummy_ie_desc; /* * Do not send DS Channel parameter for directed probe requests * in order to maximize the chance that we get a response. Some * badly-behaved APs don't respond when this parameter is included. */ chandef.width = sdata->vif.bss_conf.chanreq.oper.width; if (flags & IEEE80211_PROBE_FLAG_DIRECTED) chandef.chan = NULL; else chandef.chan = chan; skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, local->scan_ies_len + ie_len); if (!skb) return NULL; rate_masks[chan->band] = ratemask; ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, ie, ie_len, BIT(chan->band), rate_masks, &chandef, flags); if (dst) { mgmt = (struct ieee80211_mgmt *) skb->data; memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; return skb; } u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates) { struct ieee80211_supported_band *sband; size_t num_rates; u32 supp_rates, rate_flags; int i, j; sband = sdata->local->hw.wiphy->bands[band]; if (WARN_ON(!sband)) return 1; rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); num_rates = sband->n_bitrates; supp_rates = 0; for (i = 0; i < elems->supp_rates_len + elems->ext_supp_rates_len; i++) { u8 rate = 0; int own_rate; bool is_basic; if (i < elems->supp_rates_len) rate = elems->supp_rates[i]; else if (elems->ext_supp_rates) rate = elems->ext_supp_rates [i - elems->supp_rates_len]; own_rate = 5 * (rate & 0x7f); is_basic = !!(rate & 0x80); if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) continue; for (j = 0; j < num_rates; j++) { int brate; if ((rate_flags & sband->bitrates[j].flags) != rate_flags) continue; brate = sband->bitrates[j].bitrate; if (brate == own_rate) { supp_rates |= BIT(j); if (basic_rates && is_basic) *basic_rates |= BIT(j); } } } return supp_rates; } void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) { local_bh_disable(); ieee80211_handle_queued_frames(local); local_bh_enable(); ieee80211_led_radio(local, false); ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); flush_workqueue(local->workqueue); wiphy_work_flush(local->hw.wiphy, NULL); drv_stop(local, suspend); } static void ieee80211_flush_completed_scan(struct ieee80211_local *local, bool aborted) { /* It's possible that we don't handle the scan completion in * time during suspend, so if it's still marked as completed * here, queue the work and flush it to clean things up. * Instead of calling the worker function directly here, we * really queue it to avoid potential races with other flows * scheduling the same work. */ if (test_bit(SCAN_COMPLETED, &local->scanning)) { /* If coming from reconfiguration failure, abort the scan so * we don't attempt to continue a partial HW scan - which is * possible otherwise if (e.g.) the 2.4 GHz portion was the * completed scan, and a 5 GHz portion is still pending. */ if (aborted) set_bit(SCAN_ABORTED, &local->scanning); wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); } } static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; lockdep_assert_wiphy(local->hw.wiphy); /* * We get here if during resume the device can't be restarted properly. * We might also get here if this happens during HW reset, which is a * slightly different situation and we need to drop all connections in * the latter case. * * Ask cfg80211 to turn off all interfaces, this will result in more * warnings but at least we'll then get into a clean stopped state. */ local->resuming = false; local->suspended = false; local->in_reconfig = false; local->reconfig_failure = true; ieee80211_flush_completed_scan(local, true); /* scheduled scan clearly can't be running any more, but tell * cfg80211 and clear local state */ ieee80211_sched_scan_end(local); list_for_each_entry(sdata, &local->interfaces, list) sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; /* Mark channel contexts as not being in the driver any more to avoid * removing them from the driver during the shutdown process... */ list_for_each_entry(ctx, &local->chanctx_list, list) ctx->driver_present = false; } static void ieee80211_assign_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; lockdep_assert_wiphy(local->hw.wiphy); conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->hw.wiphy->mtx)); if (conf) { ctx = container_of(conf, struct ieee80211_chanctx, conf); drv_assign_vif_chanctx(local, sdata, link->conf, ctx); } } static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; lockdep_assert_wiphy(local->hw.wiphy); /* add STAs back */ list_for_each_entry(sta, &local->sta_list, list) { enum ieee80211_sta_state state; if (!sta->uploaded || sta->sdata != sdata) continue; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) WARN_ON(drv_sta_state(local, sta->sdata, sta, state, state + 1)); } } static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) { struct cfg80211_nan_func *func, **funcs; int res, id, i = 0; res = drv_start_nan(sdata->local, sdata, &sdata->u.nan.conf); if (WARN_ON(res)) return res; funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, sizeof(*funcs), GFP_KERNEL); if (!funcs) return -ENOMEM; /* Add all the functions: * This is a little bit ugly. We need to call a potentially sleeping * callback for each NAN function, so we can't hold the spinlock. */ spin_lock_bh(&sdata->u.nan.func_lock); idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) funcs[i++] = func; spin_unlock_bh(&sdata->u.nan.func_lock); for (i = 0; funcs[i]; i++) { res = drv_add_nan_func(sdata->local, sdata, funcs[i]); if (WARN_ON(res)) ieee80211_nan_func_terminated(&sdata->vif, funcs[i]->instance_id, NL80211_NAN_FUNC_TERM_REASON_ERROR, GFP_KERNEL); } kfree(funcs); return 0; } static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 changed) { int link_id; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; if (!(sdata->vif.active_links & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; if (rcu_access_pointer(link->u.ap.beacon)) drv_start_ap(local, sdata, link->conf); if (!link->conf->enable_beacon) continue; changed |= BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED; ieee80211_link_info_change_notify(sdata, link, changed); } } int ieee80211_reconfig(struct ieee80211_local *local) { struct ieee80211_hw *hw = &local->hw; struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; struct sta_info *sta; int res, i; bool reconfig_due_to_wowlan = false; struct ieee80211_sub_if_data *sched_scan_sdata; struct cfg80211_sched_scan_request *sched_scan_req; bool sched_scan_stopped = false; bool suspended = local->suspended; bool in_reconfig = false; lockdep_assert_wiphy(local->hw.wiphy); /* nothing to do if HW shouldn't run */ if (!local->open_count) goto wake_up; #ifdef CONFIG_PM if (suspended) local->resuming = true; if (local->wowlan) { /* * In the wowlan case, both mac80211 and the device * are functional when the resume op is called, so * clear local->suspended so the device could operate * normally (e.g. pass rx frames). */ local->suspended = false; res = drv_resume(local); local->wowlan = false; if (res < 0) { local->resuming = false; return res; } if (res == 0) goto wake_up; WARN_ON(res > 1); /* * res is 1, which means the driver requested * to go through a regular reset on wakeup. * restore local->suspended in this case. */ reconfig_due_to_wowlan = true; local->suspended = true; } #endif /* * In case of hw_restart during suspend (without wowlan), * cancel restart work, as we are reconfiguring the device * anyway. * Note that restart_work is scheduled on a frozen workqueue, * so we can't deadlock in this case. */ if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) cancel_work_sync(&local->restart_work); local->started = false; /* * Upon resume hardware can sometimes be goofy due to * various platform / driver / bus issues, so restarting * the device may at times not work immediately. Propagate * the error. */ res = drv_start(local); if (res) { if (suspended) WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); else WARN(1, "Hardware became unavailable during restart.\n"); ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); ieee80211_handle_reconfig_failure(local); return res; } /* setup fragmentation threshold */ drv_set_frag_threshold(local, hw->wiphy->frag_threshold); /* setup RTS threshold */ drv_set_rts_threshold(local, hw->wiphy->rts_threshold); /* reset coverage class */ drv_set_coverage_class(local, hw->wiphy->coverage_class); ieee80211_led_radio(local, true); ieee80211_mod_tpt_led_trig(local, IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); /* add interfaces */ sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { /* in HW restart it exists already */ WARN_ON(local->resuming); res = drv_add_interface(local, sdata); if (WARN_ON(res)) { RCU_INIT_POINTER(local->monitor_sdata, NULL); synchronize_net(); kfree(sdata); } } list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR && !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) continue; if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && ieee80211_sdata_running(sdata)) { res = drv_add_interface(local, sdata); if (WARN_ON(res)) break; } } /* If adding any of the interfaces failed above, roll back and * report failure. */ if (res) { list_for_each_entry_continue_reverse(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR && !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) continue; if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && ieee80211_sdata_running(sdata)) drv_remove_interface(local, sdata); } ieee80211_handle_reconfig_failure(local); return res; } /* add channel contexts */ list_for_each_entry(ctx, &local->chanctx_list, list) if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) WARN_ON(drv_add_chanctx(local, ctx)); sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata && ieee80211_sdata_running(sdata)) ieee80211_assign_chanctx(local, sdata, &sdata->deflink); /* reconfigure hardware */ ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | IEEE80211_CONF_CHANGE_MONITOR | IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_RETRY_LIMITS | IEEE80211_CONF_CHANGE_IDLE); ieee80211_configure_filter(local); /* Finally also reconfigure all the BSS information */ list_for_each_entry(sdata, &local->interfaces, list) { /* common change flags for all interface types - link only */ u64 changed = BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_BSSID | BSS_CHANGED_CQM | BSS_CHANGED_QOS | BSS_CHANGED_TXPOWER | BSS_CHANGED_MCAST_RATE; struct ieee80211_link_data *link = NULL; unsigned int link_id; u32 active_links = 0; if (!ieee80211_sdata_running(sdata)) continue; if (ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { [0] = &sdata->vif.bss_conf, }; if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* start with a single active link */ active_links = sdata->vif.active_links; link_id = ffs(active_links) - 1; sdata->vif.active_links = BIT(link_id); } drv_change_vif_links(local, sdata, 0, sdata->vif.active_links, old); } sdata->restart_active_links = active_links; for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { if (!ieee80211_vif_link_active(&sdata->vif, link_id)) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; ieee80211_assign_chanctx(local, sdata, link); } switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: break; case NL80211_IFTYPE_ADHOC: if (sdata->vif.cfg.ibss_joined) WARN_ON(drv_join_ibss(local, sdata)); fallthrough; default: ieee80211_reconfig_stations(sdata); fallthrough; case NL80211_IFTYPE_AP: /* AP stations are handled later */ for (i = 0; i < IEEE80211_NUM_ACS; i++) drv_conf_tx(local, &sdata->deflink, i, &sdata->deflink.tx_conf[i]); break; } if (sdata->vif.bss_conf.mu_mimo_owner) changed |= BSS_CHANGED_MU_GROUPS; if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= BSS_CHANGED_IDLE; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (!ieee80211_vif_is_mld(&sdata->vif)) { changed |= BSS_CHANGED_ASSOC | BSS_CHANGED_ARP_FILTER | BSS_CHANGED_PS; /* Re-send beacon info report to the driver */ if (sdata->deflink.u.mgd.have_beacon) changed |= BSS_CHANGED_BEACON_INFO; if (sdata->vif.bss_conf.max_idle_period || sdata->vif.bss_conf.protected_keep_alive) changed |= BSS_CHANGED_KEEP_ALIVE; ieee80211_bss_info_change_notify(sdata, changed); } else if (!WARN_ON(!link)) { ieee80211_link_info_change_notify(sdata, link, changed); changed = BSS_CHANGED_ASSOC | BSS_CHANGED_IDLE | BSS_CHANGED_PS | BSS_CHANGED_ARP_FILTER; ieee80211_vif_cfg_change_notify(sdata, changed); } break; case NL80211_IFTYPE_OCB: changed |= BSS_CHANGED_OCB; ieee80211_bss_info_change_notify(sdata, changed); break; case NL80211_IFTYPE_ADHOC: changed |= BSS_CHANGED_IBSS; fallthrough; case NL80211_IFTYPE_AP: changed |= BSS_CHANGED_P2P_PS; if (ieee80211_vif_is_mld(&sdata->vif)) ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_SSID); else changed |= BSS_CHANGED_SSID; if (sdata->vif.bss_conf.ftm_responder == 1 && wiphy_ext_feature_isset(sdata->local->hw.wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) changed |= BSS_CHANGED_FTM_RESPONDER; if (sdata->vif.type == NL80211_IFTYPE_AP) { changed |= BSS_CHANGED_AP_PROBE_RESP; if (ieee80211_vif_is_mld(&sdata->vif)) { ieee80211_reconfig_ap_links(local, sdata, changed); break; } if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) drv_start_ap(local, sdata, sdata->deflink.conf); } fallthrough; case NL80211_IFTYPE_MESH_POINT: if (sdata->vif.bss_conf.enable_beacon) { changed |= BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED; ieee80211_bss_info_change_notify(sdata, changed); } break; case NL80211_IFTYPE_NAN: res = ieee80211_reconfig_nan(sdata); if (res < 0) { ieee80211_handle_reconfig_failure(local); return res; } break; case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: /* nothing to do */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_WDS: WARN_ON(1); break; } } ieee80211_recalc_ps(local); /* * The sta might be in psm against the ap (e.g. because * this was the state before a hw restart), so we * explicitly send a null packet in order to make sure * it'll sync against the ap (and get out of psm). */ if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; if (!sdata->u.mgd.associated) continue; ieee80211_send_nullfunc(local, sdata, false); } } /* APs are now beaconing, add back stations */ list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: ieee80211_reconfig_stations(sdata); break; default: break; } } /* add back keys */ list_for_each_entry(sdata, &local->interfaces, list) ieee80211_reenable_keys(sdata); /* re-enable multi-link for client interfaces */ list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->restart_active_links) ieee80211_set_active_links(&sdata->vif, sdata->restart_active_links); /* * If a link switch was scheduled before the restart, and ran * before reconfig, it will do nothing, so re-schedule. */ if (sdata->desired_active_links) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->activate_links_work); } /* Reconfigure sched scan if it was interrupted by FW restart */ sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, lockdep_is_held(&local->hw.wiphy->mtx)); sched_scan_req = rcu_dereference_protected(local->sched_scan_req, lockdep_is_held(&local->hw.wiphy->mtx)); if (sched_scan_sdata && sched_scan_req) /* * Sched scan stopped, but we don't want to report it. Instead, * we're trying to reschedule. However, if more than one scan * plan was set, we cannot reschedule since we don't know which * scan plan was currently running (and some scan plans may have * already finished). */ if (sched_scan_req->n_scan_plans > 1 || __ieee80211_request_sched_scan_start(sched_scan_sdata, sched_scan_req)) { RCU_INIT_POINTER(local->sched_scan_sdata, NULL); RCU_INIT_POINTER(local->sched_scan_req, NULL); sched_scan_stopped = true; } if (sched_scan_stopped) cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); wake_up: if (local->monitors == local->open_count && local->monitors > 0) ieee80211_add_virtual_monitor(local); /* * Clear the WLAN_STA_BLOCK_BA flag so new aggregation * sessions can be established after a resume. * * Also tear down aggregation sessions since reconfiguring * them in a hardware restart scenario is not easily done * right now, and the hardware will have lost information * about the sessions, but we and the AP still think they * are active. This is really a workaround though. */ if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { list_for_each_entry(sta, &local->sta_list, list) { if (!local->resuming) ieee80211_sta_tear_down_BA_sessions( sta, AGG_STOP_LOCAL_REQUEST); clear_sta_flag(sta, WLAN_STA_BLOCK_BA); } } /* * If this is for hw restart things are still running. * We may want to change that later, however. */ if (local->open_count && (!suspended || reconfig_due_to_wowlan)) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); if (local->in_reconfig) { in_reconfig = local->in_reconfig; local->in_reconfig = false; barrier(); ieee80211_reconfig_roc(local); /* Requeue all works */ list_for_each_entry(sdata, &local->interfaces, list) wiphy_work_queue(local->hw.wiphy, &sdata->work); } ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); if (in_reconfig) { list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_restart(sdata); } } if (!suspended) return 0; #ifdef CONFIG_PM /* first set suspended false, then resuming */ local->suspended = false; mb(); local->resuming = false; ieee80211_flush_completed_scan(local, false); if (local->open_count && !reconfig_due_to_wowlan) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_restart(sdata); } mod_timer(&local->sta_cleanup, jiffies + 1); #else WARN_ON(1); #endif return 0; } static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local; struct ieee80211_key *key; if (WARN_ON(!vif)) return; sdata = vif_to_sdata(vif); local = sdata->local; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && !local->resuming)) return; if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && !local->in_reconfig)) return; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return; sdata->flags |= flag; list_for_each_entry(key, &sdata->key_list, list) key->flags |= KEY_FLAG_TAINTED; } void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) { ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); } EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); void ieee80211_resume_disconnect(struct ieee80211_vif *vif) { ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); } EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; lockdep_assert_wiphy(local->hw.wiphy); chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->hw.wiphy->mtx)); /* * This function can be called from a work, thus it may be possible * that the chanctx_conf is removed (due to a disconnection, for * example). * So nothing should be done in such case. */ if (!chanctx_conf) return; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_smps_chanctx(local, chanctx); } void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, int link_id) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; int i; lockdep_assert_wiphy(local->hw.wiphy); for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { struct ieee80211_bss_conf *bss_conf; if (link_id >= 0 && link_id != i) continue; rcu_read_lock(); bss_conf = rcu_dereference(sdata->vif.link_conf[i]); if (!bss_conf) { rcu_read_unlock(); continue; } chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, lockdep_is_held(&local->hw.wiphy->mtx)); /* * Since we hold the wiphy mutex (checked above) * we can take the chanctx_conf pointer out of the * RCU critical section, it cannot go away without * the mutex. Just the way we reached it could - in * theory - go away, but we don't really care and * it really shouldn't happen anyway. */ rcu_read_unlock(); if (!chanctx_conf) return; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); } } size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) { size_t pos = offset; while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) pos += 2 + ies[pos + 1]; return pos; } u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap) { __le16 tmp; *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_cap); memset(pos, 0, sizeof(struct ieee80211_ht_cap)); /* capability flags */ tmp = cpu_to_le16(cap); memcpy(pos, &tmp, sizeof(u16)); pos += sizeof(u16); /* AMPDU parameters */ *pos++ = ht_cap->ampdu_factor | (ht_cap->ampdu_density << IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); /* MCS set */ memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); pos += sizeof(ht_cap->mcs); /* extended capabilities */ pos += sizeof(__le16); /* BF capabilities */ pos += sizeof(__le32); /* antenna selection */ pos += sizeof(u8); return pos; } u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap) { __le32 tmp; *pos++ = WLAN_EID_VHT_CAPABILITY; *pos++ = sizeof(struct ieee80211_vht_cap); memset(pos, 0, sizeof(struct ieee80211_vht_cap)); /* capability flags */ tmp = cpu_to_le32(cap); memcpy(pos, &tmp, sizeof(u32)); pos += sizeof(u32); /* VHT MCS set */ memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); pos += sizeof(vht_cap->vht_mcs); return pos; } /* this may return more than ieee80211_put_he_6ghz_cap() will need */ u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u8 n; sband = ieee80211_get_sband(sdata); if (!sband) return 0; he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (!he_cap) return 0; n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); return 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); } static void ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, const struct ieee80211_sta_he_cap *he_cap, struct ieee80211_he_cap_elem *elem) { u8 ru_limit, max_ru; *elem = he_cap->he_cap_elem; switch (conn->bw_limit) { case IEEE80211_CONN_BW_LIMIT_20: ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; break; case IEEE80211_CONN_BW_LIMIT_40: ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; break; case IEEE80211_CONN_BW_LIMIT_80: ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; break; default: ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; break; } max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; max_ru = min(max_ru, ru_limit); elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; elem->phy_cap_info[8] |= max_ru; if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { elem->phy_cap_info[0] &= ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); elem->phy_cap_info[9] &= ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; } if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { elem->phy_cap_info[0] &= ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); elem->phy_cap_info[5] &= ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; elem->phy_cap_info[7] &= ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); } } int ieee80211_put_he_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, const struct ieee80211_supported_band *sband, const struct ieee80211_conn_settings *conn) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_he_cap_elem elem; u8 *len; u8 n; u8 ie_len; if (!conn) conn = &ieee80211_conn_settings_unlimited; he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (!he_cap) return 0; /* modify on stack first to calculate 'n' and 'ie_len' correctly */ ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); n = ieee80211_he_mcs_nss_size(&elem); ie_len = 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); if (skb_tailroom(skb) < ie_len) return -ENOBUFS; skb_put_u8(skb, WLAN_EID_EXTENSION); len = skb_put(skb, 1); /* We'll set the size later below */ skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); /* Fixed data */ skb_put_data(skb, &elem, sizeof(elem)); skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); /* Check if PPE Threshold should be present */ if ((he_cap->he_cap_elem.phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) goto end; /* * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) */ n = hweight8(he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); /* Copy PPE Thresholds */ skb_put_data(skb, &he_cap->ppe_thres, n); end: *len = skb_tail_pointer(skb) - len - 1; return 0; } int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode) { struct ieee80211_supported_band *sband; const struct ieee80211_sband_iftype_data *iftd; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); __le16 cap; if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, BIT(NL80211_BAND_6GHZ), IEEE80211_CHAN_NO_HE)) return 0; sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (!iftd) return 0; /* Check for device HE 6 GHz capability before adding element */ if (!iftd->he_6ghz_capa.capa) return 0; cap = iftd->he_6ghz_capa.capa; cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); switch (smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_STATIC: cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_DYNAMIC: cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; } if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) return -ENOBUFS; skb_put_u8(skb, WLAN_EID_EXTENSION); skb_put_u8(skb, 1 + sizeof(cap)); skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); skb_put_data(skb, &cap, sizeof(cap)); return 0; } u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode) { struct ieee80211_ht_operation *ht_oper; /* Build HT Information */ *pos++ = WLAN_EID_HT_OPERATION; *pos++ = sizeof(struct ieee80211_ht_operation); ht_oper = (struct ieee80211_ht_operation *)pos; ht_oper->primary_chan = ieee80211_frequency_to_channel( chandef->chan->center_freq); switch (chandef->width) { case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 > chandef->chan->center_freq) ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; break; case NL80211_CHAN_WIDTH_320: /* HT information element should not be included on 6GHz */ WARN_ON(1); return pos; default: ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; break; } if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && chandef->width != NL80211_CHAN_WIDTH_20_NOHT && chandef->width != NL80211_CHAN_WIDTH_20) ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; if (rifs_mode) ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; ht_oper->operation_mode = cpu_to_le16(prot_mode); ht_oper->stbc_param = 0x0000; /* It seems that Basic MCS set and Supported MCS set are identical for the first 10 bytes */ memset(&ht_oper->basic_set, 0, 16); memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); return pos + sizeof(struct ieee80211_ht_operation); } void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef) { *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ /* New channel width */ switch (chandef->width) { case NL80211_CHAN_WIDTH_80: *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_160: *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80P80: *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; break; case NL80211_CHAN_WIDTH_320: /* The behavior is not defined for 320 MHz channels */ WARN_ON(1); fallthrough; default: *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; } /* new center frequency segment 0 */ *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); /* new center frequency segment 1 */ if (chandef->center_freq2) *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); else *pos++ = 0; } u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef) { struct ieee80211_vht_operation *vht_oper; *pos++ = WLAN_EID_VHT_OPERATION; *pos++ = sizeof(struct ieee80211_vht_operation); vht_oper = (struct ieee80211_vht_operation *)pos; vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( chandef->center_freq1); if (chandef->center_freq2) vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel(chandef->center_freq2); else vht_oper->center_freq_seg1_idx = 0x00; switch (chandef->width) { case NL80211_CHAN_WIDTH_160: /* * Convert 160 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; if (chandef->chan->center_freq < chandef->center_freq1) vht_oper->center_freq_seg0_idx -= 8; else vht_oper->center_freq_seg0_idx += 8; break; case NL80211_CHAN_WIDTH_80P80: /* * Convert 80+80 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_80: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_320: /* VHT information element should not be included on 6GHz */ WARN_ON(1); return pos; default: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; break; } /* don't require special VHT peer rates */ vht_oper->basic_mcs_set = cpu_to_le16(0xffff); return pos + sizeof(struct ieee80211_vht_operation); } u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) { struct ieee80211_he_operation *he_oper; struct ieee80211_he_6ghz_oper *he_6ghz_op; struct cfg80211_chan_def he_chandef; u32 he_oper_params; u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); if (chandef->chan->band == NL80211_BAND_6GHZ) ie_len += sizeof(struct ieee80211_he_6ghz_oper); *pos++ = WLAN_EID_EXTENSION; *pos++ = ie_len; *pos++ = WLAN_EID_EXT_HE_OPERATION; he_oper_params = 0; he_oper_params |= u32_encode_bits(1023, /* disabled */ IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_ER_SU_DISABLE); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (chandef->chan->band == NL80211_BAND_6GHZ) he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_6GHZ_OP_INFO); he_oper = (struct ieee80211_he_operation *)pos; he_oper->he_oper_params = cpu_to_le32(he_oper_params); /* don't require special HE peer rates */ he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); pos += sizeof(struct ieee80211_he_operation); if (chandef->chan->band != NL80211_BAND_6GHZ) goto out; cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); he_chandef.center_freq1 = chandef->center_freq1; he_chandef.center_freq2 = chandef->center_freq2; he_chandef.width = chandef->width; /* TODO add VHT operational */ he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; he_6ghz_op->minrate = 6; /* 6 Mbps */ he_6ghz_op->primary = ieee80211_frequency_to_channel(he_chandef.chan->center_freq); he_6ghz_op->ccfs0 = ieee80211_frequency_to_channel(he_chandef.center_freq1); if (he_chandef.center_freq2) he_6ghz_op->ccfs1 = ieee80211_frequency_to_channel(he_chandef.center_freq2); else he_6ghz_op->ccfs1 = 0; switch (he_chandef.width) { case NL80211_CHAN_WIDTH_320: /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new * center_freq1 */ ieee80211_chandef_downgrade(&he_chandef, NULL); he_6ghz_op->ccfs0 = ieee80211_frequency_to_channel(he_chandef.center_freq1); fallthrough; case NL80211_CHAN_WIDTH_160: /* Convert 160 MHz channel width to new style as interop * workaround. */ he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; if (he_chandef.chan->center_freq < he_chandef.center_freq1) he_6ghz_op->ccfs0 -= 8; else he_6ghz_op->ccfs0 += 8; fallthrough; case NL80211_CHAN_WIDTH_80P80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_40: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; break; default: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; break; } pos += sizeof(struct ieee80211_he_6ghz_oper); out: return pos; } u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, const struct ieee80211_sta_eht_cap *eht_cap) { const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = &eht_cap->eht_mcs_nss_supp.only_20mhz; struct ieee80211_eht_operation *eht_oper; struct ieee80211_eht_operation_info *eht_oper_info; u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); u8 eht_oper_info_len = offsetof(struct ieee80211_eht_operation_info, optional); u8 chan_width = 0; *pos++ = WLAN_EID_EXTENSION; *pos++ = 1 + eht_oper_len + eht_oper_info_len; *pos++ = WLAN_EID_EXT_EHT_OPERATION; eht_oper = (struct ieee80211_eht_operation *)pos; memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; pos += eht_oper_len; eht_oper_info = (struct ieee80211_eht_operation_info *)eht_oper->optional; eht_oper_info->ccfs0 = ieee80211_frequency_to_channel(chandef->center_freq1); if (chandef->center_freq2) eht_oper_info->ccfs1 = ieee80211_frequency_to_channel(chandef->center_freq2); else eht_oper_info->ccfs1 = 0; switch (chandef->width) { case NL80211_CHAN_WIDTH_320: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; eht_oper_info->ccfs1 = eht_oper_info->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) eht_oper_info->ccfs0 -= 16; else eht_oper_info->ccfs0 += 16; break; case NL80211_CHAN_WIDTH_160: eht_oper_info->ccfs1 = eht_oper_info->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) eht_oper_info->ccfs0 -= 8; else eht_oper_info->ccfs0 += 8; fallthrough; case NL80211_CHAN_WIDTH_80P80: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_40: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; break; default: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; break; } eht_oper_info->control = chan_width; pos += eht_oper_info_len; /* TODO: eht_oper_info->optional */ return pos; } bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef) { enum nl80211_channel_type channel_type; if (!ht_oper) return false; switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_NONE: channel_type = NL80211_CHAN_HT20; break; case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: channel_type = NL80211_CHAN_HT40PLUS; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: channel_type = NL80211_CHAN_HT40MINUS; break; default: return false; } cfg80211_chandef_create(chandef, chandef->chan, channel_type); return true; } bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef) { struct cfg80211_chan_def new = *chandef; int cf0, cf1; int ccfs0, ccfs1, ccfs2; int ccf0, ccf1; u32 vht_cap; bool support_80_80 = false; bool support_160 = false; u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); u8 supp_chwidth = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); if (!oper || !htop) return false; vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); support_80_80 = ((vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); ccfs0 = oper->center_freq_seg0_idx; ccfs1 = oper->center_freq_seg1_idx; ccfs2 = (le16_to_cpu(htop->operation_mode) & IEEE80211_HT_OP_MODE_CCFS2_MASK) >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; ccf0 = ccfs0; /* if not supported, parse as though we didn't understand it */ if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) ext_nss_bw_supp = 0; /* * Cf. IEEE 802.11 Table 9-250 * * We really just consider that because it's inefficient to connect * at a higher bandwidth than we'll actually be able to use. */ switch ((supp_chwidth << 4) | ext_nss_bw_supp) { default: case 0x00: ccf1 = 0; support_160 = false; support_80_80 = false; break; case 0x01: support_80_80 = false; fallthrough; case 0x02: case 0x03: ccf1 = ccfs2; break; case 0x10: ccf1 = ccfs1; break; case 0x11: case 0x12: if (!ccfs1) ccf1 = ccfs2; else ccf1 = ccfs1; break; case 0x13: case 0x20: case 0x23: ccf1 = ccfs1; break; } cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); switch (oper->chan_width) { case IEEE80211_VHT_CHANWIDTH_USE_HT: /* just use HT information directly */ break; case IEEE80211_VHT_CHANWIDTH_80MHZ: new.width = NL80211_CHAN_WIDTH_80; new.center_freq1 = cf0; /* If needed, adjust based on the newer interop workaround. */ if (ccf1) { unsigned int diff; diff = abs(ccf1 - ccf0); if ((diff == 8) && support_160) { new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf1; } else if ((diff > 8) && support_80_80) { new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq2 = cf1; } } break; case IEEE80211_VHT_CHANWIDTH_160MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf0; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq1 = cf0; new.center_freq2 = cf1; break; default: return false; } if (!cfg80211_chandef_valid(&new)) return false; *chandef = new; return true; } void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, struct cfg80211_chan_def *chandef) { chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs0, chandef->chan->band); switch (u8_get_bits(info->control, IEEE80211_EHT_OPER_CHAN_WIDTH)) { case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: chandef->width = NL80211_CHAN_WIDTH_20; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: chandef->width = NL80211_CHAN_WIDTH_40; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: chandef->width = NL80211_CHAN_WIDTH_80; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: chandef->width = NL80211_CHAN_WIDTH_160; chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs1, chandef->chan->band); break; case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: chandef->width = NL80211_CHAN_WIDTH_320; chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs1, chandef->chan->band); break; } } bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, const struct ieee80211_he_operation *he_oper, const struct ieee80211_eht_operation *eht_oper, struct cfg80211_chan_def *chandef) { struct cfg80211_chan_def he_chandef = *chandef; const struct ieee80211_he_6ghz_oper *he_6ghz_oper; u32 freq; if (chandef->chan->band != NL80211_BAND_6GHZ) return true; if (!he_oper) return false; he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); if (!he_6ghz_oper) return false; /* * The EHT operation IE does not contain the primary channel so the * primary channel frequency should be taken from the 6 GHz operation * information. */ freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, NL80211_BAND_6GHZ); he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); if (!he_chandef.chan) return false; if (!eht_oper || !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { switch (u8_get_bits(he_6ghz_oper->control, IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: he_chandef.width = NL80211_CHAN_WIDTH_20; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: he_chandef.width = NL80211_CHAN_WIDTH_40; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; if (!he_6ghz_oper->ccfs1) break; if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) he_chandef.width = NL80211_CHAN_WIDTH_160; else he_chandef.width = NL80211_CHAN_WIDTH_80P80; break; } if (he_chandef.width == NL80211_CHAN_WIDTH_160) { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } else { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, NL80211_BAND_6GHZ); he_chandef.center_freq2 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } } else { ieee80211_chandef_eht_oper((const void *)eht_oper->optional, &he_chandef); he_chandef.punctured = ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); } if (!cfg80211_chandef_valid(&he_chandef)) return false; *chandef = he_chandef; return true; } bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, struct cfg80211_chan_def *chandef) { u32 oper_freq; if (!oper) return false; switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { case IEEE80211_S1G_CHANWIDTH_1MHZ: chandef->width = NL80211_CHAN_WIDTH_1; break; case IEEE80211_S1G_CHANWIDTH_2MHZ: chandef->width = NL80211_CHAN_WIDTH_2; break; case IEEE80211_S1G_CHANWIDTH_4MHZ: chandef->width = NL80211_CHAN_WIDTH_4; break; case IEEE80211_S1G_CHANWIDTH_8MHZ: chandef->width = NL80211_CHAN_WIDTH_8; break; case IEEE80211_S1G_CHANWIDTH_16MHZ: chandef->width = NL80211_CHAN_WIDTH_16; break; default: return false; } oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, NL80211_BAND_S1GHZ); chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); chandef->freq1_offset = oper_freq % 1000; return true; } int ieee80211_put_srates_elem(struct sk_buff *skb, const struct ieee80211_supported_band *sband, u32 basic_rates, u32 rate_flags, u32 masked_rates, u8 element_id) { u8 i, rates, skip; rates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (masked_rates & BIT(i)) continue; rates++; } if (element_id == WLAN_EID_SUPP_RATES) { rates = min_t(u8, rates, 8); skip = 0; } else { skip = 8; if (rates <= skip) return 0; rates -= skip; } if (skb_tailroom(skb) < rates + 2) return -ENOBUFS; skb_put_u8(skb, element_id); skb_put_u8(skb, rates); for (i = 0; i < sband->n_bitrates && rates; i++) { int rate; u8 basic; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (masked_rates & BIT(i)) continue; if (skip > 0) { skip--; continue; } basic = basic_rates & BIT(i) ? 0x80 : 0; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); skb_put_u8(skb, basic | (u8)rate); rates--; } WARN(rates > 0, "rates confused: rates:%d, element:%d\n", rates, element_id); return 0; } int ieee80211_ave_rssi(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) return 0; return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); } EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) { if (!mcs) return 1; /* TODO: consider rx_highest */ if (mcs->rx_mask[3]) return 4; if (mcs->rx_mask[2]) return 3; if (mcs->rx_mask[1]) return 2; return 1; } /** * ieee80211_calculate_rx_timestamp - calculate timestamp in frame * @local: mac80211 hw info struct * @status: RX status * @mpdu_len: total MPDU length (including FCS) * @mpdu_offset: offset into MPDU to calculate timestamp at * * This function calculates the RX timestamp at the given MPDU offset, taking * into account what the RX timestamp was. An offset of 0 will just normalize * the timestamp to TSF at beginning of MPDU reception. * * Returns: the calculated timestamp */ u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset) { u64 ts = status->mactime; bool mactime_plcp_start; struct rate_info ri; u16 rate; u8 n_ltf; if (WARN_ON(!ieee80211_have_rx_timestamp(status))) return 0; mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_PLCP_START; memset(&ri, 0, sizeof(ri)); ri.bw = status->bw; /* Fill cfg80211 rate info */ switch (status->encoding) { case RX_ENC_EHT: ri.flags |= RATE_INFO_FLAGS_EHT_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; ri.eht_ru_alloc = status->eht.ru; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* TODO/FIXME: is this right? handle other PPDUs */ if (mactime_plcp_start) { mpdu_offset += 2; ts += 36; } break; case RX_ENC_HE: ri.flags |= RATE_INFO_FLAGS_HE_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; ri.he_ru_alloc = status->he_ru; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11ax_D6.0, section 27.3.4 for * VHT PPDU format. */ if (mactime_plcp_start) { mpdu_offset += 2; ts += 36; /* * TODO: * For HE MU PPDU, add the HE-SIG-B. * For HE ER PPDU, add 8us for the HE-SIG-A. * For HE TB PPDU, add 4us for the HE-STF. * Add the HE-LTF durations - variable. */ } break; case RX_ENC_HT: ri.mcs = status->rate_idx; ri.flags |= RATE_INFO_FLAGS_MCS; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11REVmd_D3.0, section 19.3.2 for * HT PPDU format. */ if (mactime_plcp_start) { mpdu_offset += 2; if (status->enc_flags & RX_ENC_FLAG_HT_GF) ts += 24; else ts += 32; /* * Add Data HT-LTFs per streams * TODO: add Extension HT-LTFs, 4us per LTF */ n_ltf = ((ri.mcs >> 3) & 3) + 1; n_ltf = n_ltf == 3 ? 4 : n_ltf; ts += n_ltf * 4; } break; case RX_ENC_VHT: ri.flags |= RATE_INFO_FLAGS_VHT_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11REVmd_D3.0, section 21.3.2 for * VHT PPDU format. */ if (mactime_plcp_start) { mpdu_offset += 2; ts += 36; /* * Add VHT-LTFs per streams */ n_ltf = (ri.nss != 1) && (ri.nss % 2) ? ri.nss + 1 : ri.nss; ts += 4 * n_ltf; } break; default: WARN_ON(1); fallthrough; case RX_ENC_LEGACY: { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[status->band]; ri.legacy = sband->bitrates[status->rate_idx].bitrate; if (mactime_plcp_start) { if (status->band == NL80211_BAND_5GHZ) { ts += 20; mpdu_offset += 2; } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { ts += 96; } else { ts += 192; } } break; } } rate = cfg80211_calculate_bitrate(&ri); if (WARN_ONCE(!rate, "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", (unsigned long long)status->flag, status->rate_idx, status->nss)) return 0; /* rewind from end of MPDU */ if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) ts -= mpdu_len * 8 * 10 / rate; ts += mpdu_offset * 8 * 10 / rate; return ts; } /* Cancel CAC for the interfaces under the specified @local. If @ctx is * also provided, only the interfaces using that ctx will be canceled. */ void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_sub_if_data *sdata; struct cfg80211_chan_def chandef; struct ieee80211_link_data *link; struct ieee80211_chanctx_conf *chanctx_conf; unsigned int link_id; lockdep_assert_wiphy(local->hw.wiphy); list_for_each_entry(sdata, &local->interfaces, list) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; chanctx_conf = sdata_dereference(link->conf->chanctx_conf, sdata); if (ctx && &ctx->conf != chanctx_conf) continue; wiphy_delayed_work_cancel(local->hw.wiphy, &link->dfs_cac_timer_work); if (!sdata->wdev.links[link_id].cac_started) continue; chandef = link->conf->chanreq.oper; ieee80211_link_release_channel(link); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL, link_id); } } } void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, radar_detected_work); struct cfg80211_chan_def chandef; struct ieee80211_chanctx *ctx; lockdep_assert_wiphy(local->hw.wiphy); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (!ctx->radar_detected) continue; ctx->radar_detected = false; chandef = ctx->conf.def; ieee80211_dfs_cac_cancel(local, ctx); cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); } } static void ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *chanctx_conf, void *data) { struct ieee80211_chanctx *ctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) return; if (data && data != chanctx_conf) return; ctx->radar_detected = true; } void ieee80211_radar_detected(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *chanctx_conf) { struct ieee80211_local *local = hw_to_local(hw); trace_api_radar_detected(local); ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, chanctx_conf); wiphy_work_queue(hw->wiphy, &local->radar_detected_work); } EXPORT_SYMBOL(ieee80211_radar_detected); void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, struct ieee80211_conn_settings *conn) { enum nl80211_chan_width new_primary_width; struct ieee80211_conn_settings _ignored = {}; /* allow passing NULL if caller doesn't care */ if (!conn) conn = &_ignored; again: /* no-HT indicates nothing to do */ new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; switch (c->width) { default: case NL80211_CHAN_WIDTH_20_NOHT: WARN_ON_ONCE(1); fallthrough; case NL80211_CHAN_WIDTH_20: c->width = NL80211_CHAN_WIDTH_20_NOHT; conn->mode = IEEE80211_CONN_MODE_LEGACY; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; c->punctured = 0; break; case NL80211_CHAN_WIDTH_40: c->width = NL80211_CHAN_WIDTH_20; c->center_freq1 = c->chan->center_freq; if (conn->mode == IEEE80211_CONN_MODE_VHT) conn->mode = IEEE80211_CONN_MODE_HT; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; c->punctured = 0; break; case NL80211_CHAN_WIDTH_80: new_primary_width = NL80211_CHAN_WIDTH_40; if (conn->mode == IEEE80211_CONN_MODE_VHT) conn->mode = IEEE80211_CONN_MODE_HT; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; break; case NL80211_CHAN_WIDTH_80P80: c->center_freq2 = 0; c->width = NL80211_CHAN_WIDTH_80; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; break; case NL80211_CHAN_WIDTH_160: new_primary_width = NL80211_CHAN_WIDTH_80; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; break; case NL80211_CHAN_WIDTH_320: new_primary_width = NL80211_CHAN_WIDTH_160; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; break; case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: WARN_ON_ONCE(1); /* keep c->width */ conn->mode = IEEE80211_CONN_MODE_S1G; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: WARN_ON_ONCE(1); /* keep c->width */ conn->mode = IEEE80211_CONN_MODE_LEGACY; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; } if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, &c->punctured); c->width = new_primary_width; } /* * With an 80 MHz channel, we might have the puncturing in the primary * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. * In that case, downgrade again. */ if (!cfg80211_chandef_valid(c) && c->punctured) goto again; WARN_ON_ONCE(!cfg80211_chandef_valid(c)); } int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings) { struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct ieee80211_local *local = sdata->local; int freq; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.chan_switch); u8 *pos; if (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; skb = dev_alloc_skb(local->tx_headroom + hdr_len + 5 + /* channel switch announcement element */ 3 + /* secondary channel offset element */ 5 + /* wide bandwidth channel switch announcement */ 8); /* mesh channel switch parameters element */ if (!skb) return -ENOMEM; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (ieee80211_vif_is_mesh(&sdata->vif)) { memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); } mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; pos = skb_put(skb, 5); *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ freq = csa_settings->chandef.chan->center_freq; *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ *pos++ = csa_settings->count; /* count */ if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { enum nl80211_channel_type ch_type; skb_put(skb, 3); *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ *pos++ = 1; /* IE length */ ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); if (ch_type == NL80211_CHAN_HT40PLUS) *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; } if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; skb_put(skb, 8); *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ *pos++ = 6; /* IE length */ *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; *pos++ |= csa_settings->block_tx ? WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ pos += 2; put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ pos += 2; } if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { skb_put(skb, 5); ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); } ieee80211_tx_skb(sdata, skb); return 0; } static bool ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) { s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); int skip; if (end > 0) return false; /* One shot NOA */ if (data->count[i] == 1) return false; if (data->desc[i].interval == 0) return false; /* End time is in the past, check for repetitions */ skip = DIV_ROUND_UP(-end, data->desc[i].interval); if (data->count[i] < 255) { if (data->count[i] <= skip) { data->count[i] = 0; return false; } data->count[i] -= skip; } data->desc[i].start += skip * data->desc[i].interval; return true; } static bool ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, s32 *offset) { bool ret = false; int i; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 cur; if (!data->count[i]) continue; if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) ret = true; cur = data->desc[i].start - tsf; if (cur > *offset) continue; cur = data->desc[i].start + data->desc[i].duration - tsf; if (cur > *offset) *offset = cur; } return ret; } static u32 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) { s32 offset = 0; int tries = 0; /* * arbitrary limit, used to avoid infinite loops when combined NoA * descriptors cover the full time period. */ int max_tries = 5; ieee80211_extend_absent_time(data, tsf, &offset); do { if (!ieee80211_extend_absent_time(data, tsf, &offset)) break; tries++; } while (tries < max_tries); return offset; } void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) { u32 next_offset = BIT(31) - 1; int i; data->absent = 0; data->has_next_tsf = false; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 start; if (!data->count[i]) continue; ieee80211_extend_noa_desc(data, tsf, i); start = data->desc[i].start - tsf; if (start <= 0) data->absent |= BIT(i); if (next_offset > start) next_offset = start; data->has_next_tsf = true; } if (data->absent) next_offset = ieee80211_get_noa_absent_time(data, tsf); data->next_tsf = tsf + next_offset; } EXPORT_SYMBOL(ieee80211_update_p2p_noa); int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, struct ieee80211_noa_data *data, u32 tsf) { int ret = 0; int i; memset(data, 0, sizeof(*data)); for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; if (!desc->count || !desc->duration) continue; data->count[i] = desc->count; data->desc[i].start = le32_to_cpu(desc->start_time); data->desc[i].duration = le32_to_cpu(desc->duration); data->desc[i].interval = le32_to_cpu(desc->interval); if (data->count[i] > 1 && data->desc[i].interval < data->desc[i].duration) continue; ieee80211_extend_noa_desc(data, tsf, i); ret++; } if (ret) ieee80211_update_p2p_noa(data, tsf); return ret; } EXPORT_SYMBOL(ieee80211_parse_p2p_noa); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { u64 tsf = drv_get_tsf(local, sdata); u64 dtim_count = 0; u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; u8 dtim_period = sdata->vif.bss_conf.dtim_period; struct ps_data *ps; u8 bcns_from_dtim; if (tsf == -1ULL || !beacon_int || !dtim_period) return; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!sdata->bss) return; ps = &sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { return; } /* * actually finds last dtim_count, mac80211 will update in * __beacon_add_tim(). * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period */ do_div(tsf, beacon_int); bcns_from_dtim = do_div(tsf, dtim_period); /* just had a DTIM */ if (!bcns_from_dtim) dtim_count = 0; else dtim_count = dtim_period - bcns_from_dtim; ps->dtim_count = dtim_count; } static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_link_data *link; u8 radar_detect = 0; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) return 0; list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) if (link->reserved_radar_required) radar_detect |= BIT(link->reserved.oper.width); /* * An in-place reservation context should not have any assigned vifs * until it replaces the other context. */ WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && !list_empty(&ctx->assigned_links)); list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { if (!link->radar_required) continue; radar_detect |= BIT(link->conf->chanreq.oper.width); } return radar_detect; } static u32 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) { struct ieee80211_bss_conf *link_conf; struct ieee80211_chanctx_conf *conf; unsigned int link_id; u32 mask = 0; for_each_vif_active_link(&sdata->vif, link_conf, link_id) { conf = sdata_dereference(link_conf->chanctx_conf, sdata); if (!conf || conf->radio_idx < 0) continue; mask |= BIT(conf->radio_idx); } return mask; } u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); return __ieee80211_get_radio_mask(sdata); } static bool ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) { if (radio_idx < 0) return true; return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); } static int ieee80211_fill_ifcomb_params(struct ieee80211_local *local, struct iface_combination_params *params, const struct cfg80211_chan_def *chandef, struct ieee80211_sub_if_data *sdata) { struct ieee80211_sub_if_data *sdata_iter; struct ieee80211_chanctx *ctx; int total = !!sdata; list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; if (params->radio_idx >= 0 && ctx->conf.radio_idx != params->radio_idx) continue; params->radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && cfg80211_chandef_compatible(chandef, &ctx->conf.def)) continue; params->num_different_channels++; } list_for_each_entry(sdata_iter, &local->interfaces, list) { struct wireless_dev *wdev_iter; wdev_iter = &sdata_iter->wdev; if (sdata_iter == sdata || !ieee80211_sdata_running(sdata_iter) || cfg80211_iftype_allowed(local->hw.wiphy, wdev_iter->iftype, 0, 1)) continue; if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) continue; params->iftype_num[wdev_iter->iftype]++; total++; } return total; } int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect, int radio_idx) { bool shared = chanmode == IEEE80211_CHANCTX_SHARED; struct ieee80211_local *local = sdata->local; enum nl80211_iftype iftype = sdata->wdev.iftype; struct iface_combination_params params = { .radar_detect = radar_detect, .radio_idx = radio_idx, }; int total; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(hweight32(radar_detect) > 1)) return -EINVAL; if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && !chandef->chan)) return -EINVAL; if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) return -EINVAL; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { /* * always passing this is harmless, since it'll be the * same value that cfg80211 finds if it finds the same * interface ... and that's always allowed */ params.new_beacon_int = sdata->vif.bss_conf.beacon_int; } /* Always allow software iftypes */ if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { if (radar_detect) return -EINVAL; return 0; } if (chandef) params.num_different_channels = 1; if (iftype != NL80211_IFTYPE_UNSPECIFIED) params.iftype_num[iftype] = 1; total = ieee80211_fill_ifcomb_params(local, ¶ms, shared ? chandef : NULL, sdata); if (total == 1 && !params.radar_detect) return 0; return cfg80211_check_combinations(local->hw.wiphy, ¶ms); } static void ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, void *data) { u32 *max_num_different_channels = data; *max_num_different_channels = max(*max_num_different_channels, c->num_different_channels); } int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) { u32 max_num_different_channels = 1; int err; struct iface_combination_params params = { .radio_idx = radio_idx, }; lockdep_assert_wiphy(local->hw.wiphy); ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, ieee80211_iter_max_chans, &max_num_different_channels); if (err < 0) return err; return max_num_different_channels; } void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_s1g_cap *caps, struct sk_buff *skb) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_s1g_cap s1g_capab; u8 *pos; int i; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; if (!caps->s1g) return; memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); /* override the capability info */ for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; s1g_capab.capab_info[i] &= ~mask; s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; } /* then MCS and NSS set */ for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; s1g_capab.supp_mcs_nss[i] &= ~mask; s1g_capab.supp_mcs_nss[i] |= ifmgd->s1g_capa.supp_mcs_nss[i] & mask; } pos = skb_put(skb, 2 + sizeof(s1g_capab)); *pos++ = WLAN_EID_S1G_CAPABILITIES; *pos++ = sizeof(s1g_capab); memcpy(pos, &s1g_capab, sizeof(s1g_capab)); } void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { u8 *pos = skb_put(skb, 3); *pos++ = WLAN_EID_AID_REQUEST; *pos++ = 1; *pos++ = 0; } u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) { *buf++ = WLAN_EID_VENDOR_SPECIFIC; *buf++ = 7; /* len */ *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ *buf++ = 0x50; *buf++ = 0xf2; *buf++ = 2; /* WME */ *buf++ = 0; /* WME info */ *buf++ = 1; /* WME ver */ *buf++ = qosinfo; /* U-APSD no in use */ return buf; } void ieee80211_txq_get_depth(struct ieee80211_txq *txq, unsigned long *frame_cnt, unsigned long *byte_cnt) { struct txq_info *txqi = to_txq_info(txq); u32 frag_cnt = 0, frag_bytes = 0; struct sk_buff *skb; skb_queue_walk(&txqi->frags, skb) { frag_cnt++; frag_bytes += skb->len; } if (frame_cnt) *frame_cnt = txqi->tin.backlog_packets + frag_cnt; if (byte_cnt) *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; } EXPORT_SYMBOL(ieee80211_txq_get_depth); const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, IEEE80211_WMM_IE_STA_QOSINFO_AC_BK }; u16 ieee80211_encode_usf(int listen_interval) { static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; u16 ui, usf = 0; /* find greatest USF */ while (usf < IEEE80211_MAX_USF) { if (listen_interval % listen_int_usf[usf + 1]) break; usf += 1; } ui = listen_interval / listen_int_usf[usf]; /* error if there is a remainder. Should've been checked by user */ WARN_ON_ONCE(ui > IEEE80211_MAX_UI); listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | FIELD_PREP(LISTEN_INT_UI, ui); return (u16) listen_interval; } /* this may return more than ieee80211_put_eht_cap() will need */ u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) { const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_supported_band *sband; bool is_ap; u8 n; sband = ieee80211_get_sband(sdata); if (!sband) return 0; he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); if (!he_cap || !eht_cap) return 0; is_ap = sdata->vif.type == NL80211_IFTYPE_AP; n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, is_ap); return 2 + 1 + sizeof(eht_cap->eht_cap_elem) + n + ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], eht_cap->eht_cap_elem.phy_cap_info); return 0; } int ieee80211_put_eht_cap(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata, const struct ieee80211_supported_band *sband, const struct ieee80211_conn_settings *conn) { const struct ieee80211_sta_he_cap *he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_sta_eht_cap *eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; struct ieee80211_eht_cap_elem_fixed fixed; struct ieee80211_he_cap_elem he; u8 mcs_nss_len, ppet_len; u8 orig_mcs_nss_len; u8 ie_len; if (!conn) conn = &ieee80211_conn_settings_unlimited; /* Make sure we have place for the IE */ if (!he_cap || !eht_cap) return 0; orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, for_ap); ieee80211_get_adjusted_he_cap(conn, he_cap, &he); fixed = eht_cap->eht_cap_elem; if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) fixed.phy_cap_info[6] &= ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { fixed.phy_cap_info[1] &= ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; fixed.phy_cap_info[2] &= ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; fixed.phy_cap_info[6] &= ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; } if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { fixed.phy_cap_info[0] &= ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; fixed.phy_cap_info[1] &= ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; fixed.phy_cap_info[2] &= ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; fixed.phy_cap_info[6] &= ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; } if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) fixed.phy_cap_info[0] &= ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], fixed.phy_cap_info); ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; if (skb_tailroom(skb) < ie_len) return -ENOBUFS; skb_put_u8(skb, WLAN_EID_EXTENSION); skb_put_u8(skb, ie_len - 2); skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); skb_put_data(skb, &fixed, sizeof(fixed)); if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { /* * If the (non-AP) STA became 20 MHz only, then convert from * <=80 to 20-MHz-only format, where MCSes are indicated in * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. */ skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); } else { skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); } if (ppet_len) skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); return 0; } const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) { static const char * const modes[] = { [IEEE80211_CONN_MODE_S1G] = "S1G", [IEEE80211_CONN_MODE_LEGACY] = "legacy", [IEEE80211_CONN_MODE_HT] = "HT", [IEEE80211_CONN_MODE_VHT] = "VHT", [IEEE80211_CONN_MODE_HE] = "HE", [IEEE80211_CONN_MODE_EHT] = "EHT", }; if (WARN_ON(mode >= ARRAY_SIZE(modes))) return "<out of range>"; return modes[mode] ?: "<missing string>"; } enum ieee80211_conn_bw_limit ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) { switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: return IEEE80211_CONN_BW_LIMIT_20; case NL80211_CHAN_WIDTH_40: return IEEE80211_CONN_BW_LIMIT_40; case NL80211_CHAN_WIDTH_80: return IEEE80211_CONN_BW_LIMIT_80; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: return IEEE80211_CONN_BW_LIMIT_160; case NL80211_CHAN_WIDTH_320: return IEEE80211_CONN_BW_LIMIT_320; default: WARN(1, "unhandled chandef width %d\n", chandef->width); return IEEE80211_CONN_BW_LIMIT_20; } } void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) { for (int i = 0; i < 2; i++) { tpe->max_local[i].valid = false; memset(tpe->max_local[i].power, IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, sizeof(tpe->max_local[i].power)); tpe->max_reg_client[i].valid = false; memset(tpe->max_reg_client[i].power, IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, sizeof(tpe->max_reg_client[i].power)); tpe->psd_local[i].valid = false; memset(tpe->psd_local[i].power, IEEE80211_TPE_PSD_NO_LIMIT, sizeof(tpe->psd_local[i].power)); tpe->psd_reg_client[i].valid = false; memset(tpe->psd_reg_client[i].power, IEEE80211_TPE_PSD_NO_LIMIT, sizeof(tpe->psd_reg_client[i].power)); } } |
7 7 7 11 1 3 7 7 5 3 2 2 2 3 7 2 2 3 1 1 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 | // SPDX-License-Identifier: GPL-2.0 #include <linux/bpf.h> #include <linux/bpf-netns.h> #include <linux/filter.h> #include <net/net_namespace.h> /* * Functions to manage BPF programs attached to netns */ struct bpf_netns_link { struct bpf_link link; enum bpf_attach_type type; enum netns_bpf_attach_type netns_type; /* We don't hold a ref to net in order to auto-detach the link * when netns is going away. Instead we rely on pernet * pre_exit callback to clear this pointer. Must be accessed * with netns_bpf_mutex held. */ struct net *net; struct list_head node; /* node in list of links attached to net */ }; /* Protects updates to netns_bpf */ DEFINE_MUTEX(netns_bpf_mutex); static void netns_bpf_attach_type_unneed(enum netns_bpf_attach_type type) { switch (type) { #ifdef CONFIG_INET case NETNS_BPF_SK_LOOKUP: static_branch_dec(&bpf_sk_lookup_enabled); break; #endif default: break; } } static void netns_bpf_attach_type_need(enum netns_bpf_attach_type type) { switch (type) { #ifdef CONFIG_INET case NETNS_BPF_SK_LOOKUP: static_branch_inc(&bpf_sk_lookup_enabled); break; #endif default: break; } } /* Must be called with netns_bpf_mutex held. */ static void netns_bpf_run_array_detach(struct net *net, enum netns_bpf_attach_type type) { struct bpf_prog_array *run_array; run_array = rcu_replace_pointer(net->bpf.run_array[type], NULL, lockdep_is_held(&netns_bpf_mutex)); bpf_prog_array_free(run_array); } static int link_index(struct net *net, enum netns_bpf_attach_type type, struct bpf_netns_link *link) { struct bpf_netns_link *pos; int i = 0; list_for_each_entry(pos, &net->bpf.links[type], node) { if (pos == link) return i; i++; } return -ENOENT; } static int link_count(struct net *net, enum netns_bpf_attach_type type) { struct list_head *pos; int i = 0; list_for_each(pos, &net->bpf.links[type]) i++; return i; } static void fill_prog_array(struct net *net, enum netns_bpf_attach_type type, struct bpf_prog_array *prog_array) { struct bpf_netns_link *pos; unsigned int i = 0; list_for_each_entry(pos, &net->bpf.links[type], node) { prog_array->items[i].prog = pos->link.prog; i++; } } static void bpf_netns_link_release(struct bpf_link *link) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); enum netns_bpf_attach_type type = net_link->netns_type; struct bpf_prog_array *old_array, *new_array; struct net *net; int cnt, idx; mutex_lock(&netns_bpf_mutex); /* We can race with cleanup_net, but if we see a non-NULL * struct net pointer, pre_exit has not run yet and wait for * netns_bpf_mutex. */ net = net_link->net; if (!net) goto out_unlock; /* Mark attach point as unused */ netns_bpf_attach_type_unneed(type); /* Remember link position in case of safe delete */ idx = link_index(net, type, net_link); list_del(&net_link->node); cnt = link_count(net, type); if (!cnt) { netns_bpf_run_array_detach(net, type); goto out_unlock; } old_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); new_array = bpf_prog_array_alloc(cnt, GFP_KERNEL); if (!new_array) { WARN_ON(bpf_prog_array_delete_safe_at(old_array, idx)); goto out_unlock; } fill_prog_array(net, type, new_array); rcu_assign_pointer(net->bpf.run_array[type], new_array); bpf_prog_array_free(old_array); out_unlock: net_link->net = NULL; mutex_unlock(&netns_bpf_mutex); } static int bpf_netns_link_detach(struct bpf_link *link) { bpf_netns_link_release(link); return 0; } static void bpf_netns_link_dealloc(struct bpf_link *link) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); kfree(net_link); } static int bpf_netns_link_update_prog(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); enum netns_bpf_attach_type type = net_link->netns_type; struct bpf_prog_array *run_array; struct net *net; int idx, ret; if (old_prog && old_prog != link->prog) return -EPERM; if (new_prog->type != link->prog->type) return -EINVAL; mutex_lock(&netns_bpf_mutex); net = net_link->net; if (!net || !check_net(net)) { /* Link auto-detached or netns dying */ ret = -ENOLINK; goto out_unlock; } run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); idx = link_index(net, type, net_link); ret = bpf_prog_array_update_at(run_array, idx, new_prog); if (ret) goto out_unlock; old_prog = xchg(&link->prog, new_prog); bpf_prog_put(old_prog); out_unlock: mutex_unlock(&netns_bpf_mutex); return ret; } static int bpf_netns_link_fill_info(const struct bpf_link *link, struct bpf_link_info *info) { const struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); unsigned int inum = 0; struct net *net; mutex_lock(&netns_bpf_mutex); net = net_link->net; if (net && check_net(net)) inum = net->ns.inum; mutex_unlock(&netns_bpf_mutex); info->netns.netns_ino = inum; info->netns.attach_type = net_link->type; return 0; } static void bpf_netns_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_link_info info = {}; bpf_netns_link_fill_info(link, &info); seq_printf(seq, "netns_ino:\t%u\n" "attach_type:\t%u\n", info.netns.netns_ino, info.netns.attach_type); } static const struct bpf_link_ops bpf_netns_link_ops = { .release = bpf_netns_link_release, .dealloc = bpf_netns_link_dealloc, .detach = bpf_netns_link_detach, .update_prog = bpf_netns_link_update_prog, .fill_link_info = bpf_netns_link_fill_info, .show_fdinfo = bpf_netns_link_show_fdinfo, }; /* Must be called with netns_bpf_mutex held. */ static int __netns_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr, struct net *net, enum netns_bpf_attach_type type) { __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); struct bpf_prog_array *run_array; u32 prog_cnt = 0, flags = 0; run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); if (run_array) prog_cnt = bpf_prog_array_length(run_array); if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) return -EFAULT; if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt))) return -EFAULT; if (!attr->query.prog_cnt || !prog_ids || !prog_cnt) return 0; return bpf_prog_array_copy_to_user(run_array, prog_ids, attr->query.prog_cnt); } int netns_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { enum netns_bpf_attach_type type; struct net *net; int ret; if (attr->query.query_flags) return -EINVAL; type = to_netns_bpf_attach_type(attr->query.attach_type); if (type < 0) return -EINVAL; net = get_net_ns_by_fd(attr->query.target_fd); if (IS_ERR(net)) return PTR_ERR(net); mutex_lock(&netns_bpf_mutex); ret = __netns_bpf_prog_query(attr, uattr, net, type); mutex_unlock(&netns_bpf_mutex); put_net(net); return ret; } int netns_bpf_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) { struct bpf_prog_array *run_array; enum netns_bpf_attach_type type; struct bpf_prog *attached; struct net *net; int ret; if (attr->target_fd || attr->attach_flags || attr->replace_bpf_fd) return -EINVAL; type = to_netns_bpf_attach_type(attr->attach_type); if (type < 0) return -EINVAL; net = current->nsproxy->net_ns; mutex_lock(&netns_bpf_mutex); /* Attaching prog directly is not compatible with links */ if (!list_empty(&net->bpf.links[type])) { ret = -EEXIST; goto out_unlock; } switch (type) { case NETNS_BPF_FLOW_DISSECTOR: ret = flow_dissector_bpf_prog_attach_check(net, prog); break; default: ret = -EINVAL; break; } if (ret) goto out_unlock; attached = net->bpf.progs[type]; if (attached == prog) { /* The same program cannot be attached twice */ ret = -EINVAL; goto out_unlock; } run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); if (run_array) { WRITE_ONCE(run_array->items[0].prog, prog); } else { run_array = bpf_prog_array_alloc(1, GFP_KERNEL); if (!run_array) { ret = -ENOMEM; goto out_unlock; } run_array->items[0].prog = prog; rcu_assign_pointer(net->bpf.run_array[type], run_array); } net->bpf.progs[type] = prog; if (attached) bpf_prog_put(attached); out_unlock: mutex_unlock(&netns_bpf_mutex); return ret; } /* Must be called with netns_bpf_mutex held. */ static int __netns_bpf_prog_detach(struct net *net, enum netns_bpf_attach_type type, struct bpf_prog *old) { struct bpf_prog *attached; /* Progs attached via links cannot be detached */ if (!list_empty(&net->bpf.links[type])) return -EINVAL; attached = net->bpf.progs[type]; if (!attached || attached != old) return -ENOENT; netns_bpf_run_array_detach(net, type); net->bpf.progs[type] = NULL; bpf_prog_put(attached); return 0; } int netns_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) { enum netns_bpf_attach_type type; struct bpf_prog *prog; int ret; if (attr->target_fd) return -EINVAL; type = to_netns_bpf_attach_type(attr->attach_type); if (type < 0) return -EINVAL; prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); if (IS_ERR(prog)) return PTR_ERR(prog); mutex_lock(&netns_bpf_mutex); ret = __netns_bpf_prog_detach(current->nsproxy->net_ns, type, prog); mutex_unlock(&netns_bpf_mutex); bpf_prog_put(prog); return ret; } static int netns_bpf_max_progs(enum netns_bpf_attach_type type) { switch (type) { case NETNS_BPF_FLOW_DISSECTOR: return 1; case NETNS_BPF_SK_LOOKUP: return 64; default: return 0; } } static int netns_bpf_link_attach(struct net *net, struct bpf_link *link, enum netns_bpf_attach_type type) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); struct bpf_prog_array *run_array; int cnt, err; mutex_lock(&netns_bpf_mutex); cnt = link_count(net, type); if (cnt >= netns_bpf_max_progs(type)) { err = -E2BIG; goto out_unlock; } /* Links are not compatible with attaching prog directly */ if (net->bpf.progs[type]) { err = -EEXIST; goto out_unlock; } switch (type) { case NETNS_BPF_FLOW_DISSECTOR: err = flow_dissector_bpf_prog_attach_check(net, link->prog); break; case NETNS_BPF_SK_LOOKUP: err = 0; /* nothing to check */ break; default: err = -EINVAL; break; } if (err) goto out_unlock; run_array = bpf_prog_array_alloc(cnt + 1, GFP_KERNEL); if (!run_array) { err = -ENOMEM; goto out_unlock; } list_add_tail(&net_link->node, &net->bpf.links[type]); fill_prog_array(net, type, run_array); run_array = rcu_replace_pointer(net->bpf.run_array[type], run_array, lockdep_is_held(&netns_bpf_mutex)); bpf_prog_array_free(run_array); /* Mark attach point as used */ netns_bpf_attach_type_need(type); out_unlock: mutex_unlock(&netns_bpf_mutex); return err; } int netns_bpf_link_create(const union bpf_attr *attr, struct bpf_prog *prog) { enum netns_bpf_attach_type netns_type; struct bpf_link_primer link_primer; struct bpf_netns_link *net_link; enum bpf_attach_type type; struct net *net; int err; if (attr->link_create.flags) return -EINVAL; type = attr->link_create.attach_type; netns_type = to_netns_bpf_attach_type(type); if (netns_type < 0) return -EINVAL; net = get_net_ns_by_fd(attr->link_create.target_fd); if (IS_ERR(net)) return PTR_ERR(net); net_link = kzalloc(sizeof(*net_link), GFP_USER); if (!net_link) { err = -ENOMEM; goto out_put_net; } bpf_link_init(&net_link->link, BPF_LINK_TYPE_NETNS, &bpf_netns_link_ops, prog); net_link->net = net; net_link->type = type; net_link->netns_type = netns_type; err = bpf_link_prime(&net_link->link, &link_primer); if (err) { kfree(net_link); goto out_put_net; } err = netns_bpf_link_attach(net, &net_link->link, netns_type); if (err) { bpf_link_cleanup(&link_primer); goto out_put_net; } put_net(net); return bpf_link_settle(&link_primer); out_put_net: put_net(net); return err; } static int __net_init netns_bpf_pernet_init(struct net *net) { int type; for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) INIT_LIST_HEAD(&net->bpf.links[type]); return 0; } static void __net_exit netns_bpf_pernet_pre_exit(struct net *net) { enum netns_bpf_attach_type type; struct bpf_netns_link *net_link; mutex_lock(&netns_bpf_mutex); for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) { netns_bpf_run_array_detach(net, type); list_for_each_entry(net_link, &net->bpf.links[type], node) { net_link->net = NULL; /* auto-detach link */ netns_bpf_attach_type_unneed(type); } if (net->bpf.progs[type]) bpf_prog_put(net->bpf.progs[type]); } mutex_unlock(&netns_bpf_mutex); } static struct pernet_operations netns_bpf_pernet_ops __net_initdata = { .init = netns_bpf_pernet_init, .pre_exit = netns_bpf_pernet_pre_exit, }; static int __init netns_bpf_init(void) { return register_pernet_subsys(&netns_bpf_pernet_ops); } subsys_initcall(netns_bpf_init); |
6 1 6 6 1 7 7 5 4 3 5 5 13 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 | // SPDX-License-Identifier: GPL-2.0 /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * Basic Transport Functions exploiting Infiniband API * * Copyright IBM Corp. 2016 * * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com> */ #include <linux/socket.h> #include <linux/if_vlan.h> #include <linux/random.h> #include <linux/workqueue.h> #include <linux/wait.h> #include <linux/reboot.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/smc.h> #include <net/tcp.h> #include <net/sock.h> #include <rdma/ib_verbs.h> #include <rdma/ib_cache.h> #include "smc.h" #include "smc_clc.h" #include "smc_core.h" #include "smc_ib.h" #include "smc_wr.h" #include "smc_llc.h" #include "smc_cdc.h" #include "smc_close.h" #include "smc_ism.h" #include "smc_netlink.h" #include "smc_stats.h" #include "smc_tracepoint.h" #define SMC_LGR_NUM_INCR 256 #define SMC_LGR_FREE_DELAY_SERV (600 * HZ) #define SMC_LGR_FREE_DELAY_CLNT (SMC_LGR_FREE_DELAY_SERV + 10 * HZ) struct smc_lgr_list smc_lgr_list = { /* established link groups */ .lock = __SPIN_LOCK_UNLOCKED(smc_lgr_list.lock), .list = LIST_HEAD_INIT(smc_lgr_list.list), .num = 0, }; static atomic_t lgr_cnt = ATOMIC_INIT(0); /* number of existing link groups */ static DECLARE_WAIT_QUEUE_HEAD(lgrs_deleted); static void smc_buf_free(struct smc_link_group *lgr, bool is_rmb, struct smc_buf_desc *buf_desc); static void __smc_lgr_terminate(struct smc_link_group *lgr, bool soft); static void smc_link_down_work(struct work_struct *work); /* return head of link group list and its lock for a given link group */ static inline struct list_head *smc_lgr_list_head(struct smc_link_group *lgr, spinlock_t **lgr_lock) { if (lgr->is_smcd) { *lgr_lock = &lgr->smcd->lgr_lock; return &lgr->smcd->lgr_list; } *lgr_lock = &smc_lgr_list.lock; return &smc_lgr_list.list; } static void smc_ibdev_cnt_inc(struct smc_link *lnk) { atomic_inc(&lnk->smcibdev->lnk_cnt_by_port[lnk->ibport - 1]); } static void smc_ibdev_cnt_dec(struct smc_link *lnk) { atomic_dec(&lnk->smcibdev->lnk_cnt_by_port[lnk->ibport - 1]); } static void smc_lgr_schedule_free_work(struct smc_link_group *lgr) { /* client link group creation always follows the server link group * creation. For client use a somewhat higher removal delay time, * otherwise there is a risk of out-of-sync link groups. */ if (!lgr->freeing) { mod_delayed_work(system_wq, &lgr->free_work, (!lgr->is_smcd && lgr->role == SMC_CLNT) ? SMC_LGR_FREE_DELAY_CLNT : SMC_LGR_FREE_DELAY_SERV); } } /* Register connection's alert token in our lookup structure. * To use rbtrees we have to implement our own insert core. * Requires @conns_lock * @smc connection to register * Returns 0 on success, != otherwise. */ static void smc_lgr_add_alert_token(struct smc_connection *conn) { struct rb_node **link, *parent = NULL; u32 token = conn->alert_token_local; link = &conn->lgr->conns_all.rb_node; while (*link) { struct smc_connection *cur = rb_entry(*link, struct smc_connection, alert_node); parent = *link; if (cur->alert_token_local > token) link = &parent->rb_left; else link = &parent->rb_right; } /* Put the new node there */ rb_link_node(&conn->alert_node, parent, link); rb_insert_color(&conn->alert_node, &conn->lgr->conns_all); } /* assign an SMC-R link to the connection */ static int smcr_lgr_conn_assign_link(struct smc_connection *conn, bool first) { enum smc_link_state expected = first ? SMC_LNK_ACTIVATING : SMC_LNK_ACTIVE; int i, j; /* do link balancing */ conn->lnk = NULL; /* reset conn->lnk first */ for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { struct smc_link *lnk = &conn->lgr->lnk[i]; if (lnk->state != expected || lnk->link_is_asym) continue; if (conn->lgr->role == SMC_CLNT) { conn->lnk = lnk; /* temporary, SMC server assigns link*/ break; } if (conn->lgr->conns_num % 2) { for (j = i + 1; j < SMC_LINKS_PER_LGR_MAX; j++) { struct smc_link *lnk2; lnk2 = &conn->lgr->lnk[j]; if (lnk2->state == expected && !lnk2->link_is_asym) { conn->lnk = lnk2; break; } } } if (!conn->lnk) conn->lnk = lnk; break; } if (!conn->lnk) return SMC_CLC_DECL_NOACTLINK; atomic_inc(&conn->lnk->conn_cnt); return 0; } /* Register connection in link group by assigning an alert token * registered in a search tree. * Requires @conns_lock * Note that '0' is a reserved value and not assigned. */ static int smc_lgr_register_conn(struct smc_connection *conn, bool first) { struct smc_sock *smc = container_of(conn, struct smc_sock, conn); static atomic_t nexttoken = ATOMIC_INIT(0); int rc; if (!conn->lgr->is_smcd) { rc = smcr_lgr_conn_assign_link(conn, first); if (rc) { conn->lgr = NULL; return rc; } } /* find a new alert_token_local value not yet used by some connection * in this link group */ sock_hold(&smc->sk); /* sock_put in smc_lgr_unregister_conn() */ while (!conn->alert_token_local) { conn->alert_token_local = atomic_inc_return(&nexttoken); if (smc_lgr_find_conn(conn->alert_token_local, conn->lgr)) conn->alert_token_local = 0; } smc_lgr_add_alert_token(conn); conn->lgr->conns_num++; return 0; } /* Unregister connection and reset the alert token of the given connection< */ static void __smc_lgr_unregister_conn(struct smc_connection *conn) { struct smc_sock *smc = container_of(conn, struct smc_sock, conn); struct smc_link_group *lgr = conn->lgr; rb_erase(&conn->alert_node, &lgr->conns_all); if (conn->lnk) atomic_dec(&conn->lnk->conn_cnt); lgr->conns_num--; conn->alert_token_local = 0; sock_put(&smc->sk); /* sock_hold in smc_lgr_register_conn() */ } /* Unregister connection from lgr */ static void smc_lgr_unregister_conn(struct smc_connection *conn) { struct smc_link_group *lgr = conn->lgr; if (!smc_conn_lgr_valid(conn)) return; write_lock_bh(&lgr->conns_lock); if (conn->alert_token_local) { __smc_lgr_unregister_conn(conn); } write_unlock_bh(&lgr->conns_lock); } static void smc_lgr_buf_list_add(struct smc_link_group *lgr, bool is_rmb, struct list_head *buf_list, struct smc_buf_desc *buf_desc) { list_add(&buf_desc->list, buf_list); if (is_rmb) { lgr->alloc_rmbs += buf_desc->len; lgr->alloc_rmbs += lgr->is_smcd ? sizeof(struct smcd_cdc_msg) : 0; } else { lgr->alloc_sndbufs += buf_desc->len; } } static void smc_lgr_buf_list_del(struct smc_link_group *lgr, bool is_rmb, struct smc_buf_desc *buf_desc) { list_del(&buf_desc->list); if (is_rmb) { lgr->alloc_rmbs -= buf_desc->len; lgr->alloc_rmbs -= lgr->is_smcd ? sizeof(struct smcd_cdc_msg) : 0; } else { lgr->alloc_sndbufs -= buf_desc->len; } } int smc_nl_get_sys_info(struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); char hostname[SMC_MAX_HOSTNAME_LEN + 1]; char smc_seid[SMC_MAX_EID_LEN + 1]; struct nlattr *attrs; u8 *seid = NULL; u8 *host = NULL; void *nlh; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_SYS_INFO); if (!nlh) goto errmsg; if (cb_ctx->pos[0]) goto errout; attrs = nla_nest_start(skb, SMC_GEN_SYS_INFO); if (!attrs) goto errout; if (nla_put_u8(skb, SMC_NLA_SYS_VER, SMC_V2)) goto errattr; if (nla_put_u8(skb, SMC_NLA_SYS_REL, SMC_RELEASE)) goto errattr; if (nla_put_u8(skb, SMC_NLA_SYS_IS_ISM_V2, smc_ism_is_v2_capable())) goto errattr; if (nla_put_u8(skb, SMC_NLA_SYS_IS_SMCR_V2, true)) goto errattr; smc_clc_get_hostname(&host); if (host) { memcpy(hostname, host, SMC_MAX_HOSTNAME_LEN); hostname[SMC_MAX_HOSTNAME_LEN] = 0; if (nla_put_string(skb, SMC_NLA_SYS_LOCAL_HOST, hostname)) goto errattr; } if (smc_ism_is_v2_capable()) { smc_ism_get_system_eid(&seid); memcpy(smc_seid, seid, SMC_MAX_EID_LEN); smc_seid[SMC_MAX_EID_LEN] = 0; if (nla_put_string(skb, SMC_NLA_SYS_SEID, smc_seid)) goto errattr; } nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); cb_ctx->pos[0] = 1; return skb->len; errattr: nla_nest_cancel(skb, attrs); errout: genlmsg_cancel(skb, nlh); errmsg: return skb->len; } /* Fill SMC_NLA_LGR_D_V2_COMMON/SMC_NLA_LGR_R_V2_COMMON nested attributes */ static int smc_nl_fill_lgr_v2_common(struct smc_link_group *lgr, struct sk_buff *skb, struct netlink_callback *cb, struct nlattr *v2_attrs) { char smc_host[SMC_MAX_HOSTNAME_LEN + 1]; char smc_eid[SMC_MAX_EID_LEN + 1]; if (nla_put_u8(skb, SMC_NLA_LGR_V2_VER, lgr->smc_version)) goto errv2attr; if (nla_put_u8(skb, SMC_NLA_LGR_V2_REL, lgr->peer_smc_release)) goto errv2attr; if (nla_put_u8(skb, SMC_NLA_LGR_V2_OS, lgr->peer_os)) goto errv2attr; memcpy(smc_host, lgr->peer_hostname, SMC_MAX_HOSTNAME_LEN); smc_host[SMC_MAX_HOSTNAME_LEN] = 0; if (nla_put_string(skb, SMC_NLA_LGR_V2_PEER_HOST, smc_host)) goto errv2attr; memcpy(smc_eid, lgr->negotiated_eid, SMC_MAX_EID_LEN); smc_eid[SMC_MAX_EID_LEN] = 0; if (nla_put_string(skb, SMC_NLA_LGR_V2_NEG_EID, smc_eid)) goto errv2attr; nla_nest_end(skb, v2_attrs); return 0; errv2attr: nla_nest_cancel(skb, v2_attrs); return -EMSGSIZE; } static int smc_nl_fill_smcr_lgr_v2(struct smc_link_group *lgr, struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *v2_attrs; v2_attrs = nla_nest_start(skb, SMC_NLA_LGR_R_V2); if (!v2_attrs) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_R_V2_DIRECT, !lgr->uses_gateway)) goto errv2attr; if (nla_put_u8(skb, SMC_NLA_LGR_R_V2_MAX_CONNS, lgr->max_conns)) goto errv2attr; if (nla_put_u8(skb, SMC_NLA_LGR_R_V2_MAX_LINKS, lgr->max_links)) goto errv2attr; nla_nest_end(skb, v2_attrs); return 0; errv2attr: nla_nest_cancel(skb, v2_attrs); errattr: return -EMSGSIZE; } static int smc_nl_fill_lgr(struct smc_link_group *lgr, struct sk_buff *skb, struct netlink_callback *cb) { char smc_target[SMC_MAX_PNETID_LEN + 1]; struct nlattr *attrs, *v2_attrs; attrs = nla_nest_start(skb, SMC_GEN_LGR_SMCR); if (!attrs) goto errout; if (nla_put_u32(skb, SMC_NLA_LGR_R_ID, *((u32 *)&lgr->id))) goto errattr; if (nla_put_u32(skb, SMC_NLA_LGR_R_CONNS_NUM, lgr->conns_num)) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_R_ROLE, lgr->role)) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_R_TYPE, lgr->type)) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_R_BUF_TYPE, lgr->buf_type)) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_R_VLAN_ID, lgr->vlan_id)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_LGR_R_NET_COOKIE, lgr->net->net_cookie, SMC_NLA_LGR_R_PAD)) goto errattr; memcpy(smc_target, lgr->pnet_id, SMC_MAX_PNETID_LEN); smc_target[SMC_MAX_PNETID_LEN] = 0; if (nla_put_string(skb, SMC_NLA_LGR_R_PNETID, smc_target)) goto errattr; if (nla_put_uint(skb, SMC_NLA_LGR_R_SNDBUF_ALLOC, lgr->alloc_sndbufs)) goto errattr; if (nla_put_uint(skb, SMC_NLA_LGR_R_RMB_ALLOC, lgr->alloc_rmbs)) goto errattr; if (lgr->smc_version > SMC_V1) { v2_attrs = nla_nest_start(skb, SMC_NLA_LGR_R_V2_COMMON); if (!v2_attrs) goto errattr; if (smc_nl_fill_lgr_v2_common(lgr, skb, cb, v2_attrs)) goto errattr; if (smc_nl_fill_smcr_lgr_v2(lgr, skb, cb)) goto errattr; } nla_nest_end(skb, attrs); return 0; errattr: nla_nest_cancel(skb, attrs); errout: return -EMSGSIZE; } static int smc_nl_fill_lgr_link(struct smc_link_group *lgr, struct smc_link *link, struct sk_buff *skb, struct netlink_callback *cb) { char smc_ibname[IB_DEVICE_NAME_MAX]; u8 smc_gid_target[41]; struct nlattr *attrs; u32 link_uid = 0; void *nlh; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_LINK_SMCR); if (!nlh) goto errmsg; attrs = nla_nest_start(skb, SMC_GEN_LINK_SMCR); if (!attrs) goto errout; if (nla_put_u8(skb, SMC_NLA_LINK_ID, link->link_id)) goto errattr; if (nla_put_u32(skb, SMC_NLA_LINK_STATE, link->state)) goto errattr; if (nla_put_u32(skb, SMC_NLA_LINK_CONN_CNT, atomic_read(&link->conn_cnt))) goto errattr; if (nla_put_u8(skb, SMC_NLA_LINK_IB_PORT, link->ibport)) goto errattr; if (nla_put_u32(skb, SMC_NLA_LINK_NET_DEV, link->ndev_ifidx)) goto errattr; snprintf(smc_ibname, sizeof(smc_ibname), "%s", link->ibname); if (nla_put_string(skb, SMC_NLA_LINK_IB_DEV, smc_ibname)) goto errattr; memcpy(&link_uid, link->link_uid, sizeof(link_uid)); if (nla_put_u32(skb, SMC_NLA_LINK_UID, link_uid)) goto errattr; memcpy(&link_uid, link->peer_link_uid, sizeof(link_uid)); if (nla_put_u32(skb, SMC_NLA_LINK_PEER_UID, link_uid)) goto errattr; memset(smc_gid_target, 0, sizeof(smc_gid_target)); smc_gid_be16_convert(smc_gid_target, link->gid); if (nla_put_string(skb, SMC_NLA_LINK_GID, smc_gid_target)) goto errattr; memset(smc_gid_target, 0, sizeof(smc_gid_target)); smc_gid_be16_convert(smc_gid_target, link->peer_gid); if (nla_put_string(skb, SMC_NLA_LINK_PEER_GID, smc_gid_target)) goto errattr; nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); return 0; errattr: nla_nest_cancel(skb, attrs); errout: genlmsg_cancel(skb, nlh); errmsg: return -EMSGSIZE; } static int smc_nl_handle_lgr(struct smc_link_group *lgr, struct sk_buff *skb, struct netlink_callback *cb, bool list_links) { void *nlh; int i; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_LGR_SMCR); if (!nlh) goto errmsg; if (smc_nl_fill_lgr(lgr, skb, cb)) goto errout; genlmsg_end(skb, nlh); if (!list_links) goto out; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (!smc_link_usable(&lgr->lnk[i])) continue; if (smc_nl_fill_lgr_link(lgr, &lgr->lnk[i], skb, cb)) goto errout; } out: return 0; errout: genlmsg_cancel(skb, nlh); errmsg: return -EMSGSIZE; } static void smc_nl_fill_lgr_list(struct smc_lgr_list *smc_lgr, struct sk_buff *skb, struct netlink_callback *cb, bool list_links) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct smc_link_group *lgr; int snum = cb_ctx->pos[0]; int num = 0; spin_lock_bh(&smc_lgr->lock); list_for_each_entry(lgr, &smc_lgr->list, list) { if (num < snum) goto next; if (smc_nl_handle_lgr(lgr, skb, cb, list_links)) goto errout; next: num++; } errout: spin_unlock_bh(&smc_lgr->lock); cb_ctx->pos[0] = num; } static int smc_nl_fill_smcd_lgr(struct smc_link_group *lgr, struct sk_buff *skb, struct netlink_callback *cb) { char smc_pnet[SMC_MAX_PNETID_LEN + 1]; struct smcd_dev *smcd = lgr->smcd; struct smcd_gid smcd_gid; struct nlattr *attrs; void *nlh; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_LGR_SMCD); if (!nlh) goto errmsg; attrs = nla_nest_start(skb, SMC_GEN_LGR_SMCD); if (!attrs) goto errout; if (nla_put_u32(skb, SMC_NLA_LGR_D_ID, *((u32 *)&lgr->id))) goto errattr; smcd->ops->get_local_gid(smcd, &smcd_gid); if (nla_put_u64_64bit(skb, SMC_NLA_LGR_D_GID, smcd_gid.gid, SMC_NLA_LGR_D_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_LGR_D_EXT_GID, smcd_gid.gid_ext, SMC_NLA_LGR_D_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_LGR_D_PEER_GID, lgr->peer_gid.gid, SMC_NLA_LGR_D_PAD)) goto errattr; if (nla_put_u64_64bit(skb, SMC_NLA_LGR_D_PEER_EXT_GID, lgr->peer_gid.gid_ext, SMC_NLA_LGR_D_PAD)) goto errattr; if (nla_put_u8(skb, SMC_NLA_LGR_D_VLAN_ID, lgr->vlan_id)) goto errattr; if (nla_put_u32(skb, SMC_NLA_LGR_D_CONNS_NUM, lgr->conns_num)) goto errattr; if (nla_put_u32(skb, SMC_NLA_LGR_D_CHID, smc_ism_get_chid(lgr->smcd))) goto errattr; if (nla_put_uint(skb, SMC_NLA_LGR_D_SNDBUF_ALLOC, lgr->alloc_sndbufs)) goto errattr; if (nla_put_uint(skb, SMC_NLA_LGR_D_DMB_ALLOC, lgr->alloc_rmbs)) goto errattr; memcpy(smc_pnet, lgr->smcd->pnetid, SMC_MAX_PNETID_LEN); smc_pnet[SMC_MAX_PNETID_LEN] = 0; if (nla_put_string(skb, SMC_NLA_LGR_D_PNETID, smc_pnet)) goto errattr; if (lgr->smc_version > SMC_V1) { struct nlattr *v2_attrs; v2_attrs = nla_nest_start(skb, SMC_NLA_LGR_D_V2_COMMON); if (!v2_attrs) goto errattr; if (smc_nl_fill_lgr_v2_common(lgr, skb, cb, v2_attrs)) goto errattr; } nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); return 0; errattr: nla_nest_cancel(skb, attrs); errout: genlmsg_cancel(skb, nlh); errmsg: return -EMSGSIZE; } static int smc_nl_handle_smcd_lgr(struct smcd_dev *dev, struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct smc_link_group *lgr; int snum = cb_ctx->pos[1]; int rc = 0, num = 0; spin_lock_bh(&dev->lgr_lock); list_for_each_entry(lgr, &dev->lgr_list, list) { if (!lgr->is_smcd) continue; if (num < snum) goto next; rc = smc_nl_fill_smcd_lgr(lgr, skb, cb); if (rc) goto errout; next: num++; } errout: spin_unlock_bh(&dev->lgr_lock); cb_ctx->pos[1] = num; return rc; } static int smc_nl_fill_smcd_dev(struct smcd_dev_list *dev_list, struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct smcd_dev *smcd_dev; int snum = cb_ctx->pos[0]; int rc = 0, num = 0; mutex_lock(&dev_list->mutex); list_for_each_entry(smcd_dev, &dev_list->list, list) { if (list_empty(&smcd_dev->lgr_list)) continue; if (num < snum) goto next; rc = smc_nl_handle_smcd_lgr(smcd_dev, skb, cb); if (rc) goto errout; next: num++; } errout: mutex_unlock(&dev_list->mutex); cb_ctx->pos[0] = num; return rc; } int smcr_nl_get_lgr(struct sk_buff *skb, struct netlink_callback *cb) { bool list_links = false; smc_nl_fill_lgr_list(&smc_lgr_list, skb, cb, list_links); return skb->len; } int smcr_nl_get_link(struct sk_buff *skb, struct netlink_callback *cb) { bool list_links = true; smc_nl_fill_lgr_list(&smc_lgr_list, skb, cb, list_links); return skb->len; } int smcd_nl_get_lgr(struct sk_buff *skb, struct netlink_callback *cb) { smc_nl_fill_smcd_dev(&smcd_dev_list, skb, cb); return skb->len; } void smc_lgr_cleanup_early(struct smc_link_group *lgr) { spinlock_t *lgr_lock; if (!lgr) return; smc_lgr_list_head(lgr, &lgr_lock); spin_lock_bh(lgr_lock); /* do not use this link group for new connections */ if (!list_empty(&lgr->list)) list_del_init(&lgr->list); spin_unlock_bh(lgr_lock); __smc_lgr_terminate(lgr, true); } static void smcr_lgr_link_deactivate_all(struct smc_link_group *lgr) { int i; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { struct smc_link *lnk = &lgr->lnk[i]; if (smc_link_sendable(lnk)) lnk->state = SMC_LNK_INACTIVE; } wake_up_all(&lgr->llc_msg_waiter); wake_up_all(&lgr->llc_flow_waiter); } static void smc_lgr_free(struct smc_link_group *lgr); static void smc_lgr_free_work(struct work_struct *work) { struct smc_link_group *lgr = container_of(to_delayed_work(work), struct smc_link_group, free_work); spinlock_t *lgr_lock; bool conns; smc_lgr_list_head(lgr, &lgr_lock); spin_lock_bh(lgr_lock); if (lgr->freeing) { spin_unlock_bh(lgr_lock); return; } read_lock_bh(&lgr->conns_lock); conns = RB_EMPTY_ROOT(&lgr->conns_all); read_unlock_bh(&lgr->conns_lock); if (!conns) { /* number of lgr connections is no longer zero */ spin_unlock_bh(lgr_lock); return; } list_del_init(&lgr->list); /* remove from smc_lgr_list */ lgr->freeing = 1; /* this instance does the freeing, no new schedule */ spin_unlock_bh(lgr_lock); cancel_delayed_work(&lgr->free_work); if (!lgr->is_smcd && !lgr->terminating) smc_llc_send_link_delete_all(lgr, true, SMC_LLC_DEL_PROG_INIT_TERM); if (lgr->is_smcd && !lgr->terminating) smc_ism_signal_shutdown(lgr); if (!lgr->is_smcd) smcr_lgr_link_deactivate_all(lgr); smc_lgr_free(lgr); } static void smc_lgr_terminate_work(struct work_struct *work) { struct smc_link_group *lgr = container_of(work, struct smc_link_group, terminate_work); __smc_lgr_terminate(lgr, true); } /* return next unique link id for the lgr */ static u8 smcr_next_link_id(struct smc_link_group *lgr) { u8 link_id; int i; while (1) { again: link_id = ++lgr->next_link_id; if (!link_id) /* skip zero as link_id */ link_id = ++lgr->next_link_id; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (smc_link_usable(&lgr->lnk[i]) && lgr->lnk[i].link_id == link_id) goto again; } break; } return link_id; } static void smcr_copy_dev_info_to_link(struct smc_link *link) { struct smc_ib_device *smcibdev = link->smcibdev; snprintf(link->ibname, sizeof(link->ibname), "%s", smcibdev->ibdev->name); link->ndev_ifidx = smcibdev->ndev_ifidx[link->ibport - 1]; } int smcr_link_init(struct smc_link_group *lgr, struct smc_link *lnk, u8 link_idx, struct smc_init_info *ini) { struct smc_ib_device *smcibdev; u8 rndvec[3]; int rc; if (lgr->smc_version == SMC_V2) { lnk->smcibdev = ini->smcrv2.ib_dev_v2; lnk->ibport = ini->smcrv2.ib_port_v2; lnk->wr_rx_sge_cnt = lnk->smcibdev->ibdev->attrs.max_recv_sge < 2 ? 1 : 2; lnk->wr_rx_buflen = smc_link_shared_v2_rxbuf(lnk) ? SMC_WR_BUF_SIZE : SMC_WR_BUF_V2_SIZE; } else { lnk->smcibdev = ini->ib_dev; lnk->ibport = ini->ib_port; lnk->wr_rx_sge_cnt = 1; lnk->wr_rx_buflen = SMC_WR_BUF_SIZE; } get_device(&lnk->smcibdev->ibdev->dev); atomic_inc(&lnk->smcibdev->lnk_cnt); refcount_set(&lnk->refcnt, 1); /* link refcnt is set to 1 */ lnk->clearing = 0; lnk->path_mtu = lnk->smcibdev->pattr[lnk->ibport - 1].active_mtu; lnk->link_id = smcr_next_link_id(lgr); lnk->lgr = lgr; smc_lgr_hold(lgr); /* lgr_put in smcr_link_clear() */ lnk->link_idx = link_idx; lnk->wr_rx_id_compl = 0; smc_ibdev_cnt_inc(lnk); smcr_copy_dev_info_to_link(lnk); atomic_set(&lnk->conn_cnt, 0); smc_llc_link_set_uid(lnk); INIT_WORK(&lnk->link_down_wrk, smc_link_down_work); if (!lnk->smcibdev->initialized) { rc = (int)smc_ib_setup_per_ibdev(lnk->smcibdev); if (rc) goto out; } get_random_bytes(rndvec, sizeof(rndvec)); lnk->psn_initial = rndvec[0] + (rndvec[1] << 8) + (rndvec[2] << 16); rc = smc_ib_determine_gid(lnk->smcibdev, lnk->ibport, ini->vlan_id, lnk->gid, &lnk->sgid_index, lgr->smc_version == SMC_V2 ? &ini->smcrv2 : NULL); if (rc) goto out; rc = smc_llc_link_init(lnk); if (rc) goto out; rc = smc_wr_alloc_link_mem(lnk); if (rc) goto clear_llc_lnk; rc = smc_ib_create_protection_domain(lnk); if (rc) goto free_link_mem; rc = smc_ib_create_queue_pair(lnk); if (rc) goto dealloc_pd; rc = smc_wr_create_link(lnk); if (rc) goto destroy_qp; lnk->state = SMC_LNK_ACTIVATING; return 0; destroy_qp: smc_ib_destroy_queue_pair(lnk); dealloc_pd: smc_ib_dealloc_protection_domain(lnk); free_link_mem: smc_wr_free_link_mem(lnk); clear_llc_lnk: smc_llc_link_clear(lnk, false); out: smc_ibdev_cnt_dec(lnk); put_device(&lnk->smcibdev->ibdev->dev); smcibdev = lnk->smcibdev; memset(lnk, 0, sizeof(struct smc_link)); lnk->state = SMC_LNK_UNUSED; if (!atomic_dec_return(&smcibdev->lnk_cnt)) wake_up(&smcibdev->lnks_deleted); smc_lgr_put(lgr); /* lgr_hold above */ return rc; } /* create a new SMC link group */ static int smc_lgr_create(struct smc_sock *smc, struct smc_init_info *ini) { struct smc_link_group *lgr; struct list_head *lgr_list; struct smcd_dev *smcd; struct smc_link *lnk; spinlock_t *lgr_lock; u8 link_idx; int rc = 0; int i; if (ini->is_smcd && ini->vlan_id) { if (smc_ism_get_vlan(ini->ism_dev[ini->ism_selected], ini->vlan_id)) { rc = SMC_CLC_DECL_ISMVLANERR; goto out; } } lgr = kzalloc(sizeof(*lgr), GFP_KERNEL); if (!lgr) { rc = SMC_CLC_DECL_MEM; goto ism_put_vlan; } lgr->tx_wq = alloc_workqueue("smc_tx_wq-%*phN", 0, 0, SMC_LGR_ID_SIZE, &lgr->id); if (!lgr->tx_wq) { rc = -ENOMEM; goto free_lgr; } lgr->is_smcd = ini->is_smcd; lgr->sync_err = 0; lgr->terminating = 0; lgr->freeing = 0; lgr->vlan_id = ini->vlan_id; refcount_set(&lgr->refcnt, 1); /* set lgr refcnt to 1 */ init_rwsem(&lgr->sndbufs_lock); init_rwsem(&lgr->rmbs_lock); rwlock_init(&lgr->conns_lock); for (i = 0; i < SMC_RMBE_SIZES; i++) { INIT_LIST_HEAD(&lgr->sndbufs[i]); INIT_LIST_HEAD(&lgr->rmbs[i]); } lgr->next_link_id = 0; smc_lgr_list.num += SMC_LGR_NUM_INCR; memcpy(&lgr->id, (u8 *)&smc_lgr_list.num, SMC_LGR_ID_SIZE); INIT_DELAYED_WORK(&lgr->free_work, smc_lgr_free_work); INIT_WORK(&lgr->terminate_work, smc_lgr_terminate_work); lgr->conns_all = RB_ROOT; if (ini->is_smcd) { /* SMC-D specific settings */ smcd = ini->ism_dev[ini->ism_selected]; get_device(smcd->ops->get_dev(smcd)); lgr->peer_gid.gid = ini->ism_peer_gid[ini->ism_selected].gid; lgr->peer_gid.gid_ext = ini->ism_peer_gid[ini->ism_selected].gid_ext; lgr->smcd = ini->ism_dev[ini->ism_selected]; lgr_list = &ini->ism_dev[ini->ism_selected]->lgr_list; lgr_lock = &lgr->smcd->lgr_lock; lgr->smc_version = ini->smcd_version; lgr->peer_shutdown = 0; atomic_inc(&ini->ism_dev[ini->ism_selected]->lgr_cnt); } else { /* SMC-R specific settings */ struct smc_ib_device *ibdev; int ibport; lgr->role = smc->listen_smc ? SMC_SERV : SMC_CLNT; lgr->smc_version = ini->smcr_version; memcpy(lgr->peer_systemid, ini->peer_systemid, SMC_SYSTEMID_LEN); if (lgr->smc_version == SMC_V2) { ibdev = ini->smcrv2.ib_dev_v2; ibport = ini->smcrv2.ib_port_v2; lgr->saddr = ini->smcrv2.saddr; lgr->uses_gateway = ini->smcrv2.uses_gateway; memcpy(lgr->nexthop_mac, ini->smcrv2.nexthop_mac, ETH_ALEN); lgr->max_conns = ini->max_conns; lgr->max_links = ini->max_links; } else { ibdev = ini->ib_dev; ibport = ini->ib_port; lgr->max_conns = SMC_CONN_PER_LGR_MAX; lgr->max_links = SMC_LINKS_ADD_LNK_MAX; } memcpy(lgr->pnet_id, ibdev->pnetid[ibport - 1], SMC_MAX_PNETID_LEN); rc = smc_wr_alloc_lgr_mem(lgr); if (rc) goto free_wq; smc_llc_lgr_init(lgr, smc); link_idx = SMC_SINGLE_LINK; lnk = &lgr->lnk[link_idx]; rc = smcr_link_init(lgr, lnk, link_idx, ini); if (rc) { smc_wr_free_lgr_mem(lgr); goto free_wq; } lgr->net = smc_ib_net(lnk->smcibdev); lgr_list = &smc_lgr_list.list; lgr_lock = &smc_lgr_list.lock; lgr->buf_type = lgr->net->smc.sysctl_smcr_buf_type; atomic_inc(&lgr_cnt); } smc->conn.lgr = lgr; spin_lock_bh(lgr_lock); list_add_tail(&lgr->list, lgr_list); spin_unlock_bh(lgr_lock); return 0; free_wq: destroy_workqueue(lgr->tx_wq); free_lgr: kfree(lgr); ism_put_vlan: if (ini->is_smcd && ini->vlan_id) smc_ism_put_vlan(ini->ism_dev[ini->ism_selected], ini->vlan_id); out: if (rc < 0) { if (rc == -ENOMEM) rc = SMC_CLC_DECL_MEM; else rc = SMC_CLC_DECL_INTERR; } return rc; } static int smc_write_space(struct smc_connection *conn) { int buffer_len = conn->peer_rmbe_size; union smc_host_cursor prod; union smc_host_cursor cons; int space; smc_curs_copy(&prod, &conn->local_tx_ctrl.prod, conn); smc_curs_copy(&cons, &conn->local_rx_ctrl.cons, conn); /* determine rx_buf space */ space = buffer_len - smc_curs_diff(buffer_len, &cons, &prod); return space; } static int smc_switch_cursor(struct smc_sock *smc, struct smc_cdc_tx_pend *pend, struct smc_wr_buf *wr_buf) { struct smc_connection *conn = &smc->conn; union smc_host_cursor cons, fin; int rc = 0; int diff; smc_curs_copy(&conn->tx_curs_sent, &conn->tx_curs_fin, conn); smc_curs_copy(&fin, &conn->local_tx_ctrl_fin, conn); /* set prod cursor to old state, enforce tx_rdma_writes() */ smc_curs_copy(&conn->local_tx_ctrl.prod, &fin, conn); smc_curs_copy(&cons, &conn->local_rx_ctrl.cons, conn); if (smc_curs_comp(conn->peer_rmbe_size, &cons, &fin) < 0) { /* cons cursor advanced more than fin, and prod was set * fin above, so now prod is smaller than cons. Fix that. */ diff = smc_curs_diff(conn->peer_rmbe_size, &fin, &cons); smc_curs_add(conn->sndbuf_desc->len, &conn->tx_curs_sent, diff); smc_curs_add(conn->sndbuf_desc->len, &conn->tx_curs_fin, diff); smp_mb__before_atomic(); atomic_add(diff, &conn->sndbuf_space); smp_mb__after_atomic(); smc_curs_add(conn->peer_rmbe_size, &conn->local_tx_ctrl.prod, diff); smc_curs_add(conn->peer_rmbe_size, &conn->local_tx_ctrl_fin, diff); } /* recalculate, value is used by tx_rdma_writes() */ atomic_set(&smc->conn.peer_rmbe_space, smc_write_space(conn)); if (smc->sk.sk_state != SMC_INIT && smc->sk.sk_state != SMC_CLOSED) { rc = smcr_cdc_msg_send_validation(conn, pend, wr_buf); if (!rc) { queue_delayed_work(conn->lgr->tx_wq, &conn->tx_work, 0); smc->sk.sk_data_ready(&smc->sk); } } else { smc_wr_tx_put_slot(conn->lnk, (struct smc_wr_tx_pend_priv *)pend); } return rc; } void smc_switch_link_and_count(struct smc_connection *conn, struct smc_link *to_lnk) { atomic_dec(&conn->lnk->conn_cnt); /* link_hold in smc_conn_create() */ smcr_link_put(conn->lnk); conn->lnk = to_lnk; atomic_inc(&conn->lnk->conn_cnt); /* link_put in smc_conn_free() */ smcr_link_hold(conn->lnk); } struct smc_link *smc_switch_conns(struct smc_link_group *lgr, struct smc_link *from_lnk, bool is_dev_err) { struct smc_link *to_lnk = NULL; struct smc_cdc_tx_pend *pend; struct smc_connection *conn; struct smc_wr_buf *wr_buf; struct smc_sock *smc; struct rb_node *node; int i, rc = 0; /* link is inactive, wake up tx waiters */ smc_wr_wakeup_tx_wait(from_lnk); for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (!smc_link_active(&lgr->lnk[i]) || i == from_lnk->link_idx) continue; if (is_dev_err && from_lnk->smcibdev == lgr->lnk[i].smcibdev && from_lnk->ibport == lgr->lnk[i].ibport) { continue; } to_lnk = &lgr->lnk[i]; break; } if (!to_lnk || !smc_wr_tx_link_hold(to_lnk)) { smc_lgr_terminate_sched(lgr); return NULL; } again: read_lock_bh(&lgr->conns_lock); for (node = rb_first(&lgr->conns_all); node; node = rb_next(node)) { conn = rb_entry(node, struct smc_connection, alert_node); if (conn->lnk != from_lnk) continue; smc = container_of(conn, struct smc_sock, conn); /* conn->lnk not yet set in SMC_INIT state */ if (smc->sk.sk_state == SMC_INIT) continue; if (smc->sk.sk_state == SMC_CLOSED || smc->sk.sk_state == SMC_PEERCLOSEWAIT1 || smc->sk.sk_state == SMC_PEERCLOSEWAIT2 || smc->sk.sk_state == SMC_APPFINCLOSEWAIT || smc->sk.sk_state == SMC_APPCLOSEWAIT1 || smc->sk.sk_state == SMC_APPCLOSEWAIT2 || smc->sk.sk_state == SMC_PEERFINCLOSEWAIT || smc->sk.sk_state == SMC_PEERABORTWAIT || smc->sk.sk_state == SMC_PROCESSABORT) { spin_lock_bh(&conn->send_lock); smc_switch_link_and_count(conn, to_lnk); spin_unlock_bh(&conn->send_lock); continue; } sock_hold(&smc->sk); read_unlock_bh(&lgr->conns_lock); /* pre-fetch buffer outside of send_lock, might sleep */ rc = smc_cdc_get_free_slot(conn, to_lnk, &wr_buf, NULL, &pend); if (rc) goto err_out; /* avoid race with smcr_tx_sndbuf_nonempty() */ spin_lock_bh(&conn->send_lock); smc_switch_link_and_count(conn, to_lnk); rc = smc_switch_cursor(smc, pend, wr_buf); spin_unlock_bh(&conn->send_lock); sock_put(&smc->sk); if (rc) goto err_out; goto again; } read_unlock_bh(&lgr->conns_lock); smc_wr_tx_link_put(to_lnk); return to_lnk; err_out: smcr_link_down_cond_sched(to_lnk); smc_wr_tx_link_put(to_lnk); return NULL; } static void smcr_buf_unuse(struct smc_buf_desc *buf_desc, bool is_rmb, struct smc_link_group *lgr) { struct rw_semaphore *lock; /* lock buffer list */ int rc; if (is_rmb && buf_desc->is_conf_rkey && !list_empty(&lgr->list)) { /* unregister rmb with peer */ rc = smc_llc_flow_initiate(lgr, SMC_LLC_FLOW_RKEY); if (!rc) { /* protect against smc_llc_cli_rkey_exchange() */ down_read(&lgr->llc_conf_mutex); smc_llc_do_delete_rkey(lgr, buf_desc); buf_desc->is_conf_rkey = false; up_read(&lgr->llc_conf_mutex); smc_llc_flow_stop(lgr, &lgr->llc_flow_lcl); } } if (buf_desc->is_reg_err) { /* buf registration failed, reuse not possible */ lock = is_rmb ? &lgr->rmbs_lock : &lgr->sndbufs_lock; down_write(lock); smc_lgr_buf_list_del(lgr, is_rmb, buf_desc); up_write(lock); smc_buf_free(lgr, is_rmb, buf_desc); } else { /* memzero_explicit provides potential memory barrier semantics */ memzero_explicit(buf_desc->cpu_addr, buf_desc->len); WRITE_ONCE(buf_desc->used, 0); } } static void smcd_buf_detach(struct smc_connection *conn) { struct smcd_dev *smcd = conn->lgr->smcd; u64 peer_token = conn->peer_token; if (!conn->sndbuf_desc) return; smc_ism_detach_dmb(smcd, peer_token); kfree(conn->sndbuf_desc); conn->sndbuf_desc = NULL; } static void smc_buf_unuse(struct smc_connection *conn, struct smc_link_group *lgr) { struct smc_sock *smc = container_of(conn, struct smc_sock, conn); bool is_smcd = lgr->is_smcd; int bufsize; if (conn->sndbuf_desc) { bufsize = conn->sndbuf_desc->len; if (!is_smcd && conn->sndbuf_desc->is_vm) { smcr_buf_unuse(conn->sndbuf_desc, false, lgr); } else { memzero_explicit(conn->sndbuf_desc->cpu_addr, bufsize); WRITE_ONCE(conn->sndbuf_desc->used, 0); } SMC_STAT_RMB_SIZE(smc, is_smcd, false, false, bufsize); } if (conn->rmb_desc) { bufsize = conn->rmb_desc->len; if (!is_smcd) { smcr_buf_unuse(conn->rmb_desc, true, lgr); } else { bufsize += sizeof(struct smcd_cdc_msg); memzero_explicit(conn->rmb_desc->cpu_addr, bufsize); WRITE_ONCE(conn->rmb_desc->used, 0); } SMC_STAT_RMB_SIZE(smc, is_smcd, true, false, bufsize); } } /* remove a finished connection from its link group */ void smc_conn_free(struct smc_connection *conn) { struct smc_link_group *lgr = conn->lgr; if (!lgr || conn->freed) /* Connection has never been registered in a * link group, or has already been freed. */ return; conn->freed = 1; if (!smc_conn_lgr_valid(conn)) /* Connection has already unregistered from * link group. */ goto lgr_put; if (lgr->is_smcd) { if (!list_empty(&lgr->list)) smc_ism_unset_conn(conn); if (smc_ism_support_dmb_nocopy(lgr->smcd)) smcd_buf_detach(conn); tasklet_kill(&conn->rx_tsklet); } else { smc_cdc_wait_pend_tx_wr(conn); if (current_work() != &conn->abort_work) cancel_work_sync(&conn->abort_work); } if (!list_empty(&lgr->list)) { smc_buf_unuse(conn, lgr); /* allow buffer reuse */ smc_lgr_unregister_conn(conn); } if (!lgr->conns_num) smc_lgr_schedule_free_work(lgr); lgr_put: if (!lgr->is_smcd) smcr_link_put(conn->lnk); /* link_hold in smc_conn_create() */ smc_lgr_put(lgr); /* lgr_hold in smc_conn_create() */ } /* unregister a link from a buf_desc */ static void smcr_buf_unmap_link(struct smc_buf_desc *buf_desc, bool is_rmb, struct smc_link *lnk) { if (is_rmb || buf_desc->is_vm) buf_desc->is_reg_mr[lnk->link_idx] = false; if (!buf_desc->is_map_ib[lnk->link_idx]) return; if ((is_rmb || buf_desc->is_vm) && buf_desc->mr[lnk->link_idx]) { smc_ib_put_memory_region(buf_desc->mr[lnk->link_idx]); buf_desc->mr[lnk->link_idx] = NULL; } if (is_rmb) smc_ib_buf_unmap_sg(lnk, buf_desc, DMA_FROM_DEVICE); else smc_ib_buf_unmap_sg(lnk, buf_desc, DMA_TO_DEVICE); sg_free_table(&buf_desc->sgt[lnk->link_idx]); buf_desc->is_map_ib[lnk->link_idx] = false; } /* unmap all buffers of lgr for a deleted link */ static void smcr_buf_unmap_lgr(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; struct smc_buf_desc *buf_desc, *bf; int i; for (i = 0; i < SMC_RMBE_SIZES; i++) { down_write(&lgr->rmbs_lock); list_for_each_entry_safe(buf_desc, bf, &lgr->rmbs[i], list) smcr_buf_unmap_link(buf_desc, true, lnk); up_write(&lgr->rmbs_lock); down_write(&lgr->sndbufs_lock); list_for_each_entry_safe(buf_desc, bf, &lgr->sndbufs[i], list) smcr_buf_unmap_link(buf_desc, false, lnk); up_write(&lgr->sndbufs_lock); } } static void smcr_rtoken_clear_link(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; int i; for (i = 0; i < SMC_RMBS_PER_LGR_MAX; i++) { lgr->rtokens[i][lnk->link_idx].rkey = 0; lgr->rtokens[i][lnk->link_idx].dma_addr = 0; } } static void __smcr_link_clear(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; struct smc_ib_device *smcibdev; smc_wr_free_link_mem(lnk); smc_ibdev_cnt_dec(lnk); put_device(&lnk->smcibdev->ibdev->dev); smcibdev = lnk->smcibdev; memset(lnk, 0, sizeof(struct smc_link)); lnk->state = SMC_LNK_UNUSED; if (!atomic_dec_return(&smcibdev->lnk_cnt)) wake_up(&smcibdev->lnks_deleted); smc_lgr_put(lgr); /* lgr_hold in smcr_link_init() */ } /* must be called under lgr->llc_conf_mutex lock */ void smcr_link_clear(struct smc_link *lnk, bool log) { if (!lnk->lgr || lnk->clearing || lnk->state == SMC_LNK_UNUSED) return; lnk->clearing = 1; lnk->peer_qpn = 0; smc_llc_link_clear(lnk, log); smcr_buf_unmap_lgr(lnk); smcr_rtoken_clear_link(lnk); smc_ib_modify_qp_error(lnk); smc_wr_free_link(lnk); smc_ib_destroy_queue_pair(lnk); smc_ib_dealloc_protection_domain(lnk); smcr_link_put(lnk); /* theoretically last link_put */ } void smcr_link_hold(struct smc_link *lnk) { refcount_inc(&lnk->refcnt); } void smcr_link_put(struct smc_link *lnk) { if (refcount_dec_and_test(&lnk->refcnt)) __smcr_link_clear(lnk); } static void smcr_buf_free(struct smc_link_group *lgr, bool is_rmb, struct smc_buf_desc *buf_desc) { int i; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) smcr_buf_unmap_link(buf_desc, is_rmb, &lgr->lnk[i]); if (!buf_desc->is_vm && buf_desc->pages) __free_pages(buf_desc->pages, buf_desc->order); else if (buf_desc->is_vm && buf_desc->cpu_addr) vfree(buf_desc->cpu_addr); kfree(buf_desc); } static void smcd_buf_free(struct smc_link_group *lgr, bool is_dmb, struct smc_buf_desc *buf_desc) { if (is_dmb) { /* restore original buf len */ buf_desc->len += sizeof(struct smcd_cdc_msg); smc_ism_unregister_dmb(lgr->smcd, buf_desc); } else { kfree(buf_desc->cpu_addr); } kfree(buf_desc); } static void smc_buf_free(struct smc_link_group *lgr, bool is_rmb, struct smc_buf_desc *buf_desc) { if (lgr->is_smcd) smcd_buf_free(lgr, is_rmb, buf_desc); else smcr_buf_free(lgr, is_rmb, buf_desc); } static void __smc_lgr_free_bufs(struct smc_link_group *lgr, bool is_rmb) { struct smc_buf_desc *buf_desc, *bf_desc; struct list_head *buf_list; int i; for (i = 0; i < SMC_RMBE_SIZES; i++) { if (is_rmb) buf_list = &lgr->rmbs[i]; else buf_list = &lgr->sndbufs[i]; list_for_each_entry_safe(buf_desc, bf_desc, buf_list, list) { smc_lgr_buf_list_del(lgr, is_rmb, buf_desc); smc_buf_free(lgr, is_rmb, buf_desc); } } } static void smc_lgr_free_bufs(struct smc_link_group *lgr) { /* free send buffers */ __smc_lgr_free_bufs(lgr, false); /* free rmbs */ __smc_lgr_free_bufs(lgr, true); } /* won't be freed until no one accesses to lgr anymore */ static void __smc_lgr_free(struct smc_link_group *lgr) { smc_lgr_free_bufs(lgr); if (lgr->is_smcd) { if (!atomic_dec_return(&lgr->smcd->lgr_cnt)) wake_up(&lgr->smcd->lgrs_deleted); } else { smc_wr_free_lgr_mem(lgr); if (!atomic_dec_return(&lgr_cnt)) wake_up(&lgrs_deleted); } kfree(lgr); } /* remove a link group */ static void smc_lgr_free(struct smc_link_group *lgr) { int i; if (!lgr->is_smcd) { down_write(&lgr->llc_conf_mutex); for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (lgr->lnk[i].state != SMC_LNK_UNUSED) smcr_link_clear(&lgr->lnk[i], false); } up_write(&lgr->llc_conf_mutex); smc_llc_lgr_clear(lgr); } destroy_workqueue(lgr->tx_wq); if (lgr->is_smcd) { smc_ism_put_vlan(lgr->smcd, lgr->vlan_id); put_device(lgr->smcd->ops->get_dev(lgr->smcd)); } smc_lgr_put(lgr); /* theoretically last lgr_put */ } void smc_lgr_hold(struct smc_link_group *lgr) { refcount_inc(&lgr->refcnt); } void smc_lgr_put(struct smc_link_group *lgr) { if (refcount_dec_and_test(&lgr->refcnt)) __smc_lgr_free(lgr); } static void smc_sk_wake_ups(struct smc_sock *smc) { smc->sk.sk_write_space(&smc->sk); smc->sk.sk_data_ready(&smc->sk); smc->sk.sk_state_change(&smc->sk); } /* kill a connection */ static void smc_conn_kill(struct smc_connection *conn, bool soft) { struct smc_sock *smc = container_of(conn, struct smc_sock, conn); if (conn->lgr->is_smcd && conn->lgr->peer_shutdown) conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1; else smc_close_abort(conn); conn->killed = 1; smc->sk.sk_err = ECONNABORTED; smc_sk_wake_ups(smc); if (conn->lgr->is_smcd) { smc_ism_unset_conn(conn); if (smc_ism_support_dmb_nocopy(conn->lgr->smcd)) smcd_buf_detach(conn); if (soft) tasklet_kill(&conn->rx_tsklet); else tasklet_unlock_wait(&conn->rx_tsklet); } else { smc_cdc_wait_pend_tx_wr(conn); } smc_lgr_unregister_conn(conn); smc_close_active_abort(smc); } static void smc_lgr_cleanup(struct smc_link_group *lgr) { if (lgr->is_smcd) { smc_ism_signal_shutdown(lgr); } else { u32 rsn = lgr->llc_termination_rsn; if (!rsn) rsn = SMC_LLC_DEL_PROG_INIT_TERM; smc_llc_send_link_delete_all(lgr, false, rsn); smcr_lgr_link_deactivate_all(lgr); } } /* terminate link group * @soft: true if link group shutdown can take its time * false if immediate link group shutdown is required */ static void __smc_lgr_terminate(struct smc_link_group *lgr, bool soft) { struct smc_connection *conn; struct smc_sock *smc; struct rb_node *node; if (lgr->terminating) return; /* lgr already terminating */ /* cancel free_work sync, will terminate when lgr->freeing is set */ cancel_delayed_work(&lgr->free_work); lgr->terminating = 1; /* kill remaining link group connections */ read_lock_bh(&lgr->conns_lock); node = rb_first(&lgr->conns_all); while (node) { read_unlock_bh(&lgr->conns_lock); conn = rb_entry(node, struct smc_connection, alert_node); smc = container_of(conn, struct smc_sock, conn); sock_hold(&smc->sk); /* sock_put below */ lock_sock(&smc->sk); smc_conn_kill(conn, soft); release_sock(&smc->sk); sock_put(&smc->sk); /* sock_hold above */ read_lock_bh(&lgr->conns_lock); node = rb_first(&lgr->conns_all); } read_unlock_bh(&lgr->conns_lock); smc_lgr_cleanup(lgr); smc_lgr_free(lgr); } /* unlink link group and schedule termination */ void smc_lgr_terminate_sched(struct smc_link_group *lgr) { spinlock_t *lgr_lock; smc_lgr_list_head(lgr, &lgr_lock); spin_lock_bh(lgr_lock); if (list_empty(&lgr->list) || lgr->terminating || lgr->freeing) { spin_unlock_bh(lgr_lock); return; /* lgr already terminating */ } list_del_init(&lgr->list); lgr->freeing = 1; spin_unlock_bh(lgr_lock); schedule_work(&lgr->terminate_work); } /* Called when peer lgr shutdown (regularly or abnormally) is received */ void smc_smcd_terminate(struct smcd_dev *dev, struct smcd_gid *peer_gid, unsigned short vlan) { struct smc_link_group *lgr, *l; LIST_HEAD(lgr_free_list); /* run common cleanup function and build free list */ spin_lock_bh(&dev->lgr_lock); list_for_each_entry_safe(lgr, l, &dev->lgr_list, list) { if ((!peer_gid->gid || (lgr->peer_gid.gid == peer_gid->gid && !smc_ism_is_emulated(dev) ? 1 : lgr->peer_gid.gid_ext == peer_gid->gid_ext)) && (vlan == VLAN_VID_MASK || lgr->vlan_id == vlan)) { if (peer_gid->gid) /* peer triggered termination */ lgr->peer_shutdown = 1; list_move(&lgr->list, &lgr_free_list); lgr->freeing = 1; } } spin_unlock_bh(&dev->lgr_lock); /* cancel the regular free workers and actually free lgrs */ list_for_each_entry_safe(lgr, l, &lgr_free_list, list) { list_del_init(&lgr->list); schedule_work(&lgr->terminate_work); } } /* Called when an SMCD device is removed or the smc module is unloaded */ void smc_smcd_terminate_all(struct smcd_dev *smcd) { struct smc_link_group *lgr, *lg; LIST_HEAD(lgr_free_list); spin_lock_bh(&smcd->lgr_lock); list_splice_init(&smcd->lgr_list, &lgr_free_list); list_for_each_entry(lgr, &lgr_free_list, list) lgr->freeing = 1; spin_unlock_bh(&smcd->lgr_lock); list_for_each_entry_safe(lgr, lg, &lgr_free_list, list) { list_del_init(&lgr->list); __smc_lgr_terminate(lgr, false); } if (atomic_read(&smcd->lgr_cnt)) wait_event(smcd->lgrs_deleted, !atomic_read(&smcd->lgr_cnt)); } /* Called when an SMCR device is removed or the smc module is unloaded. * If smcibdev is given, all SMCR link groups using this device are terminated. * If smcibdev is NULL, all SMCR link groups are terminated. */ void smc_smcr_terminate_all(struct smc_ib_device *smcibdev) { struct smc_link_group *lgr, *lg; LIST_HEAD(lgr_free_list); int i; spin_lock_bh(&smc_lgr_list.lock); if (!smcibdev) { list_splice_init(&smc_lgr_list.list, &lgr_free_list); list_for_each_entry(lgr, &lgr_free_list, list) lgr->freeing = 1; } else { list_for_each_entry_safe(lgr, lg, &smc_lgr_list.list, list) { for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (lgr->lnk[i].smcibdev == smcibdev) smcr_link_down_cond_sched(&lgr->lnk[i]); } } } spin_unlock_bh(&smc_lgr_list.lock); list_for_each_entry_safe(lgr, lg, &lgr_free_list, list) { list_del_init(&lgr->list); smc_llc_set_termination_rsn(lgr, SMC_LLC_DEL_OP_INIT_TERM); __smc_lgr_terminate(lgr, false); } if (smcibdev) { if (atomic_read(&smcibdev->lnk_cnt)) wait_event(smcibdev->lnks_deleted, !atomic_read(&smcibdev->lnk_cnt)); } else { if (atomic_read(&lgr_cnt)) wait_event(lgrs_deleted, !atomic_read(&lgr_cnt)); } } /* set new lgr type and clear all asymmetric link tagging */ void smcr_lgr_set_type(struct smc_link_group *lgr, enum smc_lgr_type new_type) { char *lgr_type = ""; int i; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) if (smc_link_usable(&lgr->lnk[i])) lgr->lnk[i].link_is_asym = false; if (lgr->type == new_type) return; lgr->type = new_type; switch (lgr->type) { case SMC_LGR_NONE: lgr_type = "NONE"; break; case SMC_LGR_SINGLE: lgr_type = "SINGLE"; break; case SMC_LGR_SYMMETRIC: lgr_type = "SYMMETRIC"; break; case SMC_LGR_ASYMMETRIC_PEER: lgr_type = "ASYMMETRIC_PEER"; break; case SMC_LGR_ASYMMETRIC_LOCAL: lgr_type = "ASYMMETRIC_LOCAL"; break; } pr_warn_ratelimited("smc: SMC-R lg %*phN net %llu state changed: " "%s, pnetid %.16s\n", SMC_LGR_ID_SIZE, &lgr->id, lgr->net->net_cookie, lgr_type, lgr->pnet_id); } /* set new lgr type and tag a link as asymmetric */ void smcr_lgr_set_type_asym(struct smc_link_group *lgr, enum smc_lgr_type new_type, int asym_lnk_idx) { smcr_lgr_set_type(lgr, new_type); lgr->lnk[asym_lnk_idx].link_is_asym = true; } /* abort connection, abort_work scheduled from tasklet context */ static void smc_conn_abort_work(struct work_struct *work) { struct smc_connection *conn = container_of(work, struct smc_connection, abort_work); struct smc_sock *smc = container_of(conn, struct smc_sock, conn); lock_sock(&smc->sk); smc_conn_kill(conn, true); release_sock(&smc->sk); sock_put(&smc->sk); /* sock_hold done by schedulers of abort_work */ } void smcr_port_add(struct smc_ib_device *smcibdev, u8 ibport) { struct smc_link_group *lgr, *n; spin_lock_bh(&smc_lgr_list.lock); list_for_each_entry_safe(lgr, n, &smc_lgr_list.list, list) { struct smc_link *link; if (strncmp(smcibdev->pnetid[ibport - 1], lgr->pnet_id, SMC_MAX_PNETID_LEN) || lgr->type == SMC_LGR_SYMMETRIC || lgr->type == SMC_LGR_ASYMMETRIC_PEER || !rdma_dev_access_netns(smcibdev->ibdev, lgr->net)) continue; if (lgr->type == SMC_LGR_SINGLE && lgr->max_links <= 1) continue; /* trigger local add link processing */ link = smc_llc_usable_link(lgr); if (link) smc_llc_add_link_local(link); } spin_unlock_bh(&smc_lgr_list.lock); } /* link is down - switch connections to alternate link, * must be called under lgr->llc_conf_mutex lock */ static void smcr_link_down(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; struct smc_link *to_lnk; int del_link_id; if (!lgr || lnk->state == SMC_LNK_UNUSED || list_empty(&lgr->list)) return; to_lnk = smc_switch_conns(lgr, lnk, true); if (!to_lnk) { /* no backup link available */ smcr_link_clear(lnk, true); return; } smcr_lgr_set_type(lgr, SMC_LGR_SINGLE); del_link_id = lnk->link_id; if (lgr->role == SMC_SERV) { /* trigger local delete link processing */ smc_llc_srv_delete_link_local(to_lnk, del_link_id); } else { if (lgr->llc_flow_lcl.type != SMC_LLC_FLOW_NONE) { /* another llc task is ongoing */ up_write(&lgr->llc_conf_mutex); wait_event_timeout(lgr->llc_flow_waiter, (list_empty(&lgr->list) || lgr->llc_flow_lcl.type == SMC_LLC_FLOW_NONE), SMC_LLC_WAIT_TIME); down_write(&lgr->llc_conf_mutex); } if (!list_empty(&lgr->list)) { smc_llc_send_delete_link(to_lnk, del_link_id, SMC_LLC_REQ, true, SMC_LLC_DEL_LOST_PATH); smcr_link_clear(lnk, true); } wake_up(&lgr->llc_flow_waiter); /* wake up next waiter */ } } /* must be called under lgr->llc_conf_mutex lock */ void smcr_link_down_cond(struct smc_link *lnk) { if (smc_link_downing(&lnk->state)) { trace_smcr_link_down(lnk, __builtin_return_address(0)); smcr_link_down(lnk); } } /* will get the lgr->llc_conf_mutex lock */ void smcr_link_down_cond_sched(struct smc_link *lnk) { if (smc_link_downing(&lnk->state)) { trace_smcr_link_down(lnk, __builtin_return_address(0)); smcr_link_hold(lnk); /* smcr_link_put in link_down_wrk */ if (!schedule_work(&lnk->link_down_wrk)) smcr_link_put(lnk); } } void smcr_port_err(struct smc_ib_device *smcibdev, u8 ibport) { struct smc_link_group *lgr, *n; int i; list_for_each_entry_safe(lgr, n, &smc_lgr_list.list, list) { if (strncmp(smcibdev->pnetid[ibport - 1], lgr->pnet_id, SMC_MAX_PNETID_LEN)) continue; /* lgr is not affected */ if (list_empty(&lgr->list)) continue; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { struct smc_link *lnk = &lgr->lnk[i]; if (smc_link_usable(lnk) && lnk->smcibdev == smcibdev && lnk->ibport == ibport) smcr_link_down_cond_sched(lnk); } } } static void smc_link_down_work(struct work_struct *work) { struct smc_link *link = container_of(work, struct smc_link, link_down_wrk); struct smc_link_group *lgr = link->lgr; if (list_empty(&lgr->list)) goto out; wake_up_all(&lgr->llc_msg_waiter); down_write(&lgr->llc_conf_mutex); smcr_link_down(link); up_write(&lgr->llc_conf_mutex); out: smcr_link_put(link); /* smcr_link_hold by schedulers of link_down_work */ } static int smc_vlan_by_tcpsk_walk(struct net_device *lower_dev, struct netdev_nested_priv *priv) { unsigned short *vlan_id = (unsigned short *)priv->data; if (is_vlan_dev(lower_dev)) { *vlan_id = vlan_dev_vlan_id(lower_dev); return 1; } return 0; } /* Determine vlan of internal TCP socket. */ int smc_vlan_by_tcpsk(struct socket *clcsock, struct smc_init_info *ini) { struct dst_entry *dst = sk_dst_get(clcsock->sk); struct netdev_nested_priv priv; struct net_device *ndev; int rc = 0; ini->vlan_id = 0; if (!dst) { rc = -ENOTCONN; goto out; } if (!dst->dev) { rc = -ENODEV; goto out_rel; } ndev = dst->dev; if (is_vlan_dev(ndev)) { ini->vlan_id = vlan_dev_vlan_id(ndev); goto out_rel; } priv.data = (void *)&ini->vlan_id; rtnl_lock(); netdev_walk_all_lower_dev(ndev, smc_vlan_by_tcpsk_walk, &priv); rtnl_unlock(); out_rel: dst_release(dst); out: return rc; } static bool smcr_lgr_match(struct smc_link_group *lgr, u8 smcr_version, u8 peer_systemid[], u8 peer_gid[], u8 peer_mac_v1[], enum smc_lgr_role role, u32 clcqpn, struct net *net) { struct smc_link *lnk; int i; if (memcmp(lgr->peer_systemid, peer_systemid, SMC_SYSTEMID_LEN) || lgr->role != role) return false; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { lnk = &lgr->lnk[i]; if (!smc_link_active(lnk)) continue; /* use verbs API to check netns, instead of lgr->net */ if (!rdma_dev_access_netns(lnk->smcibdev->ibdev, net)) return false; if ((lgr->role == SMC_SERV || lnk->peer_qpn == clcqpn) && !memcmp(lnk->peer_gid, peer_gid, SMC_GID_SIZE) && (smcr_version == SMC_V2 || !memcmp(lnk->peer_mac, peer_mac_v1, ETH_ALEN))) return true; } return false; } static bool smcd_lgr_match(struct smc_link_group *lgr, struct smcd_dev *smcismdev, struct smcd_gid *peer_gid) { if (lgr->peer_gid.gid != peer_gid->gid || lgr->smcd != smcismdev) return false; if (smc_ism_is_emulated(smcismdev) && lgr->peer_gid.gid_ext != peer_gid->gid_ext) return false; return true; } /* create a new SMC connection (and a new link group if necessary) */ int smc_conn_create(struct smc_sock *smc, struct smc_init_info *ini) { struct smc_connection *conn = &smc->conn; struct net *net = sock_net(&smc->sk); struct list_head *lgr_list; struct smc_link_group *lgr; enum smc_lgr_role role; spinlock_t *lgr_lock; int rc = 0; lgr_list = ini->is_smcd ? &ini->ism_dev[ini->ism_selected]->lgr_list : &smc_lgr_list.list; lgr_lock = ini->is_smcd ? &ini->ism_dev[ini->ism_selected]->lgr_lock : &smc_lgr_list.lock; ini->first_contact_local = 1; role = smc->listen_smc ? SMC_SERV : SMC_CLNT; if (role == SMC_CLNT && ini->first_contact_peer) /* create new link group as well */ goto create; /* determine if an existing link group can be reused */ spin_lock_bh(lgr_lock); list_for_each_entry(lgr, lgr_list, list) { write_lock_bh(&lgr->conns_lock); if ((ini->is_smcd ? smcd_lgr_match(lgr, ini->ism_dev[ini->ism_selected], &ini->ism_peer_gid[ini->ism_selected]) : smcr_lgr_match(lgr, ini->smcr_version, ini->peer_systemid, ini->peer_gid, ini->peer_mac, role, ini->ib_clcqpn, net)) && !lgr->sync_err && (ini->smcd_version == SMC_V2 || lgr->vlan_id == ini->vlan_id) && (role == SMC_CLNT || ini->is_smcd || (lgr->conns_num < lgr->max_conns && !bitmap_full(lgr->rtokens_used_mask, SMC_RMBS_PER_LGR_MAX)))) { /* link group found */ ini->first_contact_local = 0; conn->lgr = lgr; rc = smc_lgr_register_conn(conn, false); write_unlock_bh(&lgr->conns_lock); if (!rc && delayed_work_pending(&lgr->free_work)) cancel_delayed_work(&lgr->free_work); break; } write_unlock_bh(&lgr->conns_lock); } spin_unlock_bh(lgr_lock); if (rc) return rc; if (role == SMC_CLNT && !ini->first_contact_peer && ini->first_contact_local) { /* Server reuses a link group, but Client wants to start * a new one * send out_of_sync decline, reason synchr. error */ return SMC_CLC_DECL_SYNCERR; } create: if (ini->first_contact_local) { rc = smc_lgr_create(smc, ini); if (rc) goto out; lgr = conn->lgr; write_lock_bh(&lgr->conns_lock); rc = smc_lgr_register_conn(conn, true); write_unlock_bh(&lgr->conns_lock); if (rc) { smc_lgr_cleanup_early(lgr); goto out; } } smc_lgr_hold(conn->lgr); /* lgr_put in smc_conn_free() */ if (!conn->lgr->is_smcd) smcr_link_hold(conn->lnk); /* link_put in smc_conn_free() */ conn->freed = 0; conn->local_tx_ctrl.common.type = SMC_CDC_MSG_TYPE; conn->local_tx_ctrl.len = SMC_WR_TX_SIZE; conn->urg_state = SMC_URG_READ; init_waitqueue_head(&conn->cdc_pend_tx_wq); INIT_WORK(&smc->conn.abort_work, smc_conn_abort_work); if (ini->is_smcd) { conn->rx_off = sizeof(struct smcd_cdc_msg); smcd_cdc_rx_init(conn); /* init tasklet for this conn */ } else { conn->rx_off = 0; } #ifndef KERNEL_HAS_ATOMIC64 spin_lock_init(&conn->acurs_lock); #endif out: return rc; } #define SMCD_DMBE_SIZES 6 /* 0 -> 16KB, 1 -> 32KB, .. 6 -> 1MB */ #define SMCR_RMBE_SIZES 15 /* 0 -> 16KB, 1 -> 32KB, .. 15 -> 512MB */ /* convert the RMB size into the compressed notation (minimum 16K, see * SMCD/R_DMBE_SIZES. * In contrast to plain ilog2, this rounds towards the next power of 2, * so the socket application gets at least its desired sndbuf / rcvbuf size. */ static u8 smc_compress_bufsize(int size, bool is_smcd, bool is_rmb) { u8 compressed; if (size <= SMC_BUF_MIN_SIZE) return 0; size = (size - 1) >> 14; /* convert to 16K multiple */ compressed = min_t(u8, ilog2(size) + 1, is_smcd ? SMCD_DMBE_SIZES : SMCR_RMBE_SIZES); #ifdef CONFIG_ARCH_NO_SG_CHAIN if (!is_smcd && is_rmb) /* RMBs are backed by & limited to max size of scatterlists */ compressed = min_t(u8, compressed, ilog2((SG_MAX_SINGLE_ALLOC * PAGE_SIZE) >> 14)); #endif return compressed; } /* convert the RMB size from compressed notation into integer */ int smc_uncompress_bufsize(u8 compressed) { u32 size; size = 0x00000001 << (((int)compressed) + 14); return (int)size; } /* try to reuse a sndbuf or rmb description slot for a certain * buffer size; if not available, return NULL */ static struct smc_buf_desc *smc_buf_get_slot(int compressed_bufsize, struct rw_semaphore *lock, struct list_head *buf_list) { struct smc_buf_desc *buf_slot; down_read(lock); list_for_each_entry(buf_slot, buf_list, list) { if (cmpxchg(&buf_slot->used, 0, 1) == 0) { up_read(lock); return buf_slot; } } up_read(lock); return NULL; } /* one of the conditions for announcing a receiver's current window size is * that it "results in a minimum increase in the window size of 10% of the * receive buffer space" [RFC7609] */ static inline int smc_rmb_wnd_update_limit(int rmbe_size) { return max_t(int, rmbe_size / 10, SOCK_MIN_SNDBUF / 2); } /* map an buf to a link */ static int smcr_buf_map_link(struct smc_buf_desc *buf_desc, bool is_rmb, struct smc_link *lnk) { int rc, i, nents, offset, buf_size, size, access_flags; struct scatterlist *sg; void *buf; if (buf_desc->is_map_ib[lnk->link_idx]) return 0; if (buf_desc->is_vm) { buf = buf_desc->cpu_addr; buf_size = buf_desc->len; offset = offset_in_page(buf_desc->cpu_addr); nents = PAGE_ALIGN(buf_size + offset) / PAGE_SIZE; } else { nents = 1; } rc = sg_alloc_table(&buf_desc->sgt[lnk->link_idx], nents, GFP_KERNEL); if (rc) return rc; if (buf_desc->is_vm) { /* virtually contiguous buffer */ for_each_sg(buf_desc->sgt[lnk->link_idx].sgl, sg, nents, i) { size = min_t(int, PAGE_SIZE - offset, buf_size); sg_set_page(sg, vmalloc_to_page(buf), size, offset); buf += size; buf_size -= size; offset = 0; } } else { /* physically contiguous buffer */ sg_set_buf(buf_desc->sgt[lnk->link_idx].sgl, buf_desc->cpu_addr, buf_desc->len); } /* map sg table to DMA address */ rc = smc_ib_buf_map_sg(lnk, buf_desc, is_rmb ? DMA_FROM_DEVICE : DMA_TO_DEVICE); /* SMC protocol depends on mapping to one DMA address only */ if (rc != nents) { rc = -EAGAIN; goto free_table; } buf_desc->is_dma_need_sync |= smc_ib_is_sg_need_sync(lnk, buf_desc) << lnk->link_idx; if (is_rmb || buf_desc->is_vm) { /* create a new memory region for the RMB or vzalloced sndbuf */ access_flags = is_rmb ? IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : IB_ACCESS_LOCAL_WRITE; rc = smc_ib_get_memory_region(lnk->roce_pd, access_flags, buf_desc, lnk->link_idx); if (rc) goto buf_unmap; smc_ib_sync_sg_for_device(lnk, buf_desc, is_rmb ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } buf_desc->is_map_ib[lnk->link_idx] = true; return 0; buf_unmap: smc_ib_buf_unmap_sg(lnk, buf_desc, is_rmb ? DMA_FROM_DEVICE : DMA_TO_DEVICE); free_table: sg_free_table(&buf_desc->sgt[lnk->link_idx]); return rc; } /* register a new buf on IB device, rmb or vzalloced sndbuf * must be called under lgr->llc_conf_mutex lock */ int smcr_link_reg_buf(struct smc_link *link, struct smc_buf_desc *buf_desc) { if (list_empty(&link->lgr->list)) return -ENOLINK; if (!buf_desc->is_reg_mr[link->link_idx]) { /* register memory region for new buf */ if (buf_desc->is_vm) buf_desc->mr[link->link_idx]->iova = (uintptr_t)buf_desc->cpu_addr; if (smc_wr_reg_send(link, buf_desc->mr[link->link_idx])) { buf_desc->is_reg_err = true; return -EFAULT; } buf_desc->is_reg_mr[link->link_idx] = true; } return 0; } static int _smcr_buf_map_lgr(struct smc_link *lnk, struct rw_semaphore *lock, struct list_head *lst, bool is_rmb) { struct smc_buf_desc *buf_desc, *bf; int rc = 0; down_write(lock); list_for_each_entry_safe(buf_desc, bf, lst, list) { if (!buf_desc->used) continue; rc = smcr_buf_map_link(buf_desc, is_rmb, lnk); if (rc) goto out; } out: up_write(lock); return rc; } /* map all used buffers of lgr for a new link */ int smcr_buf_map_lgr(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; int i, rc = 0; for (i = 0; i < SMC_RMBE_SIZES; i++) { rc = _smcr_buf_map_lgr(lnk, &lgr->rmbs_lock, &lgr->rmbs[i], true); if (rc) return rc; rc = _smcr_buf_map_lgr(lnk, &lgr->sndbufs_lock, &lgr->sndbufs[i], false); if (rc) return rc; } return 0; } /* register all used buffers of lgr for a new link, * must be called under lgr->llc_conf_mutex lock */ int smcr_buf_reg_lgr(struct smc_link *lnk) { struct smc_link_group *lgr = lnk->lgr; struct smc_buf_desc *buf_desc, *bf; int i, rc = 0; /* reg all RMBs for a new link */ down_write(&lgr->rmbs_lock); for (i = 0; i < SMC_RMBE_SIZES; i++) { list_for_each_entry_safe(buf_desc, bf, &lgr->rmbs[i], list) { if (!buf_desc->used) continue; rc = smcr_link_reg_buf(lnk, buf_desc); if (rc) { up_write(&lgr->rmbs_lock); return rc; } } } up_write(&lgr->rmbs_lock); if (lgr->buf_type == SMCR_PHYS_CONT_BUFS) return rc; /* reg all vzalloced sndbufs for a new link */ down_write(&lgr->sndbufs_lock); for (i = 0; i < SMC_RMBE_SIZES; i++) { list_for_each_entry_safe(buf_desc, bf, &lgr->sndbufs[i], list) { if (!buf_desc->used || !buf_desc->is_vm) continue; rc = smcr_link_reg_buf(lnk, buf_desc); if (rc) { up_write(&lgr->sndbufs_lock); return rc; } } } up_write(&lgr->sndbufs_lock); return rc; } static struct smc_buf_desc *smcr_new_buf_create(struct smc_link_group *lgr, int bufsize) { struct smc_buf_desc *buf_desc; /* try to alloc a new buffer */ buf_desc = kzalloc(sizeof(*buf_desc), GFP_KERNEL); if (!buf_desc) return ERR_PTR(-ENOMEM); switch (lgr->buf_type) { case SMCR_PHYS_CONT_BUFS: case SMCR_MIXED_BUFS: buf_desc->order = get_order(bufsize); buf_desc->pages = alloc_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_NOMEMALLOC | __GFP_COMP | __GFP_NORETRY | __GFP_ZERO, buf_desc->order); if (buf_desc->pages) { buf_desc->cpu_addr = (void *)page_address(buf_desc->pages); buf_desc->len = bufsize; buf_desc->is_vm = false; break; } if (lgr->buf_type == SMCR_PHYS_CONT_BUFS) goto out; fallthrough; // try virtually contiguous buf case SMCR_VIRT_CONT_BUFS: buf_desc->order = get_order(bufsize); buf_desc->cpu_addr = vzalloc(PAGE_SIZE << buf_desc->order); if (!buf_desc->cpu_addr) goto out; buf_desc->pages = NULL; buf_desc->len = bufsize; buf_desc->is_vm = true; break; } return buf_desc; out: kfree(buf_desc); return ERR_PTR(-EAGAIN); } /* map buf_desc on all usable links, * unused buffers stay mapped as long as the link is up */ static int smcr_buf_map_usable_links(struct smc_link_group *lgr, struct smc_buf_desc *buf_desc, bool is_rmb) { int i, rc = 0, cnt = 0; /* protect against parallel link reconfiguration */ down_read(&lgr->llc_conf_mutex); for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { struct smc_link *lnk = &lgr->lnk[i]; if (!smc_link_usable(lnk)) continue; if (smcr_buf_map_link(buf_desc, is_rmb, lnk)) { rc = -ENOMEM; goto out; } cnt++; } out: up_read(&lgr->llc_conf_mutex); if (!rc && !cnt) rc = -EINVAL; return rc; } static struct smc_buf_desc *smcd_new_buf_create(struct smc_link_group *lgr, bool is_dmb, int bufsize) { struct smc_buf_desc *buf_desc; int rc; /* try to alloc a new DMB */ buf_desc = kzalloc(sizeof(*buf_desc), GFP_KERNEL); if (!buf_desc) return ERR_PTR(-ENOMEM); if (is_dmb) { rc = smc_ism_register_dmb(lgr, bufsize, buf_desc); if (rc) { kfree(buf_desc); if (rc == -ENOMEM) return ERR_PTR(-EAGAIN); if (rc == -ENOSPC) return ERR_PTR(-ENOSPC); return ERR_PTR(-EIO); } buf_desc->pages = virt_to_page(buf_desc->cpu_addr); /* CDC header stored in buf. So, pretend it was smaller */ buf_desc->len = bufsize - sizeof(struct smcd_cdc_msg); } else { buf_desc->cpu_addr = kzalloc(bufsize, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC); if (!buf_desc->cpu_addr) { kfree(buf_desc); return ERR_PTR(-EAGAIN); } buf_desc->len = bufsize; } return buf_desc; } static int __smc_buf_create(struct smc_sock *smc, bool is_smcd, bool is_rmb) { struct smc_buf_desc *buf_desc = ERR_PTR(-ENOMEM); struct smc_connection *conn = &smc->conn; struct smc_link_group *lgr = conn->lgr; struct list_head *buf_list; int bufsize, bufsize_comp; struct rw_semaphore *lock; /* lock buffer list */ bool is_dgraded = false; if (is_rmb) /* use socket recv buffer size (w/o overhead) as start value */ bufsize = smc->sk.sk_rcvbuf / 2; else /* use socket send buffer size (w/o overhead) as start value */ bufsize = smc->sk.sk_sndbuf / 2; for (bufsize_comp = smc_compress_bufsize(bufsize, is_smcd, is_rmb); bufsize_comp >= 0; bufsize_comp--) { if (is_rmb) { lock = &lgr->rmbs_lock; buf_list = &lgr->rmbs[bufsize_comp]; } else { lock = &lgr->sndbufs_lock; buf_list = &lgr->sndbufs[bufsize_comp]; } bufsize = smc_uncompress_bufsize(bufsize_comp); /* check for reusable slot in the link group */ buf_desc = smc_buf_get_slot(bufsize_comp, lock, buf_list); if (buf_desc) { buf_desc->is_dma_need_sync = 0; SMC_STAT_RMB_SIZE(smc, is_smcd, is_rmb, true, bufsize); SMC_STAT_BUF_REUSE(smc, is_smcd, is_rmb); break; /* found reusable slot */ } if (is_smcd) buf_desc = smcd_new_buf_create(lgr, is_rmb, bufsize); else buf_desc = smcr_new_buf_create(lgr, bufsize); if (PTR_ERR(buf_desc) == -ENOMEM) break; if (IS_ERR(buf_desc)) { if (!is_dgraded) { is_dgraded = true; SMC_STAT_RMB_DOWNGRADED(smc, is_smcd, is_rmb); } continue; } SMC_STAT_RMB_ALLOC(smc, is_smcd, is_rmb); SMC_STAT_RMB_SIZE(smc, is_smcd, is_rmb, true, bufsize); buf_desc->used = 1; down_write(lock); smc_lgr_buf_list_add(lgr, is_rmb, buf_list, buf_desc); up_write(lock); break; /* found */ } if (IS_ERR(buf_desc)) return PTR_ERR(buf_desc); if (!is_smcd) { if (smcr_buf_map_usable_links(lgr, buf_desc, is_rmb)) { smcr_buf_unuse(buf_desc, is_rmb, lgr); return -ENOMEM; } } if (is_rmb) { conn->rmb_desc = buf_desc; conn->rmbe_size_comp = bufsize_comp; smc->sk.sk_rcvbuf = bufsize * 2; atomic_set(&conn->bytes_to_rcv, 0); conn->rmbe_update_limit = smc_rmb_wnd_update_limit(buf_desc->len); if (is_smcd) smc_ism_set_conn(conn); /* map RMB/smcd_dev to conn */ } else { conn->sndbuf_desc = buf_desc; smc->sk.sk_sndbuf = bufsize * 2; atomic_set(&conn->sndbuf_space, bufsize); } return 0; } void smc_sndbuf_sync_sg_for_device(struct smc_connection *conn) { if (!conn->sndbuf_desc->is_dma_need_sync) return; if (!smc_conn_lgr_valid(conn) || conn->lgr->is_smcd || !smc_link_active(conn->lnk)) return; smc_ib_sync_sg_for_device(conn->lnk, conn->sndbuf_desc, DMA_TO_DEVICE); } void smc_rmb_sync_sg_for_cpu(struct smc_connection *conn) { int i; if (!conn->rmb_desc->is_dma_need_sync) return; if (!smc_conn_lgr_valid(conn) || conn->lgr->is_smcd) return; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (!smc_link_active(&conn->lgr->lnk[i])) continue; smc_ib_sync_sg_for_cpu(&conn->lgr->lnk[i], conn->rmb_desc, DMA_FROM_DEVICE); } } /* create the send and receive buffer for an SMC socket; * receive buffers are called RMBs; * (even though the SMC protocol allows more than one RMB-element per RMB, * the Linux implementation uses just one RMB-element per RMB, i.e. uses an * extra RMB for every connection in a link group */ int smc_buf_create(struct smc_sock *smc, bool is_smcd) { int rc; /* create send buffer */ if (is_smcd && smc_ism_support_dmb_nocopy(smc->conn.lgr->smcd)) goto create_rmb; rc = __smc_buf_create(smc, is_smcd, false); if (rc) return rc; create_rmb: /* create rmb */ rc = __smc_buf_create(smc, is_smcd, true); if (rc && smc->conn.sndbuf_desc) { down_write(&smc->conn.lgr->sndbufs_lock); smc_lgr_buf_list_del(smc->conn.lgr, false, smc->conn.sndbuf_desc); up_write(&smc->conn.lgr->sndbufs_lock); smc_buf_free(smc->conn.lgr, false, smc->conn.sndbuf_desc); smc->conn.sndbuf_desc = NULL; } return rc; } int smcd_buf_attach(struct smc_sock *smc) { struct smc_connection *conn = &smc->conn; struct smcd_dev *smcd = conn->lgr->smcd; u64 peer_token = conn->peer_token; struct smc_buf_desc *buf_desc; int rc; buf_desc = kzalloc(sizeof(*buf_desc), GFP_KERNEL); if (!buf_desc) return -ENOMEM; /* The ghost sndbuf_desc describes the same memory region as * peer RMB. Its lifecycle is consistent with the connection's * and it will be freed with the connections instead of the * link group. */ rc = smc_ism_attach_dmb(smcd, peer_token, buf_desc); if (rc) goto free; smc->sk.sk_sndbuf = buf_desc->len; buf_desc->cpu_addr = (u8 *)buf_desc->cpu_addr + sizeof(struct smcd_cdc_msg); buf_desc->len -= sizeof(struct smcd_cdc_msg); conn->sndbuf_desc = buf_desc; conn->sndbuf_desc->used = 1; atomic_set(&conn->sndbuf_space, conn->sndbuf_desc->len); return 0; free: kfree(buf_desc); return rc; } static inline int smc_rmb_reserve_rtoken_idx(struct smc_link_group *lgr) { int i; for_each_clear_bit(i, lgr->rtokens_used_mask, SMC_RMBS_PER_LGR_MAX) { if (!test_and_set_bit(i, lgr->rtokens_used_mask)) return i; } return -ENOSPC; } static int smc_rtoken_find_by_link(struct smc_link_group *lgr, int lnk_idx, u32 rkey) { int i; for (i = 0; i < SMC_RMBS_PER_LGR_MAX; i++) { if (test_bit(i, lgr->rtokens_used_mask) && lgr->rtokens[i][lnk_idx].rkey == rkey) return i; } return -ENOENT; } /* set rtoken for a new link to an existing rmb */ void smc_rtoken_set(struct smc_link_group *lgr, int link_idx, int link_idx_new, __be32 nw_rkey_known, __be64 nw_vaddr, __be32 nw_rkey) { int rtok_idx; rtok_idx = smc_rtoken_find_by_link(lgr, link_idx, ntohl(nw_rkey_known)); if (rtok_idx == -ENOENT) return; lgr->rtokens[rtok_idx][link_idx_new].rkey = ntohl(nw_rkey); lgr->rtokens[rtok_idx][link_idx_new].dma_addr = be64_to_cpu(nw_vaddr); } /* set rtoken for a new link whose link_id is given */ void smc_rtoken_set2(struct smc_link_group *lgr, int rtok_idx, int link_id, __be64 nw_vaddr, __be32 nw_rkey) { u64 dma_addr = be64_to_cpu(nw_vaddr); u32 rkey = ntohl(nw_rkey); bool found = false; int link_idx; for (link_idx = 0; link_idx < SMC_LINKS_PER_LGR_MAX; link_idx++) { if (lgr->lnk[link_idx].link_id == link_id) { found = true; break; } } if (!found) return; lgr->rtokens[rtok_idx][link_idx].rkey = rkey; lgr->rtokens[rtok_idx][link_idx].dma_addr = dma_addr; } /* add a new rtoken from peer */ int smc_rtoken_add(struct smc_link *lnk, __be64 nw_vaddr, __be32 nw_rkey) { struct smc_link_group *lgr = smc_get_lgr(lnk); u64 dma_addr = be64_to_cpu(nw_vaddr); u32 rkey = ntohl(nw_rkey); int i; for (i = 0; i < SMC_RMBS_PER_LGR_MAX; i++) { if (lgr->rtokens[i][lnk->link_idx].rkey == rkey && lgr->rtokens[i][lnk->link_idx].dma_addr == dma_addr && test_bit(i, lgr->rtokens_used_mask)) { /* already in list */ return i; } } i = smc_rmb_reserve_rtoken_idx(lgr); if (i < 0) return i; lgr->rtokens[i][lnk->link_idx].rkey = rkey; lgr->rtokens[i][lnk->link_idx].dma_addr = dma_addr; return i; } /* delete an rtoken from all links */ int smc_rtoken_delete(struct smc_link *lnk, __be32 nw_rkey) { struct smc_link_group *lgr = smc_get_lgr(lnk); u32 rkey = ntohl(nw_rkey); int i, j; for (i = 0; i < SMC_RMBS_PER_LGR_MAX; i++) { if (lgr->rtokens[i][lnk->link_idx].rkey == rkey && test_bit(i, lgr->rtokens_used_mask)) { for (j = 0; j < SMC_LINKS_PER_LGR_MAX; j++) { lgr->rtokens[i][j].rkey = 0; lgr->rtokens[i][j].dma_addr = 0; } clear_bit(i, lgr->rtokens_used_mask); return 0; } } return -ENOENT; } /* save rkey and dma_addr received from peer during clc handshake */ int smc_rmb_rtoken_handling(struct smc_connection *conn, struct smc_link *lnk, struct smc_clc_msg_accept_confirm *clc) { conn->rtoken_idx = smc_rtoken_add(lnk, clc->r0.rmb_dma_addr, clc->r0.rmb_rkey); if (conn->rtoken_idx < 0) return conn->rtoken_idx; return 0; } static void smc_core_going_away(void) { struct smc_ib_device *smcibdev; struct smcd_dev *smcd; mutex_lock(&smc_ib_devices.mutex); list_for_each_entry(smcibdev, &smc_ib_devices.list, list) { int i; for (i = 0; i < SMC_MAX_PORTS; i++) set_bit(i, smcibdev->ports_going_away); } mutex_unlock(&smc_ib_devices.mutex); mutex_lock(&smcd_dev_list.mutex); list_for_each_entry(smcd, &smcd_dev_list.list, list) { smcd->going_away = 1; } mutex_unlock(&smcd_dev_list.mutex); } /* Clean up all SMC link groups */ static void smc_lgrs_shutdown(void) { struct smcd_dev *smcd; smc_core_going_away(); smc_smcr_terminate_all(NULL); mutex_lock(&smcd_dev_list.mutex); list_for_each_entry(smcd, &smcd_dev_list.list, list) smc_smcd_terminate_all(smcd); mutex_unlock(&smcd_dev_list.mutex); } static int smc_core_reboot_event(struct notifier_block *this, unsigned long event, void *ptr) { smc_lgrs_shutdown(); smc_ib_unregister_client(); smc_ism_exit(); return 0; } static struct notifier_block smc_reboot_notifier = { .notifier_call = smc_core_reboot_event, }; int __init smc_core_init(void) { return register_reboot_notifier(&smc_reboot_notifier); } /* Called (from smc_exit) when module is removed */ void smc_core_exit(void) { unregister_reboot_notifier(&smc_reboot_notifier); smc_lgrs_shutdown(); } |
27 768 80 303 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM timestamp #if !defined(_TRACE_TIMESTAMP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TIMESTAMP_H #include <linux/tracepoint.h> #include <linux/fs.h> #define CTIME_QUERIED_FLAGS \ { I_CTIME_QUERIED, "Q" } DECLARE_EVENT_CLASS(ctime, TP_PROTO(struct inode *inode, struct timespec64 *ctime), TP_ARGS(inode, ctime), TP_STRUCT__entry( __field(dev_t, dev) __field(ino_t, ino) __field(time64_t, ctime_s) __field(u32, ctime_ns) __field(u32, gen) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->gen = inode->i_generation; __entry->ctime_s = ctime->tv_sec; __entry->ctime_ns = ctime->tv_nsec; ), TP_printk("ino=%d:%d:%ld:%u ctime=%lld.%u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->gen, __entry->ctime_s, __entry->ctime_ns ) ); DEFINE_EVENT(ctime, inode_set_ctime_to_ts, TP_PROTO(struct inode *inode, struct timespec64 *ctime), TP_ARGS(inode, ctime)); DEFINE_EVENT(ctime, ctime_xchg_skip, TP_PROTO(struct inode *inode, struct timespec64 *ctime), TP_ARGS(inode, ctime)); TRACE_EVENT(ctime_ns_xchg, TP_PROTO(struct inode *inode, u32 old, u32 new, u32 cur), TP_ARGS(inode, old, new, cur), TP_STRUCT__entry( __field(dev_t, dev) __field(ino_t, ino) __field(u32, gen) __field(u32, old) __field(u32, new) __field(u32, cur) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->gen = inode->i_generation; __entry->old = old; __entry->new = new; __entry->cur = cur; ), TP_printk("ino=%d:%d:%ld:%u old=%u:%s new=%u cur=%u:%s", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->gen, __entry->old & ~I_CTIME_QUERIED, __print_flags(__entry->old & I_CTIME_QUERIED, "|", CTIME_QUERIED_FLAGS), __entry->new, __entry->cur & ~I_CTIME_QUERIED, __print_flags(__entry->cur & I_CTIME_QUERIED, "|", CTIME_QUERIED_FLAGS) ) ); TRACE_EVENT(fill_mg_cmtime, TP_PROTO(struct inode *inode, struct timespec64 *ctime, struct timespec64 *mtime), TP_ARGS(inode, ctime, mtime), TP_STRUCT__entry( __field(dev_t, dev) __field(ino_t, ino) __field(time64_t, ctime_s) __field(time64_t, mtime_s) __field(u32, ctime_ns) __field(u32, mtime_ns) __field(u32, gen) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->gen = inode->i_generation; __entry->ctime_s = ctime->tv_sec; __entry->mtime_s = mtime->tv_sec; __entry->ctime_ns = ctime->tv_nsec; __entry->mtime_ns = mtime->tv_nsec; ), TP_printk("ino=%d:%d:%ld:%u ctime=%lld.%u mtime=%lld.%u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->gen, __entry->ctime_s, __entry->ctime_ns, __entry->mtime_s, __entry->mtime_ns ) ); #endif /* _TRACE_TIMESTAMP_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
18780 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/fault-inject.h> #include <linux/fault-inject-usercopy.h> static struct { struct fault_attr attr; } fail_usercopy = { .attr = FAULT_ATTR_INITIALIZER, }; static int __init setup_fail_usercopy(char *str) { return setup_fault_attr(&fail_usercopy.attr, str); } __setup("fail_usercopy=", setup_fail_usercopy); #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS static int __init fail_usercopy_debugfs(void) { struct dentry *dir; dir = fault_create_debugfs_attr("fail_usercopy", NULL, &fail_usercopy.attr); if (IS_ERR(dir)) return PTR_ERR(dir); return 0; } late_initcall(fail_usercopy_debugfs); #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ bool should_fail_usercopy(void) { return should_fail(&fail_usercopy.attr, 1); } EXPORT_SYMBOL_GPL(should_fail_usercopy); |
18 18 18 19 18 18 18 18 1 18 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | // SPDX-License-Identifier: GPL-2.0-or-later #include <linux/plist.h> #include <linux/sched/task.h> #include <linux/sched/signal.h> #include <linux/freezer.h> #include "futex.h" /* * READ this before attempting to hack on futexes! * * Basic futex operation and ordering guarantees * ============================================= * * The waiter reads the futex value in user space and calls * futex_wait(). This function computes the hash bucket and acquires * the hash bucket lock. After that it reads the futex user space value * again and verifies that the data has not changed. If it has not changed * it enqueues itself into the hash bucket, releases the hash bucket lock * and schedules. * * The waker side modifies the user space value of the futex and calls * futex_wake(). This function computes the hash bucket and acquires the * hash bucket lock. Then it looks for waiters on that futex in the hash * bucket and wakes them. * * In futex wake up scenarios where no tasks are blocked on a futex, taking * the hb spinlock can be avoided and simply return. In order for this * optimization to work, ordering guarantees must exist so that the waiter * being added to the list is acknowledged when the list is concurrently being * checked by the waker, avoiding scenarios like the following: * * CPU 0 CPU 1 * val = *futex; * sys_futex(WAIT, futex, val); * futex_wait(futex, val); * uval = *futex; * *futex = newval; * sys_futex(WAKE, futex); * futex_wake(futex); * if (queue_empty()) * return; * if (uval == val) * lock(hash_bucket(futex)); * queue(); * unlock(hash_bucket(futex)); * schedule(); * * This would cause the waiter on CPU 0 to wait forever because it * missed the transition of the user space value from val to newval * and the waker did not find the waiter in the hash bucket queue. * * The correct serialization ensures that a waiter either observes * the changed user space value before blocking or is woken by a * concurrent waker: * * CPU 0 CPU 1 * val = *futex; * sys_futex(WAIT, futex, val); * futex_wait(futex, val); * * waiters++; (a) * smp_mb(); (A) <-- paired with -. * | * lock(hash_bucket(futex)); | * | * uval = *futex; | * | *futex = newval; * | sys_futex(WAKE, futex); * | futex_wake(futex); * | * `--------> smp_mb(); (B) * if (uval == val) * queue(); * unlock(hash_bucket(futex)); * schedule(); if (waiters) * lock(hash_bucket(futex)); * else wake_waiters(futex); * waiters--; (b) unlock(hash_bucket(futex)); * * Where (A) orders the waiters increment and the futex value read through * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write * to futex and the waiters read (see futex_hb_waiters_pending()). * * This yields the following case (where X:=waiters, Y:=futex): * * X = Y = 0 * * w[X]=1 w[Y]=1 * MB MB * r[Y]=y r[X]=x * * Which guarantees that x==0 && y==0 is impossible; which translates back into * the guarantee that we cannot both miss the futex variable change and the * enqueue. * * Note that a new waiter is accounted for in (a) even when it is possible that * the wait call can return error, in which case we backtrack from it in (b). * Refer to the comment in futex_q_lock(). * * Similarly, in order to account for waiters being requeued on another * address we always increment the waiters for the destination bucket before * acquiring the lock. It then decrements them again after releasing it - * the code that actually moves the futex(es) between hash buckets (requeue_futex) * will do the additional required waiter count housekeeping. This is done for * double_lock_hb() and double_unlock_hb(), respectively. */ bool __futex_wake_mark(struct futex_q *q) { if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) return false; __futex_unqueue(q); /* * The waiting task can free the futex_q as soon as q->lock_ptr = NULL * is written, without taking any locks. This is possible in the event * of a spurious wakeup, for example. A memory barrier is required here * to prevent the following store to lock_ptr from getting ahead of the * plist_del in __futex_unqueue(). */ smp_store_release(&q->lock_ptr, NULL); return true; } /* * The hash bucket lock must be held when this is called. * Afterwards, the futex_q must not be accessed. Callers * must ensure to later call wake_up_q() for the actual * wakeups to occur. */ void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) { struct task_struct *p = q->task; get_task_struct(p); if (!__futex_wake_mark(q)) { put_task_struct(p); return; } /* * Queue the task for later wakeup for after we've released * the hb->lock. */ wake_q_add_safe(wake_q, p); } /* * Wake up waiters matching bitset queued on this futex (uaddr). */ int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) { struct futex_hash_bucket *hb; struct futex_q *this, *next; union futex_key key = FUTEX_KEY_INIT; DEFINE_WAKE_Q(wake_q); int ret; if (!bitset) return -EINVAL; ret = get_futex_key(uaddr, flags, &key, FUTEX_READ); if (unlikely(ret != 0)) return ret; if ((flags & FLAGS_STRICT) && !nr_wake) return 0; hb = futex_hash(&key); /* Make sure we really have tasks to wakeup */ if (!futex_hb_waiters_pending(hb)) return ret; spin_lock(&hb->lock); plist_for_each_entry_safe(this, next, &hb->chain, list) { if (futex_match (&this->key, &key)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; break; } /* Check if one of the bits is set in both bitsets */ if (!(this->bitset & bitset)) continue; this->wake(&wake_q, this); if (++ret >= nr_wake) break; } } spin_unlock(&hb->lock); wake_up_q(&wake_q); return ret; } static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) { unsigned int op = (encoded_op & 0x70000000) >> 28; unsigned int cmp = (encoded_op & 0x0f000000) >> 24; int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); int oldval, ret; if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { if (oparg < 0 || oparg > 31) { /* * kill this print and return -EINVAL when userspace * is sane again */ pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", current->comm, oparg); oparg &= 31; } oparg = 1 << oparg; } pagefault_disable(); ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); pagefault_enable(); if (ret) return ret; switch (cmp) { case FUTEX_OP_CMP_EQ: return oldval == cmparg; case FUTEX_OP_CMP_NE: return oldval != cmparg; case FUTEX_OP_CMP_LT: return oldval < cmparg; case FUTEX_OP_CMP_GE: return oldval >= cmparg; case FUTEX_OP_CMP_LE: return oldval <= cmparg; case FUTEX_OP_CMP_GT: return oldval > cmparg; default: return -ENOSYS; } } /* * Wake up all waiters hashed on the physical page that is mapped * to this virtual address: */ int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_wake2, int op) { union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; struct futex_hash_bucket *hb1, *hb2; struct futex_q *this, *next; int ret, op_ret; DEFINE_WAKE_Q(wake_q); retry: ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ); if (unlikely(ret != 0)) return ret; ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE); if (unlikely(ret != 0)) return ret; hb1 = futex_hash(&key1); hb2 = futex_hash(&key2); retry_private: double_lock_hb(hb1, hb2); op_ret = futex_atomic_op_inuser(op, uaddr2); if (unlikely(op_ret < 0)) { double_unlock_hb(hb1, hb2); if (!IS_ENABLED(CONFIG_MMU) || unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { /* * we don't get EFAULT from MMU faults if we don't have * an MMU, but we might get them from range checking */ ret = op_ret; return ret; } if (op_ret == -EFAULT) { ret = fault_in_user_writeable(uaddr2); if (ret) return ret; } cond_resched(); if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } plist_for_each_entry_safe(this, next, &hb1->chain, list) { if (futex_match (&this->key, &key1)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; goto out_unlock; } this->wake(&wake_q, this); if (++ret >= nr_wake) break; } } if (op_ret > 0) { op_ret = 0; plist_for_each_entry_safe(this, next, &hb2->chain, list) { if (futex_match (&this->key, &key2)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; goto out_unlock; } this->wake(&wake_q, this); if (++op_ret >= nr_wake2) break; } } ret += op_ret; } out_unlock: double_unlock_hb(hb1, hb2); wake_up_q(&wake_q); return ret; } static long futex_wait_restart(struct restart_block *restart); /** * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal * @hb: the futex hash bucket, must be locked by the caller * @q: the futex_q to queue up on * @timeout: the prepared hrtimer_sleeper, or null for no timeout */ void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout) { /* * The task state is guaranteed to be set before another task can * wake it. set_current_state() is implemented using smp_store_mb() and * futex_queue() calls spin_unlock() upon completion, both serializing * access to the hash list and forcing another memory barrier. */ set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); futex_queue(q, hb, current); /* Arm the timer */ if (timeout) hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); /* * If we have been removed from the hash list, then another task * has tried to wake us, and we can skip the call to schedule(). */ if (likely(!plist_node_empty(&q->list))) { /* * If the timer has already expired, current will already be * flagged for rescheduling. Only call schedule if there * is no timeout, or if it has yet to expire. */ if (!timeout || timeout->task) schedule(); } __set_current_state(TASK_RUNNING); } /** * futex_unqueue_multiple - Remove various futexes from their hash bucket * @v: The list of futexes to unqueue * @count: Number of futexes in the list * * Helper to unqueue a list of futexes. This can't fail. * * Return: * - >=0 - Index of the last futex that was awoken; * - -1 - No futex was awoken */ int futex_unqueue_multiple(struct futex_vector *v, int count) { int ret = -1, i; for (i = 0; i < count; i++) { if (!futex_unqueue(&v[i].q)) ret = i; } return ret; } /** * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes * @vs: The futex list to wait on * @count: The size of the list * @woken: Index of the last woken futex, if any. Used to notify the * caller that it can return this index to userspace (return parameter) * * Prepare multiple futexes in a single step and enqueue them. This may fail if * the futex list is invalid or if any futex was already awoken. On success the * task is ready to interruptible sleep. * * Return: * - 1 - One of the futexes was woken by another thread * - 0 - Success * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL */ int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken) { struct futex_hash_bucket *hb; bool retry = false; int ret, i; u32 uval; /* * Enqueuing multiple futexes is tricky, because we need to enqueue * each futex on the list before dealing with the next one to avoid * deadlocking on the hash bucket. But, before enqueuing, we need to * make sure that current->state is TASK_INTERRUPTIBLE, so we don't * lose any wake events, which cannot be done before the get_futex_key * of the next key, because it calls get_user_pages, which can sleep. * Thus, we fetch the list of futexes keys in two steps, by first * pinning all the memory keys in the futex key, and only then we read * each key and queue the corresponding futex. * * Private futexes doesn't need to recalculate hash in retry, so skip * get_futex_key() when retrying. */ retry: for (i = 0; i < count; i++) { if (!(vs[i].w.flags & FLAGS_SHARED) && retry) continue; ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr), vs[i].w.flags, &vs[i].q.key, FUTEX_READ); if (unlikely(ret)) return ret; } set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); for (i = 0; i < count; i++) { u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr; struct futex_q *q = &vs[i].q; u32 val = vs[i].w.val; hb = futex_q_lock(q); ret = futex_get_value_locked(&uval, uaddr); if (!ret && uval == val) { /* * The bucket lock can't be held while dealing with the * next futex. Queue each futex at this moment so hb can * be unlocked. */ futex_queue(q, hb, current); continue; } futex_q_unlock(hb); __set_current_state(TASK_RUNNING); /* * Even if something went wrong, if we find out that a futex * was woken, we don't return error and return this index to * userspace */ *woken = futex_unqueue_multiple(vs, i); if (*woken >= 0) return 1; if (ret) { /* * If we need to handle a page fault, we need to do so * without any lock and any enqueued futex (otherwise * we could lose some wakeup). So we do it here, after * undoing all the work done so far. In success, we * retry all the work. */ if (get_user(uval, uaddr)) return -EFAULT; retry = true; goto retry; } if (uval != val) return -EWOULDBLOCK; } return 0; } /** * futex_sleep_multiple - Check sleeping conditions and sleep * @vs: List of futexes to wait for * @count: Length of vs * @to: Timeout * * Sleep if and only if the timeout hasn't expired and no futex on the list has * been woken up. */ static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count, struct hrtimer_sleeper *to) { if (to && !to->task) return; for (; count; count--, vs++) { if (!READ_ONCE(vs->q.lock_ptr)) return; } schedule(); } /** * futex_wait_multiple - Prepare to wait on and enqueue several futexes * @vs: The list of futexes to wait on * @count: The number of objects * @to: Timeout before giving up and returning to userspace * * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function * sleeps on a group of futexes and returns on the first futex that is * wake, or after the timeout has elapsed. * * Return: * - >=0 - Hint to the futex that was awoken * - <0 - On error */ int futex_wait_multiple(struct futex_vector *vs, unsigned int count, struct hrtimer_sleeper *to) { int ret, hint = 0; if (to) hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); while (1) { ret = futex_wait_multiple_setup(vs, count, &hint); if (ret) { if (ret > 0) { /* A futex was woken during setup */ ret = hint; } return ret; } futex_sleep_multiple(vs, count, to); __set_current_state(TASK_RUNNING); ret = futex_unqueue_multiple(vs, count); if (ret >= 0) return ret; if (to && !to->task) return -ETIMEDOUT; else if (signal_pending(current)) return -ERESTARTSYS; /* * The final case is a spurious wakeup, for * which just retry. */ } } /** * futex_wait_setup() - Prepare to wait on a futex * @uaddr: the futex userspace address * @val: the expected value * @flags: futex flags (FLAGS_SHARED, etc.) * @q: the associated futex_q * @hb: storage for hash_bucket pointer to be returned to caller * * Setup the futex_q and locate the hash_bucket. Get the futex value and * compare it with the expected value. Handle atomic faults internally. * Return with the hb lock held on success, and unlocked on failure. * * Return: * - 0 - uaddr contains val and hb has been locked; * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked */ int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, struct futex_q *q, struct futex_hash_bucket **hb) { u32 uval; int ret; /* * Access the page AFTER the hash-bucket is locked. * Order is important: * * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } * * The basic logical guarantee of a futex is that it blocks ONLY * if cond(var) is known to be true at the time of blocking, for * any cond. If we locked the hash-bucket after testing *uaddr, that * would open a race condition where we could block indefinitely with * cond(var) false, which would violate the guarantee. * * On the other hand, we insert q and release the hash-bucket only * after testing *uaddr. This guarantees that futex_wait() will NOT * absorb a wakeup if *uaddr does not match the desired values * while the syscall executes. */ retry: ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ); if (unlikely(ret != 0)) return ret; retry_private: *hb = futex_q_lock(q); ret = futex_get_value_locked(&uval, uaddr); if (ret) { futex_q_unlock(*hb); ret = get_user(uval, uaddr); if (ret) return ret; if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } if (uval != val) { futex_q_unlock(*hb); ret = -EWOULDBLOCK; } return ret; } int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, struct hrtimer_sleeper *to, u32 bitset) { struct futex_q q = futex_q_init; struct futex_hash_bucket *hb; int ret; if (!bitset) return -EINVAL; q.bitset = bitset; retry: /* * Prepare to wait on uaddr. On success, it holds hb->lock and q * is initialized. */ ret = futex_wait_setup(uaddr, val, flags, &q, &hb); if (ret) return ret; /* futex_queue and wait for wakeup, timeout, or a signal. */ futex_wait_queue(hb, &q, to); /* If we were woken (and unqueued), we succeeded, whatever. */ if (!futex_unqueue(&q)) return 0; if (to && !to->task) return -ETIMEDOUT; /* * We expect signal_pending(current), but we might be the * victim of a spurious wakeup as well. */ if (!signal_pending(current)) goto retry; return -ERESTARTSYS; } int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) { struct hrtimer_sleeper timeout, *to; struct restart_block *restart; int ret; to = futex_setup_timer(abs_time, &timeout, flags, current->timer_slack_ns); ret = __futex_wait(uaddr, flags, val, to, bitset); /* No timeout, nothing to clean up. */ if (!to) return ret; hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); if (ret == -ERESTARTSYS) { restart = ¤t->restart_block; restart->futex.uaddr = uaddr; restart->futex.val = val; restart->futex.time = *abs_time; restart->futex.bitset = bitset; restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; return set_restart_fn(restart, futex_wait_restart); } return ret; } static long futex_wait_restart(struct restart_block *restart) { u32 __user *uaddr = restart->futex.uaddr; ktime_t t, *tp = NULL; if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { t = restart->futex.time; tp = &t; } restart->fn = do_no_restart_syscall; return (long)futex_wait(uaddr, restart->futex.flags, restart->futex.val, tp, restart->futex.bitset); } |
4 1273 1273 1271 1274 4 4 4 1270 1271 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ /* * fsnotify inode mark locking/lifetime/and refcnting * * REFCNT: * The group->recnt and mark->refcnt tell how many "things" in the kernel * currently are referencing the objects. Both kind of objects typically will * live inside the kernel with a refcnt of 2, one for its creation and one for * the reference a group and a mark hold to each other. * If you are holding the appropriate locks, you can take a reference and the * object itself is guaranteed to survive until the reference is dropped. * * LOCKING: * There are 3 locks involved with fsnotify inode marks and they MUST be taken * in order as follows: * * group->mark_mutex * mark->lock * mark->connector->lock * * group->mark_mutex protects the marks_list anchored inside a given group and * each mark is hooked via the g_list. It also protects the groups private * data (i.e group limits). * mark->lock protects the marks attributes like its masks and flags. * Furthermore it protects the access to a reference of the group that the mark * is assigned to as well as the access to a reference of the inode/vfsmount * that is being watched by the mark. * * mark->connector->lock protects the list of marks anchored inside an * inode / vfsmount and each mark is hooked via the i_list. * * A list of notification marks relating to inode / mnt is contained in * fsnotify_mark_connector. That structure is alive as long as there are any * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets * detached from fsnotify_mark_connector when last reference to the mark is * dropped. Thus having mark reference is enough to protect mark->connector * pointer and to make sure fsnotify_mark_connector cannot disappear. Also * because we remove mark from g_list before dropping mark reference associated * with that, any mark found through g_list is guaranteed to have * mark->connector set until we drop group->mark_mutex. * * LIFETIME: * Inode marks survive between when they are added to an inode and when their * refcnt==0. Marks are also protected by fsnotify_mark_srcu. * * The inode mark can be cleared for a number of different reasons including: * - The inode is unlinked for the last time. (fsnotify_inode_remove) * - The inode is being evicted from cache. (fsnotify_inode_delete) * - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes) * - Something explicitly requests that it be removed. (fsnotify_destroy_mark) * - The fsnotify_group associated with the mark is going away and all such marks * need to be cleaned up. (fsnotify_clear_marks_by_group) * * This has the very interesting property of being able to run concurrently with * any (or all) other directions. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/srcu.h> #include <linux/ratelimit.h> #include <linux/atomic.h> #include <linux/fsnotify_backend.h> #include "fsnotify.h" #define FSNOTIFY_REAPER_DELAY (1) /* 1 jiffy */ struct srcu_struct fsnotify_mark_srcu; struct kmem_cache *fsnotify_mark_connector_cachep; static DEFINE_SPINLOCK(destroy_lock); static LIST_HEAD(destroy_list); static struct fsnotify_mark_connector *connector_destroy_list; static void fsnotify_mark_destroy_workfn(struct work_struct *work); static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn); static void fsnotify_connector_destroy_workfn(struct work_struct *work); static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn); void fsnotify_get_mark(struct fsnotify_mark *mark) { WARN_ON_ONCE(!refcount_read(&mark->refcnt)); refcount_inc(&mark->refcnt); } static fsnotify_connp_t *fsnotify_object_connp(void *obj, enum fsnotify_obj_type obj_type) { switch (obj_type) { case FSNOTIFY_OBJ_TYPE_INODE: return &((struct inode *)obj)->i_fsnotify_marks; case FSNOTIFY_OBJ_TYPE_VFSMOUNT: return &real_mount(obj)->mnt_fsnotify_marks; case FSNOTIFY_OBJ_TYPE_SB: return fsnotify_sb_marks(obj); default: return NULL; } } static __u32 *fsnotify_conn_mask_p(struct fsnotify_mark_connector *conn) { if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) return &fsnotify_conn_inode(conn)->i_fsnotify_mask; else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) return &fsnotify_conn_mount(conn)->mnt_fsnotify_mask; else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) return &fsnotify_conn_sb(conn)->s_fsnotify_mask; return NULL; } __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn) { if (WARN_ON(!fsnotify_valid_obj_type(conn->type))) return 0; return READ_ONCE(*fsnotify_conn_mask_p(conn)); } static void fsnotify_get_sb_watched_objects(struct super_block *sb) { atomic_long_inc(fsnotify_sb_watched_objects(sb)); } static void fsnotify_put_sb_watched_objects(struct super_block *sb) { atomic_long_t *watched_objects = fsnotify_sb_watched_objects(sb); /* the superblock can go away after this decrement */ if (atomic_long_dec_and_test(watched_objects)) wake_up_var(watched_objects); } static void fsnotify_get_inode_ref(struct inode *inode) { ihold(inode); fsnotify_get_sb_watched_objects(inode->i_sb); } static void fsnotify_put_inode_ref(struct inode *inode) { /* read ->i_sb before the inode can go away */ struct super_block *sb = inode->i_sb; iput(inode); fsnotify_put_sb_watched_objects(sb); } /* * Grab or drop watched objects reference depending on whether the connector * is attached and has any marks attached. */ static void fsnotify_update_sb_watchers(struct super_block *sb, struct fsnotify_mark_connector *conn) { struct fsnotify_sb_info *sbinfo = fsnotify_sb_info(sb); bool is_watched = conn->flags & FSNOTIFY_CONN_FLAG_IS_WATCHED; struct fsnotify_mark *first_mark = NULL; unsigned int highest_prio = 0; if (conn->obj) first_mark = hlist_entry_safe(conn->list.first, struct fsnotify_mark, obj_list); if (first_mark) highest_prio = first_mark->group->priority; if (WARN_ON(highest_prio >= __FSNOTIFY_PRIO_NUM)) highest_prio = 0; /* * If the highest priority of group watching this object is prio, * then watched object has a reference on counters [0..prio]. * Update priority >= 1 watched objects counters. */ for (unsigned int p = conn->prio + 1; p <= highest_prio; p++) atomic_long_inc(&sbinfo->watched_objects[p]); for (unsigned int p = conn->prio; p > highest_prio; p--) atomic_long_dec(&sbinfo->watched_objects[p]); conn->prio = highest_prio; /* Update priority >= 0 (a.k.a total) watched objects counter */ BUILD_BUG_ON(FSNOTIFY_PRIO_NORMAL != 0); if (first_mark && !is_watched) { conn->flags |= FSNOTIFY_CONN_FLAG_IS_WATCHED; fsnotify_get_sb_watched_objects(sb); } else if (!first_mark && is_watched) { conn->flags &= ~FSNOTIFY_CONN_FLAG_IS_WATCHED; fsnotify_put_sb_watched_objects(sb); } } /* * Grab or drop inode reference for the connector if needed. * * When it's time to drop the reference, we only clear the HAS_IREF flag and * return the inode object. fsnotify_drop_object() will be resonsible for doing * iput() outside of spinlocks. This happens when last mark that wanted iref is * detached. */ static struct inode *fsnotify_update_iref(struct fsnotify_mark_connector *conn, bool want_iref) { bool has_iref = conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF; struct inode *inode = NULL; if (conn->type != FSNOTIFY_OBJ_TYPE_INODE || want_iref == has_iref) return NULL; if (want_iref) { /* Pin inode if any mark wants inode refcount held */ fsnotify_get_inode_ref(fsnotify_conn_inode(conn)); conn->flags |= FSNOTIFY_CONN_FLAG_HAS_IREF; } else { /* Unpin inode after detach of last mark that wanted iref */ inode = fsnotify_conn_inode(conn); conn->flags &= ~FSNOTIFY_CONN_FLAG_HAS_IREF; } return inode; } static void *__fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) { u32 new_mask = 0; bool want_iref = false; struct fsnotify_mark *mark; assert_spin_locked(&conn->lock); /* We can get detached connector here when inode is getting unlinked. */ if (!fsnotify_valid_obj_type(conn->type)) return NULL; hlist_for_each_entry(mark, &conn->list, obj_list) { if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) continue; new_mask |= fsnotify_calc_mask(mark); if (conn->type == FSNOTIFY_OBJ_TYPE_INODE && !(mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF)) want_iref = true; } /* * We use WRITE_ONCE() to prevent silly compiler optimizations from * confusing readers not holding conn->lock with partial updates. */ WRITE_ONCE(*fsnotify_conn_mask_p(conn), new_mask); return fsnotify_update_iref(conn, want_iref); } static bool fsnotify_conn_watches_children( struct fsnotify_mark_connector *conn) { if (conn->type != FSNOTIFY_OBJ_TYPE_INODE) return false; return fsnotify_inode_watches_children(fsnotify_conn_inode(conn)); } static void fsnotify_conn_set_children_dentry_flags( struct fsnotify_mark_connector *conn) { if (conn->type != FSNOTIFY_OBJ_TYPE_INODE) return; fsnotify_set_children_dentry_flags(fsnotify_conn_inode(conn)); } /* * Calculate mask of events for a list of marks. The caller must make sure * connector and connector->obj cannot disappear under us. Callers achieve * this by holding a mark->lock or mark->group->mark_mutex for a mark on this * list. */ void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) { bool update_children; if (!conn) return; spin_lock(&conn->lock); update_children = !fsnotify_conn_watches_children(conn); __fsnotify_recalc_mask(conn); update_children &= fsnotify_conn_watches_children(conn); spin_unlock(&conn->lock); /* * Set children's PARENT_WATCHED flags only if parent started watching. * When parent stops watching, we clear false positive PARENT_WATCHED * flags lazily in __fsnotify_parent(). */ if (update_children) fsnotify_conn_set_children_dentry_flags(conn); } /* Free all connectors queued for freeing once SRCU period ends */ static void fsnotify_connector_destroy_workfn(struct work_struct *work) { struct fsnotify_mark_connector *conn, *free; spin_lock(&destroy_lock); conn = connector_destroy_list; connector_destroy_list = NULL; spin_unlock(&destroy_lock); synchronize_srcu(&fsnotify_mark_srcu); while (conn) { free = conn; conn = conn->destroy_next; kmem_cache_free(fsnotify_mark_connector_cachep, free); } } static void *fsnotify_detach_connector_from_object( struct fsnotify_mark_connector *conn, unsigned int *type) { fsnotify_connp_t *connp = fsnotify_object_connp(conn->obj, conn->type); struct super_block *sb = fsnotify_connector_sb(conn); struct inode *inode = NULL; *type = conn->type; if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) return NULL; if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) { inode = fsnotify_conn_inode(conn); inode->i_fsnotify_mask = 0; /* Unpin inode when detaching from connector */ if (!(conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF)) inode = NULL; } else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) { fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0; } else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) { fsnotify_conn_sb(conn)->s_fsnotify_mask = 0; } rcu_assign_pointer(*connp, NULL); conn->obj = NULL; conn->type = FSNOTIFY_OBJ_TYPE_DETACHED; fsnotify_update_sb_watchers(sb, conn); return inode; } static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark) { struct fsnotify_group *group = mark->group; if (WARN_ON_ONCE(!group)) return; group->ops->free_mark(mark); fsnotify_put_group(group); } /* Drop object reference originally held by a connector */ static void fsnotify_drop_object(unsigned int type, void *objp) { if (!objp) return; /* Currently only inode references are passed to be dropped */ if (WARN_ON_ONCE(type != FSNOTIFY_OBJ_TYPE_INODE)) return; fsnotify_put_inode_ref(objp); } void fsnotify_put_mark(struct fsnotify_mark *mark) { struct fsnotify_mark_connector *conn = READ_ONCE(mark->connector); void *objp = NULL; unsigned int type = FSNOTIFY_OBJ_TYPE_DETACHED; bool free_conn = false; /* Catch marks that were actually never attached to object */ if (!conn) { if (refcount_dec_and_test(&mark->refcnt)) fsnotify_final_mark_destroy(mark); return; } /* * We have to be careful so that traversals of obj_list under lock can * safely grab mark reference. */ if (!refcount_dec_and_lock(&mark->refcnt, &conn->lock)) return; hlist_del_init_rcu(&mark->obj_list); if (hlist_empty(&conn->list)) { objp = fsnotify_detach_connector_from_object(conn, &type); free_conn = true; } else { struct super_block *sb = fsnotify_connector_sb(conn); /* Update watched objects after detaching mark */ if (sb) fsnotify_update_sb_watchers(sb, conn); objp = __fsnotify_recalc_mask(conn); type = conn->type; } WRITE_ONCE(mark->connector, NULL); spin_unlock(&conn->lock); fsnotify_drop_object(type, objp); if (free_conn) { spin_lock(&destroy_lock); conn->destroy_next = connector_destroy_list; connector_destroy_list = conn; spin_unlock(&destroy_lock); queue_work(system_unbound_wq, &connector_reaper_work); } /* * Note that we didn't update flags telling whether inode cares about * what's happening with children. We update these flags from * __fsnotify_parent() lazily when next event happens on one of our * children. */ spin_lock(&destroy_lock); list_add(&mark->g_list, &destroy_list); spin_unlock(&destroy_lock); queue_delayed_work(system_unbound_wq, &reaper_work, FSNOTIFY_REAPER_DELAY); } EXPORT_SYMBOL_GPL(fsnotify_put_mark); /* * Get mark reference when we found the mark via lockless traversal of object * list. Mark can be already removed from the list by now and on its way to be * destroyed once SRCU period ends. * * Also pin the group so it doesn't disappear under us. */ static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark) { if (!mark) return true; if (refcount_inc_not_zero(&mark->refcnt)) { spin_lock(&mark->lock); if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) { /* mark is attached, group is still alive then */ atomic_inc(&mark->group->user_waits); spin_unlock(&mark->lock); return true; } spin_unlock(&mark->lock); fsnotify_put_mark(mark); } return false; } /* * Puts marks and wakes up group destruction if necessary. * * Pairs with fsnotify_get_mark_safe() */ static void fsnotify_put_mark_wake(struct fsnotify_mark *mark) { if (mark) { struct fsnotify_group *group = mark->group; fsnotify_put_mark(mark); /* * We abuse notification_waitq on group shutdown for waiting for * all marks pinned when waiting for userspace. */ if (atomic_dec_and_test(&group->user_waits) && group->shutdown) wake_up(&group->notification_waitq); } } bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info) __releases(&fsnotify_mark_srcu) { int type; fsnotify_foreach_iter_type(type) { /* This can fail if mark is being removed */ if (!fsnotify_get_mark_safe(iter_info->marks[type])) { __release(&fsnotify_mark_srcu); goto fail; } } /* * Now that both marks are pinned by refcount in the inode / vfsmount * lists, we can drop SRCU lock, and safely resume the list iteration * once userspace returns. */ srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx); return true; fail: for (type--; type >= 0; type--) fsnotify_put_mark_wake(iter_info->marks[type]); return false; } void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info) __acquires(&fsnotify_mark_srcu) { int type; iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu); fsnotify_foreach_iter_type(type) fsnotify_put_mark_wake(iter_info->marks[type]); } /* * Mark mark as detached, remove it from group list. Mark still stays in object * list until its last reference is dropped. Note that we rely on mark being * removed from group list before corresponding reference to it is dropped. In * particular we rely on mark->connector being valid while we hold * group->mark_mutex if we found the mark through g_list. * * Must be called with group->mark_mutex held. The caller must either hold * reference to the mark or be protected by fsnotify_mark_srcu. */ void fsnotify_detach_mark(struct fsnotify_mark *mark) { fsnotify_group_assert_locked(mark->group); WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) && refcount_read(&mark->refcnt) < 1 + !!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)); spin_lock(&mark->lock); /* something else already called this function on this mark */ if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { spin_unlock(&mark->lock); return; } mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED; list_del_init(&mark->g_list); spin_unlock(&mark->lock); /* Drop mark reference acquired in fsnotify_add_mark_locked() */ fsnotify_put_mark(mark); } /* * Free fsnotify mark. The mark is actually only marked as being freed. The * freeing is actually happening only once last reference to the mark is * dropped from a workqueue which first waits for srcu period end. * * Caller must have a reference to the mark or be protected by * fsnotify_mark_srcu. */ void fsnotify_free_mark(struct fsnotify_mark *mark) { struct fsnotify_group *group = mark->group; spin_lock(&mark->lock); /* something else already called this function on this mark */ if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) { spin_unlock(&mark->lock); return; } mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE; spin_unlock(&mark->lock); /* * Some groups like to know that marks are being freed. This is a * callback to the group function to let it know that this mark * is being freed. */ if (group->ops->freeing_mark) group->ops->freeing_mark(mark, group); } void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group) { fsnotify_group_lock(group); fsnotify_detach_mark(mark); fsnotify_group_unlock(group); fsnotify_free_mark(mark); } EXPORT_SYMBOL_GPL(fsnotify_destroy_mark); /* * Sorting function for lists of fsnotify marks. * * Fanotify supports different notification classes (reflected as priority of * notification group). Events shall be passed to notification groups in * decreasing priority order. To achieve this marks in notification lists for * inodes and vfsmounts are sorted so that priorities of corresponding groups * are descending. * * Furthermore correct handling of the ignore mask requires processing inode * and vfsmount marks of each group together. Using the group address as * further sort criterion provides a unique sorting order and thus we can * merge inode and vfsmount lists of marks in linear time and find groups * present in both lists. * * A return value of 1 signifies that b has priority over a. * A return value of 0 signifies that the two marks have to be handled together. * A return value of -1 signifies that a has priority over b. */ int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b) { if (a == b) return 0; if (!a) return 1; if (!b) return -1; if (a->priority < b->priority) return 1; if (a->priority > b->priority) return -1; if (a < b) return 1; return -1; } static int fsnotify_attach_info_to_sb(struct super_block *sb) { struct fsnotify_sb_info *sbinfo; /* sb info is freed on fsnotify_sb_delete() */ sbinfo = kzalloc(sizeof(*sbinfo), GFP_KERNEL); if (!sbinfo) return -ENOMEM; /* * cmpxchg() provides the barrier so that callers of fsnotify_sb_info() * will observe an initialized structure */ if (cmpxchg(&sb->s_fsnotify_info, NULL, sbinfo)) { /* Someone else created sbinfo for us */ kfree(sbinfo); } return 0; } static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp, void *obj, unsigned int obj_type) { struct fsnotify_mark_connector *conn; conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL); if (!conn) return -ENOMEM; spin_lock_init(&conn->lock); INIT_HLIST_HEAD(&conn->list); conn->flags = 0; conn->prio = 0; conn->type = obj_type; conn->obj = obj; /* * cmpxchg() provides the barrier so that readers of *connp can see * only initialized structure */ if (cmpxchg(connp, NULL, conn)) { /* Someone else created list structure for us */ kmem_cache_free(fsnotify_mark_connector_cachep, conn); } return 0; } /* * Get mark connector, make sure it is alive and return with its lock held. * This is for users that get connector pointer from inode or mount. Users that * hold reference to a mark on the list may directly lock connector->lock as * they are sure list cannot go away under them. */ static struct fsnotify_mark_connector *fsnotify_grab_connector( fsnotify_connp_t *connp) { struct fsnotify_mark_connector *conn; int idx; idx = srcu_read_lock(&fsnotify_mark_srcu); conn = srcu_dereference(*connp, &fsnotify_mark_srcu); if (!conn) goto out; spin_lock(&conn->lock); if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) { spin_unlock(&conn->lock); srcu_read_unlock(&fsnotify_mark_srcu, idx); return NULL; } out: srcu_read_unlock(&fsnotify_mark_srcu, idx); return conn; } /* * Add mark into proper place in given list of marks. These marks may be used * for the fsnotify backend to determine which event types should be delivered * to which group and for which inodes. These marks are ordered according to * priority, highest number first, and then by the group's location in memory. */ static int fsnotify_add_mark_list(struct fsnotify_mark *mark, void *obj, unsigned int obj_type, int add_flags) { struct super_block *sb = fsnotify_object_sb(obj, obj_type); struct fsnotify_mark *lmark, *last = NULL; struct fsnotify_mark_connector *conn; fsnotify_connp_t *connp; int cmp; int err = 0; if (WARN_ON(!fsnotify_valid_obj_type(obj_type))) return -EINVAL; /* * Attach the sb info before attaching a connector to any object on sb. * The sb info will remain attached as long as sb lives. */ if (!fsnotify_sb_info(sb)) { err = fsnotify_attach_info_to_sb(sb); if (err) return err; } connp = fsnotify_object_connp(obj, obj_type); restart: spin_lock(&mark->lock); conn = fsnotify_grab_connector(connp); if (!conn) { spin_unlock(&mark->lock); err = fsnotify_attach_connector_to_object(connp, obj, obj_type); if (err) return err; goto restart; } /* is mark the first mark? */ if (hlist_empty(&conn->list)) { hlist_add_head_rcu(&mark->obj_list, &conn->list); goto added; } /* should mark be in the middle of the current list? */ hlist_for_each_entry(lmark, &conn->list, obj_list) { last = lmark; if ((lmark->group == mark->group) && (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) && !(mark->group->flags & FSNOTIFY_GROUP_DUPS)) { err = -EEXIST; goto out_err; } cmp = fsnotify_compare_groups(lmark->group, mark->group); if (cmp >= 0) { hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list); goto added; } } BUG_ON(last == NULL); /* mark should be the last entry. last is the current last entry */ hlist_add_behind_rcu(&mark->obj_list, &last->obj_list); added: fsnotify_update_sb_watchers(sb, conn); /* * Since connector is attached to object using cmpxchg() we are * guaranteed that connector initialization is fully visible by anyone * seeing mark->connector set. */ WRITE_ONCE(mark->connector, conn); out_err: spin_unlock(&conn->lock); spin_unlock(&mark->lock); return err; } /* * Attach an initialized mark to a given group and fs object. * These marks may be used for the fsnotify backend to determine which * event types should be delivered to which group. */ int fsnotify_add_mark_locked(struct fsnotify_mark *mark, void *obj, unsigned int obj_type, int add_flags) { struct fsnotify_group *group = mark->group; int ret = 0; fsnotify_group_assert_locked(group); /* * LOCKING ORDER!!!! * group->mark_mutex * mark->lock * mark->connector->lock */ spin_lock(&mark->lock); mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED; list_add(&mark->g_list, &group->marks_list); fsnotify_get_mark(mark); /* for g_list */ spin_unlock(&mark->lock); ret = fsnotify_add_mark_list(mark, obj, obj_type, add_flags); if (ret) goto err; fsnotify_recalc_mask(mark->connector); return ret; err: spin_lock(&mark->lock); mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED); list_del_init(&mark->g_list); spin_unlock(&mark->lock); fsnotify_put_mark(mark); return ret; } int fsnotify_add_mark(struct fsnotify_mark *mark, void *obj, unsigned int obj_type, int add_flags) { int ret; struct fsnotify_group *group = mark->group; fsnotify_group_lock(group); ret = fsnotify_add_mark_locked(mark, obj, obj_type, add_flags); fsnotify_group_unlock(group); return ret; } EXPORT_SYMBOL_GPL(fsnotify_add_mark); /* * Given a list of marks, find the mark associated with given group. If found * take a reference to that mark and return it, else return NULL. */ struct fsnotify_mark *fsnotify_find_mark(void *obj, unsigned int obj_type, struct fsnotify_group *group) { fsnotify_connp_t *connp = fsnotify_object_connp(obj, obj_type); struct fsnotify_mark_connector *conn; struct fsnotify_mark *mark; if (!connp) return NULL; conn = fsnotify_grab_connector(connp); if (!conn) return NULL; hlist_for_each_entry(mark, &conn->list, obj_list) { if (mark->group == group && (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { fsnotify_get_mark(mark); spin_unlock(&conn->lock); return mark; } } spin_unlock(&conn->lock); return NULL; } EXPORT_SYMBOL_GPL(fsnotify_find_mark); /* Clear any marks in a group with given type mask */ void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int obj_type) { struct fsnotify_mark *lmark, *mark; LIST_HEAD(to_free); struct list_head *head = &to_free; /* Skip selection step if we want to clear all marks. */ if (obj_type == FSNOTIFY_OBJ_TYPE_ANY) { head = &group->marks_list; goto clear; } /* * We have to be really careful here. Anytime we drop mark_mutex, e.g. * fsnotify_clear_marks_by_inode() can come and free marks. Even in our * to_free list so we have to use mark_mutex even when accessing that * list. And freeing mark requires us to drop mark_mutex. So we can * reliably free only the first mark in the list. That's why we first * move marks to free to to_free list in one go and then free marks in * to_free list one by one. */ fsnotify_group_lock(group); list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) { if (mark->connector->type == obj_type) list_move(&mark->g_list, &to_free); } fsnotify_group_unlock(group); clear: while (1) { fsnotify_group_lock(group); if (list_empty(head)) { fsnotify_group_unlock(group); break; } mark = list_first_entry(head, struct fsnotify_mark, g_list); fsnotify_get_mark(mark); fsnotify_detach_mark(mark); fsnotify_group_unlock(group); fsnotify_free_mark(mark); fsnotify_put_mark(mark); } } /* Destroy all marks attached to an object via connector */ void fsnotify_destroy_marks(fsnotify_connp_t *connp) { struct fsnotify_mark_connector *conn; struct fsnotify_mark *mark, *old_mark = NULL; void *objp; unsigned int type; conn = fsnotify_grab_connector(connp); if (!conn) return; /* * We have to be careful since we can race with e.g. * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the * list can get modified. However we are holding mark reference and * thus our mark cannot be removed from obj_list so we can continue * iteration after regaining conn->lock. */ hlist_for_each_entry(mark, &conn->list, obj_list) { fsnotify_get_mark(mark); spin_unlock(&conn->lock); if (old_mark) fsnotify_put_mark(old_mark); old_mark = mark; fsnotify_destroy_mark(mark, mark->group); spin_lock(&conn->lock); } /* * Detach list from object now so that we don't pin inode until all * mark references get dropped. It would lead to strange results such * as delaying inode deletion or blocking unmount. */ objp = fsnotify_detach_connector_from_object(conn, &type); spin_unlock(&conn->lock); if (old_mark) fsnotify_put_mark(old_mark); fsnotify_drop_object(type, objp); } /* * Nothing fancy, just initialize lists and locks and counters. */ void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group) { memset(mark, 0, sizeof(*mark)); spin_lock_init(&mark->lock); refcount_set(&mark->refcnt, 1); fsnotify_get_group(group); mark->group = group; WRITE_ONCE(mark->connector, NULL); } EXPORT_SYMBOL_GPL(fsnotify_init_mark); /* * Destroy all marks in destroy_list, waits for SRCU period to finish before * actually freeing marks. */ static void fsnotify_mark_destroy_workfn(struct work_struct *work) { struct fsnotify_mark *mark, *next; struct list_head private_destroy_list; spin_lock(&destroy_lock); /* exchange the list head */ list_replace_init(&destroy_list, &private_destroy_list); spin_unlock(&destroy_lock); synchronize_srcu(&fsnotify_mark_srcu); list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) { list_del_init(&mark->g_list); fsnotify_final_mark_destroy(mark); } } /* Wait for all marks queued for destruction to be actually destroyed */ void fsnotify_wait_marks_destroyed(void) { flush_delayed_work(&reaper_work); } EXPORT_SYMBOL_GPL(fsnotify_wait_marks_destroyed); |
58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/lockd/svc.c * * This is the central lockd service. * * FIXME: Separate the lockd NFS server functionality from the lockd NFS * client functionality. Oh why didn't Sun create two separate * services in the first place? * * Authors: Olaf Kirch (okir@monad.swb.de) * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> */ #include <linux/module.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/moduleparam.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/uio.h> #include <linux/smp.h> #include <linux/mutex.h> #include <linux/freezer.h> #include <linux/inetdevice.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/svc.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/svc_xprt.h> #include <net/ip.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <linux/lockd/lockd.h> #include <linux/nfs.h> #include "netns.h" #include "procfs.h" #define NLMDBG_FACILITY NLMDBG_SVC #define LOCKD_BUFSIZE (1024 + NLMSVC_XDRSIZE) static struct svc_program nlmsvc_program; const struct nlmsvc_binding *nlmsvc_ops; EXPORT_SYMBOL_GPL(nlmsvc_ops); static DEFINE_MUTEX(nlmsvc_mutex); static unsigned int nlmsvc_users; static struct svc_serv *nlmsvc_serv; static void nlmsvc_request_retry(struct timer_list *tl) { svc_wake_up(nlmsvc_serv); } DEFINE_TIMER(nlmsvc_retry, nlmsvc_request_retry); unsigned int lockd_net_id; /* * These can be set at insmod time (useful for NFS as root filesystem), * and also changed through the sysctl interface. -- Jamie Lokier, Aug 2003 */ static unsigned long nlm_grace_period; unsigned long nlm_timeout = LOCKD_DFLT_TIMEO; static int nlm_udpport, nlm_tcpport; /* * Constants needed for the sysctl interface. */ static const unsigned long nlm_grace_period_min = 0; static const unsigned long nlm_grace_period_max = 240; static const unsigned long nlm_timeout_min = 3; static const unsigned long nlm_timeout_max = 20; #ifdef CONFIG_SYSCTL static const int nlm_port_min = 0, nlm_port_max = 65535; static struct ctl_table_header * nlm_sysctl_table; #endif static unsigned long get_lockd_grace_period(void) { /* Note: nlm_timeout should always be nonzero */ if (nlm_grace_period) return roundup(nlm_grace_period, nlm_timeout) * HZ; else return nlm_timeout * 5 * HZ; } static void grace_ender(struct work_struct *grace) { struct delayed_work *dwork = to_delayed_work(grace); struct lockd_net *ln = container_of(dwork, struct lockd_net, grace_period_end); locks_end_grace(&ln->lockd_manager); } static void set_grace_period(struct net *net) { unsigned long grace_period = get_lockd_grace_period(); struct lockd_net *ln = net_generic(net, lockd_net_id); locks_start_grace(net, &ln->lockd_manager); cancel_delayed_work_sync(&ln->grace_period_end); schedule_delayed_work(&ln->grace_period_end, grace_period); } /* * This is the lockd kernel thread */ static int lockd(void *vrqstp) { struct svc_rqst *rqstp = vrqstp; struct net *net = &init_net; struct lockd_net *ln = net_generic(net, lockd_net_id); svc_thread_init_status(rqstp, 0); /* try_to_freeze() is called from svc_recv() */ set_freezable(); dprintk("NFS locking service started (ver " LOCKD_VERSION ").\n"); /* * The main request loop. We don't terminate until the last * NFS mount or NFS daemon has gone away. */ while (!svc_thread_should_stop(rqstp)) { nlmsvc_retry_blocked(rqstp); svc_recv(rqstp); } if (nlmsvc_ops) nlmsvc_invalidate_all(); nlm_shutdown_hosts(); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); dprintk("lockd_down: service stopped\n"); svc_exit_thread(rqstp); return 0; } static int create_lockd_listener(struct svc_serv *serv, const char *name, struct net *net, const int family, const unsigned short port, const struct cred *cred) { struct svc_xprt *xprt; xprt = svc_find_xprt(serv, name, net, family, 0); if (xprt == NULL) return svc_xprt_create(serv, name, net, family, port, SVC_SOCK_DEFAULTS, cred); svc_xprt_put(xprt); return 0; } static int create_lockd_family(struct svc_serv *serv, struct net *net, const int family, const struct cred *cred) { int err; err = create_lockd_listener(serv, "udp", net, family, nlm_udpport, cred); if (err < 0) return err; return create_lockd_listener(serv, "tcp", net, family, nlm_tcpport, cred); } /* * Ensure there are active UDP and TCP listeners for lockd. * * Even if we have only TCP NFS mounts and/or TCP NFSDs, some * local services (such as rpc.statd) still require UDP, and * some NFS servers do not yet support NLM over TCP. * * Returns zero if all listeners are available; otherwise a * negative errno value is returned. */ static int make_socks(struct svc_serv *serv, struct net *net, const struct cred *cred) { static int warned; int err; err = create_lockd_family(serv, net, PF_INET, cred); if (err < 0) goto out_err; err = create_lockd_family(serv, net, PF_INET6, cred); if (err < 0 && err != -EAFNOSUPPORT) goto out_err; warned = 0; return 0; out_err: if (warned++ == 0) printk(KERN_WARNING "lockd_up: makesock failed, error=%d\n", err); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); return err; } static int lockd_up_net(struct svc_serv *serv, struct net *net, const struct cred *cred) { struct lockd_net *ln = net_generic(net, lockd_net_id); int error; if (ln->nlmsvc_users++) return 0; error = svc_bind(serv, net); if (error) goto err_bind; error = make_socks(serv, net, cred); if (error < 0) goto err_bind; set_grace_period(net); dprintk("%s: per-net data created; net=%x\n", __func__, net->ns.inum); return 0; err_bind: ln->nlmsvc_users--; return error; } static void lockd_down_net(struct svc_serv *serv, struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); if (ln->nlmsvc_users) { if (--ln->nlmsvc_users == 0) { nlm_shutdown_hosts_net(net); cancel_delayed_work_sync(&ln->grace_period_end); locks_end_grace(&ln->lockd_manager); svc_xprt_destroy_all(serv, net); svc_rpcb_cleanup(serv, net); } } else { pr_err("%s: no users! net=%x\n", __func__, net->ns.inum); BUG(); } } static int lockd_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = (struct in_ifaddr *)ptr; struct sockaddr_in sin; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inetaddr_event: removed %pI4\n", &ifa->ifa_local); sin.sin_family = AF_INET; sin.sin_addr.s_addr = ifa->ifa_local; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inetaddr_notifier = { .notifier_call = lockd_inetaddr_event, }; #if IS_ENABLED(CONFIG_IPV6) static int lockd_inet6addr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct inet6_ifaddr *ifa = (struct inet6_ifaddr *)ptr; struct sockaddr_in6 sin6; if (event != NETDEV_DOWN) goto out; if (nlmsvc_serv) { dprintk("lockd_inet6addr_event: removed %pI6\n", &ifa->addr); sin6.sin6_family = AF_INET6; sin6.sin6_addr = ifa->addr; if (ipv6_addr_type(&sin6.sin6_addr) & IPV6_ADDR_LINKLOCAL) sin6.sin6_scope_id = ifa->idev->dev->ifindex; svc_age_temp_xprts_now(nlmsvc_serv, (struct sockaddr *)&sin6); } out: return NOTIFY_DONE; } static struct notifier_block lockd_inet6addr_notifier = { .notifier_call = lockd_inet6addr_event, }; #endif static int lockd_get(void) { struct svc_serv *serv; int error; if (nlmsvc_serv) { nlmsvc_users++; return 0; } /* * Sanity check: if there's no pid, * we should be the first user ... */ if (nlmsvc_users) printk(KERN_WARNING "lockd_up: no pid, %d users??\n", nlmsvc_users); serv = svc_create(&nlmsvc_program, LOCKD_BUFSIZE, lockd); if (!serv) { printk(KERN_WARNING "lockd_up: create service failed\n"); return -ENOMEM; } error = svc_set_num_threads(serv, NULL, 1); if (error < 0) { svc_destroy(&serv); return error; } nlmsvc_serv = serv; register_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) register_inet6addr_notifier(&lockd_inet6addr_notifier); #endif dprintk("lockd_up: service created\n"); nlmsvc_users++; return 0; } static void lockd_put(void) { if (WARN(nlmsvc_users <= 0, "lockd_down: no users!\n")) return; if (--nlmsvc_users) return; unregister_inetaddr_notifier(&lockd_inetaddr_notifier); #if IS_ENABLED(CONFIG_IPV6) unregister_inet6addr_notifier(&lockd_inet6addr_notifier); #endif svc_set_num_threads(nlmsvc_serv, NULL, 0); timer_delete_sync(&nlmsvc_retry); svc_destroy(&nlmsvc_serv); dprintk("lockd_down: service destroyed\n"); } /* * Bring up the lockd process if it's not already up. */ int lockd_up(struct net *net, const struct cred *cred) { int error; mutex_lock(&nlmsvc_mutex); error = lockd_get(); if (error) goto err; error = lockd_up_net(nlmsvc_serv, net, cred); if (error < 0) { lockd_put(); goto err; } err: mutex_unlock(&nlmsvc_mutex); return error; } EXPORT_SYMBOL_GPL(lockd_up); /* * Decrement the user count and bring down lockd if we're the last. */ void lockd_down(struct net *net) { mutex_lock(&nlmsvc_mutex); lockd_down_net(nlmsvc_serv, net); lockd_put(); mutex_unlock(&nlmsvc_mutex); } EXPORT_SYMBOL_GPL(lockd_down); #ifdef CONFIG_SYSCTL /* * Sysctl parameters (same as module parameters, different interface). */ static const struct ctl_table nlm_sysctls[] = { { .procname = "nlm_grace_period", .data = &nlm_grace_period, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_grace_period_min, .extra2 = (unsigned long *) &nlm_grace_period_max, }, { .procname = "nlm_timeout", .data = &nlm_timeout, .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = (unsigned long *) &nlm_timeout_min, .extra2 = (unsigned long *) &nlm_timeout_max, }, { .procname = "nlm_udpport", .data = &nlm_udpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nlm_tcpport", .data = &nlm_tcpport, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = (int *) &nlm_port_min, .extra2 = (int *) &nlm_port_max, }, { .procname = "nsm_use_hostnames", .data = &nsm_use_hostnames, .maxlen = sizeof(bool), .mode = 0644, .proc_handler = proc_dobool, }, { .procname = "nsm_local_state", .data = &nsm_local_state, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, }; #endif /* CONFIG_SYSCTL */ /* * Module (and sysfs) parameters. */ #define param_set_min_max(name, type, which_strtol, min, max) \ static int param_set_##name(const char *val, const struct kernel_param *kp) \ { \ char *endp; \ __typeof__(type) num = which_strtol(val, &endp, 0); \ if (endp == val || *endp || num < (min) || num > (max)) \ return -EINVAL; \ *((type *) kp->arg) = num; \ return 0; \ } static inline int is_callback(u32 proc) { return proc == NLMPROC_GRANTED || proc == NLMPROC_GRANTED_MSG || proc == NLMPROC_TEST_RES || proc == NLMPROC_LOCK_RES || proc == NLMPROC_CANCEL_RES || proc == NLMPROC_UNLOCK_RES || proc == NLMPROC_NSM_NOTIFY; } static enum svc_auth_status lockd_authenticate(struct svc_rqst *rqstp) { rqstp->rq_client = NULL; switch (rqstp->rq_authop->flavour) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: rqstp->rq_auth_stat = rpc_auth_ok; if (rqstp->rq_proc == 0) return SVC_OK; if (is_callback(rqstp->rq_proc)) { /* Leave it to individual procedures to * call nlmsvc_lookup_host(rqstp) */ return SVC_OK; } return svc_set_client(rqstp); } rqstp->rq_auth_stat = rpc_autherr_badcred; return SVC_DENIED; } param_set_min_max(port, int, simple_strtol, 0, 65535) param_set_min_max(grace_period, unsigned long, simple_strtoul, nlm_grace_period_min, nlm_grace_period_max) param_set_min_max(timeout, unsigned long, simple_strtoul, nlm_timeout_min, nlm_timeout_max) MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_DESCRIPTION("NFS file locking service version " LOCKD_VERSION "."); MODULE_LICENSE("GPL"); module_param_call(nlm_grace_period, param_set_grace_period, param_get_ulong, &nlm_grace_period, 0644); module_param_call(nlm_timeout, param_set_timeout, param_get_ulong, &nlm_timeout, 0644); module_param_call(nlm_udpport, param_set_port, param_get_int, &nlm_udpport, 0644); module_param_call(nlm_tcpport, param_set_port, param_get_int, &nlm_tcpport, 0644); module_param(nsm_use_hostnames, bool, 0644); static int lockd_init_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); INIT_DELAYED_WORK(&ln->grace_period_end, grace_ender); INIT_LIST_HEAD(&ln->lockd_manager.list); ln->lockd_manager.block_opens = false; INIT_LIST_HEAD(&ln->nsm_handles); return 0; } static void lockd_exit_net(struct net *net) { struct lockd_net *ln = net_generic(net, lockd_net_id); WARN_ONCE(!list_empty(&ln->lockd_manager.list), "net %x %s: lockd_manager.list is not empty\n", net->ns.inum, __func__); WARN_ONCE(!list_empty(&ln->nsm_handles), "net %x %s: nsm_handles list is not empty\n", net->ns.inum, __func__); WARN_ONCE(delayed_work_pending(&ln->grace_period_end), "net %x %s: grace_period_end was not cancelled\n", net->ns.inum, __func__); } static struct pernet_operations lockd_net_ops = { .init = lockd_init_net, .exit = lockd_exit_net, .id = &lockd_net_id, .size = sizeof(struct lockd_net), }; /* * Initialising and terminating the module. */ static int __init init_nlm(void) { int err; #ifdef CONFIG_SYSCTL err = -ENOMEM; nlm_sysctl_table = register_sysctl("fs/nfs", nlm_sysctls); if (nlm_sysctl_table == NULL) goto err_sysctl; #endif err = register_pernet_subsys(&lockd_net_ops); if (err) goto err_pernet; err = lockd_create_procfs(); if (err) goto err_procfs; return 0; err_procfs: unregister_pernet_subsys(&lockd_net_ops); err_pernet: #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); err_sysctl: #endif return err; } static void __exit exit_nlm(void) { /* FIXME: delete all NLM clients */ nlm_shutdown_hosts(); lockd_remove_procfs(); unregister_pernet_subsys(&lockd_net_ops); #ifdef CONFIG_SYSCTL unregister_sysctl_table(nlm_sysctl_table); #endif } module_init(init_nlm); module_exit(exit_nlm); /** * nlmsvc_dispatch - Process an NLM Request * @rqstp: incoming request * * Return values: * %0: Processing complete; do not send a Reply * %1: Processing complete; send Reply in rqstp->rq_res */ static int nlmsvc_dispatch(struct svc_rqst *rqstp) { const struct svc_procedure *procp = rqstp->rq_procinfo; __be32 *statp = rqstp->rq_accept_statp; if (!procp->pc_decode(rqstp, &rqstp->rq_arg_stream)) goto out_decode_err; *statp = procp->pc_func(rqstp); if (*statp == rpc_drop_reply) return 0; if (*statp != rpc_success) return 1; if (!procp->pc_encode(rqstp, &rqstp->rq_res_stream)) goto out_encode_err; return 1; out_decode_err: *statp = rpc_garbage_args; return 1; out_encode_err: *statp = rpc_system_err; return 1; } /* * Define NLM program and procedures */ static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version1_count[17]); static const struct svc_version nlmsvc_version1 = { .vs_vers = 1, .vs_nproc = 17, .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version1_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version3_count[ARRAY_SIZE(nlmsvc_procedures)]); static const struct svc_version nlmsvc_version3 = { .vs_vers = 3, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures), .vs_proc = nlmsvc_procedures, .vs_count = nlmsvc_version3_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #ifdef CONFIG_LOCKD_V4 static DEFINE_PER_CPU_ALIGNED(unsigned long, nlmsvc_version4_count[ARRAY_SIZE(nlmsvc_procedures4)]); static const struct svc_version nlmsvc_version4 = { .vs_vers = 4, .vs_nproc = ARRAY_SIZE(nlmsvc_procedures4), .vs_proc = nlmsvc_procedures4, .vs_count = nlmsvc_version4_count, .vs_dispatch = nlmsvc_dispatch, .vs_xdrsize = NLMSVC_XDRSIZE, }; #endif static const struct svc_version *nlmsvc_version[] = { [1] = &nlmsvc_version1, [3] = &nlmsvc_version3, #ifdef CONFIG_LOCKD_V4 [4] = &nlmsvc_version4, #endif }; #define NLM_NRVERS ARRAY_SIZE(nlmsvc_version) static struct svc_program nlmsvc_program = { .pg_prog = NLM_PROGRAM, /* program number */ .pg_nvers = NLM_NRVERS, /* number of entries in nlmsvc_version */ .pg_vers = nlmsvc_version, /* version table */ .pg_name = "lockd", /* service name */ .pg_class = "nfsd", /* share authentication with nfsd */ .pg_authenticate = &lockd_authenticate, /* export authentication */ .pg_init_request = svc_generic_init_request, .pg_rpcbind_set = svc_generic_rpcbind_set, }; |
8 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | // SPDX-License-Identifier: GPL-2.0-or-later /* * PTP virtual clock driver * * Copyright 2021 NXP */ #include <linux/slab.h> #include <linux/hashtable.h> #include "ptp_private.h" #define PTP_VCLOCK_CC_SHIFT 31 #define PTP_VCLOCK_CC_MULT (1 << PTP_VCLOCK_CC_SHIFT) #define PTP_VCLOCK_FADJ_SHIFT 9 #define PTP_VCLOCK_FADJ_DENOMINATOR 15625ULL #define PTP_VCLOCK_REFRESH_INTERVAL (HZ * 2) /* protects vclock_hash addition/deletion */ static DEFINE_SPINLOCK(vclock_hash_lock); static DEFINE_READ_MOSTLY_HASHTABLE(vclock_hash, 8); static void ptp_vclock_hash_add(struct ptp_vclock *vclock) { spin_lock(&vclock_hash_lock); hlist_add_head_rcu(&vclock->vclock_hash_node, &vclock_hash[vclock->clock->index % HASH_SIZE(vclock_hash)]); spin_unlock(&vclock_hash_lock); } static void ptp_vclock_hash_del(struct ptp_vclock *vclock) { spin_lock(&vclock_hash_lock); hlist_del_init_rcu(&vclock->vclock_hash_node); spin_unlock(&vclock_hash_lock); synchronize_rcu(); } static int ptp_vclock_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct ptp_vclock *vclock = info_to_vclock(ptp); s64 adj; adj = (s64)scaled_ppm << PTP_VCLOCK_FADJ_SHIFT; adj = div_s64(adj, PTP_VCLOCK_FADJ_DENOMINATOR); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_read(&vclock->tc); vclock->cc.mult = PTP_VCLOCK_CC_MULT + adj; mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct ptp_vclock *vclock = info_to_vclock(ptp); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_adjtime(&vclock->tc, delta); mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct ptp_vclock *vclock = info_to_vclock(ptp); u64 ns; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_read(&vclock->tc); mutex_unlock(&vclock->lock); *ts = ns_to_timespec64(ns); return 0; } static int ptp_vclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct ptp_clock *pptp = vclock->pclock; struct timespec64 pts; int err; u64 ns; err = pptp->info->getcyclesx64(pptp->info, &pts, sts); if (err) return err; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_cyc2time(&vclock->tc, timespec64_to_ns(&pts)); mutex_unlock(&vclock->lock); *ts = ns_to_timespec64(ns); return 0; } static int ptp_vclock_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct ptp_vclock *vclock = info_to_vclock(ptp); u64 ns = timespec64_to_ns(ts); if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; timecounter_init(&vclock->tc, &vclock->cc, ns); mutex_unlock(&vclock->lock); return 0; } static int ptp_vclock_getcrosststamp(struct ptp_clock_info *ptp, struct system_device_crosststamp *xtstamp) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct ptp_clock *pptp = vclock->pclock; int err; u64 ns; err = pptp->info->getcrosscycles(pptp->info, xtstamp); if (err) return err; if (mutex_lock_interruptible(&vclock->lock)) return -EINTR; ns = timecounter_cyc2time(&vclock->tc, ktime_to_ns(xtstamp->device)); mutex_unlock(&vclock->lock); xtstamp->device = ns_to_ktime(ns); return 0; } static long ptp_vclock_refresh(struct ptp_clock_info *ptp) { struct ptp_vclock *vclock = info_to_vclock(ptp); struct timespec64 ts; ptp_vclock_gettime(&vclock->info, &ts); return PTP_VCLOCK_REFRESH_INTERVAL; } static const struct ptp_clock_info ptp_vclock_info = { .owner = THIS_MODULE, .name = "ptp virtual clock", .max_adj = 500000000, .adjfine = ptp_vclock_adjfine, .adjtime = ptp_vclock_adjtime, .settime64 = ptp_vclock_settime, .do_aux_work = ptp_vclock_refresh, }; static u64 ptp_vclock_read(const struct cyclecounter *cc) { struct ptp_vclock *vclock = cc_to_vclock(cc); struct ptp_clock *ptp = vclock->pclock; struct timespec64 ts = {}; ptp->info->getcycles64(ptp->info, &ts); return timespec64_to_ns(&ts); } static const struct cyclecounter ptp_vclock_cc = { .read = ptp_vclock_read, .mask = CYCLECOUNTER_MASK(32), .mult = PTP_VCLOCK_CC_MULT, .shift = PTP_VCLOCK_CC_SHIFT, }; struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock) { struct ptp_vclock *vclock; vclock = kzalloc(sizeof(*vclock), GFP_KERNEL); if (!vclock) return NULL; vclock->pclock = pclock; vclock->info = ptp_vclock_info; if (pclock->info->getcyclesx64) vclock->info.gettimex64 = ptp_vclock_gettimex; else vclock->info.gettime64 = ptp_vclock_gettime; if (pclock->info->getcrosscycles) vclock->info.getcrosststamp = ptp_vclock_getcrosststamp; vclock->cc = ptp_vclock_cc; snprintf(vclock->info.name, PTP_CLOCK_NAME_LEN, "ptp%d_virt", pclock->index); INIT_HLIST_NODE(&vclock->vclock_hash_node); mutex_init(&vclock->lock); vclock->clock = ptp_clock_register(&vclock->info, &pclock->dev); if (IS_ERR_OR_NULL(vclock->clock)) { kfree(vclock); return NULL; } timecounter_init(&vclock->tc, &vclock->cc, 0); ptp_schedule_worker(vclock->clock, PTP_VCLOCK_REFRESH_INTERVAL); ptp_vclock_hash_add(vclock); return vclock; } void ptp_vclock_unregister(struct ptp_vclock *vclock) { ptp_vclock_hash_del(vclock); ptp_clock_unregister(vclock->clock); kfree(vclock); } #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK) int ptp_get_vclocks_index(int pclock_index, int **vclock_index) { char name[PTP_CLOCK_NAME_LEN] = ""; struct ptp_clock *ptp; struct device *dev; int num = 0; if (pclock_index < 0) return num; snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", pclock_index); dev = class_find_device_by_name(&ptp_class, name); if (!dev) return num; ptp = dev_get_drvdata(dev); if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) { put_device(dev); return num; } *vclock_index = kzalloc(sizeof(int) * ptp->n_vclocks, GFP_KERNEL); if (!(*vclock_index)) goto out; memcpy(*vclock_index, ptp->vclock_index, sizeof(int) * ptp->n_vclocks); num = ptp->n_vclocks; out: mutex_unlock(&ptp->n_vclocks_mux); put_device(dev); return num; } EXPORT_SYMBOL(ptp_get_vclocks_index); ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index) { unsigned int hash = vclock_index % HASH_SIZE(vclock_hash); struct ptp_vclock *vclock; u64 ns; u64 vclock_ns = 0; ns = ktime_to_ns(*hwtstamp); rcu_read_lock(); hlist_for_each_entry_rcu(vclock, &vclock_hash[hash], vclock_hash_node) { if (vclock->clock->index != vclock_index) continue; if (mutex_lock_interruptible(&vclock->lock)) break; vclock_ns = timecounter_cyc2time(&vclock->tc, ns); mutex_unlock(&vclock->lock); break; } rcu_read_unlock(); return ns_to_ktime(vclock_ns); } EXPORT_SYMBOL(ptp_convert_timestamp); #endif |
17 17 14 1 2 1 2 3 3 9 3 3 3 4 4 3 4 1 7 2 9 14 14 10 4 10 4 4 2 14 14 11 11 14 4 4 4 3 3 4 4 4 4 3 3 12 12 9 9 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 | // SPDX-License-Identifier: GPL-2.0-only /* * * Authors: * Alexander Aring <aar@pengutronix.de> * * Based on: net/wireless/nl80211.c */ #include <linux/rtnetlink.h> #include <net/cfg802154.h> #include <net/genetlink.h> #include <net/mac802154.h> #include <net/netlink.h> #include <net/nl802154.h> #include <net/sock.h> #include "nl802154.h" #include "rdev-ops.h" #include "core.h" /* the netlink family */ static struct genl_family nl802154_fam; /* multicast groups */ enum nl802154_multicast_groups { NL802154_MCGRP_CONFIG, NL802154_MCGRP_SCAN, }; static const struct genl_multicast_group nl802154_mcgrps[] = { [NL802154_MCGRP_CONFIG] = { .name = "config", }, [NL802154_MCGRP_SCAN] = { .name = "scan", }, }; /* returns ERR_PTR values */ static struct wpan_dev * __cfg802154_wpan_dev_from_attrs(struct net *netns, struct nlattr **attrs) { struct cfg802154_registered_device *rdev; struct wpan_dev *result = NULL; bool have_ifidx = attrs[NL802154_ATTR_IFINDEX]; bool have_wpan_dev_id = attrs[NL802154_ATTR_WPAN_DEV]; u64 wpan_dev_id; int wpan_phy_idx = -1; int ifidx = -1; ASSERT_RTNL(); if (!have_ifidx && !have_wpan_dev_id) return ERR_PTR(-EINVAL); if (have_ifidx) ifidx = nla_get_u32(attrs[NL802154_ATTR_IFINDEX]); if (have_wpan_dev_id) { wpan_dev_id = nla_get_u64(attrs[NL802154_ATTR_WPAN_DEV]); wpan_phy_idx = wpan_dev_id >> 32; } list_for_each_entry(rdev, &cfg802154_rdev_list, list) { struct wpan_dev *wpan_dev; if (wpan_phy_net(&rdev->wpan_phy) != netns) continue; if (have_wpan_dev_id && rdev->wpan_phy_idx != wpan_phy_idx) continue; list_for_each_entry(wpan_dev, &rdev->wpan_dev_list, list) { if (have_ifidx && wpan_dev->netdev && wpan_dev->netdev->ifindex == ifidx) { result = wpan_dev; break; } if (have_wpan_dev_id && wpan_dev->identifier == (u32)wpan_dev_id) { result = wpan_dev; break; } } if (result) break; } if (result) return result; return ERR_PTR(-ENODEV); } static struct cfg802154_registered_device * __cfg802154_rdev_from_attrs(struct net *netns, struct nlattr **attrs) { struct cfg802154_registered_device *rdev = NULL, *tmp; struct net_device *netdev; ASSERT_RTNL(); if (!attrs[NL802154_ATTR_WPAN_PHY] && !attrs[NL802154_ATTR_IFINDEX] && !attrs[NL802154_ATTR_WPAN_DEV]) return ERR_PTR(-EINVAL); if (attrs[NL802154_ATTR_WPAN_PHY]) rdev = cfg802154_rdev_by_wpan_phy_idx( nla_get_u32(attrs[NL802154_ATTR_WPAN_PHY])); if (attrs[NL802154_ATTR_WPAN_DEV]) { u64 wpan_dev_id = nla_get_u64(attrs[NL802154_ATTR_WPAN_DEV]); struct wpan_dev *wpan_dev; bool found = false; tmp = cfg802154_rdev_by_wpan_phy_idx(wpan_dev_id >> 32); if (tmp) { /* make sure wpan_dev exists */ list_for_each_entry(wpan_dev, &tmp->wpan_dev_list, list) { if (wpan_dev->identifier != (u32)wpan_dev_id) continue; found = true; break; } if (!found) tmp = NULL; if (rdev && tmp != rdev) return ERR_PTR(-EINVAL); rdev = tmp; } } if (attrs[NL802154_ATTR_IFINDEX]) { int ifindex = nla_get_u32(attrs[NL802154_ATTR_IFINDEX]); netdev = __dev_get_by_index(netns, ifindex); if (netdev) { if (netdev->ieee802154_ptr) tmp = wpan_phy_to_rdev( netdev->ieee802154_ptr->wpan_phy); else tmp = NULL; /* not wireless device -- return error */ if (!tmp) return ERR_PTR(-EINVAL); /* mismatch -- return error */ if (rdev && tmp != rdev) return ERR_PTR(-EINVAL); rdev = tmp; } } if (!rdev) return ERR_PTR(-ENODEV); if (netns != wpan_phy_net(&rdev->wpan_phy)) return ERR_PTR(-ENODEV); return rdev; } /* This function returns a pointer to the driver * that the genl_info item that is passed refers to. * * The result of this can be a PTR_ERR and hence must * be checked with IS_ERR() for errors. */ static struct cfg802154_registered_device * cfg802154_get_dev_from_info(struct net *netns, struct genl_info *info) { return __cfg802154_rdev_from_attrs(netns, info->attrs); } /* policy for the attributes */ static const struct nla_policy nl802154_policy[NL802154_ATTR_MAX+1] = { [NL802154_ATTR_WPAN_PHY] = { .type = NLA_U32 }, [NL802154_ATTR_WPAN_PHY_NAME] = { .type = NLA_NUL_STRING, .len = 20-1 }, [NL802154_ATTR_IFINDEX] = { .type = NLA_U32 }, [NL802154_ATTR_IFTYPE] = { .type = NLA_U32 }, [NL802154_ATTR_IFNAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ-1 }, [NL802154_ATTR_WPAN_DEV] = { .type = NLA_U64 }, [NL802154_ATTR_PAGE] = NLA_POLICY_MAX(NLA_U8, IEEE802154_MAX_PAGE), [NL802154_ATTR_CHANNEL] = NLA_POLICY_MAX(NLA_U8, IEEE802154_MAX_CHANNEL), [NL802154_ATTR_TX_POWER] = { .type = NLA_S32, }, [NL802154_ATTR_CCA_MODE] = { .type = NLA_U32, }, [NL802154_ATTR_CCA_OPT] = { .type = NLA_U32, }, [NL802154_ATTR_CCA_ED_LEVEL] = { .type = NLA_S32, }, [NL802154_ATTR_SUPPORTED_CHANNEL] = { .type = NLA_U32, }, [NL802154_ATTR_PAN_ID] = { .type = NLA_U16, }, [NL802154_ATTR_EXTENDED_ADDR] = { .type = NLA_U64 }, [NL802154_ATTR_SHORT_ADDR] = { .type = NLA_U16, }, [NL802154_ATTR_MIN_BE] = { .type = NLA_U8, }, [NL802154_ATTR_MAX_BE] = { .type = NLA_U8, }, [NL802154_ATTR_MAX_CSMA_BACKOFFS] = { .type = NLA_U8, }, [NL802154_ATTR_MAX_FRAME_RETRIES] = { .type = NLA_S8, }, [NL802154_ATTR_LBT_MODE] = { .type = NLA_U8, }, [NL802154_ATTR_WPAN_PHY_CAPS] = { .type = NLA_NESTED }, [NL802154_ATTR_SUPPORTED_COMMANDS] = { .type = NLA_NESTED }, [NL802154_ATTR_ACKREQ_DEFAULT] = { .type = NLA_U8 }, [NL802154_ATTR_PID] = { .type = NLA_U32 }, [NL802154_ATTR_NETNS_FD] = { .type = NLA_U32 }, [NL802154_ATTR_COORDINATOR] = { .type = NLA_NESTED }, [NL802154_ATTR_SCAN_TYPE] = NLA_POLICY_RANGE(NLA_U8, NL802154_SCAN_ED, NL802154_SCAN_RIT_PASSIVE), [NL802154_ATTR_SCAN_CHANNELS] = NLA_POLICY_MASK(NLA_U32, GENMASK(IEEE802154_MAX_CHANNEL, 0)), [NL802154_ATTR_SCAN_PREAMBLE_CODES] = { .type = NLA_REJECT }, [NL802154_ATTR_SCAN_MEAN_PRF] = { .type = NLA_REJECT }, [NL802154_ATTR_SCAN_DURATION] = NLA_POLICY_MAX(NLA_U8, IEEE802154_MAX_SCAN_DURATION), [NL802154_ATTR_SCAN_DONE_REASON] = NLA_POLICY_RANGE(NLA_U8, NL802154_SCAN_DONE_REASON_FINISHED, NL802154_SCAN_DONE_REASON_ABORTED), [NL802154_ATTR_BEACON_INTERVAL] = NLA_POLICY_MAX(NLA_U8, IEEE802154_ACTIVE_SCAN_DURATION), [NL802154_ATTR_MAX_ASSOCIATIONS] = { .type = NLA_U32 }, [NL802154_ATTR_PEER] = { .type = NLA_NESTED }, #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL [NL802154_ATTR_SEC_ENABLED] = { .type = NLA_U8, }, [NL802154_ATTR_SEC_OUT_LEVEL] = { .type = NLA_U32, }, [NL802154_ATTR_SEC_OUT_KEY_ID] = { .type = NLA_NESTED, }, [NL802154_ATTR_SEC_FRAME_COUNTER] = { .type = NLA_U32 }, [NL802154_ATTR_SEC_LEVEL] = { .type = NLA_NESTED }, [NL802154_ATTR_SEC_DEVICE] = { .type = NLA_NESTED }, [NL802154_ATTR_SEC_DEVKEY] = { .type = NLA_NESTED }, [NL802154_ATTR_SEC_KEY] = { .type = NLA_NESTED }, #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ }; static int nl802154_prepare_wpan_dev_dump(struct sk_buff *skb, struct netlink_callback *cb, struct cfg802154_registered_device **rdev, struct wpan_dev **wpan_dev) { const struct genl_dumpit_info *info = genl_dumpit_info(cb); int err; rtnl_lock(); if (!cb->args[0]) { *wpan_dev = __cfg802154_wpan_dev_from_attrs(sock_net(skb->sk), info->info.attrs); if (IS_ERR(*wpan_dev)) { err = PTR_ERR(*wpan_dev); goto out_unlock; } *rdev = wpan_phy_to_rdev((*wpan_dev)->wpan_phy); /* 0 is the first index - add 1 to parse only once */ cb->args[0] = (*rdev)->wpan_phy_idx + 1; cb->args[1] = (*wpan_dev)->identifier; } else { /* subtract the 1 again here */ struct wpan_phy *wpan_phy = wpan_phy_idx_to_wpan_phy(cb->args[0] - 1); struct wpan_dev *tmp; if (!wpan_phy) { err = -ENODEV; goto out_unlock; } *rdev = wpan_phy_to_rdev(wpan_phy); *wpan_dev = NULL; list_for_each_entry(tmp, &(*rdev)->wpan_dev_list, list) { if (tmp->identifier == cb->args[1]) { *wpan_dev = tmp; break; } } if (!*wpan_dev) { err = -ENODEV; goto out_unlock; } } return 0; out_unlock: rtnl_unlock(); return err; } static void nl802154_finish_wpan_dev_dump(struct cfg802154_registered_device *rdev) { rtnl_unlock(); } /* message building helper */ static inline void *nl802154hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd) { /* since there is no private header just add the generic one */ return genlmsg_put(skb, portid, seq, &nl802154_fam, flags, cmd); } static int nl802154_put_flags(struct sk_buff *msg, int attr, u32 mask) { struct nlattr *nl_flags = nla_nest_start_noflag(msg, attr); int i; if (!nl_flags) return -ENOBUFS; i = 0; while (mask) { if ((mask & 1) && nla_put_flag(msg, i)) return -ENOBUFS; mask >>= 1; i++; } nla_nest_end(msg, nl_flags); return 0; } static int nl802154_send_wpan_phy_channels(struct cfg802154_registered_device *rdev, struct sk_buff *msg) { struct nlattr *nl_page; unsigned long page; nl_page = nla_nest_start_noflag(msg, NL802154_ATTR_CHANNELS_SUPPORTED); if (!nl_page) return -ENOBUFS; for (page = 0; page <= IEEE802154_MAX_PAGE; page++) { if (nla_put_u32(msg, NL802154_ATTR_SUPPORTED_CHANNEL, rdev->wpan_phy.supported.channels[page])) return -ENOBUFS; } nla_nest_end(msg, nl_page); return 0; } static int nl802154_put_capabilities(struct sk_buff *msg, struct cfg802154_registered_device *rdev) { const struct wpan_phy_supported *caps = &rdev->wpan_phy.supported; struct nlattr *nl_caps, *nl_channels; int i; nl_caps = nla_nest_start_noflag(msg, NL802154_ATTR_WPAN_PHY_CAPS); if (!nl_caps) return -ENOBUFS; nl_channels = nla_nest_start_noflag(msg, NL802154_CAP_ATTR_CHANNELS); if (!nl_channels) return -ENOBUFS; for (i = 0; i <= IEEE802154_MAX_PAGE; i++) { if (caps->channels[i]) { if (nl802154_put_flags(msg, i, caps->channels[i])) return -ENOBUFS; } } nla_nest_end(msg, nl_channels); if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_ED_LEVEL) { struct nlattr *nl_ed_lvls; nl_ed_lvls = nla_nest_start_noflag(msg, NL802154_CAP_ATTR_CCA_ED_LEVELS); if (!nl_ed_lvls) return -ENOBUFS; for (i = 0; i < caps->cca_ed_levels_size; i++) { if (nla_put_s32(msg, i, caps->cca_ed_levels[i])) return -ENOBUFS; } nla_nest_end(msg, nl_ed_lvls); } if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_TXPOWER) { struct nlattr *nl_tx_pwrs; nl_tx_pwrs = nla_nest_start_noflag(msg, NL802154_CAP_ATTR_TX_POWERS); if (!nl_tx_pwrs) return -ENOBUFS; for (i = 0; i < caps->tx_powers_size; i++) { if (nla_put_s32(msg, i, caps->tx_powers[i])) return -ENOBUFS; } nla_nest_end(msg, nl_tx_pwrs); } if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_MODE) { if (nl802154_put_flags(msg, NL802154_CAP_ATTR_CCA_MODES, caps->cca_modes) || nl802154_put_flags(msg, NL802154_CAP_ATTR_CCA_OPTS, caps->cca_opts)) return -ENOBUFS; } if (nla_put_u8(msg, NL802154_CAP_ATTR_MIN_MINBE, caps->min_minbe) || nla_put_u8(msg, NL802154_CAP_ATTR_MAX_MINBE, caps->max_minbe) || nla_put_u8(msg, NL802154_CAP_ATTR_MIN_MAXBE, caps->min_maxbe) || nla_put_u8(msg, NL802154_CAP_ATTR_MAX_MAXBE, caps->max_maxbe) || nla_put_u8(msg, NL802154_CAP_ATTR_MIN_CSMA_BACKOFFS, caps->min_csma_backoffs) || nla_put_u8(msg, NL802154_CAP_ATTR_MAX_CSMA_BACKOFFS, caps->max_csma_backoffs) || nla_put_s8(msg, NL802154_CAP_ATTR_MIN_FRAME_RETRIES, caps->min_frame_retries) || nla_put_s8(msg, NL802154_CAP_ATTR_MAX_FRAME_RETRIES, caps->max_frame_retries) || nl802154_put_flags(msg, NL802154_CAP_ATTR_IFTYPES, caps->iftypes) || nla_put_u32(msg, NL802154_CAP_ATTR_LBT, caps->lbt)) return -ENOBUFS; nla_nest_end(msg, nl_caps); return 0; } static int nl802154_send_wpan_phy(struct cfg802154_registered_device *rdev, enum nl802154_commands cmd, struct sk_buff *msg, u32 portid, u32 seq, int flags) { struct nlattr *nl_cmds; void *hdr; int i; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_WPAN_PHY, rdev->wpan_phy_idx) || nla_put_string(msg, NL802154_ATTR_WPAN_PHY_NAME, wpan_phy_name(&rdev->wpan_phy)) || nla_put_u32(msg, NL802154_ATTR_GENERATION, cfg802154_rdev_list_generation)) goto nla_put_failure; if (cmd != NL802154_CMD_NEW_WPAN_PHY) goto finish; /* DUMP PHY PIB */ /* current channel settings */ if (nla_put_u8(msg, NL802154_ATTR_PAGE, rdev->wpan_phy.current_page) || nla_put_u8(msg, NL802154_ATTR_CHANNEL, rdev->wpan_phy.current_channel)) goto nla_put_failure; /* TODO remove this behaviour, we still keep support it for a while * so users can change the behaviour to the new one. */ if (nl802154_send_wpan_phy_channels(rdev, msg)) goto nla_put_failure; /* cca mode */ if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_MODE) { if (nla_put_u32(msg, NL802154_ATTR_CCA_MODE, rdev->wpan_phy.cca.mode)) goto nla_put_failure; if (rdev->wpan_phy.cca.mode == NL802154_CCA_ENERGY_CARRIER) { if (nla_put_u32(msg, NL802154_ATTR_CCA_OPT, rdev->wpan_phy.cca.opt)) goto nla_put_failure; } } if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_TXPOWER) { if (nla_put_s32(msg, NL802154_ATTR_TX_POWER, rdev->wpan_phy.transmit_power)) goto nla_put_failure; } if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_ED_LEVEL) { if (nla_put_s32(msg, NL802154_ATTR_CCA_ED_LEVEL, rdev->wpan_phy.cca_ed_level)) goto nla_put_failure; } if (nl802154_put_capabilities(msg, rdev)) goto nla_put_failure; nl_cmds = nla_nest_start_noflag(msg, NL802154_ATTR_SUPPORTED_COMMANDS); if (!nl_cmds) goto nla_put_failure; i = 0; #define CMD(op, n) \ do { \ if (rdev->ops->op) { \ i++; \ if (nla_put_u32(msg, i, NL802154_CMD_ ## n)) \ goto nla_put_failure; \ } \ } while (0) CMD(add_virtual_intf, NEW_INTERFACE); CMD(del_virtual_intf, DEL_INTERFACE); CMD(set_channel, SET_CHANNEL); CMD(set_pan_id, SET_PAN_ID); CMD(set_short_addr, SET_SHORT_ADDR); CMD(set_backoff_exponent, SET_BACKOFF_EXPONENT); CMD(set_max_csma_backoffs, SET_MAX_CSMA_BACKOFFS); CMD(set_max_frame_retries, SET_MAX_FRAME_RETRIES); CMD(set_lbt_mode, SET_LBT_MODE); CMD(set_ackreq_default, SET_ACKREQ_DEFAULT); if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_TXPOWER) CMD(set_tx_power, SET_TX_POWER); if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_ED_LEVEL) CMD(set_cca_ed_level, SET_CCA_ED_LEVEL); if (rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_MODE) CMD(set_cca_mode, SET_CCA_MODE); #undef CMD nla_nest_end(msg, nl_cmds); finish: genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } struct nl802154_dump_wpan_phy_state { s64 filter_wpan_phy; long start; }; static int nl802154_dump_wpan_phy_parse(struct sk_buff *skb, struct netlink_callback *cb, struct nl802154_dump_wpan_phy_state *state) { const struct genl_dumpit_info *info = genl_dumpit_info(cb); struct nlattr **tb = info->info.attrs; if (tb[NL802154_ATTR_WPAN_PHY]) state->filter_wpan_phy = nla_get_u32(tb[NL802154_ATTR_WPAN_PHY]); if (tb[NL802154_ATTR_WPAN_DEV]) state->filter_wpan_phy = nla_get_u64(tb[NL802154_ATTR_WPAN_DEV]) >> 32; if (tb[NL802154_ATTR_IFINDEX]) { struct net_device *netdev; struct cfg802154_registered_device *rdev; int ifidx = nla_get_u32(tb[NL802154_ATTR_IFINDEX]); netdev = __dev_get_by_index(&init_net, ifidx); if (!netdev) return -ENODEV; if (netdev->ieee802154_ptr) { rdev = wpan_phy_to_rdev( netdev->ieee802154_ptr->wpan_phy); state->filter_wpan_phy = rdev->wpan_phy_idx; } } return 0; } static int nl802154_dump_wpan_phy(struct sk_buff *skb, struct netlink_callback *cb) { int idx = 0, ret; struct nl802154_dump_wpan_phy_state *state = (void *)cb->args[0]; struct cfg802154_registered_device *rdev; rtnl_lock(); if (!state) { state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) { rtnl_unlock(); return -ENOMEM; } state->filter_wpan_phy = -1; ret = nl802154_dump_wpan_phy_parse(skb, cb, state); if (ret) { kfree(state); rtnl_unlock(); return ret; } cb->args[0] = (long)state; } list_for_each_entry(rdev, &cfg802154_rdev_list, list) { if (!net_eq(wpan_phy_net(&rdev->wpan_phy), sock_net(skb->sk))) continue; if (++idx <= state->start) continue; if (state->filter_wpan_phy != -1 && state->filter_wpan_phy != rdev->wpan_phy_idx) continue; /* attempt to fit multiple wpan_phy data chunks into the skb */ ret = nl802154_send_wpan_phy(rdev, NL802154_CMD_NEW_WPAN_PHY, skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI); if (ret < 0) { if ((ret == -ENOBUFS || ret == -EMSGSIZE) && !skb->len && cb->min_dump_alloc < 4096) { cb->min_dump_alloc = 4096; rtnl_unlock(); return 1; } idx--; break; } break; } rtnl_unlock(); state->start = idx; return skb->len; } static int nl802154_dump_wpan_phy_done(struct netlink_callback *cb) { kfree((void *)cb->args[0]); return 0; } static int nl802154_get_wpan_phy(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; struct cfg802154_registered_device *rdev = info->user_ptr[0]; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl802154_send_wpan_phy(rdev, NL802154_CMD_NEW_WPAN_PHY, msg, info->snd_portid, info->snd_seq, 0) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static inline u64 wpan_dev_id(struct wpan_dev *wpan_dev) { return (u64)wpan_dev->identifier | ((u64)wpan_phy_to_rdev(wpan_dev->wpan_phy)->wpan_phy_idx << 32); } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL #include <net/ieee802154_netdev.h> static int ieee802154_llsec_send_key_id(struct sk_buff *msg, const struct ieee802154_llsec_key_id *desc) { struct nlattr *nl_dev_addr; if (nla_put_u32(msg, NL802154_KEY_ID_ATTR_MODE, desc->mode)) return -ENOBUFS; switch (desc->mode) { case NL802154_KEY_ID_MODE_IMPLICIT: nl_dev_addr = nla_nest_start_noflag(msg, NL802154_KEY_ID_ATTR_IMPLICIT); if (!nl_dev_addr) return -ENOBUFS; if (nla_put_le16(msg, NL802154_DEV_ADDR_ATTR_PAN_ID, desc->device_addr.pan_id) || nla_put_u32(msg, NL802154_DEV_ADDR_ATTR_MODE, desc->device_addr.mode)) return -ENOBUFS; switch (desc->device_addr.mode) { case NL802154_DEV_ADDR_SHORT: if (nla_put_le16(msg, NL802154_DEV_ADDR_ATTR_SHORT, desc->device_addr.short_addr)) return -ENOBUFS; break; case NL802154_DEV_ADDR_EXTENDED: if (nla_put_le64(msg, NL802154_DEV_ADDR_ATTR_EXTENDED, desc->device_addr.extended_addr, NL802154_DEV_ADDR_ATTR_PAD)) return -ENOBUFS; break; default: /* userspace should handle unknown */ break; } nla_nest_end(msg, nl_dev_addr); break; case NL802154_KEY_ID_MODE_INDEX: break; case NL802154_KEY_ID_MODE_INDEX_SHORT: /* TODO renmae short_source? */ if (nla_put_le32(msg, NL802154_KEY_ID_ATTR_SOURCE_SHORT, desc->short_source)) return -ENOBUFS; break; case NL802154_KEY_ID_MODE_INDEX_EXTENDED: if (nla_put_le64(msg, NL802154_KEY_ID_ATTR_SOURCE_EXTENDED, desc->extended_source, NL802154_KEY_ID_ATTR_PAD)) return -ENOBUFS; break; default: /* userspace should handle unknown */ break; } /* TODO key_id to key_idx ? Check naming */ if (desc->mode != NL802154_KEY_ID_MODE_IMPLICIT) { if (nla_put_u8(msg, NL802154_KEY_ID_ATTR_INDEX, desc->id)) return -ENOBUFS; } return 0; } static int nl802154_get_llsec_params(struct sk_buff *msg, struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { struct nlattr *nl_key_id; struct ieee802154_llsec_params params; int ret; ret = rdev_get_llsec_params(rdev, wpan_dev, ¶ms); if (ret < 0) return ret; if (nla_put_u8(msg, NL802154_ATTR_SEC_ENABLED, params.enabled) || nla_put_u32(msg, NL802154_ATTR_SEC_OUT_LEVEL, params.out_level) || nla_put_be32(msg, NL802154_ATTR_SEC_FRAME_COUNTER, params.frame_counter)) return -ENOBUFS; nl_key_id = nla_nest_start_noflag(msg, NL802154_ATTR_SEC_OUT_KEY_ID); if (!nl_key_id) return -ENOBUFS; ret = ieee802154_llsec_send_key_id(msg, ¶ms.out_key); if (ret < 0) return ret; nla_nest_end(msg, nl_key_id); return 0; } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ static int nl802154_send_iface(struct sk_buff *msg, u32 portid, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev) { struct net_device *dev = wpan_dev->netdev; void *hdr; hdr = nl802154hdr_put(msg, portid, seq, flags, NL802154_CMD_NEW_INTERFACE); if (!hdr) return -1; if (dev && (nla_put_u32(msg, NL802154_ATTR_IFINDEX, dev->ifindex) || nla_put_string(msg, NL802154_ATTR_IFNAME, dev->name))) goto nla_put_failure; if (nla_put_u32(msg, NL802154_ATTR_WPAN_PHY, rdev->wpan_phy_idx) || nla_put_u32(msg, NL802154_ATTR_IFTYPE, wpan_dev->iftype) || nla_put_u64_64bit(msg, NL802154_ATTR_WPAN_DEV, wpan_dev_id(wpan_dev), NL802154_ATTR_PAD) || nla_put_u32(msg, NL802154_ATTR_GENERATION, rdev->devlist_generation ^ (cfg802154_rdev_list_generation << 2))) goto nla_put_failure; /* address settings */ if (nla_put_le64(msg, NL802154_ATTR_EXTENDED_ADDR, wpan_dev->extended_addr, NL802154_ATTR_PAD) || nla_put_le16(msg, NL802154_ATTR_SHORT_ADDR, wpan_dev->short_addr) || nla_put_le16(msg, NL802154_ATTR_PAN_ID, wpan_dev->pan_id)) goto nla_put_failure; /* ARET handling */ if (nla_put_s8(msg, NL802154_ATTR_MAX_FRAME_RETRIES, wpan_dev->frame_retries) || nla_put_u8(msg, NL802154_ATTR_MAX_BE, wpan_dev->max_be) || nla_put_u8(msg, NL802154_ATTR_MAX_CSMA_BACKOFFS, wpan_dev->csma_retries) || nla_put_u8(msg, NL802154_ATTR_MIN_BE, wpan_dev->min_be)) goto nla_put_failure; /* listen before transmit */ if (nla_put_u8(msg, NL802154_ATTR_LBT_MODE, wpan_dev->lbt)) goto nla_put_failure; /* ackreq default behaviour */ if (nla_put_u8(msg, NL802154_ATTR_ACKREQ_DEFAULT, wpan_dev->ackreq)) goto nla_put_failure; #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) goto out; if (nl802154_get_llsec_params(msg, rdev, wpan_dev) < 0) goto nla_put_failure; out: #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_dump_interface(struct sk_buff *skb, struct netlink_callback *cb) { int wp_idx = 0; int if_idx = 0; int wp_start = cb->args[0]; int if_start = cb->args[1]; struct cfg802154_registered_device *rdev; struct wpan_dev *wpan_dev; rtnl_lock(); list_for_each_entry(rdev, &cfg802154_rdev_list, list) { if (!net_eq(wpan_phy_net(&rdev->wpan_phy), sock_net(skb->sk))) continue; if (wp_idx < wp_start) { wp_idx++; continue; } if_idx = 0; list_for_each_entry(wpan_dev, &rdev->wpan_dev_list, list) { if (if_idx < if_start) { if_idx++; continue; } if (nl802154_send_iface(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev) < 0) { goto out; } if_idx++; } wp_idx++; } out: rtnl_unlock(); cb->args[0] = wp_idx; cb->args[1] = if_idx; return skb->len; } static int nl802154_get_interface(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct wpan_dev *wdev = info->user_ptr[1]; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; if (nl802154_send_iface(msg, info->snd_portid, info->snd_seq, 0, rdev, wdev) < 0) { nlmsg_free(msg); return -ENOBUFS; } return genlmsg_reply(msg, info); } static int nl802154_new_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; enum nl802154_iftype type = NL802154_IFTYPE_UNSPEC; __le64 extended_addr = cpu_to_le64(0x0000000000000000ULL); /* TODO avoid failing a new interface * creation due to pending removal? */ if (!info->attrs[NL802154_ATTR_IFNAME]) return -EINVAL; if (info->attrs[NL802154_ATTR_IFTYPE]) { type = nla_get_u32(info->attrs[NL802154_ATTR_IFTYPE]); if (type > NL802154_IFTYPE_MAX || !(rdev->wpan_phy.supported.iftypes & BIT(type))) return -EINVAL; } if (info->attrs[NL802154_ATTR_EXTENDED_ADDR]) extended_addr = nla_get_le64(info->attrs[NL802154_ATTR_EXTENDED_ADDR]); if (!rdev->ops->add_virtual_intf) return -EOPNOTSUPP; return rdev_add_virtual_intf(rdev, nla_data(info->attrs[NL802154_ATTR_IFNAME]), NET_NAME_USER, type, extended_addr); } static int nl802154_del_interface(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct wpan_dev *wpan_dev = info->user_ptr[1]; if (!rdev->ops->del_virtual_intf) return -EOPNOTSUPP; /* If we remove a wpan device without a netdev then clear * user_ptr[1] so that nl802154_post_doit won't dereference it * to check if it needs to do dev_put(). Otherwise it crashes * since the wpan_dev has been freed, unlike with a netdev where * we need the dev_put() for the netdev to really be freed. */ if (!wpan_dev->netdev) info->user_ptr[1] = NULL; return rdev_del_virtual_intf(rdev, wpan_dev); } static int nl802154_set_channel(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; u8 channel, page; if (!info->attrs[NL802154_ATTR_PAGE] || !info->attrs[NL802154_ATTR_CHANNEL]) return -EINVAL; page = nla_get_u8(info->attrs[NL802154_ATTR_PAGE]); channel = nla_get_u8(info->attrs[NL802154_ATTR_CHANNEL]); /* check 802.15.4 constraints */ if (!ieee802154_chan_is_valid(&rdev->wpan_phy, page, channel)) return -EINVAL; return rdev_set_channel(rdev, page, channel); } static int nl802154_set_cca_mode(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct wpan_phy_cca cca; if (!(rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_MODE)) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_CCA_MODE]) return -EINVAL; cca.mode = nla_get_u32(info->attrs[NL802154_ATTR_CCA_MODE]); /* checking 802.15.4 constraints */ if (cca.mode < NL802154_CCA_ENERGY || cca.mode > NL802154_CCA_ATTR_MAX || !(rdev->wpan_phy.supported.cca_modes & BIT(cca.mode))) return -EINVAL; if (cca.mode == NL802154_CCA_ENERGY_CARRIER) { if (!info->attrs[NL802154_ATTR_CCA_OPT]) return -EINVAL; cca.opt = nla_get_u32(info->attrs[NL802154_ATTR_CCA_OPT]); if (cca.opt > NL802154_CCA_OPT_ATTR_MAX || !(rdev->wpan_phy.supported.cca_opts & BIT(cca.opt))) return -EINVAL; } return rdev_set_cca_mode(rdev, &cca); } static int nl802154_set_cca_ed_level(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; s32 ed_level; int i; if (!(rdev->wpan_phy.flags & WPAN_PHY_FLAG_CCA_ED_LEVEL)) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_CCA_ED_LEVEL]) return -EINVAL; ed_level = nla_get_s32(info->attrs[NL802154_ATTR_CCA_ED_LEVEL]); for (i = 0; i < rdev->wpan_phy.supported.cca_ed_levels_size; i++) { if (ed_level == rdev->wpan_phy.supported.cca_ed_levels[i]) return rdev_set_cca_ed_level(rdev, ed_level); } return -EINVAL; } static int nl802154_set_tx_power(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; s32 power; int i; if (!(rdev->wpan_phy.flags & WPAN_PHY_FLAG_TXPOWER)) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_TX_POWER]) return -EINVAL; power = nla_get_s32(info->attrs[NL802154_ATTR_TX_POWER]); for (i = 0; i < rdev->wpan_phy.supported.tx_powers_size; i++) { if (power == rdev->wpan_phy.supported.tx_powers[i]) return rdev_set_tx_power(rdev, power); } return -EINVAL; } static int nl802154_set_pan_id(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; __le16 pan_id; /* conflict here while tx/rx calls */ if (netif_running(dev)) return -EBUSY; if (wpan_dev->lowpan_dev) { if (netif_running(wpan_dev->lowpan_dev)) return -EBUSY; } /* don't change address fields on monitor */ if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR || !info->attrs[NL802154_ATTR_PAN_ID]) return -EINVAL; pan_id = nla_get_le16(info->attrs[NL802154_ATTR_PAN_ID]); /* Only allow changing the PAN ID when the device has no more * associations ongoing to avoid confusing peers. */ if (cfg802154_device_is_associated(wpan_dev)) { NL_SET_ERR_MSG(info->extack, "Existing associations, changing PAN ID forbidden"); return -EINVAL; } return rdev_set_pan_id(rdev, wpan_dev, pan_id); } static int nl802154_set_short_addr(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; __le16 short_addr; /* conflict here while tx/rx calls */ if (netif_running(dev)) return -EBUSY; if (wpan_dev->lowpan_dev) { if (netif_running(wpan_dev->lowpan_dev)) return -EBUSY; } /* don't change address fields on monitor */ if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR || !info->attrs[NL802154_ATTR_SHORT_ADDR]) return -EINVAL; short_addr = nla_get_le16(info->attrs[NL802154_ATTR_SHORT_ADDR]); /* The short address only has a meaning when part of a PAN, after a * proper association procedure. However, we want to still offer the * possibility to create static networks so changing the short address * is only allowed when not already associated to other devices with * the official handshake. */ if (cfg802154_device_is_associated(wpan_dev)) { NL_SET_ERR_MSG(info->extack, "Existing associations, changing short address forbidden"); return -EINVAL; } return rdev_set_short_addr(rdev, wpan_dev, short_addr); } static int nl802154_set_backoff_exponent(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; u8 min_be, max_be; /* should be set on netif open inside phy settings */ if (netif_running(dev)) return -EBUSY; if (!info->attrs[NL802154_ATTR_MIN_BE] || !info->attrs[NL802154_ATTR_MAX_BE]) return -EINVAL; min_be = nla_get_u8(info->attrs[NL802154_ATTR_MIN_BE]); max_be = nla_get_u8(info->attrs[NL802154_ATTR_MAX_BE]); /* check 802.15.4 constraints */ if (min_be < rdev->wpan_phy.supported.min_minbe || min_be > rdev->wpan_phy.supported.max_minbe || max_be < rdev->wpan_phy.supported.min_maxbe || max_be > rdev->wpan_phy.supported.max_maxbe || min_be > max_be) return -EINVAL; return rdev_set_backoff_exponent(rdev, wpan_dev, min_be, max_be); } static int nl802154_set_max_csma_backoffs(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; u8 max_csma_backoffs; /* conflict here while other running iface settings */ if (netif_running(dev)) return -EBUSY; if (!info->attrs[NL802154_ATTR_MAX_CSMA_BACKOFFS]) return -EINVAL; max_csma_backoffs = nla_get_u8( info->attrs[NL802154_ATTR_MAX_CSMA_BACKOFFS]); /* check 802.15.4 constraints */ if (max_csma_backoffs < rdev->wpan_phy.supported.min_csma_backoffs || max_csma_backoffs > rdev->wpan_phy.supported.max_csma_backoffs) return -EINVAL; return rdev_set_max_csma_backoffs(rdev, wpan_dev, max_csma_backoffs); } static int nl802154_set_max_frame_retries(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; s8 max_frame_retries; if (netif_running(dev)) return -EBUSY; if (!info->attrs[NL802154_ATTR_MAX_FRAME_RETRIES]) return -EINVAL; max_frame_retries = nla_get_s8( info->attrs[NL802154_ATTR_MAX_FRAME_RETRIES]); /* check 802.15.4 constraints */ if (max_frame_retries < rdev->wpan_phy.supported.min_frame_retries || max_frame_retries > rdev->wpan_phy.supported.max_frame_retries) return -EINVAL; return rdev_set_max_frame_retries(rdev, wpan_dev, max_frame_retries); } static int nl802154_set_lbt_mode(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; int mode; if (netif_running(dev)) return -EBUSY; if (!info->attrs[NL802154_ATTR_LBT_MODE]) return -EINVAL; mode = nla_get_u8(info->attrs[NL802154_ATTR_LBT_MODE]); if (mode != 0 && mode != 1) return -EINVAL; if (!wpan_phy_supported_bool(mode, rdev->wpan_phy.supported.lbt)) return -EINVAL; return rdev_set_lbt_mode(rdev, wpan_dev, mode); } static int nl802154_set_ackreq_default(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; int ackreq; if (netif_running(dev)) return -EBUSY; if (!info->attrs[NL802154_ATTR_ACKREQ_DEFAULT]) return -EINVAL; ackreq = nla_get_u8(info->attrs[NL802154_ATTR_ACKREQ_DEFAULT]); if (ackreq != 0 && ackreq != 1) return -EINVAL; return rdev_set_ackreq_default(rdev, wpan_dev, ackreq); } static int nl802154_wpan_phy_netns(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net *net; int err; if (info->attrs[NL802154_ATTR_PID]) { u32 pid = nla_get_u32(info->attrs[NL802154_ATTR_PID]); net = get_net_ns_by_pid(pid); } else if (info->attrs[NL802154_ATTR_NETNS_FD]) { u32 fd = nla_get_u32(info->attrs[NL802154_ATTR_NETNS_FD]); net = get_net_ns_by_fd(fd); } else { return -EINVAL; } if (IS_ERR(net)) return PTR_ERR(net); err = 0; /* check if anything to do */ if (!net_eq(wpan_phy_net(&rdev->wpan_phy), net)) err = cfg802154_switch_netns(rdev, net); put_net(net); return err; } static int nl802154_prep_scan_event_msg(struct sk_buff *msg, struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u32 portid, u32 seq, int flags, u8 cmd, struct ieee802154_coord_desc *desc) { struct nlattr *nla; void *hdr; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_WPAN_PHY, rdev->wpan_phy_idx)) goto nla_put_failure; if (wpan_dev->netdev && nla_put_u32(msg, NL802154_ATTR_IFINDEX, wpan_dev->netdev->ifindex)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NL802154_ATTR_WPAN_DEV, wpan_dev_id(wpan_dev), NL802154_ATTR_PAD)) goto nla_put_failure; nla = nla_nest_start_noflag(msg, NL802154_ATTR_COORDINATOR); if (!nla) goto nla_put_failure; if (nla_put(msg, NL802154_COORD_PANID, IEEE802154_PAN_ID_LEN, &desc->addr.pan_id)) goto nla_put_failure; if (desc->addr.mode == IEEE802154_ADDR_SHORT) { if (nla_put(msg, NL802154_COORD_ADDR, IEEE802154_SHORT_ADDR_LEN, &desc->addr.short_addr)) goto nla_put_failure; } else { if (nla_put(msg, NL802154_COORD_ADDR, IEEE802154_EXTENDED_ADDR_LEN, &desc->addr.extended_addr)) goto nla_put_failure; } if (nla_put_u8(msg, NL802154_COORD_CHANNEL, desc->channel)) goto nla_put_failure; if (nla_put_u8(msg, NL802154_COORD_PAGE, desc->page)) goto nla_put_failure; if (nla_put_u16(msg, NL802154_COORD_SUPERFRAME_SPEC, desc->superframe_spec)) goto nla_put_failure; if (nla_put_u8(msg, NL802154_COORD_LINK_QUALITY, desc->link_quality)) goto nla_put_failure; if (desc->gts_permit && nla_put_flag(msg, NL802154_COORD_GTS_PERMIT)) goto nla_put_failure; /* TODO: NL802154_COORD_PAYLOAD_DATA if any */ nla_nest_end(msg, nla); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int nl802154_scan_event(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, struct ieee802154_coord_desc *desc) { struct cfg802154_registered_device *rdev = wpan_phy_to_rdev(wpan_phy); struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!msg) return -ENOMEM; ret = nl802154_prep_scan_event_msg(msg, rdev, wpan_dev, 0, 0, 0, NL802154_CMD_SCAN_EVENT, desc); if (ret < 0) { nlmsg_free(msg); return ret; } return genlmsg_multicast_netns(&nl802154_fam, wpan_phy_net(wpan_phy), msg, 0, NL802154_MCGRP_SCAN, GFP_ATOMIC); } EXPORT_SYMBOL_GPL(nl802154_scan_event); static int nl802154_trigger_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct wpan_phy *wpan_phy = &rdev->wpan_phy; struct cfg802154_scan_request *request; u8 type; int err; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) { NL_SET_ERR_MSG(info->extack, "Monitors are not allowed to perform scans"); return -EOPNOTSUPP; } if (!info->attrs[NL802154_ATTR_SCAN_TYPE]) { NL_SET_ERR_MSG(info->extack, "Malformed request, missing scan type"); return -EINVAL; } if (wpan_phy->flags & WPAN_PHY_FLAG_DATAGRAMS_ONLY) { NL_SET_ERR_MSG(info->extack, "PHY only supports datagrams"); return -EOPNOTSUPP; } request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) return -ENOMEM; request->wpan_dev = wpan_dev; request->wpan_phy = wpan_phy; type = nla_get_u8(info->attrs[NL802154_ATTR_SCAN_TYPE]); switch (type) { case NL802154_SCAN_ACTIVE: case NL802154_SCAN_PASSIVE: request->type = type; break; default: NL_SET_ERR_MSG_FMT(info->extack, "Unsupported scan type: %d", type); err = -EINVAL; goto free_request; } /* Use current page by default */ request->page = nla_get_u8_default(info->attrs[NL802154_ATTR_PAGE], wpan_phy->current_page); /* Scan all supported channels by default */ request->channels = nla_get_u32_default(info->attrs[NL802154_ATTR_SCAN_CHANNELS], wpan_phy->supported.channels[request->page]); /* Use maximum duration order by default */ request->duration = nla_get_u8_default(info->attrs[NL802154_ATTR_SCAN_DURATION], IEEE802154_MAX_SCAN_DURATION); err = rdev_trigger_scan(rdev, request); if (err) { pr_err("Failure starting scanning (%d)\n", err); goto free_request; } return 0; free_request: kfree(request); return err; } static int nl802154_prep_scan_msg(struct sk_buff *msg, struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u32 portid, u32 seq, int flags, u8 cmd, u8 arg) { void *hdr; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_WPAN_PHY, rdev->wpan_phy_idx)) goto nla_put_failure; if (wpan_dev->netdev && nla_put_u32(msg, NL802154_ATTR_IFINDEX, wpan_dev->netdev->ifindex)) goto nla_put_failure; if (nla_put_u64_64bit(msg, NL802154_ATTR_WPAN_DEV, wpan_dev_id(wpan_dev), NL802154_ATTR_PAD)) goto nla_put_failure; if (cmd == NL802154_CMD_SCAN_DONE && nla_put_u8(msg, NL802154_ATTR_SCAN_DONE_REASON, arg)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_send_scan_msg(struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, u8 cmd, u8 arg) { struct sk_buff *msg; int ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; ret = nl802154_prep_scan_msg(msg, rdev, wpan_dev, 0, 0, 0, cmd, arg); if (ret < 0) { nlmsg_free(msg); return ret; } return genlmsg_multicast_netns(&nl802154_fam, wpan_phy_net(&rdev->wpan_phy), msg, 0, NL802154_MCGRP_SCAN, GFP_KERNEL); } int nl802154_scan_started(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev) { struct cfg802154_registered_device *rdev = wpan_phy_to_rdev(wpan_phy); int err; /* Ignore errors when there are no listeners */ err = nl802154_send_scan_msg(rdev, wpan_dev, NL802154_CMD_TRIGGER_SCAN, 0); if (err == -ESRCH) err = 0; return err; } EXPORT_SYMBOL_GPL(nl802154_scan_started); int nl802154_scan_done(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, enum nl802154_scan_done_reasons reason) { struct cfg802154_registered_device *rdev = wpan_phy_to_rdev(wpan_phy); int err; /* Ignore errors when there are no listeners */ err = nl802154_send_scan_msg(rdev, wpan_dev, NL802154_CMD_SCAN_DONE, reason); if (err == -ESRCH) err = 0; return err; } EXPORT_SYMBOL_GPL(nl802154_scan_done); static int nl802154_abort_scan(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; /* Resources are released in the notification helper above */ return rdev_abort_scan(rdev, wpan_dev); } static int nl802154_send_beacons(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct wpan_phy *wpan_phy = &rdev->wpan_phy; struct cfg802154_beacon_request *request; int err; if (wpan_dev->iftype != NL802154_IFTYPE_COORD) { NL_SET_ERR_MSG(info->extack, "Only coordinators can send beacons"); return -EOPNOTSUPP; } if (wpan_dev->pan_id == cpu_to_le16(IEEE802154_PANID_BROADCAST)) { NL_SET_ERR_MSG(info->extack, "Device is not part of any PAN"); return -EPERM; } if (wpan_phy->flags & WPAN_PHY_FLAG_DATAGRAMS_ONLY) { NL_SET_ERR_MSG(info->extack, "PHY only supports datagrams"); return -EOPNOTSUPP; } request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) return -ENOMEM; request->wpan_dev = wpan_dev; request->wpan_phy = wpan_phy; /* Use maximum duration order by default */ request->interval = nla_get_u8_default(info->attrs[NL802154_ATTR_BEACON_INTERVAL], IEEE802154_MAX_SCAN_DURATION); err = rdev_send_beacons(rdev, request); if (err) { pr_err("Failure starting sending beacons (%d)\n", err); goto free_request; } return 0; free_request: kfree(request); return err; } void nl802154_beaconing_done(struct wpan_dev *wpan_dev) { /* NOP */ } EXPORT_SYMBOL_GPL(nl802154_beaconing_done); static int nl802154_stop_beacons(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; /* Resources are released in the notification helper above */ return rdev_stop_beacons(rdev, wpan_dev); } static int nl802154_associate(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev; struct wpan_phy *wpan_phy; struct ieee802154_addr coord; int err; wpan_dev = dev->ieee802154_ptr; wpan_phy = &rdev->wpan_phy; if (wpan_phy->flags & WPAN_PHY_FLAG_DATAGRAMS_ONLY) { NL_SET_ERR_MSG(info->extack, "PHY only supports datagrams"); return -EOPNOTSUPP; } if (!info->attrs[NL802154_ATTR_PAN_ID] || !info->attrs[NL802154_ATTR_EXTENDED_ADDR]) return -EINVAL; coord.pan_id = nla_get_le16(info->attrs[NL802154_ATTR_PAN_ID]); coord.mode = IEEE802154_ADDR_LONG; coord.extended_addr = nla_get_le64(info->attrs[NL802154_ATTR_EXTENDED_ADDR]); mutex_lock(&wpan_dev->association_lock); err = rdev_associate(rdev, wpan_dev, &coord); mutex_unlock(&wpan_dev->association_lock); if (err) pr_err("Association with PAN ID 0x%x failed (%d)\n", le16_to_cpu(coord.pan_id), err); return err; } static int nl802154_disassociate(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct wpan_phy *wpan_phy = &rdev->wpan_phy; struct ieee802154_addr target; if (wpan_phy->flags & WPAN_PHY_FLAG_DATAGRAMS_ONLY) { NL_SET_ERR_MSG(info->extack, "PHY only supports datagrams"); return -EOPNOTSUPP; } target.pan_id = wpan_dev->pan_id; if (info->attrs[NL802154_ATTR_EXTENDED_ADDR]) { target.mode = IEEE802154_ADDR_LONG; target.extended_addr = nla_get_le64(info->attrs[NL802154_ATTR_EXTENDED_ADDR]); } else if (info->attrs[NL802154_ATTR_SHORT_ADDR]) { target.mode = IEEE802154_ADDR_SHORT; target.short_addr = nla_get_le16(info->attrs[NL802154_ATTR_SHORT_ADDR]); } else { NL_SET_ERR_MSG(info->extack, "Device address is missing"); return -EINVAL; } mutex_lock(&wpan_dev->association_lock); rdev_disassociate(rdev, wpan_dev, &target); mutex_unlock(&wpan_dev->association_lock); return 0; } static int nl802154_set_max_associations(struct sk_buff *skb, struct genl_info *info) { struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; unsigned int max_assoc; if (!info->attrs[NL802154_ATTR_MAX_ASSOCIATIONS]) { NL_SET_ERR_MSG(info->extack, "No maximum number of association given"); return -EINVAL; } max_assoc = nla_get_u32(info->attrs[NL802154_ATTR_MAX_ASSOCIATIONS]); mutex_lock(&wpan_dev->association_lock); cfg802154_set_max_associations(wpan_dev, max_assoc); mutex_unlock(&wpan_dev->association_lock); return 0; } static int nl802154_send_peer_info(struct sk_buff *msg, struct netlink_callback *cb, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct wpan_dev *wpan_dev, struct ieee802154_pan_device *peer, enum nl802154_peer_type type) { struct nlattr *nla; void *hdr; ASSERT_RTNL(); hdr = nl802154hdr_put(msg, NETLINK_CB(cb->skb).portid, seq, flags, NL802154_CMD_LIST_ASSOCIATIONS); if (!hdr) return -ENOBUFS; genl_dump_check_consistent(cb, hdr); nla = nla_nest_start_noflag(msg, NL802154_ATTR_PEER); if (!nla) goto nla_put_failure; if (nla_put_u8(msg, NL802154_DEV_ADDR_ATTR_PEER_TYPE, type)) goto nla_put_failure; if (nla_put_u8(msg, NL802154_DEV_ADDR_ATTR_MODE, peer->mode)) goto nla_put_failure; if (nla_put(msg, NL802154_DEV_ADDR_ATTR_SHORT, IEEE802154_SHORT_ADDR_LEN, &peer->short_addr)) goto nla_put_failure; if (nla_put(msg, NL802154_DEV_ADDR_ATTR_EXTENDED, IEEE802154_EXTENDED_ADDR_LEN, &peer->extended_addr)) goto nla_put_failure; nla_nest_end(msg, nla); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_list_associations(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg802154_registered_device *rdev; struct ieee802154_pan_device *child; struct wpan_dev *wpan_dev; int err; err = nl802154_prepare_wpan_dev_dump(skb, cb, &rdev, &wpan_dev); if (err) return err; mutex_lock(&wpan_dev->association_lock); if (cb->args[2]) goto out; if (wpan_dev->parent) { err = nl802154_send_peer_info(skb, cb, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev, wpan_dev->parent, NL802154_PEER_TYPE_PARENT); if (err < 0) goto out_err; } list_for_each_entry(child, &wpan_dev->children, node) { err = nl802154_send_peer_info(skb, cb, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev, child, NL802154_PEER_TYPE_CHILD); if (err < 0) goto out_err; } cb->args[2] = 1; out: err = skb->len; out_err: mutex_unlock(&wpan_dev->association_lock); nl802154_finish_wpan_dev_dump(rdev); return err; } #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL static const struct nla_policy nl802154_dev_addr_policy[NL802154_DEV_ADDR_ATTR_MAX + 1] = { [NL802154_DEV_ADDR_ATTR_PAN_ID] = { .type = NLA_U16 }, [NL802154_DEV_ADDR_ATTR_MODE] = { .type = NLA_U32 }, [NL802154_DEV_ADDR_ATTR_SHORT] = { .type = NLA_U16 }, [NL802154_DEV_ADDR_ATTR_EXTENDED] = { .type = NLA_U64 }, }; static int ieee802154_llsec_parse_dev_addr(struct nlattr *nla, struct ieee802154_addr *addr) { struct nlattr *attrs[NL802154_DEV_ADDR_ATTR_MAX + 1]; if (!nla || nla_parse_nested_deprecated(attrs, NL802154_DEV_ADDR_ATTR_MAX, nla, nl802154_dev_addr_policy, NULL)) return -EINVAL; if (!attrs[NL802154_DEV_ADDR_ATTR_PAN_ID] || !attrs[NL802154_DEV_ADDR_ATTR_MODE]) return -EINVAL; addr->pan_id = nla_get_le16(attrs[NL802154_DEV_ADDR_ATTR_PAN_ID]); addr->mode = nla_get_u32(attrs[NL802154_DEV_ADDR_ATTR_MODE]); switch (addr->mode) { case NL802154_DEV_ADDR_SHORT: if (!attrs[NL802154_DEV_ADDR_ATTR_SHORT]) return -EINVAL; addr->short_addr = nla_get_le16(attrs[NL802154_DEV_ADDR_ATTR_SHORT]); break; case NL802154_DEV_ADDR_EXTENDED: if (!attrs[NL802154_DEV_ADDR_ATTR_EXTENDED]) return -EINVAL; addr->extended_addr = nla_get_le64(attrs[NL802154_DEV_ADDR_ATTR_EXTENDED]); break; default: return -EINVAL; } return 0; } static const struct nla_policy nl802154_key_id_policy[NL802154_KEY_ID_ATTR_MAX + 1] = { [NL802154_KEY_ID_ATTR_MODE] = { .type = NLA_U32 }, [NL802154_KEY_ID_ATTR_INDEX] = { .type = NLA_U8 }, [NL802154_KEY_ID_ATTR_IMPLICIT] = { .type = NLA_NESTED }, [NL802154_KEY_ID_ATTR_SOURCE_SHORT] = { .type = NLA_U32 }, [NL802154_KEY_ID_ATTR_SOURCE_EXTENDED] = { .type = NLA_U64 }, }; static int ieee802154_llsec_parse_key_id(struct nlattr *nla, struct ieee802154_llsec_key_id *desc) { struct nlattr *attrs[NL802154_KEY_ID_ATTR_MAX + 1]; if (!nla || nla_parse_nested_deprecated(attrs, NL802154_KEY_ID_ATTR_MAX, nla, nl802154_key_id_policy, NULL)) return -EINVAL; if (!attrs[NL802154_KEY_ID_ATTR_MODE]) return -EINVAL; desc->mode = nla_get_u32(attrs[NL802154_KEY_ID_ATTR_MODE]); switch (desc->mode) { case NL802154_KEY_ID_MODE_IMPLICIT: if (!attrs[NL802154_KEY_ID_ATTR_IMPLICIT]) return -EINVAL; if (ieee802154_llsec_parse_dev_addr(attrs[NL802154_KEY_ID_ATTR_IMPLICIT], &desc->device_addr) < 0) return -EINVAL; break; case NL802154_KEY_ID_MODE_INDEX: break; case NL802154_KEY_ID_MODE_INDEX_SHORT: if (!attrs[NL802154_KEY_ID_ATTR_SOURCE_SHORT]) return -EINVAL; desc->short_source = nla_get_le32(attrs[NL802154_KEY_ID_ATTR_SOURCE_SHORT]); break; case NL802154_KEY_ID_MODE_INDEX_EXTENDED: if (!attrs[NL802154_KEY_ID_ATTR_SOURCE_EXTENDED]) return -EINVAL; desc->extended_source = nla_get_le64(attrs[NL802154_KEY_ID_ATTR_SOURCE_EXTENDED]); break; default: return -EINVAL; } if (desc->mode != NL802154_KEY_ID_MODE_IMPLICIT) { if (!attrs[NL802154_KEY_ID_ATTR_INDEX]) return -EINVAL; /* TODO change id to idx */ desc->id = nla_get_u8(attrs[NL802154_KEY_ID_ATTR_INDEX]); } return 0; } static int nl802154_set_llsec_params(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct ieee802154_llsec_params params; u32 changed = 0; int ret; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (info->attrs[NL802154_ATTR_SEC_ENABLED]) { u8 enabled; enabled = nla_get_u8(info->attrs[NL802154_ATTR_SEC_ENABLED]); if (enabled != 0 && enabled != 1) return -EINVAL; params.enabled = nla_get_u8(info->attrs[NL802154_ATTR_SEC_ENABLED]); changed |= IEEE802154_LLSEC_PARAM_ENABLED; } if (info->attrs[NL802154_ATTR_SEC_OUT_KEY_ID]) { ret = ieee802154_llsec_parse_key_id(info->attrs[NL802154_ATTR_SEC_OUT_KEY_ID], ¶ms.out_key); if (ret < 0) return ret; changed |= IEEE802154_LLSEC_PARAM_OUT_KEY; } if (info->attrs[NL802154_ATTR_SEC_OUT_LEVEL]) { params.out_level = nla_get_u32(info->attrs[NL802154_ATTR_SEC_OUT_LEVEL]); if (params.out_level > NL802154_SECLEVEL_MAX) return -EINVAL; changed |= IEEE802154_LLSEC_PARAM_OUT_LEVEL; } if (info->attrs[NL802154_ATTR_SEC_FRAME_COUNTER]) { params.frame_counter = nla_get_be32(info->attrs[NL802154_ATTR_SEC_FRAME_COUNTER]); changed |= IEEE802154_LLSEC_PARAM_FRAME_COUNTER; } return rdev_set_llsec_params(rdev, wpan_dev, ¶ms, changed); } static int nl802154_send_key(struct sk_buff *msg, u32 cmd, u32 portid, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct net_device *dev, const struct ieee802154_llsec_key_entry *key) { void *hdr; u32 commands[NL802154_CMD_FRAME_NR_IDS / 32]; struct nlattr *nl_key, *nl_key_id; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; nl_key = nla_nest_start_noflag(msg, NL802154_ATTR_SEC_KEY); if (!nl_key) goto nla_put_failure; nl_key_id = nla_nest_start_noflag(msg, NL802154_KEY_ATTR_ID); if (!nl_key_id) goto nla_put_failure; if (ieee802154_llsec_send_key_id(msg, &key->id) < 0) goto nla_put_failure; nla_nest_end(msg, nl_key_id); if (nla_put_u8(msg, NL802154_KEY_ATTR_USAGE_FRAMES, key->key->frame_types)) goto nla_put_failure; if (key->key->frame_types & BIT(NL802154_FRAME_CMD)) { /* TODO for each nested */ memset(commands, 0, sizeof(commands)); commands[7] = key->key->cmd_frame_ids; if (nla_put(msg, NL802154_KEY_ATTR_USAGE_CMDS, sizeof(commands), commands)) goto nla_put_failure; } if (nla_put(msg, NL802154_KEY_ATTR_BYTES, NL802154_KEY_SIZE, key->key->key)) goto nla_put_failure; nla_nest_end(msg, nl_key); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_dump_llsec_key(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg802154_registered_device *rdev = NULL; struct ieee802154_llsec_key_entry *key; struct ieee802154_llsec_table *table; struct wpan_dev *wpan_dev; int err; err = nl802154_prepare_wpan_dev_dump(skb, cb, &rdev, &wpan_dev); if (err) return err; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) { err = skb->len; goto out_err; } if (!wpan_dev->netdev) { err = -EINVAL; goto out_err; } rdev_lock_llsec_table(rdev, wpan_dev); rdev_get_llsec_table(rdev, wpan_dev, &table); /* TODO make it like station dump */ if (cb->args[2]) goto out; list_for_each_entry(key, &table->keys, list) { if (nl802154_send_key(skb, NL802154_CMD_NEW_SEC_KEY, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev->netdev, key) < 0) { /* TODO */ err = -EIO; rdev_unlock_llsec_table(rdev, wpan_dev); goto out_err; } } cb->args[2] = 1; out: rdev_unlock_llsec_table(rdev, wpan_dev); err = skb->len; out_err: nl802154_finish_wpan_dev_dump(rdev); return err; } static const struct nla_policy nl802154_key_policy[NL802154_KEY_ATTR_MAX + 1] = { [NL802154_KEY_ATTR_ID] = { NLA_NESTED }, /* TODO handle it as for_each_nested and NLA_FLAG? */ [NL802154_KEY_ATTR_USAGE_FRAMES] = { NLA_U8 }, /* TODO handle it as for_each_nested, not static array? */ [NL802154_KEY_ATTR_USAGE_CMDS] = { .len = NL802154_CMD_FRAME_NR_IDS / 8 }, [NL802154_KEY_ATTR_BYTES] = { .len = NL802154_KEY_SIZE }, }; static int nl802154_add_llsec_key(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct nlattr *attrs[NL802154_KEY_ATTR_MAX + 1]; struct ieee802154_llsec_key key = { }; struct ieee802154_llsec_key_id id = { }; u32 commands[NL802154_CMD_FRAME_NR_IDS / 32] = { }; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_SEC_KEY] || nla_parse_nested_deprecated(attrs, NL802154_KEY_ATTR_MAX, info->attrs[NL802154_ATTR_SEC_KEY], nl802154_key_policy, info->extack)) return -EINVAL; if (!attrs[NL802154_KEY_ATTR_USAGE_FRAMES] || !attrs[NL802154_KEY_ATTR_BYTES]) return -EINVAL; if (ieee802154_llsec_parse_key_id(attrs[NL802154_KEY_ATTR_ID], &id) < 0) return -ENOBUFS; key.frame_types = nla_get_u8(attrs[NL802154_KEY_ATTR_USAGE_FRAMES]); if (key.frame_types > BIT(NL802154_FRAME_MAX) || ((key.frame_types & BIT(NL802154_FRAME_CMD)) && !attrs[NL802154_KEY_ATTR_USAGE_CMDS])) return -EINVAL; if (attrs[NL802154_KEY_ATTR_USAGE_CMDS]) { /* TODO for each nested */ nla_memcpy(commands, attrs[NL802154_KEY_ATTR_USAGE_CMDS], NL802154_CMD_FRAME_NR_IDS / 8); /* TODO understand the -EINVAL logic here? last condition */ if (commands[0] || commands[1] || commands[2] || commands[3] || commands[4] || commands[5] || commands[6] || commands[7] > BIT(NL802154_CMD_FRAME_MAX)) return -EINVAL; key.cmd_frame_ids = commands[7]; } else { key.cmd_frame_ids = 0; } nla_memcpy(key.key, attrs[NL802154_KEY_ATTR_BYTES], NL802154_KEY_SIZE); if (ieee802154_llsec_parse_key_id(attrs[NL802154_KEY_ATTR_ID], &id) < 0) return -ENOBUFS; return rdev_add_llsec_key(rdev, wpan_dev, &id, &key); } static int nl802154_del_llsec_key(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct nlattr *attrs[NL802154_KEY_ATTR_MAX + 1]; struct ieee802154_llsec_key_id id; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_SEC_KEY] || nla_parse_nested_deprecated(attrs, NL802154_KEY_ATTR_MAX, info->attrs[NL802154_ATTR_SEC_KEY], nl802154_key_policy, info->extack)) return -EINVAL; if (ieee802154_llsec_parse_key_id(attrs[NL802154_KEY_ATTR_ID], &id) < 0) return -ENOBUFS; return rdev_del_llsec_key(rdev, wpan_dev, &id); } static int nl802154_send_device(struct sk_buff *msg, u32 cmd, u32 portid, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct net_device *dev, const struct ieee802154_llsec_device *dev_desc) { void *hdr; struct nlattr *nl_device; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; nl_device = nla_nest_start_noflag(msg, NL802154_ATTR_SEC_DEVICE); if (!nl_device) goto nla_put_failure; if (nla_put_u32(msg, NL802154_DEV_ATTR_FRAME_COUNTER, dev_desc->frame_counter) || nla_put_le16(msg, NL802154_DEV_ATTR_PAN_ID, dev_desc->pan_id) || nla_put_le16(msg, NL802154_DEV_ATTR_SHORT_ADDR, dev_desc->short_addr) || nla_put_le64(msg, NL802154_DEV_ATTR_EXTENDED_ADDR, dev_desc->hwaddr, NL802154_DEV_ATTR_PAD) || nla_put_u8(msg, NL802154_DEV_ATTR_SECLEVEL_EXEMPT, dev_desc->seclevel_exempt) || nla_put_u32(msg, NL802154_DEV_ATTR_KEY_MODE, dev_desc->key_mode)) goto nla_put_failure; nla_nest_end(msg, nl_device); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_dump_llsec_dev(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg802154_registered_device *rdev = NULL; struct ieee802154_llsec_device *dev; struct ieee802154_llsec_table *table; struct wpan_dev *wpan_dev; int err; err = nl802154_prepare_wpan_dev_dump(skb, cb, &rdev, &wpan_dev); if (err) return err; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) { err = skb->len; goto out_err; } if (!wpan_dev->netdev) { err = -EINVAL; goto out_err; } rdev_lock_llsec_table(rdev, wpan_dev); rdev_get_llsec_table(rdev, wpan_dev, &table); /* TODO make it like station dump */ if (cb->args[2]) goto out; list_for_each_entry(dev, &table->devices, list) { if (nl802154_send_device(skb, NL802154_CMD_NEW_SEC_LEVEL, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev->netdev, dev) < 0) { /* TODO */ err = -EIO; rdev_unlock_llsec_table(rdev, wpan_dev); goto out_err; } } cb->args[2] = 1; out: rdev_unlock_llsec_table(rdev, wpan_dev); err = skb->len; out_err: nl802154_finish_wpan_dev_dump(rdev); return err; } static const struct nla_policy nl802154_dev_policy[NL802154_DEV_ATTR_MAX + 1] = { [NL802154_DEV_ATTR_FRAME_COUNTER] = { NLA_U32 }, [NL802154_DEV_ATTR_PAN_ID] = { .type = NLA_U16 }, [NL802154_DEV_ATTR_SHORT_ADDR] = { .type = NLA_U16 }, [NL802154_DEV_ATTR_EXTENDED_ADDR] = { .type = NLA_U64 }, [NL802154_DEV_ATTR_SECLEVEL_EXEMPT] = { NLA_U8 }, [NL802154_DEV_ATTR_KEY_MODE] = { NLA_U32 }, }; static int ieee802154_llsec_parse_device(struct nlattr *nla, struct ieee802154_llsec_device *dev) { struct nlattr *attrs[NL802154_DEV_ATTR_MAX + 1]; if (!nla || nla_parse_nested_deprecated(attrs, NL802154_DEV_ATTR_MAX, nla, nl802154_dev_policy, NULL)) return -EINVAL; memset(dev, 0, sizeof(*dev)); if (!attrs[NL802154_DEV_ATTR_FRAME_COUNTER] || !attrs[NL802154_DEV_ATTR_PAN_ID] || !attrs[NL802154_DEV_ATTR_SHORT_ADDR] || !attrs[NL802154_DEV_ATTR_EXTENDED_ADDR] || !attrs[NL802154_DEV_ATTR_SECLEVEL_EXEMPT] || !attrs[NL802154_DEV_ATTR_KEY_MODE]) return -EINVAL; /* TODO be32 */ dev->frame_counter = nla_get_u32(attrs[NL802154_DEV_ATTR_FRAME_COUNTER]); dev->pan_id = nla_get_le16(attrs[NL802154_DEV_ATTR_PAN_ID]); dev->short_addr = nla_get_le16(attrs[NL802154_DEV_ATTR_SHORT_ADDR]); /* TODO rename hwaddr to extended_addr */ dev->hwaddr = nla_get_le64(attrs[NL802154_DEV_ATTR_EXTENDED_ADDR]); dev->seclevel_exempt = nla_get_u8(attrs[NL802154_DEV_ATTR_SECLEVEL_EXEMPT]); dev->key_mode = nla_get_u32(attrs[NL802154_DEV_ATTR_KEY_MODE]); if (dev->key_mode > NL802154_DEVKEY_MAX || (dev->seclevel_exempt != 0 && dev->seclevel_exempt != 1)) return -EINVAL; return 0; } static int nl802154_add_llsec_dev(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct ieee802154_llsec_device dev_desc; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (ieee802154_llsec_parse_device(info->attrs[NL802154_ATTR_SEC_DEVICE], &dev_desc) < 0) return -EINVAL; return rdev_add_device(rdev, wpan_dev, &dev_desc); } static int nl802154_del_llsec_dev(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct nlattr *attrs[NL802154_DEV_ATTR_MAX + 1]; __le64 extended_addr; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_SEC_DEVICE] || nla_parse_nested_deprecated(attrs, NL802154_DEV_ATTR_MAX, info->attrs[NL802154_ATTR_SEC_DEVICE], nl802154_dev_policy, info->extack)) return -EINVAL; if (!attrs[NL802154_DEV_ATTR_EXTENDED_ADDR]) return -EINVAL; extended_addr = nla_get_le64(attrs[NL802154_DEV_ATTR_EXTENDED_ADDR]); return rdev_del_device(rdev, wpan_dev, extended_addr); } static int nl802154_send_devkey(struct sk_buff *msg, u32 cmd, u32 portid, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct net_device *dev, __le64 extended_addr, const struct ieee802154_llsec_device_key *devkey) { void *hdr; struct nlattr *nl_devkey, *nl_key_id; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; nl_devkey = nla_nest_start_noflag(msg, NL802154_ATTR_SEC_DEVKEY); if (!nl_devkey) goto nla_put_failure; if (nla_put_le64(msg, NL802154_DEVKEY_ATTR_EXTENDED_ADDR, extended_addr, NL802154_DEVKEY_ATTR_PAD) || nla_put_u32(msg, NL802154_DEVKEY_ATTR_FRAME_COUNTER, devkey->frame_counter)) goto nla_put_failure; nl_key_id = nla_nest_start_noflag(msg, NL802154_DEVKEY_ATTR_ID); if (!nl_key_id) goto nla_put_failure; if (ieee802154_llsec_send_key_id(msg, &devkey->key_id) < 0) goto nla_put_failure; nla_nest_end(msg, nl_key_id); nla_nest_end(msg, nl_devkey); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_dump_llsec_devkey(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg802154_registered_device *rdev = NULL; struct ieee802154_llsec_device_key *kpos; struct ieee802154_llsec_device *dpos; struct ieee802154_llsec_table *table; struct wpan_dev *wpan_dev; int err; err = nl802154_prepare_wpan_dev_dump(skb, cb, &rdev, &wpan_dev); if (err) return err; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) { err = skb->len; goto out_err; } if (!wpan_dev->netdev) { err = -EINVAL; goto out_err; } rdev_lock_llsec_table(rdev, wpan_dev); rdev_get_llsec_table(rdev, wpan_dev, &table); /* TODO make it like station dump */ if (cb->args[2]) goto out; /* TODO look if remove devkey and do some nested attribute */ list_for_each_entry(dpos, &table->devices, list) { list_for_each_entry(kpos, &dpos->keys, list) { if (nl802154_send_devkey(skb, NL802154_CMD_NEW_SEC_LEVEL, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev->netdev, dpos->hwaddr, kpos) < 0) { /* TODO */ err = -EIO; rdev_unlock_llsec_table(rdev, wpan_dev); goto out_err; } } } cb->args[2] = 1; out: rdev_unlock_llsec_table(rdev, wpan_dev); err = skb->len; out_err: nl802154_finish_wpan_dev_dump(rdev); return err; } static const struct nla_policy nl802154_devkey_policy[NL802154_DEVKEY_ATTR_MAX + 1] = { [NL802154_DEVKEY_ATTR_FRAME_COUNTER] = { NLA_U32 }, [NL802154_DEVKEY_ATTR_EXTENDED_ADDR] = { NLA_U64 }, [NL802154_DEVKEY_ATTR_ID] = { NLA_NESTED }, }; static int nl802154_add_llsec_devkey(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct nlattr *attrs[NL802154_DEVKEY_ATTR_MAX + 1]; struct ieee802154_llsec_device_key key; __le64 extended_addr; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_SEC_DEVKEY] || nla_parse_nested_deprecated(attrs, NL802154_DEVKEY_ATTR_MAX, info->attrs[NL802154_ATTR_SEC_DEVKEY], nl802154_devkey_policy, info->extack) < 0) return -EINVAL; if (!attrs[NL802154_DEVKEY_ATTR_FRAME_COUNTER] || !attrs[NL802154_DEVKEY_ATTR_EXTENDED_ADDR]) return -EINVAL; /* TODO change key.id ? */ if (ieee802154_llsec_parse_key_id(attrs[NL802154_DEVKEY_ATTR_ID], &key.key_id) < 0) return -ENOBUFS; /* TODO be32 */ key.frame_counter = nla_get_u32(attrs[NL802154_DEVKEY_ATTR_FRAME_COUNTER]); /* TODO change naming hwaddr -> extended_addr * check unique identifier short+pan OR extended_addr */ extended_addr = nla_get_le64(attrs[NL802154_DEVKEY_ATTR_EXTENDED_ADDR]); return rdev_add_devkey(rdev, wpan_dev, extended_addr, &key); } static int nl802154_del_llsec_devkey(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct nlattr *attrs[NL802154_DEVKEY_ATTR_MAX + 1]; struct ieee802154_llsec_device_key key; __le64 extended_addr; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (!info->attrs[NL802154_ATTR_SEC_DEVKEY] || nla_parse_nested_deprecated(attrs, NL802154_DEVKEY_ATTR_MAX, info->attrs[NL802154_ATTR_SEC_DEVKEY], nl802154_devkey_policy, info->extack)) return -EINVAL; if (!attrs[NL802154_DEVKEY_ATTR_EXTENDED_ADDR]) return -EINVAL; /* TODO change key.id ? */ if (ieee802154_llsec_parse_key_id(attrs[NL802154_DEVKEY_ATTR_ID], &key.key_id) < 0) return -ENOBUFS; /* TODO change naming hwaddr -> extended_addr * check unique identifier short+pan OR extended_addr */ extended_addr = nla_get_le64(attrs[NL802154_DEVKEY_ATTR_EXTENDED_ADDR]); return rdev_del_devkey(rdev, wpan_dev, extended_addr, &key); } static int nl802154_send_seclevel(struct sk_buff *msg, u32 cmd, u32 portid, u32 seq, int flags, struct cfg802154_registered_device *rdev, struct net_device *dev, const struct ieee802154_llsec_seclevel *sl) { void *hdr; struct nlattr *nl_seclevel; hdr = nl802154hdr_put(msg, portid, seq, flags, cmd); if (!hdr) return -ENOBUFS; if (nla_put_u32(msg, NL802154_ATTR_IFINDEX, dev->ifindex)) goto nla_put_failure; nl_seclevel = nla_nest_start_noflag(msg, NL802154_ATTR_SEC_LEVEL); if (!nl_seclevel) goto nla_put_failure; if (nla_put_u32(msg, NL802154_SECLEVEL_ATTR_FRAME, sl->frame_type) || nla_put_u32(msg, NL802154_SECLEVEL_ATTR_LEVELS, sl->sec_levels) || nla_put_u8(msg, NL802154_SECLEVEL_ATTR_DEV_OVERRIDE, sl->device_override)) goto nla_put_failure; if (sl->frame_type == NL802154_FRAME_CMD) { if (nla_put_u32(msg, NL802154_SECLEVEL_ATTR_CMD_FRAME, sl->cmd_frame_id)) goto nla_put_failure; } nla_nest_end(msg, nl_seclevel); genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static int nl802154_dump_llsec_seclevel(struct sk_buff *skb, struct netlink_callback *cb) { struct cfg802154_registered_device *rdev = NULL; struct ieee802154_llsec_seclevel *sl; struct ieee802154_llsec_table *table; struct wpan_dev *wpan_dev; int err; err = nl802154_prepare_wpan_dev_dump(skb, cb, &rdev, &wpan_dev); if (err) return err; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) { err = skb->len; goto out_err; } if (!wpan_dev->netdev) { err = -EINVAL; goto out_err; } rdev_lock_llsec_table(rdev, wpan_dev); rdev_get_llsec_table(rdev, wpan_dev, &table); /* TODO make it like station dump */ if (cb->args[2]) goto out; list_for_each_entry(sl, &table->security_levels, list) { if (nl802154_send_seclevel(skb, NL802154_CMD_NEW_SEC_LEVEL, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, rdev, wpan_dev->netdev, sl) < 0) { /* TODO */ err = -EIO; rdev_unlock_llsec_table(rdev, wpan_dev); goto out_err; } } cb->args[2] = 1; out: rdev_unlock_llsec_table(rdev, wpan_dev); err = skb->len; out_err: nl802154_finish_wpan_dev_dump(rdev); return err; } static const struct nla_policy nl802154_seclevel_policy[NL802154_SECLEVEL_ATTR_MAX + 1] = { [NL802154_SECLEVEL_ATTR_LEVELS] = { .type = NLA_U8 }, [NL802154_SECLEVEL_ATTR_FRAME] = { .type = NLA_U32 }, [NL802154_SECLEVEL_ATTR_CMD_FRAME] = { .type = NLA_U32 }, [NL802154_SECLEVEL_ATTR_DEV_OVERRIDE] = { .type = NLA_U8 }, }; static int llsec_parse_seclevel(struct nlattr *nla, struct ieee802154_llsec_seclevel *sl) { struct nlattr *attrs[NL802154_SECLEVEL_ATTR_MAX + 1]; if (!nla || nla_parse_nested_deprecated(attrs, NL802154_SECLEVEL_ATTR_MAX, nla, nl802154_seclevel_policy, NULL)) return -EINVAL; memset(sl, 0, sizeof(*sl)); if (!attrs[NL802154_SECLEVEL_ATTR_LEVELS] || !attrs[NL802154_SECLEVEL_ATTR_FRAME] || !attrs[NL802154_SECLEVEL_ATTR_DEV_OVERRIDE]) return -EINVAL; sl->sec_levels = nla_get_u8(attrs[NL802154_SECLEVEL_ATTR_LEVELS]); sl->frame_type = nla_get_u32(attrs[NL802154_SECLEVEL_ATTR_FRAME]); sl->device_override = nla_get_u8(attrs[NL802154_SECLEVEL_ATTR_DEV_OVERRIDE]); if (sl->frame_type > NL802154_FRAME_MAX || (sl->device_override != 0 && sl->device_override != 1)) return -EINVAL; if (sl->frame_type == NL802154_FRAME_CMD) { if (!attrs[NL802154_SECLEVEL_ATTR_CMD_FRAME]) return -EINVAL; sl->cmd_frame_id = nla_get_u32(attrs[NL802154_SECLEVEL_ATTR_CMD_FRAME]); if (sl->cmd_frame_id > NL802154_CMD_FRAME_MAX) return -EINVAL; } return 0; } static int nl802154_add_llsec_seclevel(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct ieee802154_llsec_seclevel sl; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (llsec_parse_seclevel(info->attrs[NL802154_ATTR_SEC_LEVEL], &sl) < 0) return -EINVAL; return rdev_add_seclevel(rdev, wpan_dev, &sl); } static int nl802154_del_llsec_seclevel(struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev = info->user_ptr[0]; struct net_device *dev = info->user_ptr[1]; struct wpan_dev *wpan_dev = dev->ieee802154_ptr; struct ieee802154_llsec_seclevel sl; if (wpan_dev->iftype == NL802154_IFTYPE_MONITOR) return -EOPNOTSUPP; if (llsec_parse_seclevel(info->attrs[NL802154_ATTR_SEC_LEVEL], &sl) < 0) return -EINVAL; return rdev_del_seclevel(rdev, wpan_dev, &sl); } #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ #define NL802154_FLAG_NEED_WPAN_PHY 0x01 #define NL802154_FLAG_NEED_NETDEV 0x02 #define NL802154_FLAG_NEED_RTNL 0x04 #define NL802154_FLAG_CHECK_NETDEV_UP 0x08 #define NL802154_FLAG_NEED_WPAN_DEV 0x10 static int nl802154_pre_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { struct cfg802154_registered_device *rdev; struct wpan_dev *wpan_dev; struct net_device *dev; bool rtnl = ops->internal_flags & NL802154_FLAG_NEED_RTNL; if (rtnl) rtnl_lock(); if (ops->internal_flags & NL802154_FLAG_NEED_WPAN_PHY) { rdev = cfg802154_get_dev_from_info(genl_info_net(info), info); if (IS_ERR(rdev)) { if (rtnl) rtnl_unlock(); return PTR_ERR(rdev); } info->user_ptr[0] = rdev; } else if (ops->internal_flags & NL802154_FLAG_NEED_NETDEV || ops->internal_flags & NL802154_FLAG_NEED_WPAN_DEV) { ASSERT_RTNL(); wpan_dev = __cfg802154_wpan_dev_from_attrs(genl_info_net(info), info->attrs); if (IS_ERR(wpan_dev)) { if (rtnl) rtnl_unlock(); return PTR_ERR(wpan_dev); } dev = wpan_dev->netdev; rdev = wpan_phy_to_rdev(wpan_dev->wpan_phy); if (ops->internal_flags & NL802154_FLAG_NEED_NETDEV) { if (!dev) { if (rtnl) rtnl_unlock(); return -EINVAL; } info->user_ptr[1] = dev; } else { info->user_ptr[1] = wpan_dev; } if (dev) { if (ops->internal_flags & NL802154_FLAG_CHECK_NETDEV_UP && !netif_running(dev)) { if (rtnl) rtnl_unlock(); return -ENETDOWN; } dev_hold(dev); } info->user_ptr[0] = rdev; } return 0; } static void nl802154_post_doit(const struct genl_split_ops *ops, struct sk_buff *skb, struct genl_info *info) { if (info->user_ptr[1]) { if (ops->internal_flags & NL802154_FLAG_NEED_WPAN_DEV) { struct wpan_dev *wpan_dev = info->user_ptr[1]; dev_put(wpan_dev->netdev); } else { dev_put(info->user_ptr[1]); } } if (ops->internal_flags & NL802154_FLAG_NEED_RTNL) rtnl_unlock(); } static const struct genl_ops nl802154_ops[] = { { .cmd = NL802154_CMD_GET_WPAN_PHY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP_STRICT, .doit = nl802154_get_wpan_phy, .dumpit = nl802154_dump_wpan_phy, .done = nl802154_dump_wpan_phy_done, /* can be retrieved by unprivileged users */ .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_GET_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_get_interface, .dumpit = nl802154_dump_interface, /* can be retrieved by unprivileged users */ .internal_flags = NL802154_FLAG_NEED_WPAN_DEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_NEW_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_new_interface, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DEL_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_del_interface, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_DEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_CHANNEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_channel, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_CCA_MODE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_cca_mode, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_CCA_ED_LEVEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_cca_ed_level, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_TX_POWER, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_tx_power, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_WPAN_PHY_NETNS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_wpan_phy_netns, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_WPAN_PHY | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_PAN_ID, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_pan_id, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_SHORT_ADDR, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_short_addr, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_BACKOFF_EXPONENT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_backoff_exponent, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_MAX_CSMA_BACKOFFS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_max_csma_backoffs, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_MAX_FRAME_RETRIES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_max_frame_retries, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_LBT_MODE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_lbt_mode, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_ACKREQ_DEFAULT, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_ackreq_default, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_TRIGGER_SCAN, .doit = nl802154_trigger_scan, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_ABORT_SCAN, .doit = nl802154_abort_scan, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SEND_BEACONS, .doit = nl802154_send_beacons, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_STOP_BEACONS, .doit = nl802154_stop_beacons, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_ASSOCIATE, .doit = nl802154_associate, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DISASSOCIATE, .doit = nl802154_disassociate, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_CHECK_NETDEV_UP | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_SET_MAX_ASSOCIATIONS, .doit = nl802154_set_max_associations, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_LIST_ASSOCIATIONS, .dumpit = nl802154_list_associations, /* can be retrieved by unprivileged users */ }, #ifdef CONFIG_IEEE802154_NL802154_EXPERIMENTAL { .cmd = NL802154_CMD_SET_SEC_PARAMS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_set_llsec_params, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_GET_SEC_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP_STRICT, /* TODO .doit by matching key id? */ .dumpit = nl802154_dump_llsec_key, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_NEW_SEC_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_add_llsec_key, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DEL_SEC_KEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_del_llsec_key, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, /* TODO unique identifier must short+pan OR extended_addr */ { .cmd = NL802154_CMD_GET_SEC_DEV, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP_STRICT, /* TODO .doit by matching extended_addr? */ .dumpit = nl802154_dump_llsec_dev, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_NEW_SEC_DEV, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_add_llsec_dev, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DEL_SEC_DEV, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_del_llsec_dev, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, /* TODO remove complete devkey, put it as nested? */ { .cmd = NL802154_CMD_GET_SEC_DEVKEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP_STRICT, /* TODO doit by matching ??? */ .dumpit = nl802154_dump_llsec_devkey, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_NEW_SEC_DEVKEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_add_llsec_devkey, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DEL_SEC_DEVKEY, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_del_llsec_devkey, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_GET_SEC_LEVEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP_STRICT, /* TODO .doit by matching frame_type? */ .dumpit = nl802154_dump_llsec_seclevel, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_NEW_SEC_LEVEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = nl802154_add_llsec_seclevel, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, { .cmd = NL802154_CMD_DEL_SEC_LEVEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, /* TODO match frame_type only? */ .doit = nl802154_del_llsec_seclevel, .flags = GENL_ADMIN_PERM, .internal_flags = NL802154_FLAG_NEED_NETDEV | NL802154_FLAG_NEED_RTNL, }, #endif /* CONFIG_IEEE802154_NL802154_EXPERIMENTAL */ }; static struct genl_family nl802154_fam __ro_after_init = { .name = NL802154_GENL_NAME, /* have users key off the name instead */ .hdrsize = 0, /* no private header */ .version = 1, /* no particular meaning now */ .maxattr = NL802154_ATTR_MAX, .policy = nl802154_policy, .netnsok = true, .pre_doit = nl802154_pre_doit, .post_doit = nl802154_post_doit, .module = THIS_MODULE, .ops = nl802154_ops, .n_ops = ARRAY_SIZE(nl802154_ops), .resv_start_op = NL802154_CMD_DEL_SEC_LEVEL + 1, .mcgrps = nl802154_mcgrps, .n_mcgrps = ARRAY_SIZE(nl802154_mcgrps), }; /* initialisation/exit functions */ int __init nl802154_init(void) { return genl_register_family(&nl802154_fam); } void nl802154_exit(void) { genl_unregister_family(&nl802154_fam); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_H #define _LINUX_WAIT_H /* * Linux wait queue related types and methods */ #include <linux/list.h> #include <linux/stddef.h> #include <linux/spinlock.h> #include <asm/current.h> typedef struct wait_queue_entry wait_queue_entry_t; typedef int (*wait_queue_func_t)(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key); int default_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int flags, void *key); /* wait_queue_entry::flags */ #define WQ_FLAG_EXCLUSIVE 0x01 #define WQ_FLAG_WOKEN 0x02 #define WQ_FLAG_CUSTOM 0x04 #define WQ_FLAG_DONE 0x08 #define WQ_FLAG_PRIORITY 0x10 /* * A single wait-queue entry structure: */ struct wait_queue_entry { unsigned int flags; void *private; wait_queue_func_t func; struct list_head entry; }; struct wait_queue_head { spinlock_t lock; struct list_head head; }; typedef struct wait_queue_head wait_queue_head_t; struct task_struct; /* * Macros for declaration and initialisaton of the datatypes */ #define __WAITQUEUE_INITIALIZER(name, tsk) { \ .private = tsk, \ .func = default_wake_function, \ .entry = { NULL, NULL } } #define DECLARE_WAITQUEUE(name, tsk) \ struct wait_queue_entry name = __WAITQUEUE_INITIALIZER(name, tsk) #define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \ .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ .head = LIST_HEAD_INIT(name.head) } #define DECLARE_WAIT_QUEUE_HEAD(name) \ struct wait_queue_head name = __WAIT_QUEUE_HEAD_INITIALIZER(name) extern void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *); #define init_waitqueue_head(wq_head) \ do { \ static struct lock_class_key __key; \ \ __init_waitqueue_head((wq_head), #wq_head, &__key); \ } while (0) #ifdef CONFIG_LOCKDEP # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \ ({ init_waitqueue_head(&name); name; }) # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \ struct wait_queue_head name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) #else # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name) #endif static inline void init_waitqueue_entry(struct wait_queue_entry *wq_entry, struct task_struct *p) { wq_entry->flags = 0; wq_entry->private = p; wq_entry->func = default_wake_function; } static inline void init_waitqueue_func_entry(struct wait_queue_entry *wq_entry, wait_queue_func_t func) { wq_entry->flags = 0; wq_entry->private = NULL; wq_entry->func = func; } /** * waitqueue_active -- locklessly test for waiters on the queue * @wq_head: the waitqueue to test for waiters * * returns true if the wait list is not empty * * NOTE: this function is lockless and requires care, incorrect usage _will_ * lead to sporadic and non-obvious failure. * * Use either while holding wait_queue_head::lock or when used for wakeups * with an extra smp_mb() like:: * * CPU0 - waker CPU1 - waiter * * for (;;) { * @cond = true; prepare_to_wait(&wq_head, &wait, state); * smp_mb(); // smp_mb() from set_current_state() * if (waitqueue_active(wq_head)) if (@cond) * wake_up(wq_head); break; * schedule(); * } * finish_wait(&wq_head, &wait); * * Because without the explicit smp_mb() it's possible for the * waitqueue_active() load to get hoisted over the @cond store such that we'll * observe an empty wait list while the waiter might not observe @cond. * * Also note that this 'optimization' trades a spin_lock() for an smp_mb(), * which (when the lock is uncontended) are of roughly equal cost. */ static inline int waitqueue_active(struct wait_queue_head *wq_head) { return !list_empty(&wq_head->head); } /** * wq_has_single_sleeper - check if there is only one sleeper * @wq_head: wait queue head * * Returns true of wq_head has only one sleeper on the list. * * Please refer to the comment for waitqueue_active. */ static inline bool wq_has_single_sleeper(struct wait_queue_head *wq_head) { return list_is_singular(&wq_head->head); } /** * wq_has_sleeper - check if there are any waiting processes * @wq_head: wait queue head * * Returns true if wq_head has waiting processes * * Please refer to the comment for waitqueue_active. */ static inline bool wq_has_sleeper(struct wait_queue_head *wq_head) { /* * We need to be sure we are in sync with the * add_wait_queue modifications to the wait queue. * * This memory barrier should be paired with one on the * waiting side. */ smp_mb(); return waitqueue_active(wq_head); } extern void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); extern void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); static inline void __add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { struct list_head *head = &wq_head->head; struct wait_queue_entry *wq; list_for_each_entry(wq, &wq_head->head, entry) { if (!(wq->flags & WQ_FLAG_PRIORITY)) break; head = &wq->entry; } list_add(&wq_entry->entry, head); } /* * Used for wake-one threads: */ static inline void __add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { wq_entry->flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue(wq_head, wq_entry); } static inline void __add_wait_queue_entry_tail(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { list_add_tail(&wq_entry->entry, &wq_head->head); } static inline void __add_wait_queue_entry_tail_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { wq_entry->flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue_entry_tail(wq_head, wq_entry); } static inline void __remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) { list_del(&wq_entry->entry); } int __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr, void *key); void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key); void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr); void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode); void __wake_up_pollfree(struct wait_queue_head *wq_head); #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL) #define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL) #define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL) #define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1) #define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0) #define wake_up_sync(x) __wake_up_sync(x, TASK_NORMAL) #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL) #define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL) #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL) #define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE) /* * Wakeup macros to be used to report events to the targets. */ #define poll_to_key(m) ((void *)(__force uintptr_t)(__poll_t)(m)) #define key_to_poll(m) ((__force __poll_t)(uintptr_t)(void *)(m)) #define wake_up_poll(x, m) \ __wake_up(x, TASK_NORMAL, 1, poll_to_key(m)) #define wake_up_poll_on_current_cpu(x, m) \ __wake_up_on_current_cpu(x, TASK_NORMAL, poll_to_key(m)) #define wake_up_locked_poll(x, m) \ __wake_up_locked_key((x), TASK_NORMAL, poll_to_key(m)) #define wake_up_interruptible_poll(x, m) \ __wake_up(x, TASK_INTERRUPTIBLE, 1, poll_to_key(m)) #define wake_up_interruptible_sync_poll(x, m) \ __wake_up_sync_key((x), TASK_INTERRUPTIBLE, poll_to_key(m)) #define wake_up_interruptible_sync_poll_locked(x, m) \ __wake_up_locked_sync_key((x), TASK_INTERRUPTIBLE, poll_to_key(m)) /** * wake_up_pollfree - signal that a polled waitqueue is going away * @wq_head: the wait queue head * * In the very rare cases where a ->poll() implementation uses a waitqueue whose * lifetime is tied to a task rather than to the 'struct file' being polled, * this function must be called before the waitqueue is freed so that * non-blocking polls (e.g. epoll) are notified that the queue is going away. * * The caller must also RCU-delay the freeing of the wait_queue_head, e.g. via * an explicit synchronize_rcu() or call_rcu(), or via SLAB_TYPESAFE_BY_RCU. */ static inline void wake_up_pollfree(struct wait_queue_head *wq_head) { /* * For performance reasons, we don't always take the queue lock here. * Therefore, we might race with someone removing the last entry from * the queue, and proceed while they still hold the queue lock. * However, rcu_read_lock() is required to be held in such cases, so we * can safely proceed with an RCU-delayed free. */ if (waitqueue_active(wq_head)) __wake_up_pollfree(wq_head); } #define ___wait_cond_timeout(condition) \ ({ \ bool __cond = (condition); \ if (__cond && !__ret) \ __ret = 1; \ __cond || !__ret; \ }) #define ___wait_is_interruptible(state) \ (!__builtin_constant_p(state) || \ (state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) extern void init_wait_entry(struct wait_queue_entry *wq_entry, int flags); /* * The below macro ___wait_event() has an explicit shadow of the __ret * variable when used from the wait_event_*() macros. * * This is so that both can use the ___wait_cond_timeout() construct * to wrap the condition. * * The type inconsistency of the wait_event_*() __ret variable is also * on purpose; we use long where we can return timeout values and int * otherwise. */ #define ___wait_event(wq_head, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_entry __wq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_entry(&__wq_entry, exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(&wq_head, &__wq_entry, state);\ \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(&wq_head, &__wq_entry); \ __out: __ret; \ }) #define __wait_event(wq_head, condition) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) /** * wait_event - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event(wq_head, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_event(wq_head, condition); \ } while (0) #define __io_wait_event(wq_head, condition) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ io_schedule()) /* * io_wait_event() -- like wait_event() but with io_schedule() */ #define io_wait_event(wq_head, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __io_wait_event(wq_head, condition); \ } while (0) #define __wait_event_freezable(wq_head, condition) \ ___wait_event(wq_head, condition, (TASK_INTERRUPTIBLE|TASK_FREEZABLE), \ 0, 0, schedule()) /** * wait_event_freezable - sleep (or freeze) until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute * to system load) until the @condition evaluates to true. The * @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event_freezable(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_freezable(wq_head, condition); \ __ret; \ }) #define __wait_event_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_freezable_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ (TASK_INTERRUPTIBLE|TASK_FREEZABLE), 0, timeout, \ __ret = schedule_timeout(__ret)) /* * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid * increasing load and is freezable. */ #define wait_event_freezable_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_freezable_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 1, 0, \ cmd1; schedule(); cmd2) /* * Just like wait_event_cmd(), except it sets exclusive flag */ #define wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2) \ do { \ if (condition) \ break; \ __wait_event_exclusive_cmd(wq_head, condition, cmd1, cmd2); \ } while (0) #define __wait_event_cmd(wq_head, condition, cmd1, cmd2) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ cmd1; schedule(); cmd2) /** * wait_event_cmd - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @cmd1: the command will be executed before sleep * @cmd2: the command will be executed after sleep * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. */ #define wait_event_cmd(wq_head, condition, cmd1, cmd2) \ do { \ if (condition) \ break; \ __wait_event_cmd(wq_head, condition, cmd1, cmd2); \ } while (0) #define __wait_event_interruptible(wq_head, condition) \ ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) /** * wait_event_interruptible - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_interruptible(wq_head, condition); \ __ret; \ }) #define __wait_event_interruptible_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_INTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was * interrupted by a signal. */ #define wait_event_interruptible_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_interruptible_timeout(wq_head, \ condition, timeout); \ __ret; \ }) #define __wait_event_hrtimeout(wq_head, condition, timeout, state) \ ({ \ int __ret = 0; \ struct hrtimer_sleeper __t; \ \ hrtimer_setup_sleeper_on_stack(&__t, CLOCK_MONOTONIC, \ HRTIMER_MODE_REL); \ if ((timeout) != KTIME_MAX) { \ hrtimer_set_expires_range_ns(&__t.timer, timeout, \ current->timer_slack_ns); \ hrtimer_sleeper_start_expires(&__t, HRTIMER_MODE_REL); \ } \ \ __ret = ___wait_event(wq_head, condition, state, 0, 0, \ if (!__t.task) { \ __ret = -ETIME; \ break; \ } \ schedule()); \ \ hrtimer_cancel(&__t.timer); \ destroy_hrtimer_on_stack(&__t.timer); \ __ret; \ }) /** * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, as a ktime_t * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function returns 0 if @condition became true, or -ETIME if the timeout * elapsed. */ #define wait_event_hrtimeout(wq_head, condition, timeout) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_hrtimeout(wq_head, condition, timeout, \ TASK_UNINTERRUPTIBLE); \ __ret; \ }) /** * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, as a ktime_t * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function returns 0 if @condition became true, -ERESTARTSYS if it was * interrupted by a signal, or -ETIME if the timeout elapsed. */ #define wait_event_interruptible_hrtimeout(wq, condition, timeout) \ ({ \ long __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_hrtimeout(wq, condition, timeout, \ TASK_INTERRUPTIBLE); \ __ret; \ }) #define __wait_event_interruptible_exclusive(wq, condition) \ ___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \ schedule()) #define wait_event_interruptible_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_interruptible_exclusive(wq, condition); \ __ret; \ }) #define __wait_event_killable_exclusive(wq, condition) \ ___wait_event(wq, condition, TASK_KILLABLE, 1, 0, \ schedule()) #define wait_event_killable_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_killable_exclusive(wq, condition); \ __ret; \ }) #define __wait_event_freezable_exclusive(wq, condition) \ ___wait_event(wq, condition, (TASK_INTERRUPTIBLE|TASK_FREEZABLE), 1, 0,\ schedule()) #define wait_event_freezable_exclusive(wq, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_freezable_exclusive(wq, condition); \ __ret; \ }) /** * wait_event_idle - wait for a condition without contributing to system load * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * */ #define wait_event_idle(wq_head, condition) \ do { \ might_sleep(); \ if (!(condition)) \ ___wait_event(wq_head, condition, TASK_IDLE, 0, 0, schedule()); \ } while (0) /** * wait_event_idle_exclusive - wait for a condition with contributing to system load * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. * The @condition is checked each time the waitqueue @wq_head is woken up. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus if other processes wait on the same list, when this * process is woken further processes are not considered. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * */ #define wait_event_idle_exclusive(wq_head, condition) \ do { \ might_sleep(); \ if (!(condition)) \ ___wait_event(wq_head, condition, TASK_IDLE, 1, 0, schedule()); \ } while (0) #define __wait_event_idle_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_IDLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_idle_timeout - sleep without load until a condition becomes true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_idle_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_idle_timeout(wq_head, condition, timeout); \ __ret; \ }) #define __wait_event_idle_exclusive_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_IDLE, 1, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_idle_exclusive_timeout - sleep without load until a condition becomes true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_IDLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus if other processes wait on the same list, when this * process is woken further processes are not considered. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * or the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed. */ #define wait_event_idle_exclusive_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_idle_exclusive_timeout(wq_head, condition, timeout);\ __ret; \ }) extern int do_wait_intr(wait_queue_head_t *, wait_queue_entry_t *); extern int do_wait_intr_irq(wait_queue_head_t *, wait_queue_entry_t *); #define __wait_event_interruptible_locked(wq, condition, exclusive, fn) \ ({ \ int __ret; \ DEFINE_WAIT(__wait); \ if (exclusive) \ __wait.flags |= WQ_FLAG_EXCLUSIVE; \ do { \ __ret = fn(&(wq), &__wait); \ if (__ret) \ break; \ } while (!(condition)); \ __remove_wait_queue(&(wq), &__wait); \ __set_current_state(TASK_RUNNING); \ __ret; \ }) /** * wait_event_interruptible_locked - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock()/spin_unlock() * functions which must match the way they are locked/unlocked outside * of this macro. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_locked(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr)) /** * wait_event_interruptible_locked_irq - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() * functions which must match the way they are locked/unlocked outside * of this macro. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_locked_irq(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 0, do_wait_intr_irq)) /** * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock()/spin_unlock() * functions which must match the way they are locked/unlocked outside * of this macro. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus when other process waits process on the list if this * process is awaken further processes are not considered. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_exclusive_locked(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr)) /** * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true * @wq: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq is woken up. * * It must be called with wq.lock being held. This spinlock is * unlocked while sleeping but @condition testing is done while lock * is held and when this macro exits the lock is held. * * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() * functions which must match the way they are locked/unlocked outside * of this macro. * * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag * set thus when other process waits process on the list if this * process is awaken further processes are not considered. * * wake_up_locked() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_interruptible_exclusive_locked_irq(wq, condition) \ ((condition) \ ? 0 : __wait_event_interruptible_locked(wq, condition, 1, do_wait_intr_irq)) #define __wait_event_killable(wq, condition) \ ___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule()) /** * wait_event_killable - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * * The process is put to sleep (TASK_KILLABLE) until the * @condition evaluates to true or a signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a * signal and 0 if @condition evaluated to true. */ #define wait_event_killable(wq_head, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_killable(wq_head, condition); \ __ret; \ }) #define __wait_event_state(wq, condition, state) \ ___wait_event(wq, condition, state, 0, 0, schedule()) /** * wait_event_state - sleep until a condition gets true * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @state: state to sleep in * * The process is put to sleep (@state) until the @condition evaluates to true * or a signal is received (when allowed by @state). The @condition is checked * each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * The function will return -ERESTARTSYS if it was interrupted by a signal * (when allowed by @state) and 0 if @condition evaluated to true. */ #define wait_event_state(wq_head, condition, state) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_event_state(wq_head, condition, state); \ __ret; \ }) #define __wait_event_killable_timeout(wq_head, condition, timeout) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ TASK_KILLABLE, 0, timeout, \ __ret = schedule_timeout(__ret)) /** * wait_event_killable_timeout - sleep until a condition gets true or a timeout elapses * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_KILLABLE) until the * @condition evaluates to true or a kill signal is received. * The @condition is checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * Returns: * 0 if the @condition evaluated to %false after the @timeout elapsed, * 1 if the @condition evaluated to %true after the @timeout elapsed, * the remaining jiffies (at least 1) if the @condition evaluated * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was * interrupted by a kill signal. * * Only kill signals interrupt this process. */ #define wait_event_killable_timeout(wq_head, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_killable_timeout(wq_head, \ condition, timeout); \ __ret; \ }) #define __wait_event_lock_irq(wq_head, condition, lock, cmd) \ (void)___wait_event(wq_head, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ spin_unlock_irq(&lock); \ cmd; \ schedule(); \ spin_lock_irq(&lock)) /** * wait_event_lock_irq_cmd - sleep until a condition gets true. The * condition is checked under the lock. This * is expected to be called with the lock * taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before cmd * and schedule() and reacquired afterwards. * @cmd: a command which is invoked outside the critical section before * sleep * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before invoking the cmd and going to sleep and is reacquired * afterwards. */ #define wait_event_lock_irq_cmd(wq_head, condition, lock, cmd) \ do { \ if (condition) \ break; \ __wait_event_lock_irq(wq_head, condition, lock, cmd); \ } while (0) /** * wait_event_lock_irq - sleep until a condition gets true. The * condition is checked under the lock. This * is expected to be called with the lock * taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the * @condition evaluates to true. The @condition is checked each time * the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. */ #define wait_event_lock_irq(wq_head, condition, lock) \ do { \ if (condition) \ break; \ __wait_event_lock_irq(wq_head, condition, lock, ); \ } while (0) #define __wait_event_interruptible_lock_irq(wq_head, condition, lock, cmd) \ ___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \ spin_unlock_irq(&lock); \ cmd; \ schedule(); \ spin_lock_irq(&lock)) /** * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true. * The condition is checked under the lock. This is expected to * be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before cmd and * schedule() and reacquired afterwards. * @cmd: a command which is invoked outside the critical section before * sleep * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or a signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before invoking the cmd and going to sleep and is reacquired * afterwards. * * The macro will return -ERESTARTSYS if it was interrupted by a signal * and 0 if @condition evaluated to true. */ #define wait_event_interruptible_lock_irq_cmd(wq_head, condition, lock, cmd) \ ({ \ int __ret = 0; \ if (!(condition)) \ __ret = __wait_event_interruptible_lock_irq(wq_head, \ condition, lock, cmd); \ __ret; \ }) /** * wait_event_interruptible_lock_irq - sleep until a condition gets true. * The condition is checked under the lock. This is expected * to be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. * * The macro will return -ERESTARTSYS if it was interrupted by a signal * and 0 if @condition evaluated to true. */ #define wait_event_interruptible_lock_irq(wq_head, condition, lock) \ ({ \ int __ret = 0; \ if (!(condition)) \ __ret = __wait_event_interruptible_lock_irq(wq_head, \ condition, lock,); \ __ret; \ }) #define __wait_event_lock_irq_timeout(wq_head, condition, lock, timeout, state) \ ___wait_event(wq_head, ___wait_cond_timeout(condition), \ state, 0, timeout, \ spin_unlock_irq(&lock); \ __ret = schedule_timeout(__ret); \ spin_lock_irq(&lock)); /** * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets * true or a timeout elapses. The condition is checked under * the lock. This is expected to be called with the lock taken. * @wq_head: the waitqueue to wait on * @condition: a C expression for the event to wait for * @lock: a locked spinlock_t, which will be released before schedule() * and reacquired afterwards. * @timeout: timeout, in jiffies * * The process is put to sleep (TASK_INTERRUPTIBLE) until the * @condition evaluates to true or signal is received. The @condition is * checked each time the waitqueue @wq_head is woken up. * * wake_up() has to be called after changing any variable that could * change the result of the wait condition. * * This is supposed to be called while holding the lock. The lock is * dropped before going to sleep and is reacquired afterwards. * * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it * was interrupted by a signal, and the remaining jiffies otherwise * if the condition evaluated to true before the timeout elapsed. */ #define wait_event_interruptible_lock_irq_timeout(wq_head, condition, lock, \ timeout) \ ({ \ long __ret = timeout; \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_lock_irq_timeout( \ wq_head, condition, lock, timeout, \ TASK_INTERRUPTIBLE); \ __ret; \ }) #define wait_event_lock_irq_timeout(wq_head, condition, lock, timeout) \ ({ \ long __ret = timeout; \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_event_lock_irq_timeout( \ wq_head, condition, lock, timeout, \ TASK_UNINTERRUPTIBLE); \ __ret; \ }) /* * Waitqueues which are removed from the waitqueue_head at wakeup time */ void prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); bool prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state); void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry); long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout); int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_FUNC(name, function) \ struct wait_queue_entry name = { \ .private = current, \ .func = function, \ .entry = LIST_HEAD_INIT((name).entry), \ } #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function) #define init_wait(wait) \ do { \ (wait)->private = current; \ (wait)->func = autoremove_wake_function; \ INIT_LIST_HEAD(&(wait)->entry); \ (wait)->flags = 0; \ } while (0) typedef int (*task_call_f)(struct task_struct *p, void *arg); extern int task_call_func(struct task_struct *p, task_call_f func, void *arg); #endif /* _LINUX_WAIT_H */ |
592 590 82 10 79 80 80 80 586 587 593 562 24 547 82 587 629 510 163 630 468 548 568 468 568 556 38 549 569 213 441 591 592 593 592 593 60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | // SPDX-License-Identifier: GPL-2.0 /* * kernel userspace event delivery * * Copyright (C) 2004 Red Hat, Inc. All rights reserved. * Copyright (C) 2004 Novell, Inc. All rights reserved. * Copyright (C) 2004 IBM, Inc. All rights reserved. * * Authors: * Robert Love <rml@novell.com> * Kay Sievers <kay.sievers@vrfy.org> * Arjan van de Ven <arjanv@redhat.com> * Greg Kroah-Hartman <greg@kroah.com> */ #include <linux/spinlock.h> #include <linux/string.h> #include <linux/kobject.h> #include <linux/export.h> #include <linux/kmod.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/uidgid.h> #include <linux/uuid.h> #include <linux/ctype.h> #include <net/sock.h> #include <net/netlink.h> #include <net/net_namespace.h> atomic64_t uevent_seqnum; #ifdef CONFIG_UEVENT_HELPER char uevent_helper[UEVENT_HELPER_PATH_LEN] = CONFIG_UEVENT_HELPER_PATH; #endif struct uevent_sock { struct list_head list; struct sock *sk; }; #ifdef CONFIG_NET static LIST_HEAD(uevent_sock_list); /* This lock protects uevent_sock_list */ static DEFINE_MUTEX(uevent_sock_mutex); #endif /* the strings here must match the enum in include/linux/kobject.h */ static const char *kobject_actions[] = { [KOBJ_ADD] = "add", [KOBJ_REMOVE] = "remove", [KOBJ_CHANGE] = "change", [KOBJ_MOVE] = "move", [KOBJ_ONLINE] = "online", [KOBJ_OFFLINE] = "offline", [KOBJ_BIND] = "bind", [KOBJ_UNBIND] = "unbind", }; static int kobject_action_type(const char *buf, size_t count, enum kobject_action *type, const char **args) { enum kobject_action action; size_t count_first; const char *args_start; int ret = -EINVAL; if (count && (buf[count-1] == '\n' || buf[count-1] == '\0')) count--; if (!count) goto out; args_start = strnchr(buf, count, ' '); if (args_start) { count_first = args_start - buf; args_start = args_start + 1; } else count_first = count; for (action = 0; action < ARRAY_SIZE(kobject_actions); action++) { if (strncmp(kobject_actions[action], buf, count_first) != 0) continue; if (kobject_actions[action][count_first] != '\0') continue; if (args) *args = args_start; *type = action; ret = 0; break; } out: return ret; } static const char *action_arg_word_end(const char *buf, const char *buf_end, char delim) { const char *next = buf; while (next <= buf_end && *next != delim) if (!isalnum(*next++)) return NULL; if (next == buf) return NULL; return next; } static int kobject_action_args(const char *buf, size_t count, struct kobj_uevent_env **ret_env) { struct kobj_uevent_env *env = NULL; const char *next, *buf_end, *key; int key_len; int r = -EINVAL; if (count && (buf[count - 1] == '\n' || buf[count - 1] == '\0')) count--; if (!count) return -EINVAL; env = kzalloc(sizeof(*env), GFP_KERNEL); if (!env) return -ENOMEM; /* first arg is UUID */ if (count < UUID_STRING_LEN || !uuid_is_valid(buf) || add_uevent_var(env, "SYNTH_UUID=%.*s", UUID_STRING_LEN, buf)) goto out; /* * the rest are custom environment variables in KEY=VALUE * format with ' ' delimiter between each KEY=VALUE pair */ next = buf + UUID_STRING_LEN; buf_end = buf + count - 1; while (next <= buf_end) { if (*next != ' ') goto out; /* skip the ' ', key must follow */ key = ++next; if (key > buf_end) goto out; buf = next; next = action_arg_word_end(buf, buf_end, '='); if (!next || next > buf_end || *next != '=') goto out; key_len = next - buf; /* skip the '=', value must follow */ if (++next > buf_end) goto out; buf = next; next = action_arg_word_end(buf, buf_end, ' '); if (!next) goto out; if (add_uevent_var(env, "SYNTH_ARG_%.*s=%.*s", key_len, key, (int) (next - buf), buf)) goto out; } r = 0; out: if (r) kfree(env); else *ret_env = env; return r; } /** * kobject_synth_uevent - send synthetic uevent with arguments * * @kobj: struct kobject for which synthetic uevent is to be generated * @buf: buffer containing action type and action args, newline is ignored * @count: length of buffer * * Returns 0 if kobject_synthetic_uevent() is completed with success or the * corresponding error when it fails. */ int kobject_synth_uevent(struct kobject *kobj, const char *buf, size_t count) { char *no_uuid_envp[] = { "SYNTH_UUID=0", NULL }; enum kobject_action action; const char *action_args; struct kobj_uevent_env *env; const char *msg = NULL, *devpath; int r; r = kobject_action_type(buf, count, &action, &action_args); if (r) { msg = "unknown uevent action string"; goto out; } if (!action_args) { r = kobject_uevent_env(kobj, action, no_uuid_envp); goto out; } r = kobject_action_args(action_args, count - (action_args - buf), &env); if (r == -EINVAL) { msg = "incorrect uevent action arguments"; goto out; } if (r) goto out; r = kobject_uevent_env(kobj, action, env->envp); kfree(env); out: if (r) { devpath = kobject_get_path(kobj, GFP_KERNEL); pr_warn("synth uevent: %s: %s\n", devpath ?: "unknown device", msg ?: "failed to send uevent"); kfree(devpath); } return r; } #ifdef CONFIG_UEVENT_HELPER static int kobj_usermode_filter(struct kobject *kobj) { const struct kobj_ns_type_operations *ops; ops = kobj_ns_ops(kobj); if (ops) { const void *init_ns, *ns; ns = kobj->ktype->namespace(kobj); init_ns = ops->initial_ns(); return ns != init_ns; } return 0; } static int init_uevent_argv(struct kobj_uevent_env *env, const char *subsystem) { int buffer_size = sizeof(env->buf) - env->buflen; int len; len = strscpy(&env->buf[env->buflen], subsystem, buffer_size); if (len < 0) { pr_warn("%s: insufficient buffer space (%u left) for %s\n", __func__, buffer_size, subsystem); return -ENOMEM; } env->argv[0] = uevent_helper; env->argv[1] = &env->buf[env->buflen]; env->argv[2] = NULL; env->buflen += len + 1; return 0; } static void cleanup_uevent_env(struct subprocess_info *info) { kfree(info->data); } #endif #ifdef CONFIG_NET static struct sk_buff *alloc_uevent_skb(struct kobj_uevent_env *env, const char *action_string, const char *devpath) { struct netlink_skb_parms *parms; struct sk_buff *skb = NULL; char *scratch; size_t len; /* allocate message with maximum possible size */ len = strlen(action_string) + strlen(devpath) + 2; skb = alloc_skb(len + env->buflen, GFP_KERNEL); if (!skb) return NULL; /* add header */ scratch = skb_put(skb, len); sprintf(scratch, "%s@%s", action_string, devpath); skb_put_data(skb, env->buf, env->buflen); parms = &NETLINK_CB(skb); parms->creds.uid = GLOBAL_ROOT_UID; parms->creds.gid = GLOBAL_ROOT_GID; parms->dst_group = 1; parms->portid = 0; return skb; } static int uevent_net_broadcast_untagged(struct kobj_uevent_env *env, const char *action_string, const char *devpath) { struct sk_buff *skb = NULL; struct uevent_sock *ue_sk; int retval = 0; /* send netlink message */ mutex_lock(&uevent_sock_mutex); list_for_each_entry(ue_sk, &uevent_sock_list, list) { struct sock *uevent_sock = ue_sk->sk; if (!netlink_has_listeners(uevent_sock, 1)) continue; if (!skb) { retval = -ENOMEM; skb = alloc_uevent_skb(env, action_string, devpath); if (!skb) continue; } retval = netlink_broadcast(uevent_sock, skb_get(skb), 0, 1, GFP_KERNEL); /* ENOBUFS should be handled in userspace */ if (retval == -ENOBUFS || retval == -ESRCH) retval = 0; } mutex_unlock(&uevent_sock_mutex); consume_skb(skb); return retval; } static int uevent_net_broadcast_tagged(struct sock *usk, struct kobj_uevent_env *env, const char *action_string, const char *devpath) { struct user_namespace *owning_user_ns = sock_net(usk)->user_ns; struct sk_buff *skb = NULL; int ret = 0; skb = alloc_uevent_skb(env, action_string, devpath); if (!skb) return -ENOMEM; /* fix credentials */ if (owning_user_ns != &init_user_ns) { struct netlink_skb_parms *parms = &NETLINK_CB(skb); kuid_t root_uid; kgid_t root_gid; /* fix uid */ root_uid = make_kuid(owning_user_ns, 0); if (uid_valid(root_uid)) parms->creds.uid = root_uid; /* fix gid */ root_gid = make_kgid(owning_user_ns, 0); if (gid_valid(root_gid)) parms->creds.gid = root_gid; } ret = netlink_broadcast(usk, skb, 0, 1, GFP_KERNEL); /* ENOBUFS should be handled in userspace */ if (ret == -ENOBUFS || ret == -ESRCH) ret = 0; return ret; } #endif static int kobject_uevent_net_broadcast(struct kobject *kobj, struct kobj_uevent_env *env, const char *action_string, const char *devpath) { int ret = 0; #ifdef CONFIG_NET const struct kobj_ns_type_operations *ops; const struct net *net = NULL; ops = kobj_ns_ops(kobj); if (!ops && kobj->kset) { struct kobject *ksobj = &kobj->kset->kobj; if (ksobj->parent != NULL) ops = kobj_ns_ops(ksobj->parent); } /* kobjects currently only carry network namespace tags and they * are the only tag relevant here since we want to decide which * network namespaces to broadcast the uevent into. */ if (ops && ops->netlink_ns && kobj->ktype->namespace) if (ops->type == KOBJ_NS_TYPE_NET) net = kobj->ktype->namespace(kobj); if (!net) ret = uevent_net_broadcast_untagged(env, action_string, devpath); else ret = uevent_net_broadcast_tagged(net->uevent_sock->sk, env, action_string, devpath); #endif return ret; } static void zap_modalias_env(struct kobj_uevent_env *env) { static const char modalias_prefix[] = "MODALIAS="; size_t len; int i, j; for (i = 0; i < env->envp_idx;) { if (strncmp(env->envp[i], modalias_prefix, sizeof(modalias_prefix) - 1)) { i++; continue; } len = strlen(env->envp[i]) + 1; if (i != env->envp_idx - 1) { /* @env->envp[] contains pointers to @env->buf[] * with @env->buflen chars, and we are removing * variable MODALIAS here pointed by @env->envp[i] * with length @len as shown below: * * 0 @env->buf[] @env->buflen * --------------------------------------------- * ^ ^ ^ ^ * | |-> @len <-| target block | * @env->envp[0] @env->envp[i] @env->envp[i + 1] * * so the "target block" indicated above is moved * backward by @len, and its right size is * @env->buflen - (@env->envp[i + 1] - @env->envp[0]). */ memmove(env->envp[i], env->envp[i + 1], env->buflen - (env->envp[i + 1] - env->envp[0])); for (j = i; j < env->envp_idx - 1; j++) env->envp[j] = env->envp[j + 1] - len; } env->envp_idx--; env->buflen -= len; } } /** * kobject_uevent_env - send an uevent with environmental data * * @kobj: struct kobject that the action is happening to * @action: action that is happening * @envp_ext: pointer to environmental data * * Returns 0 if kobject_uevent_env() is completed with success or the * corresponding error when it fails. */ int kobject_uevent_env(struct kobject *kobj, enum kobject_action action, char *envp_ext[]) { struct kobj_uevent_env *env; const char *action_string = kobject_actions[action]; const char *devpath = NULL; const char *subsystem; struct kobject *top_kobj; struct kset *kset; const struct kset_uevent_ops *uevent_ops; int i = 0; int retval = 0; /* * Mark "remove" event done regardless of result, for some subsystems * do not want to re-trigger "remove" event via automatic cleanup. */ if (action == KOBJ_REMOVE) kobj->state_remove_uevent_sent = 1; pr_debug("kobject: '%s' (%p): %s\n", kobject_name(kobj), kobj, __func__); /* search the kset we belong to */ top_kobj = kobj; while (!top_kobj->kset && top_kobj->parent) top_kobj = top_kobj->parent; if (!top_kobj->kset) { pr_debug("kobject: '%s' (%p): %s: attempted to send uevent " "without kset!\n", kobject_name(kobj), kobj, __func__); return -EINVAL; } kset = top_kobj->kset; uevent_ops = kset->uevent_ops; /* skip the event, if uevent_suppress is set*/ if (kobj->uevent_suppress) { pr_debug("kobject: '%s' (%p): %s: uevent_suppress " "caused the event to drop!\n", kobject_name(kobj), kobj, __func__); return 0; } /* skip the event, if the filter returns zero. */ if (uevent_ops && uevent_ops->filter) if (!uevent_ops->filter(kobj)) { pr_debug("kobject: '%s' (%p): %s: filter function " "caused the event to drop!\n", kobject_name(kobj), kobj, __func__); return 0; } /* originating subsystem */ if (uevent_ops && uevent_ops->name) subsystem = uevent_ops->name(kobj); else subsystem = kobject_name(&kset->kobj); if (!subsystem) { pr_debug("kobject: '%s' (%p): %s: unset subsystem caused the " "event to drop!\n", kobject_name(kobj), kobj, __func__); return 0; } /* environment buffer */ env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); if (!env) return -ENOMEM; /* complete object path */ devpath = kobject_get_path(kobj, GFP_KERNEL); if (!devpath) { retval = -ENOENT; goto exit; } /* default keys */ retval = add_uevent_var(env, "ACTION=%s", action_string); if (retval) goto exit; retval = add_uevent_var(env, "DEVPATH=%s", devpath); if (retval) goto exit; retval = add_uevent_var(env, "SUBSYSTEM=%s", subsystem); if (retval) goto exit; /* keys passed in from the caller */ if (envp_ext) { for (i = 0; envp_ext[i]; i++) { retval = add_uevent_var(env, "%s", envp_ext[i]); if (retval) goto exit; } } /* let the kset specific function add its stuff */ if (uevent_ops && uevent_ops->uevent) { retval = uevent_ops->uevent(kobj, env); if (retval) { pr_debug("kobject: '%s' (%p): %s: uevent() returned " "%d\n", kobject_name(kobj), kobj, __func__, retval); goto exit; } } switch (action) { case KOBJ_ADD: /* * Mark "add" event so we can make sure we deliver "remove" * event to userspace during automatic cleanup. If * the object did send an "add" event, "remove" will * automatically generated by the core, if not already done * by the caller. */ kobj->state_add_uevent_sent = 1; break; case KOBJ_UNBIND: zap_modalias_env(env); break; default: break; } /* we will send an event, so request a new sequence number */ retval = add_uevent_var(env, "SEQNUM=%llu", atomic64_inc_return(&uevent_seqnum)); if (retval) goto exit; retval = kobject_uevent_net_broadcast(kobj, env, action_string, devpath); #ifdef CONFIG_UEVENT_HELPER /* call uevent_helper, usually only enabled during early boot */ if (uevent_helper[0] && !kobj_usermode_filter(kobj)) { struct subprocess_info *info; retval = add_uevent_var(env, "HOME=/"); if (retval) goto exit; retval = add_uevent_var(env, "PATH=/sbin:/bin:/usr/sbin:/usr/bin"); if (retval) goto exit; retval = init_uevent_argv(env, subsystem); if (retval) goto exit; retval = -ENOMEM; info = call_usermodehelper_setup(env->argv[0], env->argv, env->envp, GFP_KERNEL, NULL, cleanup_uevent_env, env); if (info) { retval = call_usermodehelper_exec(info, UMH_NO_WAIT); env = NULL; /* freed by cleanup_uevent_env */ } } #endif exit: kfree(devpath); kfree(env); return retval; } EXPORT_SYMBOL_GPL(kobject_uevent_env); /** * kobject_uevent - notify userspace by sending an uevent * * @kobj: struct kobject that the action is happening to * @action: action that is happening * * Returns 0 if kobject_uevent() is completed with success or the * corresponding error when it fails. */ int kobject_uevent(struct kobject *kobj, enum kobject_action action) { return kobject_uevent_env(kobj, action, NULL); } EXPORT_SYMBOL_GPL(kobject_uevent); /** * add_uevent_var - add key value string to the environment buffer * @env: environment buffer structure * @format: printf format for the key=value pair * * Returns 0 if environment variable was added successfully or -ENOMEM * if no space was available. */ int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...) { va_list args; int len; if (env->envp_idx >= ARRAY_SIZE(env->envp)) { WARN(1, KERN_ERR "add_uevent_var: too many keys\n"); return -ENOMEM; } va_start(args, format); len = vsnprintf(&env->buf[env->buflen], sizeof(env->buf) - env->buflen, format, args); va_end(args); if (len >= (sizeof(env->buf) - env->buflen)) { WARN(1, KERN_ERR "add_uevent_var: buffer size too small\n"); return -ENOMEM; } env->envp[env->envp_idx++] = &env->buf[env->buflen]; env->buflen += len + 1; return 0; } EXPORT_SYMBOL_GPL(add_uevent_var); #if defined(CONFIG_NET) static int uevent_net_broadcast(struct sock *usk, struct sk_buff *skb, struct netlink_ext_ack *extack) { /* u64 to chars: 2^64 - 1 = 21 chars */ char buf[sizeof("SEQNUM=") + 21]; struct sk_buff *skbc; int ret; /* bump and prepare sequence number */ ret = snprintf(buf, sizeof(buf), "SEQNUM=%llu", atomic64_inc_return(&uevent_seqnum)); if (ret < 0 || (size_t)ret >= sizeof(buf)) return -ENOMEM; ret++; /* verify message does not overflow */ if ((skb->len + ret) > UEVENT_BUFFER_SIZE) { NL_SET_ERR_MSG(extack, "uevent message too big"); return -EINVAL; } /* copy skb and extend to accommodate sequence number */ skbc = skb_copy_expand(skb, 0, ret, GFP_KERNEL); if (!skbc) return -ENOMEM; /* append sequence number */ skb_put_data(skbc, buf, ret); /* remove msg header */ skb_pull(skbc, NLMSG_HDRLEN); /* set portid 0 to inform userspace message comes from kernel */ NETLINK_CB(skbc).portid = 0; NETLINK_CB(skbc).dst_group = 1; ret = netlink_broadcast(usk, skbc, 0, 1, GFP_KERNEL); /* ENOBUFS should be handled in userspace */ if (ret == -ENOBUFS || ret == -ESRCH) ret = 0; return ret; } static int uevent_net_rcv_skb(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net; int ret; if (!nlmsg_data(nlh)) return -EINVAL; /* * Verify that we are allowed to send messages to the target * network namespace. The caller must have CAP_SYS_ADMIN in the * owning user namespace of the target network namespace. */ net = sock_net(NETLINK_CB(skb).sk); if (!netlink_ns_capable(skb, net->user_ns, CAP_SYS_ADMIN)) { NL_SET_ERR_MSG(extack, "missing CAP_SYS_ADMIN capability"); return -EPERM; } ret = uevent_net_broadcast(net->uevent_sock->sk, skb, extack); return ret; } static void uevent_net_rcv(struct sk_buff *skb) { netlink_rcv_skb(skb, &uevent_net_rcv_skb); } static int uevent_net_init(struct net *net) { struct uevent_sock *ue_sk; struct netlink_kernel_cfg cfg = { .groups = 1, .input = uevent_net_rcv, .flags = NL_CFG_F_NONROOT_RECV }; ue_sk = kzalloc(sizeof(*ue_sk), GFP_KERNEL); if (!ue_sk) return -ENOMEM; ue_sk->sk = netlink_kernel_create(net, NETLINK_KOBJECT_UEVENT, &cfg); if (!ue_sk->sk) { pr_err("kobject_uevent: unable to create netlink socket!\n"); kfree(ue_sk); return -ENODEV; } net->uevent_sock = ue_sk; /* Restrict uevents to initial user namespace. */ if (sock_net(ue_sk->sk)->user_ns == &init_user_ns) { mutex_lock(&uevent_sock_mutex); list_add_tail(&ue_sk->list, &uevent_sock_list); mutex_unlock(&uevent_sock_mutex); } return 0; } static void uevent_net_exit(struct net *net) { struct uevent_sock *ue_sk = net->uevent_sock; if (sock_net(ue_sk->sk)->user_ns == &init_user_ns) { mutex_lock(&uevent_sock_mutex); list_del(&ue_sk->list); mutex_unlock(&uevent_sock_mutex); } netlink_kernel_release(ue_sk->sk); kfree(ue_sk); } static struct pernet_operations uevent_net_ops = { .init = uevent_net_init, .exit = uevent_net_exit, }; static int __init kobject_uevent_init(void) { return register_pernet_subsys(&uevent_net_ops); } postcore_initcall(kobject_uevent_init); #endif |
18 4295 524 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM maple_tree #if !defined(_TRACE_MM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MM_H #include <linux/tracepoint.h> struct ma_state; TRACE_EVENT(ma_op, TP_PROTO(const char *fn, struct ma_state *mas), TP_ARGS(fn, mas), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->node = mas->node; ), TP_printk("%s\tNode: %p (%lu %lu) range: %lu-%lu", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last ) ) TRACE_EVENT(ma_read, TP_PROTO(const char *fn, struct ma_state *mas), TP_ARGS(fn, mas), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->node = mas->node; ), TP_printk("%s\tNode: %p (%lu %lu) range: %lu-%lu", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last ) ) TRACE_EVENT(ma_write, TP_PROTO(const char *fn, struct ma_state *mas, unsigned long piv, void *val), TP_ARGS(fn, mas, piv, val), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(unsigned long, piv) __field(void *, val) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->piv = piv; __entry->val = val; __entry->node = mas->node; ), TP_printk("%s\tNode %p (%lu %lu) range:%lu-%lu piv (%lu) val %p", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last, (unsigned long) __entry->piv, (void *) __entry->val ) ) #endif /* _TRACE_MM_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
237 239 2 3 3 145 145 17 6 1 140 140 21 21 20 5 21 3 3 3 2 2 1 10 10 6 5 10 5 6 1 1 14 14 14 3 14 140 139 140 1034 1033 421 140 140 57 58 4 4 2 7 7 14 14 14 14 14 2 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | // SPDX-License-Identifier: GPL-2.0-only /* * File: pn_dev.c * * Phonet network device * * Copyright (C) 2008 Nokia Corporation. * * Authors: Sakari Ailus <sakari.ailus@nokia.com> * Rémi Denis-Courmont */ #include <linux/kernel.h> #include <linux/net.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/phonet.h> #include <linux/proc_fs.h> #include <linux/if_arp.h> #include <net/sock.h> #include <net/netns/generic.h> #include <net/phonet/pn_dev.h> struct phonet_routes { spinlock_t lock; struct net_device __rcu *table[64]; }; struct phonet_net { struct phonet_device_list pndevs; struct phonet_routes routes; }; static unsigned int phonet_net_id __read_mostly; static struct phonet_net *phonet_pernet(struct net *net) { return net_generic(net, phonet_net_id); } struct phonet_device_list *phonet_device_list(struct net *net) { struct phonet_net *pnn = phonet_pernet(net); return &pnn->pndevs; } /* Allocate new Phonet device. */ static struct phonet_device *__phonet_device_alloc(struct net_device *dev) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd = kmalloc(sizeof(*pnd), GFP_ATOMIC); if (pnd == NULL) return NULL; pnd->netdev = dev; bitmap_zero(pnd->addrs, 64); lockdep_assert_held(&pndevs->lock); list_add_rcu(&pnd->list, &pndevs->list); return pnd; } static struct phonet_device *__phonet_get(struct net_device *dev) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd; lockdep_assert_held(&pndevs->lock); list_for_each_entry(pnd, &pndevs->list, list) { if (pnd->netdev == dev) return pnd; } return NULL; } static struct phonet_device *__phonet_get_rcu(struct net_device *dev) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd; list_for_each_entry_rcu(pnd, &pndevs->list, list) { if (pnd->netdev == dev) return pnd; } return NULL; } static void phonet_device_destroy(struct net_device *dev) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd; ASSERT_RTNL(); spin_lock(&pndevs->lock); pnd = __phonet_get(dev); if (pnd) list_del_rcu(&pnd->list); spin_unlock(&pndevs->lock); if (pnd) { struct net *net = dev_net(dev); u32 ifindex = dev->ifindex; u8 addr; for_each_set_bit(addr, pnd->addrs, 64) phonet_address_notify(net, RTM_DELADDR, ifindex, addr); kfree(pnd); } } struct net_device *phonet_device_get(struct net *net) { struct phonet_device_list *pndevs = phonet_device_list(net); struct phonet_device *pnd; struct net_device *dev = NULL; rcu_read_lock(); list_for_each_entry_rcu(pnd, &pndevs->list, list) { dev = pnd->netdev; BUG_ON(!dev); if ((dev->reg_state == NETREG_REGISTERED) && ((pnd->netdev->flags & IFF_UP)) == IFF_UP) break; dev = NULL; } dev_hold(dev); rcu_read_unlock(); return dev; } int phonet_address_add(struct net_device *dev, u8 addr) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd; int err = 0; spin_lock(&pndevs->lock); /* Find or create Phonet-specific device data */ pnd = __phonet_get(dev); if (pnd == NULL) pnd = __phonet_device_alloc(dev); if (unlikely(pnd == NULL)) err = -ENOMEM; else if (test_and_set_bit(addr >> 2, pnd->addrs)) err = -EEXIST; spin_unlock(&pndevs->lock); return err; } int phonet_address_del(struct net_device *dev, u8 addr) { struct phonet_device_list *pndevs = phonet_device_list(dev_net(dev)); struct phonet_device *pnd; int err = 0; spin_lock(&pndevs->lock); pnd = __phonet_get(dev); if (!pnd || !test_and_clear_bit(addr >> 2, pnd->addrs)) { err = -EADDRNOTAVAIL; pnd = NULL; } else if (bitmap_empty(pnd->addrs, 64)) list_del_rcu(&pnd->list); else pnd = NULL; spin_unlock(&pndevs->lock); if (pnd) kfree_rcu(pnd, rcu); return err; } /* Gets a source address toward a destination, through a interface. */ u8 phonet_address_get(struct net_device *dev, u8 daddr) { struct phonet_device *pnd; u8 saddr; rcu_read_lock(); pnd = __phonet_get_rcu(dev); if (pnd) { BUG_ON(bitmap_empty(pnd->addrs, 64)); /* Use same source address as destination, if possible */ if (test_bit(daddr >> 2, pnd->addrs)) saddr = daddr; else saddr = find_first_bit(pnd->addrs, 64) << 2; } else saddr = PN_NO_ADDR; rcu_read_unlock(); if (saddr == PN_NO_ADDR) { /* Fallback to another device */ struct net_device *def_dev; def_dev = phonet_device_get(dev_net(dev)); if (def_dev) { if (def_dev != dev) saddr = phonet_address_get(def_dev, daddr); dev_put(def_dev); } } return saddr; } int phonet_address_lookup(struct net *net, u8 addr) { struct phonet_device_list *pndevs = phonet_device_list(net); struct phonet_device *pnd; int err = -EADDRNOTAVAIL; rcu_read_lock(); list_for_each_entry_rcu(pnd, &pndevs->list, list) { /* Don't allow unregistering devices! */ if ((pnd->netdev->reg_state != NETREG_REGISTERED) || ((pnd->netdev->flags & IFF_UP)) != IFF_UP) continue; if (test_bit(addr >> 2, pnd->addrs)) { err = 0; goto found; } } found: rcu_read_unlock(); return err; } /* automatically configure a Phonet device, if supported */ static int phonet_device_autoconf(struct net_device *dev) { struct if_phonet_req req; int ret; if (!dev->netdev_ops->ndo_siocdevprivate) return -EOPNOTSUPP; ret = dev->netdev_ops->ndo_siocdevprivate(dev, (struct ifreq *)&req, NULL, SIOCPNGAUTOCONF); if (ret < 0) return ret; ASSERT_RTNL(); ret = phonet_address_add(dev, req.ifr_phonet_autoconf.device); if (ret) return ret; phonet_address_notify(dev_net(dev), RTM_NEWADDR, dev->ifindex, req.ifr_phonet_autoconf.device); return 0; } static void phonet_route_autodel(struct net_device *dev) { struct net *net = dev_net(dev); DECLARE_BITMAP(deleted, 64); u32 ifindex = dev->ifindex; struct phonet_net *pnn; unsigned int i; pnn = phonet_pernet(net); /* Remove left-over Phonet routes */ bitmap_zero(deleted, 64); spin_lock(&pnn->routes.lock); for (i = 0; i < 64; i++) { if (rcu_access_pointer(pnn->routes.table[i]) == dev) { RCU_INIT_POINTER(pnn->routes.table[i], NULL); set_bit(i, deleted); } } spin_unlock(&pnn->routes.lock); if (bitmap_empty(deleted, 64)) return; /* short-circuit RCU */ synchronize_rcu(); for_each_set_bit(i, deleted, 64) { rtm_phonet_notify(net, RTM_DELROUTE, ifindex, i); dev_put(dev); } } /* notify Phonet of device events */ static int phonet_device_notify(struct notifier_block *me, unsigned long what, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); switch (what) { case NETDEV_REGISTER: if (dev->type == ARPHRD_PHONET) phonet_device_autoconf(dev); break; case NETDEV_UNREGISTER: phonet_device_destroy(dev); phonet_route_autodel(dev); break; } return 0; } static struct notifier_block phonet_device_notifier = { .notifier_call = phonet_device_notify, .priority = 0, }; /* Per-namespace Phonet devices handling */ static int __net_init phonet_init_net(struct net *net) { struct phonet_net *pnn = phonet_pernet(net); if (!proc_create_net("phonet", 0, net->proc_net, &pn_sock_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; INIT_LIST_HEAD(&pnn->pndevs.list); spin_lock_init(&pnn->pndevs.lock); spin_lock_init(&pnn->routes.lock); return 0; } static void __net_exit phonet_exit_net(struct net *net) { struct phonet_net *pnn = phonet_pernet(net); remove_proc_entry("phonet", net->proc_net); WARN_ON_ONCE(!list_empty(&pnn->pndevs.list)); } static struct pernet_operations phonet_net_ops = { .init = phonet_init_net, .exit = phonet_exit_net, .id = &phonet_net_id, .size = sizeof(struct phonet_net), }; /* Initialize Phonet devices list */ int __init phonet_device_init(void) { int err = register_pernet_subsys(&phonet_net_ops); if (err) return err; proc_create_net("pnresource", 0, init_net.proc_net, &pn_res_seq_ops, sizeof(struct seq_net_private)); register_netdevice_notifier(&phonet_device_notifier); err = phonet_netlink_register(); if (err) phonet_device_exit(); return err; } void phonet_device_exit(void) { rtnl_unregister_all(PF_PHONET); unregister_netdevice_notifier(&phonet_device_notifier); unregister_pernet_subsys(&phonet_net_ops); remove_proc_entry("pnresource", init_net.proc_net); } int phonet_route_add(struct net_device *dev, u8 daddr) { struct phonet_net *pnn = phonet_pernet(dev_net(dev)); struct phonet_routes *routes = &pnn->routes; int err = -EEXIST; daddr = daddr >> 2; spin_lock(&routes->lock); if (routes->table[daddr] == NULL) { rcu_assign_pointer(routes->table[daddr], dev); dev_hold(dev); err = 0; } spin_unlock(&routes->lock); return err; } int phonet_route_del(struct net_device *dev, u8 daddr) { struct phonet_net *pnn = phonet_pernet(dev_net(dev)); struct phonet_routes *routes = &pnn->routes; daddr = daddr >> 2; spin_lock(&routes->lock); if (rcu_access_pointer(routes->table[daddr]) == dev) RCU_INIT_POINTER(routes->table[daddr], NULL); else dev = NULL; spin_unlock(&routes->lock); if (!dev) return -ENOENT; /* Note : our caller must call synchronize_rcu() and dev_put(dev) */ return 0; } struct net_device *phonet_route_get_rcu(struct net *net, u8 daddr) { struct phonet_net *pnn = phonet_pernet(net); struct phonet_routes *routes = &pnn->routes; struct net_device *dev; daddr >>= 2; dev = rcu_dereference(routes->table[daddr]); return dev; } struct net_device *phonet_route_output(struct net *net, u8 daddr) { struct phonet_net *pnn = phonet_pernet(net); struct phonet_routes *routes = &pnn->routes; struct net_device *dev; daddr >>= 2; rcu_read_lock(); dev = rcu_dereference(routes->table[daddr]); dev_hold(dev); rcu_read_unlock(); if (!dev) dev = phonet_device_get(net); /* Default route */ return dev; } |
58 58 58 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | // SPDX-License-Identifier: GPL-2.0-or-later /* * ip_vs_ftp.c: IPVS ftp application module * * Authors: Wensong Zhang <wensong@linuxvirtualserver.org> * * Changes: * * Most code here is taken from ip_masq_ftp.c in kernel 2.2. The difference * is that ip_vs_ftp module handles the reverse direction to ip_masq_ftp. * * IP_MASQ_FTP ftp masquerading module * * Version: @(#)ip_masq_ftp.c 0.04 02/05/96 * * Author: Wouter Gadeyne */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/ctype.h> #include <linux/inet.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/netfilter.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_expect.h> #include <net/netfilter/nf_nat.h> #include <net/netfilter/nf_nat_helper.h> #include <linux/gfp.h> #include <net/protocol.h> #include <net/tcp.h> #include <linux/unaligned.h> #include <net/ip_vs.h> #define SERVER_STRING_PASV "227 " #define CLIENT_STRING_PORT "PORT" #define SERVER_STRING_EPSV "229 " #define CLIENT_STRING_EPRT "EPRT" enum { IP_VS_FTP_ACTIVE = 0, IP_VS_FTP_PORT = 0, IP_VS_FTP_PASV, IP_VS_FTP_EPRT, IP_VS_FTP_EPSV, }; /* * List of ports (up to IP_VS_APP_MAX_PORTS) to be handled by helper * First port is set to the default port. */ static unsigned int ports_count = 1; static unsigned short ports[IP_VS_APP_MAX_PORTS] = {21, 0}; module_param_array(ports, ushort, &ports_count, 0444); MODULE_PARM_DESC(ports, "Ports to monitor for FTP control commands"); static char *ip_vs_ftp_data_ptr(struct sk_buff *skb, struct ip_vs_iphdr *ipvsh) { struct tcphdr *th = (struct tcphdr *)((char *)skb->data + ipvsh->len); if ((th->doff << 2) < sizeof(struct tcphdr)) return NULL; return (char *)th + (th->doff << 2); } static int ip_vs_ftp_init_conn(struct ip_vs_app *app, struct ip_vs_conn *cp) { /* We use connection tracking for the command connection */ cp->flags |= IP_VS_CONN_F_NFCT; return 0; } static int ip_vs_ftp_done_conn(struct ip_vs_app *app, struct ip_vs_conn *cp) { return 0; } /* Get <addr,port> from the string "xxx.xxx.xxx.xxx,ppp,ppp", started * with the "pattern". <addr,port> is in network order. * Parse extended format depending on ext. In this case addr can be pre-set. */ static int ip_vs_ftp_get_addrport(char *data, char *data_limit, const char *pattern, size_t plen, char skip, bool ext, int mode, union nf_inet_addr *addr, __be16 *port, __u16 af, char **start, char **end) { char *s, c; unsigned char p[6]; char edelim; __u16 hport; int i = 0; if (data_limit - data < plen) { /* check if there is partial match */ if (strncasecmp(data, pattern, data_limit - data) == 0) return -1; else return 0; } if (strncasecmp(data, pattern, plen) != 0) { return 0; } s = data + plen; if (skip) { bool found = false; for (;; s++) { if (s == data_limit) return -1; if (!found) { /* "(" is optional for non-extended format, * so catch the start of IPv4 address */ if (!ext && isdigit(*s)) break; if (*s == skip) found = true; } else if (*s != skip) { break; } } } /* Old IPv4-only format? */ if (!ext) { p[0] = 0; for (data = s; ; data++) { if (data == data_limit) return -1; c = *data; if (isdigit(c)) { p[i] = p[i]*10 + c - '0'; } else if (c == ',' && i < 5) { i++; p[i] = 0; } else { /* unexpected character or terminator */ break; } } if (i != 5) return -1; *start = s; *end = data; addr->ip = get_unaligned((__be32 *) p); *port = get_unaligned((__be16 *) (p + 4)); return 1; } if (s == data_limit) return -1; *start = s; edelim = *s++; if (edelim < 33 || edelim > 126) return -1; if (s == data_limit) return -1; if (*s == edelim) { /* Address family is usually missing for EPSV response */ if (mode != IP_VS_FTP_EPSV) return -1; s++; if (s == data_limit) return -1; /* Then address should be missing too */ if (*s != edelim) return -1; /* Caller can pre-set addr, if needed */ s++; } else { const char *ep; /* We allow address only from same family */ if (af == AF_INET6 && *s != '2') return -1; if (af == AF_INET && *s != '1') return -1; s++; if (s == data_limit) return -1; if (*s != edelim) return -1; s++; if (s == data_limit) return -1; if (af == AF_INET6) { if (in6_pton(s, data_limit - s, (u8 *)addr, edelim, &ep) <= 0) return -1; } else { if (in4_pton(s, data_limit - s, (u8 *)addr, edelim, &ep) <= 0) return -1; } s = (char *) ep; if (s == data_limit) return -1; if (*s != edelim) return -1; s++; } for (hport = 0; ; s++) { if (s == data_limit) return -1; if (!isdigit(*s)) break; hport = hport * 10 + *s - '0'; } if (s == data_limit || !hport || *s != edelim) return -1; s++; *end = s; *port = htons(hport); return 1; } /* Look at outgoing ftp packets to catch the response to a PASV/EPSV command * from the server (inside-to-outside). * When we see one, we build a connection entry with the client address, * client port 0 (unknown at the moment), the server address and the * server port. Mark the current connection entry as a control channel * of the new entry. All this work is just to make the data connection * can be scheduled to the right server later. * * The outgoing packet should be something like * "227 Entering Passive Mode (xxx,xxx,xxx,xxx,ppp,ppp)". * xxx,xxx,xxx,xxx is the server address, ppp,ppp is the server port number. * The extended format for EPSV response provides usually only port: * "229 Entering Extended Passive Mode (|||ppp|)" */ static int ip_vs_ftp_out(struct ip_vs_app *app, struct ip_vs_conn *cp, struct sk_buff *skb, int *diff, struct ip_vs_iphdr *ipvsh) { char *data, *data_limit; char *start, *end; union nf_inet_addr from; __be16 port; struct ip_vs_conn *n_cp; char buf[24]; /* xxx.xxx.xxx.xxx,ppp,ppp\000 */ unsigned int buf_len; int ret = 0; enum ip_conntrack_info ctinfo; struct nf_conn *ct; *diff = 0; /* Only useful for established sessions */ if (cp->state != IP_VS_TCP_S_ESTABLISHED) return 1; /* Linear packets are much easier to deal with. */ if (skb_ensure_writable(skb, skb->len)) return 0; if (cp->app_data == (void *) IP_VS_FTP_PASV) { data = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; if (ip_vs_ftp_get_addrport(data, data_limit, SERVER_STRING_PASV, sizeof(SERVER_STRING_PASV)-1, '(', false, IP_VS_FTP_PASV, &from, &port, cp->af, &start, &end) != 1) return 1; IP_VS_DBG(7, "PASV response (%pI4:%u) -> %pI4:%u detected\n", &from.ip, ntohs(port), &cp->caddr.ip, 0); } else if (cp->app_data == (void *) IP_VS_FTP_EPSV) { data = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; /* Usually, data address is not specified but * we support different address, so pre-set it. */ from = cp->daddr; if (ip_vs_ftp_get_addrport(data, data_limit, SERVER_STRING_EPSV, sizeof(SERVER_STRING_EPSV)-1, '(', true, IP_VS_FTP_EPSV, &from, &port, cp->af, &start, &end) != 1) return 1; IP_VS_DBG_BUF(7, "EPSV response (%s:%u) -> %s:%u detected\n", IP_VS_DBG_ADDR(cp->af, &from), ntohs(port), IP_VS_DBG_ADDR(cp->af, &cp->caddr), 0); } else { return 1; } /* Now update or create a connection entry for it */ { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &from, port, &cp->caddr, 0, &p); n_cp = ip_vs_conn_out_get(&p); } if (!n_cp) { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &cp->caddr, 0, &cp->vaddr, port, &p); n_cp = ip_vs_conn_new(&p, cp->af, &from, port, IP_VS_CONN_F_NO_CPORT | IP_VS_CONN_F_NFCT, cp->dest, skb->mark); if (!n_cp) return 0; /* add its controller */ ip_vs_control_add(n_cp, cp); } /* Replace the old passive address with the new one */ if (cp->app_data == (void *) IP_VS_FTP_PASV) { from.ip = n_cp->vaddr.ip; port = n_cp->vport; snprintf(buf, sizeof(buf), "%u,%u,%u,%u,%u,%u", ((unsigned char *)&from.ip)[0], ((unsigned char *)&from.ip)[1], ((unsigned char *)&from.ip)[2], ((unsigned char *)&from.ip)[3], ntohs(port) >> 8, ntohs(port) & 0xFF); } else if (cp->app_data == (void *) IP_VS_FTP_EPSV) { from = n_cp->vaddr; port = n_cp->vport; /* Only port, client will use VIP for the data connection */ snprintf(buf, sizeof(buf), "|||%u|", ntohs(port)); } else { *buf = 0; } buf_len = strlen(buf); ct = nf_ct_get(skb, &ctinfo); if (ct) { bool mangled; /* If mangling fails this function will return 0 * which will cause the packet to be dropped. * Mangling can only fail under memory pressure, * hopefully it will succeed on the retransmitted * packet. */ mangled = nf_nat_mangle_tcp_packet(skb, ct, ctinfo, ipvsh->len, start - data, end - start, buf, buf_len); if (mangled) { ip_vs_nfct_expect_related(skb, ct, n_cp, ipvsh->protocol, 0, 0); if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_UNNECESSARY; /* csum is updated */ ret = 1; } } /* Not setting 'diff' is intentional, otherwise the sequence * would be adjusted twice. */ cp->app_data = (void *) IP_VS_FTP_ACTIVE; ip_vs_tcp_conn_listen(n_cp); ip_vs_conn_put(n_cp); return ret; } /* Look at incoming ftp packets to catch the PASV/PORT/EPRT/EPSV command * (outside-to-inside). * * The incoming packet having the PORT command should be something like * "PORT xxx,xxx,xxx,xxx,ppp,ppp\n". * xxx,xxx,xxx,xxx is the client address, ppp,ppp is the client port number. * In this case, we create a connection entry using the client address and * port, so that the active ftp data connection from the server can reach * the client. * Extended format: * "EPSV\r\n" when client requests server address from same family * "EPSV 1\r\n" when client requests IPv4 server address * "EPSV 2\r\n" when client requests IPv6 server address * "EPSV ALL\r\n" - not supported * EPRT with specified delimiter (ASCII 33..126), "|" by default: * "EPRT |1|IPv4ADDR|PORT|\r\n" when client provides IPv4 addrport * "EPRT |2|IPv6ADDR|PORT|\r\n" when client provides IPv6 addrport */ static int ip_vs_ftp_in(struct ip_vs_app *app, struct ip_vs_conn *cp, struct sk_buff *skb, int *diff, struct ip_vs_iphdr *ipvsh) { char *data, *data_start, *data_limit; char *start, *end; union nf_inet_addr to; __be16 port; struct ip_vs_conn *n_cp; /* no diff required for incoming packets */ *diff = 0; /* Only useful for established sessions */ if (cp->state != IP_VS_TCP_S_ESTABLISHED) return 1; /* Linear packets are much easier to deal with. */ if (skb_ensure_writable(skb, skb->len)) return 0; data = data_start = ip_vs_ftp_data_ptr(skb, ipvsh); data_limit = skb_tail_pointer(skb); if (!data || data >= data_limit) return 1; while (data <= data_limit - 6) { if (cp->af == AF_INET && strncasecmp(data, "PASV\r\n", 6) == 0) { /* Passive mode on */ IP_VS_DBG(7, "got PASV at %td of %td\n", data - data_start, data_limit - data_start); cp->app_data = (void *) IP_VS_FTP_PASV; return 1; } /* EPSV or EPSV<space><net-prt> */ if (strncasecmp(data, "EPSV", 4) == 0 && (data[4] == ' ' || data[4] == '\r')) { if (data[4] == ' ') { char proto = data[5]; if (data > data_limit - 7 || data[6] != '\r') return 1; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6 && proto == '2') { } else #endif if (cp->af == AF_INET && proto == '1') { } else { return 1; } } /* Extended Passive mode on */ IP_VS_DBG(7, "got EPSV at %td of %td\n", data - data_start, data_limit - data_start); cp->app_data = (void *) IP_VS_FTP_EPSV; return 1; } data++; } /* * To support virtual FTP server, the scenerio is as follows: * FTP client ----> Load Balancer ----> FTP server * First detect the port number in the application data, * then create a new connection entry for the coming data * connection. */ if (cp->af == AF_INET && ip_vs_ftp_get_addrport(data_start, data_limit, CLIENT_STRING_PORT, sizeof(CLIENT_STRING_PORT)-1, ' ', false, IP_VS_FTP_PORT, &to, &port, cp->af, &start, &end) == 1) { IP_VS_DBG(7, "PORT %pI4:%u detected\n", &to.ip, ntohs(port)); /* Now update or create a connection entry for it */ IP_VS_DBG(7, "protocol %s %pI4:%u %pI4:%u\n", ip_vs_proto_name(ipvsh->protocol), &to.ip, ntohs(port), &cp->vaddr.ip, ntohs(cp->vport)-1); } else if (ip_vs_ftp_get_addrport(data_start, data_limit, CLIENT_STRING_EPRT, sizeof(CLIENT_STRING_EPRT)-1, ' ', true, IP_VS_FTP_EPRT, &to, &port, cp->af, &start, &end) == 1) { IP_VS_DBG_BUF(7, "EPRT %s:%u detected\n", IP_VS_DBG_ADDR(cp->af, &to), ntohs(port)); /* Now update or create a connection entry for it */ IP_VS_DBG_BUF(7, "protocol %s %s:%u %s:%u\n", ip_vs_proto_name(ipvsh->protocol), IP_VS_DBG_ADDR(cp->af, &to), ntohs(port), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport)-1); } else { return 1; } /* Passive mode off */ cp->app_data = (void *) IP_VS_FTP_ACTIVE; { struct ip_vs_conn_param p; ip_vs_conn_fill_param(cp->ipvs, cp->af, ipvsh->protocol, &to, port, &cp->vaddr, htons(ntohs(cp->vport)-1), &p); n_cp = ip_vs_conn_in_get(&p); if (!n_cp) { n_cp = ip_vs_conn_new(&p, cp->af, &cp->daddr, htons(ntohs(cp->dport)-1), IP_VS_CONN_F_NFCT, cp->dest, skb->mark); if (!n_cp) return 0; /* add its controller */ ip_vs_control_add(n_cp, cp); } } /* * Move tunnel to listen state */ ip_vs_tcp_conn_listen(n_cp); ip_vs_conn_put(n_cp); return 1; } static struct ip_vs_app ip_vs_ftp = { .name = "ftp", .type = IP_VS_APP_TYPE_FTP, .protocol = IPPROTO_TCP, .module = THIS_MODULE, .incs_list = LIST_HEAD_INIT(ip_vs_ftp.incs_list), .init_conn = ip_vs_ftp_init_conn, .done_conn = ip_vs_ftp_done_conn, .bind_conn = NULL, .unbind_conn = NULL, .pkt_out = ip_vs_ftp_out, .pkt_in = ip_vs_ftp_in, }; /* * per netns ip_vs_ftp initialization */ static int __net_init __ip_vs_ftp_init(struct net *net) { int i, ret; struct ip_vs_app *app; struct netns_ipvs *ipvs = net_ipvs(net); if (!ipvs) return -ENOENT; app = register_ip_vs_app(ipvs, &ip_vs_ftp); if (IS_ERR(app)) return PTR_ERR(app); for (i = 0; i < ports_count; i++) { if (!ports[i]) continue; ret = register_ip_vs_app_inc(ipvs, app, app->protocol, ports[i]); if (ret) goto err_unreg; } return 0; err_unreg: unregister_ip_vs_app(ipvs, &ip_vs_ftp); return ret; } /* * netns exit */ static void __ip_vs_ftp_exit(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); if (!ipvs) return; unregister_ip_vs_app(ipvs, &ip_vs_ftp); } static struct pernet_operations ip_vs_ftp_ops = { .init = __ip_vs_ftp_init, .exit = __ip_vs_ftp_exit, }; static int __init ip_vs_ftp_init(void) { /* rcu_barrier() is called by netns on error */ return register_pernet_subsys(&ip_vs_ftp_ops); } /* * ip_vs_ftp finish. */ static void __exit ip_vs_ftp_exit(void) { unregister_pernet_subsys(&ip_vs_ftp_ops); /* rcu_barrier() is called by netns */ } module_init(ip_vs_ftp_init); module_exit(ip_vs_ftp_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ipvs ftp helper"); |
714 712 714 1149 1148 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "callthunks: " fmt #include <linux/debugfs.h> #include <linux/kallsyms.h> #include <linux/memory.h> #include <linux/moduleloader.h> #include <linux/static_call.h> #include <asm/alternative.h> #include <asm/asm-offsets.h> #include <asm/cpu.h> #include <asm/ftrace.h> #include <asm/insn.h> #include <asm/kexec.h> #include <asm/nospec-branch.h> #include <asm/paravirt.h> #include <asm/sections.h> #include <asm/switch_to.h> #include <asm/sync_core.h> #include <asm/text-patching.h> #include <asm/xen/hypercall.h> static int __initdata_or_module debug_callthunks; #define MAX_PATCH_LEN (255-1) #define prdbg(fmt, args...) \ do { \ if (debug_callthunks) \ printk(KERN_DEBUG pr_fmt(fmt), ##args); \ } while(0) static int __init debug_thunks(char *str) { debug_callthunks = 1; return 1; } __setup("debug-callthunks", debug_thunks); #ifdef CONFIG_CALL_THUNKS_DEBUG DEFINE_PER_CPU(u64, __x86_call_count); DEFINE_PER_CPU(u64, __x86_ret_count); DEFINE_PER_CPU(u64, __x86_stuffs_count); DEFINE_PER_CPU(u64, __x86_ctxsw_count); EXPORT_PER_CPU_SYMBOL_GPL(__x86_ctxsw_count); EXPORT_PER_CPU_SYMBOL_GPL(__x86_call_count); #endif extern s32 __call_sites[], __call_sites_end[]; struct core_text { unsigned long base; unsigned long end; const char *name; }; static bool thunks_initialized __ro_after_init; static const struct core_text builtin_coretext = { .base = (unsigned long)_text, .end = (unsigned long)_etext, .name = "builtin", }; asm ( ".pushsection .rodata \n" ".global skl_call_thunk_template \n" "skl_call_thunk_template: \n" __stringify(INCREMENT_CALL_DEPTH)" \n" ".global skl_call_thunk_tail \n" "skl_call_thunk_tail: \n" ".popsection \n" ); extern u8 skl_call_thunk_template[]; extern u8 skl_call_thunk_tail[]; #define SKL_TMPL_SIZE \ ((unsigned int)(skl_call_thunk_tail - skl_call_thunk_template)) extern void error_entry(void); extern void xen_error_entry(void); extern void paranoid_entry(void); static inline bool within_coretext(const struct core_text *ct, void *addr) { unsigned long p = (unsigned long)addr; return ct->base <= p && p < ct->end; } static inline bool within_module_coretext(void *addr) { bool ret = false; #ifdef CONFIG_MODULES struct module *mod; preempt_disable(); mod = __module_address((unsigned long)addr); if (mod && within_module_core((unsigned long)addr, mod)) ret = true; preempt_enable(); #endif return ret; } static bool is_coretext(const struct core_text *ct, void *addr) { if (ct && within_coretext(ct, addr)) return true; if (within_coretext(&builtin_coretext, addr)) return true; return within_module_coretext(addr); } static bool skip_addr(void *dest) { if (dest == error_entry) return true; if (dest == paranoid_entry) return true; if (dest == xen_error_entry) return true; /* Does FILL_RSB... */ if (dest == __switch_to_asm) return true; /* Accounts directly */ if (dest == ret_from_fork) return true; #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_AMD_MEM_ENCRYPT) if (dest == soft_restart_cpu) return true; #endif #ifdef CONFIG_FUNCTION_TRACER if (dest == __fentry__) return true; #endif #ifdef CONFIG_KEXEC_CORE # ifdef CONFIG_X86_64 if (dest >= (void *)__relocate_kernel_start && dest < (void *)__relocate_kernel_end) return true; # else if (dest >= (void *)relocate_kernel && dest < (void*)relocate_kernel + KEXEC_CONTROL_CODE_MAX_SIZE) return true; # endif #endif return false; } static __init_or_module void *call_get_dest(void *addr) { struct insn insn; void *dest; int ret; ret = insn_decode_kernel(&insn, addr); if (ret) return ERR_PTR(ret); /* Patched out call? */ if (insn.opcode.bytes[0] != CALL_INSN_OPCODE) return NULL; dest = addr + insn.length + insn.immediate.value; if (skip_addr(dest)) return NULL; return dest; } static const u8 nops[] = { 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, }; static void *patch_dest(void *dest, bool direct) { unsigned int tsize = SKL_TMPL_SIZE; u8 insn_buff[MAX_PATCH_LEN]; u8 *pad = dest - tsize; memcpy(insn_buff, skl_call_thunk_template, tsize); apply_relocation(insn_buff, pad, tsize, skl_call_thunk_template, tsize); /* Already patched? */ if (!bcmp(pad, insn_buff, tsize)) return pad; /* Ensure there are nops */ if (bcmp(pad, nops, tsize)) { pr_warn_once("Invalid padding area for %pS\n", dest); return NULL; } if (direct) memcpy(pad, insn_buff, tsize); else text_poke_copy_locked(pad, insn_buff, tsize, true); return pad; } static __init_or_module void patch_call(void *addr, const struct core_text *ct) { void *pad, *dest; u8 bytes[8]; if (!within_coretext(ct, addr)) return; dest = call_get_dest(addr); if (!dest || WARN_ON_ONCE(IS_ERR(dest))) return; if (!is_coretext(ct, dest)) return; pad = patch_dest(dest, within_coretext(ct, dest)); if (!pad) return; prdbg("Patch call at: %pS %px to %pS %px -> %px \n", addr, addr, dest, dest, pad); __text_gen_insn(bytes, CALL_INSN_OPCODE, addr, pad, CALL_INSN_SIZE); text_poke_early(addr, bytes, CALL_INSN_SIZE); } static __init_or_module void patch_call_sites(s32 *start, s32 *end, const struct core_text *ct) { s32 *s; for (s = start; s < end; s++) patch_call((void *)s + *s, ct); } static __init_or_module void patch_alt_call_sites(struct alt_instr *start, struct alt_instr *end, const struct core_text *ct) { struct alt_instr *a; for (a = start; a < end; a++) patch_call((void *)&a->instr_offset + a->instr_offset, ct); } static __init_or_module void callthunks_setup(struct callthunk_sites *cs, const struct core_text *ct) { prdbg("Patching call sites %s\n", ct->name); patch_call_sites(cs->call_start, cs->call_end, ct); patch_alt_call_sites(cs->alt_start, cs->alt_end, ct); prdbg("Patching call sites done%s\n", ct->name); } void __init callthunks_patch_builtin_calls(void) { struct callthunk_sites cs = { .call_start = __call_sites, .call_end = __call_sites_end, .alt_start = __alt_instructions, .alt_end = __alt_instructions_end }; if (!cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) return; pr_info("Setting up call depth tracking\n"); mutex_lock(&text_mutex); callthunks_setup(&cs, &builtin_coretext); thunks_initialized = true; mutex_unlock(&text_mutex); } void *callthunks_translate_call_dest(void *dest) { void *target; lockdep_assert_held(&text_mutex); if (!thunks_initialized || skip_addr(dest)) return dest; if (!is_coretext(NULL, dest)) return dest; target = patch_dest(dest, false); return target ? : dest; } #ifdef CONFIG_BPF_JIT static bool is_callthunk(void *addr) { unsigned int tmpl_size = SKL_TMPL_SIZE; u8 insn_buff[MAX_PATCH_LEN]; unsigned long dest; u8 *pad; dest = roundup((unsigned long)addr, CONFIG_FUNCTION_ALIGNMENT); if (!thunks_initialized || skip_addr((void *)dest)) return false; pad = (void *)(dest - tmpl_size); memcpy(insn_buff, skl_call_thunk_template, tmpl_size); apply_relocation(insn_buff, pad, tmpl_size, skl_call_thunk_template, tmpl_size); return !bcmp(pad, insn_buff, tmpl_size); } int x86_call_depth_emit_accounting(u8 **pprog, void *func, void *ip) { unsigned int tmpl_size = SKL_TMPL_SIZE; u8 insn_buff[MAX_PATCH_LEN]; if (!thunks_initialized) return 0; /* Is function call target a thunk? */ if (func && is_callthunk(func)) return 0; memcpy(insn_buff, skl_call_thunk_template, tmpl_size); apply_relocation(insn_buff, ip, tmpl_size, skl_call_thunk_template, tmpl_size); memcpy(*pprog, insn_buff, tmpl_size); *pprog += tmpl_size; return tmpl_size; } #endif #ifdef CONFIG_MODULES void noinline callthunks_patch_module_calls(struct callthunk_sites *cs, struct module *mod) { struct core_text ct = { .base = (unsigned long)mod->mem[MOD_TEXT].base, .end = (unsigned long)mod->mem[MOD_TEXT].base + mod->mem[MOD_TEXT].size, .name = mod->name, }; if (!thunks_initialized) return; mutex_lock(&text_mutex); callthunks_setup(cs, &ct); mutex_unlock(&text_mutex); } #endif /* CONFIG_MODULES */ #if defined(CONFIG_CALL_THUNKS_DEBUG) && defined(CONFIG_DEBUG_FS) static int callthunks_debug_show(struct seq_file *m, void *p) { unsigned long cpu = (unsigned long)m->private; seq_printf(m, "C: %16llu R: %16llu S: %16llu X: %16llu\n,", per_cpu(__x86_call_count, cpu), per_cpu(__x86_ret_count, cpu), per_cpu(__x86_stuffs_count, cpu), per_cpu(__x86_ctxsw_count, cpu)); return 0; } static int callthunks_debug_open(struct inode *inode, struct file *file) { return single_open(file, callthunks_debug_show, inode->i_private); } static const struct file_operations dfs_ops = { .open = callthunks_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init callthunks_debugfs_init(void) { struct dentry *dir; unsigned long cpu; dir = debugfs_create_dir("callthunks", NULL); for_each_possible_cpu(cpu) { void *arg = (void *)cpu; char name [10]; sprintf(name, "cpu%lu", cpu); debugfs_create_file(name, 0644, dir, arg, &dfs_ops); } return 0; } __initcall(callthunks_debugfs_init); #endif |
26 578 581 578 116 579 393 395 573 574 436 573 2 574 576 574 573 574 573 38 12 577 579 44 92 521 576 577 60 61 61 62 67 68 8 6 54 54 59 1 58 8 65 527 529 529 312 312 312 312 112 194 32 6 28 195 310 310 310 310 309 308 6 210 70 70 70 70 70 92 70 22 19 19 19 18 18 19 14 15 50 31 53 53 40 13 53 53 53 70 70 70 40 30 30 19 22 3 19 13 17 4 13 5 3 49 53 9 131 16 112 14 222 220 221 222 1 95 38 12 107 18 18 210 218 2 219 210 40 207 40 29 207 213 20 189 8 85 154 213 209 3 211 84 210 198 20 152 84 31 9 5 2 30 31 30 30 31 29 124 95 15 15 15 207 205 116 92 92 208 208 127 5 24 107 122 197 1 195 196 30 137 195 37 110 86 4 84 107 195 110 86 195 195 171 37 110 193 185 10 94 1 93 30 21 21 110 1 9 102 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 | // SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * The Internet Protocol (IP) output module. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Donald Becker, <becker@super.org> * Alan Cox, <Alan.Cox@linux.org> * Richard Underwood * Stefan Becker, <stefanb@yello.ping.de> * Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Hirokazu Takahashi, <taka@valinux.co.jp> * * See ip_input.c for original log * * Fixes: * Alan Cox : Missing nonblock feature in ip_build_xmit. * Mike Kilburn : htons() missing in ip_build_xmit. * Bradford Johnson: Fix faulty handling of some frames when * no route is found. * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit * (in case if packet not accepted by * output firewall rules) * Mike McLagan : Routing by source * Alexey Kuznetsov: use new route cache * Andi Kleen: Fix broken PMTU recovery and remove * some redundant tests. * Vitaly E. Lavrov : Transparent proxy revived after year coma. * Andi Kleen : Replace ip_reply with ip_send_reply. * Andi Kleen : Split fast and slow ip_build_xmit path * for decreased register pressure on x86 * and more readability. * Marc Boucher : When call_out_firewall returns FW_QUEUE, * silently drop skb instead of failing with -EPERM. * Detlev Wengorz : Copy protocol for fragments. * Hirokazu Takahashi: HW checksumming for outgoing UDP * datagrams. * Hirokazu Takahashi: sendfile() on UDP works now. */ #include <linux/uaccess.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/highmem.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/init.h> #include <net/snmp.h> #include <net/ip.h> #include <net/protocol.h> #include <net/route.h> #include <net/xfrm.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/arp.h> #include <net/icmp.h> #include <net/checksum.h> #include <net/gso.h> #include <net/inetpeer.h> #include <net/inet_ecn.h> #include <net/lwtunnel.h> #include <net/inet_dscp.h> #include <linux/bpf-cgroup.h> #include <linux/igmp.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_bridge.h> #include <linux/netlink.h> #include <linux/tcp.h> static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu, int (*output)(struct net *, struct sock *, struct sk_buff *)); /* Generate a checksum for an outgoing IP datagram. */ void ip_send_check(struct iphdr *iph) { iph->check = 0; iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); } EXPORT_SYMBOL(ip_send_check); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { struct iphdr *iph = ip_hdr(skb); IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS); iph_set_totlen(iph, skb->len); ip_send_check(iph); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip_out(sk, skb); if (unlikely(!skb)) return 0; skb->protocol = htons(ETH_P_IP); return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); } int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = __ip_local_out(net, sk, skb); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } EXPORT_SYMBOL_GPL(ip_local_out); static inline int ip_select_ttl(const struct inet_sock *inet, const struct dst_entry *dst) { int ttl = READ_ONCE(inet->uc_ttl); if (ttl < 0) ttl = ip4_dst_hoplimit(dst); return ttl; } /* * Add an ip header to a skbuff and send it out. * */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, u8 tos) { const struct inet_sock *inet = inet_sk(sk); struct rtable *rt = skb_rtable(skb); struct net *net = sock_net(sk); struct iphdr *iph; /* Build the IP header. */ skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = 4; iph->ihl = 5; iph->tos = tos; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); iph->saddr = saddr; iph->protocol = sk->sk_protocol; /* Do not bother generating IPID for small packets (eg SYNACK) */ if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { iph->frag_off = htons(IP_DF); iph->id = 0; } else { iph->frag_off = 0; /* TCP packets here are SYNACK with fat IPv4/TCP options. * Avoid using the hashed IP ident generator. */ if (sk->sk_protocol == IPPROTO_TCP) iph->id = (__force __be16)get_random_u16(); else __ip_select_ident(net, iph, 1); } if (opt && opt->opt.optlen) { iph->ihl += opt->opt.optlen>>2; ip_options_build(skb, &opt->opt, daddr, rt); } skb->priority = READ_ONCE(sk->sk_priority); if (!skb->mark) skb->mark = READ_ONCE(sk->sk_mark); /* Send it out. */ return ip_local_out(net, skb->sk, skb); } EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = dst_rtable(dst); struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; if (rt->rt_type == RTN_MULTICAST) { IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); } else if (rt->rt_type == RTN_BROADCAST) IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); /* OUTOCTETS should be counted after fragment */ IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { skb = skb_expand_head(skb, hh_len); if (!skb) return -ENOMEM; } if (lwtunnel_xmit_redirect(dst->lwtstate)) { int res = lwtunnel_xmit(skb); if (res != LWTUNNEL_XMIT_CONTINUE) return res; } rcu_read_lock(); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); if (!IS_ERR(neigh)) { int res; sock_confirm_neigh(skb, neigh); /* if crossing protocols, can not use the cached header */ res = neigh_output(neigh, skb, is_v6gw); rcu_read_unlock(); return res; } rcu_read_unlock(); net_dbg_ratelimited("%s: No header cache and no neighbour!\n", __func__); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); return PTR_ERR(neigh); } static int ip_finish_output_gso(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { struct sk_buff *segs, *nskb; netdev_features_t features; int ret = 0; /* common case: seglen is <= mtu */ if (skb_gso_validate_network_len(skb, mtu)) return ip_finish_output2(net, sk, skb); /* Slowpath - GSO segment length exceeds the egress MTU. * * This can happen in several cases: * - Forwarding of a TCP GRO skb, when DF flag is not set. * - Forwarding of an skb that arrived on a virtualization interface * (virtio-net/vhost/tap) with TSO/GSO size set by other network * stack. * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an * interface with a smaller MTU. * - Arriving GRO skb (or GSO skb in a virtualized environment) that is * bridged to a NETIF_F_TSO tunnel stacked over an interface with an * insufficient MTU. */ features = netif_skb_features(skb); BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { kfree_skb(skb); return -ENOMEM; } consume_skb(skb); skb_list_walk_safe(segs, segs, nskb) { int err; skb_mark_not_on_list(segs); err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); if (err && ret == 0) ret = err; } return ret; } static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { unsigned int mtu; #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm) { IPCB(skb)->flags |= IPSKB_REROUTED; return dst_output(net, sk, skb); } #endif mtu = ip_skb_dst_mtu(sk, skb); if (skb_is_gso(skb)) return ip_finish_output_gso(net, sk, skb, mtu); if (skb->len > mtu || IPCB(skb)->frag_max_size) return ip_fragment(net, sk, skb, mtu, ip_finish_output2); return ip_finish_output2(net, sk, skb); } static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { int ret; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_SUCCESS: return __ip_finish_output(net, sk, skb); case NET_XMIT_CN: return __ip_finish_output(net, sk, skb) ? : ret; default: kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); return ret; } } static int ip_mc_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct rtable *new_rt; bool do_cn = false; int ret, err; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_CN: do_cn = true; fallthrough; case NET_XMIT_SUCCESS: break; default: kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); return ret; } /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, * see ipv4_pktinfo_prepare(). */ new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); if (new_rt) { new_rt->rt_iif = 0; skb_dst_drop(skb); skb_dst_set(skb, &new_rt->dst); } err = dev_loopback_xmit(net, sk, skb); return (do_cn && err) ? ret : err; } int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); struct net_device *dev = rt->dst.dev; /* * If the indicated interface is up and running, send the packet. */ skb->dev = dev; skb->protocol = htons(ETH_P_IP); /* * Multicasts are looped back for other local users */ if (rt->rt_flags&RTCF_MULTICAST) { if (sk_mc_loop(sk) #ifdef CONFIG_IP_MROUTE /* Small optimization: do not loopback not local frames, which returned after forwarding; they will be dropped by ip_mr_input in any case. Note, that local frames are looped back to be delivered to local recipients. This check is duplicated in ip_mr_input at the moment. */ && ((rt->rt_flags & RTCF_LOCAL) || !(IPCB(skb)->flags & IPSKB_FORWARDED)) #endif ) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, ip_mc_finish_output); } /* Multicasts with ttl 0 must not go beyond the host */ if (ip_hdr(skb)->ttl == 0) { kfree_skb(skb); return 0; } } if (rt->rt_flags&RTCF_BROADCAST) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); if (newskb) NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, ip_mc_finish_output); } return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, indev, dev, ip_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } EXPORT_SYMBOL(ip_output); /* * copy saddr and daddr, possibly using 64bit load/stores * Equivalent to : * iph->saddr = fl4->saddr; * iph->daddr = fl4->daddr; */ static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) { BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); iph->saddr = fl4->saddr; iph->daddr = fl4->daddr; } /* Note: skb->sk can be different from sk, in case of tunnels */ int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ip_options_rcu *inet_opt; struct flowi4 *fl4; struct rtable *rt; struct iphdr *iph; int res; /* Skip all of this if the packet is already routed, * f.e. by something like SCTP. */ rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); fl4 = &fl->u.ip4; rt = skb_rtable(skb); if (rt) goto packet_routed; /* Make sure we can route this packet. */ rt = dst_rtable(__sk_dst_check(sk, 0)); if (!rt) { inet_sk_init_flowi4(inet, fl4); /* sctp_v4_xmit() uses its own DSCP value */ fl4->flowi4_tos = tos & INET_DSCP_MASK; /* If this fails, retransmit mechanism of transport layer will * keep trying until route appears or the connection times * itself out. */ rt = ip_route_output_flow(net, fl4, sk); if (IS_ERR(rt)) goto no_route; sk_setup_caps(sk, &rt->dst); } skb_dst_set_noref(skb, &rt->dst); packet_routed: if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) goto no_route; /* OK, we know where to send it, allocate and build IP header. */ skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); skb_reset_network_header(skb); iph = ip_hdr(skb); *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) iph->frag_off = htons(IP_DF); else iph->frag_off = 0; iph->ttl = ip_select_ttl(inet, &rt->dst); iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); /* Transport layer set skb->h.foo itself. */ if (inet_opt && inet_opt->opt.optlen) { iph->ihl += inet_opt->opt.optlen >> 2; ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); } ip_select_ident_segs(net, skb, sk, skb_shinfo(skb)->gso_segs ?: 1); /* TODO : should we use skb->sk here instead of sk ? */ skb->priority = READ_ONCE(sk->sk_priority); skb->mark = READ_ONCE(sk->sk_mark); res = ip_local_out(net, sk, skb); rcu_read_unlock(); return res; no_route: rcu_read_unlock(); IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); return -EHOSTUNREACH; } EXPORT_SYMBOL(__ip_queue_xmit); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) { return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos)); } EXPORT_SYMBOL(ip_queue_xmit); static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; to->skb_iif = from->skb_iif; skb_dst_drop(to); skb_dst_copy(to, from); to->dev = from->dev; to->mark = from->mark; skb_copy_hash(to, from); #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_ext_copy(to, from); #if IS_ENABLED(CONFIG_IP_VS) to->ipvs_property = from->ipvs_property; #endif skb_copy_secmark(to, from); } static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct iphdr *iph = ip_hdr(skb); if ((iph->frag_off & htons(IP_DF)) == 0) return ip_do_fragment(net, sk, skb, output); if (unlikely(!skb->ignore_df || (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size > mtu))) { IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); kfree_skb(skb); return -EMSGSIZE; } return ip_do_fragment(net, sk, skb, output); } void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter) { unsigned int first_len = skb_pagelen(skb); iter->frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); iter->offset = 0; iter->iph = iph; iter->hlen = hlen; skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; iph->tot_len = htons(first_len); iph->frag_off = htons(IP_MF); ip_send_check(iph); } EXPORT_SYMBOL(ip_fraglist_init); void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) { unsigned int hlen = iter->hlen; struct iphdr *iph = iter->iph; struct sk_buff *frag; frag = iter->frag; frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iph, hlen); iter->iph = ip_hdr(frag); iph = iter->iph; iph->tot_len = htons(frag->len); ip_copy_metadata(frag, skb); iter->offset += skb->len - hlen; iph->frag_off = htons(iter->offset >> 3); if (frag->next) iph->frag_off |= htons(IP_MF); /* Ready, complete checksum */ ip_send_check(iph); } EXPORT_SYMBOL(ip_fraglist_prepare); void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state) { struct iphdr *iph = ip_hdr(skb); state->DF = DF; state->hlen = hlen; state->ll_rs = ll_rs; state->mtu = mtu; state->left = skb->len - hlen; /* Space per frame */ state->ptr = hlen; /* Where to start from */ state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; state->not_last_frag = iph->frag_off & htons(IP_MF); } EXPORT_SYMBOL(ip_frag_init); static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, bool first_frag) { /* Copy the flags to each fragment. */ IPCB(to)->flags = IPCB(from)->flags; /* ANK: dirty, but effective trick. Upgrade options only if * the segment to be fragmented was THE FIRST (otherwise, * options are already fixed) and make it ONCE * on the initial skb, so that all the following fragments * will inherit fixed options. */ if (first_frag) ip_options_fragment(from); } struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) { unsigned int len = state->left; struct sk_buff *skb2; struct iphdr *iph; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > state->mtu) len = state->mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < state->left) { len &= ~7; } /* Allocate buffer */ skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); if (!skb2) return ERR_PTR(-ENOMEM); /* * Set up data on packet */ ip_copy_metadata(skb2, skb); skb_reserve(skb2, state->ll_rs); skb_put(skb2, len + state->hlen); skb_reset_network_header(skb2); skb2->transport_header = skb2->network_header + state->hlen; /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(skb2, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); /* * Copy a block of the IP datagram. */ if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) BUG(); state->left -= len; /* * Fill in the new header fields. */ iph = ip_hdr(skb2); iph->frag_off = htons((state->offset >> 3)); if (state->DF) iph->frag_off |= htons(IP_DF); /* * Added AC : If we are fragmenting a fragment that's not the * last fragment then keep MF on each bit */ if (state->left > 0 || state->not_last_frag) iph->frag_off |= htons(IP_MF); state->ptr += len; state->offset += len; iph->tot_len = htons(len + state->hlen); ip_send_check(iph); return skb2; } EXPORT_SYMBOL(ip_frag_next); /* * This IP datagram is too large to be sent in one piece. Break it up into * smaller pieces (each of size equal to IP header plus * a block of the data of the original IP data part) that will yet fit in a * single device frame, and queue such a frame for sending. */ int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct iphdr *iph; struct sk_buff *skb2; u8 tstamp_type = skb->tstamp_type; struct rtable *rt = skb_rtable(skb); unsigned int mtu, hlen, ll_rs; struct ip_fraglist_iter iter; ktime_t tstamp = skb->tstamp; struct ip_frag_state state; int err = 0; /* for offloaded checksums cleanup checksum before fragmentation */ if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto fail; /* * Point into the IP datagram header. */ iph = ip_hdr(skb); mtu = ip_skb_dst_mtu(sk, skb); if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) mtu = IPCB(skb)->frag_max_size; /* * Setup starting values. */ hlen = iph->ihl * 4; mtu = mtu - hlen; /* Size of data space */ IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; ll_rs = LL_RESERVED_SPACE(rt->dst.dev); /* When frag_list is given, use it. First, check its validity: * some transformers could create wrong frag_list or break existing * one, it is not prohibited. In this case fall back to copying. * * LATER: this step can be merged to real generation of fragments, * we can switch to copy when see the first bad fragment. */ if (skb_has_frag_list(skb)) { struct sk_buff *frag, *frag2; unsigned int first_len = skb_pagelen(skb); if (first_len - hlen > mtu || ((first_len - hlen) & 7) || ip_is_fragment(iph) || skb_cloned(skb) || skb_headroom(skb) < ll_rs) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < hlen + ll_rs) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } /* Everything is OK. Generate! */ ip_fraglist_init(skb, iph, hlen, &iter); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) { bool first_frag = (iter.offset == 0); IPCB(iter.frag)->flags = IPCB(skb)->flags; ip_fraglist_prepare(skb, &iter); if (first_frag && IPCB(skb)->opt.optlen) { /* ipcb->opt is not populated for frags * coming from __ip_make_skb(), * ip_options_fragment() needs optlen */ IPCB(iter.frag)->opt.optlen = IPCB(skb)->opt.optlen; ip_options_fragment(iter.frag); ip_send_check(iter.iph); } } skb_set_delivery_time(skb, tstamp, tstamp_type); err = output(net, sk, skb); if (!err) IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); if (err || !iter.frag) break; skb = ip_fraglist_next(&iter); } if (err == 0) { IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); return 0; } kfree_skb_list(iter.frag); IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* * Fragment the datagram. */ ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, &state); /* * Keep copying data until we run out. */ while (state.left > 0) { bool first_frag = (state.offset == 0); skb2 = ip_frag_next(skb, &state); if (IS_ERR(skb2)) { err = PTR_ERR(skb2); goto fail; } ip_frag_ipcb(skb, skb2, first_frag); /* * Put this fragment into the sending queue. */ skb_set_delivery_time(skb2, tstamp, tstamp_type); err = output(net, sk, skb2); if (err) goto fail; IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); } consume_skb(skb); IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); return err; fail: kfree_skb(skb); IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); return err; } EXPORT_SYMBOL(ip_do_fragment); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; if (skb->ip_summed == CHECKSUM_PARTIAL) { if (!copy_from_iter_full(to, len, &msg->msg_iter)) return -EFAULT; } else { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, odd); } return 0; } EXPORT_SYMBOL(ip_generic_getfrag); static int __ip_append_data(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct ip_options *opt = cork->opt; int hh_len; int exthdrlen; int mtu; int copy; int err; int offset = 0; bool zc = false; unsigned int maxfraglen, fragheaderlen, maxnonfragsize; int csummode = CHECKSUM_NONE; struct rtable *rt = dst_rtable(cork->dst); bool paged, hold_tskey = false, extra_uref = false; unsigned int wmem_alloc_delta = 0; u32 tskey = 0; skb = skb_peek_tail(queue); exthdrlen = !skb ? rt->dst.header_len : 0; mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; paged = !!cork->gso_size; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; if (cork->length + length > maxnonfragsize - fragheaderlen) { ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu - (opt ? opt->optlen : 0)); return -EMSGSIZE; } /* * transhdrlen > 0 means that this is the first fragment and we wish * it won't be fragmented in the future. */ if (transhdrlen && length + fragheaderlen <= mtu && rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && (!(flags & MSG_MORE) || cork->gso_size) && (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) csummode = CHECKSUM_PARTIAL; if ((flags & MSG_ZEROCOPY) && length) { struct msghdr *msg = from; if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) return -EINVAL; /* Leave uarg NULL if can't zerocopy, callers should * be able to handle it. */ if ((rt->dst.dev->features & NETIF_F_SG) && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; uarg = msg->msg_ubuf; } } else if (sock_flag(sk, SOCK_ZEROCOPY)) { uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); if (!uarg) return -ENOBUFS; extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ if (rt->dst.dev->features & NETIF_F_SG && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; } else { uarg_to_msgzc(uarg)->zerocopy = 0; skb_zcopy_set(skb, uarg, &extra_uref); } } } else if ((flags & MSG_SPLICE_PAGES) && length) { if (inet_test_bit(HDRINCL, sk)) return -EPERM; if (rt->dst.dev->features & NETIF_F_SG && getfrag == ip_generic_getfrag) /* We need an empty buffer to attach stuff to */ paged = true; else flags &= ~MSG_SPLICE_PAGES; } cork->length += length; if (cork->tx_flags & SKBTX_ANY_TSTAMP && READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { if (cork->flags & IPCORK_TS_OPT_ID) { tskey = cork->ts_opt_id; } else { tskey = atomic_inc_return(&sk->sk_tskey) - 1; hold_tskey = true; } } /* So, what's going on in the loop below? * * We use calculated fragment length to generate chained skb, * each of segments is IP fragment ready for sending to network after * adding appropriate IP header. */ if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = mtu - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen, alloc_extra; unsigned int pagedlen; struct sk_buff *skb_prev; alloc_new_skb: skb_prev = skb; if (skb_prev) fraggap = skb_prev->len - maxfraglen; else fraggap = 0; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > mtu - fragheaderlen) datalen = maxfraglen - fragheaderlen; fraglen = datalen + fragheaderlen; pagedlen = 0; alloc_extra = hh_len + 15; alloc_extra += exthdrlen; /* The last fragment gets additional space at tail. * Note, with MSG_MORE we overallocate on fragments, * because we have no idea what fragment will be * the last. */ if (datalen == length + fraggap) alloc_extra += rt->dst.trailer_len; if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else if (!paged && (fraglen + alloc_extra < SKB_MAX_ALLOC || !(rt->dst.dev->features & NETIF_F_SG))) alloclen = fraglen; else { alloclen = fragheaderlen + transhdrlen; pagedlen = datalen - transhdrlen; } alloclen += alloc_extra; if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 2 * sk->sk_sndbuf) skb = alloc_skb(alloclen, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->ip_summed = csummode; skb->csum = 0; skb_reserve(skb, hh_len); /* * Find where to start putting bytes. */ data = skb_put(skb, fraglen + exthdrlen - pagedlen); skb_set_network_header(skb, exthdrlen); skb->transport_header = (skb->network_header + fragheaderlen); data += fragheaderlen + exthdrlen; if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } copy = datalen - transhdrlen - fraggap - pagedlen; /* [!] NOTE: copy will be negative if pagedlen>0 * because then the equation reduces to -fraggap. */ if (copy > 0 && INDIRECT_CALL_1(getfrag, ip_generic_getfrag, from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } else if (flags & MSG_SPLICE_PAGES) { copy = 0; } offset += copy; length -= copy + transhdrlen; transhdrlen = 0; exthdrlen = 0; csummode = CHECKSUM_NONE; /* only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = cork->tx_flags; cork->tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; skb_zcopy_set(skb, uarg, &extra_uref); if ((flags & MSG_CONFIRM) && !skb_prev) skb_set_dst_pending_confirm(skb, 1); /* * Put the packet on the pending queue. */ if (!skb->destructor) { skb->destructor = sock_wfree; skb->sk = sk; wmem_alloc_delta += skb->truesize; } __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG) && skb_tailroom(skb) >= copy) { unsigned int off; off = skb->len; if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else if (flags & MSG_SPLICE_PAGES) { struct msghdr *msg = from; err = -EIO; if (WARN_ON_ONCE(copy > msg->msg_iter.count)) goto error; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) goto error; copy = err; wmem_alloc_delta += copy; } else if (!zc) { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; skb_zcopy_downgrade_managed(skb); if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag, from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb_len_add(skb, copy); wmem_alloc_delta += copy; } else { err = skb_zerocopy_iter_dgram(skb, from, copy); if (err < 0) goto error; } offset += copy; length -= copy; } if (wmem_alloc_delta) refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return 0; error_efault: err = -EFAULT; error: net_zcopy_put_abort(uarg, extra_uref); cork->length -= length; IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); if (hold_tskey) atomic_dec(&sk->sk_tskey); return err; } static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, struct ipcm_cookie *ipc, struct rtable **rtp) { struct ip_options_rcu *opt; struct rtable *rt; rt = *rtp; if (unlikely(!rt)) return -EFAULT; cork->fragsize = ip_sk_use_pmtu(sk) ? dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); if (!inetdev_valid_mtu(cork->fragsize)) return -ENETUNREACH; /* * setup for corking. */ opt = ipc->opt; if (opt) { if (!cork->opt) { cork->opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation); if (unlikely(!cork->opt)) return -ENOBUFS; } memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); cork->flags |= IPCORK_OPT; cork->addr = ipc->addr; } cork->gso_size = ipc->gso_size; cork->dst = &rt->dst; /* We stole this route, caller should not release it. */ *rtp = NULL; cork->length = 0; cork->ttl = ipc->ttl; cork->tos = ipc->tos; cork->mark = ipc->sockc.mark; cork->priority = ipc->sockc.priority; cork->transmit_time = ipc->sockc.transmit_time; cork->tx_flags = 0; sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags); if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) { cork->flags |= IPCORK_TS_OPT_ID; cork->ts_opt_id = ipc->sockc.ts_opt_id; } return 0; } /* * ip_append_data() can make one large IP datagram from many pieces of * data. Each piece will be held on the socket until * ip_push_pending_frames() is called. Each piece can be a page or * non-page data. * * Not only UDP, other transport protocols - e.g. raw sockets - can use * this interface potentially. * * LATER: length must be adjusted by pad at tail, when it is required. */ int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); if (err) return err; } else { transhdrlen = 0; } return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags); } static void ip_cork_release(struct inet_cork *cork) { cork->flags &= ~IPCORK_OPT; kfree(cork->opt); cork->opt = NULL; dst_release(cork->dst); cork->dst = NULL; } /* * Combined all pending IP fragments on the socket as one IP datagram * and push them out. */ struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ip_options *opt = NULL; struct rtable *rt = dst_rtable(cork->dst); struct iphdr *iph; u8 pmtudisc, ttl; __be16 df = 0; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow * to fragment the frame generated here. No matter, what transforms * how transforms change size of the packet, it will come out. */ skb->ignore_df = ip_sk_ignore_df(sk); /* DF bit is set when we want to see DF on outgoing frames. * If ignore_df is set too, we still allow to fragment this frame * locally. */ pmtudisc = READ_ONCE(inet->pmtudisc); if (pmtudisc == IP_PMTUDISC_DO || pmtudisc == IP_PMTUDISC_PROBE || (skb->len <= dst_mtu(&rt->dst) && ip_dont_fragment(sk, &rt->dst))) df = htons(IP_DF); if (cork->flags & IPCORK_OPT) opt = cork->opt; if (cork->ttl != 0) ttl = cork->ttl; else if (rt->rt_type == RTN_MULTICAST) ttl = READ_ONCE(inet->mc_ttl); else ttl = ip_select_ttl(inet, &rt->dst); iph = ip_hdr(skb); iph->version = 4; iph->ihl = 5; iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos); iph->frag_off = df; iph->ttl = ttl; iph->protocol = sk->sk_protocol; ip_copy_addrs(iph, fl4); ip_select_ident(net, skb, sk); if (opt) { iph->ihl += opt->optlen >> 2; ip_options_build(skb, opt, cork->addr, rt); } skb->priority = cork->priority; skb->mark = cork->mark; if (sk_is_tcp(sk)) skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC); else skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid); /* * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec * on dst refcount */ cork->dst = NULL; skb_dst_set(skb, &rt->dst); if (iph->protocol == IPPROTO_ICMP) { u8 icmp_type; /* For such sockets, transhdrlen is zero when do ip_append_data(), * so icmphdr does not in skb linear region and can not get icmp_type * by icmp_hdr(skb)->type. */ if (sk->sk_type == SOCK_RAW && !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH)) icmp_type = fl4->fl4_icmp_type; else icmp_type = icmp_hdr(skb)->type; icmp_out_count(net, icmp_type); } ip_cork_release(cork); out: return skb; } int ip_send_skb(struct net *net, struct sk_buff *skb) { int err; err = ip_local_out(net, skb->sk, skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) { struct sk_buff *skb; skb = ip_finish_skb(sk, fl4); if (!skb) return 0; /* Netfilter gets whole the not fragmented skb. */ return ip_send_skb(sock_net(sk), skb); } /* * Throw away all pending data on the socket. */ static void __ip_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork *cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) kfree_skb(skb); ip_cork_release(cork); } void ip_flush_pending_frames(struct sock *sk) { __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags) { struct sk_buff_head queue; int err; if (flags & MSG_PROBE) return NULL; __skb_queue_head_init(&queue); cork->flags = 0; cork->addr = 0; cork->opt = NULL; err = ip_setup_cork(sk, cork, ipc, rtp); if (err) return ERR_PTR(err); err = __ip_append_data(sk, fl4, &queue, cork, ¤t->task_frag, getfrag, from, length, transhdrlen, flags); if (err) { __ip_flush_pending_frames(sk, &queue, cork); return ERR_PTR(err); } return __ip_make_skb(sk, fl4, &queue, cork); } /* * Fetch data from kernel space and fill in checksum if needed. */ static int ip_reply_glue_bits(void *dptr, char *to, int offset, int len, int odd, struct sk_buff *skb) { __wsum csum; csum = csum_partial_copy_nocheck(dptr+offset, to, len); skb->csum = csum_block_add(skb->csum, csum, odd); return 0; } /* * Generic function to send a packet as reply to another packet. * Used to send some TCP resets/acks so far. */ void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time, u32 txhash) { struct ip_options_data replyopts; struct ipcm_cookie ipc; struct flowi4 fl4; struct rtable *rt = skb_rtable(skb); struct net *net = sock_net(sk); struct sk_buff *nskb; int err; int oif; if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) return; ipcm_init(&ipc); ipc.addr = daddr; ipc.sockc.transmit_time = transmit_time; if (replyopts.opt.opt.optlen) { ipc.opt = &replyopts.opt; if (replyopts.opt.opt.srr) daddr = replyopts.opt.opt.faddr; } oif = arg->bound_dev_if; if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) oif = skb->skb_iif; flowi4_init_output(&fl4, oif, IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, arg->tos & INET_DSCP_MASK, RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, ip_reply_arg_flowi_flags(arg), daddr, saddr, tcp_hdr(skb)->source, tcp_hdr(skb)->dest, arg->uid); security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); rt = ip_route_output_flow(net, &fl4, sk); if (IS_ERR(rt)) return; inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; sk->sk_protocol = ip_hdr(skb)->protocol; sk->sk_bound_dev_if = arg->bound_dev_if; sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); ipc.sockc.mark = fl4.flowi4_mark; err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0, &ipc, &rt, MSG_DONTWAIT); if (unlikely(err)) { ip_flush_pending_frames(sk); goto out; } nskb = skb_peek(&sk->sk_write_queue); if (nskb) { if (arg->csumoffset >= 0) *((__sum16 *)skb_transport_header(nskb) + arg->csumoffset) = csum_fold(csum_add(nskb->csum, arg->csum)); nskb->ip_summed = CHECKSUM_NONE; if (orig_sk) skb_set_owner_edemux(nskb, (struct sock *)orig_sk); if (transmit_time) nskb->tstamp_type = SKB_CLOCK_MONOTONIC; if (txhash) skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4); ip_push_pending_frames(sk, &fl4); } out: ip_rt_put(rt); } void __init ip_init(void) { ip_rt_init(); inet_initpeers(); #if defined(CONFIG_IP_MULTICAST) igmp_mc_init(); #endif } |
58 58 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPVS: Locality-Based Least-Connection scheduling module * * Authors: Wensong Zhang <wensong@gnuchina.org> * * Changes: * Martin Hamilton : fixed the terrible locking bugs * *lock(tbl->lock) ==> *lock(&tbl->lock) * Wensong Zhang : fixed the uninitialized tbl->lock bug * Wensong Zhang : added doing full expiration check to * collect stale entries of 24+ hours when * no partial expire check in a half hour * Julian Anastasov : replaced del_timer call with del_timer_sync * to avoid the possible race between timer * handler and del_timer thread in SMP */ /* * The lblc algorithm is as follows (pseudo code): * * if cachenode[dest_ip] is null then * n, cachenode[dest_ip] <- {weighted least-conn node}; * else * n <- cachenode[dest_ip]; * if (n is dead) OR * (n.conns>n.weight AND * there is a node m with m.conns<m.weight/2) then * n, cachenode[dest_ip] <- {weighted least-conn node}; * * return n; * * Thanks must go to Wenzhuo Zhang for talking WCCP to me and pushing * me to write this module. */ #define KMSG_COMPONENT "IPVS" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/ip.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/jiffies.h> #include <linux/hash.h> /* for sysctl */ #include <linux/fs.h> #include <linux/sysctl.h> #include <net/ip_vs.h> /* * It is for garbage collection of stale IPVS lblc entries, * when the table is full. */ #define CHECK_EXPIRE_INTERVAL (60*HZ) #define ENTRY_TIMEOUT (6*60*HZ) #define DEFAULT_EXPIRATION (24*60*60*HZ) /* * It is for full expiration check. * When there is no partial expiration check (garbage collection) * in a half hour, do a full expiration check to collect stale * entries that haven't been touched for a day. */ #define COUNT_FOR_FULL_EXPIRATION 30 /* * for IPVS lblc entry hash table */ #ifndef CONFIG_IP_VS_LBLC_TAB_BITS #define CONFIG_IP_VS_LBLC_TAB_BITS 10 #endif #define IP_VS_LBLC_TAB_BITS CONFIG_IP_VS_LBLC_TAB_BITS #define IP_VS_LBLC_TAB_SIZE (1 << IP_VS_LBLC_TAB_BITS) #define IP_VS_LBLC_TAB_MASK (IP_VS_LBLC_TAB_SIZE - 1) /* * IPVS lblc entry represents an association between destination * IP address and its destination server */ struct ip_vs_lblc_entry { struct hlist_node list; int af; /* address family */ union nf_inet_addr addr; /* destination IP address */ struct ip_vs_dest *dest; /* real server (cache) */ unsigned long lastuse; /* last used time */ struct rcu_head rcu_head; }; /* * IPVS lblc hash table */ struct ip_vs_lblc_table { struct rcu_head rcu_head; struct hlist_head bucket[IP_VS_LBLC_TAB_SIZE]; /* hash bucket */ struct timer_list periodic_timer; /* collect stale entries */ struct ip_vs_service *svc; /* pointer back to service */ atomic_t entries; /* number of entries */ int max_size; /* maximum size of entries */ int rover; /* rover for expire check */ int counter; /* counter for no expire */ bool dead; }; /* * IPVS LBLC sysctl table */ #ifdef CONFIG_SYSCTL static struct ctl_table vs_vars_table[] = { { .procname = "lblc_expiration", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, }; #endif static void ip_vs_lblc_rcu_free(struct rcu_head *head) { struct ip_vs_lblc_entry *en = container_of(head, struct ip_vs_lblc_entry, rcu_head); ip_vs_dest_put_and_free(en->dest); kfree(en); } static inline void ip_vs_lblc_del(struct ip_vs_lblc_entry *en) { hlist_del_rcu(&en->list); call_rcu(&en->rcu_head, ip_vs_lblc_rcu_free); } /* * Returns hash value for IPVS LBLC entry */ static inline unsigned int ip_vs_lblc_hashkey(int af, const union nf_inet_addr *addr) { __be32 addr_fold = addr->ip; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) addr_fold = addr->ip6[0]^addr->ip6[1]^ addr->ip6[2]^addr->ip6[3]; #endif return hash_32(ntohl(addr_fold), IP_VS_LBLC_TAB_BITS); } /* * Hash an entry in the ip_vs_lblc_table. * returns bool success. */ static void ip_vs_lblc_hash(struct ip_vs_lblc_table *tbl, struct ip_vs_lblc_entry *en) { unsigned int hash = ip_vs_lblc_hashkey(en->af, &en->addr); hlist_add_head_rcu(&en->list, &tbl->bucket[hash]); atomic_inc(&tbl->entries); } /* Get ip_vs_lblc_entry associated with supplied parameters. */ static inline struct ip_vs_lblc_entry * ip_vs_lblc_get(int af, struct ip_vs_lblc_table *tbl, const union nf_inet_addr *addr) { unsigned int hash = ip_vs_lblc_hashkey(af, addr); struct ip_vs_lblc_entry *en; hlist_for_each_entry_rcu(en, &tbl->bucket[hash], list) if (ip_vs_addr_equal(af, &en->addr, addr)) return en; return NULL; } /* * Create or update an ip_vs_lblc_entry, which is a mapping of a destination IP * address to a server. Called under spin lock. */ static inline struct ip_vs_lblc_entry * ip_vs_lblc_new(struct ip_vs_lblc_table *tbl, const union nf_inet_addr *daddr, u16 af, struct ip_vs_dest *dest) { struct ip_vs_lblc_entry *en; en = ip_vs_lblc_get(af, tbl, daddr); if (en) { if (en->dest == dest) return en; ip_vs_lblc_del(en); } en = kmalloc(sizeof(*en), GFP_ATOMIC); if (!en) return NULL; en->af = af; ip_vs_addr_copy(af, &en->addr, daddr); en->lastuse = jiffies; ip_vs_dest_hold(dest); en->dest = dest; ip_vs_lblc_hash(tbl, en); return en; } /* * Flush all the entries of the specified table. */ static void ip_vs_lblc_flush(struct ip_vs_service *svc) { struct ip_vs_lblc_table *tbl = svc->sched_data; struct ip_vs_lblc_entry *en; struct hlist_node *next; int i; spin_lock_bh(&svc->sched_lock); tbl->dead = true; for (i = 0; i < IP_VS_LBLC_TAB_SIZE; i++) { hlist_for_each_entry_safe(en, next, &tbl->bucket[i], list) { ip_vs_lblc_del(en); atomic_dec(&tbl->entries); } } spin_unlock_bh(&svc->sched_lock); } static int sysctl_lblc_expiration(struct ip_vs_service *svc) { #ifdef CONFIG_SYSCTL return svc->ipvs->sysctl_lblc_expiration; #else return DEFAULT_EXPIRATION; #endif } static inline void ip_vs_lblc_full_check(struct ip_vs_service *svc) { struct ip_vs_lblc_table *tbl = svc->sched_data; struct ip_vs_lblc_entry *en; struct hlist_node *next; unsigned long now = jiffies; int i, j; for (i = 0, j = tbl->rover; i < IP_VS_LBLC_TAB_SIZE; i++) { j = (j + 1) & IP_VS_LBLC_TAB_MASK; spin_lock(&svc->sched_lock); hlist_for_each_entry_safe(en, next, &tbl->bucket[j], list) { if (time_before(now, en->lastuse + sysctl_lblc_expiration(svc))) continue; ip_vs_lblc_del(en); atomic_dec(&tbl->entries); } spin_unlock(&svc->sched_lock); } tbl->rover = j; } /* * Periodical timer handler for IPVS lblc table * It is used to collect stale entries when the number of entries * exceeds the maximum size of the table. * * Fixme: we probably need more complicated algorithm to collect * entries that have not been used for a long time even * if the number of entries doesn't exceed the maximum size * of the table. * The full expiration check is for this purpose now. */ static void ip_vs_lblc_check_expire(struct timer_list *t) { struct ip_vs_lblc_table *tbl = from_timer(tbl, t, periodic_timer); struct ip_vs_service *svc = tbl->svc; unsigned long now = jiffies; int goal; int i, j; struct ip_vs_lblc_entry *en; struct hlist_node *next; if ((tbl->counter % COUNT_FOR_FULL_EXPIRATION) == 0) { /* do full expiration check */ ip_vs_lblc_full_check(svc); tbl->counter = 1; goto out; } if (atomic_read(&tbl->entries) <= tbl->max_size) { tbl->counter++; goto out; } goal = (atomic_read(&tbl->entries) - tbl->max_size)*4/3; if (goal > tbl->max_size/2) goal = tbl->max_size/2; for (i = 0, j = tbl->rover; i < IP_VS_LBLC_TAB_SIZE; i++) { j = (j + 1) & IP_VS_LBLC_TAB_MASK; spin_lock(&svc->sched_lock); hlist_for_each_entry_safe(en, next, &tbl->bucket[j], list) { if (time_before(now, en->lastuse + ENTRY_TIMEOUT)) continue; ip_vs_lblc_del(en); atomic_dec(&tbl->entries); goal--; } spin_unlock(&svc->sched_lock); if (goal <= 0) break; } tbl->rover = j; out: mod_timer(&tbl->periodic_timer, jiffies + CHECK_EXPIRE_INTERVAL); } static int ip_vs_lblc_init_svc(struct ip_vs_service *svc) { int i; struct ip_vs_lblc_table *tbl; /* * Allocate the ip_vs_lblc_table for this service */ tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); if (tbl == NULL) return -ENOMEM; svc->sched_data = tbl; IP_VS_DBG(6, "LBLC hash table (memory=%zdbytes) allocated for " "current service\n", sizeof(*tbl)); /* * Initialize the hash buckets */ for (i = 0; i < IP_VS_LBLC_TAB_SIZE; i++) { INIT_HLIST_HEAD(&tbl->bucket[i]); } tbl->max_size = IP_VS_LBLC_TAB_SIZE*16; tbl->rover = 0; tbl->counter = 1; tbl->dead = false; tbl->svc = svc; atomic_set(&tbl->entries, 0); /* * Hook periodic timer for garbage collection */ timer_setup(&tbl->periodic_timer, ip_vs_lblc_check_expire, 0); mod_timer(&tbl->periodic_timer, jiffies + CHECK_EXPIRE_INTERVAL); return 0; } static void ip_vs_lblc_done_svc(struct ip_vs_service *svc) { struct ip_vs_lblc_table *tbl = svc->sched_data; /* remove periodic timer */ timer_shutdown_sync(&tbl->periodic_timer); /* got to clean up table entries here */ ip_vs_lblc_flush(svc); /* release the table itself */ kfree_rcu(tbl, rcu_head); IP_VS_DBG(6, "LBLC hash table (memory=%zdbytes) released\n", sizeof(*tbl)); } static inline struct ip_vs_dest * __ip_vs_lblc_schedule(struct ip_vs_service *svc) { struct ip_vs_dest *dest, *least; int loh, doh; /* * We use the following formula to estimate the load: * (dest overhead) / dest->weight * * Remember -- no floats in kernel mode!!! * The comparison of h1*w2 > h2*w1 is equivalent to that of * h1/w1 > h2/w2 * if every weight is larger than zero. * * The server with weight=0 is quiesced and will not receive any * new connection. */ list_for_each_entry_rcu(dest, &svc->destinations, n_list) { if (dest->flags & IP_VS_DEST_F_OVERLOAD) continue; if (atomic_read(&dest->weight) > 0) { least = dest; loh = ip_vs_dest_conn_overhead(least); goto nextstage; } } return NULL; /* * Find the destination with the least load. */ nextstage: list_for_each_entry_continue_rcu(dest, &svc->destinations, n_list) { if (dest->flags & IP_VS_DEST_F_OVERLOAD) continue; doh = ip_vs_dest_conn_overhead(dest); if ((__s64)loh * atomic_read(&dest->weight) > (__s64)doh * atomic_read(&least->weight)) { least = dest; loh = doh; } } IP_VS_DBG_BUF(6, "LBLC: server %s:%d " "activeconns %d refcnt %d weight %d overhead %d\n", IP_VS_DBG_ADDR(least->af, &least->addr), ntohs(least->port), atomic_read(&least->activeconns), refcount_read(&least->refcnt), atomic_read(&least->weight), loh); return least; } /* * If this destination server is overloaded and there is a less loaded * server, then return true. */ static inline int is_overloaded(struct ip_vs_dest *dest, struct ip_vs_service *svc) { if (atomic_read(&dest->activeconns) > atomic_read(&dest->weight)) { struct ip_vs_dest *d; list_for_each_entry_rcu(d, &svc->destinations, n_list) { if (atomic_read(&d->activeconns)*2 < atomic_read(&d->weight)) { return 1; } } } return 0; } /* * Locality-Based (weighted) Least-Connection scheduling */ static struct ip_vs_dest * ip_vs_lblc_schedule(struct ip_vs_service *svc, const struct sk_buff *skb, struct ip_vs_iphdr *iph) { struct ip_vs_lblc_table *tbl = svc->sched_data; struct ip_vs_dest *dest = NULL; struct ip_vs_lblc_entry *en; IP_VS_DBG(6, "%s(): Scheduling...\n", __func__); /* First look in our cache */ en = ip_vs_lblc_get(svc->af, tbl, &iph->daddr); if (en) { /* We only hold a read lock, but this is atomic */ en->lastuse = jiffies; /* * If the destination is not available, i.e. it's in the trash, * we must ignore it, as it may be removed from under our feet, * if someone drops our reference count. Our caller only makes * sure that destinations, that are not in the trash, are not * moved to the trash, while we are scheduling. But anyone can * free up entries from the trash at any time. */ dest = en->dest; if ((dest->flags & IP_VS_DEST_F_AVAILABLE) && atomic_read(&dest->weight) > 0 && !is_overloaded(dest, svc)) goto out; } /* No cache entry or it is invalid, time to schedule */ dest = __ip_vs_lblc_schedule(svc); if (!dest) { ip_vs_scheduler_err(svc, "no destination available"); return NULL; } /* If we fail to create a cache entry, we'll just use the valid dest */ spin_lock_bh(&svc->sched_lock); if (!tbl->dead) ip_vs_lblc_new(tbl, &iph->daddr, svc->af, dest); spin_unlock_bh(&svc->sched_lock); out: IP_VS_DBG_BUF(6, "LBLC: destination IP address %s --> server %s:%d\n", IP_VS_DBG_ADDR(svc->af, &iph->daddr), IP_VS_DBG_ADDR(dest->af, &dest->addr), ntohs(dest->port)); return dest; } /* * IPVS LBLC Scheduler structure */ static struct ip_vs_scheduler ip_vs_lblc_scheduler = { .name = "lblc", .refcnt = ATOMIC_INIT(0), .module = THIS_MODULE, .n_list = LIST_HEAD_INIT(ip_vs_lblc_scheduler.n_list), .init_service = ip_vs_lblc_init_svc, .done_service = ip_vs_lblc_done_svc, .schedule = ip_vs_lblc_schedule, }; /* * per netns init. */ #ifdef CONFIG_SYSCTL static int __net_init __ip_vs_lblc_init(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); size_t vars_table_size = ARRAY_SIZE(vs_vars_table); if (!ipvs) return -ENOENT; if (!net_eq(net, &init_net)) { ipvs->lblc_ctl_table = kmemdup(vs_vars_table, sizeof(vs_vars_table), GFP_KERNEL); if (ipvs->lblc_ctl_table == NULL) return -ENOMEM; /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) vars_table_size = 0; } else ipvs->lblc_ctl_table = vs_vars_table; ipvs->sysctl_lblc_expiration = DEFAULT_EXPIRATION; ipvs->lblc_ctl_table[0].data = &ipvs->sysctl_lblc_expiration; ipvs->lblc_ctl_header = register_net_sysctl_sz(net, "net/ipv4/vs", ipvs->lblc_ctl_table, vars_table_size); if (!ipvs->lblc_ctl_header) { if (!net_eq(net, &init_net)) kfree(ipvs->lblc_ctl_table); return -ENOMEM; } return 0; } static void __net_exit __ip_vs_lblc_exit(struct net *net) { struct netns_ipvs *ipvs = net_ipvs(net); unregister_net_sysctl_table(ipvs->lblc_ctl_header); if (!net_eq(net, &init_net)) kfree(ipvs->lblc_ctl_table); } #else static int __net_init __ip_vs_lblc_init(struct net *net) { return 0; } static void __net_exit __ip_vs_lblc_exit(struct net *net) { } #endif static struct pernet_operations ip_vs_lblc_ops = { .init = __ip_vs_lblc_init, .exit = __ip_vs_lblc_exit, }; static int __init ip_vs_lblc_init(void) { int ret; ret = register_pernet_subsys(&ip_vs_lblc_ops); if (ret) return ret; ret = register_ip_vs_scheduler(&ip_vs_lblc_scheduler); if (ret) unregister_pernet_subsys(&ip_vs_lblc_ops); return ret; } static void __exit ip_vs_lblc_cleanup(void) { unregister_ip_vs_scheduler(&ip_vs_lblc_scheduler); unregister_pernet_subsys(&ip_vs_lblc_ops); rcu_barrier(); } module_init(ip_vs_lblc_init); module_exit(ip_vs_lblc_cleanup); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ipvs locality-based least-connection scheduler"); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_RSTREASON_H #define _LINUX_RSTREASON_H #include <net/dropreason-core.h> #include <uapi/linux/mptcp.h> #define DEFINE_RST_REASON(FN, FNe) \ FN(NOT_SPECIFIED) \ FN(NO_SOCKET) \ FN(TCP_INVALID_ACK_SEQUENCE) \ FN(TCP_RFC7323_PAWS) \ FN(TCP_TOO_OLD_ACK) \ FN(TCP_ACK_UNSENT_DATA) \ FN(TCP_FLAGS) \ FN(TCP_OLD_ACK) \ FN(TCP_ABORT_ON_DATA) \ FN(TCP_TIMEWAIT_SOCKET) \ FN(INVALID_SYN) \ FN(TCP_ABORT_ON_CLOSE) \ FN(TCP_ABORT_ON_LINGER) \ FN(TCP_ABORT_ON_MEMORY) \ FN(TCP_STATE) \ FN(TCP_KEEPALIVE_TIMEOUT) \ FN(TCP_DISCONNECT_WITH_DATA) \ FN(MPTCP_RST_EUNSPEC) \ FN(MPTCP_RST_EMPTCP) \ FN(MPTCP_RST_ERESOURCE) \ FN(MPTCP_RST_EPROHIBIT) \ FN(MPTCP_RST_EWQ2BIG) \ FN(MPTCP_RST_EBADPERF) \ FN(MPTCP_RST_EMIDDLEBOX) \ FN(ERROR) \ FNe(MAX) /** * enum sk_rst_reason - the reasons of socket reset * * The reasons of sk reset, which are used in DCCP/TCP/MPTCP protocols. * * There are three parts in order: * 1) skb drop reasons: relying on drop reasons for such as passive reset * 2) independent reset reasons: such as active reset reasons * 3) reset reasons in MPTCP: only for MPTCP use */ enum sk_rst_reason { /* Refer to include/net/dropreason-core.h * Rely on skb drop reasons because it indicates exactly why RST * could happen. */ /** @SK_RST_REASON_NOT_SPECIFIED: reset reason is not specified */ SK_RST_REASON_NOT_SPECIFIED, /** @SK_RST_REASON_NO_SOCKET: no valid socket that can be used */ SK_RST_REASON_NO_SOCKET, /** * @SK_RST_REASON_TCP_INVALID_ACK_SEQUENCE: Not acceptable ACK SEQ * field because ack sequence is not in the window between snd_una * and snd_nxt */ SK_RST_REASON_TCP_INVALID_ACK_SEQUENCE, /** * @SK_RST_REASON_TCP_RFC7323_PAWS: PAWS check, corresponding to * LINUX_MIB_PAWSESTABREJECTED, LINUX_MIB_PAWSACTIVEREJECTED */ SK_RST_REASON_TCP_RFC7323_PAWS, /** @SK_RST_REASON_TCP_TOO_OLD_ACK: TCP ACK is too old */ SK_RST_REASON_TCP_TOO_OLD_ACK, /** * @SK_RST_REASON_TCP_ACK_UNSENT_DATA: TCP ACK for data we haven't * sent yet */ SK_RST_REASON_TCP_ACK_UNSENT_DATA, /** @SK_RST_REASON_TCP_FLAGS: TCP flags invalid */ SK_RST_REASON_TCP_FLAGS, /** @SK_RST_REASON_TCP_OLD_ACK: TCP ACK is old, but in window */ SK_RST_REASON_TCP_OLD_ACK, /** * @SK_RST_REASON_TCP_ABORT_ON_DATA: abort on data * corresponding to LINUX_MIB_TCPABORTONDATA */ SK_RST_REASON_TCP_ABORT_ON_DATA, /* Here start with the independent reasons */ /** @SK_RST_REASON_TCP_TIMEWAIT_SOCKET: happen on the timewait socket */ SK_RST_REASON_TCP_TIMEWAIT_SOCKET, /** * @SK_RST_REASON_INVALID_SYN: receive bad syn packet * RFC 793 says if the state is not CLOSED/LISTEN/SYN-SENT then * "fourth, check the SYN bit,...If the SYN is in the window it is * an error, send a reset" */ SK_RST_REASON_INVALID_SYN, /** * @SK_RST_REASON_TCP_ABORT_ON_CLOSE: abort on close * corresponding to LINUX_MIB_TCPABORTONCLOSE */ SK_RST_REASON_TCP_ABORT_ON_CLOSE, /** * @SK_RST_REASON_TCP_ABORT_ON_LINGER: abort on linger * corresponding to LINUX_MIB_TCPABORTONLINGER */ SK_RST_REASON_TCP_ABORT_ON_LINGER, /** * @SK_RST_REASON_TCP_ABORT_ON_MEMORY: abort on memory * corresponding to LINUX_MIB_TCPABORTONMEMORY */ SK_RST_REASON_TCP_ABORT_ON_MEMORY, /** * @SK_RST_REASON_TCP_STATE: abort on tcp state * Please see RFC 9293 for all possible reset conditions */ SK_RST_REASON_TCP_STATE, /** * @SK_RST_REASON_TCP_KEEPALIVE_TIMEOUT: time to timeout * When we have already run out of all the chances, which means * keepalive timeout, we have to reset the connection */ SK_RST_REASON_TCP_KEEPALIVE_TIMEOUT, /** * @SK_RST_REASON_TCP_DISCONNECT_WITH_DATA: disconnect when write * queue is not empty * It means user has written data into the write queue when doing * disconnecting, so we have to send an RST. */ SK_RST_REASON_TCP_DISCONNECT_WITH_DATA, /* Copy from include/uapi/linux/mptcp.h. * These reset fields will not be changed since they adhere to * RFC 8684. So do not touch them. I'm going to list each definition * of them respectively. */ /** * @SK_RST_REASON_MPTCP_RST_EUNSPEC: Unspecified error. * This is the default error; it implies that the subflow is no * longer available. The presence of this option shows that the * RST was generated by an MPTCP-aware device. */ SK_RST_REASON_MPTCP_RST_EUNSPEC, /** * @SK_RST_REASON_MPTCP_RST_EMPTCP: MPTCP-specific error. * An error has been detected in the processing of MPTCP options. * This is the usual reason code to return in the cases where a RST * is being sent to close a subflow because of an invalid response. */ SK_RST_REASON_MPTCP_RST_EMPTCP, /** * @SK_RST_REASON_MPTCP_RST_ERESOURCE: Lack of resources. * This code indicates that the sending host does not have enough * resources to support the terminated subflow. */ SK_RST_REASON_MPTCP_RST_ERESOURCE, /** * @SK_RST_REASON_MPTCP_RST_EPROHIBIT: Administratively prohibited. * This code indicates that the requested subflow is prohibited by * the policies of the sending host. */ SK_RST_REASON_MPTCP_RST_EPROHIBIT, /** * @SK_RST_REASON_MPTCP_RST_EWQ2BIG: Too much outstanding data. * This code indicates that there is an excessive amount of data * that needs to be transmitted over the terminated subflow while * having already been acknowledged over one or more other subflows. * This may occur if a path has been unavailable for a short period * and it is more efficient to reset and start again than it is to * retransmit the queued data. */ SK_RST_REASON_MPTCP_RST_EWQ2BIG, /** * @SK_RST_REASON_MPTCP_RST_EBADPERF: Unacceptable performance. * This code indicates that the performance of this subflow was * too low compared to the other subflows of this Multipath TCP * connection. */ SK_RST_REASON_MPTCP_RST_EBADPERF, /** * @SK_RST_REASON_MPTCP_RST_EMIDDLEBOX: Middlebox interference. * Middlebox interference has been detected over this subflow, * making MPTCP signaling invalid. For example, this may be sent * if the checksum does not validate. */ SK_RST_REASON_MPTCP_RST_EMIDDLEBOX, /** @SK_RST_REASON_ERROR: unexpected error happens */ SK_RST_REASON_ERROR, /** * @SK_RST_REASON_MAX: Maximum of socket reset reasons. * It shouldn't be used as a real 'reason'. */ SK_RST_REASON_MAX, }; /* Convert skb drop reasons to enum sk_rst_reason type */ static inline enum sk_rst_reason sk_rst_convert_drop_reason(enum skb_drop_reason reason) { switch (reason) { case SKB_DROP_REASON_NOT_SPECIFIED: return SK_RST_REASON_NOT_SPECIFIED; case SKB_DROP_REASON_NO_SOCKET: return SK_RST_REASON_NO_SOCKET; case SKB_DROP_REASON_TCP_INVALID_ACK_SEQUENCE: return SK_RST_REASON_TCP_INVALID_ACK_SEQUENCE; case SKB_DROP_REASON_TCP_RFC7323_PAWS: return SK_RST_REASON_TCP_RFC7323_PAWS; case SKB_DROP_REASON_TCP_TOO_OLD_ACK: return SK_RST_REASON_TCP_TOO_OLD_ACK; case SKB_DROP_REASON_TCP_ACK_UNSENT_DATA: return SK_RST_REASON_TCP_ACK_UNSENT_DATA; case SKB_DROP_REASON_TCP_FLAGS: return SK_RST_REASON_TCP_FLAGS; case SKB_DROP_REASON_TCP_OLD_ACK: return SK_RST_REASON_TCP_OLD_ACK; case SKB_DROP_REASON_TCP_ABORT_ON_DATA: return SK_RST_REASON_TCP_ABORT_ON_DATA; default: /* If we don't have our own corresponding reason */ return SK_RST_REASON_NOT_SPECIFIED; } } #endif |
154 325 9 83 10 81 482 134 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { struct module *owner; __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); struct sock_diag_inet_compat { struct module *owner; int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh); }; void sock_diag_register_inet_compat(const struct sock_diag_inet_compat *ptr); void sock_diag_unregister_inet_compat(const struct sock_diag_inet_compat *ptr); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif |
6 2 3 3 3 3 3 3 2 1 1 1 1 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 | /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2010 Nokia Corporation Copyright (C) 2011-2012 Intel Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ /* Bluetooth HCI Management interface */ #include <linux/module.h> #include <linux/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/hci_sock.h> #include <net/bluetooth/l2cap.h> #include <net/bluetooth/mgmt.h> #include "smp.h" #include "mgmt_util.h" #include "mgmt_config.h" #include "msft.h" #include "eir.h" #include "aosp.h" #define MGMT_VERSION 1 #define MGMT_REVISION 23 static const u16 mgmt_commands[] = { MGMT_OP_READ_INDEX_LIST, MGMT_OP_READ_INFO, MGMT_OP_SET_POWERED, MGMT_OP_SET_DISCOVERABLE, MGMT_OP_SET_CONNECTABLE, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_OP_SET_BONDABLE, MGMT_OP_SET_LINK_SECURITY, MGMT_OP_SET_SSP, MGMT_OP_SET_HS, MGMT_OP_SET_LE, MGMT_OP_SET_DEV_CLASS, MGMT_OP_SET_LOCAL_NAME, MGMT_OP_ADD_UUID, MGMT_OP_REMOVE_UUID, MGMT_OP_LOAD_LINK_KEYS, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_OP_DISCONNECT, MGMT_OP_GET_CONNECTIONS, MGMT_OP_PIN_CODE_REPLY, MGMT_OP_PIN_CODE_NEG_REPLY, MGMT_OP_SET_IO_CAPABILITY, MGMT_OP_PAIR_DEVICE, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_OP_UNPAIR_DEVICE, MGMT_OP_USER_CONFIRM_REPLY, MGMT_OP_USER_CONFIRM_NEG_REPLY, MGMT_OP_USER_PASSKEY_REPLY, MGMT_OP_USER_PASSKEY_NEG_REPLY, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_OP_REMOVE_REMOTE_OOB_DATA, MGMT_OP_START_DISCOVERY, MGMT_OP_STOP_DISCOVERY, MGMT_OP_CONFIRM_NAME, MGMT_OP_BLOCK_DEVICE, MGMT_OP_UNBLOCK_DEVICE, MGMT_OP_SET_DEVICE_ID, MGMT_OP_SET_ADVERTISING, MGMT_OP_SET_BREDR, MGMT_OP_SET_STATIC_ADDRESS, MGMT_OP_SET_SCAN_PARAMS, MGMT_OP_SET_SECURE_CONN, MGMT_OP_SET_DEBUG_KEYS, MGMT_OP_SET_PRIVACY, MGMT_OP_LOAD_IRKS, MGMT_OP_GET_CONN_INFO, MGMT_OP_GET_CLOCK_INFO, MGMT_OP_ADD_DEVICE, MGMT_OP_REMOVE_DEVICE, MGMT_OP_LOAD_CONN_PARAM, MGMT_OP_READ_UNCONF_INDEX_LIST, MGMT_OP_READ_CONFIG_INFO, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, MGMT_OP_READ_EXT_INDEX_LIST, MGMT_OP_READ_ADV_FEATURES, MGMT_OP_ADD_ADVERTISING, MGMT_OP_REMOVE_ADVERTISING, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_OP_START_LIMITED_DISCOVERY, MGMT_OP_READ_EXT_INFO, MGMT_OP_SET_APPEARANCE, MGMT_OP_GET_PHY_CONFIGURATION, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_OP_SET_BLOCKED_KEYS, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_OP_READ_CONTROLLER_CAP, MGMT_OP_READ_EXP_FEATURES_INFO, MGMT_OP_SET_EXP_FEATURE, MGMT_OP_READ_DEF_SYSTEM_CONFIG, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_OP_READ_DEF_RUNTIME_CONFIG, MGMT_OP_SET_DEF_RUNTIME_CONFIG, MGMT_OP_GET_DEVICE_FLAGS, MGMT_OP_SET_DEVICE_FLAGS, MGMT_OP_READ_ADV_MONITOR_FEATURES, MGMT_OP_ADD_ADV_PATTERNS_MONITOR, MGMT_OP_REMOVE_ADV_MONITOR, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, MGMT_OP_SET_MESH_RECEIVER, MGMT_OP_MESH_READ_FEATURES, MGMT_OP_MESH_SEND, MGMT_OP_MESH_SEND_CANCEL, MGMT_OP_HCI_CMD_SYNC, }; static const u16 mgmt_events[] = { MGMT_EV_CONTROLLER_ERROR, MGMT_EV_INDEX_ADDED, MGMT_EV_INDEX_REMOVED, MGMT_EV_NEW_SETTINGS, MGMT_EV_CLASS_OF_DEV_CHANGED, MGMT_EV_LOCAL_NAME_CHANGED, MGMT_EV_NEW_LINK_KEY, MGMT_EV_NEW_LONG_TERM_KEY, MGMT_EV_DEVICE_CONNECTED, MGMT_EV_DEVICE_DISCONNECTED, MGMT_EV_CONNECT_FAILED, MGMT_EV_PIN_CODE_REQUEST, MGMT_EV_USER_CONFIRM_REQUEST, MGMT_EV_USER_PASSKEY_REQUEST, MGMT_EV_AUTH_FAILED, MGMT_EV_DEVICE_FOUND, MGMT_EV_DISCOVERING, MGMT_EV_DEVICE_BLOCKED, MGMT_EV_DEVICE_UNBLOCKED, MGMT_EV_DEVICE_UNPAIRED, MGMT_EV_PASSKEY_NOTIFY, MGMT_EV_NEW_IRK, MGMT_EV_NEW_CSRK, MGMT_EV_DEVICE_ADDED, MGMT_EV_DEVICE_REMOVED, MGMT_EV_NEW_CONN_PARAM, MGMT_EV_UNCONF_INDEX_ADDED, MGMT_EV_UNCONF_INDEX_REMOVED, MGMT_EV_NEW_CONFIG_OPTIONS, MGMT_EV_EXT_INDEX_ADDED, MGMT_EV_EXT_INDEX_REMOVED, MGMT_EV_LOCAL_OOB_DATA_UPDATED, MGMT_EV_ADVERTISING_ADDED, MGMT_EV_ADVERTISING_REMOVED, MGMT_EV_EXT_INFO_CHANGED, MGMT_EV_PHY_CONFIGURATION_CHANGED, MGMT_EV_EXP_FEATURE_CHANGED, MGMT_EV_DEVICE_FLAGS_CHANGED, MGMT_EV_ADV_MONITOR_ADDED, MGMT_EV_ADV_MONITOR_REMOVED, MGMT_EV_CONTROLLER_SUSPEND, MGMT_EV_CONTROLLER_RESUME, MGMT_EV_ADV_MONITOR_DEVICE_FOUND, MGMT_EV_ADV_MONITOR_DEVICE_LOST, }; static const u16 mgmt_untrusted_commands[] = { MGMT_OP_READ_INDEX_LIST, MGMT_OP_READ_INFO, MGMT_OP_READ_UNCONF_INDEX_LIST, MGMT_OP_READ_CONFIG_INFO, MGMT_OP_READ_EXT_INDEX_LIST, MGMT_OP_READ_EXT_INFO, MGMT_OP_READ_CONTROLLER_CAP, MGMT_OP_READ_EXP_FEATURES_INFO, MGMT_OP_READ_DEF_SYSTEM_CONFIG, MGMT_OP_READ_DEF_RUNTIME_CONFIG, }; static const u16 mgmt_untrusted_events[] = { MGMT_EV_INDEX_ADDED, MGMT_EV_INDEX_REMOVED, MGMT_EV_NEW_SETTINGS, MGMT_EV_CLASS_OF_DEV_CHANGED, MGMT_EV_LOCAL_NAME_CHANGED, MGMT_EV_UNCONF_INDEX_ADDED, MGMT_EV_UNCONF_INDEX_REMOVED, MGMT_EV_NEW_CONFIG_OPTIONS, MGMT_EV_EXT_INDEX_ADDED, MGMT_EV_EXT_INDEX_REMOVED, MGMT_EV_EXT_INFO_CHANGED, MGMT_EV_EXP_FEATURE_CHANGED, }; #define CACHE_TIMEOUT secs_to_jiffies(2) #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ "\x00\x00\x00\x00\x00\x00\x00\x00" /* HCI to MGMT error code conversion table */ static const u8 mgmt_status_table[] = { MGMT_STATUS_SUCCESS, MGMT_STATUS_UNKNOWN_COMMAND, /* Unknown Command */ MGMT_STATUS_NOT_CONNECTED, /* No Connection */ MGMT_STATUS_FAILED, /* Hardware Failure */ MGMT_STATUS_CONNECT_FAILED, /* Page Timeout */ MGMT_STATUS_AUTH_FAILED, /* Authentication Failed */ MGMT_STATUS_AUTH_FAILED, /* PIN or Key Missing */ MGMT_STATUS_NO_RESOURCES, /* Memory Full */ MGMT_STATUS_TIMEOUT, /* Connection Timeout */ MGMT_STATUS_NO_RESOURCES, /* Max Number of Connections */ MGMT_STATUS_NO_RESOURCES, /* Max Number of SCO Connections */ MGMT_STATUS_ALREADY_CONNECTED, /* ACL Connection Exists */ MGMT_STATUS_BUSY, /* Command Disallowed */ MGMT_STATUS_NO_RESOURCES, /* Rejected Limited Resources */ MGMT_STATUS_REJECTED, /* Rejected Security */ MGMT_STATUS_REJECTED, /* Rejected Personal */ MGMT_STATUS_TIMEOUT, /* Host Timeout */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported Feature */ MGMT_STATUS_INVALID_PARAMS, /* Invalid Parameters */ MGMT_STATUS_DISCONNECTED, /* OE User Ended Connection */ MGMT_STATUS_NO_RESOURCES, /* OE Low Resources */ MGMT_STATUS_DISCONNECTED, /* OE Power Off */ MGMT_STATUS_DISCONNECTED, /* Connection Terminated */ MGMT_STATUS_BUSY, /* Repeated Attempts */ MGMT_STATUS_REJECTED, /* Pairing Not Allowed */ MGMT_STATUS_FAILED, /* Unknown LMP PDU */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported Remote Feature */ MGMT_STATUS_REJECTED, /* SCO Offset Rejected */ MGMT_STATUS_REJECTED, /* SCO Interval Rejected */ MGMT_STATUS_REJECTED, /* Air Mode Rejected */ MGMT_STATUS_INVALID_PARAMS, /* Invalid LMP Parameters */ MGMT_STATUS_FAILED, /* Unspecified Error */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported LMP Parameter Value */ MGMT_STATUS_FAILED, /* Role Change Not Allowed */ MGMT_STATUS_TIMEOUT, /* LMP Response Timeout */ MGMT_STATUS_FAILED, /* LMP Error Transaction Collision */ MGMT_STATUS_FAILED, /* LMP PDU Not Allowed */ MGMT_STATUS_REJECTED, /* Encryption Mode Not Accepted */ MGMT_STATUS_FAILED, /* Unit Link Key Used */ MGMT_STATUS_NOT_SUPPORTED, /* QoS Not Supported */ MGMT_STATUS_TIMEOUT, /* Instant Passed */ MGMT_STATUS_NOT_SUPPORTED, /* Pairing Not Supported */ MGMT_STATUS_FAILED, /* Transaction Collision */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_INVALID_PARAMS, /* Unacceptable Parameter */ MGMT_STATUS_REJECTED, /* QoS Rejected */ MGMT_STATUS_NOT_SUPPORTED, /* Classification Not Supported */ MGMT_STATUS_REJECTED, /* Insufficient Security */ MGMT_STATUS_INVALID_PARAMS, /* Parameter Out Of Range */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_BUSY, /* Role Switch Pending */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_FAILED, /* Slot Violation */ MGMT_STATUS_FAILED, /* Role Switch Failed */ MGMT_STATUS_INVALID_PARAMS, /* EIR Too Large */ MGMT_STATUS_NOT_SUPPORTED, /* Simple Pairing Not Supported */ MGMT_STATUS_BUSY, /* Host Busy Pairing */ MGMT_STATUS_REJECTED, /* Rejected, No Suitable Channel */ MGMT_STATUS_BUSY, /* Controller Busy */ MGMT_STATUS_INVALID_PARAMS, /* Unsuitable Connection Interval */ MGMT_STATUS_TIMEOUT, /* Directed Advertising Timeout */ MGMT_STATUS_AUTH_FAILED, /* Terminated Due to MIC Failure */ MGMT_STATUS_CONNECT_FAILED, /* Connection Establishment Failed */ MGMT_STATUS_CONNECT_FAILED, /* MAC Connection Failed */ }; static u8 mgmt_errno_status(int err) { switch (err) { case 0: return MGMT_STATUS_SUCCESS; case -EPERM: return MGMT_STATUS_REJECTED; case -EINVAL: return MGMT_STATUS_INVALID_PARAMS; case -EOPNOTSUPP: return MGMT_STATUS_NOT_SUPPORTED; case -EBUSY: return MGMT_STATUS_BUSY; case -ETIMEDOUT: return MGMT_STATUS_AUTH_FAILED; case -ENOMEM: return MGMT_STATUS_NO_RESOURCES; case -EISCONN: return MGMT_STATUS_ALREADY_CONNECTED; case -ENOTCONN: return MGMT_STATUS_DISCONNECTED; } return MGMT_STATUS_FAILED; } static u8 mgmt_status(int err) { if (err < 0) return mgmt_errno_status(err); if (err < ARRAY_SIZE(mgmt_status_table)) return mgmt_status_table[err]; return MGMT_STATUS_FAILED; } static int mgmt_index_event(u16 event, struct hci_dev *hdev, void *data, u16 len, int flag) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, flag, NULL); } static int mgmt_limited_event(u16 event, struct hci_dev *hdev, void *data, u16 len, int flag, struct sock *skip_sk) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, flag, skip_sk); } static int mgmt_event(u16 event, struct hci_dev *hdev, void *data, u16 len, struct sock *skip_sk) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, HCI_SOCK_TRUSTED, skip_sk); } static int mgmt_event_skb(struct sk_buff *skb, struct sock *skip_sk) { return mgmt_send_event_skb(HCI_CHANNEL_CONTROL, skb, HCI_SOCK_TRUSTED, skip_sk); } static u8 le_addr_type(u8 mgmt_addr_type) { if (mgmt_addr_type == BDADDR_LE_PUBLIC) return ADDR_LE_DEV_PUBLIC; else return ADDR_LE_DEV_RANDOM; } void mgmt_fill_version_info(void *ver) { struct mgmt_rp_read_version *rp = ver; rp->version = MGMT_VERSION; rp->revision = cpu_to_le16(MGMT_REVISION); } static int read_version(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_version rp; bt_dev_dbg(hdev, "sock %p", sk); mgmt_fill_version_info(&rp); return mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_VERSION, 0, &rp, sizeof(rp)); } static int read_commands(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_commands *rp; u16 num_commands, num_events; size_t rp_size; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (hci_sock_test_flag(sk, HCI_SOCK_TRUSTED)) { num_commands = ARRAY_SIZE(mgmt_commands); num_events = ARRAY_SIZE(mgmt_events); } else { num_commands = ARRAY_SIZE(mgmt_untrusted_commands); num_events = ARRAY_SIZE(mgmt_untrusted_events); } rp_size = sizeof(*rp) + ((num_commands + num_events) * sizeof(u16)); rp = kmalloc(rp_size, GFP_KERNEL); if (!rp) return -ENOMEM; rp->num_commands = cpu_to_le16(num_commands); rp->num_events = cpu_to_le16(num_events); if (hci_sock_test_flag(sk, HCI_SOCK_TRUSTED)) { __le16 *opcode = rp->opcodes; for (i = 0; i < num_commands; i++, opcode++) put_unaligned_le16(mgmt_commands[i], opcode); for (i = 0; i < num_events; i++, opcode++) put_unaligned_le16(mgmt_events[i], opcode); } else { __le16 *opcode = rp->opcodes; for (i = 0; i < num_commands; i++, opcode++) put_unaligned_le16(mgmt_untrusted_commands[i], opcode); for (i = 0; i < num_events; i++, opcode++) put_unaligned_le16(mgmt_untrusted_events[i], opcode); } err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_COMMANDS, 0, rp, rp_size); kfree(rp); return err; } static int read_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_index_list *rp; struct hci_dev *d; size_t rp_len; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (!hci_dev_test_flag(d, HCI_UNCONFIGURED)) count++; } rp_len = sizeof(*rp) + (2 * count); rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (!hci_dev_test_flag(d, HCI_UNCONFIGURED)) { rp->index[count++] = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } } rp->num_controllers = cpu_to_le16(count); rp_len = sizeof(*rp) + (2 * count); read_unlock(&hci_dev_list_lock); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_INDEX_LIST, 0, rp, rp_len); kfree(rp); return err; } static int read_unconf_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_unconf_index_list *rp; struct hci_dev *d; size_t rp_len; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_UNCONFIGURED)) count++; } rp_len = sizeof(*rp) + (2 * count); rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (hci_dev_test_flag(d, HCI_UNCONFIGURED)) { rp->index[count++] = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } } rp->num_controllers = cpu_to_le16(count); rp_len = sizeof(*rp) + (2 * count); read_unlock(&hci_dev_list_lock); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_UNCONF_INDEX_LIST, 0, rp, rp_len); kfree(rp); return err; } static int read_ext_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_ext_index_list *rp; struct hci_dev *d; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) count++; rp = kmalloc(struct_size(rp, entry, count), GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (hci_dev_test_flag(d, HCI_UNCONFIGURED)) rp->entry[count].type = 0x01; else rp->entry[count].type = 0x00; rp->entry[count].bus = d->bus; rp->entry[count++].index = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } rp->num_controllers = cpu_to_le16(count); read_unlock(&hci_dev_list_lock); /* If this command is called at least once, then all the * default index and unconfigured index events are disabled * and from now on only extended index events are used. */ hci_sock_set_flag(sk, HCI_MGMT_EXT_INDEX_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_INDEX_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_EXT_INDEX_LIST, 0, rp, struct_size(rp, entry, count)); kfree(rp); return err; } static bool is_configured(struct hci_dev *hdev) { if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) && !hci_dev_test_flag(hdev, HCI_EXT_CONFIGURED)) return false; if ((test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) && !bacmp(&hdev->public_addr, BDADDR_ANY)) return false; return true; } static __le32 get_missing_options(struct hci_dev *hdev) { u32 options = 0; if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) && !hci_dev_test_flag(hdev, HCI_EXT_CONFIGURED)) options |= MGMT_OPTION_EXTERNAL_CONFIG; if ((test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) && !bacmp(&hdev->public_addr, BDADDR_ANY)) options |= MGMT_OPTION_PUBLIC_ADDRESS; return cpu_to_le32(options); } static int new_options(struct hci_dev *hdev, struct sock *skip) { __le32 options = get_missing_options(hdev); return mgmt_limited_event(MGMT_EV_NEW_CONFIG_OPTIONS, hdev, &options, sizeof(options), HCI_MGMT_OPTION_EVENTS, skip); } static int send_options_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev) { __le32 options = get_missing_options(hdev); return mgmt_cmd_complete(sk, hdev->id, opcode, 0, &options, sizeof(options)); } static int read_config_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_config_info rp; u32 options = 0; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.manufacturer = cpu_to_le16(hdev->manufacturer); if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks)) options |= MGMT_OPTION_EXTERNAL_CONFIG; if (hdev->set_bdaddr) options |= MGMT_OPTION_PUBLIC_ADDRESS; rp.supported_options = cpu_to_le32(options); rp.missing_options = get_missing_options(hdev); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_CONFIG_INFO, 0, &rp, sizeof(rp)); } static u32 get_supported_phys(struct hci_dev *hdev) { u32 supported_phys = 0; if (lmp_bredr_capable(hdev)) { supported_phys |= MGMT_PHY_BR_1M_1SLOT; if (hdev->features[0][0] & LMP_3SLOT) supported_phys |= MGMT_PHY_BR_1M_3SLOT; if (hdev->features[0][0] & LMP_5SLOT) supported_phys |= MGMT_PHY_BR_1M_5SLOT; if (lmp_edr_2m_capable(hdev)) { supported_phys |= MGMT_PHY_EDR_2M_1SLOT; if (lmp_edr_3slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_2M_3SLOT; if (lmp_edr_5slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_2M_5SLOT; if (lmp_edr_3m_capable(hdev)) { supported_phys |= MGMT_PHY_EDR_3M_1SLOT; if (lmp_edr_3slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_3M_3SLOT; if (lmp_edr_5slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_3M_5SLOT; } } } if (lmp_le_capable(hdev)) { supported_phys |= MGMT_PHY_LE_1M_TX; supported_phys |= MGMT_PHY_LE_1M_RX; if (hdev->le_features[1] & HCI_LE_PHY_2M) { supported_phys |= MGMT_PHY_LE_2M_TX; supported_phys |= MGMT_PHY_LE_2M_RX; } if (hdev->le_features[1] & HCI_LE_PHY_CODED) { supported_phys |= MGMT_PHY_LE_CODED_TX; supported_phys |= MGMT_PHY_LE_CODED_RX; } } return supported_phys; } static u32 get_selected_phys(struct hci_dev *hdev) { u32 selected_phys = 0; if (lmp_bredr_capable(hdev)) { selected_phys |= MGMT_PHY_BR_1M_1SLOT; if (hdev->pkt_type & (HCI_DM3 | HCI_DH3)) selected_phys |= MGMT_PHY_BR_1M_3SLOT; if (hdev->pkt_type & (HCI_DM5 | HCI_DH5)) selected_phys |= MGMT_PHY_BR_1M_5SLOT; if (lmp_edr_2m_capable(hdev)) { if (!(hdev->pkt_type & HCI_2DH1)) selected_phys |= MGMT_PHY_EDR_2M_1SLOT; if (lmp_edr_3slot_capable(hdev) && !(hdev->pkt_type & HCI_2DH3)) selected_phys |= MGMT_PHY_EDR_2M_3SLOT; if (lmp_edr_5slot_capable(hdev) && !(hdev->pkt_type & HCI_2DH5)) selected_phys |= MGMT_PHY_EDR_2M_5SLOT; if (lmp_edr_3m_capable(hdev)) { if (!(hdev->pkt_type & HCI_3DH1)) selected_phys |= MGMT_PHY_EDR_3M_1SLOT; if (lmp_edr_3slot_capable(hdev) && !(hdev->pkt_type & HCI_3DH3)) selected_phys |= MGMT_PHY_EDR_3M_3SLOT; if (lmp_edr_5slot_capable(hdev) && !(hdev->pkt_type & HCI_3DH5)) selected_phys |= MGMT_PHY_EDR_3M_5SLOT; } } } if (lmp_le_capable(hdev)) { if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_1M) selected_phys |= MGMT_PHY_LE_1M_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_1M) selected_phys |= MGMT_PHY_LE_1M_RX; if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_2M) selected_phys |= MGMT_PHY_LE_2M_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_2M) selected_phys |= MGMT_PHY_LE_2M_RX; if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_CODED) selected_phys |= MGMT_PHY_LE_CODED_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_CODED) selected_phys |= MGMT_PHY_LE_CODED_RX; } return selected_phys; } static u32 get_configurable_phys(struct hci_dev *hdev) { return (get_supported_phys(hdev) & ~MGMT_PHY_BR_1M_1SLOT & ~MGMT_PHY_LE_1M_TX & ~MGMT_PHY_LE_1M_RX); } static u32 get_supported_settings(struct hci_dev *hdev) { u32 settings = 0; settings |= MGMT_SETTING_POWERED; settings |= MGMT_SETTING_BONDABLE; settings |= MGMT_SETTING_DEBUG_KEYS; settings |= MGMT_SETTING_CONNECTABLE; settings |= MGMT_SETTING_DISCOVERABLE; if (lmp_bredr_capable(hdev)) { if (hdev->hci_ver >= BLUETOOTH_VER_1_2) settings |= MGMT_SETTING_FAST_CONNECTABLE; settings |= MGMT_SETTING_BREDR; settings |= MGMT_SETTING_LINK_SECURITY; if (lmp_ssp_capable(hdev)) { settings |= MGMT_SETTING_SSP; } if (lmp_sc_capable(hdev)) settings |= MGMT_SETTING_SECURE_CONN; if (test_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks)) settings |= MGMT_SETTING_WIDEBAND_SPEECH; } if (lmp_le_capable(hdev)) { settings |= MGMT_SETTING_LE; settings |= MGMT_SETTING_SECURE_CONN; settings |= MGMT_SETTING_PRIVACY; settings |= MGMT_SETTING_STATIC_ADDRESS; settings |= MGMT_SETTING_ADVERTISING; } if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || hdev->set_bdaddr) settings |= MGMT_SETTING_CONFIGURATION; if (cis_central_capable(hdev)) settings |= MGMT_SETTING_CIS_CENTRAL; if (cis_peripheral_capable(hdev)) settings |= MGMT_SETTING_CIS_PERIPHERAL; settings |= MGMT_SETTING_PHY_CONFIGURATION; return settings; } static u32 get_current_settings(struct hci_dev *hdev) { u32 settings = 0; if (hdev_is_powered(hdev)) settings |= MGMT_SETTING_POWERED; if (hci_dev_test_flag(hdev, HCI_CONNECTABLE)) settings |= MGMT_SETTING_CONNECTABLE; if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) settings |= MGMT_SETTING_FAST_CONNECTABLE; if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) settings |= MGMT_SETTING_DISCOVERABLE; if (hci_dev_test_flag(hdev, HCI_BONDABLE)) settings |= MGMT_SETTING_BONDABLE; if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) settings |= MGMT_SETTING_BREDR; if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) settings |= MGMT_SETTING_LE; if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) settings |= MGMT_SETTING_LINK_SECURITY; if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) settings |= MGMT_SETTING_SSP; if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) settings |= MGMT_SETTING_ADVERTISING; if (hci_dev_test_flag(hdev, HCI_SC_ENABLED)) settings |= MGMT_SETTING_SECURE_CONN; if (hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) settings |= MGMT_SETTING_DEBUG_KEYS; if (hci_dev_test_flag(hdev, HCI_PRIVACY)) settings |= MGMT_SETTING_PRIVACY; /* The current setting for static address has two purposes. The * first is to indicate if the static address will be used and * the second is to indicate if it is actually set. * * This means if the static address is not configured, this flag * will never be set. If the address is configured, then if the * address is actually used decides if the flag is set or not. * * For single mode LE only controllers and dual-mode controllers * with BR/EDR disabled, the existence of the static address will * be evaluated. */ if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) || !bacmp(&hdev->bdaddr, BDADDR_ANY)) { if (bacmp(&hdev->static_addr, BDADDR_ANY)) settings |= MGMT_SETTING_STATIC_ADDRESS; } if (hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED)) settings |= MGMT_SETTING_WIDEBAND_SPEECH; if (cis_central_capable(hdev)) settings |= MGMT_SETTING_CIS_CENTRAL; if (cis_peripheral_capable(hdev)) settings |= MGMT_SETTING_CIS_PERIPHERAL; if (bis_capable(hdev)) settings |= MGMT_SETTING_ISO_BROADCASTER; if (sync_recv_capable(hdev)) settings |= MGMT_SETTING_ISO_SYNC_RECEIVER; return settings; } static struct mgmt_pending_cmd *pending_find(u16 opcode, struct hci_dev *hdev) { return mgmt_pending_find(HCI_CHANNEL_CONTROL, opcode, hdev); } u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; /* If there's a pending mgmt command the flags will not yet have * their final values, so check for this first. */ cmd = pending_find(MGMT_OP_SET_DISCOVERABLE, hdev); if (cmd) { struct mgmt_mode *cp = cmd->param; if (cp->val == 0x01) return LE_AD_GENERAL; else if (cp->val == 0x02) return LE_AD_LIMITED; } else { if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) return LE_AD_LIMITED; else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) return LE_AD_GENERAL; } return 0; } bool mgmt_get_connectable(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; /* If there's a pending mgmt command the flag will not yet have * it's final value, so check for this first. */ cmd = pending_find(MGMT_OP_SET_CONNECTABLE, hdev); if (cmd) { struct mgmt_mode *cp = cmd->param; return cp->val; } return hci_dev_test_flag(hdev, HCI_CONNECTABLE); } static int service_cache_sync(struct hci_dev *hdev, void *data) { hci_update_eir_sync(hdev); hci_update_class_sync(hdev); return 0; } static void service_cache_off(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, service_cache.work); if (!hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) return; hci_cmd_sync_queue(hdev, service_cache_sync, NULL, NULL); } static int rpa_expired_sync(struct hci_dev *hdev, void *data) { /* The generation of a new RPA and programming it into the * controller happens in the hci_req_enable_advertising() * function. */ if (ext_adv_capable(hdev)) return hci_start_ext_adv_sync(hdev, hdev->cur_adv_instance); else return hci_enable_advertising_sync(hdev); } static void rpa_expired(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, rpa_expired.work); bt_dev_dbg(hdev, ""); hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); if (!hci_dev_test_flag(hdev, HCI_ADVERTISING)) return; hci_cmd_sync_queue(hdev, rpa_expired_sync, NULL, NULL); } static int set_discoverable_sync(struct hci_dev *hdev, void *data); static void discov_off(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, discov_off.work); bt_dev_dbg(hdev, ""); hci_dev_lock(hdev); /* When discoverable timeout triggers, then just make sure * the limited discoverable flag is cleared. Even in the case * of a timeout triggered from general discoverable, it is * safe to unconditionally clear the flag. */ hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hdev->discov_timeout = 0; hci_cmd_sync_queue(hdev, set_discoverable_sync, NULL, NULL); mgmt_new_settings(hdev); hci_dev_unlock(hdev); } static int send_settings_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev); static void mesh_send_complete(struct hci_dev *hdev, struct mgmt_mesh_tx *mesh_tx, bool silent) { u8 handle = mesh_tx->handle; if (!silent) mgmt_event(MGMT_EV_MESH_PACKET_CMPLT, hdev, &handle, sizeof(handle), NULL); mgmt_mesh_remove(mesh_tx); } static int mesh_send_done_sync(struct hci_dev *hdev, void *data) { struct mgmt_mesh_tx *mesh_tx; hci_dev_clear_flag(hdev, HCI_MESH_SENDING); hci_disable_advertising_sync(hdev); mesh_tx = mgmt_mesh_next(hdev, NULL); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, false); return 0; } static int mesh_send_sync(struct hci_dev *hdev, void *data); static void mesh_send_start_complete(struct hci_dev *hdev, void *data, int err); static void mesh_next(struct hci_dev *hdev, void *data, int err) { struct mgmt_mesh_tx *mesh_tx = mgmt_mesh_next(hdev, NULL); if (!mesh_tx) return; err = hci_cmd_sync_queue(hdev, mesh_send_sync, mesh_tx, mesh_send_start_complete); if (err < 0) mesh_send_complete(hdev, mesh_tx, false); else hci_dev_set_flag(hdev, HCI_MESH_SENDING); } static void mesh_send_done(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, mesh_send_done.work); if (!hci_dev_test_flag(hdev, HCI_MESH_SENDING)) return; hci_cmd_sync_queue(hdev, mesh_send_done_sync, NULL, mesh_next); } static void mgmt_init_hdev(struct sock *sk, struct hci_dev *hdev) { if (hci_dev_test_flag(hdev, HCI_MGMT)) return; BT_INFO("MGMT ver %d.%d", MGMT_VERSION, MGMT_REVISION); INIT_DELAYED_WORK(&hdev->discov_off, discov_off); INIT_DELAYED_WORK(&hdev->service_cache, service_cache_off); INIT_DELAYED_WORK(&hdev->rpa_expired, rpa_expired); INIT_DELAYED_WORK(&hdev->mesh_send_done, mesh_send_done); /* Non-mgmt controlled devices get this bit set * implicitly so that pairing works for them, however * for mgmt we require user-space to explicitly enable * it */ hci_dev_clear_flag(hdev, HCI_BONDABLE); hci_dev_set_flag(hdev, HCI_MGMT); } static int read_controller_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_info rp; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); bacpy(&rp.bdaddr, &hdev->bdaddr); rp.version = hdev->hci_ver; rp.manufacturer = cpu_to_le16(hdev->manufacturer); rp.supported_settings = cpu_to_le32(get_supported_settings(hdev)); rp.current_settings = cpu_to_le32(get_current_settings(hdev)); memcpy(rp.dev_class, hdev->dev_class, 3); memcpy(rp.name, hdev->dev_name, sizeof(hdev->dev_name)); memcpy(rp.short_name, hdev->short_name, sizeof(hdev->short_name)); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_INFO, 0, &rp, sizeof(rp)); } static u16 append_eir_data_to_buf(struct hci_dev *hdev, u8 *eir) { u16 eir_len = 0; size_t name_len; if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) eir_len = eir_append_data(eir, eir_len, EIR_CLASS_OF_DEV, hdev->dev_class, 3); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) eir_len = eir_append_le16(eir, eir_len, EIR_APPEARANCE, hdev->appearance); name_len = strnlen(hdev->dev_name, sizeof(hdev->dev_name)); eir_len = eir_append_data(eir, eir_len, EIR_NAME_COMPLETE, hdev->dev_name, name_len); name_len = strnlen(hdev->short_name, sizeof(hdev->short_name)); eir_len = eir_append_data(eir, eir_len, EIR_NAME_SHORT, hdev->short_name, name_len); return eir_len; } static int read_ext_controller_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { char buf[512]; struct mgmt_rp_read_ext_info *rp = (void *)buf; u16 eir_len; bt_dev_dbg(hdev, "sock %p", sk); memset(&buf, 0, sizeof(buf)); hci_dev_lock(hdev); bacpy(&rp->bdaddr, &hdev->bdaddr); rp->version = hdev->hci_ver; rp->manufacturer = cpu_to_le16(hdev->manufacturer); rp->supported_settings = cpu_to_le32(get_supported_settings(hdev)); rp->current_settings = cpu_to_le32(get_current_settings(hdev)); eir_len = append_eir_data_to_buf(hdev, rp->eir); rp->eir_len = cpu_to_le16(eir_len); hci_dev_unlock(hdev); /* If this command is called at least once, then the events * for class of device and local name changes are disabled * and only the new extended controller information event * is used. */ hci_sock_set_flag(sk, HCI_MGMT_EXT_INFO_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_EXT_INFO, 0, rp, sizeof(*rp) + eir_len); } static int ext_info_changed(struct hci_dev *hdev, struct sock *skip) { char buf[512]; struct mgmt_ev_ext_info_changed *ev = (void *)buf; u16 eir_len; memset(buf, 0, sizeof(buf)); eir_len = append_eir_data_to_buf(hdev, ev->eir); ev->eir_len = cpu_to_le16(eir_len); return mgmt_limited_event(MGMT_EV_EXT_INFO_CHANGED, hdev, ev, sizeof(*ev) + eir_len, HCI_MGMT_EXT_INFO_EVENTS, skip); } static int send_settings_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev) { __le32 settings = cpu_to_le32(get_current_settings(hdev)); return mgmt_cmd_complete(sk, hdev->id, opcode, 0, &settings, sizeof(settings)); } void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance) { struct mgmt_ev_advertising_added ev; ev.instance = instance; mgmt_event(MGMT_EV_ADVERTISING_ADDED, hdev, &ev, sizeof(ev), sk); } void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance) { struct mgmt_ev_advertising_removed ev; ev.instance = instance; mgmt_event(MGMT_EV_ADVERTISING_REMOVED, hdev, &ev, sizeof(ev), sk); } static void cancel_adv_timeout(struct hci_dev *hdev) { if (hdev->adv_instance_timeout) { hdev->adv_instance_timeout = 0; cancel_delayed_work(&hdev->adv_instance_expire); } } /* This function requires the caller holds hdev->lock */ static void restart_le_actions(struct hci_dev *hdev) { struct hci_conn_params *p; list_for_each_entry(p, &hdev->le_conn_params, list) { /* Needed for AUTO_OFF case where might not "really" * have been powered off. */ hci_pend_le_list_del_init(p); switch (p->auto_connect) { case HCI_AUTO_CONN_DIRECT: case HCI_AUTO_CONN_ALWAYS: hci_pend_le_list_add(p, &hdev->pend_le_conns); break; case HCI_AUTO_CONN_REPORT: hci_pend_le_list_add(p, &hdev->pend_le_reports); break; default: break; } } } static int new_settings(struct hci_dev *hdev, struct sock *skip) { __le32 ev = cpu_to_le32(get_current_settings(hdev)); return mgmt_limited_event(MGMT_EV_NEW_SETTINGS, hdev, &ev, sizeof(ev), HCI_MGMT_SETTING_EVENTS, skip); } static void mgmt_set_powered_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_POWERED, hdev)) return; cp = cmd->param; bt_dev_dbg(hdev, "err %d", err); if (!err) { if (cp->val) { hci_dev_lock(hdev); restart_le_actions(hdev); hci_update_passive_scan(hdev); hci_dev_unlock(hdev); } send_settings_rsp(cmd->sk, cmd->opcode, hdev); /* Only call new_setting for power on as power off is deferred * to hdev->power_off work which does call hci_dev_do_close. */ if (cp->val) new_settings(hdev, cmd->sk); } else { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_POWERED, mgmt_status(err)); } mgmt_pending_remove(cmd); } static int set_powered_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; /* Make sure cmd still outstanding. */ if (cmd != pending_find(MGMT_OP_SET_POWERED, hdev)) return -ECANCELED; cp = cmd->param; BT_DBG("%s", hdev->name); return hci_set_powered_sync(hdev, cp->val); } static int set_powered(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_POWERED, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!cp->val) { if (hci_dev_test_flag(hdev, HCI_POWERING_DOWN)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_POWERED, MGMT_STATUS_BUSY); goto failed; } } if (pending_find(MGMT_OP_SET_POWERED, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_POWERED, MGMT_STATUS_BUSY); goto failed; } if (!!cp->val == hdev_is_powered(hdev)) { err = send_settings_rsp(sk, MGMT_OP_SET_POWERED, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_POWERED, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Cancel potentially blocking sync operation before power off */ if (cp->val == 0x00) { hci_cmd_sync_cancel_sync(hdev, -EHOSTDOWN); err = hci_cmd_sync_queue(hdev, set_powered_sync, cmd, mgmt_set_powered_complete); } else { /* Use hci_cmd_sync_submit since hdev might not be running */ err = hci_cmd_sync_submit(hdev, set_powered_sync, cmd, mgmt_set_powered_complete); } if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } int mgmt_new_settings(struct hci_dev *hdev) { return new_settings(hdev, NULL); } struct cmd_lookup { struct sock *sk; struct hci_dev *hdev; u8 mgmt_status; }; static void settings_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; send_settings_rsp(cmd->sk, cmd->opcode, match->hdev); list_del(&cmd->list); if (match->sk == NULL) { match->sk = cmd->sk; sock_hold(match->sk); } mgmt_pending_free(cmd); } static void cmd_status_rsp(struct mgmt_pending_cmd *cmd, void *data) { u8 *status = data; mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, *status); mgmt_pending_remove(cmd); } static void cmd_complete_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; /* dequeue cmd_sync entries using cmd as data as that is about to be * removed/freed. */ hci_cmd_sync_dequeue(match->hdev, NULL, cmd, NULL); if (cmd->cmd_complete) { cmd->cmd_complete(cmd, match->mgmt_status); mgmt_pending_remove(cmd); return; } cmd_status_rsp(cmd, data); } static int generic_cmd_complete(struct mgmt_pending_cmd *cmd, u8 status) { return mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, cmd->param, cmd->param_len); } static int addr_cmd_complete(struct mgmt_pending_cmd *cmd, u8 status) { return mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, cmd->param, sizeof(struct mgmt_addr_info)); } static u8 mgmt_bredr_support(struct hci_dev *hdev) { if (!lmp_bredr_capable(hdev)) return MGMT_STATUS_NOT_SUPPORTED; else if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return MGMT_STATUS_REJECTED; else return MGMT_STATUS_SUCCESS; } static u8 mgmt_le_support(struct hci_dev *hdev) { if (!lmp_le_capable(hdev)) return MGMT_STATUS_NOT_SUPPORTED; else if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return MGMT_STATUS_REJECTED; else return MGMT_STATUS_SUCCESS; } static void mgmt_set_discoverable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_DISCOVERABLE, hdev)) return; hci_dev_lock(hdev); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); goto done; } if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && hdev->discov_timeout > 0) { int to = msecs_to_jiffies(hdev->discov_timeout * 1000); queue_delayed_work(hdev->req_workqueue, &hdev->discov_off, to); } send_settings_rsp(cmd->sk, MGMT_OP_SET_DISCOVERABLE, hdev); new_settings(hdev, cmd->sk); done: mgmt_pending_remove(cmd); hci_dev_unlock(hdev); } static int set_discoverable_sync(struct hci_dev *hdev, void *data) { BT_DBG("%s", hdev->name); return hci_update_discoverable_sync(hdev); } static int set_discoverable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_discoverable *cp = data; struct mgmt_pending_cmd *cmd; u16 timeout; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) && !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_INVALID_PARAMS); timeout = __le16_to_cpu(cp->timeout); /* Disabling discoverable requires that no timeout is set, * and enabling limited discoverable requires a timeout. */ if ((cp->val == 0x00 && timeout > 0) || (cp->val == 0x02 && timeout == 0)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev) && timeout > 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_NOT_POWERED); goto failed; } if (pending_find(MGMT_OP_SET_DISCOVERABLE, hdev) || pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_BUSY); goto failed; } if (!hci_dev_test_flag(hdev, HCI_CONNECTABLE)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_REJECTED); goto failed; } if (hdev->advertising_paused) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_BUSY); goto failed; } if (!hdev_is_powered(hdev)) { bool changed = false; /* Setting limited discoverable when powered off is * not a valid operation since it requires a timeout * and so no need to check HCI_LIMITED_DISCOVERABLE. */ if (!!cp->val != hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) { hci_dev_change_flag(hdev, HCI_DISCOVERABLE); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_DISCOVERABLE, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } /* If the current mode is the same, then just update the timeout * value with the new value. And if only the timeout gets updated, * then no need for any HCI transactions. */ if (!!cp->val == hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { cancel_delayed_work(&hdev->discov_off); hdev->discov_timeout = timeout; if (cp->val && hdev->discov_timeout > 0) { int to = msecs_to_jiffies(hdev->discov_timeout * 1000); queue_delayed_work(hdev->req_workqueue, &hdev->discov_off, to); } err = send_settings_rsp(sk, MGMT_OP_SET_DISCOVERABLE, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_DISCOVERABLE, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Cancel any potential discoverable timeout that might be * still active and store new timeout value. The arming of * the timeout happens in the complete handler. */ cancel_delayed_work(&hdev->discov_off); hdev->discov_timeout = timeout; if (cp->val) hci_dev_set_flag(hdev, HCI_DISCOVERABLE); else hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); /* Limited discoverable mode */ if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_LIMITED_DISCOVERABLE); else hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); err = hci_cmd_sync_queue(hdev, set_discoverable_sync, cmd, mgmt_set_discoverable_complete); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static void mgmt_set_connectable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) return; hci_dev_lock(hdev); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); goto done; } send_settings_rsp(cmd->sk, MGMT_OP_SET_CONNECTABLE, hdev); new_settings(hdev, cmd->sk); done: mgmt_pending_remove(cmd); hci_dev_unlock(hdev); } static int set_connectable_update_settings(struct hci_dev *hdev, struct sock *sk, u8 val) { bool changed = false; int err; if (!!val != hci_dev_test_flag(hdev, HCI_CONNECTABLE)) changed = true; if (val) { hci_dev_set_flag(hdev, HCI_CONNECTABLE); } else { hci_dev_clear_flag(hdev, HCI_CONNECTABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); } err = send_settings_rsp(sk, MGMT_OP_SET_CONNECTABLE, hdev); if (err < 0) return err; if (changed) { hci_update_scan(hdev); hci_update_passive_scan(hdev); return new_settings(hdev, sk); } return 0; } static int set_connectable_sync(struct hci_dev *hdev, void *data) { BT_DBG("%s", hdev->name); return hci_update_connectable_sync(hdev); } static int set_connectable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) && !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = set_connectable_update_settings(hdev, sk, cp->val); goto failed; } if (pending_find(MGMT_OP_SET_DISCOVERABLE, hdev) || pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_BUSY); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_CONNECTABLE, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } if (cp->val) { hci_dev_set_flag(hdev, HCI_CONNECTABLE); } else { if (hdev->discov_timeout > 0) cancel_delayed_work(&hdev->discov_off); hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_CONNECTABLE); } err = hci_cmd_sync_queue(hdev, set_connectable_sync, cmd, mgmt_set_connectable_complete); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static int set_bondable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BONDABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_BONDABLE); else changed = hci_dev_test_and_clear_flag(hdev, HCI_BONDABLE); err = send_settings_rsp(sk, MGMT_OP_SET_BONDABLE, hdev); if (err < 0) goto unlock; if (changed) { /* In limited privacy mode the change of bondable mode * may affect the local advertising address. */ hci_update_discoverable(hdev); err = new_settings(hdev, sk); } unlock: hci_dev_unlock(hdev); return err; } static int set_link_security(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val, status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_bredr_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, status); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { bool changed = false; if (!!cp->val != hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { hci_dev_change_flag(hdev, HCI_LINK_SECURITY); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_LINK_SECURITY, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } if (pending_find(MGMT_OP_SET_LINK_SECURITY, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, MGMT_STATUS_BUSY); goto failed; } val = !!cp->val; if (test_bit(HCI_AUTH, &hdev->flags) == val) { err = send_settings_rsp(sk, MGMT_OP_SET_LINK_SECURITY, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LINK_SECURITY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } err = hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, sizeof(val), &val); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } failed: hci_dev_unlock(hdev); return err; } static void set_ssp_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 enable = cp->val; bool changed; /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_SSP, hdev)) return; if (err) { u8 mgmt_err = mgmt_status(err); if (enable && hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED)) { new_settings(hdev, NULL); } mgmt_pending_foreach(MGMT_OP_SET_SSP, hdev, cmd_status_rsp, &mgmt_err); return; } if (enable) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED); } mgmt_pending_foreach(MGMT_OP_SET_SSP, hdev, settings_rsp, &match); if (changed) new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); hci_update_eir_sync(hdev); } static int set_ssp_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; bool changed = false; int err; if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); err = hci_write_ssp_mode_sync(hdev, cp->val); if (!err && changed) hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); return err; } static int set_ssp(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_bredr_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, status); if (!lmp_ssp_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { bool changed; if (cp->val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED); } err = send_settings_rsp(sk, MGMT_OP_SET_SSP, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } if (pending_find(MGMT_OP_SET_SSP, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_BUSY); goto failed; } if (!!cp->val == hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { err = send_settings_rsp(sk, MGMT_OP_SET_SSP, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_SSP, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_ssp_sync, cmd, set_ssp_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } failed: hci_dev_unlock(hdev); return err; } static int set_hs(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { bt_dev_dbg(hdev, "sock %p", sk); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_NOT_SUPPORTED); } static void set_le_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); if (status) { mgmt_pending_foreach(MGMT_OP_SET_LE, hdev, cmd_status_rsp, &status); return; } mgmt_pending_foreach(MGMT_OP_SET_LE, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } static int set_le_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; int err; if (!val) { hci_clear_adv_instance_sync(hdev, NULL, 0x00, true); if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_disable_advertising_sync(hdev); if (ext_adv_capable(hdev)) hci_remove_ext_adv_instance_sync(hdev, 0, cmd->sk); } else { hci_dev_set_flag(hdev, HCI_LE_ENABLED); } err = hci_write_le_host_supported_sync(hdev, val, 0); /* Make sure the controller has a good default for * advertising data. Restrict the update to when LE * has actually been enabled. During power on, the * update in powered_update_hci will take care of it. */ if (!err && hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { if (ext_adv_capable(hdev)) { int status; status = hci_setup_ext_adv_instance_sync(hdev, 0x00); if (!status) hci_update_scan_rsp_data_sync(hdev, 0x00); } else { hci_update_adv_data_sync(hdev, 0x00); hci_update_scan_rsp_data_sync(hdev, 0x00); } hci_update_passive_scan(hdev); } return err; } static void set_mesh_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; u8 status = mgmt_status(err); struct sock *sk = cmd->sk; if (status) { mgmt_pending_foreach(MGMT_OP_SET_MESH_RECEIVER, hdev, cmd_status_rsp, &status); return; } mgmt_pending_remove(cmd); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, 0, NULL, 0); } static int set_mesh_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_mesh *cp = cmd->param; size_t len = cmd->param_len; memset(hdev->mesh_ad_types, 0, sizeof(hdev->mesh_ad_types)); if (cp->enable) hci_dev_set_flag(hdev, HCI_MESH); else hci_dev_clear_flag(hdev, HCI_MESH); len -= sizeof(*cp); /* If filters don't fit, forward all adv pkts */ if (len <= sizeof(hdev->mesh_ad_types)) memcpy(hdev->mesh_ad_types, cp->ad_types, len); hci_update_passive_scan_sync(hdev); return 0; } static int set_mesh(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_mesh *cp = data; struct mgmt_pending_cmd *cmd; int err = 0; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_NOT_SUPPORTED); if (cp->enable != 0x00 && cp->enable != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); cmd = mgmt_pending_add(sk, MGMT_OP_SET_MESH_RECEIVER, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_mesh_sync, cmd, set_mesh_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); return err; } static void mesh_send_start_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_mesh_tx *mesh_tx = data; struct mgmt_cp_mesh_send *send = (void *)mesh_tx->param; unsigned long mesh_send_interval; u8 mgmt_err = mgmt_status(err); /* Report any errors here, but don't report completion */ if (mgmt_err) { hci_dev_clear_flag(hdev, HCI_MESH_SENDING); /* Send Complete Error Code for handle */ mesh_send_complete(hdev, mesh_tx, false); return; } mesh_send_interval = msecs_to_jiffies((send->cnt) * 25); queue_delayed_work(hdev->req_workqueue, &hdev->mesh_send_done, mesh_send_interval); } static int mesh_send_sync(struct hci_dev *hdev, void *data) { struct mgmt_mesh_tx *mesh_tx = data; struct mgmt_cp_mesh_send *send = (void *)mesh_tx->param; struct adv_info *adv, *next_instance; u8 instance = hdev->le_num_of_adv_sets + 1; u16 timeout, duration; int err = 0; if (hdev->le_num_of_adv_sets <= hdev->adv_instance_cnt) return MGMT_STATUS_BUSY; timeout = 1000; duration = send->cnt * INTERVAL_TO_MS(hdev->le_adv_max_interval); adv = hci_add_adv_instance(hdev, instance, 0, send->adv_data_len, send->adv_data, 0, NULL, timeout, duration, HCI_ADV_TX_POWER_NO_PREFERENCE, hdev->le_adv_min_interval, hdev->le_adv_max_interval, mesh_tx->handle); if (!IS_ERR(adv)) mesh_tx->instance = instance; else err = PTR_ERR(adv); if (hdev->cur_adv_instance == instance) { /* If the currently advertised instance is being changed then * cancel the current advertising and schedule the next * instance. If there is only one instance then the overridden * advertising data will be visible right away. */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, instance); if (next_instance) instance = next_instance->instance; else instance = 0; } else if (hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other, or * let it go naturally from queue if ADV is already happening */ instance = 0; } if (instance) return hci_schedule_adv_instance_sync(hdev, instance, true); return err; } static void send_count(struct mgmt_mesh_tx *mesh_tx, void *data) { struct mgmt_rp_mesh_read_features *rp = data; if (rp->used_handles >= rp->max_handles) return; rp->handles[rp->used_handles++] = mesh_tx->handle; } static int mesh_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_rp_mesh_read_features rp; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_READ_FEATURES, MGMT_STATUS_NOT_SUPPORTED); memset(&rp, 0, sizeof(rp)); rp.index = cpu_to_le16(hdev->id); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) rp.max_handles = MESH_HANDLES_MAX; hci_dev_lock(hdev); if (rp.max_handles) mgmt_mesh_foreach(hdev, send_count, &rp, sk); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_MESH_READ_FEATURES, 0, &rp, rp.used_handles + sizeof(rp) - MESH_HANDLES_MAX); hci_dev_unlock(hdev); return 0; } static int send_cancel(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_mesh_send_cancel *cancel = (void *)cmd->param; struct mgmt_mesh_tx *mesh_tx; if (!cancel->handle) { do { mesh_tx = mgmt_mesh_next(hdev, cmd->sk); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, false); } while (mesh_tx); } else { mesh_tx = mgmt_mesh_find(hdev, cancel->handle); if (mesh_tx && mesh_tx->sk == cmd->sk) mesh_send_complete(hdev, mesh_tx, false); } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, 0, NULL, 0); mgmt_pending_free(cmd); return 0; } static int mesh_send_cancel(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; int err; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); cmd = mgmt_pending_new(sk, MGMT_OP_MESH_SEND_CANCEL, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, send_cancel, cmd, NULL); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } hci_dev_unlock(hdev); return err; } static int mesh_send(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mesh_tx *mesh_tx; struct mgmt_cp_mesh_send *send = data; struct mgmt_rp_mesh_read_features rp; bool sending; int err = 0; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || len <= MGMT_MESH_SEND_SIZE || len > (MGMT_MESH_SEND_SIZE + 31)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.max_handles = MESH_HANDLES_MAX; mgmt_mesh_foreach(hdev, send_count, &rp, sk); if (rp.max_handles <= rp.used_handles) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_BUSY); goto done; } sending = hci_dev_test_flag(hdev, HCI_MESH_SENDING); mesh_tx = mgmt_mesh_add(sk, hdev, send, len); if (!mesh_tx) err = -ENOMEM; else if (!sending) err = hci_cmd_sync_queue(hdev, mesh_send_sync, mesh_tx, mesh_send_start_complete); if (err < 0) { bt_dev_err(hdev, "Send Mesh Failed %d", err); err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_FAILED); if (mesh_tx) { if (sending) mgmt_mesh_remove(mesh_tx); } } else { hci_dev_set_flag(hdev, HCI_MESH_SENDING); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_MESH_SEND, 0, &mesh_tx->handle, 1); } done: hci_dev_unlock(hdev); return err; } static int set_le(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; u8 val, enabled; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_INVALID_PARAMS); /* Bluetooth single mode LE only controllers or dual-mode * controllers configured as LE only devices, do not allow * switching LE off. These have either LE enabled explicitly * or BR/EDR has been previously switched off. * * When trying to enable an already enabled LE, then gracefully * send a positive response. Trying to disable it however will * result into rejection. */ if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { if (cp->val == 0x01) return send_settings_rsp(sk, MGMT_OP_SET_LE, hdev); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_REJECTED); } hci_dev_lock(hdev); val = !!cp->val; enabled = lmp_host_le_capable(hdev); if (!hdev_is_powered(hdev) || val == enabled) { bool changed = false; if (val != hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { hci_dev_change_flag(hdev, HCI_LE_ENABLED); changed = true; } if (!val && hci_dev_test_flag(hdev, HCI_ADVERTISING)) { hci_dev_clear_flag(hdev, HCI_ADVERTISING); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_LE, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); goto unlock; } if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_SET_ADVERTISING, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_BUSY); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LE, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_le_sync, cmd, set_le_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } unlock: hci_dev_unlock(hdev); return err; } static int send_hci_cmd_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_hci_cmd_sync *cp = cmd->param; struct sk_buff *skb; skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cp->opcode), le16_to_cpu(cp->params_len), cp->params, cp->event, cp->timeout ? msecs_to_jiffies(cp->timeout * 1000) : HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_HCI_CMD_SYNC, mgmt_status(PTR_ERR(skb))); goto done; } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_HCI_CMD_SYNC, 0, skb->data, skb->len); kfree_skb(skb); done: mgmt_pending_free(cmd); return 0; } static int mgmt_hci_cmd_sync(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_hci_cmd_sync *cp = data; struct mgmt_pending_cmd *cmd; int err; if (len < sizeof(*cp)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_HCI_CMD_SYNC, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); cmd = mgmt_pending_new(sk, MGMT_OP_HCI_CMD_SYNC, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, send_hci_cmd_sync, cmd, NULL); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_HCI_CMD_SYNC, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } hci_dev_unlock(hdev); return err; } /* This is a helper function to test for pending mgmt commands that can * cause CoD or EIR HCI commands. We can only allow one such pending * mgmt command at a time since otherwise we cannot easily track what * the current values are, will be, and based on that calculate if a new * HCI command needs to be sent and if yes with what value. */ static bool pending_eir_or_class(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { switch (cmd->opcode) { case MGMT_OP_ADD_UUID: case MGMT_OP_REMOVE_UUID: case MGMT_OP_SET_DEV_CLASS: case MGMT_OP_SET_POWERED: return true; } } return false; } static const u8 bluetooth_base_uuid[] = { 0xfb, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static u8 get_uuid_size(const u8 *uuid) { u32 val; if (memcmp(uuid, bluetooth_base_uuid, 12)) return 128; val = get_unaligned_le32(&uuid[12]); if (val > 0xffff) return 32; return 16; } static void mgmt_class_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), hdev->dev_class, 3); mgmt_pending_free(cmd); } static int add_uuid_sync(struct hci_dev *hdev, void *data) { int err; err = hci_update_class_sync(hdev); if (err) return err; return hci_update_eir_sync(hdev); } static int add_uuid(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_uuid *cp = data; struct mgmt_pending_cmd *cmd; struct bt_uuid *uuid; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_UUID, MGMT_STATUS_BUSY); goto failed; } uuid = kmalloc(sizeof(*uuid), GFP_KERNEL); if (!uuid) { err = -ENOMEM; goto failed; } memcpy(uuid->uuid, cp->uuid, 16); uuid->svc_hint = cp->svc_hint; uuid->size = get_uuid_size(cp->uuid); list_add_tail(&uuid->list, &hdev->uuids); cmd = mgmt_pending_new(sk, MGMT_OP_ADD_UUID, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* MGMT_OP_ADD_UUID don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, add_uuid_sync, cmd, mgmt_class_complete); if (err < 0) { mgmt_pending_free(cmd); goto failed; } failed: hci_dev_unlock(hdev); return err; } static bool enable_service_cache(struct hci_dev *hdev) { if (!hdev_is_powered(hdev)) return false; if (!hci_dev_test_and_set_flag(hdev, HCI_SERVICE_CACHE)) { queue_delayed_work(hdev->workqueue, &hdev->service_cache, CACHE_TIMEOUT); return true; } return false; } static int remove_uuid_sync(struct hci_dev *hdev, void *data) { int err; err = hci_update_class_sync(hdev); if (err) return err; return hci_update_eir_sync(hdev); } static int remove_uuid(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_uuid *cp = data; struct mgmt_pending_cmd *cmd; struct bt_uuid *match, *tmp; static const u8 bt_uuid_any[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int err, found; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_UUID, MGMT_STATUS_BUSY); goto unlock; } if (memcmp(cp->uuid, bt_uuid_any, 16) == 0) { hci_uuids_clear(hdev); if (enable_service_cache(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_UUID, 0, hdev->dev_class, 3); goto unlock; } goto update_class; } found = 0; list_for_each_entry_safe(match, tmp, &hdev->uuids, list) { if (memcmp(match->uuid, cp->uuid, 16) != 0) continue; list_del(&match->list); kfree(match); found++; } if (found == 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_UUID, MGMT_STATUS_INVALID_PARAMS); goto unlock; } update_class: cmd = mgmt_pending_new(sk, MGMT_OP_REMOVE_UUID, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } /* MGMT_OP_REMOVE_UUID don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, remove_uuid_sync, cmd, mgmt_class_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int set_class_sync(struct hci_dev *hdev, void *data) { int err = 0; if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) { cancel_delayed_work_sync(&hdev->service_cache); err = hci_update_eir_sync(hdev); } if (err) return err; return hci_update_class_sync(hdev); } static int set_dev_class(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_dev_class *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_BUSY); goto unlock; } if ((cp->minor & 0x03) != 0 || (cp->major & 0xe0) != 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_INVALID_PARAMS); goto unlock; } hdev->major_class = cp->major; hdev->minor_class = cp->minor; if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, 0, hdev->dev_class, 3); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_DEV_CLASS, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } /* MGMT_OP_SET_DEV_CLASS don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, set_class_sync, cmd, mgmt_class_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int load_link_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_load_link_keys *cp = data; const u16 max_key_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_link_key_info)); u16 key_count, expected_len; bool changed; int i; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_NOT_SUPPORTED); key_count = __le16_to_cpu(cp->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "load_link_keys: too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "load_link_keys: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); } if (cp->debug_keys != 0x00 && cp->debug_keys != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); bt_dev_dbg(hdev, "debug_keys %u key_count %u", cp->debug_keys, key_count); hci_dev_lock(hdev); hci_link_keys_clear(hdev); if (cp->debug_keys) changed = !hci_dev_test_and_set_flag(hdev, HCI_KEEP_DEBUG_KEYS); else changed = hci_dev_test_and_clear_flag(hdev, HCI_KEEP_DEBUG_KEYS); if (changed) new_settings(hdev, NULL); for (i = 0; i < key_count; i++) { struct mgmt_link_key_info *key = &cp->keys[i]; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LINKKEY, key->val)) { bt_dev_warn(hdev, "Skipping blocked link key for %pMR", &key->addr.bdaddr); continue; } if (key->addr.type != BDADDR_BREDR) { bt_dev_warn(hdev, "Invalid link address type %u for %pMR", key->addr.type, &key->addr.bdaddr); continue; } if (key->type > 0x08) { bt_dev_warn(hdev, "Invalid link key type %u for %pMR", key->type, &key->addr.bdaddr); continue; } /* Always ignore debug keys and require a new pairing if * the user wants to use them. */ if (key->type == HCI_LK_DEBUG_COMBINATION) continue; hci_add_link_key(hdev, NULL, &key->addr.bdaddr, key->val, key->type, key->pin_len, NULL); } mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, 0, NULL, 0); hci_dev_unlock(hdev); return 0; } static int device_unpaired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, struct sock *skip_sk) { struct mgmt_ev_device_unpaired ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; return mgmt_event(MGMT_EV_DEVICE_UNPAIRED, hdev, &ev, sizeof(ev), skip_sk); } static void unpair_device_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_unpair_device *cp = cmd->param; if (!err) device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, cmd->sk); cmd->cmd_complete(cmd, err); mgmt_pending_free(cmd); } static int unpair_device_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_unpair_device *cp = cmd->param; struct hci_conn *conn; if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!conn) return 0; /* Disregard any possible error since the likes of hci_abort_conn_sync * will clean up the connection no matter the error. */ hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); return 0; } static int unpair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_unpair_device *cp = data; struct mgmt_rp_unpair_device rp; struct hci_conn_params *params; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; u8 addr_type; int err; memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); if (cp->disconnect != 0x00 && cp->disconnect != 0x01) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) { /* If disconnection is requested, then look up the * connection. If the remote device is connected, it * will be later used to terminate the link. * * Setting it to NULL explicitly will cause no * termination of the link. */ if (cp->disconnect) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = NULL; err = hci_remove_link_key(hdev, &cp->addr.bdaddr); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_PAIRED, &rp, sizeof(rp)); goto unlock; } goto done; } /* LE address type */ addr_type = le_addr_type(cp->addr.type); /* Abort any ongoing SMP pairing. Removes ltk and irk if they exist. */ err = smp_cancel_and_remove_pairing(hdev, &cp->addr.bdaddr, addr_type); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_PAIRED, &rp, sizeof(rp)); goto unlock; } conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, addr_type); if (!conn) { hci_conn_params_del(hdev, &cp->addr.bdaddr, addr_type); goto done; } /* Defer clearing up the connection parameters until closing to * give a chance of keeping them if a repairing happens. */ set_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags); /* Disable auto-connection parameters if present */ params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (params) { if (params->explicit_connect) params->auto_connect = HCI_AUTO_CONN_EXPLICIT; else params->auto_connect = HCI_AUTO_CONN_DISABLED; } /* If disconnection is not requested, then clear the connection * variable so that the link is not terminated. */ if (!cp->disconnect) conn = NULL; done: /* If the connection variable is set, then termination of the * link is requested. */ if (!conn) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, 0, &rp, sizeof(rp)); device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, sk); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_UNPAIR_DEVICE, hdev, cp, sizeof(*cp)); if (!cmd) { err = -ENOMEM; goto unlock; } cmd->cmd_complete = addr_cmd_complete; err = hci_cmd_sync_queue(hdev, unpair_device_sync, cmd, unpair_device_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static void disconnect_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; cmd->cmd_complete(cmd, mgmt_status(err)); mgmt_pending_free(cmd); } static int disconnect_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_disconnect *cp = cmd->param; struct hci_conn *conn; if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!conn) return -ENOTCONN; /* Disregard any possible error since the likes of hci_abort_conn_sync * will clean up the connection no matter the error. */ hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); return 0; } static int disconnect(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_disconnect *cp = data; struct mgmt_rp_disconnect rp; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!test_bit(HCI_UP, &hdev->flags)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto failed; } cmd = mgmt_pending_new(sk, MGMT_OP_DISCONNECT, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } cmd->cmd_complete = generic_cmd_complete; err = hci_cmd_sync_queue(hdev, disconnect_sync, cmd, disconnect_complete); if (err < 0) mgmt_pending_free(cmd); failed: hci_dev_unlock(hdev); return err; } static u8 link_to_bdaddr(u8 link_type, u8 addr_type) { switch (link_type) { case ISO_LINK: case LE_LINK: switch (addr_type) { case ADDR_LE_DEV_PUBLIC: return BDADDR_LE_PUBLIC; default: /* Fallback to LE Random address type */ return BDADDR_LE_RANDOM; } default: /* Fallback to BR/EDR type */ return BDADDR_BREDR; } } static int get_connections(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_get_connections *rp; struct hci_conn *c; int err; u16 i; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_CONNECTIONS, MGMT_STATUS_NOT_POWERED); goto unlock; } i = 0; list_for_each_entry(c, &hdev->conn_hash.list, list) { if (test_bit(HCI_CONN_MGMT_CONNECTED, &c->flags)) i++; } rp = kmalloc(struct_size(rp, addr, i), GFP_KERNEL); if (!rp) { err = -ENOMEM; goto unlock; } i = 0; list_for_each_entry(c, &hdev->conn_hash.list, list) { if (!test_bit(HCI_CONN_MGMT_CONNECTED, &c->flags)) continue; bacpy(&rp->addr[i].bdaddr, &c->dst); rp->addr[i].type = link_to_bdaddr(c->type, c->dst_type); if (c->type == SCO_LINK || c->type == ESCO_LINK) continue; i++; } rp->conn_count = cpu_to_le16(i); /* Recalculate length in case of filtered SCO connections, etc */ err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONNECTIONS, 0, rp, struct_size(rp, addr, i)); kfree(rp); unlock: hci_dev_unlock(hdev); return err; } static int send_pin_code_neg_reply(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_pin_code_neg_reply *cp) { struct mgmt_pending_cmd *cmd; int err; cmd = mgmt_pending_add(sk, MGMT_OP_PIN_CODE_NEG_REPLY, hdev, cp, sizeof(*cp)); if (!cmd) return -ENOMEM; cmd->cmd_complete = addr_cmd_complete; err = hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, sizeof(cp->addr.bdaddr), &cp->addr.bdaddr); if (err < 0) mgmt_pending_remove(cmd); return err; } static int pin_code_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct hci_conn *conn; struct mgmt_cp_pin_code_reply *cp = data; struct hci_cp_pin_code_reply reply; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_NOT_POWERED); goto failed; } conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_NOT_CONNECTED); goto failed; } if (conn->pending_sec_level == BT_SECURITY_HIGH && cp->pin_len != 16) { struct mgmt_cp_pin_code_neg_reply ncp; memcpy(&ncp.addr, &cp->addr, sizeof(ncp.addr)); bt_dev_err(hdev, "PIN code is not 16 bytes long"); err = send_pin_code_neg_reply(sk, hdev, &ncp); if (err >= 0) err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_INVALID_PARAMS); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_PIN_CODE_REPLY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } cmd->cmd_complete = addr_cmd_complete; bacpy(&reply.bdaddr, &cp->addr.bdaddr); reply.pin_len = cp->pin_len; memcpy(reply.pin_code, cp->pin_code, sizeof(reply.pin_code)); err = hci_send_cmd(hdev, HCI_OP_PIN_CODE_REPLY, sizeof(reply), &reply); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static int set_io_capability(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_io_capability *cp = data; bt_dev_dbg(hdev, "sock %p", sk); if (cp->io_capability > SMP_IO_KEYBOARD_DISPLAY) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_IO_CAPABILITY, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->io_capability = cp->io_capability; bt_dev_dbg(hdev, "IO capability set to 0x%02x", hdev->io_capability); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_IO_CAPABILITY, 0, NULL, 0); } static struct mgmt_pending_cmd *find_pairing(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { if (cmd->opcode != MGMT_OP_PAIR_DEVICE) continue; if (cmd->user_data != conn) continue; return cmd; } return NULL; } static int pairing_complete(struct mgmt_pending_cmd *cmd, u8 status) { struct mgmt_rp_pair_device rp; struct hci_conn *conn = cmd->user_data; int err; bacpy(&rp.addr.bdaddr, &conn->dst); rp.addr.type = link_to_bdaddr(conn->type, conn->dst_type); err = mgmt_cmd_complete(cmd->sk, cmd->index, MGMT_OP_PAIR_DEVICE, status, &rp, sizeof(rp)); /* So we don't get further callbacks for this connection */ conn->connect_cfm_cb = NULL; conn->security_cfm_cb = NULL; conn->disconn_cfm_cb = NULL; hci_conn_drop(conn); /* The device is paired so there is no need to remove * its connection parameters anymore. */ clear_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags); hci_conn_put(conn); return err; } void mgmt_smp_complete(struct hci_conn *conn, bool complete) { u8 status = complete ? MGMT_STATUS_SUCCESS : MGMT_STATUS_FAILED; struct mgmt_pending_cmd *cmd; cmd = find_pairing(conn); if (cmd) { cmd->cmd_complete(cmd, status); mgmt_pending_remove(cmd); } } static void pairing_complete_cb(struct hci_conn *conn, u8 status) { struct mgmt_pending_cmd *cmd; BT_DBG("status %u", status); cmd = find_pairing(conn); if (!cmd) { BT_DBG("Unable to find a pending command"); return; } cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } static void le_pairing_complete_cb(struct hci_conn *conn, u8 status) { struct mgmt_pending_cmd *cmd; BT_DBG("status %u", status); if (!status) return; cmd = find_pairing(conn); if (!cmd) { BT_DBG("Unable to find a pending command"); return; } cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } static int pair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_pair_device *cp = data; struct mgmt_rp_pair_device rp; struct mgmt_pending_cmd *cmd; u8 sec_level, auth_type; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); if (cp->io_cap > SMP_IO_KEYBOARD_DISPLAY) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (hci_bdaddr_is_paired(hdev, &cp->addr.bdaddr, cp->addr.type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_ALREADY_PAIRED, &rp, sizeof(rp)); goto unlock; } sec_level = BT_SECURITY_MEDIUM; auth_type = HCI_AT_DEDICATED_BONDING; if (cp->addr.type == BDADDR_BREDR) { conn = hci_connect_acl(hdev, &cp->addr.bdaddr, sec_level, auth_type, CONN_REASON_PAIR_DEVICE, HCI_ACL_CONN_TIMEOUT); } else { u8 addr_type = le_addr_type(cp->addr.type); struct hci_conn_params *p; /* When pairing a new device, it is expected to remember * this device for future connections. Adding the connection * parameter information ahead of time allows tracking * of the peripheral preferred values and will speed up any * further connection establishment. * * If connection parameters already exist, then they * will be kept and this function does nothing. */ p = hci_conn_params_add(hdev, &cp->addr.bdaddr, addr_type); if (!p) { err = -EIO; goto unlock; } if (p->auto_connect == HCI_AUTO_CONN_EXPLICIT) p->auto_connect = HCI_AUTO_CONN_DISABLED; conn = hci_connect_le_scan(hdev, &cp->addr.bdaddr, addr_type, sec_level, HCI_LE_CONN_TIMEOUT, CONN_REASON_PAIR_DEVICE); } if (IS_ERR(conn)) { int status; if (PTR_ERR(conn) == -EBUSY) status = MGMT_STATUS_BUSY; else if (PTR_ERR(conn) == -EOPNOTSUPP) status = MGMT_STATUS_NOT_SUPPORTED; else if (PTR_ERR(conn) == -ECONNREFUSED) status = MGMT_STATUS_REJECTED; else status = MGMT_STATUS_CONNECT_FAILED; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, status, &rp, sizeof(rp)); goto unlock; } if (conn->connect_cfm_cb) { hci_conn_drop(conn); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_BUSY, &rp, sizeof(rp)); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_PAIR_DEVICE, hdev, data, len); if (!cmd) { err = -ENOMEM; hci_conn_drop(conn); goto unlock; } cmd->cmd_complete = pairing_complete; /* For LE, just connecting isn't a proof that the pairing finished */ if (cp->addr.type == BDADDR_BREDR) { conn->connect_cfm_cb = pairing_complete_cb; conn->security_cfm_cb = pairing_complete_cb; conn->disconn_cfm_cb = pairing_complete_cb; } else { conn->connect_cfm_cb = le_pairing_complete_cb; conn->security_cfm_cb = le_pairing_complete_cb; conn->disconn_cfm_cb = le_pairing_complete_cb; } conn->io_capability = cp->io_cap; cmd->user_data = hci_conn_get(conn); if ((conn->state == BT_CONNECTED || conn->state == BT_CONFIG) && hci_conn_security(conn, sec_level, auth_type, true)) { cmd->cmd_complete(cmd, 0); mgmt_pending_remove(cmd); } err = 0; unlock: hci_dev_unlock(hdev); return err; } static int cancel_pair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_addr_info *addr = data; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_NOT_POWERED); goto unlock; } cmd = pending_find(MGMT_OP_PAIR_DEVICE, hdev); if (!cmd) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS); goto unlock; } conn = cmd->user_data; if (bacmp(&addr->bdaddr, &conn->dst) != 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS); goto unlock; } cmd->cmd_complete(cmd, MGMT_STATUS_CANCELLED); mgmt_pending_remove(cmd); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, 0, addr, sizeof(*addr)); /* Since user doesn't want to proceed with the connection, abort any * ongoing pairing and then terminate the link if it was created * because of the pair device action. */ if (addr->type == BDADDR_BREDR) hci_remove_link_key(hdev, &addr->bdaddr); else smp_cancel_and_remove_pairing(hdev, &addr->bdaddr, le_addr_type(addr->type)); if (conn->conn_reason == CONN_REASON_PAIR_DEVICE) hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); unlock: hci_dev_unlock(hdev); return err; } static int user_pairing_resp(struct sock *sk, struct hci_dev *hdev, struct mgmt_addr_info *addr, u16 mgmt_op, u16 hci_op, __le32 passkey) { struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_NOT_POWERED, addr, sizeof(*addr)); goto done; } if (addr->type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &addr->bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &addr->bdaddr, le_addr_type(addr->type)); if (!conn) { err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_NOT_CONNECTED, addr, sizeof(*addr)); goto done; } if (addr->type == BDADDR_LE_PUBLIC || addr->type == BDADDR_LE_RANDOM) { err = smp_user_confirm_reply(conn, mgmt_op, passkey); if (!err) err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_SUCCESS, addr, sizeof(*addr)); else err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_FAILED, addr, sizeof(*addr)); goto done; } cmd = mgmt_pending_add(sk, mgmt_op, hdev, addr, sizeof(*addr)); if (!cmd) { err = -ENOMEM; goto done; } cmd->cmd_complete = addr_cmd_complete; /* Continue with pairing via HCI */ if (hci_op == HCI_OP_USER_PASSKEY_REPLY) { struct hci_cp_user_passkey_reply cp; bacpy(&cp.bdaddr, &addr->bdaddr); cp.passkey = passkey; err = hci_send_cmd(hdev, hci_op, sizeof(cp), &cp); } else err = hci_send_cmd(hdev, hci_op, sizeof(addr->bdaddr), &addr->bdaddr); if (err < 0) mgmt_pending_remove(cmd); done: hci_dev_unlock(hdev); return err; } static int pin_code_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_pin_code_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_PIN_CODE_NEG_REPLY, HCI_OP_PIN_CODE_NEG_REPLY, 0); } static int user_confirm_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_confirm_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); if (len != sizeof(*cp)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_USER_CONFIRM_REPLY, MGMT_STATUS_INVALID_PARAMS); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_CONFIRM_REPLY, HCI_OP_USER_CONFIRM_REPLY, 0); } static int user_confirm_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_confirm_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_CONFIRM_NEG_REPLY, HCI_OP_USER_CONFIRM_NEG_REPLY, 0); } static int user_passkey_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_passkey_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_PASSKEY_REPLY, HCI_OP_USER_PASSKEY_REPLY, cp->passkey); } static int user_passkey_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_passkey_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_PASSKEY_NEG_REPLY, HCI_OP_USER_PASSKEY_NEG_REPLY, 0); } static int adv_expire_sync(struct hci_dev *hdev, u32 flags) { struct adv_info *adv_instance; adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); if (!adv_instance) return 0; /* stop if current instance doesn't need to be changed */ if (!(adv_instance->flags & flags)) return 0; cancel_adv_timeout(hdev); adv_instance = hci_get_next_instance(hdev, adv_instance->instance); if (!adv_instance) return 0; hci_schedule_adv_instance_sync(hdev, adv_instance->instance, true); return 0; } static int name_changed_sync(struct hci_dev *hdev, void *data) { return adv_expire_sync(hdev, MGMT_ADV_FLAG_LOCAL_NAME); } static void set_name_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_local_name *cp = cmd->param; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_LOCAL_NAME, hdev)) return; if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, status); } else { mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, cp, sizeof(*cp)); if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_cmd_sync_queue(hdev, name_changed_sync, NULL, NULL); } mgmt_pending_remove(cmd); } static int set_name_sync(struct hci_dev *hdev, void *data) { if (lmp_bredr_capable(hdev)) { hci_update_name_sync(hdev); hci_update_eir_sync(hdev); } /* The name is stored in the scan response data and so * no need to update the advertising data here. */ if (lmp_le_capable(hdev) && hci_dev_test_flag(hdev, HCI_ADVERTISING)) hci_update_scan_rsp_data_sync(hdev, hdev->cur_adv_instance); return 0; } static int set_local_name(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_local_name *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); /* If the old values are the same as the new ones just return a * direct command complete event. */ if (!memcmp(hdev->dev_name, cp->name, sizeof(hdev->dev_name)) && !memcmp(hdev->short_name, cp->short_name, sizeof(hdev->short_name))) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, data, len); goto failed; } memcpy(hdev->short_name, cp->short_name, sizeof(hdev->short_name)); if (!hdev_is_powered(hdev)) { memcpy(hdev->dev_name, cp->name, sizeof(hdev->dev_name)); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, data, len); if (err < 0) goto failed; err = mgmt_limited_event(MGMT_EV_LOCAL_NAME_CHANGED, hdev, data, len, HCI_MGMT_LOCAL_NAME_EVENTS, sk); ext_info_changed(hdev, sk); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LOCAL_NAME, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_name_sync, cmd, set_name_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); goto failed; } memcpy(hdev->dev_name, cp->name, sizeof(hdev->dev_name)); failed: hci_dev_unlock(hdev); return err; } static int appearance_changed_sync(struct hci_dev *hdev, void *data) { return adv_expire_sync(hdev, MGMT_ADV_FLAG_APPEARANCE); } static int set_appearance(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_appearance *cp = data; u16 appearance; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_APPEARANCE, MGMT_STATUS_NOT_SUPPORTED); appearance = le16_to_cpu(cp->appearance); hci_dev_lock(hdev); if (hdev->appearance != appearance) { hdev->appearance = appearance; if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_cmd_sync_queue(hdev, appearance_changed_sync, NULL, NULL); ext_info_changed(hdev, sk); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_APPEARANCE, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static int get_phy_configuration(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_rp_get_phy_configuration rp; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.supported_phys = cpu_to_le32(get_supported_phys(hdev)); rp.selected_phys = cpu_to_le32(get_selected_phys(hdev)); rp.configurable_phys = cpu_to_le32(get_configurable_phys(hdev)); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_PHY_CONFIGURATION, 0, &rp, sizeof(rp)); } int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip) { struct mgmt_ev_phy_configuration_changed ev; memset(&ev, 0, sizeof(ev)); ev.selected_phys = cpu_to_le32(get_selected_phys(hdev)); return mgmt_event(MGMT_EV_PHY_CONFIGURATION_CHANGED, hdev, &ev, sizeof(ev), skip); } static void set_default_phy_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_PHY_CONFIGURATION, hdev)) return; if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %d", status); if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, status); } else { mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); mgmt_phy_configuration_changed(hdev, cmd->sk); } if (skb && !IS_ERR(skb)) kfree_skb(skb); mgmt_pending_remove(cmd); } static int set_default_phy_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_phy_configuration *cp = cmd->param; struct hci_cp_le_set_default_phy cp_phy; u32 selected_phys = __le32_to_cpu(cp->selected_phys); memset(&cp_phy, 0, sizeof(cp_phy)); if (!(selected_phys & MGMT_PHY_LE_TX_MASK)) cp_phy.all_phys |= 0x01; if (!(selected_phys & MGMT_PHY_LE_RX_MASK)) cp_phy.all_phys |= 0x02; if (selected_phys & MGMT_PHY_LE_1M_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_1M; if (selected_phys & MGMT_PHY_LE_2M_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_2M; if (selected_phys & MGMT_PHY_LE_CODED_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_CODED; if (selected_phys & MGMT_PHY_LE_1M_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_1M; if (selected_phys & MGMT_PHY_LE_2M_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_2M; if (selected_phys & MGMT_PHY_LE_CODED_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_CODED; cmd->skb = __hci_cmd_sync(hdev, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp_phy), &cp_phy, HCI_CMD_TIMEOUT); return 0; } static int set_phy_configuration(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_phy_configuration *cp = data; struct mgmt_pending_cmd *cmd; u32 selected_phys, configurable_phys, supported_phys, unconfigure_phys; u16 pkt_type = (HCI_DH1 | HCI_DM1); bool changed = false; int err; bt_dev_dbg(hdev, "sock %p", sk); configurable_phys = get_configurable_phys(hdev); supported_phys = get_supported_phys(hdev); selected_phys = __le32_to_cpu(cp->selected_phys); if (selected_phys & ~supported_phys) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_INVALID_PARAMS); unconfigure_phys = supported_phys & ~configurable_phys; if ((selected_phys & unconfigure_phys) != unconfigure_phys) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_INVALID_PARAMS); if (selected_phys == get_selected_phys(hdev)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_REJECTED); goto unlock; } if (pending_find(MGMT_OP_SET_PHY_CONFIGURATION, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_BUSY); goto unlock; } if (selected_phys & MGMT_PHY_BR_1M_3SLOT) pkt_type |= (HCI_DH3 | HCI_DM3); else pkt_type &= ~(HCI_DH3 | HCI_DM3); if (selected_phys & MGMT_PHY_BR_1M_5SLOT) pkt_type |= (HCI_DH5 | HCI_DM5); else pkt_type &= ~(HCI_DH5 | HCI_DM5); if (selected_phys & MGMT_PHY_EDR_2M_1SLOT) pkt_type &= ~HCI_2DH1; else pkt_type |= HCI_2DH1; if (selected_phys & MGMT_PHY_EDR_2M_3SLOT) pkt_type &= ~HCI_2DH3; else pkt_type |= HCI_2DH3; if (selected_phys & MGMT_PHY_EDR_2M_5SLOT) pkt_type &= ~HCI_2DH5; else pkt_type |= HCI_2DH5; if (selected_phys & MGMT_PHY_EDR_3M_1SLOT) pkt_type &= ~HCI_3DH1; else pkt_type |= HCI_3DH1; if (selected_phys & MGMT_PHY_EDR_3M_3SLOT) pkt_type &= ~HCI_3DH3; else pkt_type |= HCI_3DH3; if (selected_phys & MGMT_PHY_EDR_3M_5SLOT) pkt_type &= ~HCI_3DH5; else pkt_type |= HCI_3DH5; if (pkt_type != hdev->pkt_type) { hdev->pkt_type = pkt_type; changed = true; } if ((selected_phys & MGMT_PHY_LE_MASK) == (get_selected_phys(hdev) & MGMT_PHY_LE_MASK)) { if (changed) mgmt_phy_configuration_changed(hdev, sk); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_PHY_CONFIGURATION, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_default_phy_sync, cmd, set_default_phy_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } unlock: hci_dev_unlock(hdev); return err; } static int set_blocked_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { int err = MGMT_STATUS_SUCCESS; struct mgmt_cp_set_blocked_keys *keys = data; const u16 max_key_count = ((U16_MAX - sizeof(*keys)) / sizeof(struct mgmt_blocked_key_info)); u16 key_count, expected_len; int i; bt_dev_dbg(hdev, "sock %p", sk); key_count = __le16_to_cpu(keys->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(keys, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); hci_blocked_keys_clear(hdev); for (i = 0; i < key_count; ++i) { struct blocked_key *b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) { err = MGMT_STATUS_NO_RESOURCES; break; } b->type = keys->keys[i].type; memcpy(b->val, keys->keys[i].val, sizeof(b->val)); list_add_rcu(&b->list, &hdev->blocked_keys); } hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, err, NULL, 0); } static int set_wideband_speech(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; int err; bool changed = false; bt_dev_dbg(hdev, "sock %p", sk); if (!test_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (hdev_is_powered(hdev) && !!cp->val != hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_REJECTED); goto unlock; } if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); else changed = hci_dev_test_and_clear_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); err = send_settings_rsp(sk, MGMT_OP_SET_WIDEBAND_SPEECH, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int read_controller_cap(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { char buf[20]; struct mgmt_rp_read_controller_cap *rp = (void *)buf; u16 cap_len = 0; u8 flags = 0; u8 tx_power_range[2]; bt_dev_dbg(hdev, "sock %p", sk); memset(&buf, 0, sizeof(buf)); hci_dev_lock(hdev); /* When the Read Simple Pairing Options command is supported, then * the remote public key validation is supported. * * Alternatively, when Microsoft extensions are available, they can * indicate support for public key validation as well. */ if ((hdev->commands[41] & 0x08) || msft_curve_validity(hdev)) flags |= 0x01; /* Remote public key validation (BR/EDR) */ flags |= 0x02; /* Remote public key validation (LE) */ /* When the Read Encryption Key Size command is supported, then the * encryption key size is enforced. */ if (hdev->commands[20] & 0x10) flags |= 0x04; /* Encryption key size enforcement (BR/EDR) */ flags |= 0x08; /* Encryption key size enforcement (LE) */ cap_len = eir_append_data(rp->cap, cap_len, MGMT_CAP_SEC_FLAGS, &flags, 1); /* When the Read Simple Pairing Options command is supported, then * also max encryption key size information is provided. */ if (hdev->commands[41] & 0x08) cap_len = eir_append_le16(rp->cap, cap_len, MGMT_CAP_MAX_ENC_KEY_SIZE, hdev->max_enc_key_size); cap_len = eir_append_le16(rp->cap, cap_len, MGMT_CAP_SMP_MAX_ENC_KEY_SIZE, SMP_MAX_ENC_KEY_SIZE); /* Append the min/max LE tx power parameters if we were able to fetch * it from the controller */ if (hdev->commands[38] & 0x80) { memcpy(&tx_power_range[0], &hdev->min_le_tx_power, 1); memcpy(&tx_power_range[1], &hdev->max_le_tx_power, 1); cap_len = eir_append_data(rp->cap, cap_len, MGMT_CAP_LE_TX_PWR, tx_power_range, 2); } rp->cap_len = cpu_to_le16(cap_len); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_CONTROLLER_CAP, 0, rp, sizeof(*rp) + cap_len); } #ifdef CONFIG_BT_FEATURE_DEBUG /* d4992530-b9ec-469f-ab01-6c481c47da1c */ static const u8 debug_uuid[16] = { 0x1c, 0xda, 0x47, 0x1c, 0x48, 0x6c, 0x01, 0xab, 0x9f, 0x46, 0xec, 0xb9, 0x30, 0x25, 0x99, 0xd4, }; #endif /* 330859bc-7506-492d-9370-9a6f0614037f */ static const u8 quality_report_uuid[16] = { 0x7f, 0x03, 0x14, 0x06, 0x6f, 0x9a, 0x70, 0x93, 0x2d, 0x49, 0x06, 0x75, 0xbc, 0x59, 0x08, 0x33, }; /* a6695ace-ee7f-4fb9-881a-5fac66c629af */ static const u8 offload_codecs_uuid[16] = { 0xaf, 0x29, 0xc6, 0x66, 0xac, 0x5f, 0x1a, 0x88, 0xb9, 0x4f, 0x7f, 0xee, 0xce, 0x5a, 0x69, 0xa6, }; /* 671b10b5-42c0-4696-9227-eb28d1b049d6 */ static const u8 le_simultaneous_roles_uuid[16] = { 0xd6, 0x49, 0xb0, 0xd1, 0x28, 0xeb, 0x27, 0x92, 0x96, 0x46, 0xc0, 0x42, 0xb5, 0x10, 0x1b, 0x67, }; /* 6fbaf188-05e0-496a-9885-d6ddfdb4e03e */ static const u8 iso_socket_uuid[16] = { 0x3e, 0xe0, 0xb4, 0xfd, 0xdd, 0xd6, 0x85, 0x98, 0x6a, 0x49, 0xe0, 0x05, 0x88, 0xf1, 0xba, 0x6f, }; /* 2ce463d7-7a03-4d8d-bf05-5f24e8f36e76 */ static const u8 mgmt_mesh_uuid[16] = { 0x76, 0x6e, 0xf3, 0xe8, 0x24, 0x5f, 0x05, 0xbf, 0x8d, 0x4d, 0x03, 0x7a, 0xd7, 0x63, 0xe4, 0x2c, }; static int read_exp_features_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_exp_features_info *rp; size_t len; u16 idx = 0; u32 flags; int status; bt_dev_dbg(hdev, "sock %p", sk); /* Enough space for 7 features */ len = sizeof(*rp) + (sizeof(rp->features[0]) * 7); rp = kzalloc(len, GFP_KERNEL); if (!rp) return -ENOMEM; #ifdef CONFIG_BT_FEATURE_DEBUG if (!hdev) { flags = bt_dbg_get() ? BIT(0) : 0; memcpy(rp->features[idx].uuid, debug_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } #endif if (hdev && hci_dev_le_state_simultaneous(hdev)) { if (hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, le_simultaneous_roles_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && (aosp_has_quality_report(hdev) || hdev->set_quality_report)) { if (hci_dev_test_flag(hdev, HCI_QUALITY_REPORT)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, quality_report_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && hdev->get_data_path_id) { if (hci_dev_test_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, offload_codecs_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (IS_ENABLED(CONFIG_BT_LE)) { flags = iso_enabled() ? BIT(0) : 0; memcpy(rp->features[idx].uuid, iso_socket_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && lmp_le_capable(hdev)) { if (hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, mgmt_mesh_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } rp->feature_count = cpu_to_le16(idx); /* After reading the experimental features information, enable * the events to update client on any future change. */ hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); status = mgmt_cmd_complete(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_READ_EXP_FEATURES_INFO, 0, rp, sizeof(*rp) + (20 * idx)); kfree(rp); return status; } static int exp_feature_changed(struct hci_dev *hdev, const u8 *uuid, bool enabled, struct sock *skip) { struct mgmt_ev_exp_feature_changed ev; memset(&ev, 0, sizeof(ev)); memcpy(ev.uuid, uuid, 16); ev.flags = cpu_to_le32(enabled ? BIT(0) : 0); return mgmt_limited_event(MGMT_EV_EXP_FEATURE_CHANGED, hdev, &ev, sizeof(ev), HCI_MGMT_EXP_FEATURE_EVENTS, skip); } #define EXP_FEAT(_uuid, _set_func) \ { \ .uuid = _uuid, \ .set_func = _set_func, \ } /* The zero key uuid is special. Multiple exp features are set through it. */ static int set_zero_key_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; memset(rp.uuid, 0, 16); rp.flags = cpu_to_le32(0); #ifdef CONFIG_BT_FEATURE_DEBUG if (!hdev) { bool changed = bt_dbg_get(); bt_dbg_set(false); if (changed) exp_feature_changed(NULL, ZERO_KEY, false, sk); } #endif hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); return mgmt_cmd_complete(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); } #ifdef CONFIG_BT_FEATURE_DEBUG static int set_debug_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use the non-controller index */ if (hdev) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = val ? !bt_dbg_get() : bt_dbg_get(); bt_dbg_set(val); memcpy(rp.uuid, debug_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, debug_uuid, val, sk); return err; } #endif static int set_mgmt_mesh_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use the controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; if (val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_MESH_EXPERIMENTAL); } else { hci_dev_clear_flag(hdev, HCI_MESH); changed = hci_dev_test_and_clear_flag(hdev, HCI_MESH_EXPERIMENTAL); } memcpy(rp.uuid, mgmt_mesh_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, mgmt_mesh_uuid, val, sk); return err; } static int set_quality_report_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); hci_req_sync_lock(hdev); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_QUALITY_REPORT)); if (!aosp_has_quality_report(hdev) && !hdev->set_quality_report) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); goto unlock_quality_report; } if (changed) { if (hdev->set_quality_report) err = hdev->set_quality_report(hdev, val); else err = aosp_set_quality_report(hdev, val); if (err) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_FAILED); goto unlock_quality_report; } if (val) hci_dev_set_flag(hdev, HCI_QUALITY_REPORT); else hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); } bt_dev_dbg(hdev, "quality report enable %d changed %d", val, changed); memcpy(rp.uuid, quality_report_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, quality_report_uuid, val, sk); unlock_quality_report: hci_req_sync_unlock(hdev); return err; } static int set_offload_codec_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { bool val, changed; int err; struct mgmt_rp_set_exp_feature rp; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED)); if (!hdev->get_data_path_id) { return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } if (changed) { if (val) hci_dev_set_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED); else hci_dev_clear_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED); } bt_dev_info(hdev, "offload codecs enable %d changed %d", val, changed); memcpy(rp.uuid, offload_codecs_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, offload_codecs_uuid, val, sk); return err; } static int set_le_simultaneous_roles_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { bool val, changed; int err; struct mgmt_rp_set_exp_feature rp; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)); if (!hci_dev_le_state_simultaneous(hdev)) { return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } if (changed) { if (val) hci_dev_set_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES); else hci_dev_clear_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES); } bt_dev_info(hdev, "LE simultaneous roles enable %d changed %d", val, changed); memcpy(rp.uuid, le_simultaneous_roles_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, le_simultaneous_roles_uuid, val, sk); return err; } #ifdef CONFIG_BT_LE static int set_iso_socket_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed = false; int err; /* Command requires to use the non-controller index */ if (hdev) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = cp->param[0] ? true : false; if (val) err = iso_init(); else err = iso_exit(); if (!err) changed = true; memcpy(rp.uuid, iso_socket_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, iso_socket_uuid, val, sk); return err; } #endif static const struct mgmt_exp_feature { const u8 *uuid; int (*set_func)(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len); } exp_features[] = { EXP_FEAT(ZERO_KEY, set_zero_key_func), #ifdef CONFIG_BT_FEATURE_DEBUG EXP_FEAT(debug_uuid, set_debug_func), #endif EXP_FEAT(mgmt_mesh_uuid, set_mgmt_mesh_func), EXP_FEAT(quality_report_uuid, set_quality_report_func), EXP_FEAT(offload_codecs_uuid, set_offload_codec_func), EXP_FEAT(le_simultaneous_roles_uuid, set_le_simultaneous_roles_func), #ifdef CONFIG_BT_LE EXP_FEAT(iso_socket_uuid, set_iso_socket_func), #endif /* end with a null feature */ EXP_FEAT(NULL, NULL) }; static int set_exp_feature(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_set_exp_feature *cp = data; size_t i = 0; bt_dev_dbg(hdev, "sock %p", sk); for (i = 0; exp_features[i].uuid; i++) { if (!memcmp(cp->uuid, exp_features[i].uuid, 16)) return exp_features[i].set_func(sk, hdev, cp, data_len); } return mgmt_cmd_status(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } static int get_device_flags(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_get_device_flags *cp = data; struct mgmt_rp_get_device_flags rp; struct bdaddr_list_with_flags *br_params; struct hci_conn_params *params; u32 supported_flags; u32 current_flags = 0; u8 status = MGMT_STATUS_INVALID_PARAMS; bt_dev_dbg(hdev, "Get device flags %pMR (type 0x%x)\n", &cp->addr.bdaddr, cp->addr.type); hci_dev_lock(hdev); supported_flags = hdev->conn_flags; memset(&rp, 0, sizeof(rp)); if (cp->addr.type == BDADDR_BREDR) { br_params = hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (!br_params) goto done; current_flags = br_params->flags; } else { params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!params) goto done; current_flags = params->flags; } bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; rp.supported_flags = cpu_to_le32(supported_flags); rp.current_flags = cpu_to_le32(current_flags); status = MGMT_STATUS_SUCCESS; done: hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_DEVICE_FLAGS, status, &rp, sizeof(rp)); } static void device_flags_changed(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u32 supported_flags, u32 current_flags) { struct mgmt_ev_device_flags_changed ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = bdaddr_type; ev.supported_flags = cpu_to_le32(supported_flags); ev.current_flags = cpu_to_le32(current_flags); mgmt_event(MGMT_EV_DEVICE_FLAGS_CHANGED, hdev, &ev, sizeof(ev), sk); } static int set_device_flags(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_device_flags *cp = data; struct bdaddr_list_with_flags *br_params; struct hci_conn_params *params; u8 status = MGMT_STATUS_INVALID_PARAMS; u32 supported_flags; u32 current_flags = __le32_to_cpu(cp->current_flags); bt_dev_dbg(hdev, "Set device flags %pMR (type 0x%x) = 0x%x", &cp->addr.bdaddr, cp->addr.type, current_flags); // We should take hci_dev_lock() early, I think.. conn_flags can change supported_flags = hdev->conn_flags; if ((supported_flags | current_flags) != supported_flags) { bt_dev_warn(hdev, "Bad flag given (0x%x) vs supported (0x%0x)", current_flags, supported_flags); goto done; } hci_dev_lock(hdev); if (cp->addr.type == BDADDR_BREDR) { br_params = hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (br_params) { br_params->flags = current_flags; status = MGMT_STATUS_SUCCESS; } else { bt_dev_warn(hdev, "No such BR/EDR device %pMR (0x%x)", &cp->addr.bdaddr, cp->addr.type); } goto unlock; } params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!params) { bt_dev_warn(hdev, "No such LE device %pMR (0x%x)", &cp->addr.bdaddr, le_addr_type(cp->addr.type)); goto unlock; } supported_flags = hdev->conn_flags; if ((supported_flags | current_flags) != supported_flags) { bt_dev_warn(hdev, "Bad flag given (0x%x) vs supported (0x%0x)", current_flags, supported_flags); goto unlock; } WRITE_ONCE(params->flags, current_flags); status = MGMT_STATUS_SUCCESS; /* Update passive scan if HCI_CONN_FLAG_DEVICE_PRIVACY * has been set. */ if (params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY) hci_update_passive_scan(hdev); unlock: hci_dev_unlock(hdev); done: if (status == MGMT_STATUS_SUCCESS) device_flags_changed(sk, hdev, &cp->addr.bdaddr, cp->addr.type, supported_flags, current_flags); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEVICE_FLAGS, status, &cp->addr, sizeof(cp->addr)); } static void mgmt_adv_monitor_added(struct sock *sk, struct hci_dev *hdev, u16 handle) { struct mgmt_ev_adv_monitor_added ev; ev.monitor_handle = cpu_to_le16(handle); mgmt_event(MGMT_EV_ADV_MONITOR_ADDED, hdev, &ev, sizeof(ev), sk); } void mgmt_adv_monitor_removed(struct hci_dev *hdev, u16 handle) { struct mgmt_ev_adv_monitor_removed ev; struct mgmt_pending_cmd *cmd; struct sock *sk_skip = NULL; struct mgmt_cp_remove_adv_monitor *cp; cmd = pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev); if (cmd) { cp = cmd->param; if (cp->monitor_handle) sk_skip = cmd->sk; } ev.monitor_handle = cpu_to_le16(handle); mgmt_event(MGMT_EV_ADV_MONITOR_REMOVED, hdev, &ev, sizeof(ev), sk_skip); } static int read_adv_mon_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct adv_monitor *monitor = NULL; struct mgmt_rp_read_adv_monitor_features *rp = NULL; int handle, err; size_t rp_size = 0; __u32 supported = 0; __u32 enabled = 0; __u16 num_handles = 0; __u16 handles[HCI_MAX_ADV_MONITOR_NUM_HANDLES]; BT_DBG("request for %s", hdev->name); hci_dev_lock(hdev); if (msft_monitor_supported(hdev)) supported |= MGMT_ADV_MONITOR_FEATURE_MASK_OR_PATTERNS; idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) handles[num_handles++] = monitor->handle; hci_dev_unlock(hdev); rp_size = sizeof(*rp) + (num_handles * sizeof(u16)); rp = kmalloc(rp_size, GFP_KERNEL); if (!rp) return -ENOMEM; /* All supported features are currently enabled */ enabled = supported; rp->supported_features = cpu_to_le32(supported); rp->enabled_features = cpu_to_le32(enabled); rp->max_num_handles = cpu_to_le16(HCI_MAX_ADV_MONITOR_NUM_HANDLES); rp->max_num_patterns = HCI_MAX_ADV_MONITOR_NUM_PATTERNS; rp->num_handles = cpu_to_le16(num_handles); if (num_handles) memcpy(&rp->handles, &handles, (num_handles * sizeof(u16))); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_ADV_MONITOR_FEATURES, MGMT_STATUS_SUCCESS, rp, rp_size); kfree(rp); return err; } static void mgmt_add_adv_patterns_monitor_complete(struct hci_dev *hdev, void *data, int status) { struct mgmt_rp_add_adv_patterns_monitor rp; struct mgmt_pending_cmd *cmd = data; struct adv_monitor *monitor = cmd->user_data; hci_dev_lock(hdev); rp.monitor_handle = cpu_to_le16(monitor->handle); if (!status) { mgmt_adv_monitor_added(cmd->sk, hdev, monitor->handle); hdev->adv_monitors_cnt++; if (monitor->state == ADV_MONITOR_STATE_NOT_REGISTERED) monitor->state = ADV_MONITOR_STATE_REGISTERED; hci_update_passive_scan(hdev); } mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(status), &rp, sizeof(rp)); mgmt_pending_remove(cmd); hci_dev_unlock(hdev); bt_dev_dbg(hdev, "add monitor %d complete, status %d", rp.monitor_handle, status); } static int mgmt_add_adv_patterns_monitor_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct adv_monitor *monitor = cmd->user_data; return hci_add_adv_monitor(hdev, monitor); } static int __add_adv_patterns_monitor(struct sock *sk, struct hci_dev *hdev, struct adv_monitor *m, u8 status, void *data, u16 len, u16 op) { struct mgmt_pending_cmd *cmd; int err; hci_dev_lock(hdev); if (status) goto unlock; if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, hdev) || pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) { status = MGMT_STATUS_BUSY; goto unlock; } cmd = mgmt_pending_add(sk, op, hdev, data, len); if (!cmd) { status = MGMT_STATUS_NO_RESOURCES; goto unlock; } cmd->user_data = m; err = hci_cmd_sync_queue(hdev, mgmt_add_adv_patterns_monitor_sync, cmd, mgmt_add_adv_patterns_monitor_complete); if (err) { if (err == -ENOMEM) status = MGMT_STATUS_NO_RESOURCES; else status = MGMT_STATUS_FAILED; goto unlock; } hci_dev_unlock(hdev); return 0; unlock: hci_free_adv_monitor(hdev, m); hci_dev_unlock(hdev); return mgmt_cmd_status(sk, hdev->id, op, status); } static void parse_adv_monitor_rssi(struct adv_monitor *m, struct mgmt_adv_rssi_thresholds *rssi) { if (rssi) { m->rssi.low_threshold = rssi->low_threshold; m->rssi.low_threshold_timeout = __le16_to_cpu(rssi->low_threshold_timeout); m->rssi.high_threshold = rssi->high_threshold; m->rssi.high_threshold_timeout = __le16_to_cpu(rssi->high_threshold_timeout); m->rssi.sampling_period = rssi->sampling_period; } else { /* Default values. These numbers are the least constricting * parameters for MSFT API to work, so it behaves as if there * are no rssi parameter to consider. May need to be changed * if other API are to be supported. */ m->rssi.low_threshold = -127; m->rssi.low_threshold_timeout = 60; m->rssi.high_threshold = -127; m->rssi.high_threshold_timeout = 0; m->rssi.sampling_period = 0; } } static u8 parse_adv_monitor_pattern(struct adv_monitor *m, u8 pattern_count, struct mgmt_adv_pattern *patterns) { u8 offset = 0, length = 0; struct adv_pattern *p = NULL; int i; for (i = 0; i < pattern_count; i++) { offset = patterns[i].offset; length = patterns[i].length; if (offset >= HCI_MAX_EXT_AD_LENGTH || length > HCI_MAX_EXT_AD_LENGTH || (offset + length) > HCI_MAX_EXT_AD_LENGTH) return MGMT_STATUS_INVALID_PARAMS; p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return MGMT_STATUS_NO_RESOURCES; p->ad_type = patterns[i].ad_type; p->offset = patterns[i].offset; p->length = patterns[i].length; memcpy(p->value, patterns[i].value, p->length); INIT_LIST_HEAD(&p->list); list_add(&p->list, &m->patterns); } return MGMT_STATUS_SUCCESS; } static int add_adv_patterns_monitor(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_adv_patterns_monitor *cp = data; struct adv_monitor *m = NULL; u8 status = MGMT_STATUS_SUCCESS; size_t expected_size = sizeof(*cp); BT_DBG("request for %s", hdev->name); if (len <= sizeof(*cp)) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } expected_size += cp->pattern_count * sizeof(struct mgmt_adv_pattern); if (len != expected_size) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } m = kzalloc(sizeof(*m), GFP_KERNEL); if (!m) { status = MGMT_STATUS_NO_RESOURCES; goto done; } INIT_LIST_HEAD(&m->patterns); parse_adv_monitor_rssi(m, NULL); status = parse_adv_monitor_pattern(m, cp->pattern_count, cp->patterns); done: return __add_adv_patterns_monitor(sk, hdev, m, status, data, len, MGMT_OP_ADD_ADV_PATTERNS_MONITOR); } static int add_adv_patterns_monitor_rssi(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_adv_patterns_monitor_rssi *cp = data; struct adv_monitor *m = NULL; u8 status = MGMT_STATUS_SUCCESS; size_t expected_size = sizeof(*cp); BT_DBG("request for %s", hdev->name); if (len <= sizeof(*cp)) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } expected_size += cp->pattern_count * sizeof(struct mgmt_adv_pattern); if (len != expected_size) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } m = kzalloc(sizeof(*m), GFP_KERNEL); if (!m) { status = MGMT_STATUS_NO_RESOURCES; goto done; } INIT_LIST_HEAD(&m->patterns); parse_adv_monitor_rssi(m, &cp->rssi); status = parse_adv_monitor_pattern(m, cp->pattern_count, cp->patterns); done: return __add_adv_patterns_monitor(sk, hdev, m, status, data, len, MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI); } static void mgmt_remove_adv_monitor_complete(struct hci_dev *hdev, void *data, int status) { struct mgmt_rp_remove_adv_monitor rp; struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_adv_monitor *cp; if (status == -ECANCELED || cmd != pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) return; hci_dev_lock(hdev); cp = cmd->param; rp.monitor_handle = cp->monitor_handle; if (!status) hci_update_passive_scan(hdev); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(status), &rp, sizeof(rp)); mgmt_pending_remove(cmd); hci_dev_unlock(hdev); bt_dev_dbg(hdev, "remove monitor %d complete, status %d", rp.monitor_handle, status); } static int mgmt_remove_adv_monitor_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; if (cmd != pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) return -ECANCELED; struct mgmt_cp_remove_adv_monitor *cp = cmd->param; u16 handle = __le16_to_cpu(cp->monitor_handle); if (!handle) return hci_remove_all_adv_monitor(hdev); return hci_remove_single_adv_monitor(hdev, handle); } static int remove_adv_monitor(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; int err, status; hci_dev_lock(hdev); if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, hdev)) { status = MGMT_STATUS_BUSY; goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_REMOVE_ADV_MONITOR, hdev, data, len); if (!cmd) { status = MGMT_STATUS_NO_RESOURCES; goto unlock; } err = hci_cmd_sync_submit(hdev, mgmt_remove_adv_monitor_sync, cmd, mgmt_remove_adv_monitor_complete); if (err) { mgmt_pending_remove(cmd); if (err == -ENOMEM) status = MGMT_STATUS_NO_RESOURCES; else status = MGMT_STATUS_FAILED; goto unlock; } hci_dev_unlock(hdev); return 0; unlock: hci_dev_unlock(hdev); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADV_MONITOR, status); } static void read_local_oob_data_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_rp_read_local_oob_data mgmt_rp; size_t rp_size = sizeof(mgmt_rp); struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %d", status); if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, status); goto remove; } memset(&mgmt_rp, 0, sizeof(mgmt_rp)); if (!bredr_sc_enabled(hdev)) { struct hci_rp_read_local_oob_data *rp = (void *) skb->data; if (skb->len < sizeof(*rp)) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); goto remove; } memcpy(mgmt_rp.hash192, rp->hash, sizeof(rp->hash)); memcpy(mgmt_rp.rand192, rp->rand, sizeof(rp->rand)); rp_size -= sizeof(mgmt_rp.hash256) + sizeof(mgmt_rp.rand256); } else { struct hci_rp_read_local_oob_ext_data *rp = (void *) skb->data; if (skb->len < sizeof(*rp)) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); goto remove; } memcpy(mgmt_rp.hash192, rp->hash192, sizeof(rp->hash192)); memcpy(mgmt_rp.rand192, rp->rand192, sizeof(rp->rand192)); memcpy(mgmt_rp.hash256, rp->hash256, sizeof(rp->hash256)); memcpy(mgmt_rp.rand256, rp->rand256, sizeof(rp->rand256)); } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_SUCCESS, &mgmt_rp, rp_size); remove: if (skb && !IS_ERR(skb)) kfree_skb(skb); mgmt_pending_free(cmd); } static int read_local_oob_data_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; if (bredr_sc_enabled(hdev)) cmd->skb = hci_read_local_oob_data_sync(hdev, true, cmd->sk); else cmd->skb = hci_read_local_oob_data_sync(hdev, false, cmd->sk); if (IS_ERR(cmd->skb)) return PTR_ERR(cmd->skb); else return 0; } static int read_local_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_NOT_POWERED); goto unlock; } if (!lmp_ssp_capable(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_NOT_SUPPORTED); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_READ_LOCAL_OOB_DATA, hdev, NULL, 0); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, read_local_oob_data_sync, cmd, read_local_oob_data_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static int add_remote_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_addr_info *addr = data; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(addr->type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, addr, sizeof(*addr)); hci_dev_lock(hdev); if (len == MGMT_ADD_REMOTE_OOB_DATA_SIZE) { struct mgmt_cp_add_remote_oob_data *cp = data; u8 status; if (cp->addr.type != BDADDR_BREDR) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } err = hci_add_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type, cp->hash, cp->rand, NULL, NULL); if (err < 0) status = MGMT_STATUS_FAILED; else status = MGMT_STATUS_SUCCESS; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); } else if (len == MGMT_ADD_REMOTE_OOB_EXT_DATA_SIZE) { struct mgmt_cp_add_remote_oob_ext_data *cp = data; u8 *rand192, *hash192, *rand256, *hash256; u8 status; if (bdaddr_type_is_le(cp->addr.type)) { /* Enforce zero-valued 192-bit parameters as * long as legacy SMP OOB isn't implemented. */ if (memcmp(cp->rand192, ZERO_KEY, 16) || memcmp(cp->hash192, ZERO_KEY, 16)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, addr, sizeof(*addr)); goto unlock; } rand192 = NULL; hash192 = NULL; } else { /* In case one of the P-192 values is set to zero, * then just disable OOB data for P-192. */ if (!memcmp(cp->rand192, ZERO_KEY, 16) || !memcmp(cp->hash192, ZERO_KEY, 16)) { rand192 = NULL; hash192 = NULL; } else { rand192 = cp->rand192; hash192 = cp->hash192; } } /* In case one of the P-256 values is set to zero, then just * disable OOB data for P-256. */ if (!memcmp(cp->rand256, ZERO_KEY, 16) || !memcmp(cp->hash256, ZERO_KEY, 16)) { rand256 = NULL; hash256 = NULL; } else { rand256 = cp->rand256; hash256 = cp->hash256; } err = hci_add_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type, hash192, rand192, hash256, rand256); if (err < 0) status = MGMT_STATUS_FAILED; else status = MGMT_STATUS_SUCCESS; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); } else { bt_dev_err(hdev, "add_remote_oob_data: invalid len of %u bytes", len); err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS); } unlock: hci_dev_unlock(hdev); return err; } static int remove_remote_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_remote_oob_data *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->addr.type != BDADDR_BREDR) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); if (!bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { hci_remote_oob_data_clear(hdev); status = MGMT_STATUS_SUCCESS; goto done; } err = hci_remove_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type); if (err < 0) status = MGMT_STATUS_INVALID_PARAMS; else status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status) { struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "status %u", status); hci_dev_lock(hdev); cmd = pending_find(MGMT_OP_START_DISCOVERY, hdev); if (!cmd) cmd = pending_find(MGMT_OP_START_SERVICE_DISCOVERY, hdev); if (!cmd) cmd = pending_find(MGMT_OP_START_LIMITED_DISCOVERY, hdev); if (cmd) { cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); } static bool discovery_type_is_valid(struct hci_dev *hdev, uint8_t type, uint8_t *mgmt_status) { switch (type) { case DISCOV_TYPE_LE: *mgmt_status = mgmt_le_support(hdev); if (*mgmt_status) return false; break; case DISCOV_TYPE_INTERLEAVED: *mgmt_status = mgmt_le_support(hdev); if (*mgmt_status) return false; fallthrough; case DISCOV_TYPE_BREDR: *mgmt_status = mgmt_bredr_support(hdev); if (*mgmt_status) return false; break; default: *mgmt_status = MGMT_STATUS_INVALID_PARAMS; return false; } return true; } static void start_discovery_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err == -ECANCELED) return; if (cmd != pending_find(MGMT_OP_START_DISCOVERY, hdev) && cmd != pending_find(MGMT_OP_START_LIMITED_DISCOVERY, hdev) && cmd != pending_find(MGMT_OP_START_SERVICE_DISCOVERY, hdev)) return; mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), cmd->param, 1); mgmt_pending_remove(cmd); hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED: DISCOVERY_FINDING); } static int start_discovery_sync(struct hci_dev *hdev, void *data) { return hci_start_discovery_sync(hdev); } static int start_discovery_internal(struct sock *sk, struct hci_dev *hdev, u16 op, void *data, u16 len) { struct mgmt_cp_start_discovery *cp = data; struct mgmt_pending_cmd *cmd; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_NOT_POWERED, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery.state != DISCOVERY_STOPPED || hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } if (!discovery_type_is_valid(hdev, cp->type, &status)) { err = mgmt_cmd_complete(sk, hdev->id, op, status, &cp->type, sizeof(cp->type)); goto failed; } /* Can't start discovery when it is paused */ if (hdev->discovery_paused) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } /* Clear the discovery filter first to free any previously * allocated memory for the UUID list. */ hci_discovery_filter_clear(hdev); hdev->discovery.type = cp->type; hdev->discovery.report_invalid_rssi = false; if (op == MGMT_OP_START_LIMITED_DISCOVERY) hdev->discovery.limited = true; else hdev->discovery.limited = false; cmd = mgmt_pending_add(sk, op, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } err = hci_cmd_sync_queue(hdev, start_discovery_sync, cmd, start_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } hci_discovery_set_state(hdev, DISCOVERY_STARTING); failed: hci_dev_unlock(hdev); return err; } static int start_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { return start_discovery_internal(sk, hdev, MGMT_OP_START_DISCOVERY, data, len); } static int start_limited_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { return start_discovery_internal(sk, hdev, MGMT_OP_START_LIMITED_DISCOVERY, data, len); } static int start_service_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_start_service_discovery *cp = data; struct mgmt_pending_cmd *cmd; const u16 max_uuid_count = ((U16_MAX - sizeof(*cp)) / 16); u16 uuid_count, expected_len; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_NOT_POWERED, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery.state != DISCOVERY_STOPPED || hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery_paused) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } uuid_count = __le16_to_cpu(cp->uuid_count); if (uuid_count > max_uuid_count) { bt_dev_err(hdev, "service_discovery: too big uuid_count value %u", uuid_count); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &cp->type, sizeof(cp->type)); goto failed; } expected_len = sizeof(*cp) + uuid_count * 16; if (expected_len != len) { bt_dev_err(hdev, "service_discovery: expected %u bytes, got %u bytes", expected_len, len); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &cp->type, sizeof(cp->type)); goto failed; } if (!discovery_type_is_valid(hdev, cp->type, &status)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, status, &cp->type, sizeof(cp->type)); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_START_SERVICE_DISCOVERY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Clear the discovery filter first to free any previously * allocated memory for the UUID list. */ hci_discovery_filter_clear(hdev); hdev->discovery.result_filtering = true; hdev->discovery.type = cp->type; hdev->discovery.rssi = cp->rssi; hdev->discovery.uuid_count = uuid_count; if (uuid_count > 0) { hdev->discovery.uuids = kmemdup(cp->uuids, uuid_count * 16, GFP_KERNEL); if (!hdev->discovery.uuids) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_FAILED, &cp->type, sizeof(cp->type)); mgmt_pending_remove(cmd); goto failed; } } err = hci_cmd_sync_queue(hdev, start_discovery_sync, cmd, start_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } hci_discovery_set_state(hdev, DISCOVERY_STARTING); failed: hci_dev_unlock(hdev); return err; } void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status) { struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "status %u", status); hci_dev_lock(hdev); cmd = pending_find(MGMT_OP_STOP_DISCOVERY, hdev); if (cmd) { cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); } static void stop_discovery_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; if (err == -ECANCELED || cmd != pending_find(MGMT_OP_STOP_DISCOVERY, hdev)) return; bt_dev_dbg(hdev, "err %d", err); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), cmd->param, 1); mgmt_pending_remove(cmd); if (!err) hci_discovery_set_state(hdev, DISCOVERY_STOPPED); } static int stop_discovery_sync(struct hci_dev *hdev, void *data) { return hci_stop_discovery_sync(hdev); } static int stop_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_stop_discovery *mgmt_cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hci_discovery_active(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_STOP_DISCOVERY, MGMT_STATUS_REJECTED, &mgmt_cp->type, sizeof(mgmt_cp->type)); goto unlock; } if (hdev->discovery.type != mgmt_cp->type) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_STOP_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &mgmt_cp->type, sizeof(mgmt_cp->type)); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_STOP_DISCOVERY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } err = hci_cmd_sync_queue(hdev, stop_discovery_sync, cmd, stop_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto unlock; } hci_discovery_set_state(hdev, DISCOVERY_STOPPING); unlock: hci_dev_unlock(hdev); return err; } static int confirm_name(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_confirm_name *cp = data; struct inquiry_entry *e; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hci_discovery_active(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, MGMT_STATUS_FAILED, &cp->addr, sizeof(cp->addr)); goto failed; } e = hci_inquiry_cache_lookup_unknown(hdev, &cp->addr.bdaddr); if (!e) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto failed; } if (cp->name_known) { e->name_state = NAME_KNOWN; list_del(&e->list); } else { e->name_state = NAME_NEEDED; hci_inquiry_cache_update_resolve(hdev, e); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, 0, &cp->addr, sizeof(cp->addr)); failed: hci_dev_unlock(hdev); return err; } static int block_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_block_device *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_BLOCK_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); err = hci_bdaddr_list_add(&hdev->reject_list, &cp->addr.bdaddr, cp->addr.type); if (err < 0) { status = MGMT_STATUS_FAILED; goto done; } mgmt_event(MGMT_EV_DEVICE_BLOCKED, hdev, &cp->addr, sizeof(cp->addr), sk); status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_BLOCK_DEVICE, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } static int unblock_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_unblock_device *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNBLOCK_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); err = hci_bdaddr_list_del(&hdev->reject_list, &cp->addr.bdaddr, cp->addr.type); if (err < 0) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } mgmt_event(MGMT_EV_DEVICE_UNBLOCKED, hdev, &cp->addr, sizeof(cp->addr), sk); status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNBLOCK_DEVICE, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } static int set_device_id_sync(struct hci_dev *hdev, void *data) { return hci_update_eir_sync(hdev); } static int set_device_id(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_device_id *cp = data; int err; __u16 source; bt_dev_dbg(hdev, "sock %p", sk); source = __le16_to_cpu(cp->source); if (source > 0x0002) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEVICE_ID, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->devid_source = source; hdev->devid_vendor = __le16_to_cpu(cp->vendor); hdev->devid_product = __le16_to_cpu(cp->product); hdev->devid_version = __le16_to_cpu(cp->version); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEVICE_ID, 0, NULL, 0); hci_cmd_sync_queue(hdev, set_device_id_sync, NULL, NULL); hci_dev_unlock(hdev); return err; } static void enable_advertising_instance(struct hci_dev *hdev, int err) { if (err) bt_dev_err(hdev, "failed to re-configure advertising %d", err); else bt_dev_dbg(hdev, "status %d", err); } static void set_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; u8 instance; struct adv_info *adv_instance; u8 status = mgmt_status(err); if (status) { mgmt_pending_foreach(MGMT_OP_SET_ADVERTISING, hdev, cmd_status_rsp, &status); return; } if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_dev_set_flag(hdev, HCI_ADVERTISING); else hci_dev_clear_flag(hdev, HCI_ADVERTISING); mgmt_pending_foreach(MGMT_OP_SET_ADVERTISING, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); /* If "Set Advertising" was just disabled and instance advertising was * set up earlier, then re-enable multi-instance advertising. */ if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || list_empty(&hdev->adv_instances)) return; instance = hdev->cur_adv_instance; if (!instance) { adv_instance = list_first_entry_or_null(&hdev->adv_instances, struct adv_info, list); if (!adv_instance) return; instance = adv_instance->instance; } err = hci_schedule_adv_instance_sync(hdev, instance, true); enable_advertising_instance(hdev, err); } static int set_adv_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_ADVERTISING_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); cancel_adv_timeout(hdev); if (val) { /* Switch to instance "0" for the Set Advertising setting. * We cannot use update_[adv|scan_rsp]_data() here as the * HCI_ADVERTISING flag is not yet set. */ hdev->cur_adv_instance = 0x00; if (ext_adv_capable(hdev)) { hci_start_ext_adv_sync(hdev, 0x00); } else { hci_update_adv_data_sync(hdev, 0x00); hci_update_scan_rsp_data_sync(hdev, 0x00); hci_enable_advertising_sync(hdev); } } else { hci_disable_advertising_sync(hdev); } return 0; } static int set_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val, status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, status); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); if (hdev->advertising_paused) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_BUSY); hci_dev_lock(hdev); val = !!cp->val; /* The following conditions are ones which mean that we should * not do any HCI communication but directly send a mgmt * response to user space (after toggling the flag if * necessary). */ if (!hdev_is_powered(hdev) || (val == hci_dev_test_flag(hdev, HCI_ADVERTISING) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) || hci_dev_test_flag(hdev, HCI_MESH) || hci_conn_num(hdev, LE_LINK) > 0 || (hci_dev_test_flag(hdev, HCI_LE_SCAN) && hdev->le_scan_type == LE_SCAN_ACTIVE)) { bool changed; if (cp->val) { hdev->cur_adv_instance = 0x00; changed = !hci_dev_test_and_set_flag(hdev, HCI_ADVERTISING); if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_ADVERTISING_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_ADVERTISING); hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); } err = send_settings_rsp(sk, MGMT_OP_SET_ADVERTISING, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); goto unlock; } if (pending_find(MGMT_OP_SET_ADVERTISING, hdev) || pending_find(MGMT_OP_SET_LE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_ADVERTISING, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_adv_sync, cmd, set_advertising_complete); if (err < 0 && cmd) mgmt_pending_remove(cmd); unlock: hci_dev_unlock(hdev); return err; } static int set_static_address(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_static_address *cp = data; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_NOT_SUPPORTED); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_REJECTED); if (bacmp(&cp->bdaddr, BDADDR_ANY)) { if (!bacmp(&cp->bdaddr, BDADDR_NONE)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); /* Two most significant bits shall be set */ if ((cp->bdaddr.b[5] & 0xc0) != 0xc0) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); bacpy(&hdev->static_addr, &cp->bdaddr); err = send_settings_rsp(sk, MGMT_OP_SET_STATIC_ADDRESS, hdev); if (err < 0) goto unlock; err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int set_scan_params(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_scan_params *cp = data; __u16 interval, window; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_NOT_SUPPORTED); interval = __le16_to_cpu(cp->interval); if (interval < 0x0004 || interval > 0x4000) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); window = __le16_to_cpu(cp->window); if (window < 0x0004 || window > 0x4000) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); if (window > interval) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->le_scan_interval = interval; hdev->le_scan_window = window; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, 0, NULL, 0); /* If background scan is running, restart it so new parameters are * loaded. */ if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && hdev->discovery.state == DISCOVERY_STOPPED) hci_update_passive_scan(hdev); hci_dev_unlock(hdev); return err; } static void fast_connectable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, mgmt_status(err)); } else { struct mgmt_mode *cp = cmd->param; if (cp->val) hci_dev_set_flag(hdev, HCI_FAST_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_FAST_CONNECTABLE); send_settings_rsp(cmd->sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); new_settings(hdev, cmd->sk); } mgmt_pending_free(cmd); } static int write_fast_connectable_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; return hci_write_fast_connectable_sync(hdev, cp->val); } static int set_fast_connectable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) || hdev->hci_ver < BLUETOOTH_VER_1_2) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!!cp->val == hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) { err = send_settings_rsp(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); goto unlock; } if (!hdev_is_powered(hdev)) { hci_dev_change_flag(hdev, HCI_FAST_CONNECTABLE); err = send_settings_rsp(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); new_settings(hdev, sk); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, write_fast_connectable_sync, cmd, fast_connectable_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static void set_bredr_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err) { u8 mgmt_err = mgmt_status(err); /* We need to restore the flag if related HCI commands * failed. */ hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); } else { send_settings_rsp(cmd->sk, MGMT_OP_SET_BREDR, hdev); new_settings(hdev, cmd->sk); } mgmt_pending_free(cmd); } static int set_bredr_sync(struct hci_dev *hdev, void *data) { int status; status = hci_write_fast_connectable_sync(hdev, false); if (!status) status = hci_update_scan_sync(hdev); /* Since only the advertising data flags will change, there * is no need to update the scan response data. */ if (!status) status = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); return status; } static int set_bredr(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev) || !lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val == hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { err = send_settings_rsp(sk, MGMT_OP_SET_BREDR, hdev); goto unlock; } if (!hdev_is_powered(hdev)) { if (!cp->val) { hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); hci_dev_clear_flag(hdev, HCI_LINK_SECURITY); hci_dev_clear_flag(hdev, HCI_FAST_CONNECTABLE); } hci_dev_change_flag(hdev, HCI_BREDR_ENABLED); err = send_settings_rsp(sk, MGMT_OP_SET_BREDR, hdev); if (err < 0) goto unlock; err = new_settings(hdev, sk); goto unlock; } /* Reject disabling when powered on */ if (!cp->val) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); goto unlock; } else { /* When configuring a dual-mode controller to operate * with LE only and using a static address, then switching * BR/EDR back on is not allowed. * * Dual-mode controllers shall operate with the public * address as its identity address for BR/EDR and LE. So * reject the attempt to create an invalid configuration. * * The same restrictions applies when secure connections * has been enabled. For BR/EDR this is a controller feature * while for LE it is a host stack feature. This means that * switching BR/EDR back on when secure connections has been * enabled is not a supported transaction. */ if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && (bacmp(&hdev->static_addr, BDADDR_ANY) || hci_dev_test_flag(hdev, HCI_SC_ENABLED))) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); goto unlock; } } cmd = mgmt_pending_new(sk, MGMT_OP_SET_BREDR, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_bredr_sync, cmd, set_bredr_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); goto unlock; } /* We need to flip the bit already here so that * hci_req_update_adv_data generates the correct flags. */ hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); unlock: hci_dev_unlock(hdev); return err; } static void set_secure_conn_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; bt_dev_dbg(hdev, "err %d", err); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); goto done; } cp = cmd->param; switch (cp->val) { case 0x00: hci_dev_clear_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); break; case 0x01: hci_dev_set_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); break; case 0x02: hci_dev_set_flag(hdev, HCI_SC_ENABLED); hci_dev_set_flag(hdev, HCI_SC_ONLY); break; } send_settings_rsp(cmd->sk, cmd->opcode, hdev); new_settings(hdev, cmd->sk); done: mgmt_pending_free(cmd); } static int set_secure_conn_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; /* Force write of val */ hci_dev_set_flag(hdev, HCI_SC_ENABLED); return hci_write_sc_support_sync(hdev, val); } static int set_secure_conn(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_sc_capable(hdev) && !hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_NOT_SUPPORTED); if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && lmp_sc_capable(hdev) && !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev) || !lmp_sc_capable(hdev) || !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { bool changed; if (cp->val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SC_ENABLED); if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_SC_ONLY); else hci_dev_clear_flag(hdev, HCI_SC_ONLY); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); } err = send_settings_rsp(sk, MGMT_OP_SET_SECURE_CONN, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } val = !!cp->val; if (val == hci_dev_test_flag(hdev, HCI_SC_ENABLED) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_SC_ONLY)) { err = send_settings_rsp(sk, MGMT_OP_SET_SECURE_CONN, hdev); goto failed; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_SECURE_CONN, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_secure_conn_sync, cmd, set_secure_conn_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } failed: hci_dev_unlock(hdev); return err; } static int set_debug_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; bool changed, use_changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEBUG_KEYS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_KEEP_DEBUG_KEYS); else changed = hci_dev_test_and_clear_flag(hdev, HCI_KEEP_DEBUG_KEYS); if (cp->val == 0x02) use_changed = !hci_dev_test_and_set_flag(hdev, HCI_USE_DEBUG_KEYS); else use_changed = hci_dev_test_and_clear_flag(hdev, HCI_USE_DEBUG_KEYS); if (hdev_is_powered(hdev) && use_changed && hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { u8 mode = (cp->val == 0x02) ? 0x01 : 0x00; hci_send_cmd(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, sizeof(mode), &mode); } err = send_settings_rsp(sk, MGMT_OP_SET_DEBUG_KEYS, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int set_privacy(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_set_privacy *cp = cp_data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_NOT_SUPPORTED); if (cp->privacy != 0x00 && cp->privacy != 0x01 && cp->privacy != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_INVALID_PARAMS); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); /* If user space supports this command it is also expected to * handle IRKs. Therefore, set the HCI_RPA_RESOLVING flag. */ hci_dev_set_flag(hdev, HCI_RPA_RESOLVING); if (cp->privacy) { changed = !hci_dev_test_and_set_flag(hdev, HCI_PRIVACY); memcpy(hdev->irk, cp->irk, sizeof(hdev->irk)); hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); hci_adv_instances_set_rpa_expired(hdev, true); if (cp->privacy == 0x02) hci_dev_set_flag(hdev, HCI_LIMITED_PRIVACY); else hci_dev_clear_flag(hdev, HCI_LIMITED_PRIVACY); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_PRIVACY); memset(hdev->irk, 0, sizeof(hdev->irk)); hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); hci_adv_instances_set_rpa_expired(hdev, false); hci_dev_clear_flag(hdev, HCI_LIMITED_PRIVACY); } err = send_settings_rsp(sk, MGMT_OP_SET_PRIVACY, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static bool irk_is_valid(struct mgmt_irk_info *irk) { switch (irk->addr.type) { case BDADDR_LE_PUBLIC: return true; case BDADDR_LE_RANDOM: /* Two most significant bits shall be set */ if ((irk->addr.bdaddr.b[5] & 0xc0) != 0xc0) return false; return true; } return false; } static int load_irks(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_load_irks *cp = cp_data; const u16 max_irk_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_irk_info)); u16 irk_count, expected_len; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_NOT_SUPPORTED); irk_count = __le16_to_cpu(cp->irk_count); if (irk_count > max_irk_count) { bt_dev_err(hdev, "load_irks: too big irk_count value %u", irk_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, irks, irk_count); if (expected_len != len) { bt_dev_err(hdev, "load_irks: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "irk_count %u", irk_count); for (i = 0; i < irk_count; i++) { struct mgmt_irk_info *key = &cp->irks[i]; if (!irk_is_valid(key)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); hci_smp_irks_clear(hdev); for (i = 0; i < irk_count; i++) { struct mgmt_irk_info *irk = &cp->irks[i]; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, irk->val)) { bt_dev_warn(hdev, "Skipping blocked IRK for %pMR", &irk->addr.bdaddr); continue; } hci_add_irk(hdev, &irk->addr.bdaddr, le_addr_type(irk->addr.type), irk->val, BDADDR_ANY); } hci_dev_set_flag(hdev, HCI_RPA_RESOLVING); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_IRKS, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static bool ltk_is_valid(struct mgmt_ltk_info *key) { if (key->initiator != 0x00 && key->initiator != 0x01) return false; switch (key->addr.type) { case BDADDR_LE_PUBLIC: return true; case BDADDR_LE_RANDOM: /* Two most significant bits shall be set */ if ((key->addr.bdaddr.b[5] & 0xc0) != 0xc0) return false; return true; } return false; } static int load_long_term_keys(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_load_long_term_keys *cp = cp_data; const u16 max_key_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_ltk_info)); u16 key_count, expected_len; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_NOT_SUPPORTED); key_count = __le16_to_cpu(cp->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "load_ltks: too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "load_keys: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "key_count %u", key_count); hci_dev_lock(hdev); hci_smp_ltks_clear(hdev); for (i = 0; i < key_count; i++) { struct mgmt_ltk_info *key = &cp->keys[i]; u8 type, authenticated; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, key->val)) { bt_dev_warn(hdev, "Skipping blocked LTK for %pMR", &key->addr.bdaddr); continue; } if (!ltk_is_valid(key)) { bt_dev_warn(hdev, "Invalid LTK for %pMR", &key->addr.bdaddr); continue; } switch (key->type) { case MGMT_LTK_UNAUTHENTICATED: authenticated = 0x00; type = key->initiator ? SMP_LTK : SMP_LTK_RESPONDER; break; case MGMT_LTK_AUTHENTICATED: authenticated = 0x01; type = key->initiator ? SMP_LTK : SMP_LTK_RESPONDER; break; case MGMT_LTK_P256_UNAUTH: authenticated = 0x00; type = SMP_LTK_P256; break; case MGMT_LTK_P256_AUTH: authenticated = 0x01; type = SMP_LTK_P256; break; case MGMT_LTK_P256_DEBUG: authenticated = 0x00; type = SMP_LTK_P256_DEBUG; fallthrough; default: continue; } hci_add_ltk(hdev, &key->addr.bdaddr, le_addr_type(key->addr.type), type, authenticated, key->val, key->enc_size, key->ediv, key->rand); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static void get_conn_info_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct hci_conn *conn = cmd->user_data; struct mgmt_cp_get_conn_info *cp = cmd->param; struct mgmt_rp_get_conn_info rp; u8 status; bt_dev_dbg(hdev, "err %d", err); memcpy(&rp.addr, &cp->addr, sizeof(rp.addr)); status = mgmt_status(err); if (status == MGMT_STATUS_SUCCESS) { rp.rssi = conn->rssi; rp.tx_power = conn->tx_power; rp.max_tx_power = conn->max_tx_power; } else { rp.rssi = HCI_RSSI_INVALID; rp.tx_power = HCI_TX_POWER_INVALID; rp.max_tx_power = HCI_TX_POWER_INVALID; } mgmt_cmd_complete(cmd->sk, cmd->index, MGMT_OP_GET_CONN_INFO, status, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int get_conn_info_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_conn_info *cp = cmd->param; struct hci_conn *conn; int err; __le16 handle; /* Make sure we are still connected */ if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) return MGMT_STATUS_NOT_CONNECTED; cmd->user_data = conn; handle = cpu_to_le16(conn->handle); /* Refresh RSSI each time */ err = hci_read_rssi_sync(hdev, handle); /* For LE links TX power does not change thus we don't need to * query for it once value is known. */ if (!err && (!bdaddr_type_is_le(cp->addr.type) || conn->tx_power == HCI_TX_POWER_INVALID)) err = hci_read_tx_power_sync(hdev, handle, 0x00); /* Max TX power needs to be read only once per connection */ if (!err && conn->max_tx_power == HCI_TX_POWER_INVALID) err = hci_read_tx_power_sync(hdev, handle, 0x01); return err; } static int get_conn_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_get_conn_info *cp = data; struct mgmt_rp_get_conn_info rp; struct hci_conn *conn; unsigned long conn_info_age; int err = 0; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_NOT_CONNECTED, &rp, sizeof(rp)); goto unlock; } /* To avoid client trying to guess when to poll again for information we * calculate conn info age as random value between min/max set in hdev. */ conn_info_age = get_random_u32_inclusive(hdev->conn_info_min_age, hdev->conn_info_max_age - 1); /* Query controller to refresh cached values if they are too old or were * never read. */ if (time_after(jiffies, conn->conn_info_timestamp + msecs_to_jiffies(conn_info_age)) || !conn->conn_info_timestamp) { struct mgmt_pending_cmd *cmd; cmd = mgmt_pending_new(sk, MGMT_OP_GET_CONN_INFO, hdev, data, len); if (!cmd) { err = -ENOMEM; } else { err = hci_cmd_sync_queue(hdev, get_conn_info_sync, cmd, get_conn_info_complete); } if (err < 0) { mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_FAILED, &rp, sizeof(rp)); if (cmd) mgmt_pending_free(cmd); goto unlock; } conn->conn_info_timestamp = jiffies; } else { /* Cache is valid, just reply with values cached in hci_conn */ rp.rssi = conn->rssi; rp.tx_power = conn->tx_power; rp.max_tx_power = conn->max_tx_power; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } unlock: hci_dev_unlock(hdev); return err; } static void get_clock_info_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_clock_info *cp = cmd->param; struct mgmt_rp_get_clock_info rp; struct hci_conn *conn = cmd->user_data; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (err) goto complete; rp.local_clock = cpu_to_le32(hdev->clock); if (conn) { rp.piconet_clock = cpu_to_le32(conn->clock); rp.accuracy = cpu_to_le16(conn->clock_accuracy); } complete: mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int get_clock_info_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_clock_info *cp = cmd->param; struct hci_cp_read_clock hci_cp; struct hci_conn *conn; memset(&hci_cp, 0, sizeof(hci_cp)); hci_read_clock_sync(hdev, &hci_cp); /* Make sure connection still exists */ conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) return MGMT_STATUS_NOT_CONNECTED; cmd->user_data = conn; hci_cp.handle = cpu_to_le16(conn->handle); hci_cp.which = 0x01; /* Piconet clock */ return hci_read_clock_sync(hdev, &hci_cp); } static int get_clock_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_get_clock_info *cp = data; struct mgmt_rp_get_clock_info rp; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (cp->addr.type != BDADDR_BREDR) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_NOT_CONNECTED, &rp, sizeof(rp)); goto unlock; } } else { conn = NULL; } cmd = mgmt_pending_new(sk, MGMT_OP_GET_CLOCK_INFO, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, get_clock_info_sync, cmd, get_clock_info_complete); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_FAILED, &rp, sizeof(rp)); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) { struct hci_conn *conn; conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr); if (!conn) return false; if (conn->dst_type != type) return false; if (conn->state != BT_CONNECTED) return false; return true; } /* This function requires the caller holds hdev->lock */ static int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type, u8 auto_connect) { struct hci_conn_params *params; params = hci_conn_params_add(hdev, addr, addr_type); if (!params) return -EIO; if (params->auto_connect == auto_connect) return 0; hci_pend_le_list_del_init(params); switch (auto_connect) { case HCI_AUTO_CONN_DISABLED: case HCI_AUTO_CONN_LINK_LOSS: /* If auto connect is being disabled when we're trying to * connect to device, keep connecting. */ if (params->explicit_connect) hci_pend_le_list_add(params, &hdev->pend_le_conns); break; case HCI_AUTO_CONN_REPORT: if (params->explicit_connect) hci_pend_le_list_add(params, &hdev->pend_le_conns); else hci_pend_le_list_add(params, &hdev->pend_le_reports); break; case HCI_AUTO_CONN_DIRECT: case HCI_AUTO_CONN_ALWAYS: if (!is_connected(hdev, addr, addr_type)) hci_pend_le_list_add(params, &hdev->pend_le_conns); break; } params->auto_connect = auto_connect; bt_dev_dbg(hdev, "addr %pMR (type %u) auto_connect %u", addr, addr_type, auto_connect); return 0; } static void device_added(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type, u8 action) { struct mgmt_ev_device_added ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = type; ev.action = action; mgmt_event(MGMT_EV_DEVICE_ADDED, hdev, &ev, sizeof(ev), sk); } static void add_device_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_device *cp = cmd->param; if (!err) { device_added(cmd->sk, hdev, &cp->addr.bdaddr, cp->addr.type, cp->action); device_flags_changed(NULL, hdev, &cp->addr.bdaddr, cp->addr.type, hdev->conn_flags, PTR_UINT(cmd->user_data)); } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_ADD_DEVICE, mgmt_status(err), &cp->addr, sizeof(cp->addr)); mgmt_pending_free(cmd); } static int add_device_sync(struct hci_dev *hdev, void *data) { return hci_update_passive_scan_sync(hdev); } static int add_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; struct mgmt_cp_add_device *cp = data; u8 auto_conn, addr_type; struct hci_conn_params *params; int err; u32 current_flags = 0; u32 supported_flags; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type) || !bacmp(&cp->addr.bdaddr, BDADDR_ANY)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); if (cp->action != 0x00 && cp->action != 0x01 && cp->action != 0x02) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); if (cp->addr.type == BDADDR_BREDR) { /* Only incoming connections action is supported for now */ if (cp->action != 0x01) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } err = hci_bdaddr_list_add_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type, 0); if (err) goto unlock; hci_update_scan(hdev); goto added; } addr_type = le_addr_type(cp->addr.type); if (cp->action == 0x02) auto_conn = HCI_AUTO_CONN_ALWAYS; else if (cp->action == 0x01) auto_conn = HCI_AUTO_CONN_DIRECT; else auto_conn = HCI_AUTO_CONN_REPORT; /* Kernel internally uses conn_params with resolvable private * address, but Add Device allows only identity addresses. * Make sure it is enforced before calling * hci_conn_params_lookup. */ if (!hci_is_identity_address(&cp->addr.bdaddr, addr_type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } /* If the connection parameters don't exist for this device, * they will be created and configured with defaults. */ if (hci_conn_params_set(hdev, &cp->addr.bdaddr, addr_type, auto_conn) < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_FAILED, &cp->addr, sizeof(cp->addr)); goto unlock; } else { params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (params) current_flags = params->flags; } cmd = mgmt_pending_new(sk, MGMT_OP_ADD_DEVICE, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } cmd->user_data = UINT_PTR(current_flags); err = hci_cmd_sync_queue(hdev, add_device_sync, cmd, add_device_complete); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_FAILED, &cp->addr, sizeof(cp->addr)); mgmt_pending_free(cmd); } goto unlock; added: device_added(sk, hdev, &cp->addr.bdaddr, cp->addr.type, cp->action); supported_flags = hdev->conn_flags; device_flags_changed(NULL, hdev, &cp->addr.bdaddr, cp->addr.type, supported_flags, current_flags); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_SUCCESS, &cp->addr, sizeof(cp->addr)); unlock: hci_dev_unlock(hdev); return err; } static void device_removed(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) { struct mgmt_ev_device_removed ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = type; mgmt_event(MGMT_EV_DEVICE_REMOVED, hdev, &ev, sizeof(ev), sk); } static int remove_device_sync(struct hci_dev *hdev, void *data) { return hci_update_passive_scan_sync(hdev); } static int remove_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_device *cp = data; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { struct hci_conn_params *params; u8 addr_type; if (!bdaddr_type_is_valid(cp->addr.type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) { err = hci_bdaddr_list_del(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (err) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } hci_update_scan(hdev); device_removed(sk, hdev, &cp->addr.bdaddr, cp->addr.type); goto complete; } addr_type = le_addr_type(cp->addr.type); /* Kernel internally uses conn_params with resolvable private * address, but Remove Device allows only identity addresses. * Make sure it is enforced before calling * hci_conn_params_lookup. */ if (!hci_is_identity_address(&cp->addr.bdaddr, addr_type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (!params) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } if (params->auto_connect == HCI_AUTO_CONN_DISABLED || params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } hci_conn_params_free(params); device_removed(sk, hdev, &cp->addr.bdaddr, cp->addr.type); } else { struct hci_conn_params *p, *tmp; struct bdaddr_list *b, *btmp; if (cp->addr.type) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } list_for_each_entry_safe(b, btmp, &hdev->accept_list, list) { device_removed(sk, hdev, &b->bdaddr, b->bdaddr_type); list_del(&b->list); kfree(b); } hci_update_scan(hdev); list_for_each_entry_safe(p, tmp, &hdev->le_conn_params, list) { if (p->auto_connect == HCI_AUTO_CONN_DISABLED) continue; device_removed(sk, hdev, &p->addr, p->addr_type); if (p->explicit_connect) { p->auto_connect = HCI_AUTO_CONN_EXPLICIT; continue; } hci_conn_params_free(p); } bt_dev_dbg(hdev, "All LE connection parameters were removed"); } hci_cmd_sync_queue(hdev, remove_device_sync, NULL, NULL); complete: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_SUCCESS, &cp->addr, sizeof(cp->addr)); unlock: hci_dev_unlock(hdev); return err; } static int conn_update_sync(struct hci_dev *hdev, void *data) { struct hci_conn_params *params = data; struct hci_conn *conn; conn = hci_conn_hash_lookup_le(hdev, ¶ms->addr, params->addr_type); if (!conn) return -ECANCELED; return hci_le_conn_update_sync(hdev, conn, params); } static int load_conn_param(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_load_conn_param *cp = data; const u16 max_param_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_conn_param)); u16 param_count, expected_len; int i; if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_NOT_SUPPORTED); param_count = __le16_to_cpu(cp->param_count); if (param_count > max_param_count) { bt_dev_err(hdev, "load_conn_param: too big param_count value %u", param_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, params, param_count); if (expected_len != len) { bt_dev_err(hdev, "load_conn_param: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "param_count %u", param_count); hci_dev_lock(hdev); if (param_count > 1) hci_conn_params_clear_disabled(hdev); for (i = 0; i < param_count; i++) { struct mgmt_conn_param *param = &cp->params[i]; struct hci_conn_params *hci_param; u16 min, max, latency, timeout; bool update = false; u8 addr_type; bt_dev_dbg(hdev, "Adding %pMR (type %u)", ¶m->addr.bdaddr, param->addr.type); if (param->addr.type == BDADDR_LE_PUBLIC) { addr_type = ADDR_LE_DEV_PUBLIC; } else if (param->addr.type == BDADDR_LE_RANDOM) { addr_type = ADDR_LE_DEV_RANDOM; } else { bt_dev_err(hdev, "ignoring invalid connection parameters"); continue; } min = le16_to_cpu(param->min_interval); max = le16_to_cpu(param->max_interval); latency = le16_to_cpu(param->latency); timeout = le16_to_cpu(param->timeout); bt_dev_dbg(hdev, "min 0x%04x max 0x%04x latency 0x%04x timeout 0x%04x", min, max, latency, timeout); if (hci_check_conn_params(min, max, latency, timeout) < 0) { bt_dev_err(hdev, "ignoring invalid connection parameters"); continue; } /* Detect when the loading is for an existing parameter then * attempt to trigger the connection update procedure. */ if (!i && param_count == 1) { hci_param = hci_conn_params_lookup(hdev, ¶m->addr.bdaddr, addr_type); if (hci_param) update = true; else hci_conn_params_clear_disabled(hdev); } hci_param = hci_conn_params_add(hdev, ¶m->addr.bdaddr, addr_type); if (!hci_param) { bt_dev_err(hdev, "failed to add connection parameters"); continue; } hci_param->conn_min_interval = min; hci_param->conn_max_interval = max; hci_param->conn_latency = latency; hci_param->supervision_timeout = timeout; /* Check if we need to trigger a connection update */ if (update) { struct hci_conn *conn; /* Lookup for existing connection as central and check * if parameters match and if they don't then trigger * a connection update. */ conn = hci_conn_hash_lookup_le(hdev, &hci_param->addr, addr_type); if (conn && conn->role == HCI_ROLE_MASTER && (conn->le_conn_min_interval != min || conn->le_conn_max_interval != max || conn->le_conn_latency != latency || conn->le_supv_timeout != timeout)) hci_cmd_sync_queue(hdev, conn_update_sync, hci_param, NULL); } } hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, 0, NULL, 0); } static int set_external_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_external_config *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_REJECTED); if (cp->config != 0x00 && cp->config != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_INVALID_PARAMS); if (!test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); if (cp->config) changed = !hci_dev_test_and_set_flag(hdev, HCI_EXT_CONFIGURED); else changed = hci_dev_test_and_clear_flag(hdev, HCI_EXT_CONFIGURED); err = send_options_rsp(sk, MGMT_OP_SET_EXTERNAL_CONFIG, hdev); if (err < 0) goto unlock; if (!changed) goto unlock; err = new_options(hdev, sk); if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) == is_configured(hdev)) { mgmt_index_removed(hdev); if (hci_dev_test_and_change_flag(hdev, HCI_UNCONFIGURED)) { hci_dev_set_flag(hdev, HCI_CONFIG); hci_dev_set_flag(hdev, HCI_AUTO_OFF); queue_work(hdev->req_workqueue, &hdev->power_on); } else { set_bit(HCI_RAW, &hdev->flags); mgmt_index_added(hdev); } } unlock: hci_dev_unlock(hdev); return err; } static int set_public_address(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_public_address *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_REJECTED); if (!bacmp(&cp->bdaddr, BDADDR_ANY)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); if (!hdev->set_bdaddr) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); changed = !!bacmp(&hdev->public_addr, &cp->bdaddr); bacpy(&hdev->public_addr, &cp->bdaddr); err = send_options_rsp(sk, MGMT_OP_SET_PUBLIC_ADDRESS, hdev); if (err < 0) goto unlock; if (!changed) goto unlock; if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) err = new_options(hdev, sk); if (is_configured(hdev)) { mgmt_index_removed(hdev); hci_dev_clear_flag(hdev, HCI_UNCONFIGURED); hci_dev_set_flag(hdev, HCI_CONFIG); hci_dev_set_flag(hdev, HCI_AUTO_OFF); queue_work(hdev->req_workqueue, &hdev->power_on); } unlock: hci_dev_unlock(hdev); return err; } static void read_local_oob_ext_data_complete(struct hci_dev *hdev, void *data, int err) { const struct mgmt_cp_read_local_oob_ext_data *mgmt_cp; struct mgmt_rp_read_local_oob_ext_data *mgmt_rp; u8 *h192, *r192, *h256, *r256; struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); u16 eir_len; if (err == -ECANCELED || cmd != pending_find(MGMT_OP_READ_LOCAL_OOB_EXT_DATA, hdev)) return; if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %u", status); mgmt_cp = cmd->param; if (status) { status = mgmt_status(status); eir_len = 0; h192 = NULL; r192 = NULL; h256 = NULL; r256 = NULL; } else if (!bredr_sc_enabled(hdev)) { struct hci_rp_read_local_oob_data *rp; if (skb->len != sizeof(*rp)) { status = MGMT_STATUS_FAILED; eir_len = 0; } else { status = MGMT_STATUS_SUCCESS; rp = (void *)skb->data; eir_len = 5 + 18 + 18; h192 = rp->hash; r192 = rp->rand; h256 = NULL; r256 = NULL; } } else { struct hci_rp_read_local_oob_ext_data *rp; if (skb->len != sizeof(*rp)) { status = MGMT_STATUS_FAILED; eir_len = 0; } else { status = MGMT_STATUS_SUCCESS; rp = (void *)skb->data; if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { eir_len = 5 + 18 + 18; h192 = NULL; r192 = NULL; } else { eir_len = 5 + 18 + 18 + 18 + 18; h192 = rp->hash192; r192 = rp->rand192; } h256 = rp->hash256; r256 = rp->rand256; } } mgmt_rp = kmalloc(sizeof(*mgmt_rp) + eir_len, GFP_KERNEL); if (!mgmt_rp) goto done; if (eir_len == 0) goto send_rsp; eir_len = eir_append_data(mgmt_rp->eir, 0, EIR_CLASS_OF_DEV, hdev->dev_class, 3); if (h192 && r192) { eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_HASH_C192, h192, 16); eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_RAND_R192, r192, 16); } if (h256 && r256) { eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_HASH_C256, h256, 16); eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_RAND_R256, r256, 16); } send_rsp: mgmt_rp->type = mgmt_cp->type; mgmt_rp->eir_len = cpu_to_le16(eir_len); err = mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, status, mgmt_rp, sizeof(*mgmt_rp) + eir_len); if (err < 0 || status) goto done; hci_sock_set_flag(cmd->sk, HCI_MGMT_OOB_DATA_EVENTS); err = mgmt_limited_event(MGMT_EV_LOCAL_OOB_DATA_UPDATED, hdev, mgmt_rp, sizeof(*mgmt_rp) + eir_len, HCI_MGMT_OOB_DATA_EVENTS, cmd->sk); done: if (skb && !IS_ERR(skb)) kfree_skb(skb); kfree(mgmt_rp); mgmt_pending_remove(cmd); } static int read_local_ssp_oob_req(struct hci_dev *hdev, struct sock *sk, struct mgmt_cp_read_local_oob_ext_data *cp) { struct mgmt_pending_cmd *cmd; int err; cmd = mgmt_pending_add(sk, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, hdev, cp, sizeof(*cp)); if (!cmd) return -ENOMEM; err = hci_cmd_sync_queue(hdev, read_local_oob_data_sync, cmd, read_local_oob_ext_data_complete); if (err < 0) { mgmt_pending_remove(cmd); return err; } return 0; } static int read_local_oob_ext_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_read_local_oob_ext_data *cp = data; struct mgmt_rp_read_local_oob_ext_data *rp; size_t rp_len; u16 eir_len; u8 status, flags, role, addr[7], hash[16], rand[16]; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) { switch (cp->type) { case BIT(BDADDR_BREDR): status = mgmt_bredr_support(hdev); if (status) eir_len = 0; else eir_len = 5; break; case (BIT(BDADDR_LE_PUBLIC) | BIT(BDADDR_LE_RANDOM)): status = mgmt_le_support(hdev); if (status) eir_len = 0; else eir_len = 9 + 3 + 18 + 18 + 3; break; default: status = MGMT_STATUS_INVALID_PARAMS; eir_len = 0; break; } } else { status = MGMT_STATUS_NOT_POWERED; eir_len = 0; } rp_len = sizeof(*rp) + eir_len; rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) return -ENOMEM; if (!status && !lmp_ssp_capable(hdev)) { status = MGMT_STATUS_NOT_SUPPORTED; eir_len = 0; } if (status) goto complete; hci_dev_lock(hdev); eir_len = 0; switch (cp->type) { case BIT(BDADDR_BREDR): if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { err = read_local_ssp_oob_req(hdev, sk, cp); hci_dev_unlock(hdev); if (!err) goto done; status = MGMT_STATUS_FAILED; goto complete; } else { eir_len = eir_append_data(rp->eir, eir_len, EIR_CLASS_OF_DEV, hdev->dev_class, 3); } break; case (BIT(BDADDR_LE_PUBLIC) | BIT(BDADDR_LE_RANDOM)): if (hci_dev_test_flag(hdev, HCI_SC_ENABLED) && smp_generate_oob(hdev, hash, rand) < 0) { hci_dev_unlock(hdev); status = MGMT_STATUS_FAILED; goto complete; } /* This should return the active RPA, but since the RPA * is only programmed on demand, it is really hard to fill * this in at the moment. For now disallow retrieving * local out-of-band data when privacy is in use. * * Returning the identity address will not help here since * pairing happens before the identity resolving key is * known and thus the connection establishment happens * based on the RPA and not the identity address. */ if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { hci_dev_unlock(hdev); status = MGMT_STATUS_REJECTED; goto complete; } if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || !bacmp(&hdev->bdaddr, BDADDR_ANY) || (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && bacmp(&hdev->static_addr, BDADDR_ANY))) { memcpy(addr, &hdev->static_addr, 6); addr[6] = 0x01; } else { memcpy(addr, &hdev->bdaddr, 6); addr[6] = 0x00; } eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_BDADDR, addr, sizeof(addr)); if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) role = 0x02; else role = 0x01; eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_ROLE, &role, sizeof(role)); if (hci_dev_test_flag(hdev, HCI_SC_ENABLED)) { eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_SC_CONFIRM, hash, sizeof(hash)); eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_SC_RANDOM, rand, sizeof(rand)); } flags = mgmt_get_adv_discov_flags(hdev); if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) flags |= LE_AD_NO_BREDR; eir_len = eir_append_data(rp->eir, eir_len, EIR_FLAGS, &flags, sizeof(flags)); break; } hci_dev_unlock(hdev); hci_sock_set_flag(sk, HCI_MGMT_OOB_DATA_EVENTS); status = MGMT_STATUS_SUCCESS; complete: rp->type = cp->type; rp->eir_len = cpu_to_le16(eir_len); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, status, rp, sizeof(*rp) + eir_len); if (err < 0 || status) goto done; err = mgmt_limited_event(MGMT_EV_LOCAL_OOB_DATA_UPDATED, hdev, rp, sizeof(*rp) + eir_len, HCI_MGMT_OOB_DATA_EVENTS, sk); done: kfree(rp); return err; } static u32 get_supported_adv_flags(struct hci_dev *hdev) { u32 flags = 0; flags |= MGMT_ADV_FLAG_CONNECTABLE; flags |= MGMT_ADV_FLAG_DISCOV; flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; flags |= MGMT_ADV_FLAG_MANAGED_FLAGS; flags |= MGMT_ADV_FLAG_APPEARANCE; flags |= MGMT_ADV_FLAG_LOCAL_NAME; flags |= MGMT_ADV_PARAM_DURATION; flags |= MGMT_ADV_PARAM_TIMEOUT; flags |= MGMT_ADV_PARAM_INTERVALS; flags |= MGMT_ADV_PARAM_TX_POWER; flags |= MGMT_ADV_PARAM_SCAN_RSP; /* In extended adv TX_POWER returned from Set Adv Param * will be always valid. */ if (hdev->adv_tx_power != HCI_TX_POWER_INVALID || ext_adv_capable(hdev)) flags |= MGMT_ADV_FLAG_TX_POWER; if (ext_adv_capable(hdev)) { flags |= MGMT_ADV_FLAG_SEC_1M; flags |= MGMT_ADV_FLAG_HW_OFFLOAD; flags |= MGMT_ADV_FLAG_CAN_SET_TX_POWER; if (le_2m_capable(hdev)) flags |= MGMT_ADV_FLAG_SEC_2M; if (le_coded_capable(hdev)) flags |= MGMT_ADV_FLAG_SEC_CODED; } return flags; } static int read_adv_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_adv_features *rp; size_t rp_len; int err; struct adv_info *adv_instance; u32 supported_flags; u8 *instance; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_ADV_FEATURES, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); rp_len = sizeof(*rp) + hdev->adv_instance_cnt; rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { hci_dev_unlock(hdev); return -ENOMEM; } supported_flags = get_supported_adv_flags(hdev); rp->supported_flags = cpu_to_le32(supported_flags); rp->max_adv_data_len = max_adv_len(hdev); rp->max_scan_rsp_len = max_adv_len(hdev); rp->max_instances = hdev->le_num_of_adv_sets; rp->num_instances = hdev->adv_instance_cnt; instance = rp->instance; list_for_each_entry(adv_instance, &hdev->adv_instances, list) { /* Only instances 1-le_num_of_adv_sets are externally visible */ if (adv_instance->instance <= hdev->adv_instance_cnt) { *instance = adv_instance->instance; instance++; } else { rp->num_instances--; rp_len--; } } hci_dev_unlock(hdev); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_ADV_FEATURES, MGMT_STATUS_SUCCESS, rp, rp_len); kfree(rp); return err; } static u8 calculate_name_len(struct hci_dev *hdev) { u8 buf[HCI_MAX_SHORT_NAME_LENGTH + 2]; /* len + type + name */ return eir_append_local_name(hdev, buf, 0); } static u8 tlv_data_max_len(struct hci_dev *hdev, u32 adv_flags, bool is_adv_data) { u8 max_len = max_adv_len(hdev); if (is_adv_data) { if (adv_flags & (MGMT_ADV_FLAG_DISCOV | MGMT_ADV_FLAG_LIMITED_DISCOV | MGMT_ADV_FLAG_MANAGED_FLAGS)) max_len -= 3; if (adv_flags & MGMT_ADV_FLAG_TX_POWER) max_len -= 3; } else { if (adv_flags & MGMT_ADV_FLAG_LOCAL_NAME) max_len -= calculate_name_len(hdev); if (adv_flags & (MGMT_ADV_FLAG_APPEARANCE)) max_len -= 4; } return max_len; } static bool flags_managed(u32 adv_flags) { return adv_flags & (MGMT_ADV_FLAG_DISCOV | MGMT_ADV_FLAG_LIMITED_DISCOV | MGMT_ADV_FLAG_MANAGED_FLAGS); } static bool tx_power_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_TX_POWER; } static bool name_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_LOCAL_NAME; } static bool appearance_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_APPEARANCE; } static bool tlv_data_is_valid(struct hci_dev *hdev, u32 adv_flags, u8 *data, u8 len, bool is_adv_data) { int i, cur_len; u8 max_len; max_len = tlv_data_max_len(hdev, adv_flags, is_adv_data); if (len > max_len) return false; /* Make sure that the data is correctly formatted. */ for (i = 0; i < len; i += (cur_len + 1)) { cur_len = data[i]; if (!cur_len) continue; if (data[i + 1] == EIR_FLAGS && (!is_adv_data || flags_managed(adv_flags))) return false; if (data[i + 1] == EIR_TX_POWER && tx_power_managed(adv_flags)) return false; if (data[i + 1] == EIR_NAME_COMPLETE && name_managed(adv_flags)) return false; if (data[i + 1] == EIR_NAME_SHORT && name_managed(adv_flags)) return false; if (data[i + 1] == EIR_APPEARANCE && appearance_managed(adv_flags)) return false; /* If the current field length would exceed the total data * length, then it's invalid. */ if (i + cur_len >= len) return false; } return true; } static bool requested_adv_flags_are_valid(struct hci_dev *hdev, u32 adv_flags) { u32 supported_flags, phy_flags; /* The current implementation only supports a subset of the specified * flags. Also need to check mutual exclusiveness of sec flags. */ supported_flags = get_supported_adv_flags(hdev); phy_flags = adv_flags & MGMT_ADV_FLAG_SEC_MASK; if (adv_flags & ~supported_flags || ((phy_flags && (phy_flags ^ (phy_flags & -phy_flags))))) return false; return true; } static bool adv_busy(struct hci_dev *hdev) { return pending_find(MGMT_OP_SET_LE, hdev); } static void add_adv_complete(struct hci_dev *hdev, struct sock *sk, u8 instance, int err) { struct adv_info *adv, *n; bt_dev_dbg(hdev, "err %d", err); hci_dev_lock(hdev); list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { u8 instance; if (!adv->pending) continue; if (!err) { adv->pending = false; continue; } instance = adv->instance; if (hdev->cur_adv_instance == instance) cancel_adv_timeout(hdev); hci_remove_adv_instance(hdev, instance); mgmt_advertising_removed(sk, hdev, instance); } hci_dev_unlock(hdev); } static void add_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_advertising *cp = cmd->param; struct mgmt_rp_add_advertising rp; memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); add_adv_complete(hdev, cmd->sk, cp->instance, err); mgmt_pending_free(cmd); } static int add_advertising_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_advertising *cp = cmd->param; return hci_schedule_adv_instance_sync(hdev, cp->instance, true); } static int add_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_advertising *cp = data; struct mgmt_rp_add_advertising rp; u32 flags; u8 status; u16 timeout, duration; unsigned int prev_instance_cnt; u8 schedule_instance = 0; struct adv_info *adv, *next_instance; int err; struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, status); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); if (data_len != sizeof(*cp) + cp->adv_data_len + cp->scan_rsp_len) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); timeout = __le16_to_cpu(cp->timeout); duration = __le16_to_cpu(cp->duration); if (!requested_adv_flags_are_valid(hdev, flags)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (timeout && !hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_REJECTED); goto unlock; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } if (!tlv_data_is_valid(hdev, flags, cp->data, cp->adv_data_len, true) || !tlv_data_is_valid(hdev, flags, cp->data + cp->adv_data_len, cp->scan_rsp_len, false)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } prev_instance_cnt = hdev->adv_instance_cnt; adv = hci_add_adv_instance(hdev, cp->instance, flags, cp->adv_data_len, cp->data, cp->scan_rsp_len, cp->data + cp->adv_data_len, timeout, duration, HCI_ADV_TX_POWER_NO_PREFERENCE, hdev->le_adv_min_interval, hdev->le_adv_max_interval, 0); if (IS_ERR(adv)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_FAILED); goto unlock; } /* Only trigger an advertising added event if a new instance was * actually added. */ if (hdev->adv_instance_cnt > prev_instance_cnt) mgmt_advertising_added(sk, hdev, cp->instance); if (hdev->cur_adv_instance == cp->instance) { /* If the currently advertised instance is being changed then * cancel the current advertising and schedule the next * instance. If there is only one instance then the overridden * advertising data will be visible right away. */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, cp->instance); if (next_instance) schedule_instance = next_instance->instance; } else if (!hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other * instance is currently being advertised. */ schedule_instance = cp->instance; } /* If the HCI_ADVERTISING flag is set or the device isn't powered or * there is no instance to be advertised then we have no HCI * communication to make. Simply return. */ if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING) || !schedule_instance) { rp.instance = cp->instance; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); goto unlock; } /* We're good to go, update advertising data, parameters, and start * advertising. */ cmd = mgmt_pending_new(sk, MGMT_OP_ADD_ADVERTISING, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto unlock; } cp->instance = schedule_instance; err = hci_cmd_sync_queue(hdev, add_advertising_sync, cmd, add_advertising_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static void add_ext_adv_params_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_params *cp = cmd->param; struct mgmt_rp_add_ext_adv_params rp; struct adv_info *adv; u32 flags; BT_DBG("%s", hdev->name); hci_dev_lock(hdev); adv = hci_find_adv_instance(hdev, cp->instance); if (!adv) goto unlock; rp.instance = cp->instance; rp.tx_power = adv->tx_power; /* While we're at it, inform userspace of the available space for this * advertisement, given the flags that will be used. */ flags = __le32_to_cpu(cp->flags); rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); if (err) { /* If this advertisement was previously advertising and we * failed to update it, we signal that it has been removed and * delete its structure */ if (!adv->pending) mgmt_advertising_removed(cmd->sk, hdev, cp->instance); hci_remove_adv_instance(hdev, cp->instance); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); } else { mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); } unlock: mgmt_pending_free(cmd); hci_dev_unlock(hdev); } static int add_ext_adv_params_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_params *cp = cmd->param; return hci_setup_ext_adv_instance_sync(hdev, cp->instance); } static int add_ext_adv_params(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_ext_adv_params *cp = data; struct mgmt_rp_add_ext_adv_params rp; struct mgmt_pending_cmd *cmd = NULL; struct adv_info *adv; u32 flags, min_interval, max_interval; u16 timeout, duration; u8 status; s8 tx_power; int err; BT_DBG("%s", hdev->name); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, status); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); /* The purpose of breaking add_advertising into two separate MGMT calls * for params and data is to allow more parameters to be added to this * structure in the future. For this reason, we verify that we have the * bare minimum structure we know of when the interface was defined. Any * extra parameters we don't know about will be ignored in this request. */ if (data_len < MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); if (!requested_adv_flags_are_valid(hdev, flags)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); /* In new interface, we require that we are powered to register */ if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_REJECTED); goto unlock; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_BUSY); goto unlock; } /* Parse defined parameters from request, use defaults otherwise */ timeout = (flags & MGMT_ADV_PARAM_TIMEOUT) ? __le16_to_cpu(cp->timeout) : 0; duration = (flags & MGMT_ADV_PARAM_DURATION) ? __le16_to_cpu(cp->duration) : hdev->def_multi_adv_rotation_duration; min_interval = (flags & MGMT_ADV_PARAM_INTERVALS) ? __le32_to_cpu(cp->min_interval) : hdev->le_adv_min_interval; max_interval = (flags & MGMT_ADV_PARAM_INTERVALS) ? __le32_to_cpu(cp->max_interval) : hdev->le_adv_max_interval; tx_power = (flags & MGMT_ADV_PARAM_TX_POWER) ? cp->tx_power : HCI_ADV_TX_POWER_NO_PREFERENCE; /* Create advertising instance with no advertising or response data */ adv = hci_add_adv_instance(hdev, cp->instance, flags, 0, NULL, 0, NULL, timeout, duration, tx_power, min_interval, max_interval, 0); if (IS_ERR(adv)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_FAILED); goto unlock; } /* Submit request for advertising params if ext adv available */ if (ext_adv_capable(hdev)) { cmd = mgmt_pending_new(sk, MGMT_OP_ADD_EXT_ADV_PARAMS, hdev, data, data_len); if (!cmd) { err = -ENOMEM; hci_remove_adv_instance(hdev, cp->instance); goto unlock; } err = hci_cmd_sync_queue(hdev, add_ext_adv_params_sync, cmd, add_ext_adv_params_complete); if (err < 0) mgmt_pending_free(cmd); } else { rp.instance = cp->instance; rp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } unlock: hci_dev_unlock(hdev); return err; } static void add_ext_adv_data_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_data *cp = cmd->param; struct mgmt_rp_add_advertising rp; add_adv_complete(hdev, cmd->sk, cp->instance, err); memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int add_ext_adv_data_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_data *cp = cmd->param; int err; if (ext_adv_capable(hdev)) { err = hci_update_adv_data_sync(hdev, cp->instance); if (err) return err; err = hci_update_scan_rsp_data_sync(hdev, cp->instance); if (err) return err; return hci_enable_ext_advertising_sync(hdev, cp->instance); } return hci_schedule_adv_instance_sync(hdev, cp->instance, true); } static int add_ext_adv_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_ext_adv_data *cp = data; struct mgmt_rp_add_ext_adv_data rp; u8 schedule_instance = 0; struct adv_info *next_instance; struct adv_info *adv_instance; int err = 0; struct mgmt_pending_cmd *cmd; BT_DBG("%s", hdev->name); hci_dev_lock(hdev); adv_instance = hci_find_adv_instance(hdev, cp->instance); if (!adv_instance) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_INVALID_PARAMS); goto unlock; } /* In new interface, we require that we are powered to register */ if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_REJECTED); goto clear_new_instance; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_BUSY); goto clear_new_instance; } /* Validate new data */ if (!tlv_data_is_valid(hdev, adv_instance->flags, cp->data, cp->adv_data_len, true) || !tlv_data_is_valid(hdev, adv_instance->flags, cp->data + cp->adv_data_len, cp->scan_rsp_len, false)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_INVALID_PARAMS); goto clear_new_instance; } /* Set the data in the advertising instance */ hci_set_adv_instance_data(hdev, cp->instance, cp->adv_data_len, cp->data, cp->scan_rsp_len, cp->data + cp->adv_data_len); /* If using software rotation, determine next instance to use */ if (hdev->cur_adv_instance == cp->instance) { /* If the currently advertised instance is being changed * then cancel the current advertising and schedule the * next instance. If there is only one instance then the * overridden advertising data will be visible right * away */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, cp->instance); if (next_instance) schedule_instance = next_instance->instance; } else if (!hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other * instance is currently being advertised. */ schedule_instance = cp->instance; } /* If the HCI_ADVERTISING flag is set or there is no instance to * be advertised then we have no HCI communication to make. * Simply return. */ if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || !schedule_instance) { if (adv_instance->pending) { mgmt_advertising_added(sk, hdev, cp->instance); adv_instance->pending = false; } rp.instance = cp->instance; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_ADD_EXT_ADV_DATA, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto clear_new_instance; } err = hci_cmd_sync_queue(hdev, add_ext_adv_data_sync, cmd, add_ext_adv_data_complete); if (err < 0) { mgmt_pending_free(cmd); goto clear_new_instance; } /* We were successful in updating data, so trigger advertising_added * event if this is an instance that wasn't previously advertising. If * a failure occurs in the requests we initiated, we will remove the * instance again in add_advertising_complete */ if (adv_instance->pending) mgmt_advertising_added(sk, hdev, cp->instance); goto unlock; clear_new_instance: hci_remove_adv_instance(hdev, cp->instance); unlock: hci_dev_unlock(hdev); return err; } static void remove_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_advertising *cp = cmd->param; struct mgmt_rp_remove_advertising rp; bt_dev_dbg(hdev, "err %d", err); memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int remove_advertising_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_advertising *cp = cmd->param; int err; err = hci_remove_advertising_sync(hdev, cmd->sk, cp->instance, true); if (err) return err; if (list_empty(&hdev->adv_instances)) err = hci_disable_advertising_sync(hdev); return err; } static int remove_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_remove_advertising *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (cp->instance && !hci_find_adv_instance(hdev, cp->instance)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } if (pending_find(MGMT_OP_SET_LE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } if (list_empty(&hdev->adv_instances)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_REMOVE_ADVERTISING, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto unlock; } err = hci_cmd_sync_queue(hdev, remove_advertising_sync, cmd, remove_advertising_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int get_adv_size_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_get_adv_size_info *cp = data; struct mgmt_rp_get_adv_size_info rp; u32 flags, supported_flags; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_REJECTED); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); /* The current implementation only supports a subset of the specified * flags. */ supported_flags = get_supported_adv_flags(hdev); if (flags & ~supported_flags) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_INVALID_PARAMS); rp.instance = cp->instance; rp.flags = cp->flags; rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } static const struct hci_mgmt_handler mgmt_handlers[] = { { NULL }, /* 0x0000 (no command) */ { read_version, MGMT_READ_VERSION_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_commands, MGMT_READ_COMMANDS_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_index_list, MGMT_READ_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_controller_info, MGMT_READ_INFO_SIZE, HCI_MGMT_UNTRUSTED }, { set_powered, MGMT_SETTING_SIZE }, { set_discoverable, MGMT_SET_DISCOVERABLE_SIZE }, { set_connectable, MGMT_SETTING_SIZE }, { set_fast_connectable, MGMT_SETTING_SIZE }, { set_bondable, MGMT_SETTING_SIZE }, { set_link_security, MGMT_SETTING_SIZE }, { set_ssp, MGMT_SETTING_SIZE }, { set_hs, MGMT_SETTING_SIZE }, { set_le, MGMT_SETTING_SIZE }, { set_dev_class, MGMT_SET_DEV_CLASS_SIZE }, { set_local_name, MGMT_SET_LOCAL_NAME_SIZE }, { add_uuid, MGMT_ADD_UUID_SIZE }, { remove_uuid, MGMT_REMOVE_UUID_SIZE }, { load_link_keys, MGMT_LOAD_LINK_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { load_long_term_keys, MGMT_LOAD_LONG_TERM_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { disconnect, MGMT_DISCONNECT_SIZE }, { get_connections, MGMT_GET_CONNECTIONS_SIZE }, { pin_code_reply, MGMT_PIN_CODE_REPLY_SIZE }, { pin_code_neg_reply, MGMT_PIN_CODE_NEG_REPLY_SIZE }, { set_io_capability, MGMT_SET_IO_CAPABILITY_SIZE }, { pair_device, MGMT_PAIR_DEVICE_SIZE }, { cancel_pair_device, MGMT_CANCEL_PAIR_DEVICE_SIZE }, { unpair_device, MGMT_UNPAIR_DEVICE_SIZE }, { user_confirm_reply, MGMT_USER_CONFIRM_REPLY_SIZE }, { user_confirm_neg_reply, MGMT_USER_CONFIRM_NEG_REPLY_SIZE }, { user_passkey_reply, MGMT_USER_PASSKEY_REPLY_SIZE }, { user_passkey_neg_reply, MGMT_USER_PASSKEY_NEG_REPLY_SIZE }, { read_local_oob_data, MGMT_READ_LOCAL_OOB_DATA_SIZE }, { add_remote_oob_data, MGMT_ADD_REMOTE_OOB_DATA_SIZE, HCI_MGMT_VAR_LEN }, { remove_remote_oob_data, MGMT_REMOVE_REMOTE_OOB_DATA_SIZE }, { start_discovery, MGMT_START_DISCOVERY_SIZE }, { stop_discovery, MGMT_STOP_DISCOVERY_SIZE }, { confirm_name, MGMT_CONFIRM_NAME_SIZE }, { block_device, MGMT_BLOCK_DEVICE_SIZE }, { unblock_device, MGMT_UNBLOCK_DEVICE_SIZE }, { set_device_id, MGMT_SET_DEVICE_ID_SIZE }, { set_advertising, MGMT_SETTING_SIZE }, { set_bredr, MGMT_SETTING_SIZE }, { set_static_address, MGMT_SET_STATIC_ADDRESS_SIZE }, { set_scan_params, MGMT_SET_SCAN_PARAMS_SIZE }, { set_secure_conn, MGMT_SETTING_SIZE }, { set_debug_keys, MGMT_SETTING_SIZE }, { set_privacy, MGMT_SET_PRIVACY_SIZE }, { load_irks, MGMT_LOAD_IRKS_SIZE, HCI_MGMT_VAR_LEN }, { get_conn_info, MGMT_GET_CONN_INFO_SIZE }, { get_clock_info, MGMT_GET_CLOCK_INFO_SIZE }, { add_device, MGMT_ADD_DEVICE_SIZE }, { remove_device, MGMT_REMOVE_DEVICE_SIZE }, { load_conn_param, MGMT_LOAD_CONN_PARAM_SIZE, HCI_MGMT_VAR_LEN }, { read_unconf_index_list, MGMT_READ_UNCONF_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_config_info, MGMT_READ_CONFIG_INFO_SIZE, HCI_MGMT_UNCONFIGURED | HCI_MGMT_UNTRUSTED }, { set_external_config, MGMT_SET_EXTERNAL_CONFIG_SIZE, HCI_MGMT_UNCONFIGURED }, { set_public_address, MGMT_SET_PUBLIC_ADDRESS_SIZE, HCI_MGMT_UNCONFIGURED }, { start_service_discovery, MGMT_START_SERVICE_DISCOVERY_SIZE, HCI_MGMT_VAR_LEN }, { read_local_oob_ext_data, MGMT_READ_LOCAL_OOB_EXT_DATA_SIZE }, { read_ext_index_list, MGMT_READ_EXT_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_adv_features, MGMT_READ_ADV_FEATURES_SIZE }, { add_advertising, MGMT_ADD_ADVERTISING_SIZE, HCI_MGMT_VAR_LEN }, { remove_advertising, MGMT_REMOVE_ADVERTISING_SIZE }, { get_adv_size_info, MGMT_GET_ADV_SIZE_INFO_SIZE }, { start_limited_discovery, MGMT_START_DISCOVERY_SIZE }, { read_ext_controller_info,MGMT_READ_EXT_INFO_SIZE, HCI_MGMT_UNTRUSTED }, { set_appearance, MGMT_SET_APPEARANCE_SIZE }, { get_phy_configuration, MGMT_GET_PHY_CONFIGURATION_SIZE }, { set_phy_configuration, MGMT_SET_PHY_CONFIGURATION_SIZE }, { set_blocked_keys, MGMT_OP_SET_BLOCKED_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { set_wideband_speech, MGMT_SETTING_SIZE }, { read_controller_cap, MGMT_READ_CONTROLLER_CAP_SIZE, HCI_MGMT_UNTRUSTED }, { read_exp_features_info, MGMT_READ_EXP_FEATURES_INFO_SIZE, HCI_MGMT_UNTRUSTED | HCI_MGMT_HDEV_OPTIONAL }, { set_exp_feature, MGMT_SET_EXP_FEATURE_SIZE, HCI_MGMT_VAR_LEN | HCI_MGMT_HDEV_OPTIONAL }, { read_def_system_config, MGMT_READ_DEF_SYSTEM_CONFIG_SIZE, HCI_MGMT_UNTRUSTED }, { set_def_system_config, MGMT_SET_DEF_SYSTEM_CONFIG_SIZE, HCI_MGMT_VAR_LEN }, { read_def_runtime_config, MGMT_READ_DEF_RUNTIME_CONFIG_SIZE, HCI_MGMT_UNTRUSTED }, { set_def_runtime_config, MGMT_SET_DEF_RUNTIME_CONFIG_SIZE, HCI_MGMT_VAR_LEN }, { get_device_flags, MGMT_GET_DEVICE_FLAGS_SIZE }, { set_device_flags, MGMT_SET_DEVICE_FLAGS_SIZE }, { read_adv_mon_features, MGMT_READ_ADV_MONITOR_FEATURES_SIZE }, { add_adv_patterns_monitor,MGMT_ADD_ADV_PATTERNS_MONITOR_SIZE, HCI_MGMT_VAR_LEN }, { remove_adv_monitor, MGMT_REMOVE_ADV_MONITOR_SIZE }, { add_ext_adv_params, MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE, HCI_MGMT_VAR_LEN }, { add_ext_adv_data, MGMT_ADD_EXT_ADV_DATA_SIZE, HCI_MGMT_VAR_LEN }, { add_adv_patterns_monitor_rssi, MGMT_ADD_ADV_PATTERNS_MONITOR_RSSI_SIZE, HCI_MGMT_VAR_LEN }, { set_mesh, MGMT_SET_MESH_RECEIVER_SIZE, HCI_MGMT_VAR_LEN }, { mesh_features, MGMT_MESH_READ_FEATURES_SIZE }, { mesh_send, MGMT_MESH_SEND_SIZE, HCI_MGMT_VAR_LEN }, { mesh_send_cancel, MGMT_MESH_SEND_CANCEL_SIZE }, { mgmt_hci_cmd_sync, MGMT_HCI_CMD_SYNC_SIZE, HCI_MGMT_VAR_LEN }, }; void mgmt_index_added(struct hci_dev *hdev) { struct mgmt_ev_ext_index ev; if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) return; if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { mgmt_index_event(MGMT_EV_UNCONF_INDEX_ADDED, hdev, NULL, 0, HCI_MGMT_UNCONF_INDEX_EVENTS); ev.type = 0x01; } else { mgmt_index_event(MGMT_EV_INDEX_ADDED, hdev, NULL, 0, HCI_MGMT_INDEX_EVENTS); ev.type = 0x00; } ev.bus = hdev->bus; mgmt_index_event(MGMT_EV_EXT_INDEX_ADDED, hdev, &ev, sizeof(ev), HCI_MGMT_EXT_INDEX_EVENTS); } void mgmt_index_removed(struct hci_dev *hdev) { struct mgmt_ev_ext_index ev; struct cmd_lookup match = { NULL, hdev, MGMT_STATUS_INVALID_INDEX }; if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) return; mgmt_pending_foreach(0, hdev, cmd_complete_rsp, &match); if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { mgmt_index_event(MGMT_EV_UNCONF_INDEX_REMOVED, hdev, NULL, 0, HCI_MGMT_UNCONF_INDEX_EVENTS); ev.type = 0x01; } else { mgmt_index_event(MGMT_EV_INDEX_REMOVED, hdev, NULL, 0, HCI_MGMT_INDEX_EVENTS); ev.type = 0x00; } ev.bus = hdev->bus; mgmt_index_event(MGMT_EV_EXT_INDEX_REMOVED, hdev, &ev, sizeof(ev), HCI_MGMT_EXT_INDEX_EVENTS); /* Cancel any remaining timed work */ if (!hci_dev_test_flag(hdev, HCI_MGMT)) return; cancel_delayed_work_sync(&hdev->discov_off); cancel_delayed_work_sync(&hdev->service_cache); cancel_delayed_work_sync(&hdev->rpa_expired); } void mgmt_power_on(struct hci_dev *hdev, int err) { struct cmd_lookup match = { NULL, hdev }; bt_dev_dbg(hdev, "err %d", err); hci_dev_lock(hdev); if (!err) { restart_le_actions(hdev); hci_update_passive_scan(hdev); } mgmt_pending_foreach(MGMT_OP_SET_POWERED, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); hci_dev_unlock(hdev); } void __mgmt_power_off(struct hci_dev *hdev) { struct cmd_lookup match = { NULL, hdev }; u8 zero_cod[] = { 0, 0, 0 }; mgmt_pending_foreach(MGMT_OP_SET_POWERED, hdev, settings_rsp, &match); /* If the power off is because of hdev unregistration let * use the appropriate INVALID_INDEX status. Otherwise use * NOT_POWERED. We cover both scenarios here since later in * mgmt_index_removed() any hci_conn callbacks will have already * been triggered, potentially causing misleading DISCONNECTED * status responses. */ if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) match.mgmt_status = MGMT_STATUS_INVALID_INDEX; else match.mgmt_status = MGMT_STATUS_NOT_POWERED; mgmt_pending_foreach(0, hdev, cmd_complete_rsp, &match); if (memcmp(hdev->dev_class, zero_cod, sizeof(zero_cod)) != 0) { mgmt_limited_event(MGMT_EV_CLASS_OF_DEV_CHANGED, hdev, zero_cod, sizeof(zero_cod), HCI_MGMT_DEV_CLASS_EVENTS, NULL); ext_info_changed(hdev, NULL); } new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } void mgmt_set_powered_failed(struct hci_dev *hdev, int err) { struct mgmt_pending_cmd *cmd; u8 status; cmd = pending_find(MGMT_OP_SET_POWERED, hdev); if (!cmd) return; if (err == -ERFKILL) status = MGMT_STATUS_RFKILLED; else status = MGMT_STATUS_FAILED; mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_POWERED, status); mgmt_pending_remove(cmd); } void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent) { struct mgmt_ev_new_link_key ev; memset(&ev, 0, sizeof(ev)); ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &key->bdaddr); ev.key.addr.type = BDADDR_BREDR; ev.key.type = key->type; memcpy(ev.key.val, key->val, HCI_LINK_KEY_SIZE); ev.key.pin_len = key->pin_len; mgmt_event(MGMT_EV_NEW_LINK_KEY, hdev, &ev, sizeof(ev), NULL); } static u8 mgmt_ltk_type(struct smp_ltk *ltk) { switch (ltk->type) { case SMP_LTK: case SMP_LTK_RESPONDER: if (ltk->authenticated) return MGMT_LTK_AUTHENTICATED; return MGMT_LTK_UNAUTHENTICATED; case SMP_LTK_P256: if (ltk->authenticated) return MGMT_LTK_P256_AUTH; return MGMT_LTK_P256_UNAUTH; case SMP_LTK_P256_DEBUG: return MGMT_LTK_P256_DEBUG; } return MGMT_LTK_UNAUTHENTICATED; } void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent) { struct mgmt_ev_new_long_term_key ev; memset(&ev, 0, sizeof(ev)); /* Devices using resolvable or non-resolvable random addresses * without providing an identity resolving key don't require * to store long term keys. Their addresses will change the * next time around. * * Only when a remote device provides an identity address * make sure the long term key is stored. If the remote * identity is known, the long term keys are internally * mapped to the identity address. So allow static random * and public addresses here. */ if (key->bdaddr_type == ADDR_LE_DEV_RANDOM && (key->bdaddr.b[5] & 0xc0) != 0xc0) ev.store_hint = 0x00; else ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &key->bdaddr); ev.key.addr.type = link_to_bdaddr(LE_LINK, key->bdaddr_type); ev.key.type = mgmt_ltk_type(key); ev.key.enc_size = key->enc_size; ev.key.ediv = key->ediv; ev.key.rand = key->rand; if (key->type == SMP_LTK) ev.key.initiator = 1; /* Make sure we copy only the significant bytes based on the * encryption key size, and set the rest of the value to zeroes. */ memcpy(ev.key.val, key->val, key->enc_size); memset(ev.key.val + key->enc_size, 0, sizeof(ev.key.val) - key->enc_size); mgmt_event(MGMT_EV_NEW_LONG_TERM_KEY, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent) { struct mgmt_ev_new_irk ev; memset(&ev, 0, sizeof(ev)); ev.store_hint = persistent; bacpy(&ev.rpa, &irk->rpa); bacpy(&ev.irk.addr.bdaddr, &irk->bdaddr); ev.irk.addr.type = link_to_bdaddr(LE_LINK, irk->addr_type); memcpy(ev.irk.val, irk->val, sizeof(irk->val)); mgmt_event(MGMT_EV_NEW_IRK, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent) { struct mgmt_ev_new_csrk ev; memset(&ev, 0, sizeof(ev)); /* Devices using resolvable or non-resolvable random addresses * without providing an identity resolving key don't require * to store signature resolving keys. Their addresses will change * the next time around. * * Only when a remote device provides an identity address * make sure the signature resolving key is stored. So allow * static random and public addresses here. */ if (csrk->bdaddr_type == ADDR_LE_DEV_RANDOM && (csrk->bdaddr.b[5] & 0xc0) != 0xc0) ev.store_hint = 0x00; else ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &csrk->bdaddr); ev.key.addr.type = link_to_bdaddr(LE_LINK, csrk->bdaddr_type); ev.key.type = csrk->type; memcpy(ev.key.val, csrk->val, sizeof(csrk->val)); mgmt_event(MGMT_EV_NEW_CSRK, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout) { struct mgmt_ev_new_conn_param ev; if (!hci_is_identity_address(bdaddr, bdaddr_type)) return; memset(&ev, 0, sizeof(ev)); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(LE_LINK, bdaddr_type); ev.store_hint = store_hint; ev.min_interval = cpu_to_le16(min_interval); ev.max_interval = cpu_to_le16(max_interval); ev.latency = cpu_to_le16(latency); ev.timeout = cpu_to_le16(timeout); mgmt_event(MGMT_EV_NEW_CONN_PARAM, hdev, &ev, sizeof(ev), NULL); } void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u8 *name, u8 name_len) { struct sk_buff *skb; struct mgmt_ev_device_connected *ev; u16 eir_len = 0; u32 flags = 0; if (test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) return; /* allocate buff for LE or BR/EDR adv */ if (conn->le_adv_data_len > 0) skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_CONNECTED, sizeof(*ev) + conn->le_adv_data_len); else skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_CONNECTED, sizeof(*ev) + (name ? eir_precalc_len(name_len) : 0) + eir_precalc_len(sizeof(conn->dev_class))); ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, &conn->dst); ev->addr.type = link_to_bdaddr(conn->type, conn->dst_type); if (conn->out) flags |= MGMT_DEV_FOUND_INITIATED_CONN; ev->flags = __cpu_to_le32(flags); /* We must ensure that the EIR Data fields are ordered and * unique. Keep it simple for now and avoid the problem by not * adding any BR/EDR data to the LE adv. */ if (conn->le_adv_data_len > 0) { skb_put_data(skb, conn->le_adv_data, conn->le_adv_data_len); eir_len = conn->le_adv_data_len; } else { if (name) eir_len += eir_skb_put_data(skb, EIR_NAME_COMPLETE, name, name_len); if (memcmp(conn->dev_class, "\0\0\0", sizeof(conn->dev_class))) eir_len += eir_skb_put_data(skb, EIR_CLASS_OF_DEV, conn->dev_class, sizeof(conn->dev_class)); } ev->eir_len = cpu_to_le16(eir_len); mgmt_event_skb(skb, NULL); } static void unpair_device_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct hci_dev *hdev = data; struct mgmt_cp_unpair_device *cp = cmd->param; device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, cmd->sk); cmd->cmd_complete(cmd, 0); mgmt_pending_remove(cmd); } bool mgmt_powering_down(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; struct mgmt_mode *cp; if (hci_dev_test_flag(hdev, HCI_POWERING_DOWN)) return true; cmd = pending_find(MGMT_OP_SET_POWERED, hdev); if (!cmd) return false; cp = cmd->param; if (!cp->val) return true; return false; } void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected) { struct mgmt_ev_device_disconnected ev; struct sock *sk = NULL; if (!mgmt_connected) return; if (link_type != ACL_LINK && link_type != LE_LINK) return; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.reason = reason; /* Report disconnects due to suspend */ if (hdev->suspended) ev.reason = MGMT_DEV_DISCONN_LOCAL_HOST_SUSPEND; mgmt_event(MGMT_EV_DEVICE_DISCONNECTED, hdev, &ev, sizeof(ev), sk); if (sk) sock_put(sk); } void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { u8 bdaddr_type = link_to_bdaddr(link_type, addr_type); struct mgmt_cp_disconnect *cp; struct mgmt_pending_cmd *cmd; mgmt_pending_foreach(MGMT_OP_UNPAIR_DEVICE, hdev, unpair_device_rsp, hdev); cmd = pending_find(MGMT_OP_DISCONNECT, hdev); if (!cmd) return; cp = cmd->param; if (bacmp(bdaddr, &cp->addr.bdaddr)) return; if (cp->addr.type != bdaddr_type) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } void mgmt_connect_failed(struct hci_dev *hdev, struct hci_conn *conn, u8 status) { struct mgmt_ev_connect_failed ev; if (test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, status, true); return; } bacpy(&ev.addr.bdaddr, &conn->dst); ev.addr.type = link_to_bdaddr(conn->type, conn->dst_type); ev.status = mgmt_status(status); mgmt_event(MGMT_EV_CONNECT_FAILED, hdev, &ev, sizeof(ev), NULL); } void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure) { struct mgmt_ev_pin_code_request ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = BDADDR_BREDR; ev.secure = secure; mgmt_event(MGMT_EV_PIN_CODE_REQUEST, hdev, &ev, sizeof(ev), NULL); } void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status) { struct mgmt_pending_cmd *cmd; cmd = pending_find(MGMT_OP_PIN_CODE_REPLY, hdev); if (!cmd) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status) { struct mgmt_pending_cmd *cmd; cmd = pending_find(MGMT_OP_PIN_CODE_NEG_REPLY, hdev); if (!cmd) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint) { struct mgmt_ev_user_confirm_request ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.confirm_hint = confirm_hint; ev.value = cpu_to_le32(value); return mgmt_event(MGMT_EV_USER_CONFIRM_REQUEST, hdev, &ev, sizeof(ev), NULL); } int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type) { struct mgmt_ev_user_passkey_request ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); return mgmt_event(MGMT_EV_USER_PASSKEY_REQUEST, hdev, &ev, sizeof(ev), NULL); } static int user_pairing_resp_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status, u8 opcode) { struct mgmt_pending_cmd *cmd; cmd = pending_find(opcode, hdev); if (!cmd) return -ENOENT; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); return 0; } int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_CONFIRM_REPLY); } int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_CONFIRM_NEG_REPLY); } int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_PASSKEY_REPLY); } int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_PASSKEY_NEG_REPLY); } int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered) { struct mgmt_ev_passkey_notify ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.passkey = __cpu_to_le32(passkey); ev.entered = entered; return mgmt_event(MGMT_EV_PASSKEY_NOTIFY, hdev, &ev, sizeof(ev), NULL); } void mgmt_auth_failed(struct hci_conn *conn, u8 hci_status) { struct mgmt_ev_auth_failed ev; struct mgmt_pending_cmd *cmd; u8 status = mgmt_status(hci_status); bacpy(&ev.addr.bdaddr, &conn->dst); ev.addr.type = link_to_bdaddr(conn->type, conn->dst_type); ev.status = status; cmd = find_pairing(conn); mgmt_event(MGMT_EV_AUTH_FAILED, conn->hdev, &ev, sizeof(ev), cmd ? cmd->sk : NULL); if (cmd) { cmd->cmd_complete(cmd, status); mgmt_pending_remove(cmd); } } void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status) { struct cmd_lookup match = { NULL, hdev }; bool changed; if (status) { u8 mgmt_err = mgmt_status(status); mgmt_pending_foreach(MGMT_OP_SET_LINK_SECURITY, hdev, cmd_status_rsp, &mgmt_err); return; } if (test_bit(HCI_AUTH, &hdev->flags)) changed = !hci_dev_test_and_set_flag(hdev, HCI_LINK_SECURITY); else changed = hci_dev_test_and_clear_flag(hdev, HCI_LINK_SECURITY); mgmt_pending_foreach(MGMT_OP_SET_LINK_SECURITY, hdev, settings_rsp, &match); if (changed) new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } static void sk_lookup(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; if (match->sk == NULL) { match->sk = cmd->sk; sock_hold(match->sk); } } void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status) { struct cmd_lookup match = { NULL, hdev, mgmt_status(status) }; mgmt_pending_foreach(MGMT_OP_SET_DEV_CLASS, hdev, sk_lookup, &match); mgmt_pending_foreach(MGMT_OP_ADD_UUID, hdev, sk_lookup, &match); mgmt_pending_foreach(MGMT_OP_REMOVE_UUID, hdev, sk_lookup, &match); if (!status) { mgmt_limited_event(MGMT_EV_CLASS_OF_DEV_CHANGED, hdev, dev_class, 3, HCI_MGMT_DEV_CLASS_EVENTS, NULL); ext_info_changed(hdev, NULL); } if (match.sk) sock_put(match.sk); } void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status) { struct mgmt_cp_set_local_name ev; struct mgmt_pending_cmd *cmd; if (status) return; memset(&ev, 0, sizeof(ev)); memcpy(ev.name, name, HCI_MAX_NAME_LENGTH); memcpy(ev.short_name, hdev->short_name, HCI_MAX_SHORT_NAME_LENGTH); cmd = pending_find(MGMT_OP_SET_LOCAL_NAME, hdev); if (!cmd) { memcpy(hdev->dev_name, name, sizeof(hdev->dev_name)); /* If this is a HCI command related to powering on the * HCI dev don't send any mgmt signals. */ if (hci_dev_test_flag(hdev, HCI_POWERING_DOWN)) return; if (pending_find(MGMT_OP_SET_POWERED, hdev)) return; } mgmt_limited_event(MGMT_EV_LOCAL_NAME_CHANGED, hdev, &ev, sizeof(ev), HCI_MGMT_LOCAL_NAME_EVENTS, cmd ? cmd->sk : NULL); ext_info_changed(hdev, cmd ? cmd->sk : NULL); } static inline bool has_uuid(u8 *uuid, u16 uuid_count, u8 (*uuids)[16]) { int i; for (i = 0; i < uuid_count; i++) { if (!memcmp(uuid, uuids[i], 16)) return true; } return false; } static bool eir_has_uuids(u8 *eir, u16 eir_len, u16 uuid_count, u8 (*uuids)[16]) { u16 parsed = 0; while (parsed < eir_len) { u8 field_len = eir[0]; u8 uuid[16]; int i; if (field_len == 0) break; if (eir_len - parsed < field_len + 1) break; switch (eir[1]) { case EIR_UUID16_ALL: case EIR_UUID16_SOME: for (i = 0; i + 3 <= field_len; i += 2) { memcpy(uuid, bluetooth_base_uuid, 16); uuid[13] = eir[i + 3]; uuid[12] = eir[i + 2]; if (has_uuid(uuid, uuid_count, uuids)) return true; } break; case EIR_UUID32_ALL: case EIR_UUID32_SOME: for (i = 0; i + 5 <= field_len; i += 4) { memcpy(uuid, bluetooth_base_uuid, 16); uuid[15] = eir[i + 5]; uuid[14] = eir[i + 4]; uuid[13] = eir[i + 3]; uuid[12] = eir[i + 2]; if (has_uuid(uuid, uuid_count, uuids)) return true; } break; case EIR_UUID128_ALL: case EIR_UUID128_SOME: for (i = 0; i + 17 <= field_len; i += 16) { memcpy(uuid, eir + i + 2, 16); if (has_uuid(uuid, uuid_count, uuids)) return true; } break; } parsed += field_len + 1; eir += field_len + 1; } return false; } static bool is_filter_match(struct hci_dev *hdev, s8 rssi, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len) { /* If a RSSI threshold has been specified, and * HCI_QUIRK_STRICT_DUPLICATE_FILTER is not set, then all results with * a RSSI smaller than the RSSI threshold will be dropped. If the quirk * is set, let it through for further processing, as we might need to * restart the scan. * * For BR/EDR devices (pre 1.2) providing no RSSI during inquiry, * the results are also dropped. */ if (hdev->discovery.rssi != HCI_RSSI_INVALID && (rssi == HCI_RSSI_INVALID || (rssi < hdev->discovery.rssi && !test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks)))) return false; if (hdev->discovery.uuid_count != 0) { /* If a list of UUIDs is provided in filter, results with no * matching UUID should be dropped. */ if (!eir_has_uuids(eir, eir_len, hdev->discovery.uuid_count, hdev->discovery.uuids) && !eir_has_uuids(scan_rsp, scan_rsp_len, hdev->discovery.uuid_count, hdev->discovery.uuids)) return false; } /* If duplicate filtering does not report RSSI changes, then restart * scanning to ensure updated result with updated RSSI values. */ if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks)) { /* Validate RSSI value against the RSSI threshold once more. */ if (hdev->discovery.rssi != HCI_RSSI_INVALID && rssi < hdev->discovery.rssi) return false; } return true; } void mgmt_adv_monitor_device_lost(struct hci_dev *hdev, u16 handle, bdaddr_t *bdaddr, u8 addr_type) { struct mgmt_ev_adv_monitor_device_lost ev; ev.monitor_handle = cpu_to_le16(handle); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; mgmt_event(MGMT_EV_ADV_MONITOR_DEVICE_LOST, hdev, &ev, sizeof(ev), NULL); } static void mgmt_send_adv_monitor_device_found(struct hci_dev *hdev, struct sk_buff *skb, struct sock *skip_sk, u16 handle) { struct sk_buff *advmon_skb; size_t advmon_skb_len; __le16 *monitor_handle; if (!skb) return; advmon_skb_len = (sizeof(struct mgmt_ev_adv_monitor_device_found) - sizeof(struct mgmt_ev_device_found)) + skb->len; advmon_skb = mgmt_alloc_skb(hdev, MGMT_EV_ADV_MONITOR_DEVICE_FOUND, advmon_skb_len); if (!advmon_skb) return; /* ADV_MONITOR_DEVICE_FOUND is similar to DEVICE_FOUND event except * that it also has 'monitor_handle'. Make a copy of DEVICE_FOUND and * store monitor_handle of the matched monitor. */ monitor_handle = skb_put(advmon_skb, sizeof(*monitor_handle)); *monitor_handle = cpu_to_le16(handle); skb_put_data(advmon_skb, skb->data, skb->len); mgmt_event_skb(advmon_skb, skip_sk); } static void mgmt_adv_monitor_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, bool report_device, struct sk_buff *skb, struct sock *skip_sk) { struct monitored_device *dev, *tmp; bool matched = false; bool notified = false; /* We have received the Advertisement Report because: * 1. the kernel has initiated active discovery * 2. if not, we have pend_le_reports > 0 in which case we are doing * passive scanning * 3. if none of the above is true, we have one or more active * Advertisement Monitor * * For case 1 and 2, report all advertisements via MGMT_EV_DEVICE_FOUND * and report ONLY one advertisement per device for the matched Monitor * via MGMT_EV_ADV_MONITOR_DEVICE_FOUND event. * * For case 3, since we are not active scanning and all advertisements * received are due to a matched Advertisement Monitor, report all * advertisements ONLY via MGMT_EV_ADV_MONITOR_DEVICE_FOUND event. */ if (report_device && !hdev->advmon_pend_notify) { mgmt_event_skb(skb, skip_sk); return; } hdev->advmon_pend_notify = false; list_for_each_entry_safe(dev, tmp, &hdev->monitored_devices, list) { if (!bacmp(&dev->bdaddr, bdaddr)) { matched = true; if (!dev->notified) { mgmt_send_adv_monitor_device_found(hdev, skb, skip_sk, dev->handle); notified = true; dev->notified = true; } } if (!dev->notified) hdev->advmon_pend_notify = true; } if (!report_device && ((matched && !notified) || !msft_monitor_supported(hdev))) { /* Handle 0 indicates that we are not active scanning and this * is a subsequent advertisement report for an already matched * Advertisement Monitor or the controller offloading support * is not available. */ mgmt_send_adv_monitor_device_found(hdev, skb, skip_sk, 0); } if (report_device) mgmt_event_skb(skb, skip_sk); else kfree_skb(skb); } static void mesh_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len, u64 instant) { struct sk_buff *skb; struct mgmt_ev_mesh_device_found *ev; int i, j; if (!hdev->mesh_ad_types[0]) goto accepted; /* Scan for requested AD types */ if (eir_len > 0) { for (i = 0; i + 1 < eir_len; i += eir[i] + 1) { for (j = 0; j < sizeof(hdev->mesh_ad_types); j++) { if (!hdev->mesh_ad_types[j]) break; if (hdev->mesh_ad_types[j] == eir[i + 1]) goto accepted; } } } if (scan_rsp_len > 0) { for (i = 0; i + 1 < scan_rsp_len; i += scan_rsp[i] + 1) { for (j = 0; j < sizeof(hdev->mesh_ad_types); j++) { if (!hdev->mesh_ad_types[j]) break; if (hdev->mesh_ad_types[j] == scan_rsp[i + 1]) goto accepted; } } } return; accepted: skb = mgmt_alloc_skb(hdev, MGMT_EV_MESH_DEVICE_FOUND, sizeof(*ev) + eir_len + scan_rsp_len); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(LE_LINK, addr_type); ev->rssi = rssi; ev->flags = cpu_to_le32(flags); ev->instant = cpu_to_le64(instant); if (eir_len > 0) /* Copy EIR or advertising data into event */ skb_put_data(skb, eir, eir_len); if (scan_rsp_len > 0) /* Append scan response data to event */ skb_put_data(skb, scan_rsp, scan_rsp_len); ev->eir_len = cpu_to_le16(eir_len + scan_rsp_len); mgmt_event_skb(skb, NULL); } void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len, u64 instant) { struct sk_buff *skb; struct mgmt_ev_device_found *ev; bool report_device = hci_discovery_active(hdev); if (hci_dev_test_flag(hdev, HCI_MESH) && link_type == LE_LINK) mesh_device_found(hdev, bdaddr, addr_type, rssi, flags, eir, eir_len, scan_rsp, scan_rsp_len, instant); /* Don't send events for a non-kernel initiated discovery. With * LE one exception is if we have pend_le_reports > 0 in which * case we're doing passive scanning and want these events. */ if (!hci_discovery_active(hdev)) { if (link_type == ACL_LINK) return; if (link_type == LE_LINK && !list_empty(&hdev->pend_le_reports)) report_device = true; else if (!hci_is_adv_monitoring(hdev)) return; } if (hdev->discovery.result_filtering) { /* We are using service discovery */ if (!is_filter_match(hdev, rssi, eir, eir_len, scan_rsp, scan_rsp_len)) return; } if (hdev->discovery.limited) { /* Check for limited discoverable bit */ if (dev_class) { if (!(dev_class[1] & 0x20)) return; } else { u8 *flags = eir_get_data(eir, eir_len, EIR_FLAGS, NULL); if (!flags || !(flags[0] & LE_AD_LIMITED)) return; } } /* Allocate skb. The 5 extra bytes are for the potential CoD field */ skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_FOUND, sizeof(*ev) + eir_len + scan_rsp_len + 5); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); /* In case of device discovery with BR/EDR devices (pre 1.2), the * RSSI value was reported as 0 when not available. This behavior * is kept when using device discovery. This is required for full * backwards compatibility with the API. * * However when using service discovery, the value 127 will be * returned when the RSSI is not available. */ if (rssi == HCI_RSSI_INVALID && !hdev->discovery.report_invalid_rssi && link_type == ACL_LINK) rssi = 0; bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(link_type, addr_type); ev->rssi = rssi; ev->flags = cpu_to_le32(flags); if (eir_len > 0) /* Copy EIR or advertising data into event */ skb_put_data(skb, eir, eir_len); if (dev_class && !eir_get_data(eir, eir_len, EIR_CLASS_OF_DEV, NULL)) { u8 eir_cod[5]; eir_len += eir_append_data(eir_cod, 0, EIR_CLASS_OF_DEV, dev_class, 3); skb_put_data(skb, eir_cod, sizeof(eir_cod)); } if (scan_rsp_len > 0) /* Append scan response data to event */ skb_put_data(skb, scan_rsp, scan_rsp_len); ev->eir_len = cpu_to_le16(eir_len + scan_rsp_len); mgmt_adv_monitor_device_found(hdev, bdaddr, report_device, skb, NULL); } void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len) { struct sk_buff *skb; struct mgmt_ev_device_found *ev; u16 eir_len = 0; u32 flags = 0; skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_FOUND, sizeof(*ev) + (name ? eir_precalc_len(name_len) : 0)); ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(link_type, addr_type); ev->rssi = rssi; if (name) eir_len += eir_skb_put_data(skb, EIR_NAME_COMPLETE, name, name_len); else flags = MGMT_DEV_FOUND_NAME_REQUEST_FAILED; ev->eir_len = cpu_to_le16(eir_len); ev->flags = cpu_to_le32(flags); mgmt_event_skb(skb, NULL); } void mgmt_discovering(struct hci_dev *hdev, u8 discovering) { struct mgmt_ev_discovering ev; bt_dev_dbg(hdev, "discovering %u", discovering); memset(&ev, 0, sizeof(ev)); ev.type = hdev->discovery.type; ev.discovering = discovering; mgmt_event(MGMT_EV_DISCOVERING, hdev, &ev, sizeof(ev), NULL); } void mgmt_suspending(struct hci_dev *hdev, u8 state) { struct mgmt_ev_controller_suspend ev; ev.suspend_state = state; mgmt_event(MGMT_EV_CONTROLLER_SUSPEND, hdev, &ev, sizeof(ev), NULL); } void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type) { struct mgmt_ev_controller_resume ev; ev.wake_reason = reason; if (bdaddr) { bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; } else { memset(&ev.addr, 0, sizeof(ev.addr)); } mgmt_event(MGMT_EV_CONTROLLER_RESUME, hdev, &ev, sizeof(ev), NULL); } static struct hci_mgmt_chan chan = { .channel = HCI_CHANNEL_CONTROL, .handler_count = ARRAY_SIZE(mgmt_handlers), .handlers = mgmt_handlers, .hdev_init = mgmt_init_hdev, }; int mgmt_init(void) { return hci_mgmt_chan_register(&chan); } void mgmt_exit(void) { hci_mgmt_chan_unregister(&chan); } void mgmt_cleanup(struct sock *sk) { struct mgmt_mesh_tx *mesh_tx; struct hci_dev *hdev; read_lock(&hci_dev_list_lock); list_for_each_entry(hdev, &hci_dev_list, list) { do { mesh_tx = mgmt_mesh_next(hdev, sk); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, true); } while (mesh_tx); } read_unlock(&hci_dev_list_lock); } |
10927 1874 10939 4272 10011 4272 10581 8100 10574 10575 10567 10574 8105 8109 8111 8128 8124 10579 10611 17 16 17 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | // SPDX-License-Identifier: GPL-2.0 #include <linux/debugfs.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/memblock.h> #include <linux/stacktrace.h> #include <linux/page_owner.h> #include <linux/jump_label.h> #include <linux/migrate.h> #include <linux/stackdepot.h> #include <linux/seq_file.h> #include <linux/memcontrol.h> #include <linux/sched/clock.h> #include "internal.h" /* * TODO: teach PAGE_OWNER_STACK_DEPTH (__dump_page_owner and save_stack) * to use off stack temporal storage */ #define PAGE_OWNER_STACK_DEPTH (16) struct page_owner { unsigned short order; short last_migrate_reason; gfp_t gfp_mask; depot_stack_handle_t handle; depot_stack_handle_t free_handle; u64 ts_nsec; u64 free_ts_nsec; char comm[TASK_COMM_LEN]; pid_t pid; pid_t tgid; pid_t free_pid; pid_t free_tgid; }; struct stack { struct stack_record *stack_record; struct stack *next; }; static struct stack dummy_stack; static struct stack failure_stack; static struct stack *stack_list; static DEFINE_SPINLOCK(stack_list_lock); static bool page_owner_enabled __initdata; DEFINE_STATIC_KEY_FALSE(page_owner_inited); static depot_stack_handle_t dummy_handle; static depot_stack_handle_t failure_handle; static depot_stack_handle_t early_handle; static void init_early_allocated_pages(void); static inline void set_current_in_page_owner(void) { /* * Avoid recursion. * * We might need to allocate more memory from page_owner code, so make * sure to signal it in order to avoid recursion. */ current->in_page_owner = 1; } static inline void unset_current_in_page_owner(void) { current->in_page_owner = 0; } static int __init early_page_owner_param(char *buf) { int ret = kstrtobool(buf, &page_owner_enabled); if (page_owner_enabled) stack_depot_request_early_init(); return ret; } early_param("page_owner", early_page_owner_param); static __init bool need_page_owner(void) { return page_owner_enabled; } static __always_inline depot_stack_handle_t create_dummy_stack(void) { unsigned long entries[4]; unsigned int nr_entries; nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); return stack_depot_save(entries, nr_entries, GFP_KERNEL); } static noinline void register_dummy_stack(void) { dummy_handle = create_dummy_stack(); } static noinline void register_failure_stack(void) { failure_handle = create_dummy_stack(); } static noinline void register_early_stack(void) { early_handle = create_dummy_stack(); } static __init void init_page_owner(void) { if (!page_owner_enabled) return; register_dummy_stack(); register_failure_stack(); register_early_stack(); init_early_allocated_pages(); /* Initialize dummy and failure stacks and link them to stack_list */ dummy_stack.stack_record = __stack_depot_get_stack_record(dummy_handle); failure_stack.stack_record = __stack_depot_get_stack_record(failure_handle); if (dummy_stack.stack_record) refcount_set(&dummy_stack.stack_record->count, 1); if (failure_stack.stack_record) refcount_set(&failure_stack.stack_record->count, 1); dummy_stack.next = &failure_stack; stack_list = &dummy_stack; static_branch_enable(&page_owner_inited); } struct page_ext_operations page_owner_ops = { .size = sizeof(struct page_owner), .need = need_page_owner, .init = init_page_owner, .need_shared_flags = true, }; static inline struct page_owner *get_page_owner(struct page_ext *page_ext) { return page_ext_data(page_ext, &page_owner_ops); } static noinline depot_stack_handle_t save_stack(gfp_t flags) { unsigned long entries[PAGE_OWNER_STACK_DEPTH]; depot_stack_handle_t handle; unsigned int nr_entries; if (current->in_page_owner) return dummy_handle; set_current_in_page_owner(); nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 2); handle = stack_depot_save(entries, nr_entries, flags); if (!handle) handle = failure_handle; unset_current_in_page_owner(); return handle; } static void add_stack_record_to_list(struct stack_record *stack_record, gfp_t gfp_mask) { unsigned long flags; struct stack *stack; set_current_in_page_owner(); stack = kmalloc(sizeof(*stack), gfp_nested_mask(gfp_mask)); if (!stack) { unset_current_in_page_owner(); return; } unset_current_in_page_owner(); stack->stack_record = stack_record; stack->next = NULL; spin_lock_irqsave(&stack_list_lock, flags); stack->next = stack_list; /* * This pairs with smp_load_acquire() from function * stack_start(). This guarantees that stack_start() * will see an updated stack_list before starting to * traverse the list. */ smp_store_release(&stack_list, stack); spin_unlock_irqrestore(&stack_list_lock, flags); } static void inc_stack_record_count(depot_stack_handle_t handle, gfp_t gfp_mask, int nr_base_pages) { struct stack_record *stack_record = __stack_depot_get_stack_record(handle); if (!stack_record) return; /* * New stack_record's that do not use STACK_DEPOT_FLAG_GET start * with REFCOUNT_SATURATED to catch spurious increments of their * refcount. * Since we do not use STACK_DEPOT_FLAG_GET API, let us * set a refcount of 1 ourselves. */ if (refcount_read(&stack_record->count) == REFCOUNT_SATURATED) { int old = REFCOUNT_SATURATED; if (atomic_try_cmpxchg_relaxed(&stack_record->count.refs, &old, 1)) /* Add the new stack_record to our list */ add_stack_record_to_list(stack_record, gfp_mask); } refcount_add(nr_base_pages, &stack_record->count); } static void dec_stack_record_count(depot_stack_handle_t handle, int nr_base_pages) { struct stack_record *stack_record = __stack_depot_get_stack_record(handle); if (!stack_record) return; if (refcount_sub_and_test(nr_base_pages, &stack_record->count)) pr_warn("%s: refcount went to 0 for %u handle\n", __func__, handle); } static inline void __update_page_owner_handle(struct page_ext *page_ext, depot_stack_handle_t handle, unsigned short order, gfp_t gfp_mask, short last_migrate_reason, u64 ts_nsec, pid_t pid, pid_t tgid, char *comm) { int i; struct page_owner *page_owner; for (i = 0; i < (1 << order); i++) { page_owner = get_page_owner(page_ext); page_owner->handle = handle; page_owner->order = order; page_owner->gfp_mask = gfp_mask; page_owner->last_migrate_reason = last_migrate_reason; page_owner->pid = pid; page_owner->tgid = tgid; page_owner->ts_nsec = ts_nsec; strscpy(page_owner->comm, comm, sizeof(page_owner->comm)); __set_bit(PAGE_EXT_OWNER, &page_ext->flags); __set_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags); page_ext = page_ext_next(page_ext); } } static inline void __update_page_owner_free_handle(struct page_ext *page_ext, depot_stack_handle_t handle, unsigned short order, pid_t pid, pid_t tgid, u64 free_ts_nsec) { int i; struct page_owner *page_owner; for (i = 0; i < (1 << order); i++) { page_owner = get_page_owner(page_ext); /* Only __reset_page_owner() wants to clear the bit */ if (handle) { __clear_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags); page_owner->free_handle = handle; } page_owner->free_ts_nsec = free_ts_nsec; page_owner->free_pid = current->pid; page_owner->free_tgid = current->tgid; page_ext = page_ext_next(page_ext); } } void __reset_page_owner(struct page *page, unsigned short order) { struct page_ext *page_ext; depot_stack_handle_t handle; depot_stack_handle_t alloc_handle; struct page_owner *page_owner; u64 free_ts_nsec = local_clock(); page_ext = page_ext_get(page); if (unlikely(!page_ext)) return; page_owner = get_page_owner(page_ext); alloc_handle = page_owner->handle; handle = save_stack(GFP_NOWAIT | __GFP_NOWARN); __update_page_owner_free_handle(page_ext, handle, order, current->pid, current->tgid, free_ts_nsec); page_ext_put(page_ext); if (alloc_handle != early_handle) /* * early_handle is being set as a handle for all those * early allocated pages. See init_pages_in_zone(). * Since their refcount is not being incremented because * the machinery is not ready yet, we cannot decrement * their refcount either. */ dec_stack_record_count(alloc_handle, 1 << order); } noinline void __set_page_owner(struct page *page, unsigned short order, gfp_t gfp_mask) { struct page_ext *page_ext; u64 ts_nsec = local_clock(); depot_stack_handle_t handle; handle = save_stack(gfp_mask); page_ext = page_ext_get(page); if (unlikely(!page_ext)) return; __update_page_owner_handle(page_ext, handle, order, gfp_mask, -1, ts_nsec, current->pid, current->tgid, current->comm); page_ext_put(page_ext); inc_stack_record_count(handle, gfp_mask, 1 << order); } void __set_page_owner_migrate_reason(struct page *page, int reason) { struct page_ext *page_ext = page_ext_get(page); struct page_owner *page_owner; if (unlikely(!page_ext)) return; page_owner = get_page_owner(page_ext); page_owner->last_migrate_reason = reason; page_ext_put(page_ext); } void __split_page_owner(struct page *page, int old_order, int new_order) { int i; struct page_ext *page_ext = page_ext_get(page); struct page_owner *page_owner; if (unlikely(!page_ext)) return; for (i = 0; i < (1 << old_order); i++) { page_owner = get_page_owner(page_ext); page_owner->order = new_order; page_ext = page_ext_next(page_ext); } page_ext_put(page_ext); } void __folio_copy_owner(struct folio *newfolio, struct folio *old) { int i; struct page_ext *old_ext; struct page_ext *new_ext; struct page_owner *old_page_owner; struct page_owner *new_page_owner; depot_stack_handle_t migrate_handle; old_ext = page_ext_get(&old->page); if (unlikely(!old_ext)) return; new_ext = page_ext_get(&newfolio->page); if (unlikely(!new_ext)) { page_ext_put(old_ext); return; } old_page_owner = get_page_owner(old_ext); new_page_owner = get_page_owner(new_ext); migrate_handle = new_page_owner->handle; __update_page_owner_handle(new_ext, old_page_owner->handle, old_page_owner->order, old_page_owner->gfp_mask, old_page_owner->last_migrate_reason, old_page_owner->ts_nsec, old_page_owner->pid, old_page_owner->tgid, old_page_owner->comm); /* * Do not proactively clear PAGE_EXT_OWNER{_ALLOCATED} bits as the folio * will be freed after migration. Keep them until then as they may be * useful. */ __update_page_owner_free_handle(new_ext, 0, old_page_owner->order, old_page_owner->free_pid, old_page_owner->free_tgid, old_page_owner->free_ts_nsec); /* * We linked the original stack to the new folio, we need to do the same * for the new one and the old folio otherwise there will be an imbalance * when subtracting those pages from the stack. */ for (i = 0; i < (1 << new_page_owner->order); i++) { old_page_owner->handle = migrate_handle; old_ext = page_ext_next(old_ext); old_page_owner = get_page_owner(old_ext); } page_ext_put(new_ext); page_ext_put(old_ext); } void pagetypeinfo_showmixedcount_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { struct page *page; struct page_ext *page_ext; struct page_owner *page_owner; unsigned long pfn, block_end_pfn; unsigned long end_pfn = zone_end_pfn(zone); unsigned long count[MIGRATE_TYPES] = { 0, }; int pageblock_mt, page_mt; int i; /* Scan block by block. First and last block may be incomplete */ pfn = zone->zone_start_pfn; /* * Walk the zone in pageblock_nr_pages steps. If a page block spans * a zone boundary, it will be double counted between zones. This does * not matter as the mixed block count will still be correct */ for (; pfn < end_pfn; ) { page = pfn_to_online_page(pfn); if (!page) { pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); continue; } block_end_pfn = pageblock_end_pfn(pfn); block_end_pfn = min(block_end_pfn, end_pfn); pageblock_mt = get_pageblock_migratetype(page); for (; pfn < block_end_pfn; pfn++) { /* The pageblock is online, no need to recheck. */ page = pfn_to_page(pfn); if (page_zone(page) != zone) continue; if (PageBuddy(page)) { unsigned long freepage_order; freepage_order = buddy_order_unsafe(page); if (freepage_order <= MAX_PAGE_ORDER) pfn += (1UL << freepage_order) - 1; continue; } if (PageReserved(page)) continue; page_ext = page_ext_get(page); if (unlikely(!page_ext)) continue; if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) goto ext_put_continue; page_owner = get_page_owner(page_ext); page_mt = gfp_migratetype(page_owner->gfp_mask); if (pageblock_mt != page_mt) { if (is_migrate_cma(pageblock_mt)) count[MIGRATE_MOVABLE]++; else count[pageblock_mt]++; pfn = block_end_pfn; page_ext_put(page_ext); break; } pfn += (1UL << page_owner->order) - 1; ext_put_continue: page_ext_put(page_ext); } } /* Print counts */ seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); for (i = 0; i < MIGRATE_TYPES; i++) seq_printf(m, "%12lu ", count[i]); seq_putc(m, '\n'); } /* * Looking for memcg information and print it out */ static inline int print_page_owner_memcg(char *kbuf, size_t count, int ret, struct page *page) { #ifdef CONFIG_MEMCG unsigned long memcg_data; struct mem_cgroup *memcg; bool online; char name[80]; rcu_read_lock(); memcg_data = READ_ONCE(page->memcg_data); if (!memcg_data) goto out_unlock; if (memcg_data & MEMCG_DATA_OBJEXTS) ret += scnprintf(kbuf + ret, count - ret, "Slab cache page\n"); memcg = page_memcg_check(page); if (!memcg) goto out_unlock; online = (memcg->css.flags & CSS_ONLINE); cgroup_name(memcg->css.cgroup, name, sizeof(name)); ret += scnprintf(kbuf + ret, count - ret, "Charged %sto %smemcg %s\n", PageMemcgKmem(page) ? "(via objcg) " : "", online ? "" : "offline ", name); out_unlock: rcu_read_unlock(); #endif /* CONFIG_MEMCG */ return ret; } static ssize_t print_page_owner(char __user *buf, size_t count, unsigned long pfn, struct page *page, struct page_owner *page_owner, depot_stack_handle_t handle) { int ret, pageblock_mt, page_mt; char *kbuf; count = min_t(size_t, count, PAGE_SIZE); kbuf = kmalloc(count, GFP_KERNEL); if (!kbuf) return -ENOMEM; ret = scnprintf(kbuf, count, "Page allocated via order %u, mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu ns\n", page_owner->order, page_owner->gfp_mask, &page_owner->gfp_mask, page_owner->pid, page_owner->tgid, page_owner->comm, page_owner->ts_nsec); /* Print information relevant to grouping pages by mobility */ pageblock_mt = get_pageblock_migratetype(page); page_mt = gfp_migratetype(page_owner->gfp_mask); ret += scnprintf(kbuf + ret, count - ret, "PFN 0x%lx type %s Block %lu type %s Flags %pGp\n", pfn, migratetype_names[page_mt], pfn >> pageblock_order, migratetype_names[pageblock_mt], &page->flags); ret += stack_depot_snprint(handle, kbuf + ret, count - ret, 0); if (ret >= count) goto err; if (page_owner->last_migrate_reason != -1) { ret += scnprintf(kbuf + ret, count - ret, "Page has been migrated, last migrate reason: %s\n", migrate_reason_names[page_owner->last_migrate_reason]); } ret = print_page_owner_memcg(kbuf, count, ret, page); ret += snprintf(kbuf + ret, count - ret, "\n"); if (ret >= count) goto err; if (copy_to_user(buf, kbuf, ret)) ret = -EFAULT; kfree(kbuf); return ret; err: kfree(kbuf); return -ENOMEM; } void __dump_page_owner(const struct page *page) { struct page_ext *page_ext = page_ext_get((void *)page); struct page_owner *page_owner; depot_stack_handle_t handle; gfp_t gfp_mask; int mt; if (unlikely(!page_ext)) { pr_alert("There is not page extension available.\n"); return; } page_owner = get_page_owner(page_ext); gfp_mask = page_owner->gfp_mask; mt = gfp_migratetype(gfp_mask); if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) { pr_alert("page_owner info is not present (never set?)\n"); page_ext_put(page_ext); return; } if (test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) pr_alert("page_owner tracks the page as allocated\n"); else pr_alert("page_owner tracks the page as freed\n"); pr_alert("page last allocated via order %u, migratetype %s, gfp_mask %#x(%pGg), pid %d, tgid %d (%s), ts %llu, free_ts %llu\n", page_owner->order, migratetype_names[mt], gfp_mask, &gfp_mask, page_owner->pid, page_owner->tgid, page_owner->comm, page_owner->ts_nsec, page_owner->free_ts_nsec); handle = READ_ONCE(page_owner->handle); if (!handle) pr_alert("page_owner allocation stack trace missing\n"); else stack_depot_print(handle); handle = READ_ONCE(page_owner->free_handle); if (!handle) { pr_alert("page_owner free stack trace missing\n"); } else { pr_alert("page last free pid %d tgid %d stack trace:\n", page_owner->free_pid, page_owner->free_tgid); stack_depot_print(handle); } if (page_owner->last_migrate_reason != -1) pr_alert("page has been migrated, last migrate reason: %s\n", migrate_reason_names[page_owner->last_migrate_reason]); page_ext_put(page_ext); } static ssize_t read_page_owner(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned long pfn; struct page *page; struct page_ext *page_ext; struct page_owner *page_owner; depot_stack_handle_t handle; if (!static_branch_unlikely(&page_owner_inited)) return -EINVAL; page = NULL; if (*ppos == 0) pfn = min_low_pfn; else pfn = *ppos; /* Find a valid PFN or the start of a MAX_ORDER_NR_PAGES area */ while (!pfn_valid(pfn) && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) pfn++; /* Find an allocated page */ for (; pfn < max_pfn; pfn++) { /* * This temporary page_owner is required so * that we can avoid the context switches while holding * the rcu lock and copying the page owner information to * user through copy_to_user() or GFP_KERNEL allocations. */ struct page_owner page_owner_tmp; /* * If the new page is in a new MAX_ORDER_NR_PAGES area, * validate the area as existing, skip it if not */ if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0 && !pfn_valid(pfn)) { pfn += MAX_ORDER_NR_PAGES - 1; continue; } page = pfn_to_page(pfn); if (PageBuddy(page)) { unsigned long freepage_order = buddy_order_unsafe(page); if (freepage_order <= MAX_PAGE_ORDER) pfn += (1UL << freepage_order) - 1; continue; } page_ext = page_ext_get(page); if (unlikely(!page_ext)) continue; /* * Some pages could be missed by concurrent allocation or free, * because we don't hold the zone lock. */ if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) goto ext_put_continue; /* * Although we do have the info about past allocation of free * pages, it's not relevant for current memory usage. */ if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) goto ext_put_continue; page_owner = get_page_owner(page_ext); /* * Don't print "tail" pages of high-order allocations as that * would inflate the stats. */ if (!IS_ALIGNED(pfn, 1 << page_owner->order)) goto ext_put_continue; /* * Access to page_ext->handle isn't synchronous so we should * be careful to access it. */ handle = READ_ONCE(page_owner->handle); if (!handle) goto ext_put_continue; /* Record the next PFN to read in the file offset */ *ppos = pfn + 1; page_owner_tmp = *page_owner; page_ext_put(page_ext); return print_page_owner(buf, count, pfn, page, &page_owner_tmp, handle); ext_put_continue: page_ext_put(page_ext); } return 0; } static loff_t lseek_page_owner(struct file *file, loff_t offset, int orig) { switch (orig) { case SEEK_SET: file->f_pos = offset; break; case SEEK_CUR: file->f_pos += offset; break; default: return -EINVAL; } return file->f_pos; } static void init_pages_in_zone(pg_data_t *pgdat, struct zone *zone) { unsigned long pfn = zone->zone_start_pfn; unsigned long end_pfn = zone_end_pfn(zone); unsigned long count = 0; /* * Walk the zone in pageblock_nr_pages steps. If a page block spans * a zone boundary, it will be double counted between zones. This does * not matter as the mixed block count will still be correct */ for (; pfn < end_pfn; ) { unsigned long block_end_pfn; if (!pfn_valid(pfn)) { pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); continue; } block_end_pfn = pageblock_end_pfn(pfn); block_end_pfn = min(block_end_pfn, end_pfn); for (; pfn < block_end_pfn; pfn++) { struct page *page = pfn_to_page(pfn); struct page_ext *page_ext; if (page_zone(page) != zone) continue; /* * To avoid having to grab zone->lock, be a little * careful when reading buddy page order. The only * danger is that we skip too much and potentially miss * some early allocated pages, which is better than * heavy lock contention. */ if (PageBuddy(page)) { unsigned long order = buddy_order_unsafe(page); if (order > 0 && order <= MAX_PAGE_ORDER) pfn += (1UL << order) - 1; continue; } if (PageReserved(page)) continue; page_ext = page_ext_get(page); if (unlikely(!page_ext)) continue; /* Maybe overlapping zone */ if (test_bit(PAGE_EXT_OWNER, &page_ext->flags)) goto ext_put_continue; /* Found early allocated page */ __update_page_owner_handle(page_ext, early_handle, 0, 0, -1, local_clock(), current->pid, current->tgid, current->comm); count++; ext_put_continue: page_ext_put(page_ext); } cond_resched(); } pr_info("Node %d, zone %8s: page owner found early allocated %lu pages\n", pgdat->node_id, zone->name, count); } static void init_zones_in_node(pg_data_t *pgdat) { struct zone *zone; struct zone *node_zones = pgdat->node_zones; for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { if (!populated_zone(zone)) continue; init_pages_in_zone(pgdat, zone); } } static void init_early_allocated_pages(void) { pg_data_t *pgdat; for_each_online_pgdat(pgdat) init_zones_in_node(pgdat); } static const struct file_operations proc_page_owner_operations = { .read = read_page_owner, .llseek = lseek_page_owner, }; static void *stack_start(struct seq_file *m, loff_t *ppos) { struct stack *stack; if (*ppos == -1UL) return NULL; if (!*ppos) { /* * This pairs with smp_store_release() from function * add_stack_record_to_list(), so we get a consistent * value of stack_list. */ stack = smp_load_acquire(&stack_list); m->private = stack; } else { stack = m->private; } return stack; } static void *stack_next(struct seq_file *m, void *v, loff_t *ppos) { struct stack *stack = v; stack = stack->next; *ppos = stack ? *ppos + 1 : -1UL; m->private = stack; return stack; } static unsigned long page_owner_pages_threshold; static int stack_print(struct seq_file *m, void *v) { int i, nr_base_pages; struct stack *stack = v; unsigned long *entries; unsigned long nr_entries; struct stack_record *stack_record = stack->stack_record; if (!stack->stack_record) return 0; nr_entries = stack_record->size; entries = stack_record->entries; nr_base_pages = refcount_read(&stack_record->count) - 1; if (nr_base_pages < 1 || nr_base_pages < page_owner_pages_threshold) return 0; for (i = 0; i < nr_entries; i++) seq_printf(m, " %pS\n", (void *)entries[i]); seq_printf(m, "nr_base_pages: %d\n\n", nr_base_pages); return 0; } static void stack_stop(struct seq_file *m, void *v) { } static const struct seq_operations page_owner_stack_op = { .start = stack_start, .next = stack_next, .stop = stack_stop, .show = stack_print }; static int page_owner_stack_open(struct inode *inode, struct file *file) { return seq_open_private(file, &page_owner_stack_op, 0); } static const struct file_operations page_owner_stack_operations = { .open = page_owner_stack_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int page_owner_threshold_get(void *data, u64 *val) { *val = READ_ONCE(page_owner_pages_threshold); return 0; } static int page_owner_threshold_set(void *data, u64 val) { WRITE_ONCE(page_owner_pages_threshold, val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(proc_page_owner_threshold, &page_owner_threshold_get, &page_owner_threshold_set, "%llu"); static int __init pageowner_init(void) { struct dentry *dir; if (!static_branch_unlikely(&page_owner_inited)) { pr_info("page_owner is disabled\n"); return 0; } debugfs_create_file("page_owner", 0400, NULL, NULL, &proc_page_owner_operations); dir = debugfs_create_dir("page_owner_stacks", NULL); debugfs_create_file("show_stacks", 0400, dir, NULL, &page_owner_stack_operations); debugfs_create_file("count_threshold", 0600, dir, NULL, &proc_page_owner_threshold); return 0; } late_initcall(pageowner_init) |
263 264 54 204 93 7 5 2 157 54 59 59 164 165 59 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2019, Tessares SA. */ #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <net/net_namespace.h> #include <net/netns/generic.h> #include "protocol.h" #include "mib.h" #define MPTCP_SYSCTL_PATH "net/mptcp" static int mptcp_pernet_id; #ifdef CONFIG_SYSCTL static int mptcp_pm_type_max = __MPTCP_PM_TYPE_MAX; #endif struct mptcp_pernet { #ifdef CONFIG_SYSCTL struct ctl_table_header *ctl_table_hdr; #endif unsigned int add_addr_timeout; unsigned int blackhole_timeout; unsigned int close_timeout; unsigned int stale_loss_cnt; atomic_t active_disable_times; u8 syn_retrans_before_tcp_fallback; unsigned long active_disable_stamp; u8 mptcp_enabled; u8 checksum_enabled; u8 allow_join_initial_addr_port; u8 pm_type; char scheduler[MPTCP_SCHED_NAME_MAX]; }; static struct mptcp_pernet *mptcp_get_pernet(const struct net *net) { return net_generic(net, mptcp_pernet_id); } int mptcp_is_enabled(const struct net *net) { return mptcp_get_pernet(net)->mptcp_enabled; } unsigned int mptcp_get_add_addr_timeout(const struct net *net) { return mptcp_get_pernet(net)->add_addr_timeout; } int mptcp_is_checksum_enabled(const struct net *net) { return mptcp_get_pernet(net)->checksum_enabled; } int mptcp_allow_join_id0(const struct net *net) { return mptcp_get_pernet(net)->allow_join_initial_addr_port; } unsigned int mptcp_stale_loss_cnt(const struct net *net) { return mptcp_get_pernet(net)->stale_loss_cnt; } unsigned int mptcp_close_timeout(const struct sock *sk) { if (sock_flag(sk, SOCK_DEAD)) return TCP_TIMEWAIT_LEN; return mptcp_get_pernet(sock_net(sk))->close_timeout; } int mptcp_get_pm_type(const struct net *net) { return mptcp_get_pernet(net)->pm_type; } const char *mptcp_get_scheduler(const struct net *net) { return mptcp_get_pernet(net)->scheduler; } static void mptcp_pernet_set_defaults(struct mptcp_pernet *pernet) { pernet->mptcp_enabled = 1; pernet->add_addr_timeout = TCP_RTO_MAX; pernet->blackhole_timeout = 3600; pernet->syn_retrans_before_tcp_fallback = 2; atomic_set(&pernet->active_disable_times, 0); pernet->close_timeout = TCP_TIMEWAIT_LEN; pernet->checksum_enabled = 0; pernet->allow_join_initial_addr_port = 1; pernet->stale_loss_cnt = 4; pernet->pm_type = MPTCP_PM_TYPE_KERNEL; strscpy(pernet->scheduler, "default", sizeof(pernet->scheduler)); } #ifdef CONFIG_SYSCTL static int mptcp_set_scheduler(char *scheduler, const char *name) { struct mptcp_sched_ops *sched; int ret = 0; rcu_read_lock(); sched = mptcp_sched_find(name); if (sched) strscpy(scheduler, name, MPTCP_SCHED_NAME_MAX); else ret = -ENOENT; rcu_read_unlock(); return ret; } static int proc_scheduler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { char (*scheduler)[MPTCP_SCHED_NAME_MAX] = ctl->data; char val[MPTCP_SCHED_NAME_MAX]; struct ctl_table tbl = { .data = val, .maxlen = MPTCP_SCHED_NAME_MAX, }; int ret; strscpy(val, *scheduler, MPTCP_SCHED_NAME_MAX); ret = proc_dostring(&tbl, write, buffer, lenp, ppos); if (write && ret == 0) ret = mptcp_set_scheduler(*scheduler, val); return ret; } static int proc_available_schedulers(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table tbl = { .maxlen = MPTCP_SCHED_BUF_MAX, }; int ret; tbl.data = kmalloc(tbl.maxlen, GFP_USER); if (!tbl.data) return -ENOMEM; mptcp_get_available_schedulers(tbl.data, MPTCP_SCHED_BUF_MAX); ret = proc_dostring(&tbl, write, buffer, lenp, ppos); kfree(tbl.data); return ret; } static int proc_blackhole_detect_timeout(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct mptcp_pernet *pernet = container_of(table->data, struct mptcp_pernet, blackhole_timeout); int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (write && ret == 0) atomic_set(&pernet->active_disable_times, 0); return ret; } static struct ctl_table mptcp_sysctl_table[] = { { .procname = "enabled", .maxlen = sizeof(u8), .mode = 0644, /* users with CAP_NET_ADMIN or root (not and) can change this * value, same as other sysctl or the 'net' tree. */ .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE }, { .procname = "add_addr_timeout", .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "checksum_enabled", .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE }, { .procname = "allow_join_initial_addr_port", .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE }, { .procname = "stale_loss_cnt", .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_douintvec_minmax, }, { .procname = "pm_type", .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &mptcp_pm_type_max }, { .procname = "scheduler", .maxlen = MPTCP_SCHED_NAME_MAX, .mode = 0644, .proc_handler = proc_scheduler, }, { .procname = "available_schedulers", .maxlen = MPTCP_SCHED_BUF_MAX, .mode = 0444, .proc_handler = proc_available_schedulers, }, { .procname = "close_timeout", .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "blackhole_timeout", .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_blackhole_detect_timeout, .extra1 = SYSCTL_ZERO, }, { .procname = "syn_retrans_before_tcp_fallback", .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, }; static int mptcp_pernet_new_table(struct net *net, struct mptcp_pernet *pernet) { struct ctl_table_header *hdr; struct ctl_table *table; table = mptcp_sysctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(mptcp_sysctl_table), GFP_KERNEL); if (!table) goto err_alloc; } table[0].data = &pernet->mptcp_enabled; table[1].data = &pernet->add_addr_timeout; table[2].data = &pernet->checksum_enabled; table[3].data = &pernet->allow_join_initial_addr_port; table[4].data = &pernet->stale_loss_cnt; table[5].data = &pernet->pm_type; table[6].data = &pernet->scheduler; /* table[7] is for available_schedulers which is read-only info */ table[8].data = &pernet->close_timeout; table[9].data = &pernet->blackhole_timeout; table[10].data = &pernet->syn_retrans_before_tcp_fallback; hdr = register_net_sysctl_sz(net, MPTCP_SYSCTL_PATH, table, ARRAY_SIZE(mptcp_sysctl_table)); if (!hdr) goto err_reg; pernet->ctl_table_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void mptcp_pernet_del_table(struct mptcp_pernet *pernet) { const struct ctl_table *table = pernet->ctl_table_hdr->ctl_table_arg; unregister_net_sysctl_table(pernet->ctl_table_hdr); kfree(table); } #else static int mptcp_pernet_new_table(struct net *net, struct mptcp_pernet *pernet) { return 0; } static void mptcp_pernet_del_table(struct mptcp_pernet *pernet) {} #endif /* CONFIG_SYSCTL */ /* The following code block is to deal with middle box issues with MPTCP, * similar to what is done with TFO. * The proposed solution is to disable active MPTCP globally when SYN+MPC are * dropped, while SYN without MPC aren't. In this case, active side MPTCP is * disabled globally for 1hr at first. Then if it happens again, it is disabled * for 2h, then 4h, 8h, ... * The timeout is reset back to 1hr when a successful active MPTCP connection is * fully established. */ /* Disable active MPTCP and record current jiffies and active_disable_times */ void mptcp_active_disable(struct sock *sk) { struct net *net = sock_net(sk); struct mptcp_pernet *pernet; pernet = mptcp_get_pernet(net); if (!READ_ONCE(pernet->blackhole_timeout)) return; /* Paired with READ_ONCE() in mptcp_active_should_disable() */ WRITE_ONCE(pernet->active_disable_stamp, jiffies); /* Paired with smp_rmb() in mptcp_active_should_disable(). * We want pernet->active_disable_stamp to be updated first. */ smp_mb__before_atomic(); atomic_inc(&pernet->active_disable_times); MPTCP_INC_STATS(net, MPTCP_MIB_BLACKHOLE); } /* Calculate timeout for MPTCP active disable * Return true if we are still in the active MPTCP disable period * Return false if timeout already expired and we should use active MPTCP */ bool mptcp_active_should_disable(struct sock *ssk) { struct net *net = sock_net(ssk); unsigned int blackhole_timeout; struct mptcp_pernet *pernet; unsigned long timeout; int disable_times; int multiplier; pernet = mptcp_get_pernet(net); blackhole_timeout = READ_ONCE(pernet->blackhole_timeout); if (!blackhole_timeout) return false; disable_times = atomic_read(&pernet->active_disable_times); if (!disable_times) return false; /* Paired with smp_mb__before_atomic() in mptcp_active_disable() */ smp_rmb(); /* Limit timeout to max: 2^6 * initial timeout */ multiplier = 1 << min(disable_times - 1, 6); /* Paired with the WRITE_ONCE() in mptcp_active_disable(). */ timeout = READ_ONCE(pernet->active_disable_stamp) + multiplier * blackhole_timeout * HZ; return time_before(jiffies, timeout); } /* Enable active MPTCP and reset active_disable_times if needed */ void mptcp_active_enable(struct sock *sk) { struct mptcp_pernet *pernet = mptcp_get_pernet(sock_net(sk)); if (atomic_read(&pernet->active_disable_times)) { struct dst_entry *dst = sk_dst_get(sk); if (dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)) atomic_set(&pernet->active_disable_times, 0); } } /* Check the number of retransmissions, and fallback to TCP if needed */ void mptcp_active_detect_blackhole(struct sock *ssk, bool expired) { struct mptcp_subflow_context *subflow; if (!sk_is_mptcp(ssk)) return; subflow = mptcp_subflow_ctx(ssk); if (subflow->request_mptcp && ssk->sk_state == TCP_SYN_SENT) { struct net *net = sock_net(ssk); u8 timeouts, to_max; timeouts = inet_csk(ssk)->icsk_retransmits; to_max = mptcp_get_pernet(net)->syn_retrans_before_tcp_fallback; if (timeouts == to_max || (timeouts < to_max && expired)) { MPTCP_INC_STATS(net, MPTCP_MIB_MPCAPABLEACTIVEDROP); subflow->mpc_drop = 1; mptcp_subflow_early_fallback(mptcp_sk(subflow->conn), subflow); } } else if (ssk->sk_state == TCP_SYN_SENT) { subflow->mpc_drop = 0; } } static int __net_init mptcp_net_init(struct net *net) { struct mptcp_pernet *pernet = mptcp_get_pernet(net); mptcp_pernet_set_defaults(pernet); return mptcp_pernet_new_table(net, pernet); } /* Note: the callback will only be called per extra netns */ static void __net_exit mptcp_net_exit(struct net *net) { struct mptcp_pernet *pernet = mptcp_get_pernet(net); mptcp_pernet_del_table(pernet); } static struct pernet_operations mptcp_pernet_ops = { .init = mptcp_net_init, .exit = mptcp_net_exit, .id = &mptcp_pernet_id, .size = sizeof(struct mptcp_pernet), }; void __init mptcp_init(void) { mptcp_join_cookie_init(); mptcp_proto_init(); if (register_pernet_subsys(&mptcp_pernet_ops) < 0) panic("Failed to register MPTCP pernet subsystem.\n"); } #if IS_ENABLED(CONFIG_MPTCP_IPV6) int __init mptcpv6_init(void) { int err; err = mptcp_proto_v6_init(); return err; } #endif |
60 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | // SPDX-License-Identifier: GPL-2.0-or-later #ifndef _LINUX_REF_TRACKER_H #define _LINUX_REF_TRACKER_H #include <linux/refcount.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/stackdepot.h> struct ref_tracker; struct ref_tracker_dir { #ifdef CONFIG_REF_TRACKER spinlock_t lock; unsigned int quarantine_avail; refcount_t untracked; refcount_t no_tracker; bool dead; struct list_head list; /* List of active trackers */ struct list_head quarantine; /* List of dead trackers */ char name[32]; #endif }; #ifdef CONFIG_REF_TRACKER static inline void ref_tracker_dir_init(struct ref_tracker_dir *dir, unsigned int quarantine_count, const char *name) { INIT_LIST_HEAD(&dir->list); INIT_LIST_HEAD(&dir->quarantine); spin_lock_init(&dir->lock); dir->quarantine_avail = quarantine_count; dir->dead = false; refcount_set(&dir->untracked, 1); refcount_set(&dir->no_tracker, 1); strscpy(dir->name, name, sizeof(dir->name)); stack_depot_init(); } void ref_tracker_dir_exit(struct ref_tracker_dir *dir); void ref_tracker_dir_print_locked(struct ref_tracker_dir *dir, unsigned int display_limit); void ref_tracker_dir_print(struct ref_tracker_dir *dir, unsigned int display_limit); int ref_tracker_dir_snprint(struct ref_tracker_dir *dir, char *buf, size_t size); int ref_tracker_alloc(struct ref_tracker_dir *dir, struct ref_tracker **trackerp, gfp_t gfp); int ref_tracker_free(struct ref_tracker_dir *dir, struct ref_tracker **trackerp); #else /* CONFIG_REF_TRACKER */ static inline void ref_tracker_dir_init(struct ref_tracker_dir *dir, unsigned int quarantine_count, const char *name) { } static inline void ref_tracker_dir_exit(struct ref_tracker_dir *dir) { } static inline void ref_tracker_dir_print_locked(struct ref_tracker_dir *dir, unsigned int display_limit) { } static inline void ref_tracker_dir_print(struct ref_tracker_dir *dir, unsigned int display_limit) { } static inline int ref_tracker_dir_snprint(struct ref_tracker_dir *dir, char *buf, size_t size) { return 0; } static inline int ref_tracker_alloc(struct ref_tracker_dir *dir, struct ref_tracker **trackerp, gfp_t gfp) { return 0; } static inline int ref_tracker_free(struct ref_tracker_dir *dir, struct ref_tracker **trackerp) { return 0; } #endif #endif /* _LINUX_REF_TRACKER_H */ |
1067 1066 1067 713 1065 1067 1067 1067 1066 713 1065 1059 1065 1067 1061 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | // SPDX-License-Identifier: GPL-2.0 #include <linux/static_call.h> #include <linux/memory.h> #include <linux/bug.h> #include <asm/text-patching.h> enum insn_type { CALL = 0, /* site call */ NOP = 1, /* site cond-call */ JMP = 2, /* tramp / site tail-call */ RET = 3, /* tramp / site cond-tail-call */ JCC = 4, }; /* * ud1 %esp, %ecx - a 3 byte #UD that is unique to trampolines, chosen such * that there is no false-positive trampoline identification while also being a * speculation stop. */ static const u8 tramp_ud[] = { 0x0f, 0xb9, 0xcc }; /* * cs cs cs xorl %eax, %eax - a single 5 byte instruction that clears %[er]ax */ static const u8 xor5rax[] = { 0x2e, 0x2e, 0x2e, 0x31, 0xc0 }; static const u8 retinsn[] = { RET_INSN_OPCODE, 0xcc, 0xcc, 0xcc, 0xcc }; static u8 __is_Jcc(u8 *insn) /* Jcc.d32 */ { u8 ret = 0; if (insn[0] == 0x0f) { u8 tmp = insn[1]; if ((tmp & 0xf0) == 0x80) ret = tmp; } return ret; } extern void __static_call_return(void); asm (".global __static_call_return\n\t" ".type __static_call_return, @function\n\t" ASM_FUNC_ALIGN "\n\t" "__static_call_return:\n\t" ANNOTATE_NOENDBR ANNOTATE_RETPOLINE_SAFE "ret; int3\n\t" ".size __static_call_return, . - __static_call_return \n\t"); static void __ref __static_call_transform(void *insn, enum insn_type type, void *func, bool modinit) { const void *emulate = NULL; int size = CALL_INSN_SIZE; const void *code; u8 op, buf[6]; if ((type == JMP || type == RET) && (op = __is_Jcc(insn))) type = JCC; switch (type) { case CALL: func = callthunks_translate_call_dest(func); code = text_gen_insn(CALL_INSN_OPCODE, insn, func); if (func == &__static_call_return0) { emulate = code; code = &xor5rax; } break; case NOP: code = x86_nops[5]; break; case JMP: code = text_gen_insn(JMP32_INSN_OPCODE, insn, func); break; case RET: if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) code = text_gen_insn(JMP32_INSN_OPCODE, insn, x86_return_thunk); else code = &retinsn; break; case JCC: if (!func) { func = __static_call_return; if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) func = x86_return_thunk; } buf[0] = 0x0f; __text_gen_insn(buf+1, op, insn+1, func, 5); code = buf; size = 6; break; } if (memcmp(insn, code, size) == 0) return; if (system_state == SYSTEM_BOOTING || modinit) return text_poke_early(insn, code, size); text_poke_bp(insn, code, size, emulate); } static void __static_call_validate(u8 *insn, bool tail, bool tramp) { u8 opcode = insn[0]; if (tramp && memcmp(insn+5, tramp_ud, 3)) { pr_err("trampoline signature fail"); BUG(); } if (tail) { if (opcode == JMP32_INSN_OPCODE || opcode == RET_INSN_OPCODE || __is_Jcc(insn)) return; } else { if (opcode == CALL_INSN_OPCODE || !memcmp(insn, x86_nops[5], 5) || !memcmp(insn, xor5rax, 5)) return; } /* * If we ever trigger this, our text is corrupt, we'll probably not live long. */ pr_err("unexpected static_call insn opcode 0x%x at %pS\n", opcode, insn); BUG(); } static inline enum insn_type __sc_insn(bool null, bool tail) { /* * Encode the following table without branches: * * tail null insn * -----+-------+------ * 0 | 0 | CALL * 0 | 1 | NOP * 1 | 0 | JMP * 1 | 1 | RET */ return 2*tail + null; } void arch_static_call_transform(void *site, void *tramp, void *func, bool tail) { mutex_lock(&text_mutex); if (tramp) { __static_call_validate(tramp, true, true); __static_call_transform(tramp, __sc_insn(!func, true), func, false); } if (IS_ENABLED(CONFIG_HAVE_STATIC_CALL_INLINE) && site) { __static_call_validate(site, tail, false); __static_call_transform(site, __sc_insn(!func, tail), func, false); } mutex_unlock(&text_mutex); } EXPORT_SYMBOL_GPL(arch_static_call_transform); noinstr void __static_call_update_early(void *tramp, void *func) { BUG_ON(system_state != SYSTEM_BOOTING); BUG_ON(static_call_initialized); __text_gen_insn(tramp, JMP32_INSN_OPCODE, tramp, func, JMP32_INSN_SIZE); sync_core(); } #ifdef CONFIG_MITIGATION_RETHUNK /* * This is called by apply_returns() to fix up static call trampolines, * specifically ARCH_DEFINE_STATIC_CALL_NULL_TRAMP which is recorded as * having a return trampoline. * * The problem is that static_call() is available before determining * X86_FEATURE_RETHUNK and, by implication, running alternatives. * * This means that __static_call_transform() above can have overwritten the * return trampoline and we now need to fix things up to be consistent. */ bool __static_call_fixup(void *tramp, u8 op, void *dest) { unsigned long addr = (unsigned long)tramp; /* * Not all .return_sites are a static_call trampoline (most are not). * Check if the 3 bytes after the return are still kernel text, if not, * then this definitely is not a trampoline and we need not worry * further. * * This avoids the memcmp() below tripping over pagefaults etc.. */ if (((addr >> PAGE_SHIFT) != ((addr + 7) >> PAGE_SHIFT)) && !kernel_text_address(addr + 7)) return false; if (memcmp(tramp+5, tramp_ud, 3)) { /* Not a trampoline site, not our problem. */ return false; } mutex_lock(&text_mutex); if (op == RET_INSN_OPCODE || dest == &__x86_return_thunk) __static_call_transform(tramp, RET, NULL, true); mutex_unlock(&text_mutex); return true; } #endif |
1031 1036 1037 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/sch_cbs.c Credit Based Shaper * * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> */ /* Credit Based Shaper (CBS) * ========================= * * This is a simple rate-limiting shaper aimed at TSN applications on * systems with known traffic workloads. * * Its algorithm is defined by the IEEE 802.1Q-2014 Specification, * Section 8.6.8.2, and explained in more detail in the Annex L of the * same specification. * * There are four tunables to be considered: * * 'idleslope': Idleslope is the rate of credits that is * accumulated (in kilobits per second) when there is at least * one packet waiting for transmission. Packets are transmitted * when the current value of credits is equal or greater than * zero. When there is no packet to be transmitted the amount of * credits is set to zero. This is the main tunable of the CBS * algorithm. * * 'sendslope': * Sendslope is the rate of credits that is depleted (it should be a * negative number of kilobits per second) when a transmission is * ocurring. It can be calculated as follows, (IEEE 802.1Q-2014 Section * 8.6.8.2 item g): * * sendslope = idleslope - port_transmit_rate * * 'hicredit': Hicredit defines the maximum amount of credits (in * bytes) that can be accumulated. Hicredit depends on the * characteristics of interfering traffic, * 'max_interference_size' is the maximum size of any burst of * traffic that can delay the transmission of a frame that is * available for transmission for this traffic class, (IEEE * 802.1Q-2014 Annex L, Equation L-3): * * hicredit = max_interference_size * (idleslope / port_transmit_rate) * * 'locredit': Locredit is the minimum amount of credits that can * be reached. It is a function of the traffic flowing through * this qdisc (IEEE 802.1Q-2014 Annex L, Equation L-2): * * locredit = max_frame_size * (sendslope / port_transmit_rate) */ #include <linux/ethtool.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/units.h> #include <net/netevent.h> #include <net/netlink.h> #include <net/sch_generic.h> #include <net/pkt_sched.h> static LIST_HEAD(cbs_list); static DEFINE_SPINLOCK(cbs_list_lock); struct cbs_sched_data { bool offload; int queue; atomic64_t port_rate; /* in bytes/s */ s64 last; /* timestamp in ns */ s64 credits; /* in bytes */ s32 locredit; /* in bytes */ s32 hicredit; /* in bytes */ s64 sendslope; /* in bytes/s */ s64 idleslope; /* in bytes/s */ struct qdisc_watchdog watchdog; int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff *(*dequeue)(struct Qdisc *sch); struct Qdisc *qdisc; struct list_head cbs_list; }; static int cbs_child_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { unsigned int len = qdisc_pkt_len(skb); int err; err = child->ops->enqueue(skb, child, to_free); if (err != NET_XMIT_SUCCESS) return err; sch->qstats.backlog += len; sch->q.qlen++; return NET_XMIT_SUCCESS; } static int cbs_enqueue_offload(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct cbs_sched_data *q = qdisc_priv(sch); struct Qdisc *qdisc = q->qdisc; return cbs_child_enqueue(skb, sch, qdisc, to_free); } static int cbs_enqueue_soft(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct cbs_sched_data *q = qdisc_priv(sch); struct Qdisc *qdisc = q->qdisc; if (sch->q.qlen == 0 && q->credits > 0) { /* We need to stop accumulating credits when there's * no enqueued packets and q->credits is positive. */ q->credits = 0; q->last = ktime_get_ns(); } return cbs_child_enqueue(skb, sch, qdisc, to_free); } static int cbs_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct cbs_sched_data *q = qdisc_priv(sch); return q->enqueue(skb, sch, to_free); } /* timediff is in ns, slope is in bytes/s */ static s64 timediff_to_credits(s64 timediff, s64 slope) { return div64_s64(timediff * slope, NSEC_PER_SEC); } static s64 delay_from_credits(s64 credits, s64 slope) { if (unlikely(slope == 0)) return S64_MAX; return div64_s64(-credits * NSEC_PER_SEC, slope); } static s64 credits_from_len(unsigned int len, s64 slope, s64 port_rate) { if (unlikely(port_rate == 0)) return S64_MAX; return div64_s64(len * slope, port_rate); } static struct sk_buff *cbs_child_dequeue(struct Qdisc *sch, struct Qdisc *child) { struct sk_buff *skb; skb = child->ops->dequeue(child); if (!skb) return NULL; qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); sch->q.qlen--; return skb; } static struct sk_buff *cbs_dequeue_soft(struct Qdisc *sch) { struct cbs_sched_data *q = qdisc_priv(sch); struct Qdisc *qdisc = q->qdisc; s64 now = ktime_get_ns(); struct sk_buff *skb; s64 credits; int len; /* The previous packet is still being sent */ if (now < q->last) { qdisc_watchdog_schedule_ns(&q->watchdog, q->last); return NULL; } if (q->credits < 0) { credits = timediff_to_credits(now - q->last, q->idleslope); credits = q->credits + credits; q->credits = min_t(s64, credits, q->hicredit); if (q->credits < 0) { s64 delay; delay = delay_from_credits(q->credits, q->idleslope); qdisc_watchdog_schedule_ns(&q->watchdog, now + delay); q->last = now; return NULL; } } skb = cbs_child_dequeue(sch, qdisc); if (!skb) return NULL; len = qdisc_pkt_len(skb); /* As sendslope is a negative number, this will decrease the * amount of q->credits. */ credits = credits_from_len(len, q->sendslope, atomic64_read(&q->port_rate)); credits += q->credits; q->credits = max_t(s64, credits, q->locredit); /* Estimate of the transmission of the last byte of the packet in ns */ if (unlikely(atomic64_read(&q->port_rate) == 0)) q->last = now; else q->last = now + div64_s64(len * NSEC_PER_SEC, atomic64_read(&q->port_rate)); return skb; } static struct sk_buff *cbs_dequeue_offload(struct Qdisc *sch) { struct cbs_sched_data *q = qdisc_priv(sch); struct Qdisc *qdisc = q->qdisc; return cbs_child_dequeue(sch, qdisc); } static struct sk_buff *cbs_dequeue(struct Qdisc *sch) { struct cbs_sched_data *q = qdisc_priv(sch); return q->dequeue(sch); } static const struct nla_policy cbs_policy[TCA_CBS_MAX + 1] = { [TCA_CBS_PARMS] = { .len = sizeof(struct tc_cbs_qopt) }, }; static void cbs_disable_offload(struct net_device *dev, struct cbs_sched_data *q) { struct tc_cbs_qopt_offload cbs = { }; const struct net_device_ops *ops; int err; if (!q->offload) return; q->enqueue = cbs_enqueue_soft; q->dequeue = cbs_dequeue_soft; ops = dev->netdev_ops; if (!ops->ndo_setup_tc) return; cbs.queue = q->queue; cbs.enable = 0; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_CBS, &cbs); if (err < 0) pr_warn("Couldn't disable CBS offload for queue %d\n", cbs.queue); } static int cbs_enable_offload(struct net_device *dev, struct cbs_sched_data *q, const struct tc_cbs_qopt *opt, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_cbs_qopt_offload cbs = { }; int err; if (!ops->ndo_setup_tc) { NL_SET_ERR_MSG(extack, "Specified device does not support cbs offload"); return -EOPNOTSUPP; } cbs.queue = q->queue; cbs.enable = 1; cbs.hicredit = opt->hicredit; cbs.locredit = opt->locredit; cbs.idleslope = opt->idleslope; cbs.sendslope = opt->sendslope; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_CBS, &cbs); if (err < 0) { NL_SET_ERR_MSG(extack, "Specified device failed to setup cbs hardware offload"); return err; } q->enqueue = cbs_enqueue_offload; q->dequeue = cbs_dequeue_offload; return 0; } static void cbs_set_port_rate(struct net_device *dev, struct cbs_sched_data *q) { struct ethtool_link_ksettings ecmd; int speed = SPEED_10; s64 port_rate; int err; err = __ethtool_get_link_ksettings(dev, &ecmd); if (err < 0) goto skip; if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) speed = ecmd.base.speed; skip: port_rate = speed * 1000 * BYTES_PER_KBIT; atomic64_set(&q->port_rate, port_rate); netdev_dbg(dev, "cbs: set %s's port_rate to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->port_rate), ecmd.base.speed); } static int cbs_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct cbs_sched_data *q; struct net_device *qdev; bool found = false; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; spin_lock(&cbs_list_lock); list_for_each_entry(q, &cbs_list, cbs_list) { qdev = qdisc_dev(q->qdisc); if (qdev == dev) { found = true; break; } } spin_unlock(&cbs_list_lock); if (found) cbs_set_port_rate(dev, q); return NOTIFY_DONE; } static int cbs_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct cbs_sched_data *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct nlattr *tb[TCA_CBS_MAX + 1]; struct tc_cbs_qopt *qopt; int err; err = nla_parse_nested_deprecated(tb, TCA_CBS_MAX, opt, cbs_policy, extack); if (err < 0) return err; if (!tb[TCA_CBS_PARMS]) { NL_SET_ERR_MSG(extack, "Missing CBS parameter which are mandatory"); return -EINVAL; } qopt = nla_data(tb[TCA_CBS_PARMS]); if (!qopt->offload) { cbs_set_port_rate(dev, q); cbs_disable_offload(dev, q); } else { err = cbs_enable_offload(dev, q, qopt, extack); if (err < 0) return err; } /* Everything went OK, save the parameters used. */ WRITE_ONCE(q->hicredit, qopt->hicredit); WRITE_ONCE(q->locredit, qopt->locredit); WRITE_ONCE(q->idleslope, qopt->idleslope * BYTES_PER_KBIT); WRITE_ONCE(q->sendslope, qopt->sendslope * BYTES_PER_KBIT); WRITE_ONCE(q->offload, qopt->offload); return 0; } static int cbs_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct cbs_sched_data *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); if (!opt) { NL_SET_ERR_MSG(extack, "Missing CBS qdisc options which are mandatory"); return -EINVAL; } q->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, sch->handle, extack); if (!q->qdisc) return -ENOMEM; spin_lock(&cbs_list_lock); list_add(&q->cbs_list, &cbs_list); spin_unlock(&cbs_list_lock); qdisc_hash_add(q->qdisc, false); q->queue = sch->dev_queue - netdev_get_tx_queue(dev, 0); q->enqueue = cbs_enqueue_soft; q->dequeue = cbs_dequeue_soft; qdisc_watchdog_init(&q->watchdog, sch); return cbs_change(sch, opt, extack); } static void cbs_destroy(struct Qdisc *sch) { struct cbs_sched_data *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); /* Nothing to do if we couldn't create the underlying qdisc */ if (!q->qdisc) return; qdisc_watchdog_cancel(&q->watchdog); cbs_disable_offload(dev, q); spin_lock(&cbs_list_lock); list_del(&q->cbs_list); spin_unlock(&cbs_list_lock); qdisc_put(q->qdisc); } static int cbs_dump(struct Qdisc *sch, struct sk_buff *skb) { struct cbs_sched_data *q = qdisc_priv(sch); struct tc_cbs_qopt opt = { }; struct nlattr *nest; nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!nest) goto nla_put_failure; opt.hicredit = READ_ONCE(q->hicredit); opt.locredit = READ_ONCE(q->locredit); opt.sendslope = div64_s64(READ_ONCE(q->sendslope), BYTES_PER_KBIT); opt.idleslope = div64_s64(READ_ONCE(q->idleslope), BYTES_PER_KBIT); opt.offload = READ_ONCE(q->offload); if (nla_put(skb, TCA_CBS_PARMS, sizeof(opt), &opt)) goto nla_put_failure; return nla_nest_end(skb, nest); nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static int cbs_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct cbs_sched_data *q = qdisc_priv(sch); if (cl != 1 || !q->qdisc) /* only one class */ return -ENOENT; tcm->tcm_handle |= TC_H_MIN(1); tcm->tcm_info = q->qdisc->handle; return 0; } static int cbs_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct cbs_sched_data *q = qdisc_priv(sch); if (!new) { new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, sch->handle, NULL); if (!new) new = &noop_qdisc; } *old = qdisc_replace(sch, new, &q->qdisc); return 0; } static struct Qdisc *cbs_leaf(struct Qdisc *sch, unsigned long arg) { struct cbs_sched_data *q = qdisc_priv(sch); return q->qdisc; } static unsigned long cbs_find(struct Qdisc *sch, u32 classid) { return 1; } static void cbs_walk(struct Qdisc *sch, struct qdisc_walker *walker) { if (!walker->stop) { tc_qdisc_stats_dump(sch, 1, walker); } } static const struct Qdisc_class_ops cbs_class_ops = { .graft = cbs_graft, .leaf = cbs_leaf, .find = cbs_find, .walk = cbs_walk, .dump = cbs_dump_class, }; static struct Qdisc_ops cbs_qdisc_ops __read_mostly = { .id = "cbs", .cl_ops = &cbs_class_ops, .priv_size = sizeof(struct cbs_sched_data), .enqueue = cbs_enqueue, .dequeue = cbs_dequeue, .peek = qdisc_peek_dequeued, .init = cbs_init, .reset = qdisc_reset_queue, .destroy = cbs_destroy, .change = cbs_change, .dump = cbs_dump, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("cbs"); static struct notifier_block cbs_device_notifier = { .notifier_call = cbs_dev_notifier, }; static int __init cbs_module_init(void) { int err; err = register_netdevice_notifier(&cbs_device_notifier); if (err) return err; err = register_qdisc(&cbs_qdisc_ops); if (err) unregister_netdevice_notifier(&cbs_device_notifier); return err; } static void __exit cbs_module_exit(void) { unregister_qdisc(&cbs_qdisc_ops); unregister_netdevice_notifier(&cbs_device_notifier); } module_init(cbs_module_init) module_exit(cbs_module_exit) MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Credit Based shaper"); |
1266 652 654 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | // SPDX-License-Identifier: GPL-2.0-or-later /* * x86 instruction attribute tables * * Written by Masami Hiramatsu <mhiramat@redhat.com> */ #include <asm/insn.h> /* __ignore_sync_check__ */ /* Attribute tables are generated from opcode map */ #include "inat-tables.c" /* Attribute search APIs */ insn_attr_t inat_get_opcode_attribute(insn_byte_t opcode) { return inat_primary_table[opcode]; } int inat_get_last_prefix_id(insn_byte_t last_pfx) { insn_attr_t lpfx_attr; lpfx_attr = inat_get_opcode_attribute(last_pfx); return inat_last_prefix_id(lpfx_attr); } insn_attr_t inat_get_escape_attribute(insn_byte_t opcode, int lpfx_id, insn_attr_t esc_attr) { const insn_attr_t *table; int n; n = inat_escape_id(esc_attr); table = inat_escape_tables[n][0]; if (!table) return 0; if (inat_has_variant(table[opcode]) && lpfx_id) { table = inat_escape_tables[n][lpfx_id]; if (!table) return 0; } return table[opcode]; } insn_attr_t inat_get_group_attribute(insn_byte_t modrm, int lpfx_id, insn_attr_t grp_attr) { const insn_attr_t *table; int n; n = inat_group_id(grp_attr); table = inat_group_tables[n][0]; if (!table) return inat_group_common_attribute(grp_attr); if (inat_has_variant(table[X86_MODRM_REG(modrm)]) && lpfx_id) { table = inat_group_tables[n][lpfx_id]; if (!table) return inat_group_common_attribute(grp_attr); } return table[X86_MODRM_REG(modrm)] | inat_group_common_attribute(grp_attr); } insn_attr_t inat_get_avx_attribute(insn_byte_t opcode, insn_byte_t vex_m, insn_byte_t vex_p) { const insn_attr_t *table; if (vex_m > X86_VEX_M_MAX || vex_p > INAT_LSTPFX_MAX) return 0; /* At first, this checks the master table */ table = inat_avx_tables[vex_m][0]; if (!table) return 0; if (!inat_is_group(table[opcode]) && vex_p) { /* If this is not a group, get attribute directly */ table = inat_avx_tables[vex_m][vex_p]; if (!table) return 0; } return table[opcode]; } |
6 6 6 52 35 25 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | // SPDX-License-Identifier: GPL-2.0-only /* * x86-optimized CRC32 functions * * Copyright (C) 2008 Intel Corporation * Copyright 2012 Xyratex Technology Limited * Copyright 2024 Google LLC */ #include <asm/cpufeatures.h> #include <asm/simd.h> #include <crypto/internal/simd.h> #include <linux/crc32.h> #include <linux/linkage.h> #include <linux/module.h> /* minimum size of buffer for crc32_pclmul_le_16 */ #define CRC32_PCLMUL_MIN_LEN 64 static DEFINE_STATIC_KEY_FALSE(have_crc32); static DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); u32 crc32_pclmul_le_16(u32 crc, const u8 *buffer, size_t len); u32 crc32_le_arch(u32 crc, const u8 *p, size_t len) { if (len >= CRC32_PCLMUL_MIN_LEN + 15 && static_branch_likely(&have_pclmulqdq) && crypto_simd_usable()) { size_t n = -(uintptr_t)p & 15; /* align p to 16-byte boundary */ if (n) { crc = crc32_le_base(crc, p, n); p += n; len -= n; } n = round_down(len, 16); kernel_fpu_begin(); crc = crc32_pclmul_le_16(crc, p, n); kernel_fpu_end(); p += n; len -= n; } if (len) crc = crc32_le_base(crc, p, len); return crc; } EXPORT_SYMBOL(crc32_le_arch); #ifdef CONFIG_X86_64 #define CRC32_INST "crc32q %1, %q0" #else #define CRC32_INST "crc32l %1, %0" #endif /* * Use carryless multiply version of crc32c when buffer size is >= 512 to * account for FPU state save/restore overhead. */ #define CRC32C_PCLMUL_BREAKEVEN 512 asmlinkage u32 crc32c_x86_3way(u32 crc, const u8 *buffer, size_t len); u32 crc32c_le_arch(u32 crc, const u8 *p, size_t len) { size_t num_longs; if (!static_branch_likely(&have_crc32)) return crc32c_le_base(crc, p, len); if (IS_ENABLED(CONFIG_X86_64) && len >= CRC32C_PCLMUL_BREAKEVEN && static_branch_likely(&have_pclmulqdq) && crypto_simd_usable()) { kernel_fpu_begin(); crc = crc32c_x86_3way(crc, p, len); kernel_fpu_end(); return crc; } for (num_longs = len / sizeof(unsigned long); num_longs != 0; num_longs--, p += sizeof(unsigned long)) asm(CRC32_INST : "+r" (crc) : "rm" (*(unsigned long *)p)); for (len %= sizeof(unsigned long); len; len--, p++) asm("crc32b %1, %0" : "+r" (crc) : "rm" (*p)); return crc; } EXPORT_SYMBOL(crc32c_le_arch); u32 crc32_be_arch(u32 crc, const u8 *p, size_t len) { return crc32_be_base(crc, p, len); } EXPORT_SYMBOL(crc32_be_arch); static int __init crc32_x86_init(void) { if (boot_cpu_has(X86_FEATURE_XMM4_2)) static_branch_enable(&have_crc32); if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) static_branch_enable(&have_pclmulqdq); return 0; } arch_initcall(crc32_x86_init); static void __exit crc32_x86_exit(void) { } module_exit(crc32_x86_exit); u32 crc32_optimizations(void) { u32 optimizations = 0; if (static_key_enabled(&have_crc32)) optimizations |= CRC32C_OPTIMIZATION; if (static_key_enabled(&have_pclmulqdq)) optimizations |= CRC32_LE_OPTIMIZATION; return optimizations; } EXPORT_SYMBOL(crc32_optimizations); MODULE_DESCRIPTION("x86-optimized CRC32 functions"); MODULE_LICENSE("GPL"); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BITOPS_H #define _ASM_X86_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * Note: inlines with more than a single statement should be marked * __always_inline to avoid problems with older gcc's inlining heuristics. */ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/alternative.h> #include <asm/rmwcc.h> #include <asm/barrier.h> #if BITS_PER_LONG == 32 # define _BITOPS_LONG_SHIFT 5 #elif BITS_PER_LONG == 64 # define _BITOPS_LONG_SHIFT 6 #else # error "Unexpected BITS_PER_LONG" #endif #define BIT_64(n) (U64_C(1) << (n)) /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #define RLONG_ADDR(x) "m" (*(volatile long *) (x)) #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) #define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) static __always_inline void arch_set_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr)) : "memory"); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch___set_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_clear_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (~CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); arch_clear_bit(nr, addr); } static __always_inline void arch___clear_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask, volatile unsigned long *addr) { bool negative; asm volatile(LOCK_PREFIX "xorb %2,%1" CC_SET(s) : CC_OUT(s) (negative), WBYTE_ADDR(addr) : "iq" ((char)mask) : "memory"); return negative; } #define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte static __always_inline void arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { arch___clear_bit(nr, addr); } static __always_inline void arch___change_bit(unsigned long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_change_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline bool arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } static __always_inline bool arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { return arch_test_and_set_bit(nr, addr); } static __always_inline bool arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } /* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. * KVM relies on this behaviour on x86 for modifying memory that is also * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ static __always_inline bool arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) { return ((1UL << (nr & (BITS_PER_LONG-1))) & (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr) { bool oldbit; asm volatile("testb %2,%1" CC_SET(nz) : CC_OUT(nz) (oldbit) : "m" (((unsigned char *)addr)[nr >> 3]), "i" (1 << (nr & 7)) :"memory"); return oldbit; } static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_bit(unsigned long nr, const volatile unsigned long *addr) { return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) : variable_test_bit(nr, addr); } static __always_inline bool arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr) { return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) : variable_test_bit(nr, addr); } static __always_inline unsigned long variable__ffs(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : ASM_INPUT_RM (word)); return word; } /** * __ffs - find first set bit in word * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ #define __ffs(word) \ (__builtin_constant_p(word) ? \ (unsigned long)__builtin_ctzl(word) : \ variable__ffs(word)) static __always_inline unsigned long variable_ffz(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "r" (~word)); return word; } /** * ffz - find first zero bit in word * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ #define ffz(word) \ (__builtin_constant_p(word) ? \ (unsigned long)__builtin_ctzl(~word) : \ variable_ffz(word)) /* * __fls: find last set bit in word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static __always_inline unsigned long __fls(unsigned long word) { if (__builtin_constant_p(word)) return BITS_PER_LONG - 1 - __builtin_clzl(word); asm("bsr %1,%0" : "=r" (word) : ASM_INPUT_RM (word)); return word; } #undef ADDR #ifdef __KERNEL__ static __always_inline int variable_ffs(int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsfl %1,%0" : "=r" (r) : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "r" (-1)); #else asm("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * ffs - find first set bit in word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs * routines, therefore differs in spirit from the other bitops. * * ffs(value) returns 0 if value is 0 or the position of the first * set bit if value is nonzero. The first (least significant) bit * is at position 1. */ #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x)) /** * fls - find last set bit in word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffs, but returns the position of the most significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ static __always_inline int fls(unsigned int x) { int r; if (__builtin_constant_p(x)) return x ? 32 - __builtin_clz(x) : 0; #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsrl %1,%0" : "=r" (r) : ASM_INPUT_RM (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "rm" (-1)); #else asm("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #ifdef CONFIG_X86_64 static __always_inline int fls64(__u64 x) { int bitpos = -1; if (__builtin_constant_p(x)) return x ? 64 - __builtin_clzll(x) : 0; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before. */ asm("bsrq %1,%q0" : "+r" (bitpos) : ASM_INPUT_RM (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ASM_X86_BITOPS_H */ |
12 12 5 5 5 2 2 2 7 7 7 18 18 18 18 18 18 18 64 63 64 64 64 64 64 64 63 64 64 64 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 3 3 3 20 20 20 20 20 4 16 4 16 20 20 4 16 20 48 48 47 48 48 48 48 48 48 48 48 48 47 48 48 48 48 47 48 47 48 48 48 48 47 47 47 48 48 48 48 47 48 48 48 48 48 48 48 48 48 48 48 48 47 46 48 48 48 48 47 48 47 48 47 2 2 5 5 5 5 5 15 2 13 5 8 8 8 8 8 8 8 8 8 8 18 18 18 20 20 9 9 9 9 9 9 9 9 9 8 8 4 4 4 4 48 48 48 26 10 16 16 16 16 16 16 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 | // SPDX-License-Identifier: GPL-2.0-only /* * This is the new netlink-based wireless configuration interface. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2024 Intel Corporation */ #include <linux/if.h> #include <linux/module.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/if_ether.h> #include <linux/ieee80211.h> #include <linux/nl80211.h> #include <linux/rtnetlink.h> #include <linux/netlink.h> #include <linux/nospec.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <net/net_namespace.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include <net/sock.h> #include <net/inet_connection_sock.h> #include "core.h" #include "nl80211.h" #include "reg.h" #include "rdev-ops.h" static int nl80211_crypto_settings(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_crypto_settings *settings, int cipher_limit); /* the netlink family */ static struct genl_family nl80211_fam; /* multicast groups */ enum nl80211_multicast_groups { NL80211_MCGRP_CONFIG, NL80211_MCGRP_SCAN, NL80211_MCGRP_REGULATORY, NL80211_MCGRP_MLME, NL80211_MCGRP_VENDOR, NL80211_MCGRP_NAN, NL80211_MCGRP_TESTMODE /* keep last - ifdef! */ }; static const struct genl_multicast_group nl80211_mcgrps[] = { [NL80211_MCGRP_CONFIG] = { .name = NL80211_MULTICAST_GROUP_CONFIG }, [NL80211_MCGRP_SCAN] = { .name = NL80211_MULTICAST_GROUP_SCAN }, [NL80211_MCGRP_REGULATORY] = { .name = NL80211_MULTICAST_GROUP_REG }, [NL80211_MCGRP_MLME] = { .name = NL80211_MULTICAST_GROUP_MLME }, [NL80211_MCGRP_VENDOR] = { .name = NL80211_MULTICAST_GROUP_VENDOR }, [NL80211_MCGRP_NAN] = { .name = NL80211_MULTICAST_GROUP_NAN }, #ifdef CONFIG_NL80211_TESTMODE [NL80211_MCGRP_TESTMODE] = { .name = NL80211_MULTICAST_GROUP_TESTMODE } #endif }; /* returns ERR_PTR values */ static struct wireless_dev * __cfg80211_wdev_from_attrs(struct cfg80211_registered_device *rdev, struct net *netns, struct nlattr **attrs) { struct wireless_dev *result = NULL; bool have_ifidx = attrs[NL80211_ATTR_IFINDEX]; bool have_wdev_id = attrs[NL80211_ATTR_WDEV]; u64 wdev_id = 0; int wiphy_idx = -1; int ifidx = -1; if (!have_ifidx && !have_wdev_id) return ERR_PTR(-EINVAL); if (have_ifidx) ifidx = nla_get_u32(attrs[NL80211_ATTR_IFINDEX]); if (have_wdev_id) { wdev_id = nla_get_u64(attrs[NL80211_ATTR_WDEV]); wiphy_idx = wdev_id >> 32; } if (rdev) { struct wireless_dev *wdev; lockdep_assert_held(&rdev->wiphy.mtx); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (have_ifidx && wdev->netdev && wdev->netdev->ifindex == ifidx) { result = wdev; break; } if (have_wdev_id && wdev->identifier == (u32)wdev_id) { result = wdev; break; } } return result ?: ERR_PTR(-ENODEV); } ASSERT_RTNL(); for_each_rdev(rdev) { struct wireless_dev *wdev; if (wiphy_net(&rdev->wiphy) != netns) continue; if (have_wdev_id && rdev->wiphy_idx != wiphy_idx) continue; list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (have_ifidx && wdev->netdev && wdev->netdev->ifindex == ifidx) { result = wdev; break; } if (have_wdev_id && wdev->identifier == (u32)wdev_id) { result = wdev; break; } } if |