| 36 36 36 36 36 29 29 29 5 5 5 5 5 4 14 14 14 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 | // SPDX-License-Identifier: GPL-2.0-only /* * BSS client mode implementation * Copyright 2003-2008, Jouni Malinen <j@w1.fi> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007, Michael Wu <flamingice@sourmilk.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2024 Intel Corporation */ #include <linux/delay.h> #include <linux/fips.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/moduleparam.h> #include <linux/rtnetlink.h> #include <linux/crc32.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include <linux/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "led.h" #include "fils_aead.h" #include <kunit/static_stub.h> #define IEEE80211_AUTH_TIMEOUT (HZ / 5) #define IEEE80211_AUTH_TIMEOUT_LONG (HZ / 2) #define IEEE80211_AUTH_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_AUTH_TIMEOUT_SAE (HZ * 2) #define IEEE80211_AUTH_MAX_TRIES 3 #define IEEE80211_AUTH_WAIT_ASSOC (HZ * 5) #define IEEE80211_AUTH_WAIT_SAE_RETRY (HZ * 2) #define IEEE80211_ASSOC_TIMEOUT (HZ / 5) #define IEEE80211_ASSOC_TIMEOUT_LONG (HZ / 2) #define IEEE80211_ASSOC_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_ASSOC_MAX_TRIES 3 #define IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS msecs_to_jiffies(100) #define IEEE80211_ADV_TTLM_ST_UNDERFLOW 0xff00 #define IEEE80211_NEG_TTLM_REQ_TIMEOUT (HZ / 5) static int max_nullfunc_tries = 2; module_param(max_nullfunc_tries, int, 0644); MODULE_PARM_DESC(max_nullfunc_tries, "Maximum nullfunc tx tries before disconnecting (reason 4)."); static int max_probe_tries = 5; module_param(max_probe_tries, int, 0644); MODULE_PARM_DESC(max_probe_tries, "Maximum probe tries before disconnecting (reason 4)."); /* * Beacon loss timeout is calculated as N frames times the * advertised beacon interval. This may need to be somewhat * higher than what hardware might detect to account for * delays in the host processing frames. But since we also * probe on beacon miss before declaring the connection lost * default to what we want. */ static int beacon_loss_count = 7; module_param(beacon_loss_count, int, 0644); MODULE_PARM_DESC(beacon_loss_count, "Number of beacon intervals before we decide beacon was lost."); /* * Time the connection can be idle before we probe * it to see if we can still talk to the AP. */ #define IEEE80211_CONNECTION_IDLE_TIME (30 * HZ) /* * Time we wait for a probe response after sending * a probe request because of beacon loss or for * checking the connection still works. */ static int probe_wait_ms = 500; module_param(probe_wait_ms, int, 0644); MODULE_PARM_DESC(probe_wait_ms, "Maximum time(ms) to wait for probe response" " before disconnecting (reason 4)."); /* * How many Beacon frames need to have been used in average signal strength * before starting to indicate signal change events. */ #define IEEE80211_SIGNAL_AVE_MIN_COUNT 4 /* * We can have multiple work items (and connection probing) * scheduling this timer, but we need to take care to only * reschedule it when it should fire _earlier_ than it was * asked for before, or if it's not pending right now. This * function ensures that. Note that it then is required to * run this function for all timeouts after the first one * has happened -- the work that runs from this timer will * do that. */ static void run_again(struct ieee80211_sub_if_data *sdata, unsigned long timeout) { lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!timer_pending(&sdata->u.mgd.timer) || time_before(timeout, sdata->u.mgd.timer.expires)) mod_timer(&sdata->u.mgd.timer, timeout); } void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&sdata->u.mgd.bcn_mon_timer, round_jiffies_up(jiffies + sdata->u.mgd.beacon_timeout)); } void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (unlikely(!ifmgd->associated)) return; if (ifmgd->probe_send_count) ifmgd->probe_send_count = 0; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); } static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static enum ieee80211_conn_mode ieee80211_determine_ap_chan(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, u32 vht_cap_info, const struct ieee802_11_elems *elems, bool ignore_ht_channel_mismatch, const struct ieee80211_conn_settings *conn, struct cfg80211_chan_def *chandef) { const struct ieee80211_ht_operation *ht_oper = elems->ht_operation; const struct ieee80211_vht_operation *vht_oper = elems->vht_operation; const struct ieee80211_he_operation *he_oper = elems->he_operation; const struct ieee80211_eht_operation *eht_oper = elems->eht_operation; struct ieee80211_supported_band *sband = sdata->local->hw.wiphy->bands[channel->band]; struct cfg80211_chan_def vht_chandef; bool no_vht = false; u32 ht_cfreq; *chandef = (struct cfg80211_chan_def) { .chan = channel, .width = NL80211_CHAN_WIDTH_20_NOHT, .center_freq1 = channel->center_freq, .freq1_offset = channel->freq_offset, }; /* get special S1G case out of the way */ if (sband->band == NL80211_BAND_S1GHZ) { if (!ieee80211_chandef_s1g_oper(elems->s1g_oper, chandef)) { sdata_info(sdata, "Missing S1G Operation Element? Trying operating == primary\n"); chandef->width = ieee80211_s1g_channel_width(channel); } return IEEE80211_CONN_MODE_S1G; } /* get special 6 GHz case out of the way */ if (sband->band == NL80211_BAND_6GHZ) { enum ieee80211_conn_mode mode = IEEE80211_CONN_MODE_EHT; /* this is an error */ if (conn->mode < IEEE80211_CONN_MODE_HE) return IEEE80211_CONN_MODE_LEGACY; if (!elems->he_6ghz_capa || !elems->he_cap) { sdata_info(sdata, "HE 6 GHz AP is missing HE/HE 6 GHz band capability\n"); return IEEE80211_CONN_MODE_LEGACY; } if (!eht_oper || !elems->eht_cap) { eht_oper = NULL; mode = IEEE80211_CONN_MODE_HE; } if (!ieee80211_chandef_he_6ghz_oper(sdata->local, he_oper, eht_oper, chandef)) { sdata_info(sdata, "bad HE/EHT 6 GHz operation\n"); return IEEE80211_CONN_MODE_LEGACY; } return mode; } /* now we have the progression HT, VHT, ... */ if (conn->mode < IEEE80211_CONN_MODE_HT) return IEEE80211_CONN_MODE_LEGACY; if (!ht_oper || !elems->ht_cap_elem) return IEEE80211_CONN_MODE_LEGACY; chandef->width = NL80211_CHAN_WIDTH_20; ht_cfreq = ieee80211_channel_to_frequency(ht_oper->primary_chan, channel->band); /* check that channel matches the right operating channel */ if (!ignore_ht_channel_mismatch && channel->center_freq != ht_cfreq) { /* * It's possible that some APs are confused here; * Netgear WNDR3700 sometimes reports 4 higher than * the actual channel in association responses, but * since we look at probe response/beacon data here * it should be OK. */ sdata_info(sdata, "Wrong control channel: center-freq: %d ht-cfreq: %d ht->primary_chan: %d band: %d - Disabling HT\n", channel->center_freq, ht_cfreq, ht_oper->primary_chan, channel->band); return IEEE80211_CONN_MODE_LEGACY; } ieee80211_chandef_ht_oper(ht_oper, chandef); if (conn->mode < IEEE80211_CONN_MODE_VHT) return IEEE80211_CONN_MODE_HT; vht_chandef = *chandef; /* * having he_cap/he_oper parsed out implies we're at * least operating as HE STA */ if (elems->he_cap && he_oper && he_oper->he_oper_params & cpu_to_le32(IEEE80211_HE_OPERATION_VHT_OPER_INFO)) { struct ieee80211_vht_operation he_oper_vht_cap; /* * Set only first 3 bytes (other 2 aren't used in * ieee80211_chandef_vht_oper() anyway) */ memcpy(&he_oper_vht_cap, he_oper->optional, 3); he_oper_vht_cap.basic_mcs_set = cpu_to_le16(0); if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, &he_oper_vht_cap, ht_oper, &vht_chandef)) { sdata_info(sdata, "HE AP VHT information is invalid, disabling HE\n"); /* this will cause us to re-parse as VHT STA */ return IEEE80211_CONN_MODE_VHT; } } else if (!vht_oper || !elems->vht_cap_elem) { if (sband->band == NL80211_BAND_5GHZ) { sdata_info(sdata, "VHT information is missing, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } no_vht = true; } else if (sband->band == NL80211_BAND_2GHZ) { no_vht = true; } else if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, vht_oper, ht_oper, &vht_chandef)) { sdata_info(sdata, "AP VHT information is invalid, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } if (!cfg80211_chandef_compatible(chandef, &vht_chandef)) { sdata_info(sdata, "AP VHT information doesn't match HT, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } *chandef = vht_chandef; /* stick to current max mode if we or the AP don't have HE */ if (conn->mode < IEEE80211_CONN_MODE_HE || !elems->he_operation || !elems->he_cap) { if (no_vht) return IEEE80211_CONN_MODE_HT; return IEEE80211_CONN_MODE_VHT; } /* stick to HE if we or the AP don't have EHT */ if (conn->mode < IEEE80211_CONN_MODE_EHT || !eht_oper || !elems->eht_cap) return IEEE80211_CONN_MODE_HE; /* * handle the case that the EHT operation indicates that it holds EHT * operation information (in case that the channel width differs from * the channel width reported in HT/VHT/HE). */ if (eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) { struct cfg80211_chan_def eht_chandef = *chandef; ieee80211_chandef_eht_oper((const void *)eht_oper->optional, &eht_chandef); eht_chandef.punctured = ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); if (!cfg80211_chandef_valid(&eht_chandef)) { sdata_info(sdata, "AP EHT information is invalid, disabling EHT\n"); return IEEE80211_CONN_MODE_HE; } if (!cfg80211_chandef_compatible(chandef, &eht_chandef)) { sdata_info(sdata, "AP EHT information doesn't match HT/VHT/HE, disabling EHT\n"); return IEEE80211_CONN_MODE_HE; } *chandef = eht_chandef; } return IEEE80211_CONN_MODE_EHT; } static bool ieee80211_verify_peer_he_mcs_support(struct ieee80211_sub_if_data *sdata, int link_id, const struct ieee80211_he_cap_elem *he_cap, const struct ieee80211_he_operation *he_op) { struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; u16 mcs_80_map_tx, mcs_80_map_rx; u16 ap_min_req_set; int nss; if (!he_cap) return false; /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map_tx = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); mcs_80_map_rx = le16_to_cpu(he_mcs_nss_supp->rx_mcs_80); /* P802.11-REVme/D0.3 * 27.1.1 Introduction to the HE PHY * ... * An HE STA shall support the following features: * ... * Single spatial stream HE-MCSs 0 to 7 (transmit and receive) in all * supported channel widths for HE SU PPDUs */ if ((mcs_80_map_tx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED || (mcs_80_map_rx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED) { link_id_info(sdata, link_id, "Missing mandatory rates for 1 Nss, rx 0x%x, tx 0x%x, disable HE\n", mcs_80_map_tx, mcs_80_map_rx); return false; } if (!he_op) return true; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ap_min_req_set) return true; /* make sure the AP is consistent with itself * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * A STA that is operating in an HE BSS shall be able to receive and * transmit at each of the <HE-MCS, NSS> tuple values indicated by the * Basic HE-MCS And NSS Set field of the HE Operation parameter of the * MLME-START.request primitive and shall be able to receive at each of * the <HE-MCS, NSS> tuple values indicated by the Supported HE-MCS and * NSS Set field in the HE Capabilities parameter of the MLMESTART.request * primitive */ for (nss = 8; nss > 0; nss--) { u8 ap_op_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; u8 ap_rx_val; u8 ap_tx_val; if (ap_op_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; ap_rx_val = (mcs_80_map_rx >> (2 * (nss - 1))) & 3; ap_tx_val = (mcs_80_map_tx >> (2 * (nss - 1))) & 3; if (ap_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_rx_val < ap_op_val || ap_tx_val < ap_op_val) { link_id_info(sdata, link_id, "Invalid rates for %d Nss, rx %d, tx %d oper %d, disable HE\n", nss, ap_rx_val, ap_tx_val, ap_op_val); return false; } } return true; } static bool ieee80211_verify_sta_he_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_he_operation *he_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); u16 ap_min_req_set; int i; if (!sta_he_cap || !he_op) return false; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ap_min_req_set) return true; /* Need to go over for 80MHz, 160MHz and for 80+80 */ for (i = 0; i < 3; i++) { const struct ieee80211_he_mcs_nss_supp *sta_mcs_nss_supp = &sta_he_cap->he_mcs_nss_supp; u16 sta_mcs_map_rx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i]); u16 sta_mcs_map_tx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i + 1]); u8 nss; bool verified = true; /* * For each band there is a maximum of 8 spatial streams * possible. Each of the sta_mcs_map_* is a 16-bit struct built * of 2 bits per NSS (1-8), with the values defined in enum * ieee80211_he_mcs_support. Need to make sure STA TX and RX * capabilities aren't less than the AP's minimum requirements * for this HE BSS per SS. * It is enough to find one such band that meets the reqs. */ for (nss = 8; nss > 0; nss--) { u8 sta_rx_val = (sta_mcs_map_rx >> (2 * (nss - 1))) & 3; u8 sta_tx_val = (sta_mcs_map_tx >> (2 * (nss - 1))) & 3; u8 ap_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; if (ap_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; /* * Make sure the HE AP doesn't require MCSs that aren't * supported by the client as required by spec * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * An HE STA shall not attempt to join * (MLME-JOIN.request primitive) * a BSS, unless it supports (i.e., is able to both transmit and * receive using) all of the <HE-MCS, NSS> tuples in the basic * HE-MCS and NSS set. */ if (sta_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || sta_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || (ap_val > sta_rx_val) || (ap_val > sta_tx_val)) { verified = false; break; } } if (verified) return true; } /* If here, STA doesn't meet AP's HE min requirements */ return false; } static u8 ieee80211_get_eht_cap_mcs_nss(const struct ieee80211_sta_he_cap *sta_he_cap, const struct ieee80211_sta_eht_cap *sta_eht_cap, unsigned int idx, int bw) { u8 he_phy_cap0 = sta_he_cap->he_cap_elem.phy_cap_info[0]; u8 eht_phy_cap0 = sta_eht_cap->eht_cap_elem.phy_cap_info[0]; /* handle us being a 20 MHz-only EHT STA - with four values * for MCS 0-7, 8-9, 10-11, 12-13. */ if (!(he_phy_cap0 & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) return sta_eht_cap->eht_mcs_nss_supp.only_20mhz.rx_tx_max_nss[idx]; /* the others have MCS 0-9 together, rather than separately from 0-7 */ if (idx > 0) idx--; switch (bw) { case 0: return sta_eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_max_nss[idx]; case 1: if (!(he_phy_cap0 & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G))) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._160.rx_tx_max_nss[idx]; case 2: if (!(eht_phy_cap0 & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._320.rx_tx_max_nss[idx]; } WARN_ON(1); return 0; } static bool ieee80211_verify_sta_eht_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_eht_operation *eht_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_sta_eht_cap *sta_eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_eht_mcs_nss_supp_20mhz_only *req; unsigned int i; if (!sta_he_cap || !sta_eht_cap || !eht_op) return false; req = &eht_op->basic_mcs_nss; for (i = 0; i < ARRAY_SIZE(req->rx_tx_max_nss); i++) { u8 req_rx_nss, req_tx_nss; unsigned int bw; req_rx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_RX); req_tx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_TX); for (bw = 0; bw < 3; bw++) { u8 have, have_rx_nss, have_tx_nss; have = ieee80211_get_eht_cap_mcs_nss(sta_he_cap, sta_eht_cap, i, bw); have_rx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_RX); have_tx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_TX); if (req_rx_nss > have_rx_nss || req_tx_nss > have_tx_nss) return false; } } return true; } static void ieee80211_get_rates(struct ieee80211_supported_band *sband, const u8 *supp_rates, unsigned int supp_rates_len, const u8 *ext_supp_rates, unsigned int ext_supp_rates_len, u32 *rates, u32 *basic_rates, unsigned long *unknown_rates_selectors, bool *have_higher_than_11mbit, int *min_rate, int *min_rate_index) { int i, j; for (i = 0; i < supp_rates_len + ext_supp_rates_len; i++) { u8 supp_rate = i < supp_rates_len ? supp_rates[i] : ext_supp_rates[i - supp_rates_len]; int rate = supp_rate & 0x7f; bool is_basic = !!(supp_rate & 0x80); if ((rate * 5) > 110 && have_higher_than_11mbit) *have_higher_than_11mbit = true; /* * Skip membership selectors since they're not rates. * * Note: Even though the membership selector and the basic * rate flag share the same bit, they are not exactly * the same. */ if (is_basic && rate >= BSS_MEMBERSHIP_SELECTOR_MIN) { if (unknown_rates_selectors) set_bit(rate, unknown_rates_selectors); continue; } for (j = 0; j < sband->n_bitrates; j++) { struct ieee80211_rate *br; int brate; br = &sband->bitrates[j]; brate = DIV_ROUND_UP(br->bitrate, 5); if (brate == rate) { if (rates) *rates |= BIT(j); if (is_basic && basic_rates) *basic_rates |= BIT(j); if (min_rate && (rate * 5) < *min_rate) { *min_rate = rate * 5; if (min_rate_index) *min_rate_index = j; } break; } } /* Handle an unknown entry as if it is an unknown selector */ if (is_basic && unknown_rates_selectors && j == sband->n_bitrates) set_bit(rate, unknown_rates_selectors); } } static bool ieee80211_chandef_usable(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, u32 prohibited_flags) { if (!cfg80211_chandef_usable(sdata->local->hw.wiphy, chandef, prohibited_flags)) return false; if (chandef->punctured && ieee80211_hw_check(&sdata->local->hw, DISALLOW_PUNCTURING)) return false; if (chandef->punctured && chandef->chan->band == NL80211_BAND_5GHZ && ieee80211_hw_check(&sdata->local->hw, DISALLOW_PUNCTURING_5GHZ)) return false; return true; } static int ieee80211_chandef_num_subchans(const struct cfg80211_chan_def *c) { if (c->width == NL80211_CHAN_WIDTH_80P80) return 4 + 4; return nl80211_chan_width_to_mhz(c->width) / 20; } static int ieee80211_chandef_num_widths(const struct cfg80211_chan_def *c) { switch (c->width) { case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: return 1; case NL80211_CHAN_WIDTH_40: return 2; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: return 3; case NL80211_CHAN_WIDTH_160: return 4; case NL80211_CHAN_WIDTH_320: return 5; default: WARN_ON(1); return 0; } } VISIBLE_IF_MAC80211_KUNIT int ieee80211_calc_chandef_subchan_offset(const struct cfg80211_chan_def *ap, u8 n_partial_subchans) { int n = ieee80211_chandef_num_subchans(ap); struct cfg80211_chan_def tmp = *ap; int offset = 0; /* * Given a chandef (in this context, it's the AP's) and a number * of subchannels that we want to look at ('n_partial_subchans'), * calculate the offset in number of subchannels between the full * and the subset with the desired width. */ /* same number of subchannels means no offset, obviously */ if (n == n_partial_subchans) return 0; /* don't WARN - misconfigured APs could cause this if their N > width */ if (n < n_partial_subchans) return 0; while (ieee80211_chandef_num_subchans(&tmp) > n_partial_subchans) { u32 prev = tmp.center_freq1; ieee80211_chandef_downgrade(&tmp, NULL); /* * if center_freq moved up, half the original channels * are gone now but were below, so increase offset */ if (prev < tmp.center_freq1) offset += ieee80211_chandef_num_subchans(&tmp); } /* * 80+80 with secondary 80 below primary - four subchannels for it * (we cannot downgrade *to* 80+80, so no need to consider 'tmp') */ if (ap->width == NL80211_CHAN_WIDTH_80P80 && ap->center_freq2 < ap->center_freq1) offset += 4; return offset; } EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_calc_chandef_subchan_offset); VISIBLE_IF_MAC80211_KUNIT void ieee80211_rearrange_tpe_psd(struct ieee80211_parsed_tpe_psd *psd, const struct cfg80211_chan_def *ap, const struct cfg80211_chan_def *used) { u8 needed = ieee80211_chandef_num_subchans(used); u8 have = ieee80211_chandef_num_subchans(ap); u8 tmp[IEEE80211_TPE_PSD_ENTRIES_320MHZ]; u8 offset; if (!psd->valid) return; /* if N is zero, all defaults were used, no point in rearranging */ if (!psd->n) goto out; BUILD_BUG_ON(sizeof(tmp) != sizeof(psd->power)); /* * This assumes that 'N' is consistent with the HE channel, as * it should be (otherwise the AP is broken). * * In psd->power we have values in the order 0..N, 0..K, where * N+K should cover the entire channel per 'ap', but even if it * doesn't then we've pre-filled 'unlimited' as defaults. * * But this is all the wrong order, we want to have them in the * order of the 'used' channel. * * So for example, we could have a 320 MHz EHT AP, which has the * HE channel as 80 MHz (e.g. due to puncturing, which doesn't * seem to be considered for the TPE), as follows: * * EHT 320: | | | | | | | | | | | | | | | | | * HE 80: | | | | | * used 160: | | | | | | | | | * * N entries: |--|--|--|--| * K entries: |--|--|--|--|--|--|--|--| |--|--|--|--| * power idx: 4 5 6 7 8 9 10 11 0 1 2 3 12 13 14 15 * full chan: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * used chan: 0 1 2 3 4 5 6 7 * * The idx in the power array ('power idx') is like this since it * comes directly from the element's N and K entries in their * element order, and those are this way for HE compatibility. * * Rearrange them as desired here, first by putting them into the * 'full chan' order, and then selecting the necessary subset for * the 'used chan'. */ /* first reorder according to AP channel */ offset = ieee80211_calc_chandef_subchan_offset(ap, psd->n); for (int i = 0; i < have; i++) { if (i < offset) tmp[i] = psd->power[i + psd->n]; else if (i < offset + psd->n) tmp[i] = psd->power[i - offset]; else tmp[i] = psd->power[i]; } /* * and then select the subset for the used channel * (set everything to defaults first in case a driver is confused) */ memset(psd->power, IEEE80211_TPE_PSD_NO_LIMIT, sizeof(psd->power)); offset = ieee80211_calc_chandef_subchan_offset(ap, needed); for (int i = 0; i < needed; i++) psd->power[i] = tmp[offset + i]; out: /* limit, but don't lie if there are defaults in the data */ if (needed < psd->count) psd->count = needed; } EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_rearrange_tpe_psd); static void ieee80211_rearrange_tpe(struct ieee80211_parsed_tpe *tpe, const struct cfg80211_chan_def *ap, const struct cfg80211_chan_def *used) { /* ignore this completely for narrow/invalid channels */ if (!ieee80211_chandef_num_subchans(ap) || !ieee80211_chandef_num_subchans(used)) { ieee80211_clear_tpe(tpe); return; } for (int i = 0; i < 2; i++) { int needed_pwr_count; ieee80211_rearrange_tpe_psd(&tpe->psd_local[i], ap, used); ieee80211_rearrange_tpe_psd(&tpe->psd_reg_client[i], ap, used); /* limit this to the widths we actually need */ needed_pwr_count = ieee80211_chandef_num_widths(used); if (needed_pwr_count < tpe->max_local[i].count) tpe->max_local[i].count = needed_pwr_count; if (needed_pwr_count < tpe->max_reg_client[i].count) tpe->max_reg_client[i].count = needed_pwr_count; } } /* * The AP part of the channel request is used to distinguish settings * to the device used for wider bandwidth OFDMA. This is used in the * channel context code to assign two channel contexts even if they're * both for the same channel, if the AP bandwidths are incompatible. * If not EHT (or driver override) then ap.chan == NULL indicates that * there's no wider BW OFDMA used. */ static void ieee80211_set_chanreq_ap(struct ieee80211_sub_if_data *sdata, struct ieee80211_chan_req *chanreq, struct ieee80211_conn_settings *conn, struct cfg80211_chan_def *ap_chandef) { chanreq->ap.chan = NULL; if (conn->mode < IEEE80211_CONN_MODE_EHT) return; if (sdata->vif.driver_flags & IEEE80211_VIF_IGNORE_OFDMA_WIDER_BW) return; chanreq->ap = *ap_chandef; } static struct ieee802_11_elems * ieee80211_determine_chan_mode(struct ieee80211_sub_if_data *sdata, struct ieee80211_conn_settings *conn, struct cfg80211_bss *cbss, int link_id, struct ieee80211_chan_req *chanreq, struct cfg80211_chan_def *ap_chandef, unsigned long *userspace_selectors) { const struct cfg80211_bss_ies *ies = rcu_dereference(cbss->ies); struct ieee80211_bss *bss = (void *)cbss->priv; struct ieee80211_channel *channel = cbss->channel; struct ieee80211_elems_parse_params parse_params = { .link_id = -1, .from_ap = true, .start = ies->data, .len = ies->len, }; struct ieee802_11_elems *elems; struct ieee80211_supported_band *sband; enum ieee80211_conn_mode ap_mode; unsigned long unknown_rates_selectors[BITS_TO_LONGS(128)] = {}; unsigned long sta_selectors[BITS_TO_LONGS(128)] = {}; int ret; again: parse_params.mode = conn->mode; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return ERR_PTR(-ENOMEM); ap_mode = ieee80211_determine_ap_chan(sdata, channel, bss->vht_cap_info, elems, false, conn, ap_chandef); /* this should be impossible since parsing depends on our mode */ if (WARN_ON(ap_mode > conn->mode)) { ret = -EINVAL; goto free; } if (conn->mode != ap_mode) { conn->mode = ap_mode; kfree(elems); goto again; } mlme_link_id_dbg(sdata, link_id, "determined AP %pM to be %s\n", cbss->bssid, ieee80211_conn_mode_str(ap_mode)); sband = sdata->local->hw.wiphy->bands[channel->band]; ieee80211_get_rates(sband, elems->supp_rates, elems->supp_rates_len, elems->ext_supp_rates, elems->ext_supp_rates_len, NULL, NULL, unknown_rates_selectors, NULL, NULL, NULL); switch (channel->band) { case NL80211_BAND_S1GHZ: if (WARN_ON(ap_mode != IEEE80211_CONN_MODE_S1G)) { ret = -EINVAL; goto free; } return elems; case NL80211_BAND_6GHZ: if (ap_mode < IEEE80211_CONN_MODE_HE) { link_id_info(sdata, link_id, "Rejecting non-HE 6/7 GHz connection"); ret = -EINVAL; goto free; } break; default: if (WARN_ON(ap_mode == IEEE80211_CONN_MODE_S1G)) { ret = -EINVAL; goto free; } } switch (ap_mode) { case IEEE80211_CONN_MODE_S1G: WARN_ON(1); ret = -EINVAL; goto free; case IEEE80211_CONN_MODE_LEGACY: conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; case IEEE80211_CONN_MODE_HT: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_40); break; case IEEE80211_CONN_MODE_VHT: case IEEE80211_CONN_MODE_HE: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); break; case IEEE80211_CONN_MODE_EHT: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_320); break; } chanreq->oper = *ap_chandef; bitmap_copy(sta_selectors, userspace_selectors, 128); if (conn->mode >= IEEE80211_CONN_MODE_HT) set_bit(BSS_MEMBERSHIP_SELECTOR_HT_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_VHT) set_bit(BSS_MEMBERSHIP_SELECTOR_VHT_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_HE) set_bit(BSS_MEMBERSHIP_SELECTOR_HE_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_EHT) set_bit(BSS_MEMBERSHIP_SELECTOR_EHT_PHY, sta_selectors); /* * We do not support EPD or GLK so never add them. * SAE_H2E is handled through userspace_selectors. */ /* Check if we support all required features */ if (!bitmap_subset(unknown_rates_selectors, sta_selectors, 128)) { link_id_info(sdata, link_id, "required basic rate or BSS membership selectors not supported or disabled, rejecting connection\n"); ret = -EINVAL; goto free; } ieee80211_set_chanreq_ap(sdata, chanreq, conn, ap_chandef); while (!ieee80211_chandef_usable(sdata, &chanreq->oper, IEEE80211_CHAN_DISABLED)) { if (WARN_ON(chanreq->oper.width == NL80211_CHAN_WIDTH_20_NOHT)) { ret = -EINVAL; goto free; } ieee80211_chanreq_downgrade(chanreq, conn); } if (conn->mode >= IEEE80211_CONN_MODE_HE && !cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper, IEEE80211_CHAN_NO_HE)) { conn->mode = IEEE80211_CONN_MODE_VHT; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); } if (conn->mode >= IEEE80211_CONN_MODE_EHT && !cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper, IEEE80211_CHAN_NO_EHT)) { conn->mode = IEEE80211_CONN_MODE_HE; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); } if (chanreq->oper.width != ap_chandef->width || ap_mode != conn->mode) link_id_info(sdata, link_id, "regulatory prevented using AP config, downgraded\n"); if (conn->mode >= IEEE80211_CONN_MODE_HE && (!ieee80211_verify_peer_he_mcs_support(sdata, link_id, (void *)elems->he_cap, elems->he_operation) || !ieee80211_verify_sta_he_mcs_support(sdata, sband, elems->he_operation))) { conn->mode = IEEE80211_CONN_MODE_VHT; link_id_info(sdata, link_id, "required MCSes not supported, disabling HE\n"); } if (conn->mode >= IEEE80211_CONN_MODE_EHT && !ieee80211_verify_sta_eht_mcs_support(sdata, sband, elems->eht_operation)) { conn->mode = IEEE80211_CONN_MODE_HE; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); link_id_info(sdata, link_id, "required MCSes not supported, disabling EHT\n"); } /* the mode can only decrease, so this must terminate */ if (ap_mode != conn->mode) { kfree(elems); goto again; } mlme_link_id_dbg(sdata, link_id, "connecting with %s mode, max bandwidth %d MHz\n", ieee80211_conn_mode_str(conn->mode), 20 * (1 << conn->bw_limit)); if (WARN_ON_ONCE(!cfg80211_chandef_valid(&chanreq->oper))) { ret = -EINVAL; goto free; } return elems; free: kfree(elems); return ERR_PTR(ret); } static int ieee80211_config_bw(struct ieee80211_link_data *link, struct ieee802_11_elems *elems, bool update, u64 *changed, const char *frame) { struct ieee80211_channel *channel = link->conf->chanreq.oper.chan; struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_chan_req chanreq = {}; struct cfg80211_chan_def ap_chandef; enum ieee80211_conn_mode ap_mode; u32 vht_cap_info = 0; u16 ht_opmode; int ret; /* don't track any bandwidth changes in legacy/S1G modes */ if (link->u.mgd.conn.mode == IEEE80211_CONN_MODE_LEGACY || link->u.mgd.conn.mode == IEEE80211_CONN_MODE_S1G) return 0; if (elems->vht_cap_elem) vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); ap_mode = ieee80211_determine_ap_chan(sdata, channel, vht_cap_info, elems, true, &link->u.mgd.conn, &ap_chandef); if (ap_mode != link->u.mgd.conn.mode) { link_info(link, "AP %pM appears to change mode (expected %s, found %s) in %s, disconnect\n", link->u.mgd.bssid, ieee80211_conn_mode_str(link->u.mgd.conn.mode), ieee80211_conn_mode_str(ap_mode), frame); return -EINVAL; } chanreq.oper = ap_chandef; ieee80211_set_chanreq_ap(sdata, &chanreq, &link->u.mgd.conn, &ap_chandef); /* * if HT operation mode changed store the new one - * this may be applicable even if channel is identical */ if (elems->ht_operation) { ht_opmode = le16_to_cpu(elems->ht_operation->operation_mode); if (link->conf->ht_operation_mode != ht_opmode) { *changed |= BSS_CHANGED_HT; link->conf->ht_operation_mode = ht_opmode; } } /* * Downgrade the new channel if we associated with restricted * bandwidth capabilities. For example, if we associated as a * 20 MHz STA to a 40 MHz AP (due to regulatory, capabilities * or config reasons) then switching to a 40 MHz channel now * won't do us any good -- we couldn't use it with the AP. */ while (link->u.mgd.conn.bw_limit < ieee80211_min_bw_limit_from_chandef(&chanreq.oper)) ieee80211_chandef_downgrade(&chanreq.oper, NULL); if (ap_chandef.chan->band == NL80211_BAND_6GHZ && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_rearrange_tpe(&elems->tpe, &ap_chandef, &chanreq.oper); if (memcmp(&link->conf->tpe, &elems->tpe, sizeof(elems->tpe))) { link->conf->tpe = elems->tpe; *changed |= BSS_CHANGED_TPE; } } if (ieee80211_chanreq_identical(&chanreq, &link->conf->chanreq)) return 0; link_info(link, "AP %pM changed bandwidth in %s, new used config is %d.%03d MHz, width %d (%d.%03d/%d MHz)\n", link->u.mgd.bssid, frame, chanreq.oper.chan->center_freq, chanreq.oper.chan->freq_offset, chanreq.oper.width, chanreq.oper.center_freq1, chanreq.oper.freq1_offset, chanreq.oper.center_freq2); if (!cfg80211_chandef_valid(&chanreq.oper)) { sdata_info(sdata, "AP %pM changed caps/bw in %s in a way we can't support - disconnect\n", link->u.mgd.bssid, frame); return -EINVAL; } if (!update) { link->conf->chanreq = chanreq; return 0; } /* * We're tracking the current AP here, so don't do any further checks * here. This keeps us from playing ping-pong with regulatory, without * it the following can happen (for example): * - connect to an AP with 80 MHz, world regdom allows 80 MHz * - AP advertises regdom US * - CRDA loads regdom US with 80 MHz prohibited (old database) * - we detect an unsupported channel and disconnect * - disconnect causes CRDA to reload world regdomain and the game * starts anew. * (see https://bugzilla.kernel.org/show_bug.cgi?id=70881) * * It seems possible that there are still scenarios with CSA or real * bandwidth changes where a this could happen, but those cases are * less common and wouldn't completely prevent using the AP. */ ret = ieee80211_link_change_chanreq(link, &chanreq, changed); if (ret) { sdata_info(sdata, "AP %pM changed bandwidth in %s to incompatible one - disconnect\n", link->u.mgd.bssid, frame); return ret; } cfg80211_schedule_channels_check(&sdata->wdev); return 0; } /* frame sending functions */ static void ieee80211_add_ht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ap_ht_param, struct ieee80211_supported_band *sband, struct ieee80211_channel *channel, enum ieee80211_smps_mode smps, const struct ieee80211_conn_settings *conn) { u8 *pos; u32 flags = channel->flags; u16 cap; struct ieee80211_sta_ht_cap ht_cap; BUILD_BUG_ON(sizeof(ht_cap) != sizeof(sband->ht_cap)); memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap)); ieee80211_apply_htcap_overrides(sdata, &ht_cap); /* determine capability flags */ cap = ht_cap.cap; switch (ap_ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: if (flags & IEEE80211_CHAN_NO_HT40PLUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: if (flags & IEEE80211_CHAN_NO_HT40MINUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; } /* * If 40 MHz was disabled associate as though we weren't * capable of 40 MHz -- some broken APs will never fall * back to trying to transmit in 20 MHz. */ if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_20) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } /* set SM PS mode properly */ cap &= ~IEEE80211_HT_CAP_SM_PS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_STATIC: cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_DYNAMIC: cap |= WLAN_HT_CAP_SM_PS_DYNAMIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2); ieee80211_ie_build_ht_cap(pos, &ht_cap, cap); } /* This function determines vht capability flags for the association * and builds the IE. * Note - the function returns true to own the MU-MIMO capability */ static bool ieee80211_add_vht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_supported_band *sband, struct ieee80211_vht_cap *ap_vht_cap, const struct ieee80211_conn_settings *conn) { struct ieee80211_local *local = sdata->local; u8 *pos; u32 cap; struct ieee80211_sta_vht_cap vht_cap; u32 mask, ap_bf_sts, our_bf_sts; bool mu_mimo_owner = false; BUILD_BUG_ON(sizeof(vht_cap) != sizeof(sband->vht_cap)); memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); /* determine capability flags */ cap = vht_cap.cap; if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_80) { cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160; cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; } /* * Some APs apparently get confused if our capabilities are better * than theirs, so restrict what we advertise in the assoc request. */ if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE))) cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); else if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; /* * If some other vif is using the MU-MIMO capability we cannot associate * using MU-MIMO - this will lead to contradictions in the group-id * mechanism. * Ownership is defined since association request, in order to avoid * simultaneous associations with MU-MIMO. */ if (cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) { bool disable_mu_mimo = false; struct ieee80211_sub_if_data *other; list_for_each_entry(other, &local->interfaces, list) { if (other->vif.bss_conf.mu_mimo_owner) { disable_mu_mimo = true; break; } } if (disable_mu_mimo) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; else mu_mimo_owner = true; } mask = IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; ap_bf_sts = le32_to_cpu(ap_vht_cap->vht_cap_info) & mask; our_bf_sts = cap & mask; if (ap_bf_sts < our_bf_sts) { cap &= ~mask; cap |= ap_bf_sts; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2); ieee80211_ie_build_vht_cap(pos, &vht_cap, cap); return mu_mimo_owner; } static void ieee80211_assoc_add_rates(struct sk_buff *skb, enum nl80211_chan_width width, struct ieee80211_supported_band *sband, struct ieee80211_mgd_assoc_data *assoc_data) { u32 rates; if (assoc_data->supp_rates_len) { /* * Get all rates supported by the device and the AP as * some APs don't like getting a superset of their rates * in the association request (e.g. D-Link DAP 1353 in * b-only mode)... */ ieee80211_parse_bitrates(width, sband, assoc_data->supp_rates, assoc_data->supp_rates_len, &rates); } else { /* * In case AP not provide any supported rates information * before association, we send information element(s) with * all rates that we support. */ rates = ~0; } ieee80211_put_srates_elem(skb, sband, 0, 0, ~rates, WLAN_EID_SUPP_RATES); ieee80211_put_srates_elem(skb, sband, 0, 0, ~rates, WLAN_EID_EXT_SUPP_RATES); } static size_t ieee80211_add_before_ht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { size_t noffset; static const u8 before_ht[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_PWR_CAPABILITY, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, WLAN_EID_QOS_CAPA, WLAN_EID_RRM_ENABLED_CAPABILITIES, WLAN_EID_MOBILITY_DOMAIN, WLAN_EID_FAST_BSS_TRANSITION, /* reassoc only */ WLAN_EID_RIC_DATA, /* reassoc only */ WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; static const u8 after_ric[] = { WLAN_EID_SUPPORTED_REGULATORY_CLASSES, WLAN_EID_HT_CAPABILITY, WLAN_EID_BSS_COEX_2040, /* luckily this is almost always there */ WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ WLAN_EID_VHT_CAPABILITY, WLAN_EID_OPMODE_NOTIF, }; if (!elems_len) return offset; noffset = ieee80211_ie_split_ric(elems, elems_len, before_ht, ARRAY_SIZE(before_ht), after_ric, ARRAY_SIZE(after_ric), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_vht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_vht[] = { /* * no need to list the ones split off before HT * or generated here */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_vht, ARRAY_SIZE(before_vht), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_he_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_OPMODE_NOTIF, WLAN_EID_EXTENSION, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE, /* 11ai elements */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_SESSION, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_PUBLIC_KEY, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_KEY_CONFIRM, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_HLP_CONTAINER, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN, /* TODO: add 11ah/11aj/11ak elements */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_he, ARRAY_SIZE(before_he), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } #define PRESENT_ELEMS_MAX 8 #define PRESENT_ELEM_EXT_OFFS 0x100 static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *present_elems, struct ieee80211_mgd_assoc_data *assoc_data); static size_t ieee80211_add_link_elems(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 *capab, const struct element *ext_capa, const u8 *extra_elems, size_t extra_elems_len, unsigned int link_id, struct ieee80211_link_data *link, u16 *present_elems, struct ieee80211_mgd_assoc_data *assoc_data) { enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_channel *chan = cbss->channel; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; enum nl80211_chan_width width = NL80211_CHAN_WIDTH_20; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_smps_mode smps_mode; u16 orig_capab = *capab; size_t offset = 0; int present_elems_len = 0; u8 *pos; int i; #define ADD_PRESENT_ELEM(id) do { \ /* need a last for termination - we use 0 == SSID */ \ if (!WARN_ON(present_elems_len >= PRESENT_ELEMS_MAX - 1)) \ present_elems[present_elems_len++] = (id); \ } while (0) #define ADD_PRESENT_EXT_ELEM(id) ADD_PRESENT_ELEM(PRESENT_ELEM_EXT_OFFS | (id)) if (link) smps_mode = link->smps_mode; else if (sdata->u.mgd.powersave) smps_mode = IEEE80211_SMPS_DYNAMIC; else smps_mode = IEEE80211_SMPS_OFF; if (link) { /* * 5/10 MHz scenarios are only viable without MLO, in which * case this pointer should be used ... All of this is a bit * unclear though, not sure this even works at all. */ rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (chanctx_conf) width = chanctx_conf->def.width; rcu_read_unlock(); } sband = local->hw.wiphy->bands[chan->band]; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (sband->band == NL80211_BAND_2GHZ) { *capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME; *capab |= WLAN_CAPABILITY_SHORT_PREAMBLE; } if ((cbss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) && ieee80211_hw_check(&local->hw, SPECTRUM_MGMT)) *capab |= WLAN_CAPABILITY_SPECTRUM_MGMT; if (sband->band != NL80211_BAND_S1GHZ) ieee80211_assoc_add_rates(skb, width, sband, assoc_data); if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT || *capab & WLAN_CAPABILITY_RADIO_MEASURE) { struct cfg80211_chan_def chandef = { .width = width, .chan = chan, }; pos = skb_put(skb, 4); *pos++ = WLAN_EID_PWR_CAPABILITY; *pos++ = 2; *pos++ = 0; /* min tx power */ /* max tx power */ *pos++ = ieee80211_chandef_max_power(&chandef); ADD_PRESENT_ELEM(WLAN_EID_PWR_CAPABILITY); } /* * Per spec, we shouldn't include the list of channels if we advertise * support for extended channel switching, but we've always done that; * (for now?) apply this restriction only on the (new) 6 GHz band. */ if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT && (sband->band != NL80211_BAND_6GHZ || !ext_capa || ext_capa->datalen < 1 || !(ext_capa->data[0] & WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING))) { /* TODO: get this in reg domain format */ pos = skb_put(skb, 2 * sband->n_channels + 2); *pos++ = WLAN_EID_SUPPORTED_CHANNELS; *pos++ = 2 * sband->n_channels; for (i = 0; i < sband->n_channels; i++) { int cf = sband->channels[i].center_freq; *pos++ = ieee80211_frequency_to_channel(cf); *pos++ = 1; /* one channel in the subband*/ } ADD_PRESENT_ELEM(WLAN_EID_SUPPORTED_CHANNELS); } /* if present, add any custom IEs that go before HT */ offset = ieee80211_add_before_ht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HT) { ieee80211_add_ht_ie(sdata, skb, assoc_data->link[link_id].ap_ht_param, sband, chan, smps_mode, &assoc_data->link[link_id].conn); ADD_PRESENT_ELEM(WLAN_EID_HT_CAPABILITY); } /* if present, add any custom IEs that go before VHT */ offset = ieee80211_add_before_vht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_VHT && sband->vht_cap.vht_supported) { bool mu_mimo_owner = ieee80211_add_vht_ie(sdata, skb, sband, &assoc_data->link[link_id].ap_vht_cap, &assoc_data->link[link_id].conn); if (link) link->conf->mu_mimo_owner = mu_mimo_owner; ADD_PRESENT_ELEM(WLAN_EID_VHT_CAPABILITY); } /* if present, add any custom IEs that go before HE */ offset = ieee80211_add_before_he_elems(skb, extra_elems, extra_elems_len, offset); if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_put_he_cap(skb, sdata, sband, &assoc_data->link[link_id].conn); ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_HE_CAPABILITY); ieee80211_put_he_6ghz_cap(skb, sdata, smps_mode); } /* * careful - need to know about all the present elems before * calling ieee80211_assoc_add_ml_elem(), so add this one if * we're going to put it after the ML element */ if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT) ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_EHT_CAPABILITY); if (link_id == assoc_data->assoc_link_id) ieee80211_assoc_add_ml_elem(sdata, skb, orig_capab, ext_capa, present_elems, assoc_data); /* crash if somebody gets it wrong */ present_elems = NULL; if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT) ieee80211_put_eht_cap(skb, sdata, sband, &assoc_data->link[link_id].conn); if (sband->band == NL80211_BAND_S1GHZ) { ieee80211_add_aid_request_ie(sdata, skb); ieee80211_add_s1g_capab_ie(sdata, &sband->s1g_cap, skb); } if (iftd && iftd->vendor_elems.data && iftd->vendor_elems.len) skb_put_data(skb, iftd->vendor_elems.data, iftd->vendor_elems.len); return offset; } static void ieee80211_add_non_inheritance_elem(struct sk_buff *skb, const u16 *outer, const u16 *inner) { unsigned int skb_len = skb->len; bool at_extension = false; bool added = false; int i, j; u8 *len, *list_len = NULL; skb_put_u8(skb, WLAN_EID_EXTENSION); len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_NON_INHERITANCE); for (i = 0; i < PRESENT_ELEMS_MAX && outer[i]; i++) { u16 elem = outer[i]; bool have_inner = false; /* should at least be sorted in the sense of normal -> ext */ WARN_ON(at_extension && elem < PRESENT_ELEM_EXT_OFFS); /* switch to extension list */ if (!at_extension && elem >= PRESENT_ELEM_EXT_OFFS) { at_extension = true; if (!list_len) skb_put_u8(skb, 0); list_len = NULL; } for (j = 0; j < PRESENT_ELEMS_MAX && inner[j]; j++) { if (elem == inner[j]) { have_inner = true; break; } } if (have_inner) continue; if (!list_len) { list_len = skb_put(skb, 1); *list_len = 0; } *list_len += 1; skb_put_u8(skb, (u8)elem); added = true; } /* if we added a list but no extension list, make a zero-len one */ if (added && (!at_extension || !list_len)) skb_put_u8(skb, 0); /* if nothing added remove extension element completely */ if (!added) skb_trim(skb, skb_len); else *len = skb->len - skb_len - 2; } static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *outer_present_elems, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_local *local = sdata->local; struct ieee80211_multi_link_elem *ml_elem; struct ieee80211_mle_basic_common_info *common; const struct wiphy_iftype_ext_capab *ift_ext_capa; __le16 eml_capa = 0, mld_capa_ops = 0; unsigned int link_id; u8 *ml_elem_len; void *capab_pos; if (!ieee80211_vif_is_mld(&sdata->vif)) return; ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy, ieee80211_vif_type_p2p(&sdata->vif)); if (ift_ext_capa) { eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities); mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops); } skb_put_u8(skb, WLAN_EID_EXTENSION); ml_elem_len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK); ml_elem = skb_put(skb, sizeof(*ml_elem)); ml_elem->control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC | IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP); common = skb_put(skb, sizeof(*common)); common->len = sizeof(*common) + 2; /* MLD capa/ops */ memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN); /* add EML_CAPA only if needed, see Draft P802.11be_D2.1, 35.3.17 */ if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) { common->len += 2; /* EML capabilities */ ml_elem->control |= cpu_to_le16(IEEE80211_MLC_BASIC_PRES_EML_CAPA); skb_put_data(skb, &eml_capa, sizeof(eml_capa)); } skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops)); for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { u16 link_present_elems[PRESENT_ELEMS_MAX] = {}; const u8 *extra_elems; size_t extra_elems_len; size_t extra_used; u8 *subelem_len = NULL; __le16 ctrl; if (!assoc_data->link[link_id].bss || link_id == assoc_data->assoc_link_id) continue; extra_elems = assoc_data->link[link_id].elems; extra_elems_len = assoc_data->link[link_id].elems_len; skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE); subelem_len = skb_put(skb, 1); ctrl = cpu_to_le16(link_id | IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE | IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT); skb_put_data(skb, &ctrl, sizeof(ctrl)); skb_put_u8(skb, 1 + ETH_ALEN); /* STA Info Length */ skb_put_data(skb, assoc_data->link[link_id].addr, ETH_ALEN); /* * Now add the contents of the (re)association request, * but the "listen interval" and "current AP address" * (if applicable) are skipped. So we only have * the capability field (remember the position and fill * later), followed by the elements added below by * calling ieee80211_add_link_elems(). */ capab_pos = skb_put(skb, 2); extra_used = ieee80211_add_link_elems(sdata, skb, &capab, ext_capa, extra_elems, extra_elems_len, link_id, NULL, link_present_elems, assoc_data); if (extra_elems) skb_put_data(skb, extra_elems + extra_used, extra_elems_len - extra_used); put_unaligned_le16(capab, capab_pos); ieee80211_add_non_inheritance_elem(skb, outer_present_elems, link_present_elems); ieee80211_fragment_element(skb, subelem_len, IEEE80211_MLE_SUBELEM_FRAGMENT); } ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT); } static int ieee80211_link_common_elems_size(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype iftype, struct cfg80211_bss *cbss, size_t elems_len) { struct ieee80211_local *local = sdata->local; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_supported_band *sband; size_t size = 0; if (!cbss) return size; sband = local->hw.wiphy->bands[cbss->channel->band]; /* add STA profile elements length */ size += elems_len; /* and supported rates length */ size += 4 + sband->n_bitrates; /* supported channels */ size += 2 + 2 * sband->n_channels; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (iftd) size += iftd->vendor_elems.len; /* power capability */ size += 4; /* HT, VHT, HE, EHT */ size += 2 + sizeof(struct ieee80211_ht_cap); size += 2 + sizeof(struct ieee80211_vht_cap); size += 2 + 1 + sizeof(struct ieee80211_he_cap_elem) + sizeof(struct ieee80211_he_mcs_nss_supp) + IEEE80211_HE_PPE_THRES_MAX_LEN; if (sband->band == NL80211_BAND_6GHZ) size += 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa); size += 2 + 1 + sizeof(struct ieee80211_eht_cap_elem) + sizeof(struct ieee80211_eht_mcs_nss_supp) + IEEE80211_EHT_PPE_THRES_MAX_LEN; return size; } static int ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_link_data *link; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, qos_info, *ie_start; size_t offset, noffset; u16 capab = 0, link_capab; __le16 listen_int; struct element *ext_capa = NULL; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct ieee80211_prep_tx_info info = {}; unsigned int link_id, n_links = 0; u16 present_elems[PRESENT_ELEMS_MAX] = {}; void *capab_pos; size_t size; int ret; /* we know it's writable, cast away the const */ if (assoc_data->ie_len) ext_capa = (void *)cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, assoc_data->ie, assoc_data->ie_len); lockdep_assert_wiphy(sdata->local->hw.wiphy); size = local->hw.extra_tx_headroom + sizeof(*mgmt) + /* bit too much but doesn't matter */ 2 + assoc_data->ssid_len + /* SSID */ assoc_data->ie_len + /* extra IEs */ (assoc_data->fils_kek_len ? 16 /* AES-SIV */ : 0) + 9; /* WMM */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; size_t elems_len = assoc_data->link[link_id].elems_len; if (!cbss) continue; n_links++; size += ieee80211_link_common_elems_size(sdata, iftype, cbss, elems_len); /* non-inheritance element */ size += 2 + 2 + PRESENT_ELEMS_MAX; /* should be the same across all BSSes */ if (cbss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; } if (ieee80211_vif_is_mld(&sdata->vif)) { /* consider the multi-link element with STA profile */ size += sizeof(struct ieee80211_multi_link_elem); /* max common info field in basic multi-link element */ size += sizeof(struct ieee80211_mle_basic_common_info) + 2 + /* capa & op */ 2; /* EML capa */ /* * The capability elements were already considered above; * note this over-estimates a bit because there's no * STA profile for the assoc link. */ size += (n_links - 1) * (1 + 1 + /* subelement ID/length */ 2 + /* STA control */ 1 + ETH_ALEN + 2 /* STA Info field */); } link = sdata_dereference(sdata->link[assoc_data->assoc_link_id], sdata); if (WARN_ON(!link)) return -EINVAL; if (WARN_ON(!assoc_data->link[assoc_data->assoc_link_id].bss)) return -EINVAL; skb = alloc_skb(size, GFP_KERNEL); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); if (ifmgd->flags & IEEE80211_STA_ENABLE_RRM) capab |= WLAN_CAPABILITY_RADIO_MEASURE; /* Set MBSSID support for HE AP if needed */ if (ieee80211_hw_check(&local->hw, SUPPORTS_ONLY_HE_MULTI_BSSID) && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE && ext_capa && ext_capa->datalen >= 3) ext_capa->data[2] |= WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT; mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); listen_int = cpu_to_le16(assoc_data->s1g ? ieee80211_encode_usf(local->hw.conf.listen_interval) : local->hw.conf.listen_interval); if (!is_zero_ether_addr(assoc_data->prev_ap_addr)) { skb_put(skb, 10); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); capab_pos = &mgmt->u.reassoc_req.capab_info; mgmt->u.reassoc_req.listen_interval = listen_int; memcpy(mgmt->u.reassoc_req.current_ap, assoc_data->prev_ap_addr, ETH_ALEN); info.subtype = IEEE80211_STYPE_REASSOC_REQ; } else { skb_put(skb, 4); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); capab_pos = &mgmt->u.assoc_req.capab_info; mgmt->u.assoc_req.listen_interval = listen_int; info.subtype = IEEE80211_STYPE_ASSOC_REQ; } /* SSID */ pos = skb_put(skb, 2 + assoc_data->ssid_len); ie_start = pos; *pos++ = WLAN_EID_SSID; *pos++ = assoc_data->ssid_len; memcpy(pos, assoc_data->ssid, assoc_data->ssid_len); /* * This bit is technically reserved, so it shouldn't matter for either * the AP or us, but it also means we shouldn't set it. However, we've * always set it in the past, and apparently some EHT APs check that * we don't set it. To avoid interoperability issues with old APs that * for some reason check it and want it to be set, set the bit for all * pre-EHT connections as we used to do. */ if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_EHT) capab |= WLAN_CAPABILITY_ESS; /* add the elements for the assoc (main) link */ link_capab = capab; offset = ieee80211_add_link_elems(sdata, skb, &link_capab, ext_capa, assoc_data->ie, assoc_data->ie_len, assoc_data->assoc_link_id, link, present_elems, assoc_data); put_unaligned_le16(link_capab, capab_pos); /* if present, add any custom non-vendor IEs */ if (assoc_data->ie_len) { noffset = ieee80211_ie_split_vendor(assoc_data->ie, assoc_data->ie_len, offset); skb_put_data(skb, assoc_data->ie + offset, noffset - offset); offset = noffset; } if (assoc_data->wmm) { if (assoc_data->uapsd) { qos_info = ifmgd->uapsd_queues; qos_info |= (ifmgd->uapsd_max_sp_len << IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT); } else { qos_info = 0; } pos = ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info); } /* add any remaining custom (i.e. vendor specific here) IEs */ if (assoc_data->ie_len) { noffset = assoc_data->ie_len; skb_put_data(skb, assoc_data->ie + offset, noffset - offset); } if (assoc_data->fils_kek_len) { ret = fils_encrypt_assoc_req(skb, assoc_data); if (ret < 0) { dev_kfree_skb(skb); return ret; } } pos = skb_tail_pointer(skb); kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = kmemdup(ie_start, pos - ie_start, GFP_ATOMIC); if (!ifmgd->assoc_req_ies) { dev_kfree_skb(skb); return -ENOMEM; } ifmgd->assoc_req_ies_len = pos - ie_start; info.link_id = assoc_data->assoc_link_id; drv_mgd_prepare_tx(local, sdata, &info); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_tx_skb(sdata, skb); return 0; } void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_pspoll *pspoll; struct sk_buff *skb; skb = ieee80211_pspoll_get(&local->hw, &sdata->vif); if (!skb) return; pspoll = (struct ieee80211_pspoll *) skb->data; pspoll->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave) { struct sk_buff *skb; struct ieee80211_hdr_3addr *nullfunc; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; skb = ieee80211_nullfunc_get(&local->hw, &sdata->vif, -1, !ieee80211_hw_check(&local->hw, DOESNT_SUPPORT_QOS_NDP)); if (!skb) return; nullfunc = (struct ieee80211_hdr_3addr *) skb->data; if (powersave) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct sk_buff *skb; struct ieee80211_hdr *nullfunc; __le16 fc; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 30); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, 30); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); nullfunc->frame_control = fc; memcpy(nullfunc->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr4, sdata->vif.addr, ETH_ALEN); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } /* spectrum management related things */ static void ieee80211_csa_switch_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.csa.switch_work.work); struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; if (!ieee80211_sdata_running(sdata)) return; lockdep_assert_wiphy(local->hw.wiphy); if (!ifmgd->associated) return; if (!link->conf->csa_active) return; /* * If the link isn't active (now), we cannot wait for beacons, won't * have a reserved chanctx, etc. Just switch over the chandef and * update cfg80211 directly. */ if (!ieee80211_vif_link_active(&sdata->vif, link->link_id)) { link->conf->chanreq = link->csa.chanreq; cfg80211_ch_switch_notify(sdata->dev, &link->csa.chanreq.oper, link->link_id); return; } /* * using reservation isn't immediate as it may be deferred until later * with multi-vif. once reservation is complete it will re-schedule the * work with no reserved_chanctx so verify chandef to check if it * completed successfully */ if (link->reserved_chanctx) { /* * with multi-vif csa driver may call ieee80211_csa_finish() * many times while waiting for other interfaces to use their * reservations */ if (link->reserved_ready) return; ret = ieee80211_link_use_reserved_context(link); if (ret) { link_info(link, "failed to use reserved channel context, disconnecting (err=%d)\n", ret); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); } return; } if (!ieee80211_chanreq_identical(&link->conf->chanreq, &link->csa.chanreq)) { link_info(link, "failed to finalize channel switch, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } link->u.mgd.csa.waiting_bcn = true; /* apply new TPE restrictions immediately on the new channel */ if (link->u.mgd.csa.ap_chandef.chan->band == NL80211_BAND_6GHZ && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_rearrange_tpe(&link->u.mgd.csa.tpe, &link->u.mgd.csa.ap_chandef, &link->conf->chanreq.oper); if (memcmp(&link->conf->tpe, &link->u.mgd.csa.tpe, sizeof(link->u.mgd.csa.tpe))) { link->conf->tpe = link->u.mgd.csa.tpe; ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_TPE); } } ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); } static void ieee80211_chswitch_post_beacon(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; lockdep_assert_wiphy(sdata->local->hw.wiphy); WARN_ON(!link->conf->csa_active); ieee80211_vif_unblock_queues_csa(sdata); link->conf->csa_active = false; link->u.mgd.csa.blocked_tx = false; link->u.mgd.csa.waiting_bcn = false; ret = drv_post_channel_switch(link); if (ret) { link_info(link, "driver post channel switch failed, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } cfg80211_ch_switch_notify(sdata->dev, &link->conf->chanreq.oper, link->link_id); } void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_chswitch_done(sdata, success, link_id); rcu_read_lock(); if (!success) { sdata_info(sdata, "driver channel switch failed (link %d), disconnecting\n", link_id); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.csa_connection_drop_work); } else { struct ieee80211_link_data *link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { rcu_read_unlock(); return; } wiphy_delayed_work_queue(sdata->local->hw.wiphy, &link->u.mgd.csa.switch_work, 0); } rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_chswitch_done); static void ieee80211_sta_abort_chanswitch(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; lockdep_assert_wiphy(local->hw.wiphy); if (!local->ops->abort_channel_switch) return; ieee80211_link_unreserve_chanctx(link); ieee80211_vif_unblock_queues_csa(sdata); link->conf->csa_active = false; link->u.mgd.csa.blocked_tx = false; drv_abort_channel_switch(link); } struct sta_csa_rnr_iter_data { struct ieee80211_link_data *link; struct ieee80211_channel *chan; u8 mld_id; }; static enum cfg80211_rnr_iter_ret ieee80211_sta_csa_rnr_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { struct sta_csa_rnr_iter_data *data = _data; struct ieee80211_link_data *link = data->link; struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; const struct ieee80211_tbtt_info_ge_11 *ti; enum nl80211_band band; unsigned int center_freq; int link_id; if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) return RNR_ITER_CONTINUE; if (tbtt_info_len < sizeof(*ti)) return RNR_ITER_CONTINUE; ti = (const void *)tbtt_info; if (ti->mld_params.mld_id != data->mld_id) return RNR_ITER_CONTINUE; link_id = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_LINK_ID); if (link_id != data->link->link_id) return RNR_ITER_CONTINUE; /* we found the entry for our link! */ /* this AP is confused, it had this right before ... just disconnect */ if (!ieee80211_operating_class_to_band(info->op_class, &band)) { link_info(link, "AP now has invalid operating class in RNR, disconnect\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return RNR_ITER_BREAK; } center_freq = ieee80211_channel_to_frequency(info->channel, band); data->chan = ieee80211_get_channel(sdata->local->hw.wiphy, center_freq); return RNR_ITER_BREAK; } static void ieee80211_sta_other_link_csa_disappeared(struct ieee80211_link_data *link, struct ieee802_11_elems *elems) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct sta_csa_rnr_iter_data data = { .link = link, }; /* * If we get here, we see a beacon from another link without * CSA still being reported for it, so now we have to check * if the CSA was aborted or completed. This may not even be * perfectly possible if the CSA was only done for changing * the puncturing, but in that case if the link in inactive * we don't really care, and if it's an active link (or when * it's activated later) we'll get a beacon and adjust. */ if (WARN_ON(!elems->ml_basic)) return; data.mld_id = ieee80211_mle_get_mld_id((const void *)elems->ml_basic); /* * So in order to do this, iterate the RNR element(s) and see * what channel is reported now. */ cfg80211_iter_rnr(elems->ie_start, elems->total_len, ieee80211_sta_csa_rnr_iter, &data); if (!data.chan) { link_info(link, "couldn't find (valid) channel in RNR for CSA, disconnect\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } /* * If it doesn't match the CSA, then assume it aborted. This * may erroneously detect that it was _not_ aborted when it * was in fact aborted, but only changed the bandwidth or the * puncturing configuration, but we don't have enough data to * detect that. */ if (data.chan != link->csa.chanreq.oper.chan) ieee80211_sta_abort_chanswitch(link); } enum ieee80211_csa_source { IEEE80211_CSA_SOURCE_BEACON, IEEE80211_CSA_SOURCE_OTHER_LINK, IEEE80211_CSA_SOURCE_PROT_ACTION, IEEE80211_CSA_SOURCE_UNPROT_ACTION, }; static void ieee80211_sta_process_chanswitch(struct ieee80211_link_data *link, u64 timestamp, u32 device_timestamp, struct ieee802_11_elems *full_elems, struct ieee802_11_elems *csa_elems, enum ieee80211_csa_source source) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_chanctx *chanctx = NULL; struct ieee80211_chanctx_conf *conf; struct ieee80211_csa_ie csa_ie = {}; struct ieee80211_channel_switch ch_switch = { .link_id = link->link_id, .timestamp = timestamp, .device_timestamp = device_timestamp, }; unsigned long now; int res; lockdep_assert_wiphy(local->hw.wiphy); if (csa_elems) { struct cfg80211_bss *cbss = link->conf->bss; enum nl80211_band current_band; struct ieee80211_bss *bss; if (WARN_ON(!cbss)) return; current_band = cbss->channel->band; bss = (void *)cbss->priv; res = ieee80211_parse_ch_switch_ie(sdata, csa_elems, current_band, bss->vht_cap_info, &link->u.mgd.conn, link->u.mgd.bssid, source == IEEE80211_CSA_SOURCE_UNPROT_ACTION, &csa_ie); if (res == 0) { ch_switch.block_tx = csa_ie.mode; ch_switch.chandef = csa_ie.chanreq.oper; ch_switch.count = csa_ie.count; ch_switch.delay = csa_ie.max_switch_time; } link->u.mgd.csa.tpe = csa_elems->csa_tpe; } else { /* * If there was no per-STA profile for this link, we * get called with csa_elems == NULL. This of course means * there are no CSA elements, so set res=1 indicating * no more CSA. */ res = 1; } if (res < 0) { /* ignore this case, not a protected frame */ if (source == IEEE80211_CSA_SOURCE_UNPROT_ACTION) return; goto drop_connection; } if (link->conf->csa_active) { switch (source) { case IEEE80211_CSA_SOURCE_PROT_ACTION: case IEEE80211_CSA_SOURCE_UNPROT_ACTION: /* already processing - disregard action frames */ return; case IEEE80211_CSA_SOURCE_BEACON: if (link->u.mgd.csa.waiting_bcn) { ieee80211_chswitch_post_beacon(link); /* * If the CSA is still present after the switch * we need to consider it as a new CSA (possibly * to self). This happens by not returning here * so we'll get to the check below. */ } else if (res) { ieee80211_sta_abort_chanswitch(link); return; } else { drv_channel_switch_rx_beacon(sdata, &ch_switch); return; } break; case IEEE80211_CSA_SOURCE_OTHER_LINK: /* active link: we want to see the beacon to continue */ if (ieee80211_vif_link_active(&sdata->vif, link->link_id)) return; /* switch work ran, so just complete the process */ if (link->u.mgd.csa.waiting_bcn) { ieee80211_chswitch_post_beacon(link); /* * If the CSA is still present after the switch * we need to consider it as a new CSA (possibly * to self). This happens by not returning here * so we'll get to the check below. */ break; } /* link still has CSA but we already know, do nothing */ if (!res) return; /* check in the RNR if the CSA aborted */ ieee80211_sta_other_link_csa_disappeared(link, full_elems); return; } } /* no active CSA nor a new one */ if (res) { /* * However, we may have stopped queues when receiving a public * action frame that couldn't be protected, if it had the quiet * bit set. This is a trade-off, we want to be quiet as soon as * possible, but also don't trust the public action frame much, * as it can't be protected. */ if (unlikely(link->u.mgd.csa.blocked_tx)) { link->u.mgd.csa.blocked_tx = false; ieee80211_vif_unblock_queues_csa(sdata); } return; } /* * We don't really trust public action frames, but block queues (go to * quiet mode) for them anyway, we should get a beacon soon to either * know what the CSA really is, or figure out the public action frame * was actually an attack. */ if (source == IEEE80211_CSA_SOURCE_UNPROT_ACTION) { if (csa_ie.mode) { link->u.mgd.csa.blocked_tx = true; ieee80211_vif_block_queues_csa(sdata); } return; } if (link->conf->chanreq.oper.chan->band != csa_ie.chanreq.oper.chan->band) { link_info(link, "AP %pM switches to different band (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n", link->u.mgd.bssid, csa_ie.chanreq.oper.chan->center_freq, csa_ie.chanreq.oper.width, csa_ie.chanreq.oper.center_freq1, csa_ie.chanreq.oper.center_freq2); goto drop_connection; } if (!cfg80211_chandef_usable(local->hw.wiphy, &csa_ie.chanreq.oper, IEEE80211_CHAN_DISABLED)) { link_info(link, "AP %pM switches to unsupported channel (%d.%03d MHz, width:%d, CF1/2: %d.%03d/%d MHz), disconnecting\n", link->u.mgd.bssid, csa_ie.chanreq.oper.chan->center_freq, csa_ie.chanreq.oper.chan->freq_offset, csa_ie.chanreq.oper.width, csa_ie.chanreq.oper.center_freq1, csa_ie.chanreq.oper.freq1_offset, csa_ie.chanreq.oper.center_freq2); goto drop_connection; } if (cfg80211_chandef_identical(&csa_ie.chanreq.oper, &link->conf->chanreq.oper) && (!csa_ie.mode || source != IEEE80211_CSA_SOURCE_BEACON)) { if (link->u.mgd.csa.ignored_same_chan) return; link_info(link, "AP %pM tries to chanswitch to same channel, ignore\n", link->u.mgd.bssid); link->u.mgd.csa.ignored_same_chan = true; return; } /* * Drop all TDLS peers on the affected link - either we disconnect or * move to a different channel from this point on. There's no telling * what our peer will do. * The TDLS WIDER_BW scenario is also problematic, as peers might now * have an incompatible wider chandef. */ ieee80211_teardown_tdls_peers(link); conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->hw.wiphy->mtx)); if (ieee80211_vif_link_active(&sdata->vif, link->link_id) && !conf) { link_info(link, "no channel context assigned to vif?, disconnecting\n"); goto drop_connection; } if (conf) chanctx = container_of(conf, struct ieee80211_chanctx, conf); if (!ieee80211_hw_check(&local->hw, CHANCTX_STA_CSA)) { link_info(link, "driver doesn't support chan-switch with channel contexts\n"); goto drop_connection; } if (drv_pre_channel_switch(sdata, &ch_switch)) { link_info(link, "preparing for channel switch failed, disconnecting\n"); goto drop_connection; } link->u.mgd.csa.ap_chandef = csa_ie.chanreq.ap; link->csa.chanreq.oper = csa_ie.chanreq.oper; ieee80211_set_chanreq_ap(sdata, &link->csa.chanreq, &link->u.mgd.conn, &csa_ie.chanreq.ap); if (chanctx) { res = ieee80211_link_reserve_chanctx(link, &link->csa.chanreq, chanctx->mode, false); if (res) { link_info(link, "failed to reserve channel context for channel switch, disconnecting (err=%d)\n", res); goto drop_connection; } } link->conf->csa_active = true; link->u.mgd.csa.ignored_same_chan = false; link->u.mgd.beacon_crc_valid = false; link->u.mgd.csa.blocked_tx = csa_ie.mode; if (csa_ie.mode) ieee80211_vif_block_queues_csa(sdata); cfg80211_ch_switch_started_notify(sdata->dev, &csa_ie.chanreq.oper, link->link_id, csa_ie.count, csa_ie.mode); /* we may have to handle timeout for deactivated link in software */ now = jiffies; link->u.mgd.csa.time = now + TU_TO_JIFFIES((max_t(int, csa_ie.count, 1) - 1) * link->conf->beacon_int); if (ieee80211_vif_link_active(&sdata->vif, link->link_id) && local->ops->channel_switch) { /* * Use driver's channel switch callback, the driver will * later call ieee80211_chswitch_done(). It may deactivate * the link as well, we handle that elsewhere and queue * the csa.switch_work for the calculated time then. */ drv_channel_switch(local, sdata, &ch_switch); return; } /* channel switch handled in software */ wiphy_delayed_work_queue(local->hw.wiphy, &link->u.mgd.csa.switch_work, link->u.mgd.csa.time - now); return; drop_connection: /* * This is just so that the disconnect flow will know that * we were trying to switch channel and failed. In case the * mode is 1 (we are not allowed to Tx), we will know not to * send a deauthentication frame. Those two fields will be * reset when the disconnection worker runs. */ link->conf->csa_active = true; link->u.mgd.csa.blocked_tx = csa_ie.mode; wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); } struct sta_bss_param_ch_cnt_data { struct ieee80211_sub_if_data *sdata; u8 reporting_link_id; u8 mld_id; }; static enum cfg80211_rnr_iter_ret ieee80211_sta_bss_param_ch_cnt_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { struct sta_bss_param_ch_cnt_data *data = _data; struct ieee80211_sub_if_data *sdata = data->sdata; const struct ieee80211_tbtt_info_ge_11 *ti; u8 bss_param_ch_cnt; int link_id; if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) return RNR_ITER_CONTINUE; if (tbtt_info_len < sizeof(*ti)) return RNR_ITER_CONTINUE; ti = (const void *)tbtt_info; if (ti->mld_params.mld_id != data->mld_id) return RNR_ITER_CONTINUE; link_id = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_LINK_ID); bss_param_ch_cnt = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); if (bss_param_ch_cnt != 255 && link_id < ARRAY_SIZE(sdata->link)) { struct ieee80211_link_data *link = sdata_dereference(sdata->link[link_id], sdata); if (link && link->conf->bss_param_ch_cnt != bss_param_ch_cnt) { link->conf->bss_param_ch_cnt = bss_param_ch_cnt; link->conf->bss_param_ch_cnt_link_id = data->reporting_link_id; } } return RNR_ITER_CONTINUE; } static void ieee80211_mgd_update_bss_param_ch_cnt(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *bss_conf, struct ieee802_11_elems *elems) { struct sta_bss_param_ch_cnt_data data = { .reporting_link_id = bss_conf->link_id, .sdata = sdata, }; int bss_param_ch_cnt; if (!elems->ml_basic) return; data.mld_id = ieee80211_mle_get_mld_id((const void *)elems->ml_basic); cfg80211_iter_rnr(elems->ie_start, elems->total_len, ieee80211_sta_bss_param_ch_cnt_iter, &data); bss_param_ch_cnt = ieee80211_mle_get_bss_param_ch_cnt((const void *)elems->ml_basic); /* * Update bss_param_ch_cnt_link_id even if bss_param_ch_cnt * didn't change to indicate that we got a beacon on our own * link. */ if (bss_param_ch_cnt >= 0 && bss_param_ch_cnt != 255) { bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = bss_conf->link_id; } } static bool ieee80211_find_80211h_pwr_constr(struct ieee80211_channel *channel, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_elem, int *chan_pwr, int *pwr_reduction) { struct ieee80211_country_ie_triplet *triplet; int chan = ieee80211_frequency_to_channel(channel->center_freq); int i, chan_increment; bool have_chan_pwr = false; /* Invalid IE */ if (country_ie_len % 2 || country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return false; triplet = (void *)(country_ie + 3); country_ie_len -= 3; switch (channel->band) { default: WARN_ON_ONCE(1); fallthrough; case NL80211_BAND_2GHZ: case NL80211_BAND_60GHZ: case NL80211_BAND_LC: chan_increment = 1; break; case NL80211_BAND_5GHZ: chan_increment = 4; break; case NL80211_BAND_6GHZ: /* * In the 6 GHz band, the "maximum transmit power level" * field in the triplets is reserved, and thus will be * zero and we shouldn't use it to control TX power. * The actual TX power will be given in the transmit * power envelope element instead. */ return false; } /* find channel */ while (country_ie_len >= 3) { u8 first_channel = triplet->chans.first_channel; if (first_channel >= IEEE80211_COUNTRY_EXTENSION_ID) goto next; for (i = 0; i < triplet->chans.num_channels; i++) { if (first_channel + i * chan_increment == chan) { have_chan_pwr = true; *chan_pwr = triplet->chans.max_power; break; } } if (have_chan_pwr) break; next: triplet++; country_ie_len -= 3; } if (have_chan_pwr && pwr_constr_elem) *pwr_reduction = *pwr_constr_elem; else *pwr_reduction = 0; return have_chan_pwr; } static void ieee80211_find_cisco_dtpc(struct ieee80211_channel *channel, const u8 *cisco_dtpc_ie, int *pwr_level) { /* From practical testing, the first data byte of the DTPC element * seems to contain the requested dBm level, and the CLI on Cisco * APs clearly state the range is -127 to 127 dBm, which indicates * a signed byte, although it seemingly never actually goes negative. * The other byte seems to always be zero. */ *pwr_level = (__s8)cisco_dtpc_ie[4]; } static u64 ieee80211_handle_pwr_constr(struct ieee80211_link_data *link, struct ieee80211_channel *channel, struct ieee80211_mgmt *mgmt, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_ie, const u8 *cisco_dtpc_ie) { struct ieee80211_sub_if_data *sdata = link->sdata; bool has_80211h_pwr = false, has_cisco_pwr = false; int chan_pwr = 0, pwr_reduction_80211h = 0; int pwr_level_cisco, pwr_level_80211h; int new_ap_level; __le16 capab = mgmt->u.probe_resp.capab_info; if (ieee80211_is_s1g_beacon(mgmt->frame_control)) return 0; /* TODO */ if (country_ie && (capab & cpu_to_le16(WLAN_CAPABILITY_SPECTRUM_MGMT) || capab & cpu_to_le16(WLAN_CAPABILITY_RADIO_MEASURE))) { has_80211h_pwr = ieee80211_find_80211h_pwr_constr( channel, country_ie, country_ie_len, pwr_constr_ie, &chan_pwr, &pwr_reduction_80211h); pwr_level_80211h = max_t(int, 0, chan_pwr - pwr_reduction_80211h); } if (cisco_dtpc_ie) { ieee80211_find_cisco_dtpc( channel, cisco_dtpc_ie, &pwr_level_cisco); has_cisco_pwr = true; } if (!has_80211h_pwr && !has_cisco_pwr) return 0; /* If we have both 802.11h and Cisco DTPC, apply both limits * by picking the smallest of the two power levels advertised. */ if (has_80211h_pwr && (!has_cisco_pwr || pwr_level_80211h <= pwr_level_cisco)) { new_ap_level = pwr_level_80211h; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d (%d - %d) dBm as advertised by %pM\n", pwr_level_80211h, chan_pwr, pwr_reduction_80211h, link->u.mgd.bssid); } else { /* has_cisco_pwr is always true here. */ new_ap_level = pwr_level_cisco; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d dBm as advertised by %pM\n", pwr_level_cisco, link->u.mgd.bssid); } link->ap_power_level = new_ap_level; if (__ieee80211_recalc_txpower(link)) return BSS_CHANGED_TXPOWER; return 0; } /* powersave */ static void ieee80211_enable_ps(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_conf *conf = &local->hw.conf; /* * If we are scanning right now then the parameters will * take effect when scan finishes. */ if (local->scanning) return; if (conf->dynamic_ps_timeout > 0 && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(conf->dynamic_ps_timeout)); } else { if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) ieee80211_send_nullfunc(local, sdata, true); if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) return; conf->flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } static void ieee80211_change_ps(struct ieee80211_local *local) { struct ieee80211_conf *conf = &local->hw.conf; if (local->ps_sdata) { ieee80211_enable_ps(local, local->ps_sdata); } else if (conf->flags & IEEE80211_CONF_PS) { conf->flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); del_timer_sync(&local->dynamic_ps_timer); wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work); } } static bool ieee80211_powersave_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *mgd = &sdata->u.mgd; struct sta_info *sta = NULL; bool authorized = false; if (!mgd->powersave) return false; if (mgd->broken_ap) return false; if (!mgd->associated) return false; if (mgd->flags & IEEE80211_STA_CONNECTION_POLL) return false; if (!(local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO) && !sdata->deflink.u.mgd.have_beacon) return false; rcu_read_lock(); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (sta) authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); rcu_read_unlock(); return authorized; } /* need to hold RTNL or interface lock */ void ieee80211_recalc_ps(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata, *found = NULL; int count = 0; int timeout; if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS) || ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { local->ps_sdata = NULL; return; } list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_AP) { /* If an AP vif is found, then disable PS * by setting the count to zero thereby setting * ps_sdata to NULL. */ count = 0; break; } if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; found = sdata; count++; } if (count == 1 && ieee80211_powersave_allowed(found)) { u8 dtimper = found->deflink.u.mgd.dtim_period; timeout = local->dynamic_ps_forced_timeout; if (timeout < 0) timeout = 100; local->hw.conf.dynamic_ps_timeout = timeout; /* If the TIM IE is invalid, pretend the value is 1 */ if (!dtimper) dtimper = 1; local->hw.conf.ps_dtim_period = dtimper; local->ps_sdata = found; } else { local->ps_sdata = NULL; } ieee80211_change_ps(local); } void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata) { bool ps_allowed = ieee80211_powersave_allowed(sdata); if (sdata->vif.cfg.ps != ps_allowed) { sdata->vif.cfg.ps = ps_allowed; ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_PS); } } void ieee80211_dynamic_ps_disable_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_disable_work); if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); } void ieee80211_dynamic_ps_enable_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_enable_work); struct ieee80211_sub_if_data *sdata = local->ps_sdata; struct ieee80211_if_managed *ifmgd; unsigned long flags; int q; /* can only happen when PS was just disabled anyway */ if (!sdata) return; ifmgd = &sdata->u.mgd; if (local->hw.conf.flags & IEEE80211_CONF_PS) return; if (local->hw.conf.dynamic_ps_timeout > 0) { /* don't enter PS if TX frames are pending */ if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } /* * transmission can be stopped by others which leads to * dynamic_ps_timer expiry. Postpone the ps timer if it * is not the actual idle state. */ spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (q = 0; q < local->hw.queues; q++) { if (local->queue_stop_reasons[q]) { spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && !(ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); } else { ieee80211_send_nullfunc(local, sdata, true); /* Flush to get the tx status of nullfunc frame */ ieee80211_flush_queues(local, sdata, false); } } if (!(ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) || (ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; local->hw.conf.flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } void ieee80211_dynamic_ps_timer(struct timer_list *t) { struct ieee80211_local *local = from_timer(local, t, dynamic_ps_timer); wiphy_work_queue(local->hw.wiphy, &local->dynamic_ps_enable_work); } void ieee80211_dfs_cac_timer_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, dfs_cac_timer_work.work); struct cfg80211_chan_def chandef = link->conf->chanreq.oper; struct ieee80211_sub_if_data *sdata = link->sdata; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (sdata->wdev.links[link->link_id].cac_started) { ieee80211_link_release_channel(link); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_FINISHED, GFP_KERNEL, link->link_id); } } static bool __ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool ret = false; int ac; if (local->hw.queues < IEEE80211_NUM_ACS) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac]; int non_acm_ac; unsigned long now = jiffies; if (tx_tspec->action == TX_TSPEC_ACTION_NONE && tx_tspec->admitted_time && time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; } switch (tx_tspec->action) { case TX_TSPEC_ACTION_STOP_DOWNGRADE: /* take the original parameters */ if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; tx_tspec->downgraded = false; ret = true; break; case TX_TSPEC_ACTION_DOWNGRADE: if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; break; } /* downgrade next lower non-ACM AC */ for (non_acm_ac = ac + 1; non_acm_ac < IEEE80211_NUM_ACS; non_acm_ac++) if (!(sdata->wmm_acm & BIT(7 - 2 * non_acm_ac))) break; /* Usually the loop will result in using BK even if it * requires admission control, but such a configuration * makes no sense and we have to transmit somehow - the * AC selection does the same thing. * If we started out trying to downgrade from BK, then * the extra condition here might be needed. */ if (non_acm_ac >= IEEE80211_NUM_ACS) non_acm_ac = IEEE80211_AC_BK; if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[non_acm_ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; wiphy_delayed_work_queue(local->hw.wiphy, &ifmgd->tx_tspec_wk, tx_tspec->time_slice_start + HZ - now + 1); break; case TX_TSPEC_ACTION_NONE: /* nothing now */ break; } } return ret; } void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { if (__ieee80211_sta_handle_tspec_ac_params(sdata)) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_QOS); } static void ieee80211_sta_handle_tspec_ac_params_wk(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata; sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.tx_tspec_wk.work); ieee80211_sta_handle_tspec_ac_params(sdata); } void ieee80211_mgd_set_link_qos_params(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_tx_queue_params *params = link->tx_conf; u8 ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { mlme_dbg(sdata, "WMM AC=%d acm=%d aifs=%d cWmin=%d cWmax=%d txop=%d uapsd=%d, downgraded=%d\n", ac, params[ac].acm, params[ac].aifs, params[ac].cw_min, params[ac].cw_max, params[ac].txop, params[ac].uapsd, ifmgd->tx_tspec[ac].downgraded); if (!ifmgd->tx_tspec[ac].downgraded && drv_conf_tx(local, link, ac, ¶ms[ac])) link_err(link, "failed to set TX queue parameters for AC %d\n", ac); } } /* MLME */ static bool ieee80211_sta_wmm_params(struct ieee80211_local *local, struct ieee80211_link_data *link, const u8 *wmm_param, size_t wmm_param_len, const struct ieee80211_mu_edca_param_set *mu_edca) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_tx_queue_params params[IEEE80211_NUM_ACS]; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; size_t left; int count, mu_edca_count, ac; const u8 *pos; u8 uapsd_queues = 0; if (!local->ops->conf_tx) return false; if (local->hw.queues < IEEE80211_NUM_ACS) return false; if (!wmm_param) return false; if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1) return false; if (ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) uapsd_queues = ifmgd->uapsd_queues; count = wmm_param[6] & 0x0f; /* -1 is the initial value of ifmgd->mu_edca_last_param_set. * if mu_edca was preset before and now it disappeared tell * the driver about it. */ mu_edca_count = mu_edca ? mu_edca->mu_qos_info & 0x0f : -1; if (count == link->u.mgd.wmm_last_param_set && mu_edca_count == link->u.mgd.mu_edca_last_param_set) return false; link->u.mgd.wmm_last_param_set = count; link->u.mgd.mu_edca_last_param_set = mu_edca_count; pos = wmm_param + 8; left = wmm_param_len - 8; memset(¶ms, 0, sizeof(params)); sdata->wmm_acm = 0; for (; left >= 4; left -= 4, pos += 4) { int aci = (pos[0] >> 5) & 0x03; int acm = (pos[0] >> 4) & 0x01; bool uapsd = false; switch (aci) { case 1: /* AC_BK */ ac = IEEE80211_AC_BK; if (acm) sdata->wmm_acm |= BIT(1) | BIT(2); /* BK/- */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_bk; break; case 2: /* AC_VI */ ac = IEEE80211_AC_VI; if (acm) sdata->wmm_acm |= BIT(4) | BIT(5); /* CL/VI */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vi; break; case 3: /* AC_VO */ ac = IEEE80211_AC_VO; if (acm) sdata->wmm_acm |= BIT(6) | BIT(7); /* VO/NC */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vo; break; case 0: /* AC_BE */ default: ac = IEEE80211_AC_BE; if (acm) sdata->wmm_acm |= BIT(0) | BIT(3); /* BE/EE */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_be; break; } params[ac].aifs = pos[0] & 0x0f; if (params[ac].aifs < 2) { link_info(link, "AP has invalid WMM params (AIFSN=%d for ACI %d), will use 2\n", params[ac].aifs, aci); params[ac].aifs = 2; } params[ac].cw_max = ecw2cw((pos[1] & 0xf0) >> 4); params[ac].cw_min = ecw2cw(pos[1] & 0x0f); params[ac].txop = get_unaligned_le16(pos + 2); params[ac].acm = acm; params[ac].uapsd = uapsd; if (params[ac].cw_min == 0 || params[ac].cw_min > params[ac].cw_max) { link_info(link, "AP has invalid WMM params (CWmin/max=%d/%d for ACI %d), using defaults\n", params[ac].cw_min, params[ac].cw_max, aci); return false; } ieee80211_regulatory_limit_wmm_params(sdata, ¶ms[ac], ac); } /* WMM specification requires all 4 ACIs. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (params[ac].cw_min == 0) { link_info(link, "AP has invalid WMM params (missing AC %d), using defaults\n", ac); return false; } } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) link->tx_conf[ac] = params[ac]; ieee80211_mgd_set_link_qos_params(link); /* enable WMM or activate new settings */ link->conf->qos = true; return true; } static void __ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.flags &= ~IEEE80211_STA_CONNECTION_POLL; ieee80211_run_deferred_scan(sdata->local); } static void ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { lockdep_assert_wiphy(sdata->local->hw.wiphy); __ieee80211_stop_poll(sdata); } static u64 ieee80211_handle_bss_capability(struct ieee80211_link_data *link, u16 capab, bool erp_valid, u8 erp) { struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_supported_band *sband; u64 changed = 0; bool use_protection; bool use_short_preamble; bool use_short_slot; sband = ieee80211_get_link_sband(link); if (!sband) return changed; if (erp_valid) { use_protection = (erp & WLAN_ERP_USE_PROTECTION) != 0; use_short_preamble = (erp & WLAN_ERP_BARKER_PREAMBLE) == 0; } else { use_protection = false; use_short_preamble = !!(capab & WLAN_CAPABILITY_SHORT_PREAMBLE); } use_short_slot = !!(capab & WLAN_CAPABILITY_SHORT_SLOT_TIME); if (sband->band == NL80211_BAND_5GHZ || sband->band == NL80211_BAND_6GHZ) use_short_slot = true; if (use_protection != bss_conf->use_cts_prot) { bss_conf->use_cts_prot = use_protection; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (use_short_preamble != bss_conf->use_short_preamble) { bss_conf->use_short_preamble = use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } if (use_short_slot != bss_conf->use_short_slot) { bss_conf->use_short_slot = use_short_slot; changed |= BSS_CHANGED_ERP_SLOT; } return changed; } static u64 ieee80211_link_set_associated(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_bss *bss = (void *)cbss->priv; u64 changed = BSS_CHANGED_QOS; /* not really used in MLO */ sdata->u.mgd.beacon_timeout = usecs_to_jiffies(ieee80211_tu_to_usec(beacon_loss_count * bss_conf->beacon_int)); changed |= ieee80211_handle_bss_capability(link, bss_conf->assoc_capability, bss->has_erp_value, bss->erp_value); ieee80211_check_rate_mask(link); link->conf->bss = cbss; memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) { int ret; ret = cfg80211_get_p2p_attr( ies->data, ies->len, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &bss_conf->p2p_noa_attr, sizeof(bss_conf->p2p_noa_attr)); if (ret >= 2) { link->u.mgd.p2p_noa_index = bss_conf->p2p_noa_attr.index; changed |= BSS_CHANGED_P2P_PS; } } rcu_read_unlock(); } if (link->u.mgd.have_beacon) { bss_conf->beacon_rate = bss->beacon_rate; changed |= BSS_CHANGED_BEACON_INFO; } else { bss_conf->beacon_rate = NULL; } /* Tell the driver to monitor connection quality (if supported) */ if (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI && bss_conf->cqm_rssi_thold) changed |= BSS_CHANGED_CQM; return changed; } static void ieee80211_set_associated(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, u64 changed[IEEE80211_MLD_MAX_NUM_LINKS]) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; u64 vif_changed = BSS_CHANGED_ASSOC; unsigned int link_id; lockdep_assert_wiphy(local->hw.wiphy); sdata->u.mgd.associated = true; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; if (!cbss || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; if (ieee80211_vif_is_mld(&sdata->vif) && !(ieee80211_vif_usable_links(&sdata->vif) & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; changed[link_id] |= ieee80211_link_set_associated(link, cbss); } /* just to be sure */ ieee80211_stop_poll(sdata); ieee80211_led_assoc(local, 1); vif_cfg->assoc = 1; /* Enable ARP filtering */ if (vif_cfg->arp_addr_cnt) vif_changed |= BSS_CHANGED_ARP_FILTER; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; if (!cbss || !(BIT(link_id) & ieee80211_vif_usable_links(&sdata->vif)) || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; ieee80211_link_info_change_notify(sdata, link, changed[link_id]); ieee80211_recalc_smps(sdata, link); } ieee80211_vif_cfg_change_notify(sdata, vif_changed); } else { ieee80211_bss_info_change_notify(sdata, vif_changed | changed[0]); } ieee80211_recalc_ps(local); /* leave this here to not change ordering in non-MLO cases */ if (!ieee80211_vif_is_mld(&sdata->vif)) ieee80211_recalc_smps(sdata, &sdata->deflink); ieee80211_recalc_ps_vif(sdata); netif_carrier_on(sdata->dev); } static void ieee80211_ml_reconf_reset(struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgd_assoc_data *add_links_data = sdata->u.mgd.reconf.add_links_data; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->u.mgd.reconf.added_links | sdata->u.mgd.reconf.removed_links)) return; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.reconf.wk); sdata->u.mgd.reconf.added_links = 0; sdata->u.mgd.reconf.removed_links = 0; sdata->u.mgd.reconf.dialog_token = 0; if (add_links_data) { struct cfg80211_mlo_reconf_done_data done_data = {}; u8 link_id; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) done_data.links[link_id].bss = add_links_data->link[link_id].bss; cfg80211_mlo_reconf_add_done(sdata->dev, &done_data); kfree(sdata->u.mgd.reconf.add_links_data); sdata->u.mgd.reconf.add_links_data = NULL; } } static void ieee80211_set_disassoc(struct ieee80211_sub_if_data *sdata, u16 stype, u16 reason, bool tx, u8 *frame_buf) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; struct sta_info *ap_sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); unsigned int link_id; u64 changed = 0; struct ieee80211_prep_tx_info info = { .subtype = stype, .was_assoc = true, .link_id = ffs(sdata->vif.active_links) - 1, }; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(!ap_sta)) return; if (WARN_ON_ONCE(tx && !frame_buf)) return; if (WARN_ON(!ifmgd->associated)) return; ieee80211_stop_poll(sdata); ifmgd->associated = false; /* other links will be destroyed */ sdata->deflink.conf->bss = NULL; sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; netif_carrier_off(sdata->dev); /* * if we want to get out of ps before disassoc (why?) we have * to do it before sending disassoc, as otherwise the null-packet * won't be valid. */ if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } local->ps_sdata = NULL; /* disable per-vif ps */ ieee80211_recalc_ps_vif(sdata); /* make sure ongoing transmission finishes */ synchronize_net(); /* * drop any frame before deauth/disassoc, this can be data or * management frame. Since we are disconnecting, we should not * insist sending these frames which can take time and delay * the disconnection and possible the roaming. */ if (tx) ieee80211_flush_queues(local, sdata, true); /* deauthenticate/disassociate now */ if (tx || frame_buf) { drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, sdata->vif.cfg.ap_addr, sdata->vif.cfg.ap_addr, stype, reason, tx, frame_buf); } /* flush out frame - make sure the deauth was actually sent */ if (tx) ieee80211_flush_queues(local, sdata, false); drv_mgd_complete_tx(sdata->local, sdata, &info); /* clear AP addr only after building the needed mgmt frames */ eth_zero_addr(sdata->deflink.u.mgd.bssid); eth_zero_addr(sdata->vif.cfg.ap_addr); sdata->vif.cfg.ssid_len = 0; /* Remove TDLS peers */ __sta_info_flush(sdata, false, -1, ap_sta); if (sdata->vif.driver_flags & IEEE80211_VIF_REMOVE_AP_AFTER_DISASSOC) { /* Only move the AP state */ sta_info_move_state(ap_sta, IEEE80211_STA_NONE); } else { /* Remove AP peer */ sta_info_flush(sdata, -1); } /* finally reset all BSS / config parameters */ if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= ieee80211_reset_erp_info(sdata); ieee80211_led_assoc(local, 0); changed |= BSS_CHANGED_ASSOC; sdata->vif.cfg.assoc = false; sdata->deflink.u.mgd.p2p_noa_index = -1; memset(&sdata->vif.bss_conf.p2p_noa_attr, 0, sizeof(sdata->vif.bss_conf.p2p_noa_attr)); /* on the next assoc, re-program HT/VHT parameters */ memset(&ifmgd->ht_capa, 0, sizeof(ifmgd->ht_capa)); memset(&ifmgd->ht_capa_mask, 0, sizeof(ifmgd->ht_capa_mask)); memset(&ifmgd->vht_capa, 0, sizeof(ifmgd->vht_capa)); memset(&ifmgd->vht_capa_mask, 0, sizeof(ifmgd->vht_capa_mask)); /* * reset MU-MIMO ownership and group data in default link, * if used, other links are destroyed */ memset(sdata->vif.bss_conf.mu_group.membership, 0, sizeof(sdata->vif.bss_conf.mu_group.membership)); memset(sdata->vif.bss_conf.mu_group.position, 0, sizeof(sdata->vif.bss_conf.mu_group.position)); if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= BSS_CHANGED_MU_GROUPS; sdata->vif.bss_conf.mu_mimo_owner = false; sdata->deflink.ap_power_level = IEEE80211_UNSET_POWER_LEVEL; del_timer_sync(&local->dynamic_ps_timer); wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work); /* Disable ARP filtering */ if (sdata->vif.cfg.arp_addr_cnt) changed |= BSS_CHANGED_ARP_FILTER; sdata->vif.bss_conf.qos = false; if (!ieee80211_vif_is_mld(&sdata->vif)) { changed |= BSS_CHANGED_QOS; /* The BSSID (not really interesting) and HT changed */ changed |= BSS_CHANGED_BSSID | BSS_CHANGED_HT; ieee80211_bss_info_change_notify(sdata, changed); } else { ieee80211_vif_cfg_change_notify(sdata, changed); } if (sdata->vif.driver_flags & IEEE80211_VIF_REMOVE_AP_AFTER_DISASSOC) { /* * After notifying the driver about the disassoc, * remove the ap sta. */ sta_info_flush(sdata, -1); } /* disassociated - set to defaults now */ ieee80211_set_wmm_default(&sdata->deflink, false, false); del_timer_sync(&sdata->u.mgd.conn_mon_timer); del_timer_sync(&sdata->u.mgd.bcn_mon_timer); del_timer_sync(&sdata->u.mgd.timer); sdata->vif.bss_conf.dtim_period = 0; sdata->vif.bss_conf.beacon_rate = NULL; sdata->deflink.u.mgd.have_beacon = false; sdata->deflink.u.mgd.tracking_signal_avg = false; sdata->deflink.u.mgd.disable_wmm_tracking = false; ifmgd->flags = 0; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; ieee80211_link_release_channel(link); } sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa.blocked_tx = false; sdata->deflink.u.mgd.csa.waiting_bcn = false; sdata->deflink.u.mgd.csa.ignored_same_chan = false; ieee80211_vif_unblock_queues_csa(sdata); /* existing TX TSPEC sessions no longer exist */ memset(ifmgd->tx_tspec, 0, sizeof(ifmgd->tx_tspec)); wiphy_delayed_work_cancel(local->hw.wiphy, &ifmgd->tx_tspec_wk); sdata->vif.bss_conf.power_type = IEEE80211_REG_UNSET_AP; sdata->vif.bss_conf.pwr_reduction = 0; ieee80211_clear_tpe(&sdata->vif.bss_conf.tpe); sdata->vif.cfg.eml_cap = 0; sdata->vif.cfg.eml_med_sync_delay = 0; sdata->vif.cfg.mld_capa_op = 0; memset(&sdata->u.mgd.ttlm_info, 0, sizeof(sdata->u.mgd.ttlm_info)); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->ttlm_work); memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->neg_ttlm_timeout_work); sdata->u.mgd.removed_links = 0; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->teardown_ttlm_work); ieee80211_vif_set_links(sdata, 0, 0); ifmgd->mcast_seq_last = IEEE80211_SN_MODULO; /* if disconnection happens in the middle of the ML reconfiguration * flow, cfg80211 must called to release the BSS references obtained * when the flow started. */ ieee80211_ml_reconf_reset(sdata); } static void ieee80211_reset_ap_probe(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; lockdep_assert_wiphy(local->hw.wiphy); if (!(ifmgd->flags & IEEE80211_STA_CONNECTION_POLL)) return; __ieee80211_stop_poll(sdata); ieee80211_recalc_ps(local); if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; /* * We've received a probe response, but are not sure whether * we have or will be receiving any beacons or data, so let's * schedule the timers again, just in case. */ ieee80211_sta_reset_beacon_monitor(sdata); mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); } static void ieee80211_sta_tx_wmm_ac_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, u16 tx_time) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 tid; int ac; struct ieee80211_sta_tx_tspec *tx_tspec; unsigned long now = jiffies; if (!ieee80211_is_data_qos(hdr->frame_control)) return; tid = ieee80211_get_tid(hdr); ac = ieee80211_ac_from_tid(tid); tx_tspec = &ifmgd->tx_tspec[ac]; if (likely(!tx_tspec->admitted_time)) return; if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) { tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &ifmgd->tx_tspec_wk, 0); } } if (tx_tspec->downgraded) return; tx_tspec->consumed_tx_time += tx_time; if (tx_tspec->consumed_tx_time >= tx_tspec->admitted_time) { tx_tspec->downgraded = true; tx_tspec->action = TX_TSPEC_ACTION_DOWNGRADE; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &ifmgd->tx_tspec_wk, 0); } } void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time) { ieee80211_sta_tx_wmm_ac_notify(sdata, hdr, tx_time); if (!ieee80211_is_any_nullfunc(hdr->frame_control) || !sdata->u.mgd.probe_send_count) return; if (ack) sdata->u.mgd.probe_send_count = 0; else sdata->u.mgd.nullfunc_failed = true; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } static void ieee80211_mlme_send_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, const u8 *ssid, size_t ssid_len, struct ieee80211_channel *channel) { struct sk_buff *skb; skb = ieee80211_build_probe_req(sdata, src, dst, (u32)-1, channel, ssid, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); if (skb) ieee80211_tx_skb(sdata, skb); } static void ieee80211_mgd_probe_ap_send(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 *dst = sdata->vif.cfg.ap_addr; u8 unicast_limit = max(1, max_probe_tries - 3); struct sta_info *sta; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; /* * Try sending broadcast probe requests for the last three * probe requests after the first ones failed since some * buggy APs only support broadcast probe requests. */ if (ifmgd->probe_send_count >= unicast_limit) dst = NULL; /* * When the hardware reports an accurate Tx ACK status, it's * better to send a nullfunc frame instead of a probe request, * as it will kick us off the AP quickly if we aren't associated * anymore. The timeout will be reset if the frame is ACKed by * the AP. */ ifmgd->probe_send_count++; if (dst) { sta = sta_info_get(sdata, dst); if (!WARN_ON(!sta)) ieee80211_check_fast_rx(sta); } if (ieee80211_hw_check(&sdata->local->hw, REPORTS_TX_ACK_STATUS)) { ifmgd->nullfunc_failed = false; ieee80211_send_nullfunc(sdata->local, sdata, false); } else { ieee80211_mlme_send_probe_req(sdata, sdata->vif.addr, dst, sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len, sdata->deflink.conf->bss->channel); } ifmgd->probe_timeout = jiffies + msecs_to_jiffies(probe_wait_ms); run_again(sdata, ifmgd->probe_timeout); } static void ieee80211_mgd_probe_ap(struct ieee80211_sub_if_data *sdata, bool beacon) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool already = false; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON_ONCE(ieee80211_vif_is_mld(&sdata->vif))) return; if (!ieee80211_sdata_running(sdata)) return; if (!ifmgd->associated) return; if (sdata->local->tmp_channel || sdata->local->scanning) return; if (sdata->local->suspending) { /* reschedule after resume */ ieee80211_reset_ap_probe(sdata); return; } if (beacon) { mlme_dbg_ratelimited(sdata, "detected beacon loss from AP (missed %d beacons) - probing\n", beacon_loss_count); ieee80211_cqm_beacon_loss_notify(&sdata->vif, GFP_KERNEL); } /* * The driver/our work has already reported this event or the * connection monitoring has kicked in and we have already sent * a probe request. Or maybe the AP died and the driver keeps * reporting until we disassociate... * * In either case we have to ignore the current call to this * function (except for setting the correct probe reason bit) * because otherwise we would reset the timer every time and * never check whether we received a probe response! */ if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) already = true; ifmgd->flags |= IEEE80211_STA_CONNECTION_POLL; if (already) return; ieee80211_recalc_ps(sdata->local); ifmgd->probe_send_count = 0; ieee80211_mgd_probe_ap_send(sdata); } struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct cfg80211_bss *cbss; struct sk_buff *skb; const struct element *ssid; int ssid_len; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION || ieee80211_vif_is_mld(&sdata->vif))) return NULL; if (ifmgd->associated) cbss = sdata->deflink.conf->bss; else if (ifmgd->auth_data) cbss = ifmgd->auth_data->bss; else if (ifmgd->assoc_data && ifmgd->assoc_data->link[0].bss) cbss = ifmgd->assoc_data->link[0].bss; else return NULL; rcu_read_lock(); ssid = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (WARN_ONCE(!ssid || ssid->datalen > IEEE80211_MAX_SSID_LEN, "invalid SSID element (len=%d)", ssid ? ssid->datalen : -1)) ssid_len = 0; else ssid_len = ssid->datalen; skb = ieee80211_build_probe_req(sdata, sdata->vif.addr, cbss->bssid, (u32) -1, cbss->channel, ssid->data, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_ap_probereq_get); static void ieee80211_report_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *buf, size_t len, bool tx, u16 reason, bool reconnect) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = tx ? DEAUTH_TX_EVENT : DEAUTH_RX_EVENT, .u.mlme.reason = reason, }; if (tx) cfg80211_tx_mlme_mgmt(sdata->dev, buf, len, reconnect); else cfg80211_rx_mlme_mgmt(sdata->dev, buf, len); drv_event_callback(sdata->local, sdata, &event); } static void __ieee80211_disconnect(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; bool tx = false; lockdep_assert_wiphy(local->hw.wiphy); if (!ifmgd->associated) return; /* only transmit if we have a link that makes that worthwhile */ for (unsigned int link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; if (!ieee80211_vif_link_active(&sdata->vif, link_id)) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON_ONCE(!link)) continue; if (link->u.mgd.csa.blocked_tx) continue; tx = true; break; } if (!ifmgd->driver_disconnect) { unsigned int link_id; /* * AP is probably out of range (or not reachable for another * reason) so remove the bss structs for that AP. In the case * of multi-link, it's not clear that all of them really are * out of range, but if they weren't the driver likely would * have switched to just have a single link active? */ for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; cfg80211_unlink_bss(local->hw.wiphy, link->conf->bss); link->conf->bss = NULL; } } ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, ifmgd->driver_disconnect ? WLAN_REASON_DEAUTH_LEAVING : WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, tx, frame_buf); /* the other links will be destroyed */ sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa.waiting_bcn = false; sdata->deflink.u.mgd.csa.blocked_tx = false; ieee80211_vif_unblock_queues_csa(sdata); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), tx, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, ifmgd->reconnect); ifmgd->reconnect = false; } static void ieee80211_beacon_connection_loss_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.beacon_connection_loss_work); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (ifmgd->connection_loss) { sdata_info(sdata, "Connection to AP %pM lost\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->connection_loss = false; } else if (ifmgd->driver_disconnect) { sdata_info(sdata, "Driver requested disconnection from AP %pM\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->driver_disconnect = false; } else { if (ifmgd->associated) sdata->deflink.u.mgd.beacon_loss_count++; ieee80211_mgd_probe_ap(sdata, true); } } static void ieee80211_csa_connection_drop_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.csa_connection_drop_work); __ieee80211_disconnect(sdata); } void ieee80211_beacon_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_beacon_loss(sdata); sdata->u.mgd.connection_loss = false; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_beacon_loss); void ieee80211_connection_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_hw *hw; KUNIT_STATIC_STUB_REDIRECT(ieee80211_connection_loss, vif); sdata = vif_to_sdata(vif); hw = &sdata->local->hw; trace_api_connection_loss(sdata); sdata->u.mgd.connection_loss = true; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_connection_loss); void ieee80211_disconnect(struct ieee80211_vif *vif, bool reconnect) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_disconnect(sdata, reconnect); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; sdata->u.mgd.driver_disconnect = true; sdata->u.mgd.reconnect = reconnect; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_disconnect); static void ieee80211_destroy_auth_data(struct ieee80211_sub_if_data *sdata, bool assoc) { struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.auth_data = NULL; if (!assoc) { /* * we are not authenticated yet, the only timer that could be * running is the timeout for the authentication response which * which is not relevant anymore. */ del_timer_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, auth_data->ap_addr); /* other links are destroyed */ eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); } cfg80211_put_bss(sdata->local->hw.wiphy, auth_data->bss); kfree(auth_data); } enum assoc_status { ASSOC_SUCCESS, ASSOC_REJECTED, ASSOC_TIMEOUT, ASSOC_ABANDON, }; static void ieee80211_destroy_assoc_data(struct ieee80211_sub_if_data *sdata, enum assoc_status status) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.assoc_data = NULL; if (status != ASSOC_SUCCESS) { /* * we are not associated yet, the only timer that could be * running is the timeout for the association response which * which is not relevant anymore. */ del_timer_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, assoc_data->ap_addr); eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; sdata->vif.bss_conf.mu_mimo_owner = false; if (status != ASSOC_REJECTED) { struct cfg80211_assoc_failure data = { .timeout = status == ASSOC_TIMEOUT, }; int i; BUILD_BUG_ON(ARRAY_SIZE(data.bss) != ARRAY_SIZE(assoc_data->link)); for (i = 0; i < ARRAY_SIZE(data.bss); i++) data.bss[i] = assoc_data->link[i].bss; if (ieee80211_vif_is_mld(&sdata->vif)) data.ap_mld_addr = assoc_data->ap_addr; cfg80211_assoc_failure(sdata->dev, &data); } ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); } kfree(assoc_data); } static void ieee80211_auth_challenge(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; const struct element *challenge; u8 *pos; u32 tx_flags = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, .link_id = auth_data->link_id, }; pos = mgmt->u.auth.variable; challenge = cfg80211_find_elem(WLAN_EID_CHALLENGE, pos, len - (pos - (u8 *)mgmt)); if (!challenge) return; auth_data->expected_transaction = 4; drv_mgd_prepare_tx(sdata->local, sdata, &info); if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, 3, auth_data->algorithm, 0, (void *)challenge, challenge->datalen + sizeof(*challenge), auth_data->ap_addr, auth_data->ap_addr, auth_data->key, auth_data->key_len, auth_data->key_idx, tx_flags); } static bool ieee80211_mark_sta_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; const u8 *ap_addr = ifmgd->auth_data->ap_addr; struct sta_info *sta; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata_info(sdata, "authenticated\n"); ifmgd->auth_data->done = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_ASSOC; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); /* move station state to auth */ sta = sta_info_get(sdata, ap_addr); if (!sta) { WARN_ONCE(1, "%s: STA %pM not found", sdata->name, ap_addr); return false; } if (sta_info_move_state(sta, IEEE80211_STA_AUTH)) { sdata_info(sdata, "failed moving %pM to auth\n", ap_addr); return false; } return true; } static void ieee80211_rx_mgmt_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 auth_alg, auth_transaction, status_code; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, }; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 6) return; if (!ifmgd->auth_data || ifmgd->auth_data->done) return; if (!ether_addr_equal(ifmgd->auth_data->ap_addr, mgmt->bssid)) return; auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); status_code = le16_to_cpu(mgmt->u.auth.status_code); if (auth_alg != ifmgd->auth_data->algorithm || (auth_alg != WLAN_AUTH_SAE && auth_transaction != ifmgd->auth_data->expected_transaction) || (auth_alg == WLAN_AUTH_SAE && (auth_transaction < ifmgd->auth_data->expected_transaction || auth_transaction > 2))) { sdata_info(sdata, "%pM unexpected authentication state: alg %d (expected %d) transact %d (expected %d)\n", mgmt->sa, auth_alg, ifmgd->auth_data->algorithm, auth_transaction, ifmgd->auth_data->expected_transaction); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); if (auth_alg == WLAN_AUTH_SAE && (status_code == WLAN_STATUS_ANTI_CLOG_REQUIRED || (auth_transaction == 1 && (status_code == WLAN_STATUS_SAE_HASH_TO_ELEMENT || status_code == WLAN_STATUS_SAE_PK)))) { /* waiting for userspace now */ ifmgd->auth_data->waiting = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_SAE_RETRY; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); goto notify_driver; } sdata_info(sdata, "%pM denied authentication (status %d)\n", mgmt->sa, status_code); ieee80211_destroy_auth_data(sdata, false); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); goto notify_driver; } switch (ifmgd->auth_data->algorithm) { case WLAN_AUTH_OPEN: case WLAN_AUTH_LEAP: case WLAN_AUTH_FT: case WLAN_AUTH_SAE: case WLAN_AUTH_FILS_SK: case WLAN_AUTH_FILS_SK_PFS: case WLAN_AUTH_FILS_PK: break; case WLAN_AUTH_SHARED_KEY: if (ifmgd->auth_data->expected_transaction != 4) { ieee80211_auth_challenge(sdata, mgmt, len); /* need another frame */ return; } break; default: WARN_ONCE(1, "invalid auth alg %d", ifmgd->auth_data->algorithm); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; info.success = 1; drv_event_callback(sdata->local, sdata, &event); if (ifmgd->auth_data->algorithm != WLAN_AUTH_SAE || (auth_transaction == 2 && ifmgd->auth_data->expected_transaction == 2)) { if (!ieee80211_mark_sta_auth(sdata)) return; /* ignore frame -- wait for timeout */ } else if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE && auth_transaction == 2) { sdata_info(sdata, "SAE peer confirmed\n"); ifmgd->auth_data->peer_confirmed = true; } cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); } #define case_WLAN(type) \ case WLAN_REASON_##type: return #type const char *ieee80211_get_reason_code_string(u16 reason_code) { switch (reason_code) { case_WLAN(UNSPECIFIED); case_WLAN(PREV_AUTH_NOT_VALID); case_WLAN(DEAUTH_LEAVING); case_WLAN(DISASSOC_DUE_TO_INACTIVITY); case_WLAN(DISASSOC_AP_BUSY); case_WLAN(CLASS2_FRAME_FROM_NONAUTH_STA); case_WLAN(CLASS3_FRAME_FROM_NONASSOC_STA); case_WLAN(DISASSOC_STA_HAS_LEFT); case_WLAN(STA_REQ_ASSOC_WITHOUT_AUTH); case_WLAN(DISASSOC_BAD_POWER); case_WLAN(DISASSOC_BAD_SUPP_CHAN); case_WLAN(INVALID_IE); case_WLAN(MIC_FAILURE); case_WLAN(4WAY_HANDSHAKE_TIMEOUT); case_WLAN(GROUP_KEY_HANDSHAKE_TIMEOUT); case_WLAN(IE_DIFFERENT); case_WLAN(INVALID_GROUP_CIPHER); case_WLAN(INVALID_PAIRWISE_CIPHER); case_WLAN(INVALID_AKMP); case_WLAN(UNSUPP_RSN_VERSION); case_WLAN(INVALID_RSN_IE_CAP); case_WLAN(IEEE8021X_FAILED); case_WLAN(CIPHER_SUITE_REJECTED); case_WLAN(DISASSOC_UNSPECIFIED_QOS); case_WLAN(DISASSOC_QAP_NO_BANDWIDTH); case_WLAN(DISASSOC_LOW_ACK); case_WLAN(DISASSOC_QAP_EXCEED_TXOP); case_WLAN(QSTA_LEAVE_QBSS); case_WLAN(QSTA_NOT_USE); case_WLAN(QSTA_REQUIRE_SETUP); case_WLAN(QSTA_TIMEOUT); case_WLAN(QSTA_CIPHER_NOT_SUPP); case_WLAN(MESH_PEER_CANCELED); case_WLAN(MESH_MAX_PEERS); case_WLAN(MESH_CONFIG); case_WLAN(MESH_CLOSE); case_WLAN(MESH_MAX_RETRIES); case_WLAN(MESH_CONFIRM_TIMEOUT); case_WLAN(MESH_INVALID_GTK); case_WLAN(MESH_INCONSISTENT_PARAM); case_WLAN(MESH_INVALID_SECURITY); case_WLAN(MESH_PATH_ERROR); case_WLAN(MESH_PATH_NOFORWARD); case_WLAN(MESH_PATH_DEST_UNREACHABLE); case_WLAN(MAC_EXISTS_IN_MBSS); case_WLAN(MESH_CHAN_REGULATORY); case_WLAN(MESH_CHAN); default: return "<unknown>"; } } static void ieee80211_rx_mgmt_deauth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 2) return; if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } if (ifmgd->associated && ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) { sdata_info(sdata, "deauthenticated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); return; } if (ifmgd->assoc_data && ether_addr_equal(mgmt->bssid, ifmgd->assoc_data->ap_addr)) { sdata_info(sdata, "deauthenticated from %pM while associating (Reason: %u=%s)\n", ifmgd->assoc_data->ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); return; } } static void ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 2) return; if (!ifmgd->associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) return; reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } sdata_info(sdata, "disassociated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); } static bool ieee80211_twt_req_supported(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct link_sta_info *link_sta, const struct ieee802_11_elems *elems) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (elems->ext_capab_len < 10) return false; if (!(elems->ext_capab[9] & WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT)) return false; return link_sta->pub->he_cap.he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ); } static u64 ieee80211_recalc_twt_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct ieee802_11_elems *elems) { bool twt = ieee80211_twt_req_supported(sdata, sband, link_sta, elems); if (link->conf->twt_requester != twt) { link->conf->twt_requester = twt; return BSS_CHANGED_TWT; } return 0; } static bool ieee80211_twt_bcast_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *bss_conf, struct ieee80211_supported_band *sband, struct link_sta_info *link_sta) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); return bss_conf->he_support && (link_sta->pub->he_cap.he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT) && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT); } static bool ieee80211_assoc_config_link(struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct cfg80211_bss *cbss, struct ieee80211_mgmt *mgmt, const u8 *elem_start, unsigned int elem_len, u64 *changed) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data ?: sdata->u.mgd.reconf.add_links_data; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; struct ieee80211_elems_parse_params parse_params = { .mode = link->u.mgd.conn.mode, .start = elem_start, .len = elem_len, .link_id = link_id == assoc_data->assoc_link_id ? -1 : link_id, .from_ap = true, }; bool is_5ghz = cbss->channel->band == NL80211_BAND_5GHZ; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; bool is_s1g = cbss->channel->band == NL80211_BAND_S1GHZ; const struct cfg80211_bss_ies *bss_ies = NULL; struct ieee80211_supported_band *sband; struct ieee802_11_elems *elems; const __le16 prof_bss_param_ch_present = cpu_to_le16(IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT); u16 capab_info; bool ret; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return false; if (link_id == assoc_data->assoc_link_id) { capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); /* * we should not get to this flow unless the association was * successful, so set the status directly to success */ assoc_data->link[link_id].status = WLAN_STATUS_SUCCESS; if (elems->ml_basic) { int bss_param_ch_cnt = ieee80211_mle_get_bss_param_ch_cnt((const void *)elems->ml_basic); if (bss_param_ch_cnt < 0) { ret = false; goto out; } bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = link_id; } } else if (elems->parse_error & IEEE80211_PARSE_ERR_DUP_NEST_ML_BASIC || !elems->prof || !(elems->prof->control & prof_bss_param_ch_present)) { ret = false; goto out; } else { const u8 *ptr = elems->prof->variable + elems->prof->sta_info_len - 1; int bss_param_ch_cnt; /* * During parsing, we validated that these fields exist, * otherwise elems->prof would have been set to NULL. */ capab_info = get_unaligned_le16(ptr); assoc_data->link[link_id].status = get_unaligned_le16(ptr + 2); bss_param_ch_cnt = ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(elems->prof); bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = link_id; if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { link_info(link, "association response status code=%u\n", assoc_data->link[link_id].status); ret = true; goto out; } } if (!is_s1g && !elems->supp_rates) { sdata_info(sdata, "no SuppRates element in AssocResp\n"); ret = false; goto out; } link->u.mgd.tdls_chan_switch_prohibited = elems->ext_capab && elems->ext_capab_len >= 5 && (elems->ext_capab[4] & WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED); /* * Some APs are erroneously not including some information in their * (re)association response frames. Try to recover by using the data * from the beacon or probe response. This seems to afflict mobile * 2G/3G/4G wifi routers, reported models include the "Onda PN51T", * "Vodafone PocketWiFi 2", "ZTE MF60" and a similar T-Mobile device. */ if (!is_6ghz && ((assoc_data->wmm && !elems->wmm_param) || (link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT && (!elems->ht_cap_elem || !elems->ht_operation)) || (is_5ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT && (!elems->vht_cap_elem || !elems->vht_operation)))) { const struct cfg80211_bss_ies *ies; struct ieee802_11_elems *bss_elems; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) bss_ies = kmemdup(ies, sizeof(*ies) + ies->len, GFP_ATOMIC); rcu_read_unlock(); if (!bss_ies) { ret = false; goto out; } parse_params.start = bss_ies->data; parse_params.len = bss_ies->len; parse_params.bss = cbss; bss_elems = ieee802_11_parse_elems_full(&parse_params); if (!bss_elems) { ret = false; goto out; } if (assoc_data->wmm && !elems->wmm_param && bss_elems->wmm_param) { elems->wmm_param = bss_elems->wmm_param; sdata_info(sdata, "AP bug: WMM param missing from AssocResp\n"); } /* * Also check if we requested HT/VHT, otherwise the AP doesn't * have to include the IEs in the (re)association response. */ if (!elems->ht_cap_elem && bss_elems->ht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) { elems->ht_cap_elem = bss_elems->ht_cap_elem; sdata_info(sdata, "AP bug: HT capability missing from AssocResp\n"); } if (!elems->ht_operation && bss_elems->ht_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) { elems->ht_operation = bss_elems->ht_operation; sdata_info(sdata, "AP bug: HT operation missing from AssocResp\n"); } if (is_5ghz) { if (!elems->vht_cap_elem && bss_elems->vht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { elems->vht_cap_elem = bss_elems->vht_cap_elem; sdata_info(sdata, "AP bug: VHT capa missing from AssocResp\n"); } if (!elems->vht_operation && bss_elems->vht_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { elems->vht_operation = bss_elems->vht_operation; sdata_info(sdata, "AP bug: VHT operation missing from AssocResp\n"); } } kfree(bss_elems); } /* * We previously checked these in the beacon/probe response, so * they should be present here. This is just a safety net. * Note that the ieee80211_config_bw() below would also check * for this (and more), but this has better error reporting. */ if (!is_6ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT && (!elems->wmm_param || !elems->ht_cap_elem || !elems->ht_operation)) { sdata_info(sdata, "HT AP is missing WMM params or HT capability/operation\n"); ret = false; goto out; } if (is_5ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT && (!elems->vht_cap_elem || !elems->vht_operation)) { sdata_info(sdata, "VHT AP is missing VHT capability/operation\n"); ret = false; goto out; } /* check/update if AP changed anything in assoc response vs. scan */ if (ieee80211_config_bw(link, elems, link_id == assoc_data->assoc_link_id, changed, "assoc response")) { ret = false; goto out; } if (WARN_ON(!link->conf->chanreq.oper.chan)) { ret = false; goto out; } sband = local->hw.wiphy->bands[link->conf->chanreq.oper.chan->band]; /* Set up internal HT/VHT capabilities */ if (elems->ht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, elems->ht_cap_elem, link_sta); if (elems->vht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { const struct ieee80211_vht_cap *bss_vht_cap = NULL; const struct cfg80211_bss_ies *ies; /* * Cisco AP module 9115 with FW 17.3 has a bug and sends a * too large maximum MPDU length in the association response * (indicating 12k) that it cannot actually process ... * Work around that. */ rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) { const struct element *elem; elem = cfg80211_find_elem(WLAN_EID_VHT_CAPABILITY, ies->data, ies->len); if (elem && elem->datalen >= sizeof(*bss_vht_cap)) bss_vht_cap = (const void *)elem->data; } ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, elems->vht_cap_elem, bss_vht_cap, link_sta); rcu_read_unlock(); } if (elems->he_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE && elems->he_cap) { ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->he_6ghz_capa, link_sta); bss_conf->he_support = link_sta->pub->he_cap.has_he; if (elems->rsnx && elems->rsnx_len && (elems->rsnx[0] & WLAN_RSNX_CAPA_PROTECTED_TWT) && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_PROTECTED_TWT)) bss_conf->twt_protected = true; else bss_conf->twt_protected = false; *changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (elems->eht_operation && elems->eht_cap && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_EHT) { ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->eht_cap, elems->eht_cap_len, link_sta); bss_conf->eht_support = link_sta->pub->eht_cap.has_eht; } else { bss_conf->eht_support = false; } } else { bss_conf->he_support = false; bss_conf->twt_requester = false; bss_conf->twt_protected = false; bss_conf->eht_support = false; } bss_conf->twt_broadcast = ieee80211_twt_bcast_support(sdata, bss_conf, sband, link_sta); if (bss_conf->he_support) { bss_conf->he_bss_color.color = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_MASK); bss_conf->he_bss_color.partial = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR); bss_conf->he_bss_color.enabled = !le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (bss_conf->he_bss_color.enabled) *changed |= BSS_CHANGED_HE_BSS_COLOR; bss_conf->htc_trig_based_pkt_ext = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK); bss_conf->frame_time_rts_th = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); bss_conf->uora_exists = !!elems->uora_element; if (elems->uora_element) bss_conf->uora_ocw_range = elems->uora_element[0]; ieee80211_he_op_ie_to_bss_conf(&sdata->vif, elems->he_operation); ieee80211_he_spr_ie_to_bss_conf(&sdata->vif, elems->he_spr); /* TODO: OPEN: what happens if BSS color disable is set? */ } if (cbss->transmitted_bss) { bss_conf->nontransmitted = true; ether_addr_copy(bss_conf->transmitter_bssid, cbss->transmitted_bss->bssid); bss_conf->bssid_indicator = cbss->max_bssid_indicator; bss_conf->bssid_index = cbss->bssid_index; } /* * Some APs, e.g. Netgear WNDR3700, report invalid HT operation data * in their association response, so ignore that data for our own * configuration. If it changed since the last beacon, we'll get the * next beacon and update then. */ /* * If an operating mode notification IE is present, override the * NSS calculation (that would be done in rate_control_rate_init()) * and use the # of streams from that element. */ if (elems->opmode_notif && !(*elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF)) { u8 nss; nss = *elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_MASK; nss >>= IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT; nss += 1; link_sta->pub->rx_nss = nss; } /* * Always handle WMM once after association regardless * of the first value the AP uses. Setting -1 here has * that effect because the AP values is an unsigned * 4-bit value. */ link->u.mgd.wmm_last_param_set = -1; link->u.mgd.mu_edca_last_param_set = -1; if (link->u.mgd.disable_wmm_tracking) { ieee80211_set_wmm_default(link, false, false); } else if (!ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) { /* still enable QoS since we might have HT/VHT */ ieee80211_set_wmm_default(link, false, true); /* disable WMM tracking in this case to disable * tracking WMM parameter changes in the beacon if * the parameters weren't actually valid. Doing so * avoids changing parameters very strangely when * the AP is going back and forth between valid and * invalid parameters. */ link->u.mgd.disable_wmm_tracking = true; } if (elems->max_idle_period_ie) { bss_conf->max_idle_period = le16_to_cpu(elems->max_idle_period_ie->max_idle_period); bss_conf->protected_keep_alive = !!(elems->max_idle_period_ie->idle_options & WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE); *changed |= BSS_CHANGED_KEEP_ALIVE; } else { bss_conf->max_idle_period = 0; bss_conf->protected_keep_alive = false; } /* set assoc capability (AID was already set earlier), * ieee80211_set_associated() will tell the driver */ bss_conf->assoc_capability = capab_info; ret = true; out: kfree(elems); kfree(bss_ies); return ret; } static int ieee80211_mgd_setup_link_sta(struct ieee80211_link_data *link, struct sta_info *sta, struct link_sta_info *link_sta, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss = (void *)cbss->priv; u32 rates = 0, basic_rates = 0; bool have_higher_than_11mbit = false; int min_rate = INT_MAX, min_rate_index = -1; struct ieee80211_supported_band *sband; memcpy(link_sta->addr, cbss->bssid, ETH_ALEN); memcpy(link_sta->pub->addr, cbss->bssid, ETH_ALEN); /* TODO: S1G Basic Rate Set is expressed elsewhere */ if (cbss->channel->band == NL80211_BAND_S1GHZ) { ieee80211_s1g_sta_rate_init(sta); return 0; } sband = local->hw.wiphy->bands[cbss->channel->band]; ieee80211_get_rates(sband, bss->supp_rates, bss->supp_rates_len, NULL, 0, &rates, &basic_rates, NULL, &have_higher_than_11mbit, &min_rate, &min_rate_index); /* * This used to be a workaround for basic rates missing * in the association response frame. Now that we no * longer use the basic rates from there, it probably * doesn't happen any more, but keep the workaround so * in case some *other* APs are buggy in different ways * we can connect -- with a warning. * Allow this workaround only in case the AP provided at least * one rate. */ if (min_rate_index < 0) { link_info(link, "No legacy rates in association response\n"); return -EINVAL; } else if (!basic_rates) { link_info(link, "No basic rates, using min rate instead\n"); basic_rates = BIT(min_rate_index); } if (rates) link_sta->pub->supp_rates[cbss->channel->band] = rates; else link_info(link, "No rates found, keeping mandatory only\n"); link->conf->basic_rates = basic_rates; /* cf. IEEE 802.11 9.2.12 */ link->operating_11g_mode = sband->band == NL80211_BAND_2GHZ && have_higher_than_11mbit; return 0; } static u8 ieee80211_max_rx_chains(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; const struct element *ht_cap_elem, *vht_cap_elem; const struct cfg80211_bss_ies *ies; const struct ieee80211_ht_cap *ht_cap; const struct ieee80211_vht_cap *vht_cap; const struct ieee80211_he_cap_elem *he_cap; const struct element *he_cap_elem; u16 mcs_80_map, mcs_160_map; int i, mcs_nss_size; bool support_160; u8 chains = 1; if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HT) return chains; ht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_CAPABILITY); if (ht_cap_elem && ht_cap_elem->datalen >= sizeof(*ht_cap)) { ht_cap = (void *)ht_cap_elem->data; chains = ieee80211_mcs_to_chains(&ht_cap->mcs); /* * TODO: use "Tx Maximum Number Spatial Streams Supported" and * "Tx Unequal Modulation Supported" fields. */ } if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_VHT) return chains; vht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); if (vht_cap_elem && vht_cap_elem->datalen >= sizeof(*vht_cap)) { u8 nss; u16 tx_mcs_map; vht_cap = (void *)vht_cap_elem->data; tx_mcs_map = le16_to_cpu(vht_cap->supp_mcs.tx_mcs_map); for (nss = 8; nss > 0; nss--) { if (((tx_mcs_map >> (2 * (nss - 1))) & 3) != IEEE80211_VHT_MCS_NOT_SUPPORTED) break; } /* TODO: use "Tx Highest Supported Long GI Data Rate" field? */ chains = max(chains, nss); } if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HE) return chains; ies = rcu_dereference(cbss->ies); he_cap_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ies->data, ies->len); if (!he_cap_elem || he_cap_elem->datalen < sizeof(*he_cap)) return chains; /* skip one byte ext_tag_id */ he_cap = (void *)(he_cap_elem->data + 1); mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap); /* invalid HE IE */ if (he_cap_elem->datalen < 1 + mcs_nss_size + sizeof(*he_cap)) return chains; /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); for (i = 7; i >= 0; i--) { u8 mcs_80 = mcs_80_map >> (2 * i) & 3; if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } support_160 = he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (!support_160) return chains; mcs_160_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_160); for (i = 7; i >= 0; i--) { u8 mcs_160 = mcs_160_map >> (2 * i) & 3; if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } return chains; } static void ieee80211_determine_our_sta_mode(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_assoc_request *req, bool wmm_used, int link_id, struct ieee80211_conn_settings *conn) { struct ieee80211_sta_ht_cap sta_ht_cap = sband->ht_cap; bool is_5ghz = sband->band == NL80211_BAND_5GHZ; bool is_6ghz = sband->band == NL80211_BAND_6GHZ; const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_sta_vht_cap vht_cap; if (sband->band == NL80211_BAND_S1GHZ) { conn->mode = IEEE80211_CONN_MODE_S1G; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_dbg(sdata, "operating as S1G STA\n"); return; } conn->mode = IEEE80211_CONN_MODE_LEGACY; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); if (req && req->flags & ASSOC_REQ_DISABLE_HT) { mlme_link_id_dbg(sdata, link_id, "HT disabled by flag, limiting to legacy\n"); goto out; } if (!wmm_used) { mlme_link_id_dbg(sdata, link_id, "WMM/QoS not supported, limiting to legacy\n"); goto out; } if (req) { unsigned int i; for (i = 0; i < req->crypto.n_ciphers_pairwise; i++) { if (req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP40 || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_TKIP || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP104) { netdev_info(sdata->dev, "WEP/TKIP use, limiting to legacy\n"); goto out; } } } if (!sta_ht_cap.ht_supported && !is_6ghz) { mlme_link_id_dbg(sdata, link_id, "HT not supported (and not on 6 GHz), limiting to legacy\n"); goto out; } /* HT is fine */ conn->mode = IEEE80211_CONN_MODE_HT; conn->bw_limit = sta_ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_CONN_BW_LIMIT_40 : IEEE80211_CONN_BW_LIMIT_20; memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); if (req && req->flags & ASSOC_REQ_DISABLE_VHT) { mlme_link_id_dbg(sdata, link_id, "VHT disabled by flag, limiting to HT\n"); goto out; } if (vht_cap.vht_supported && is_5ghz) { bool have_80mhz = false; unsigned int i; if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) { mlme_link_id_dbg(sdata, link_id, "no 40 MHz support on 5 GHz, limiting to HT\n"); goto out; } /* Allow VHT if at least one channel on the sband supports 80 MHz */ for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (!have_80mhz) { mlme_link_id_dbg(sdata, link_id, "no 80 MHz channel support on 5 GHz, limiting to HT\n"); goto out; } } else if (is_5ghz) { /* !vht_supported but on 5 GHz */ mlme_link_id_dbg(sdata, link_id, "no VHT support on 5 GHz, limiting to HT\n"); goto out; } /* VHT - if we have - is fine, including 80 MHz, check 160 below again */ if (sband->band != NL80211_BAND_2GHZ) { conn->mode = IEEE80211_CONN_MODE_VHT; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; } if (is_5ghz && !(vht_cap.cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) { conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; mlme_link_id_dbg(sdata, link_id, "no VHT 160 MHz capability on 5 GHz, limiting to 80 MHz"); } if (req && req->flags & ASSOC_REQ_DISABLE_HE) { mlme_link_id_dbg(sdata, link_id, "HE disabled by flag, limiting to HT/VHT\n"); goto out; } he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (!he_cap) { WARN_ON(is_6ghz); mlme_link_id_dbg(sdata, link_id, "no HE support, limiting to HT/VHT\n"); goto out; } /* so we have HE */ conn->mode = IEEE80211_CONN_MODE_HE; /* check bandwidth */ switch (sband->band) { default: case NL80211_BAND_2GHZ: if (he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) break; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_link_id_dbg(sdata, link_id, "no 40 MHz HE cap in 2.4 GHz, limiting to 20 MHz\n"); break; case NL80211_BAND_5GHZ: if (!(he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) { conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_link_id_dbg(sdata, link_id, "no 40/80 MHz HE cap in 5 GHz, limiting to 20 MHz\n"); break; } if (!(he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)) { conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_80); mlme_link_id_dbg(sdata, link_id, "no 160 MHz HE cap in 5 GHz, limiting to 80 MHz\n"); } break; case NL80211_BAND_6GHZ: if (he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) break; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_80); mlme_link_id_dbg(sdata, link_id, "no 160 MHz HE cap in 6 GHz, limiting to 80 MHz\n"); break; } if (req && req->flags & ASSOC_REQ_DISABLE_EHT) { mlme_link_id_dbg(sdata, link_id, "EHT disabled by flag, limiting to HE\n"); goto out; } eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); if (!eht_cap) { mlme_link_id_dbg(sdata, link_id, "no EHT support, limiting to HE\n"); goto out; } /* we have EHT */ conn->mode = IEEE80211_CONN_MODE_EHT; /* check bandwidth */ if (is_6ghz && eht_cap->eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) conn->bw_limit = IEEE80211_CONN_BW_LIMIT_320; else if (is_6ghz) mlme_link_id_dbg(sdata, link_id, "no EHT 320 MHz cap in 6 GHz, limiting to 160 MHz\n"); out: mlme_link_id_dbg(sdata, link_id, "determined local STA to be %s, BW limited to %d MHz\n", ieee80211_conn_mode_str(conn->mode), 20 * (1 << conn->bw_limit)); } static void ieee80211_determine_our_sta_mode_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_auth_request *req, bool wmm_used, struct ieee80211_conn_settings *conn) { ieee80211_determine_our_sta_mode(sdata, sband, NULL, wmm_used, req->link_id > 0 ? req->link_id : 0, conn); } static void ieee80211_determine_our_sta_mode_assoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_assoc_request *req, bool wmm_used, int link_id, struct ieee80211_conn_settings *conn) { struct ieee80211_conn_settings tmp; WARN_ON(!req); ieee80211_determine_our_sta_mode(sdata, sband, req, wmm_used, link_id, &tmp); conn->mode = min_t(enum ieee80211_conn_mode, conn->mode, tmp.mode); conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, tmp.bw_limit); } static enum ieee80211_ap_reg_power ieee80211_ap_power_type(u8 control) { switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { case IEEE80211_6GHZ_CTRL_REG_LPI_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: return IEEE80211_REG_LPI_AP; case IEEE80211_6GHZ_CTRL_REG_SP_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: return IEEE80211_REG_SP_AP; case IEEE80211_6GHZ_CTRL_REG_VLP_AP: return IEEE80211_REG_VLP_AP; default: return IEEE80211_REG_UNSET_AP; } } static int ieee80211_prep_channel(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, int link_id, struct cfg80211_bss *cbss, bool mlo, struct ieee80211_conn_settings *conn, unsigned long *userspace_selectors) { struct ieee80211_local *local = sdata->local; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; struct ieee80211_chan_req chanreq = {}; struct cfg80211_chan_def ap_chandef; struct ieee802_11_elems *elems; int ret; lockdep_assert_wiphy(local->hw.wiphy); rcu_read_lock(); elems = ieee80211_determine_chan_mode(sdata, conn, cbss, link_id, &chanreq, &ap_chandef, userspace_selectors); if (IS_ERR(elems)) { rcu_read_unlock(); return PTR_ERR(elems); } if (mlo && !elems->ml_basic) { sdata_info(sdata, "Rejecting MLO as it is not supported by AP\n"); rcu_read_unlock(); kfree(elems); return -EINVAL; } if (link && is_6ghz && conn->mode >= IEEE80211_CONN_MODE_HE) { const struct ieee80211_he_6ghz_oper *he_6ghz_oper; if (elems->pwr_constr_elem) link->conf->pwr_reduction = *elems->pwr_constr_elem; he_6ghz_oper = ieee80211_he_6ghz_oper(elems->he_operation); if (he_6ghz_oper) link->conf->power_type = ieee80211_ap_power_type(he_6ghz_oper->control); else link_info(link, "HE 6 GHz operation missing (on %d MHz), expect issues\n", cbss->channel->center_freq); link->conf->tpe = elems->tpe; ieee80211_rearrange_tpe(&link->conf->tpe, &ap_chandef, &chanreq.oper); } rcu_read_unlock(); /* the element data was RCU protected so no longer valid anyway */ kfree(elems); elems = NULL; if (!link) return 0; rcu_read_lock(); link->needed_rx_chains = min(ieee80211_max_rx_chains(link, cbss), local->rx_chains); rcu_read_unlock(); /* * If this fails (possibly due to channel context sharing * on incompatible channels, e.g. 80+80 and 160 sharing the * same control channel) try to use a smaller bandwidth. */ ret = ieee80211_link_use_channel(link, &chanreq, IEEE80211_CHANCTX_SHARED); /* don't downgrade for 5 and 10 MHz channels, though. */ if (chanreq.oper.width == NL80211_CHAN_WIDTH_5 || chanreq.oper.width == NL80211_CHAN_WIDTH_10) return ret; while (ret && chanreq.oper.width != NL80211_CHAN_WIDTH_20_NOHT) { ieee80211_chanreq_downgrade(&chanreq, conn); ret = ieee80211_link_use_channel(link, &chanreq, IEEE80211_CHANCTX_SHARED); } return ret; } static bool ieee80211_get_dtim(const struct cfg80211_bss_ies *ies, u8 *dtim_count, u8 *dtim_period) { const u8 *tim_ie = cfg80211_find_ie(WLAN_EID_TIM, ies->data, ies->len); const u8 *idx_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, ies->data, ies->len); const struct ieee80211_tim_ie *tim = NULL; const struct ieee80211_bssid_index *idx; bool valid = tim_ie && tim_ie[1] >= 2; if (valid) tim = (void *)(tim_ie + 2); if (dtim_count) *dtim_count = valid ? tim->dtim_count : 0; if (dtim_period) *dtim_period = valid ? tim->dtim_period : 0; /* Check if value is overridden by non-transmitted profile */ if (!idx_ie || idx_ie[1] < 3) return valid; idx = (void *)(idx_ie + 2); if (dtim_count) *dtim_count = idx->dtim_count; if (dtim_period) *dtim_period = idx->dtim_period; return true; } static bool ieee80211_assoc_success(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, const u8 *elem_start, unsigned int elem_len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_local *local = sdata->local; unsigned int link_id; struct sta_info *sta; u64 changed[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u16 valid_links = 0, dormant_links = 0; int err; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* * station info was already allocated and inserted before * the association and should be available to us */ sta = sta_info_get(sdata, assoc_data->ap_addr); if (WARN_ON(!sta)) goto out_err; sta->sta.spp_amsdu = assoc_data->spp_amsdu; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!assoc_data->link[link_id].bss) continue; valid_links |= BIT(link_id); if (assoc_data->link[link_id].disabled) dormant_links |= BIT(link_id); if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_allocate_link(sta, link_id); if (err) goto out_err; } } ieee80211_vif_set_links(sdata, valid_links, dormant_links); } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; struct link_sta_info *link_sta; if (!cbss) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) goto out_err; if (ieee80211_vif_is_mld(&sdata->vif)) link_info(link, "local address %pM, AP link address %pM%s\n", link->conf->addr, assoc_data->link[link_id].bss->bssid, link_id == assoc_data->assoc_link_id ? " (assoc)" : ""); link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) goto out_err; if (!link->u.mgd.have_beacon) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->beacon_ies); if (ies) link->u.mgd.have_beacon = true; else ies = rcu_dereference(cbss->ies); ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, &link->u.mgd.dtim_period); link->conf->beacon_int = cbss->beacon_interval; rcu_read_unlock(); } link->conf->dtim_period = link->u.mgd.dtim_period ?: 1; if (link_id != assoc_data->assoc_link_id) { link->u.mgd.conn = assoc_data->link[link_id].conn; err = ieee80211_prep_channel(sdata, link, link_id, cbss, true, &link->u.mgd.conn, assoc_data->userspace_selectors); if (err) { link_info(link, "prep_channel failed\n"); goto out_err; } } err = ieee80211_mgd_setup_link_sta(link, sta, link_sta, assoc_data->link[link_id].bss); if (err) goto out_err; if (!ieee80211_assoc_config_link(link, link_sta, assoc_data->link[link_id].bss, mgmt, elem_start, elem_len, &changed[link_id])) goto out_err; if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { valid_links &= ~BIT(link_id); ieee80211_sta_remove_link(sta, link_id); continue; } if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_activate_link(sta, link_id); if (err) goto out_err; } } /* links might have changed due to rejected ones, set them again */ ieee80211_vif_set_links(sdata, valid_links, dormant_links); rate_control_rate_init_all_links(sta); if (ifmgd->flags & IEEE80211_STA_MFP_ENABLED) { set_sta_flag(sta, WLAN_STA_MFP); sta->sta.mfp = true; } else { sta->sta.mfp = false; } ieee80211_sta_set_max_amsdu_subframes(sta, elems->ext_capab, elems->ext_capab_len); sta->sta.wme = (elems->wmm_param || elems->s1g_capab) && local->hw.queues >= IEEE80211_NUM_ACS; err = sta_info_move_state(sta, IEEE80211_STA_ASSOC); if (!err && !(ifmgd->flags & IEEE80211_STA_CONTROL_PORT)) err = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); if (err) { sdata_info(sdata, "failed to move station %pM to desired state\n", sta->sta.addr); WARN_ON(__sta_info_destroy(sta)); goto out_err; } if (sdata->wdev.use_4addr) drv_sta_set_4addr(local, sdata, &sta->sta, true); ieee80211_set_associated(sdata, assoc_data, changed); /* * If we're using 4-addr mode, let the AP know that we're * doing so, so that it can create the STA VLAN on its side */ if (ifmgd->use_4addr) ieee80211_send_4addr_nullfunc(local, sdata); /* * Start timer to probe the connection to the AP now. * Also start the timer that will detect beacon loss. */ ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); return true; out_err: eth_zero_addr(sdata->vif.cfg.ap_addr); return false; } static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; u16 capab_info, status_code, aid; struct ieee80211_elems_parse_params parse_params = { .bss = NULL, .link_id = -1, .from_ap = true, }; struct ieee802_11_elems *elems; int ac; const u8 *elem_start; unsigned int elem_len; bool reassoc; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, }; struct ieee80211_prep_tx_info info = {}; struct cfg80211_rx_assoc_resp_data resp = { .uapsd_queues = -1, }; u8 ap_mld_addr[ETH_ALEN] __aligned(2); unsigned int link_id; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!assoc_data) return; info.link_id = assoc_data->assoc_link_id; parse_params.mode = assoc_data->link[assoc_data->assoc_link_id].conn.mode; if (!ether_addr_equal(assoc_data->ap_addr, mgmt->bssid) || !ether_addr_equal(assoc_data->ap_addr, mgmt->sa)) return; /* * AssocResp and ReassocResp have identical structure, so process both * of them in this function. */ if (len < 24 + 6) return; reassoc = ieee80211_is_reassoc_resp(mgmt->frame_control); capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code); if (assoc_data->s1g) elem_start = mgmt->u.s1g_assoc_resp.variable; else elem_start = mgmt->u.assoc_resp.variable; /* * Note: this may not be perfect, AP might misbehave - if * anyone needs to rely on perfect complete notification * with the exact right subtype, then we need to track what * we actually transmitted. */ info.subtype = reassoc ? IEEE80211_STYPE_REASSOC_REQ : IEEE80211_STYPE_ASSOC_REQ; if (assoc_data->fils_kek_len && fils_decrypt_assoc_resp(sdata, (u8 *)mgmt, &len, assoc_data) < 0) return; elem_len = len - (elem_start - (u8 *)mgmt); parse_params.start = elem_start; parse_params.len = elem_len; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) goto notify_driver; if (elems->aid_resp) aid = le16_to_cpu(elems->aid_resp->aid); else if (assoc_data->s1g) aid = 0; /* TODO */ else aid = le16_to_cpu(mgmt->u.assoc_resp.aid); /* * The 5 MSB of the AID field are reserved * (802.11-2016 9.4.1.8 AID field) */ aid &= 0x7ff; sdata_info(sdata, "RX %sssocResp from %pM (capab=0x%x status=%d aid=%d)\n", reassoc ? "Rea" : "A", assoc_data->ap_addr, capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14)))); ifmgd->broken_ap = false; if (status_code == WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY && elems->timeout_int && elems->timeout_int->type == WLAN_TIMEOUT_ASSOC_COMEBACK) { u32 tu, ms; cfg80211_assoc_comeback(sdata->dev, assoc_data->ap_addr, le32_to_cpu(elems->timeout_int->value)); tu = le32_to_cpu(elems->timeout_int->value); ms = tu * 1024 / 1000; sdata_info(sdata, "%pM rejected association temporarily; comeback duration %u TU (%u ms)\n", assoc_data->ap_addr, tu, ms); assoc_data->timeout = jiffies + msecs_to_jiffies(ms); assoc_data->timeout_started = true; assoc_data->comeback = true; if (ms > IEEE80211_ASSOC_TIMEOUT) run_again(sdata, assoc_data->timeout); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { sdata_info(sdata, "%pM denied association (code=%d)\n", assoc_data->ap_addr, status_code); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); } else { if (aid == 0 || aid > IEEE80211_MAX_AID) { sdata_info(sdata, "invalid AID value %d (out of range), turn off PS\n", aid); aid = 0; ifmgd->broken_ap = true; } if (ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_mle_basic_common_info *common; if (!elems->ml_basic) { sdata_info(sdata, "MLO association with %pM but no (basic) multi-link element in response!\n", assoc_data->ap_addr); goto abandon_assoc; } common = (void *)elems->ml_basic->variable; if (memcmp(assoc_data->ap_addr, common->mld_mac_addr, ETH_ALEN)) { sdata_info(sdata, "AP MLD MAC address mismatch: got %pM expected %pM\n", common->mld_mac_addr, assoc_data->ap_addr); goto abandon_assoc; } sdata->vif.cfg.eml_cap = ieee80211_mle_get_eml_cap((const void *)elems->ml_basic); sdata->vif.cfg.eml_med_sync_delay = ieee80211_mle_get_eml_med_sync_delay((const void *)elems->ml_basic); sdata->vif.cfg.mld_capa_op = ieee80211_mle_get_mld_capa_op((const void *)elems->ml_basic); } sdata->vif.cfg.aid = aid; if (!ieee80211_assoc_success(sdata, mgmt, elems, elem_start, elem_len)) { /* oops -- internal error -- send timeout for now */ ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; drv_event_callback(sdata->local, sdata, &event); sdata_info(sdata, "associated\n"); info.success = 1; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; if (!assoc_data->link[link_id].bss) continue; resp.links[link_id].bss = assoc_data->link[link_id].bss; ether_addr_copy(resp.links[link_id].addr, assoc_data->link[link_id].addr); resp.links[link_id].status = assoc_data->link[link_id].status; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; /* get uapsd queues configuration - same for all links */ resp.uapsd_queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) if (link->tx_conf[ac].uapsd) resp.uapsd_queues |= ieee80211_ac_to_qos_mask[ac]; } if (ieee80211_vif_is_mld(&sdata->vif)) { ether_addr_copy(ap_mld_addr, sdata->vif.cfg.ap_addr); resp.ap_mld_addr = ap_mld_addr; } ieee80211_destroy_assoc_data(sdata, status_code == WLAN_STATUS_SUCCESS ? ASSOC_SUCCESS : ASSOC_REJECTED); resp.buf = (u8 *)mgmt; resp.len = len; resp.req_ies = ifmgd->assoc_req_ies; resp.req_ies_len = ifmgd->assoc_req_ies_len; cfg80211_rx_assoc_resp(sdata->dev, &resp); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); kfree(elems); return; abandon_assoc: ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); goto notify_driver; } static void ieee80211_rx_bss_info(struct ieee80211_link_data *link, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss; struct ieee80211_channel *channel; lockdep_assert_wiphy(sdata->local->hw.wiphy); channel = ieee80211_get_channel_khz(local->hw.wiphy, ieee80211_rx_status_to_khz(rx_status)); if (!channel) return; bss = ieee80211_bss_info_update(local, rx_status, mgmt, len, channel); if (bss) { link->conf->beacon_rate = bss->beacon_rate; ieee80211_rx_bss_put(local, bss); } } static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_link_data *link, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_if_managed *ifmgd; struct ieee80211_rx_status *rx_status = (void *) skb->cb; struct ieee80211_channel *channel; size_t baselen, len = skb->len; ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* * According to Draft P802.11ax D6.0 clause 26.17.2.3.2: * "If a 6 GHz AP receives a Probe Request frame and responds with * a Probe Response frame [..], the Address 1 field of the Probe * Response frame shall be set to the broadcast address [..]" * So, on 6GHz band we should also accept broadcast responses. */ channel = ieee80211_get_channel(sdata->local->hw.wiphy, rx_status->freq); if (!channel) return; if (!ether_addr_equal(mgmt->da, sdata->vif.addr) && (channel->band != NL80211_BAND_6GHZ || !is_broadcast_ether_addr(mgmt->da))) return; /* ignore ProbeResp to foreign address */ baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (ifmgd->associated && ether_addr_equal(mgmt->bssid, link->u.mgd.bssid)) ieee80211_reset_ap_probe(sdata); } /* * This is the canonical list of information elements we care about, * the filter code also gives us all changes to the Microsoft OUI * (00:50:F2) vendor IE which is used for WMM which we need to track, * as well as the DTPC IE (part of the Cisco OUI) used for signaling * changes to requested client power. * * We implement beacon filtering in software since that means we can * avoid processing the frame here and in cfg80211, and userspace * will not be able to tell whether the hardware supports it or not. * * XXX: This list needs to be dynamic -- userspace needs to be able to * add items it requires. It also needs to be able to tell us to * look out for other vendor IEs. */ static const u64 care_about_ies = (1ULL << WLAN_EID_COUNTRY) | (1ULL << WLAN_EID_ERP_INFO) | (1ULL << WLAN_EID_CHANNEL_SWITCH) | (1ULL << WLAN_EID_PWR_CONSTRAINT) | (1ULL << WLAN_EID_HT_CAPABILITY) | (1ULL << WLAN_EID_HT_OPERATION) | (1ULL << WLAN_EID_EXT_CHANSWITCH_ANN); static void ieee80211_handle_beacon_sig(struct ieee80211_link_data *link, struct ieee80211_if_managed *ifmgd, struct ieee80211_bss_conf *bss_conf, struct ieee80211_local *local, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; /* Track average RSSI from the Beacon frames of the current AP */ if (!link->u.mgd.tracking_signal_avg) { link->u.mgd.tracking_signal_avg = true; ewma_beacon_signal_init(&link->u.mgd.ave_beacon_signal); link->u.mgd.last_cqm_event_signal = 0; link->u.mgd.count_beacon_signal = 1; link->u.mgd.last_ave_beacon_signal = 0; } else { link->u.mgd.count_beacon_signal++; } ewma_beacon_signal_add(&link->u.mgd.ave_beacon_signal, -rx_status->signal); if (ifmgd->rssi_min_thold != ifmgd->rssi_max_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_sig = link->u.mgd.last_ave_beacon_signal; struct ieee80211_event event = { .type = RSSI_EVENT, }; /* * if signal crosses either of the boundaries, invoke callback * with appropriate parameters */ if (sig > ifmgd->rssi_max_thold && (last_sig <= ifmgd->rssi_min_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_HIGH; drv_event_callback(local, sdata, &event); } else if (sig < ifmgd->rssi_min_thold && (last_sig >= ifmgd->rssi_max_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_LOW; drv_event_callback(local, sdata, &event); } } if (bss_conf->cqm_rssi_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT && !(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int thold = bss_conf->cqm_rssi_thold; int hyst = bss_conf->cqm_rssi_hyst; if (sig < thold && (last_event == 0 || sig < last_event - hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > thold && (last_event == 0 || sig > last_event + hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } if (bss_conf->cqm_rssi_low && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int low = bss_conf->cqm_rssi_low; int high = bss_conf->cqm_rssi_high; if (sig < low && (last_event == 0 || last_event >= low)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > high && (last_event == 0 || last_event <= high)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } } static bool ieee80211_rx_our_beacon(const u8 *tx_bssid, struct cfg80211_bss *bss) { if (ether_addr_equal(tx_bssid, bss->bssid)) return true; if (!bss->transmitted_bss) return false; return ether_addr_equal(tx_bssid, bss->transmitted_bss->bssid); } static void ieee80211_ml_reconf_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.ml_reconf_work.work); u16 new_valid_links, new_active_links, new_dormant_links; int ret; if (!sdata->u.mgd.removed_links) return; sdata_info(sdata, "MLO Reconfiguration: work: valid=0x%x, removed=0x%x\n", sdata->vif.valid_links, sdata->u.mgd.removed_links); new_valid_links = sdata->vif.valid_links & ~sdata->u.mgd.removed_links; if (new_valid_links == sdata->vif.valid_links) return; if (!new_valid_links || !(new_valid_links & ~sdata->vif.dormant_links)) { sdata_info(sdata, "No valid links after reconfiguration\n"); ret = -EINVAL; goto out; } new_active_links = sdata->vif.active_links & ~sdata->u.mgd.removed_links; if (new_active_links != sdata->vif.active_links) { if (!new_active_links) new_active_links = BIT(ffs(new_valid_links & ~sdata->vif.dormant_links) - 1); ret = ieee80211_set_active_links(&sdata->vif, new_active_links); if (ret) { sdata_info(sdata, "Failed setting active links\n"); goto out; } } new_dormant_links = sdata->vif.dormant_links & ~sdata->u.mgd.removed_links; ret = ieee80211_vif_set_links(sdata, new_valid_links, new_dormant_links); if (ret) sdata_info(sdata, "Failed setting valid links\n"); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); out: if (!ret) cfg80211_links_removed(sdata->dev, sdata->u.mgd.removed_links); else __ieee80211_disconnect(sdata); sdata->u.mgd.removed_links = 0; } static void ieee80211_ml_reconfiguration(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems) { const struct element *sub; unsigned long removed_links = 0; u16 link_removal_timeout[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u8 link_id; u32 delay; if (!ieee80211_vif_is_mld(&sdata->vif) || !elems->ml_reconf) return; /* Directly parse the sub elements as the common information doesn't * hold any useful information. */ for_each_mle_subelement(sub, (const u8 *)elems->ml_reconf, elems->ml_reconf_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; u8 *pos = prof->variable; u16 control; if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) continue; if (!ieee80211_mle_reconf_sta_prof_size_ok(sub->data, sub->datalen)) return; control = le16_to_cpu(prof->control); link_id = control & IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID; removed_links |= BIT(link_id); /* the MAC address should not be included, but handle it */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) pos += 6; /* According to Draft P802.11be_D3.0, the control should * include the AP Removal Timer present. If the AP Removal Timer * is not present assume immediate removal. */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) link_removal_timeout[link_id] = get_unaligned_le16(pos); } removed_links &= sdata->vif.valid_links; if (!removed_links) { /* In case the removal was cancelled, abort it */ if (sdata->u.mgd.removed_links) { sdata->u.mgd.removed_links = 0; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work); } return; } delay = 0; for_each_set_bit(link_id, &removed_links, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_bss_conf *link_conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); u32 link_delay; if (!link_conf) { removed_links &= ~BIT(link_id); continue; } if (link_removal_timeout[link_id] < 1) link_delay = 0; else link_delay = link_conf->beacon_int * (link_removal_timeout[link_id] - 1); if (!delay) delay = link_delay; else delay = min(delay, link_delay); } sdata->u.mgd.removed_links = removed_links; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work, TU_TO_JIFFIES(delay)); } static int ieee80211_ttlm_set_links(struct ieee80211_sub_if_data *sdata, u16 active_links, u16 dormant_links, u16 suspended_links) { u64 changed = 0; int ret; if (!active_links) { ret = -EINVAL; goto out; } /* If there is an active negotiated TTLM, it should be discarded by * the new negotiated/advertised TTLM. */ if (sdata->vif.neg_ttlm.valid) { memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); sdata->vif.suspended_links = 0; changed = BSS_CHANGED_MLD_TTLM; } if (sdata->vif.active_links != active_links) { /* usable links are affected when active_links are changed, * so notify the driver about the status change */ changed |= BSS_CHANGED_MLD_VALID_LINKS; active_links &= sdata->vif.active_links; if (!active_links) active_links = BIT(__ffs(sdata->vif.valid_links & ~dormant_links)); ret = ieee80211_set_active_links(&sdata->vif, active_links); if (ret) { sdata_info(sdata, "Failed to set TTLM active links\n"); goto out; } } ret = ieee80211_vif_set_links(sdata, sdata->vif.valid_links, dormant_links); if (ret) { sdata_info(sdata, "Failed to set TTLM dormant links\n"); goto out; } sdata->vif.suspended_links = suspended_links; if (sdata->vif.suspended_links) changed |= BSS_CHANGED_MLD_TTLM; ieee80211_vif_cfg_change_notify(sdata, changed); out: if (ret) ieee80211_disconnect(&sdata->vif, false); return ret; } static void ieee80211_tid_to_link_map_work(struct wiphy *wiphy, struct wiphy_work *work) { u16 new_active_links, new_dormant_links; struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.ttlm_work.work); new_active_links = sdata->u.mgd.ttlm_info.map & sdata->vif.valid_links; new_dormant_links = ~sdata->u.mgd.ttlm_info.map & sdata->vif.valid_links; ieee80211_vif_set_links(sdata, sdata->vif.valid_links, 0); if (ieee80211_ttlm_set_links(sdata, new_active_links, new_dormant_links, 0)) return; sdata->u.mgd.ttlm_info.active = true; sdata->u.mgd.ttlm_info.switch_time = 0; } static u16 ieee80211_get_ttlm(u8 bm_size, u8 *data) { if (bm_size == 1) return *data; else return get_unaligned_le16(data); } static int ieee80211_parse_adv_t2l(struct ieee80211_sub_if_data *sdata, const struct ieee80211_ttlm_elem *ttlm, struct ieee80211_adv_ttlm_info *ttlm_info) { /* The element size was already validated in * ieee80211_tid_to_link_map_size_ok() */ u8 control, link_map_presence, map_size, tid; u8 *pos; memset(ttlm_info, 0, sizeof(*ttlm_info)); pos = (void *)ttlm->optional; control = ttlm->control; if ((control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) || !(control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)) return 0; if ((control & IEEE80211_TTLM_CONTROL_DIRECTION) != IEEE80211_TTLM_DIRECTION_BOTH) { sdata_info(sdata, "Invalid advertised T2L map direction\n"); return -EINVAL; } link_map_presence = *pos; pos++; ttlm_info->switch_time = get_unaligned_le16(pos); /* Since ttlm_info->switch_time == 0 means no switch time, bump it * by 1. */ if (!ttlm_info->switch_time) ttlm_info->switch_time = 1; pos += 2; if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) { ttlm_info->duration = pos[0] | pos[1] << 8 | pos[2] << 16; pos += 3; } if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) map_size = 1; else map_size = 2; /* According to Draft P802.11be_D3.0 clause 35.3.7.1.7, an AP MLD shall * not advertise a TID-to-link mapping that does not map all TIDs to the * same link set, reject frame if not all links have mapping */ if (link_map_presence != 0xff) { sdata_info(sdata, "Invalid advertised T2L mapping presence indicator\n"); return -EINVAL; } ttlm_info->map = ieee80211_get_ttlm(map_size, pos); if (!ttlm_info->map) { sdata_info(sdata, "Invalid advertised T2L map for TID 0\n"); return -EINVAL; } pos += map_size; for (tid = 1; tid < 8; tid++) { u16 map = ieee80211_get_ttlm(map_size, pos); if (map != ttlm_info->map) { sdata_info(sdata, "Invalid advertised T2L map for tid %d\n", tid); return -EINVAL; } pos += map_size; } return 0; } static void ieee80211_process_adv_ttlm(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, u64 beacon_ts) { u8 i; int ret; if (!ieee80211_vif_is_mld(&sdata->vif)) return; if (!elems->ttlm_num) { if (sdata->u.mgd.ttlm_info.switch_time) { /* if a planned TID-to-link mapping was cancelled - * abort it */ wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work); } else if (sdata->u.mgd.ttlm_info.active) { /* if no TID-to-link element, set to default mapping in * which all TIDs are mapped to all setup links */ ret = ieee80211_vif_set_links(sdata, sdata->vif.valid_links, 0); if (ret) { sdata_info(sdata, "Failed setting valid/dormant links\n"); return; } ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); } memset(&sdata->u.mgd.ttlm_info, 0, sizeof(sdata->u.mgd.ttlm_info)); return; } for (i = 0; i < elems->ttlm_num; i++) { struct ieee80211_adv_ttlm_info ttlm_info; u32 res; res = ieee80211_parse_adv_t2l(sdata, elems->ttlm[i], &ttlm_info); if (res) { __ieee80211_disconnect(sdata); return; } if (ttlm_info.switch_time) { u16 beacon_ts_tu, st_tu, delay; u32 delay_jiffies; u64 mask; /* The t2l map switch time is indicated with a partial * TSF value (bits 10 to 25), get the partial beacon TS * as well, and calc the delay to the start time. */ mask = GENMASK_ULL(25, 10); beacon_ts_tu = (beacon_ts & mask) >> 10; st_tu = ttlm_info.switch_time; delay = st_tu - beacon_ts_tu; /* * If the switch time is far in the future, then it * could also be the previous switch still being * announced. * We can simply ignore it for now, if it is a future * switch the AP will continue to announce it anyway. */ if (delay > IEEE80211_ADV_TTLM_ST_UNDERFLOW) return; delay_jiffies = TU_TO_JIFFIES(delay); /* Link switching can take time, so schedule it * 100ms before to be ready on time */ if (delay_jiffies > IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS) delay_jiffies -= IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS; else delay_jiffies = 0; sdata->u.mgd.ttlm_info = ttlm_info; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work); wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work, delay_jiffies); return; } } } static void ieee80211_mgd_check_cross_link_csa(struct ieee80211_sub_if_data *sdata, int reporting_link_id, struct ieee802_11_elems *elems) { const struct element *sta_profiles[IEEE80211_MLD_MAX_NUM_LINKS] = {}; ssize_t sta_profiles_len[IEEE80211_MLD_MAX_NUM_LINKS] = {}; const struct element *sub; const u8 *subelems; size_t subelems_len; u8 common_size; int link_id; if (!ieee80211_mle_size_ok((u8 *)elems->ml_basic, elems->ml_basic_len)) return; common_size = ieee80211_mle_common_size((u8 *)elems->ml_basic); subelems = (u8 *)elems->ml_basic + common_size; subelems_len = elems->ml_basic_len - common_size; for_each_element_id(sub, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, subelems, subelems_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; struct ieee80211_link_data *link; ssize_t len; if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, sub->datalen)) continue; link_id = le16_get_bits(prof->control, IEEE80211_MLE_STA_CONTROL_LINK_ID); /* need a valid link ID, but also not our own, both AP bugs */ if (link_id == reporting_link_id || link_id >= IEEE80211_MLD_MAX_NUM_LINKS) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; len = cfg80211_defragment_element(sub, subelems, subelems_len, NULL, 0, IEEE80211_MLE_SUBELEM_FRAGMENT); if (WARN_ON(len < 0)) continue; sta_profiles[link_id] = sub; sta_profiles_len[link_id] = len; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_mle_per_sta_profile *prof; struct ieee802_11_elems *prof_elems; struct ieee80211_link_data *link; ssize_t len; if (link_id == reporting_link_id) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; if (!sta_profiles[link_id]) { prof_elems = NULL; goto handle; } /* we can defragment in-place, won't use the buffer again */ len = cfg80211_defragment_element(sta_profiles[link_id], subelems, subelems_len, (void *)sta_profiles[link_id], sta_profiles_len[link_id], IEEE80211_MLE_SUBELEM_FRAGMENT); if (WARN_ON(len != sta_profiles_len[link_id])) continue; prof = (void *)sta_profiles[link_id]; prof_elems = ieee802_11_parse_elems(prof->variable + (prof->sta_info_len - 1), len - (prof->sta_info_len - 1), false, NULL); /* memory allocation failed - let's hope that's transient */ if (!prof_elems) continue; handle: /* * FIXME: the timings here are obviously incorrect, * but only older Intel drivers seem to care, and * those don't have MLO. If you really need this, * the problem is having to calculate it with the * TSF offset etc. The device_timestamp is still * correct, of course. */ ieee80211_sta_process_chanswitch(link, 0, 0, elems, prof_elems, IEEE80211_CSA_SOURCE_OTHER_LINK); kfree(prof_elems); } } static bool ieee80211_mgd_ssid_mismatch(struct ieee80211_sub_if_data *sdata, const struct ieee802_11_elems *elems) { struct ieee80211_vif_cfg *cfg = &sdata->vif.cfg; static u8 zero_ssid[IEEE80211_MAX_SSID_LEN]; if (!elems->ssid) return false; /* hidden SSID: zero length */ if (elems->ssid_len == 0) return false; if (elems->ssid_len != cfg->ssid_len) return true; /* hidden SSID: zeroed out */ if (!memcmp(elems->ssid, zero_ssid, elems->ssid_len)) return false; return memcmp(elems->ssid, cfg->ssid, cfg->ssid_len); } static void ieee80211_rx_mgmt_beacon(struct ieee80211_link_data *link, struct ieee80211_hdr *hdr, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; struct ieee80211_mgmt *mgmt = (void *) hdr; size_t baselen; struct ieee802_11_elems *elems; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; struct link_sta_info *link_sta; struct sta_info *sta; u64 changed = 0; bool erp_valid; u8 erp_value = 0; u32 ncrc = 0; u8 *bssid, *variable = mgmt->u.beacon.variable; u8 deauth_buf[IEEE80211_DEAUTH_FRAME_LEN]; struct ieee80211_elems_parse_params parse_params = { .mode = link->u.mgd.conn.mode, .link_id = -1, .from_ap = true, }; lockdep_assert_wiphy(local->hw.wiphy); /* Process beacon from the current BSS */ bssid = ieee80211_get_bssid(hdr, len, sdata->vif.type); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { struct ieee80211_ext *ext = (void *) mgmt; if (ieee80211_is_s1g_short_beacon(ext->frame_control)) variable = ext->u.s1g_short_beacon.variable; else variable = ext->u.s1g_beacon.variable; } baselen = (u8 *) variable - (u8 *) mgmt; if (baselen > len) return; parse_params.start = variable; parse_params.len = len - baselen; rcu_read_lock(); chanctx_conf = rcu_dereference(bss_conf->chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return; } if (ieee80211_rx_status_to_khz(rx_status) != ieee80211_channel_to_khz(chanctx_conf->def.chan)) { rcu_read_unlock(); return; } chan = chanctx_conf->def.chan; rcu_read_unlock(); if (ifmgd->assoc_data && ifmgd->assoc_data->need_beacon && !WARN_ON(ieee80211_vif_is_mld(&sdata->vif)) && ieee80211_rx_our_beacon(bssid, ifmgd->assoc_data->link[0].bss)) { parse_params.bss = ifmgd->assoc_data->link[0].bss; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (elems->dtim_period) link->u.mgd.dtim_period = elems->dtim_period; link->u.mgd.have_beacon = true; ifmgd->assoc_data->need_beacon = false; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) && !ieee80211_is_s1g_beacon(hdr->frame_control)) { bss_conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); bss_conf->sync_device_ts = rx_status->device_timestamp; bss_conf->sync_dtim_count = elems->dtim_count; } if (elems->mbssid_config_ie) bss_conf->profile_periodicity = elems->mbssid_config_ie->profile_periodicity; else bss_conf->profile_periodicity = 0; if (elems->ext_capab_len >= 11 && (elems->ext_capab[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) bss_conf->ema_ap = true; else bss_conf->ema_ap = false; /* continue assoc process */ ifmgd->assoc_data->timeout = jiffies; ifmgd->assoc_data->timeout_started = true; run_again(sdata, ifmgd->assoc_data->timeout); kfree(elems); return; } if (!ifmgd->associated || !ieee80211_rx_our_beacon(bssid, bss_conf->bss)) return; bssid = link->u.mgd.bssid; if (!(rx_status->flag & RX_FLAG_NO_SIGNAL_VAL)) ieee80211_handle_beacon_sig(link, ifmgd, bss_conf, local, rx_status); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) { mlme_dbg_ratelimited(sdata, "cancelling AP probe due to a received beacon\n"); ieee80211_reset_ap_probe(sdata); } /* * Push the beacon loss detection into the future since * we are processing a beacon from the AP just now. */ ieee80211_sta_reset_beacon_monitor(sdata); /* TODO: CRC urrently not calculated on S1G Beacon Compatibility * element (which carries the beacon interval). Don't forget to add a * bit to care_about_ies[] above if mac80211 is interested in a * changing S1G element. */ if (!ieee80211_is_s1g_beacon(hdr->frame_control)) ncrc = crc32_be(0, (void *)&mgmt->u.beacon.beacon_int, 4); parse_params.bss = bss_conf->bss; parse_params.filter = care_about_ies; parse_params.crc = ncrc; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; if (rx_status->flag & RX_FLAG_DECRYPTED && ieee80211_mgd_ssid_mismatch(sdata, elems)) { sdata_info(sdata, "SSID mismatch for AP %pM, disconnect\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); return; } ncrc = elems->crc; if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_check_tim(elems->tim, elems->tim_len, vif_cfg->aid)) { if (local->hw.conf.dynamic_ps_timeout > 0) { if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_send_nullfunc(local, sdata, false); } else if (!local->pspolling && sdata->u.mgd.powersave) { local->pspolling = true; /* * Here is assumed that the driver will be * able to send ps-poll frame and receive a * response even though power save mode is * enabled, but some drivers might require * to disable power save here. This needs * to be investigated. */ ieee80211_send_pspoll(local, sdata); } } if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { struct ieee80211_p2p_noa_attr noa = {}; int ret; ret = cfg80211_get_p2p_attr(variable, len - baselen, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &noa, sizeof(noa)); if (ret >= 2) { if (link->u.mgd.p2p_noa_index != noa.index) { /* valid noa_attr and index changed */ link->u.mgd.p2p_noa_index = noa.index; memcpy(&bss_conf->p2p_noa_attr, &noa, sizeof(noa)); changed |= BSS_CHANGED_P2P_PS; /* * make sure we update all information, the CRC * mechanism doesn't look at P2P attributes. */ link->u.mgd.beacon_crc_valid = false; } } else if (link->u.mgd.p2p_noa_index != -1) { /* noa_attr not found and we had valid noa_attr before */ link->u.mgd.p2p_noa_index = -1; memset(&bss_conf->p2p_noa_attr, 0, sizeof(bss_conf->p2p_noa_attr)); changed |= BSS_CHANGED_P2P_PS; link->u.mgd.beacon_crc_valid = false; } } /* * Update beacon timing and dtim count on every beacon appearance. This * will allow the driver to use the most updated values. Do it before * comparing this one with last received beacon. * IMPORTANT: These parameters would possibly be out of sync by the time * the driver will use them. The synchronized view is currently * guaranteed only in certain callbacks. */ if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) && !ieee80211_is_s1g_beacon(hdr->frame_control)) { bss_conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); bss_conf->sync_device_ts = rx_status->device_timestamp; bss_conf->sync_dtim_count = elems->dtim_count; } if ((ncrc == link->u.mgd.beacon_crc && link->u.mgd.beacon_crc_valid) || ieee80211_is_s1g_short_beacon(mgmt->frame_control)) goto free; link->u.mgd.beacon_crc = ncrc; link->u.mgd.beacon_crc_valid = true; ieee80211_rx_bss_info(link, mgmt, len, rx_status); ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, IEEE80211_CSA_SOURCE_BEACON); /* note that after this elems->ml_basic can no longer be used fully */ ieee80211_mgd_check_cross_link_csa(sdata, rx_status->link_id, elems); ieee80211_mgd_update_bss_param_ch_cnt(sdata, bss_conf, elems); if (!link->u.mgd.disable_wmm_tracking && ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) changed |= BSS_CHANGED_QOS; /* * If we haven't had a beacon before, tell the driver about the * DTIM period (and beacon timing if desired) now. */ if (!link->u.mgd.have_beacon) { /* a few bogus AP send dtim_period = 0 or no TIM IE */ bss_conf->dtim_period = elems->dtim_period ?: 1; changed |= BSS_CHANGED_BEACON_INFO; link->u.mgd.have_beacon = true; ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); } if (elems->erp_info) { erp_valid = true; erp_value = elems->erp_info[0]; } else { erp_valid = false; } if (!ieee80211_is_s1g_beacon(hdr->frame_control)) changed |= ieee80211_handle_bss_capability(link, le16_to_cpu(mgmt->u.beacon.capab_info), erp_valid, erp_value); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) { goto free; } link_sta = rcu_dereference_protected(sta->link[link->link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) { goto free; } if (WARN_ON(!bss_conf->chanreq.oper.chan)) goto free; sband = local->hw.wiphy->bands[bss_conf->chanreq.oper.chan->band]; changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (ieee80211_config_bw(link, elems, true, &changed, "beacon")) { ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, true, deauth_buf); ieee80211_report_disconnect(sdata, deauth_buf, sizeof(deauth_buf), true, WLAN_REASON_DEAUTH_LEAVING, false); goto free; } if (elems->opmode_notif) ieee80211_vht_handle_opmode(sdata, link_sta, *elems->opmode_notif, rx_status->band); changed |= ieee80211_handle_pwr_constr(link, chan, mgmt, elems->country_elem, elems->country_elem_len, elems->pwr_constr_elem, elems->cisco_dtpc_elem); ieee80211_ml_reconfiguration(sdata, elems); ieee80211_process_adv_ttlm(sdata, elems, le64_to_cpu(mgmt->u.beacon.timestamp)); ieee80211_link_info_change_notify(sdata, link, changed); free: kfree(elems); } static void ieee80211_apply_neg_ttlm(struct ieee80211_sub_if_data *sdata, struct ieee80211_neg_ttlm neg_ttlm) { u16 new_active_links, new_dormant_links, new_suspended_links, map = 0; u8 i; for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) map |= neg_ttlm.downlink[i] | neg_ttlm.uplink[i]; /* If there is an active TTLM, unset previously suspended links */ if (sdata->vif.neg_ttlm.valid) sdata->vif.dormant_links &= ~sdata->vif.suspended_links; /* exclude links that are already disabled by advertised TTLM */ new_active_links = map & sdata->vif.valid_links & ~sdata->vif.dormant_links; new_suspended_links = (~map & sdata->vif.valid_links) & ~sdata->vif.dormant_links; new_dormant_links = sdata->vif.dormant_links | new_suspended_links; if (ieee80211_ttlm_set_links(sdata, new_active_links, new_dormant_links, new_suspended_links)) return; sdata->vif.neg_ttlm = neg_ttlm; sdata->vif.neg_ttlm.valid = true; } static void ieee80211_neg_ttlm_timeout_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.neg_ttlm_timeout_work.work); sdata_info(sdata, "No negotiated TTLM response from AP, disconnecting.\n"); __ieee80211_disconnect(sdata); } static void ieee80211_neg_ttlm_add_suggested_map(struct sk_buff *skb, struct ieee80211_neg_ttlm *neg_ttlm) { u8 i, direction[IEEE80211_TTLM_MAX_CNT]; if (memcmp(neg_ttlm->downlink, neg_ttlm->uplink, sizeof(neg_ttlm->downlink))) { direction[0] = IEEE80211_TTLM_DIRECTION_DOWN; direction[1] = IEEE80211_TTLM_DIRECTION_UP; } else { direction[0] = IEEE80211_TTLM_DIRECTION_BOTH; } for (i = 0; i < ARRAY_SIZE(direction); i++) { u8 tid, len, map_ind = 0, *len_pos, *map_ind_pos, *pos; __le16 map; len = sizeof(struct ieee80211_ttlm_elem) + 1 + 1; pos = skb_put(skb, len + 2); *pos++ = WLAN_EID_EXTENSION; len_pos = pos++; *pos++ = WLAN_EID_EXT_TID_TO_LINK_MAPPING; *pos++ = direction[i]; map_ind_pos = pos++; for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { map = direction[i] == IEEE80211_TTLM_DIRECTION_UP ? cpu_to_le16(neg_ttlm->uplink[tid]) : cpu_to_le16(neg_ttlm->downlink[tid]); if (!map) continue; len += 2; map_ind |= BIT(tid); skb_put_data(skb, &map, sizeof(map)); } *map_ind_pos = map_ind; *len_pos = len; if (direction[i] == IEEE80211_TTLM_DIRECTION_BOTH) break; } } static void ieee80211_send_neg_ttlm_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_neg_ttlm *neg_ttlm, u8 dialog_token) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_req); int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 + 2 * 2 * IEEE80211_TTLM_NUM_TIDS; skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len); if (!skb) return; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_req.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_REQ; mgmt->u.action.u.ttlm_req.dialog_token = dialog_token; ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm); ieee80211_tx_skb(sdata, skb); } int ieee80211_req_neg_ttlm(struct ieee80211_sub_if_data *sdata, struct cfg80211_ttlm_params *params) { struct ieee80211_neg_ttlm neg_ttlm = {}; u8 i; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->vif.cfg.mld_capa_op & IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP)) return -EINVAL; for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) { if ((params->dlink[i] & ~sdata->vif.valid_links) || (params->ulink[i] & ~sdata->vif.valid_links)) return -EINVAL; neg_ttlm.downlink[i] = params->dlink[i]; neg_ttlm.uplink[i] = params->ulink[i]; } if (drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm) != NEG_TTLM_RES_ACCEPT) return -EINVAL; ieee80211_apply_neg_ttlm(sdata, neg_ttlm); sdata->u.mgd.dialog_token_alloc++; ieee80211_send_neg_ttlm_req(sdata, &sdata->vif.neg_ttlm, sdata->u.mgd.dialog_token_alloc); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work); wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work, IEEE80211_NEG_TTLM_REQ_TIMEOUT); return 0; } static void ieee80211_send_neg_ttlm_res(struct ieee80211_sub_if_data *sdata, enum ieee80211_neg_ttlm_res ttlm_res, u8 dialog_token, struct ieee80211_neg_ttlm *neg_ttlm) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_res); int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 + 2 * 2 * IEEE80211_TTLM_NUM_TIDS; skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len); if (!skb) return; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_res.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_RES; mgmt->u.action.u.ttlm_res.dialog_token = dialog_token; switch (ttlm_res) { default: WARN_ON(1); fallthrough; case NEG_TTLM_RES_REJECT: mgmt->u.action.u.ttlm_res.status_code = WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING; break; case NEG_TTLM_RES_ACCEPT: mgmt->u.action.u.ttlm_res.status_code = WLAN_STATUS_SUCCESS; break; case NEG_TTLM_RES_SUGGEST_PREFERRED: mgmt->u.action.u.ttlm_res.status_code = WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED; ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm); break; } ieee80211_tx_skb(sdata, skb); } static int ieee80211_parse_neg_ttlm(struct ieee80211_sub_if_data *sdata, const struct ieee80211_ttlm_elem *ttlm, struct ieee80211_neg_ttlm *neg_ttlm, u8 *direction) { u8 control, link_map_presence, map_size, tid; u8 *pos; /* The element size was already validated in * ieee80211_tid_to_link_map_size_ok() */ pos = (void *)ttlm->optional; control = ttlm->control; /* mapping switch time and expected duration fields are not expected * in case of negotiated TTLM */ if (control & (IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT | IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)) { mlme_dbg(sdata, "Invalid TTLM element in negotiated TTLM request\n"); return -EINVAL; } if (control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) { for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { neg_ttlm->downlink[tid] = sdata->vif.valid_links; neg_ttlm->uplink[tid] = sdata->vif.valid_links; } *direction = IEEE80211_TTLM_DIRECTION_BOTH; return 0; } *direction = u8_get_bits(control, IEEE80211_TTLM_CONTROL_DIRECTION); if (*direction != IEEE80211_TTLM_DIRECTION_DOWN && *direction != IEEE80211_TTLM_DIRECTION_UP && *direction != IEEE80211_TTLM_DIRECTION_BOTH) return -EINVAL; link_map_presence = *pos; pos++; if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) map_size = 1; else map_size = 2; for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { u16 map; if (link_map_presence & BIT(tid)) { map = ieee80211_get_ttlm(map_size, pos); if (!map) { mlme_dbg(sdata, "No active links for TID %d", tid); return -EINVAL; } } else { map = 0; } switch (*direction) { case IEEE80211_TTLM_DIRECTION_BOTH: neg_ttlm->downlink[tid] = map; neg_ttlm->uplink[tid] = map; break; case IEEE80211_TTLM_DIRECTION_DOWN: neg_ttlm->downlink[tid] = map; break; case IEEE80211_TTLM_DIRECTION_UP: neg_ttlm->uplink[tid] = map; break; default: return -EINVAL; } pos += map_size; } return 0; } void ieee80211_process_neg_ttlm_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { u8 dialog_token, direction[IEEE80211_TTLM_MAX_CNT] = {}, i; size_t ies_len; enum ieee80211_neg_ttlm_res ttlm_res = NEG_TTLM_RES_ACCEPT; struct ieee802_11_elems *elems = NULL; struct ieee80211_neg_ttlm neg_ttlm = {}; BUILD_BUG_ON(ARRAY_SIZE(direction) != ARRAY_SIZE(elems->ttlm)); if (!ieee80211_vif_is_mld(&sdata->vif)) return; dialog_token = mgmt->u.action.u.ttlm_req.dialog_token; ies_len = len - offsetof(struct ieee80211_mgmt, u.action.u.ttlm_req.variable); elems = ieee802_11_parse_elems(mgmt->u.action.u.ttlm_req.variable, ies_len, true, NULL); if (!elems) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } for (i = 0; i < elems->ttlm_num; i++) { if (ieee80211_parse_neg_ttlm(sdata, elems->ttlm[i], &neg_ttlm, &direction[i]) || (direction[i] == IEEE80211_TTLM_DIRECTION_BOTH && elems->ttlm_num != 1)) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } } if (!elems->ttlm_num || (elems->ttlm_num == 2 && direction[0] == direction[1])) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) { if ((neg_ttlm.downlink[i] && (neg_ttlm.downlink[i] & ~sdata->vif.valid_links)) || (neg_ttlm.uplink[i] && (neg_ttlm.uplink[i] & ~sdata->vif.valid_links))) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } } ttlm_res = drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm); if (ttlm_res != NEG_TTLM_RES_ACCEPT) goto out; ieee80211_apply_neg_ttlm(sdata, neg_ttlm); out: kfree(elems); ieee80211_send_neg_ttlm_res(sdata, ttlm_res, dialog_token, &neg_ttlm); } void ieee80211_process_neg_ttlm_res(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { if (!ieee80211_vif_is_mld(&sdata->vif) || mgmt->u.action.u.ttlm_req.dialog_token != sdata->u.mgd.dialog_token_alloc) return; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work); /* MLD station sends a TID to link mapping request, mainly to handle * BTM (BSS transition management) request, in which case it needs to * restrict the active links set. * In this case it's not expected that the MLD AP will reject the * negotiated TTLM request. * This can be better implemented in the future, to handle request * rejections. */ if (mgmt->u.action.u.ttlm_res.status_code != WLAN_STATUS_SUCCESS) __ieee80211_disconnect(sdata); } static void ieee80211_teardown_ttlm_work(struct wiphy *wiphy, struct wiphy_work *work) { u16 new_dormant_links; struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.teardown_ttlm_work); if (!sdata->vif.neg_ttlm.valid) return; memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); new_dormant_links = sdata->vif.dormant_links & ~sdata->vif.suspended_links; sdata->vif.suspended_links = 0; ieee80211_vif_set_links(sdata, sdata->vif.valid_links, new_dormant_links); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_TTLM | BSS_CHANGED_MLD_VALID_LINKS); } void ieee80211_send_teardown_neg_ttlm(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int frame_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_tear_down); struct ieee80211_tx_info *info; skb = dev_alloc_skb(local->hw.extra_tx_headroom + frame_len); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, frame_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_tear_down.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; info->status_data = IEEE80211_STATUS_TYPE_NEG_TTLM; ieee80211_tx_skb(sdata, skb); } EXPORT_SYMBOL(ieee80211_send_teardown_neg_ttlm); void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee80211_hdr *hdr; u16 fc; lockdep_assert_wiphy(sdata->local->hw.wiphy); rx_status = (struct ieee80211_rx_status *) skb->cb; hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_S1G_BEACON: ieee80211_rx_mgmt_beacon(link, hdr, skb->len, rx_status); break; } } void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee802_11_elems *elems; struct ieee80211_mgmt *mgmt; u16 fc; int ies_len; lockdep_assert_wiphy(sdata->local->hw.wiphy); rx_status = (struct ieee80211_rx_status *) skb->cb; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); if (rx_status->link_valid) { link = sdata_dereference(sdata->link[rx_status->link_id], sdata); if (!link) return; } switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_beacon(link, (void *)mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_RESP: ieee80211_rx_mgmt_probe_resp(link, skb); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DISASSOC: ieee80211_rx_mgmt_disassoc(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ASSOC_RESP: case IEEE80211_STYPE_REASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: if (!sdata->u.mgd.associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) break; switch (mgmt->u.action.category) { case WLAN_CATEGORY_SPECTRUM_MGMT: ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); if (ies_len < 0) break; /* CSA IE cannot be overridden, no need for BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) { enum ieee80211_csa_source src = IEEE80211_CSA_SOURCE_PROT_ACTION; ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, src); } kfree(elems); break; case WLAN_CATEGORY_PUBLIC: case WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION: ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.ext_chan_switch.variable); if (ies_len < 0) break; /* * extended CSA IE can't be overridden, no need for * BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.ext_chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) { enum ieee80211_csa_source src; if (mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) src = IEEE80211_CSA_SOURCE_PROT_ACTION; else src = IEEE80211_CSA_SOURCE_UNPROT_ACTION; /* for the handling code pretend it was an IE */ elems->ext_chansw_ie = &mgmt->u.action.u.ext_chan_switch.data; ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, src); } kfree(elems); break; } break; } } static void ieee80211_sta_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_sta_connection_lost(struct ieee80211_sub_if_data *sdata, u8 reason, bool tx) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, reason, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, reason, false); } static int ieee80211_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data = ifmgd->auth_data; u32 tx_flags = 0; u16 trans = 1; u16 status = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON_ONCE(!auth_data)) return -EINVAL; auth_data->tries++; if (auth_data->tries > IEEE80211_AUTH_MAX_TRIES) { sdata_info(sdata, "authentication with %pM timed out\n", auth_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, auth_data->bss); return -ETIMEDOUT; } if (auth_data->algorithm == WLAN_AUTH_SAE) info.duration = jiffies_to_msecs(IEEE80211_AUTH_TIMEOUT_SAE); info.link_id = auth_data->link_id; drv_mgd_prepare_tx(local, sdata, &info); sdata_info(sdata, "send auth to %pM (try %d/%d)\n", auth_data->ap_addr, auth_data->tries, IEEE80211_AUTH_MAX_TRIES); auth_data->expected_transaction = 2; if (auth_data->algorithm == WLAN_AUTH_SAE) { trans = auth_data->sae_trans; status = auth_data->sae_status; auth_data->expected_transaction = trans; } if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, trans, auth_data->algorithm, status, auth_data->data, auth_data->data_len, auth_data->ap_addr, auth_data->ap_addr, NULL, 0, 0, tx_flags); if (tx_flags == 0) { if (auth_data->algorithm == WLAN_AUTH_SAE) auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT; } else { auth_data->timeout = round_jiffies_up(jiffies + IEEE80211_AUTH_TIMEOUT_LONG); } auth_data->timeout_started = true; run_again(sdata, auth_data->timeout); return 0; } static int ieee80211_do_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; struct ieee80211_local *local = sdata->local; int ret; lockdep_assert_wiphy(sdata->local->hw.wiphy); assoc_data->tries++; assoc_data->comeback = false; if (assoc_data->tries > IEEE80211_ASSOC_MAX_TRIES) { sdata_info(sdata, "association with %pM timed out\n", assoc_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, assoc_data->link[assoc_data->assoc_link_id].bss); return -ETIMEDOUT; } sdata_info(sdata, "associate with %pM (try %d/%d)\n", assoc_data->ap_addr, assoc_data->tries, IEEE80211_ASSOC_MAX_TRIES); ret = ieee80211_send_assoc(sdata); if (ret) return ret; if (!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT; assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } else { assoc_data->timeout = round_jiffies_up(jiffies + IEEE80211_ASSOC_TIMEOUT_LONG); assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } return 0; } void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked) { struct ieee80211_local *local = sdata->local; sdata->u.mgd.status_fc = fc; sdata->u.mgd.status_acked = acked; sdata->u.mgd.status_received = true; wiphy_work_queue(local->hw.wiphy, &sdata->work); } void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (ifmgd->status_received) { __le16 fc = ifmgd->status_fc; bool status_acked = ifmgd->status_acked; ifmgd->status_received = false; if (ifmgd->auth_data && ieee80211_is_auth(fc)) { if (status_acked) { if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE) ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SHORT; run_again(sdata, ifmgd->auth_data->timeout); } else { ifmgd->auth_data->timeout = jiffies - 1; } ifmgd->auth_data->timeout_started = true; } else if (ifmgd->assoc_data && !ifmgd->assoc_data->comeback && (ieee80211_is_assoc_req(fc) || ieee80211_is_reassoc_req(fc))) { /* * Update association timeout based on the TX status * for the (Re)Association Request frame. Skip this if * we have already processed a (Re)Association Response * frame that indicated need for association comeback * at a specific time in the future. This could happen * if the TX status information is delayed enough for * the response to be received and processed first. */ if (status_acked) { ifmgd->assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT_SHORT; run_again(sdata, ifmgd->assoc_data->timeout); } else { ifmgd->assoc_data->timeout = jiffies - 1; } ifmgd->assoc_data->timeout_started = true; } } if (ifmgd->auth_data && ifmgd->auth_data->timeout_started && time_after(jiffies, ifmgd->auth_data->timeout)) { if (ifmgd->auth_data->done || ifmgd->auth_data->waiting) { /* * ok ... we waited for assoc or continuation but * userspace didn't do it, so kill the auth data */ ieee80211_destroy_auth_data(sdata, false); } else if (ieee80211_auth(sdata)) { u8 ap_addr[ETH_ALEN]; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, .u.mlme.status = MLME_TIMEOUT, }; memcpy(ap_addr, ifmgd->auth_data->ap_addr, ETH_ALEN); ieee80211_destroy_auth_data(sdata, false); cfg80211_auth_timeout(sdata->dev, ap_addr); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->auth_data && ifmgd->auth_data->timeout_started) run_again(sdata, ifmgd->auth_data->timeout); if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started && time_after(jiffies, ifmgd->assoc_data->timeout)) { if ((ifmgd->assoc_data->need_beacon && !sdata->deflink.u.mgd.have_beacon) || ieee80211_do_assoc(sdata)) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, .u.mlme.status = MLME_TIMEOUT, }; ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started) run_again(sdata, ifmgd->assoc_data->timeout); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL && ifmgd->associated) { u8 *bssid = sdata->deflink.u.mgd.bssid; int max_tries; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) max_tries = max_nullfunc_tries; else max_tries = max_probe_tries; /* ACK received for nullfunc probing frame */ if (!ifmgd->probe_send_count) ieee80211_reset_ap_probe(sdata); else if (ifmgd->nullfunc_failed) { if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, try %d/%i\n", bssid, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, disconnecting.\n", bssid); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } else if (time_is_after_jiffies(ifmgd->probe_timeout)) run_again(sdata, ifmgd->probe_timeout); else if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { mlme_dbg(sdata, "Failed to send nullfunc to AP %pM after %dms, disconnecting\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } else if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No probe response from AP %pM after %dms, try %d/%i\n", bssid, probe_wait_ms, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { /* * We actually lost the connection ... or did we? * Let's make sure! */ mlme_dbg(sdata, "No probe response from AP %pM after %dms, disconnecting.\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } } static void ieee80211_sta_bcn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.bcn_mon_timer); if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa.waiting_bcn) return; if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; sdata->u.mgd.connection_loss = false; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.beacon_connection_loss_work); } static void ieee80211_sta_conn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.conn_mon_timer); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; struct sta_info *sta; unsigned long timeout; if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa.waiting_bcn) return; sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return; timeout = sta->deflink.status_stats.last_ack; if (time_before(sta->deflink.status_stats.last_ack, sta->deflink.rx_stats.last_rx)) timeout = sta->deflink.rx_stats.last_rx; timeout += IEEE80211_CONNECTION_IDLE_TIME; /* If timeout is after now, then update timer to fire at * the later date, but do not actually probe at this time. */ if (time_is_after_jiffies(timeout)) { mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(timeout)); return; } wiphy_work_queue(local->hw.wiphy, &sdata->u.mgd.monitor_work); } static void ieee80211_sta_monitor_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.monitor_work); ieee80211_mgd_probe_ap(sdata, false); } static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { __ieee80211_stop_poll(sdata); /* let's probe the connection once */ if (!ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.monitor_work); } } #ifdef CONFIG_PM void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (ifmgd->auth_data || ifmgd->assoc_data) { const u8 *ap_addr = ifmgd->auth_data ? ifmgd->auth_data->ap_addr : ifmgd->assoc_data->ap_addr; /* * If we are trying to authenticate / associate while suspending, * cfg80211 won't know and won't actually abort those attempts, * thus we need to do that ourselves. */ ieee80211_send_deauth_disassoc(sdata, ap_addr, ap_addr, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, false, frame_buf); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); cfg80211_tx_mlme_mgmt(sdata->dev, frame_buf, IEEE80211_DEAUTH_FRAME_LEN, false); } /* This is a bit of a hack - we should find a better and more generic * solution to this. Normally when suspending, cfg80211 will in fact * deauthenticate. However, it doesn't (and cannot) stop an ongoing * auth (not so important) or assoc (this is the problem) process. * * As a consequence, it can happen that we are in the process of both * associating and suspending, and receive an association response * after cfg80211 has checked if it needs to disconnect, but before * we actually set the flag to drop incoming frames. This will then * cause the workqueue flush to process the association response in * the suspend, resulting in a successful association just before it * tries to remove the interface from the driver, which now though * has a channel context assigned ... this results in issues. * * To work around this (for now) simply deauth here again if we're * now connected. */ if (ifmgd->associated && !sdata->local->wowlan) { u8 bssid[ETH_ALEN]; struct cfg80211_deauth_request req = { .reason_code = WLAN_REASON_DEAUTH_LEAVING, .bssid = bssid, }; memcpy(bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); ieee80211_mgd_deauth(sdata, &req); } } #endif void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!ifmgd->associated) return; if (sdata->flags & IEEE80211_SDATA_DISCONNECT_RESUME) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_RESUME; mlme_dbg(sdata, "driver requested disconnect after resume\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); return; } if (sdata->flags & IEEE80211_SDATA_DISCONNECT_HW_RESTART) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_HW_RESTART; mlme_dbg(sdata, "driver requested disconnect after hardware restart\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); return; } } static void ieee80211_request_smps_mgd_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.request_smps_work); __ieee80211_request_smps_mgd(link->sdata, link, link->u.mgd.driver_smps_mode); } static void ieee80211_ml_sta_reconf_timeout(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.reconf.wk.work); if (!sdata->u.mgd.reconf.added_links && !sdata->u.mgd.reconf.removed_links) return; sdata_info(sdata, "mlo: reconf: timeout: added=0x%x, removed=0x%x\n", sdata->u.mgd.reconf.added_links, sdata->u.mgd.reconf.removed_links); __ieee80211_disconnect(sdata); } /* interface setup */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; wiphy_work_init(&ifmgd->monitor_work, ieee80211_sta_monitor_work); wiphy_work_init(&ifmgd->beacon_connection_loss_work, ieee80211_beacon_connection_loss_work); wiphy_work_init(&ifmgd->csa_connection_drop_work, ieee80211_csa_connection_drop_work); wiphy_delayed_work_init(&ifmgd->tdls_peer_del_work, ieee80211_tdls_peer_del_work); wiphy_delayed_work_init(&ifmgd->ml_reconf_work, ieee80211_ml_reconf_work); wiphy_delayed_work_init(&ifmgd->reconf.wk, ieee80211_ml_sta_reconf_timeout); timer_setup(&ifmgd->timer, ieee80211_sta_timer, 0); timer_setup(&ifmgd->bcn_mon_timer, ieee80211_sta_bcn_mon_timer, 0); timer_setup(&ifmgd->conn_mon_timer, ieee80211_sta_conn_mon_timer, 0); wiphy_delayed_work_init(&ifmgd->tx_tspec_wk, ieee80211_sta_handle_tspec_ac_params_wk); wiphy_delayed_work_init(&ifmgd->ttlm_work, ieee80211_tid_to_link_map_work); wiphy_delayed_work_init(&ifmgd->neg_ttlm_timeout_work, ieee80211_neg_ttlm_timeout_work); wiphy_work_init(&ifmgd->teardown_ttlm_work, ieee80211_teardown_ttlm_work); ifmgd->flags = 0; ifmgd->powersave = sdata->wdev.ps; ifmgd->uapsd_queues = sdata->local->hw.uapsd_queues; ifmgd->uapsd_max_sp_len = sdata->local->hw.uapsd_max_sp_len; /* Setup TDLS data */ spin_lock_init(&ifmgd->teardown_lock); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; ifmgd->mcast_seq_last = IEEE80211_SN_MODULO; } static void ieee80211_recalc_smps_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.recalc_smps); ieee80211_recalc_smps(link->sdata, link); } void ieee80211_mgd_setup_link(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; link->u.mgd.p2p_noa_index = -1; link->conf->bssid = link->u.mgd.bssid; link->smps_mode = IEEE80211_SMPS_OFF; wiphy_work_init(&link->u.mgd.request_smps_work, ieee80211_request_smps_mgd_work); wiphy_work_init(&link->u.mgd.recalc_smps, ieee80211_recalc_smps_work); if (local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS) link->u.mgd.req_smps = IEEE80211_SMPS_AUTOMATIC; else link->u.mgd.req_smps = IEEE80211_SMPS_OFF; wiphy_delayed_work_init(&link->u.mgd.csa.switch_work, ieee80211_csa_switch_work); ieee80211_clear_tpe(&link->conf->tpe); if (sdata->u.mgd.assoc_data) ether_addr_copy(link->conf->addr, sdata->u.mgd.assoc_data->link[link_id].addr); else if (sdata->u.mgd.reconf.add_links_data) ether_addr_copy(link->conf->addr, sdata->u.mgd.reconf.add_links_data->link[link_id].addr); else if (!is_valid_ether_addr(link->conf->addr)) eth_random_addr(link->conf->addr); } /* scan finished notification */ void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; /* Restart STA timers */ rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (ieee80211_sdata_running(sdata)) ieee80211_restart_sta_timer(sdata); } rcu_read_unlock(); } static int ieee80211_prep_connection(struct ieee80211_sub_if_data *sdata, struct cfg80211_bss *cbss, s8 link_id, const u8 *ap_mld_addr, bool assoc, struct ieee80211_conn_settings *conn, bool override, unsigned long *userspace_selectors) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss *bss = (void *)cbss->priv; struct sta_info *new_sta = NULL; struct ieee80211_link_data *link; bool have_sta = false; bool mlo; int err; if (link_id >= 0) { mlo = true; if (WARN_ON(!ap_mld_addr)) return -EINVAL; err = ieee80211_vif_set_links(sdata, BIT(link_id), 0); } else { if (WARN_ON(ap_mld_addr)) return -EINVAL; ap_mld_addr = cbss->bssid; err = ieee80211_vif_set_links(sdata, 0, 0); link_id = 0; mlo = false; } if (err) return err; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) { err = -ENOLINK; goto out_err; } if (WARN_ON(!ifmgd->auth_data && !ifmgd->assoc_data)) { err = -EINVAL; goto out_err; } /* If a reconfig is happening, bail out */ if (local->in_reconfig) { err = -EBUSY; goto out_err; } if (assoc) { rcu_read_lock(); have_sta = sta_info_get(sdata, ap_mld_addr); rcu_read_unlock(); } if (!have_sta) { if (mlo) new_sta = sta_info_alloc_with_link(sdata, ap_mld_addr, link_id, cbss->bssid, GFP_KERNEL); else new_sta = sta_info_alloc(sdata, ap_mld_addr, GFP_KERNEL); if (!new_sta) { err = -ENOMEM; goto out_err; } new_sta->sta.mlo = mlo; } /* * Set up the information for the new channel before setting the * new channel. We can't - completely race-free - change the basic * rates bitmap and the channel (sband) that it refers to, but if * we set it up before we at least avoid calling into the driver's * bss_info_changed() method with invalid information (since we do * call that from changing the channel - only for IDLE and perhaps * some others, but ...). * * So to avoid that, just set up all the new information before the * channel, but tell the driver to apply it only afterwards, since * it might need the new channel for that. */ if (new_sta) { const struct cfg80211_bss_ies *ies; struct link_sta_info *link_sta; rcu_read_lock(); link_sta = rcu_dereference(new_sta->link[link_id]); if (WARN_ON(!link_sta)) { rcu_read_unlock(); sta_info_free(local, new_sta); err = -EINVAL; goto out_err; } err = ieee80211_mgd_setup_link_sta(link, new_sta, link_sta, cbss); if (err) { rcu_read_unlock(); sta_info_free(local, new_sta); goto out_err; } memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); /* set timing information */ link->conf->beacon_int = cbss->beacon_interval; ies = rcu_dereference(cbss->beacon_ies); if (ies) { link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, NULL); } else if (!ieee80211_hw_check(&sdata->local->hw, TIMING_BEACON_ONLY)) { ies = rcu_dereference(cbss->proberesp_ies); /* must be non-NULL since beacon IEs were NULL */ link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_presp; link->conf->sync_dtim_count = 0; } else { link->conf->sync_tsf = 0; link->conf->sync_device_ts = 0; link->conf->sync_dtim_count = 0; } rcu_read_unlock(); } if (new_sta || override) { /* * Only set this if we're also going to calculate the AP * settings etc., otherwise this was set before in a * previous call. Note override is set to %true in assoc * if the settings were changed. */ link->u.mgd.conn = *conn; err = ieee80211_prep_channel(sdata, link, link->link_id, cbss, mlo, &link->u.mgd.conn, userspace_selectors); if (err) { if (new_sta) sta_info_free(local, new_sta); goto out_err; } /* pass out for use in assoc */ *conn = link->u.mgd.conn; } if (new_sta) { /* * tell driver about BSSID, basic rates and timing * this was set up above, before setting the channel */ ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_BSSID | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT); if (assoc) sta_info_pre_move_state(new_sta, IEEE80211_STA_AUTH); err = sta_info_insert(new_sta); new_sta = NULL; if (err) { sdata_info(sdata, "failed to insert STA entry for the AP (error %d)\n", err); goto out_release_chan; } } else WARN_ON_ONCE(!ether_addr_equal(link->u.mgd.bssid, cbss->bssid)); /* Cancel scan to ensure that nothing interferes with connection */ if (local->scanning) ieee80211_scan_cancel(local); return 0; out_release_chan: ieee80211_link_release_channel(link); out_err: ieee80211_vif_set_links(sdata, 0, 0); return err; } static bool ieee80211_mgd_csa_present(struct ieee80211_sub_if_data *sdata, const struct cfg80211_bss_ies *ies, u8 cur_channel, bool ignore_ecsa) { const struct element *csa_elem, *ecsa_elem; struct ieee80211_channel_sw_ie *csa = NULL; struct ieee80211_ext_chansw_ie *ecsa = NULL; if (!ies) return false; csa_elem = cfg80211_find_elem(WLAN_EID_CHANNEL_SWITCH, ies->data, ies->len); if (csa_elem && csa_elem->datalen == sizeof(*csa)) csa = (void *)csa_elem->data; ecsa_elem = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, ies->data, ies->len); if (ecsa_elem && ecsa_elem->datalen == sizeof(*ecsa)) ecsa = (void *)ecsa_elem->data; if (csa && csa->count == 0) csa = NULL; if (csa && !csa->mode && csa->new_ch_num == cur_channel) csa = NULL; if (ecsa && ecsa->count == 0) ecsa = NULL; if (ecsa && !ecsa->mode && ecsa->new_ch_num == cur_channel) ecsa = NULL; if (ignore_ecsa && ecsa) { sdata_info(sdata, "Ignoring ECSA in probe response - was considered stuck!\n"); return csa; } return csa || ecsa; } static bool ieee80211_mgd_csa_in_process(struct ieee80211_sub_if_data *sdata, struct cfg80211_bss *bss) { u8 cur_channel; bool ret; cur_channel = ieee80211_frequency_to_channel(bss->channel->center_freq); rcu_read_lock(); if (ieee80211_mgd_csa_present(sdata, rcu_dereference(bss->beacon_ies), cur_channel, false)) { ret = true; goto out; } if (ieee80211_mgd_csa_present(sdata, rcu_dereference(bss->proberesp_ies), cur_channel, bss->proberesp_ecsa_stuck)) { ret = true; goto out; } ret = false; out: rcu_read_unlock(); return ret; } static void ieee80211_parse_cfg_selectors(unsigned long *userspace_selectors, const u8 *supported_selectors, u8 supported_selectors_len) { if (supported_selectors) { for (int i = 0; i < supported_selectors_len; i++) { set_bit(supported_selectors[i], userspace_selectors); } } else { /* Assume SAE_H2E support for backward compatibility. */ set_bit(BSS_MEMBERSHIP_SELECTOR_SAE_H2E, userspace_selectors); } } /* config hooks */ int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data; struct ieee80211_conn_settings conn; struct ieee80211_link_data *link; struct ieee80211_supported_band *sband; struct ieee80211_bss *bss; u16 auth_alg; int err; bool cont_auth, wmm_used; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* prepare auth data structure */ switch (req->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: auth_alg = WLAN_AUTH_OPEN; break; case NL80211_AUTHTYPE_SHARED_KEY: if (fips_enabled) return -EOPNOTSUPP; auth_alg = WLAN_AUTH_SHARED_KEY; break; case NL80211_AUTHTYPE_FT: auth_alg = WLAN_AUTH_FT; break; case NL80211_AUTHTYPE_NETWORK_EAP: auth_alg = WLAN_AUTH_LEAP; break; case NL80211_AUTHTYPE_SAE: auth_alg = WLAN_AUTH_SAE; break; case NL80211_AUTHTYPE_FILS_SK: auth_alg = WLAN_AUTH_FILS_SK; break; case NL80211_AUTHTYPE_FILS_SK_PFS: auth_alg = WLAN_AUTH_FILS_SK_PFS; break; case NL80211_AUTHTYPE_FILS_PK: auth_alg = WLAN_AUTH_FILS_PK; break; default: return -EOPNOTSUPP; } if (ifmgd->assoc_data) return -EBUSY; if (ieee80211_mgd_csa_in_process(sdata, req->bss)) { sdata_info(sdata, "AP is in CSA process, reject auth\n"); return -EINVAL; } auth_data = kzalloc(sizeof(*auth_data) + req->auth_data_len + req->ie_len, GFP_KERNEL); if (!auth_data) return -ENOMEM; memcpy(auth_data->ap_addr, req->ap_mld_addr ?: req->bss->bssid, ETH_ALEN); auth_data->bss = req->bss; auth_data->link_id = req->link_id; if (req->auth_data_len >= 4) { if (req->auth_type == NL80211_AUTHTYPE_SAE) { __le16 *pos = (__le16 *) req->auth_data; auth_data->sae_trans = le16_to_cpu(pos[0]); auth_data->sae_status = le16_to_cpu(pos[1]); } memcpy(auth_data->data, req->auth_data + 4, req->auth_data_len - 4); auth_data->data_len += req->auth_data_len - 4; } /* Check if continuing authentication or trying to authenticate with the * same BSS that we were in the process of authenticating with and avoid * removal and re-addition of the STA entry in * ieee80211_prep_connection(). */ cont_auth = ifmgd->auth_data && req->bss == ifmgd->auth_data->bss && ifmgd->auth_data->link_id == req->link_id; if (req->ie && req->ie_len) { memcpy(&auth_data->data[auth_data->data_len], req->ie, req->ie_len); auth_data->data_len += req->ie_len; } if (req->key && req->key_len) { auth_data->key_len = req->key_len; auth_data->key_idx = req->key_idx; memcpy(auth_data->key, req->key, req->key_len); } ieee80211_parse_cfg_selectors(auth_data->userspace_selectors, req->supported_selectors, req->supported_selectors_len); auth_data->algorithm = auth_alg; /* try to authenticate/probe */ if (ifmgd->auth_data) { if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE) { auth_data->peer_confirmed = ifmgd->auth_data->peer_confirmed; } ieee80211_destroy_auth_data(sdata, cont_auth); } /* prep auth_data so we don't go into idle on disassoc */ ifmgd->auth_data = auth_data; /* If this is continuation of an ongoing SAE authentication exchange * (i.e., request to send SAE Confirm) and the peer has already * confirmed, mark authentication completed since we are about to send * out SAE Confirm. */ if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE && auth_data->peer_confirmed && auth_data->sae_trans == 2) ieee80211_mark_sta_auth(sdata); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new auth to %pM\n", sdata->vif.cfg.ap_addr, auth_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } /* needed for transmitting the auth frame(s) properly */ memcpy(sdata->vif.cfg.ap_addr, auth_data->ap_addr, ETH_ALEN); bss = (void *)req->bss->priv; wmm_used = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS); sband = local->hw.wiphy->bands[req->bss->channel->band]; ieee80211_determine_our_sta_mode_auth(sdata, sband, req, wmm_used, &conn); err = ieee80211_prep_connection(sdata, req->bss, req->link_id, req->ap_mld_addr, cont_auth, &conn, false, auth_data->userspace_selectors); if (err) goto err_clear; if (req->link_id >= 0) link = sdata_dereference(sdata->link[req->link_id], sdata); else link = &sdata->deflink; if (WARN_ON(!link)) { err = -ENOLINK; goto err_clear; } sdata_info(sdata, "authenticate with %pM (local address=%pM)\n", auth_data->ap_addr, link->conf->addr); err = ieee80211_auth(sdata); if (err) { sta_info_destroy_addr(sdata, auth_data->ap_addr); goto err_clear; } /* hold our own reference */ cfg80211_ref_bss(local->hw.wiphy, auth_data->bss); return 0; err_clear: if (!ieee80211_vif_is_mld(&sdata->vif)) { eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); ieee80211_link_release_channel(&sdata->deflink); } ifmgd->auth_data = NULL; kfree(auth_data); return err; } static void ieee80211_setup_assoc_link(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, struct cfg80211_assoc_request *req, struct ieee80211_conn_settings *conn, unsigned int link_id) { struct ieee80211_local *local = sdata->local; const struct cfg80211_bss_ies *bss_ies; struct ieee80211_supported_band *sband; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; struct ieee80211_bss *bss; cbss = assoc_data->link[link_id].bss; if (WARN_ON(!cbss)) return; bss = (void *)cbss->priv; sband = local->hw.wiphy->bands[cbss->channel->band]; if (WARN_ON(!sband)) return; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; /* for MLO connections assume advertising all rates is OK */ if (!req->ap_mld_addr) { assoc_data->supp_rates = bss->supp_rates; assoc_data->supp_rates_len = bss->supp_rates_len; } /* copy and link elems for the STA profile */ if (req->links[link_id].elems_len) { memcpy(assoc_data->ie_pos, req->links[link_id].elems, req->links[link_id].elems_len); assoc_data->link[link_id].elems = assoc_data->ie_pos; assoc_data->link[link_id].elems_len = req->links[link_id].elems_len; assoc_data->ie_pos += req->links[link_id].elems_len; } link->u.mgd.beacon_crc_valid = false; link->u.mgd.dtim_period = 0; link->u.mgd.have_beacon = false; /* override HT configuration only if the AP and we support it */ if (conn->mode >= IEEE80211_CONN_MODE_HT) { struct ieee80211_sta_ht_cap sta_ht_cap; memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap)); ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); } rcu_read_lock(); bss_ies = rcu_dereference(cbss->beacon_ies); if (bss_ies) { u8 dtim_count = 0; ieee80211_get_dtim(bss_ies, &dtim_count, &link->u.mgd.dtim_period); sdata->deflink.u.mgd.have_beacon = true; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) { link->conf->sync_tsf = bss_ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; link->conf->sync_dtim_count = dtim_count; } } else { bss_ies = rcu_dereference(cbss->ies); } if (bss_ies) { const struct element *elem; elem = cfg80211_find_ext_elem(WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION, bss_ies->data, bss_ies->len); if (elem && elem->datalen >= 3) link->conf->profile_periodicity = elem->data[2]; else link->conf->profile_periodicity = 0; elem = cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, bss_ies->data, bss_ies->len); if (elem && elem->datalen >= 11 && (elem->data[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) link->conf->ema_ap = true; else link->conf->ema_ap = false; } rcu_read_unlock(); if (bss->corrupt_data) { char *corrupt_type = "data"; if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_BEACON) { if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) corrupt_type = "beacon and probe response"; else corrupt_type = "beacon"; } else if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) { corrupt_type = "probe response"; } sdata_info(sdata, "associating to AP %pM with corrupt %s\n", cbss->bssid, corrupt_type); } if (link->u.mgd.req_smps == IEEE80211_SMPS_AUTOMATIC) { if (sdata->u.mgd.powersave) link->smps_mode = IEEE80211_SMPS_DYNAMIC; else link->smps_mode = IEEE80211_SMPS_OFF; } else { link->smps_mode = link->u.mgd.req_smps; } } static int ieee80211_mgd_get_ap_ht_vht_capa(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, int link_id) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; enum nl80211_band band = cbss->channel->band; struct ieee80211_supported_band *sband; const struct element *elem; int err; /* neither HT nor VHT elements used on 6 GHz */ if (band == NL80211_BAND_6GHZ) return 0; if (assoc_data->link[link_id].conn.mode < IEEE80211_CONN_MODE_HT) return 0; rcu_read_lock(); elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_OPERATION); if (!elem || elem->datalen < sizeof(struct ieee80211_ht_operation)) { mlme_link_id_dbg(sdata, link_id, "no HT operation on BSS %pM\n", cbss->bssid); err = -EINVAL; goto out_rcu; } assoc_data->link[link_id].ap_ht_param = ((struct ieee80211_ht_operation *)(elem->data))->ht_param; rcu_read_unlock(); if (assoc_data->link[link_id].conn.mode < IEEE80211_CONN_MODE_VHT) return 0; /* some drivers want to support VHT on 2.4 GHz even */ sband = sdata->local->hw.wiphy->bands[band]; if (!sband->vht_cap.vht_supported) return 0; rcu_read_lock(); elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); /* but even then accept it not being present on the AP */ if (!elem && band == NL80211_BAND_2GHZ) { err = 0; goto out_rcu; } if (!elem || elem->datalen < sizeof(struct ieee80211_vht_cap)) { mlme_link_id_dbg(sdata, link_id, "no VHT capa on BSS %pM\n", cbss->bssid); err = -EINVAL; goto out_rcu; } memcpy(&assoc_data->link[link_id].ap_vht_cap, elem->data, sizeof(struct ieee80211_vht_cap)); rcu_read_unlock(); return 0; out_rcu: rcu_read_unlock(); return err; } int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req) { unsigned int assoc_link_id = req->link_id < 0 ? 0 : req->link_id; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data; const struct element *ssid_elem; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; bool override, uapsd_supported; bool match_auth; int i, err; size_t size = sizeof(*assoc_data) + req->ie_len; for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) size += req->links[i].elems_len; /* FIXME: no support for 4-addr MLO yet */ if (sdata->u.mgd.use_4addr && req->link_id >= 0) return -EOPNOTSUPP; assoc_data = kzalloc(size, GFP_KERNEL); if (!assoc_data) return -ENOMEM; cbss = req->link_id < 0 ? req->bss : req->links[req->link_id].bss; if (ieee80211_mgd_csa_in_process(sdata, cbss)) { sdata_info(sdata, "AP is in CSA process, reject assoc\n"); err = -EINVAL; goto err_free; } rcu_read_lock(); ssid_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (!ssid_elem || ssid_elem->datalen > sizeof(assoc_data->ssid)) { rcu_read_unlock(); err = -EINVAL; goto err_free; } memcpy(assoc_data->ssid, ssid_elem->data, ssid_elem->datalen); assoc_data->ssid_len = ssid_elem->datalen; rcu_read_unlock(); if (req->ap_mld_addr) memcpy(assoc_data->ap_addr, req->ap_mld_addr, ETH_ALEN); else memcpy(assoc_data->ap_addr, cbss->bssid, ETH_ALEN); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new assoc to %pM\n", sdata->vif.cfg.ap_addr, assoc_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } ieee80211_parse_cfg_selectors(assoc_data->userspace_selectors, req->supported_selectors, req->supported_selectors_len); memcpy(&ifmgd->ht_capa, &req->ht_capa, sizeof(ifmgd->ht_capa)); memcpy(&ifmgd->ht_capa_mask, &req->ht_capa_mask, sizeof(ifmgd->ht_capa_mask)); memcpy(&ifmgd->vht_capa, &req->vht_capa, sizeof(ifmgd->vht_capa)); memcpy(&ifmgd->vht_capa_mask, &req->vht_capa_mask, sizeof(ifmgd->vht_capa_mask)); memcpy(&ifmgd->s1g_capa, &req->s1g_capa, sizeof(ifmgd->s1g_capa)); memcpy(&ifmgd->s1g_capa_mask, &req->s1g_capa_mask, sizeof(ifmgd->s1g_capa_mask)); /* keep some setup (AP STA, channel, ...) if matching */ match_auth = ifmgd->auth_data && ether_addr_equal(ifmgd->auth_data->ap_addr, assoc_data->ap_addr) && ifmgd->auth_data->link_id == req->link_id; if (req->ap_mld_addr) { uapsd_supported = true; if (req->flags & (ASSOC_REQ_DISABLE_HT | ASSOC_REQ_DISABLE_VHT | ASSOC_REQ_DISABLE_HE | ASSOC_REQ_DISABLE_EHT)) { err = -EINVAL; goto err_free; } for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) { struct ieee80211_supported_band *sband; struct cfg80211_bss *link_cbss = req->links[i].bss; struct ieee80211_bss *bss; if (!link_cbss) continue; bss = (void *)link_cbss->priv; if (!bss->wmm_used) { err = -EINVAL; req->links[i].error = err; goto err_free; } if (link_cbss->channel->band == NL80211_BAND_S1GHZ) { err = -EINVAL; req->links[i].error = err; goto err_free; } link = sdata_dereference(sdata->link[i], sdata); if (link) ether_addr_copy(assoc_data->link[i].addr, link->conf->addr); else eth_random_addr(assoc_data->link[i].addr); sband = local->hw.wiphy->bands[link_cbss->channel->band]; if (match_auth && i == assoc_link_id && link) assoc_data->link[i].conn = link->u.mgd.conn; else assoc_data->link[i].conn = ieee80211_conn_settings_unlimited; ieee80211_determine_our_sta_mode_assoc(sdata, sband, req, true, i, &assoc_data->link[i].conn); assoc_data->link[i].bss = link_cbss; assoc_data->link[i].disabled = req->links[i].disabled; if (!bss->uapsd_supported) uapsd_supported = false; if (assoc_data->link[i].conn.mode < IEEE80211_CONN_MODE_EHT) { err = -EINVAL; req->links[i].error = err; goto err_free; } err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, assoc_data, i); if (err) { err = -EINVAL; req->links[i].error = err; goto err_free; } } assoc_data->wmm = true; } else { struct ieee80211_supported_band *sband; struct ieee80211_bss *bss = (void *)cbss->priv; memcpy(assoc_data->link[0].addr, sdata->vif.addr, ETH_ALEN); assoc_data->s1g = cbss->channel->band == NL80211_BAND_S1GHZ; assoc_data->wmm = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS); if (cbss->channel->band == NL80211_BAND_6GHZ && req->flags & (ASSOC_REQ_DISABLE_HT | ASSOC_REQ_DISABLE_VHT | ASSOC_REQ_DISABLE_HE)) { err = -EINVAL; goto err_free; } sband = local->hw.wiphy->bands[cbss->channel->band]; assoc_data->link[0].bss = cbss; if (match_auth) assoc_data->link[0].conn = sdata->deflink.u.mgd.conn; else assoc_data->link[0].conn = ieee80211_conn_settings_unlimited; ieee80211_determine_our_sta_mode_assoc(sdata, sband, req, assoc_data->wmm, 0, &assoc_data->link[0].conn); uapsd_supported = bss->uapsd_supported; err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, assoc_data, 0); if (err) goto err_free; } assoc_data->spp_amsdu = req->flags & ASSOC_REQ_SPP_AMSDU; if (ifmgd->auth_data && !ifmgd->auth_data->done) { err = -EBUSY; goto err_free; } if (ifmgd->assoc_data) { err = -EBUSY; goto err_free; } /* Cleanup is delayed if auth_data matches */ if (ifmgd->auth_data && !match_auth) ieee80211_destroy_auth_data(sdata, false); if (req->ie && req->ie_len) { memcpy(assoc_data->ie, req->ie, req->ie_len); assoc_data->ie_len = req->ie_len; assoc_data->ie_pos = assoc_data->ie + assoc_data->ie_len; } else { assoc_data->ie_pos = assoc_data->ie; } if (req->fils_kek) { /* should already be checked in cfg80211 - so warn */ if (WARN_ON(req->fils_kek_len > FILS_MAX_KEK_LEN)) { err = -EINVAL; goto err_free; } memcpy(assoc_data->fils_kek, req->fils_kek, req->fils_kek_len); assoc_data->fils_kek_len = req->fils_kek_len; } if (req->fils_nonces) memcpy(assoc_data->fils_nonces, req->fils_nonces, 2 * FILS_NONCE_LEN); /* default timeout */ assoc_data->timeout = jiffies; assoc_data->timeout_started = true; assoc_data->assoc_link_id = assoc_link_id; if (req->ap_mld_addr) { /* if there was no authentication, set up the link */ err = ieee80211_vif_set_links(sdata, BIT(assoc_link_id), 0); if (err) goto err_clear; } link = sdata_dereference(sdata->link[assoc_link_id], sdata); if (WARN_ON(!link)) { err = -EINVAL; goto err_clear; } override = link->u.mgd.conn.mode != assoc_data->link[assoc_link_id].conn.mode || link->u.mgd.conn.bw_limit != assoc_data->link[assoc_link_id].conn.bw_limit; link->u.mgd.conn = assoc_data->link[assoc_link_id].conn; ieee80211_setup_assoc_link(sdata, assoc_data, req, &link->u.mgd.conn, assoc_link_id); if (WARN((sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK), "U-APSD not supported with HW_PS_NULLFUNC_STACK\n")) sdata->vif.driver_flags &= ~IEEE80211_VIF_SUPPORTS_UAPSD; if (assoc_data->wmm && uapsd_supported && (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD)) { assoc_data->uapsd = true; ifmgd->flags |= IEEE80211_STA_UAPSD_ENABLED; } else { assoc_data->uapsd = false; ifmgd->flags &= ~IEEE80211_STA_UAPSD_ENABLED; } if (req->prev_bssid) memcpy(assoc_data->prev_ap_addr, req->prev_bssid, ETH_ALEN); if (req->use_mfp) { ifmgd->mfp = IEEE80211_MFP_REQUIRED; ifmgd->flags |= IEEE80211_STA_MFP_ENABLED; } else { ifmgd->mfp = IEEE80211_MFP_DISABLED; ifmgd->flags &= ~IEEE80211_STA_MFP_ENABLED; } if (req->flags & ASSOC_REQ_USE_RRM) ifmgd->flags |= IEEE80211_STA_ENABLE_RRM; else ifmgd->flags &= ~IEEE80211_STA_ENABLE_RRM; if (req->crypto.control_port) ifmgd->flags |= IEEE80211_STA_CONTROL_PORT; else ifmgd->flags &= ~IEEE80211_STA_CONTROL_PORT; sdata->control_port_protocol = req->crypto.control_port_ethertype; sdata->control_port_no_encrypt = req->crypto.control_port_no_encrypt; sdata->control_port_over_nl80211 = req->crypto.control_port_over_nl80211; sdata->control_port_no_preauth = req->crypto.control_port_no_preauth; /* kick off associate process */ ifmgd->assoc_data = assoc_data; for (i = 0; i < ARRAY_SIZE(assoc_data->link); i++) { if (!assoc_data->link[i].bss) continue; if (i == assoc_data->assoc_link_id) continue; /* only calculate the mode, hence link == NULL */ err = ieee80211_prep_channel(sdata, NULL, i, assoc_data->link[i].bss, true, &assoc_data->link[i].conn, assoc_data->userspace_selectors); if (err) { req->links[i].error = err; goto err_clear; } } memcpy(vif_cfg->ssid, assoc_data->ssid, assoc_data->ssid_len); vif_cfg->ssid_len = assoc_data->ssid_len; /* needed for transmitting the assoc frames properly */ memcpy(sdata->vif.cfg.ap_addr, assoc_data->ap_addr, ETH_ALEN); err = ieee80211_prep_connection(sdata, cbss, req->link_id, req->ap_mld_addr, true, &assoc_data->link[assoc_link_id].conn, override, assoc_data->userspace_selectors); if (err) goto err_clear; if (ieee80211_hw_check(&sdata->local->hw, NEED_DTIM_BEFORE_ASSOC)) { const struct cfg80211_bss_ies *beacon_ies; rcu_read_lock(); beacon_ies = rcu_dereference(req->bss->beacon_ies); if (!beacon_ies) { /* * Wait up to one beacon interval ... * should this be more if we miss one? */ sdata_info(sdata, "waiting for beacon from %pM\n", link->u.mgd.bssid); assoc_data->timeout = TU_TO_EXP_TIME(req->bss->beacon_interval); assoc_data->timeout_started = true; assoc_data->need_beacon = true; } rcu_read_unlock(); } run_again(sdata, assoc_data->timeout); /* We are associating, clean up auth_data */ if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, true); return 0; err_clear: if (!ifmgd->auth_data) { eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); } ifmgd->assoc_data = NULL; err_free: kfree(assoc_data); return err; } int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; bool tx = !req->local_state_change; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_DEAUTH, }; if (ifmgd->auth_data && ether_addr_equal(ifmgd->auth_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting authentication with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); info.link_id = ifmgd->auth_data->link_id; drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_auth_data(sdata, false); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } if (ifmgd->assoc_data && ether_addr_equal(ifmgd->assoc_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting association with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); info.link_id = ifmgd->assoc_data->assoc_link_id; drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } if (ifmgd->associated && ether_addr_equal(sdata->vif.cfg.ap_addr, req->bssid)) { sdata_info(sdata, "deauthenticating from %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } return -ENOTCONN; } int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; if (!sdata->u.mgd.associated || memcmp(sdata->vif.cfg.ap_addr, req->ap_addr, ETH_ALEN)) return -ENOTCONN; sdata_info(sdata, "disassociating from %pM by local choice (Reason: %u=%s)\n", req->ap_addr, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DISASSOC, req->reason_code, !req->local_state_change, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); return 0; } void ieee80211_mgd_stop_link(struct ieee80211_link_data *link) { wiphy_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.request_smps_work); wiphy_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.recalc_smps); wiphy_delayed_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.csa.switch_work); } void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; /* * Make sure some work items will not run after this, * they will not do anything but might not have been * cancelled when disconnecting. */ wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->monitor_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->beacon_connection_loss_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->tdls_peer_del_work); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); spin_lock_bh(&ifmgd->teardown_lock); if (ifmgd->teardown_skb) { kfree_skb(ifmgd->teardown_skb); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; } kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = NULL; ifmgd->assoc_req_ies_len = 0; spin_unlock_bh(&ifmgd->teardown_lock); del_timer_sync(&ifmgd->timer); } void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_rssi_notify(sdata, rssi_event, rssi_level); cfg80211_cqm_rssi_notify(sdata->dev, rssi_event, rssi_level, gfp); } EXPORT_SYMBOL(ieee80211_cqm_rssi_notify); void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_beacon_loss_notify(sdata->local, sdata); cfg80211_cqm_beacon_loss_notify(sdata->dev, gfp); } EXPORT_SYMBOL(ieee80211_cqm_beacon_loss_notify); static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold) { trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; /* * Scale up threshold values before storing it, as the RSSI averaging * algorithm uses a scaled up value as well. Change this scaling * factor if the RSSI averaging algorithm changes. */ sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; } void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, int rssi_min_thold, int rssi_max_thold) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); WARN_ON(rssi_min_thold == rssi_max_thold || rssi_min_thold > rssi_max_thold); _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); } EXPORT_SYMBOL(ieee80211_enable_rssi_reports); void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); _ieee80211_enable_rssi_reports(sdata, 0, 0); } EXPORT_SYMBOL(ieee80211_disable_rssi_reports); static void ieee80211_ml_reconf_selectors(unsigned long *userspace_selectors) { *userspace_selectors = 0; /* these selectors are mandatory for ML reconfiguration */ set_bit(BSS_MEMBERSHIP_SELECTOR_SAE_H2E, userspace_selectors); set_bit(BSS_MEMBERSHIP_SELECTOR_HE_PHY, userspace_selectors); set_bit(BSS_MEMBERSHIP_SELECTOR_EHT_PHY, userspace_selectors); } void ieee80211_process_ml_reconf_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *add_links_data = ifmgd->reconf.add_links_data; struct sta_info *sta; struct cfg80211_mlo_reconf_done_data done_data = {}; u16 sta_changed_links = sdata->u.mgd.reconf.added_links | sdata->u.mgd.reconf.removed_links; u16 link_mask, valid_links; unsigned int link_id; unsigned long userspace_selectors; size_t orig_len = len; u8 i, group_key_data_len; u8 *pos; if (!ieee80211_vif_is_mld(&sdata->vif) || len < offsetofend(typeof(*mgmt), u.action.u.ml_reconf_resp) || mgmt->u.action.u.ml_reconf_resp.dialog_token != sdata->u.mgd.reconf.dialog_token || !sta_changed_links) return; pos = mgmt->u.action.u.ml_reconf_resp.variable; len -= offsetofend(typeof(*mgmt), u.action.u.ml_reconf_resp); /* each status duple is 3 octets */ if (len < mgmt->u.action.u.ml_reconf_resp.count * 3) { sdata_info(sdata, "mlo: reconf: unexpected len=%zu, count=%u\n", len, mgmt->u.action.u.ml_reconf_resp.count); goto disconnect; } link_mask = sta_changed_links; for (i = 0; i < mgmt->u.action.u.ml_reconf_resp.count; i++) { u16 status = get_unaligned_le16(pos + 1); link_id = *pos; if (!(link_mask & BIT(link_id))) { sdata_info(sdata, "mlo: reconf: unexpected link: %u, changed=0x%x\n", link_id, sta_changed_links); goto disconnect; } /* clear the corresponding link, to detect the case that * the same link was included more than one time */ link_mask &= ~BIT(link_id); /* Handle failure to remove links here. Failure to remove added * links will be done later in the flow. */ if (status != WLAN_STATUS_SUCCESS) { sdata_info(sdata, "mlo: reconf: failed on link=%u, status=%u\n", link_id, status); /* The AP MLD failed to remove a link that was already * removed locally. As this is not expected behavior, * disconnect */ if (sdata->u.mgd.reconf.removed_links & BIT(link_id)) goto disconnect; /* The AP MLD failed to add a link. Remove it from the * added links. */ sdata->u.mgd.reconf.added_links &= ~BIT(link_id); } pos += 3; len -= 3; } if (link_mask) { sdata_info(sdata, "mlo: reconf: no response for links=0x%x\n", link_mask); goto disconnect; } if (!sdata->u.mgd.reconf.added_links) goto out; if (len < 1 || len < 1 + *pos) { sdata_info(sdata, "mlo: reconf: invalid group key data length"); goto disconnect; } /* The Group Key Data field must be present when links are added. This * field should be processed by userland. */ group_key_data_len = *pos++; pos += group_key_data_len; len -= group_key_data_len + 1; /* Process the information for the added links */ sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) goto disconnect; valid_links = sdata->vif.valid_links; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!add_links_data->link[link_id].bss || !(sdata->u.mgd.reconf.added_links & BIT(link_id))) continue; valid_links |= BIT(link_id); if (ieee80211_sta_allocate_link(sta, link_id)) goto disconnect; } ieee80211_vif_set_links(sdata, valid_links, sdata->vif.dormant_links); ieee80211_ml_reconf_selectors(&userspace_selectors); link_mask = 0; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = add_links_data->link[link_id].bss; struct ieee80211_link_data *link; struct link_sta_info *link_sta; u64 changed = 0; if (!cbss) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) goto disconnect; link_info(link, "mlo: reconf: local address %pM, AP link address %pM\n", add_links_data->link[link_id].addr, add_links_data->link[link_id].bss->bssid); link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) goto disconnect; if (!link->u.mgd.have_beacon) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->beacon_ies); if (ies) link->u.mgd.have_beacon = true; else ies = rcu_dereference(cbss->ies); ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, &link->u.mgd.dtim_period); link->conf->beacon_int = cbss->beacon_interval; rcu_read_unlock(); } link->conf->dtim_period = link->u.mgd.dtim_period ?: 1; link->u.mgd.conn = add_links_data->link[link_id].conn; if (ieee80211_prep_channel(sdata, link, link_id, cbss, true, &link->u.mgd.conn, &userspace_selectors)) { link_info(link, "mlo: reconf: prep_channel failed\n"); goto disconnect; } if (ieee80211_mgd_setup_link_sta(link, sta, link_sta, add_links_data->link[link_id].bss)) goto disconnect; if (!ieee80211_assoc_config_link(link, link_sta, add_links_data->link[link_id].bss, mgmt, pos, len, &changed)) goto disconnect; /* The AP MLD indicated success for this link, but the station * profile status indicated otherwise. Since there is an * inconsistency in the ML reconfiguration response, disconnect */ if (add_links_data->link[link_id].status != WLAN_STATUS_SUCCESS) goto disconnect; ieee80211_sta_init_nss(link_sta); if (ieee80211_sta_activate_link(sta, link_id)) goto disconnect; changed |= ieee80211_link_set_associated(link, cbss); ieee80211_link_info_change_notify(sdata, link, changed); ieee80211_recalc_smps(sdata, link); link_mask |= BIT(link_id); } sdata_info(sdata, "mlo: reconf: current valid_links=0x%x, added=0x%x\n", valid_links, link_mask); /* links might have changed due to rejected ones, set them again */ ieee80211_vif_set_links(sdata, valid_links, sdata->vif.dormant_links); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); done_data.buf = (const u8 *)mgmt; done_data.len = orig_len; done_data.added_links = link_mask; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) done_data.links[link_id].bss = add_links_data->link[link_id].bss; cfg80211_mlo_reconf_add_done(sdata->dev, &done_data); kfree(sdata->u.mgd.reconf.add_links_data); sdata->u.mgd.reconf.add_links_data = NULL; out: ieee80211_ml_reconf_reset(sdata); return; disconnect: __ieee80211_disconnect(sdata); } static struct sk_buff * ieee80211_build_ml_reconf_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *add_links_data, u16 removed_links) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct ieee80211_multi_link_elem *ml_elem; struct ieee80211_mle_basic_common_info *common; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct sk_buff *skb; size_t size; unsigned int link_id; __le16 eml_capa = 0, mld_capa_ops = 0; struct ieee80211_tx_info *info; u8 common_size, var_common_size; u8 *ml_elem_len; u16 capab = 0; size = local->hw.extra_tx_headroom + sizeof(*mgmt); /* Consider the maximal length of the reconfiguration ML element */ size += sizeof(struct ieee80211_multi_link_elem); /* The Basic ML element and the Reconfiguration ML element have the same * fixed common information fields in the context of ML reconfiguration * action frame. The AP MLD MAC address must always be present */ common_size = sizeof(*common); /* when adding links, the MLD capabilities must be present */ var_common_size = 0; if (add_links_data) { const struct wiphy_iftype_ext_capab *ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy, ieee80211_vif_type_p2p(&sdata->vif)); if (ift_ext_capa) { eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities); mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops); } /* MLD capabilities and operation */ var_common_size += 2; /* EML capabilities */ if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) var_common_size += 2; } /* Add the common information length */ size += common_size + var_common_size; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss; size_t elems_len; if (removed_links & BIT(link_id)) { size += sizeof(struct ieee80211_mle_per_sta_profile) + ETH_ALEN; continue; } if (!add_links_data || !add_links_data->link[link_id].bss) continue; elems_len = add_links_data->link[link_id].elems_len; cbss = add_links_data->link[link_id].bss; /* should be the same across all BSSes */ if (cbss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; size += 2 + sizeof(struct ieee80211_mle_per_sta_profile) + ETH_ALEN; /* SSID element + WMM */ size += 2 + sdata->vif.cfg.ssid_len + 9; size += ieee80211_link_common_elems_size(sdata, iftype, cbss, elems_len); } skb = alloc_skb(size, GFP_KERNEL); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, offsetofend(struct ieee80211_mgmt, u.action.u.ml_reconf_req)); /* Add the MAC header */ mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); /* Add the action frame fixed fields */ mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ml_reconf_req.action_code = WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ; /* allocate a dialog token and store it */ sdata->u.mgd.reconf.dialog_token = ++sdata->u.mgd.dialog_token_alloc; mgmt->u.action.u.ml_reconf_req.dialog_token = sdata->u.mgd.reconf.dialog_token; /* Add the ML reconfiguration element and the common information */ skb_put_u8(skb, WLAN_EID_EXTENSION); ml_elem_len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK); ml_elem = skb_put(skb, sizeof(*ml_elem)); ml_elem->control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_RECONF | IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR); common = skb_put(skb, common_size); common->len = common_size + var_common_size; memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN); if (add_links_data) { if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) { ml_elem->control |= cpu_to_le16(IEEE80211_MLC_RECONF_PRES_EML_CAPA); skb_put_data(skb, &eml_capa, sizeof(eml_capa)); } ml_elem->control |= cpu_to_le16(IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP); skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops)); } if (sdata->u.mgd.flags & IEEE80211_STA_ENABLE_RRM) capab |= WLAN_CAPABILITY_RADIO_MEASURE; /* Add the per station profile */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { u8 *subelem_len = NULL; u16 ctrl; const u8 *addr; /* Skip links that are not changing */ if (!(removed_links & BIT(link_id)) && (!add_links_data || !add_links_data->link[link_id].bss)) continue; ctrl = link_id | IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT; if (removed_links & BIT(link_id)) { struct ieee80211_bss_conf *conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); if (!conf) continue; addr = conf->addr; ctrl |= u16_encode_bits(IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK, IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE); } else { addr = add_links_data->link[link_id].addr; ctrl |= IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE | u16_encode_bits(IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK, IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE); } skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE); subelem_len = skb_put(skb, 1); put_unaligned_le16(ctrl, skb_put(skb, sizeof(ctrl))); skb_put_u8(skb, 1 + ETH_ALEN); skb_put_data(skb, addr, ETH_ALEN); if (!(removed_links & BIT(link_id))) { u16 link_present_elems[PRESENT_ELEMS_MAX] = {}; size_t extra_used; void *capab_pos; u8 qos_info; capab_pos = skb_put(skb, 2); skb_put_u8(skb, WLAN_EID_SSID); skb_put_u8(skb, sdata->vif.cfg.ssid_len); skb_put_data(skb, sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len); extra_used = ieee80211_add_link_elems(sdata, skb, &capab, NULL, add_links_data->link[link_id].elems, add_links_data->link[link_id].elems_len, link_id, NULL, link_present_elems, add_links_data); if (add_links_data->link[link_id].elems) skb_put_data(skb, add_links_data->link[link_id].elems + extra_used, add_links_data->link[link_id].elems_len - extra_used); if (sdata->u.mgd.flags & IEEE80211_STA_UAPSD_ENABLED) { qos_info = sdata->u.mgd.uapsd_queues; qos_info |= (sdata->u.mgd.uapsd_max_sp_len << IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT); } else { qos_info = 0; } ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info); put_unaligned_le16(capab, capab_pos); } ieee80211_fragment_element(skb, subelem_len, IEEE80211_MLE_SUBELEM_FRAGMENT); } ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT); info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; return skb; } int ieee80211_mgd_assoc_ml_reconf(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_link *add_links, u16 rem_links) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgd_assoc_data *data = NULL; struct sta_info *sta; struct sk_buff *skb; u16 added_links, new_valid_links; int link_id, err; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->vif.cfg.mld_capa_op & IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT)) return -EINVAL; /* No support for concurrent ML reconfiguration operation */ if (sdata->u.mgd.reconf.added_links || sdata->u.mgd.reconf.removed_links) return -EBUSY; added_links = 0; for (link_id = 0; add_links && link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!add_links[link_id].bss) continue; added_links |= BIT(link_id); } sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) return -ENOLINK; if (rem_links & BIT(sta->sta.deflink.link_id)) return -EINVAL; /* Adding links to the set of valid link is done only after a successful * ML reconfiguration frame exchange. Here prepare the data for the ML * reconfiguration frame construction and allocate the required * resources */ if (added_links) { bool uapsd_supported; unsigned long userspace_selectors; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; uapsd_supported = true; ieee80211_ml_reconf_selectors(&userspace_selectors); for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_supported_band *sband; struct cfg80211_bss *link_cbss = add_links[link_id].bss; struct ieee80211_bss *bss; if (!link_cbss) continue; bss = (void *)link_cbss->priv; if (!bss->wmm_used) { err = -EINVAL; goto err_free; } if (link_cbss->channel->band == NL80211_BAND_S1GHZ) { err = -EINVAL; goto err_free; } eth_random_addr(data->link[link_id].addr); data->link[link_id].conn = ieee80211_conn_settings_unlimited; sband = local->hw.wiphy->bands[link_cbss->channel->band]; ieee80211_determine_our_sta_mode(sdata, sband, NULL, true, link_id, &data->link[link_id].conn); data->link[link_id].bss = link_cbss; data->link[link_id].disabled = add_links[link_id].disabled; data->link[link_id].elems = (u8 *)add_links[link_id].elems; data->link[link_id].elems_len = add_links[link_id].elems_len; if (!bss->uapsd_supported) uapsd_supported = false; if (data->link[link_id].conn.mode < IEEE80211_CONN_MODE_EHT) { err = -EINVAL; goto err_free; } err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, data, link_id); if (err) { err = -EINVAL; goto err_free; } } /* Require U-APSD support to be similar to the current valid * links */ if (uapsd_supported != !!(sdata->u.mgd.flags & IEEE80211_STA_UAPSD_ENABLED)) { err = -EINVAL; goto err_free; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!data->link[link_id].bss) continue; /* only used to verify the mode, nothing is allocated */ err = ieee80211_prep_channel(sdata, NULL, link_id, data->link[link_id].bss, true, &data->link[link_id].conn, &userspace_selectors); if (err) goto err_free; } } /* link removal is done before the ML reconfiguration frame exchange so * that these links will not be used between their removal by the AP MLD * and before the station got the ML reconfiguration response. Based on * Section 35.3.6.4 in Draft P802.11be_D7.0 the AP MLD should accept the * link removal request. */ if (rem_links) { u16 new_active_links = sdata->vif.active_links & ~rem_links; new_valid_links = sdata->vif.valid_links & ~rem_links; /* Should not be left with no valid links to perform the * ML reconfiguration */ if (!new_valid_links || !(new_valid_links & ~sdata->vif.dormant_links)) { sdata_info(sdata, "mlo: reconf: no valid links\n"); err = -EINVAL; goto err_free; } if (new_active_links != sdata->vif.active_links) { if (!new_active_links) new_active_links = BIT(__ffs(new_valid_links & ~sdata->vif.dormant_links)); err = ieee80211_set_active_links(&sdata->vif, new_active_links); if (err) { sdata_info(sdata, "mlo: reconf: failed set active links\n"); goto err_free; } } } /* Build the SKB before the link removal as the construction of the * station info for removed links requires the local address. * Invalidate the removed links, so that the transmission of the ML * reconfiguration request frame would not be done using them, as the AP * is expected to send the ML reconfiguration response frame on the link * on which the request was received. */ skb = ieee80211_build_ml_reconf_req(sdata, data, rem_links); if (!skb) { err = -ENOMEM; goto err_free; } if (rem_links) { u16 new_dormant_links = sdata->vif.dormant_links & ~rem_links; err = ieee80211_vif_set_links(sdata, new_valid_links, new_dormant_links); if (err) { sdata_info(sdata, "mlo: reconf: failed set valid links\n"); kfree_skb(skb); goto err_free; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!(rem_links & BIT(link_id))) continue; ieee80211_sta_remove_link(sta, link_id); } /* notify the driver and upper layers */ ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); cfg80211_links_removed(sdata->dev, rem_links); } sdata_info(sdata, "mlo: reconf: adding=0x%x, removed=0x%x\n", added_links, rem_links); ieee80211_tx_skb(sdata, skb); sdata->u.mgd.reconf.added_links = added_links; sdata->u.mgd.reconf.add_links_data = data; sdata->u.mgd.reconf.removed_links = rem_links; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.reconf.wk, IEEE80211_ASSOC_TIMEOUT_SHORT); return 0; err_free: kfree(data); return err; } |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 | /* * Copyright (c) 2001 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith <kmsmith@umich.edu> * Andy Adamson <kandros@umich.edu> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <linux/file.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/namei.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/ratelimit.h> #include <linux/sunrpc/svcauth_gss.h> #include <linux/sunrpc/addr.h> #include <linux/jhash.h> #include <linux/string_helpers.h> #include <linux/fsnotify.h> #include <linux/rhashtable.h> #include <linux/nfs_ssc.h> #include "xdr4.h" #include "xdr4cb.h" #include "vfs.h" #include "current_stateid.h" #include "netns.h" #include "pnfs.h" #include "filecache.h" #include "trace.h" #define NFSDDBG_FACILITY NFSDDBG_PROC #define all_ones {{ ~0, ~0}, ~0} static const stateid_t one_stateid = { .si_generation = ~0, .si_opaque = all_ones, }; static const stateid_t zero_stateid = { /* all fields zero */ }; static const stateid_t currentstateid = { .si_generation = 1, }; static const stateid_t close_stateid = { .si_generation = 0xffffffffU, }; static u64 current_sessionid = 1; #define ZERO_STATEID(stateid) (!memcmp((stateid), &zero_stateid, sizeof(stateid_t))) #define ONE_STATEID(stateid) (!memcmp((stateid), &one_stateid, sizeof(stateid_t))) #define CURRENT_STATEID(stateid) (!memcmp((stateid), ¤tstateid, sizeof(stateid_t))) #define CLOSE_STATEID(stateid) (!memcmp((stateid), &close_stateid, sizeof(stateid_t))) /* forward declarations */ static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner); static void nfs4_free_ol_stateid(struct nfs4_stid *stid); void nfsd4_end_grace(struct nfsd_net *nn); static void _free_cpntf_state_locked(struct nfsd_net *nn, struct nfs4_cpntf_state *cps); static void nfsd4_file_hash_remove(struct nfs4_file *fi); static void deleg_reaper(struct nfsd_net *nn); /* Locking: */ /* * Currently used for the del_recall_lru and file hash table. In an * effort to decrease the scope of the client_mutex, this spinlock may * eventually cover more: */ static DEFINE_SPINLOCK(state_lock); enum nfsd4_st_mutex_lock_subclass { OPEN_STATEID_MUTEX = 0, LOCK_STATEID_MUTEX = 1, }; /* * A waitqueue for all in-progress 4.0 CLOSE operations that are waiting for * the refcount on the open stateid to drop. */ static DECLARE_WAIT_QUEUE_HEAD(close_wq); /* * A waitqueue where a writer to clients/#/ctl destroying a client can * wait for cl_rpc_users to drop to 0 and then for the client to be * unhashed. */ static DECLARE_WAIT_QUEUE_HEAD(expiry_wq); static struct kmem_cache *client_slab; static struct kmem_cache *openowner_slab; static struct kmem_cache *lockowner_slab; static struct kmem_cache *file_slab; static struct kmem_cache *stateid_slab; static struct kmem_cache *deleg_slab; static struct kmem_cache *odstate_slab; static void free_session(struct nfsd4_session *); static const struct nfsd4_callback_ops nfsd4_cb_recall_ops; static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops; static const struct nfsd4_callback_ops nfsd4_cb_getattr_ops; static struct workqueue_struct *laundry_wq; int nfsd4_create_laundry_wq(void) { int rc = 0; laundry_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, "nfsd4"); if (laundry_wq == NULL) rc = -ENOMEM; return rc; } void nfsd4_destroy_laundry_wq(void) { destroy_workqueue(laundry_wq); } static bool is_session_dead(struct nfsd4_session *ses) { return ses->se_dead; } static __be32 mark_session_dead_locked(struct nfsd4_session *ses, int ref_held_by_me) { if (atomic_read(&ses->se_ref) > ref_held_by_me) return nfserr_jukebox; ses->se_dead = true; return nfs_ok; } static bool is_client_expired(struct nfs4_client *clp) { return clp->cl_time == 0; } static void nfsd4_dec_courtesy_client_count(struct nfsd_net *nn, struct nfs4_client *clp) { if (clp->cl_state != NFSD4_ACTIVE) atomic_add_unless(&nn->nfsd_courtesy_clients, -1, 0); } static __be32 get_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (is_client_expired(clp)) return nfserr_expired; atomic_inc(&clp->cl_rpc_users); nfsd4_dec_courtesy_client_count(nn, clp); clp->cl_state = NFSD4_ACTIVE; return nfs_ok; } /* must be called under the client_lock */ static inline void renew_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); if (is_client_expired(clp)) { WARN_ON(1); printk("%s: client (clientid %08x/%08x) already expired\n", __func__, clp->cl_clientid.cl_boot, clp->cl_clientid.cl_id); return; } list_move_tail(&clp->cl_lru, &nn->client_lru); clp->cl_time = ktime_get_boottime_seconds(); nfsd4_dec_courtesy_client_count(nn, clp); clp->cl_state = NFSD4_ACTIVE; } static void put_client_renew_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (!atomic_dec_and_test(&clp->cl_rpc_users)) return; if (!is_client_expired(clp)) renew_client_locked(clp); else wake_up_all(&expiry_wq); } static void put_client_renew(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); if (!atomic_dec_and_lock(&clp->cl_rpc_users, &nn->client_lock)) return; if (!is_client_expired(clp)) renew_client_locked(clp); else wake_up_all(&expiry_wq); spin_unlock(&nn->client_lock); } static __be32 nfsd4_get_session_locked(struct nfsd4_session *ses) { __be32 status; if (is_session_dead(ses)) return nfserr_badsession; status = get_client_locked(ses->se_client); if (status) return status; atomic_inc(&ses->se_ref); return nfs_ok; } static void nfsd4_put_session_locked(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); if (atomic_dec_and_test(&ses->se_ref) && is_session_dead(ses)) free_session(ses); put_client_renew_locked(clp); } static void nfsd4_put_session(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); spin_lock(&nn->client_lock); nfsd4_put_session_locked(ses); spin_unlock(&nn->client_lock); } static struct nfsd4_blocked_lock * find_blocked_lock(struct nfs4_lockowner *lo, struct knfsd_fh *fh, struct nfsd_net *nn) { struct nfsd4_blocked_lock *cur, *found = NULL; spin_lock(&nn->blocked_locks_lock); list_for_each_entry(cur, &lo->lo_blocked, nbl_list) { if (fh_match(fh, &cur->nbl_fh)) { list_del_init(&cur->nbl_list); WARN_ON(list_empty(&cur->nbl_lru)); list_del_init(&cur->nbl_lru); found = cur; break; } } spin_unlock(&nn->blocked_locks_lock); if (found) locks_delete_block(&found->nbl_lock); return found; } static struct nfsd4_blocked_lock * find_or_allocate_block(struct nfs4_lockowner *lo, struct knfsd_fh *fh, struct nfsd_net *nn) { struct nfsd4_blocked_lock *nbl; nbl = find_blocked_lock(lo, fh, nn); if (!nbl) { nbl = kmalloc(sizeof(*nbl), GFP_KERNEL); if (nbl) { INIT_LIST_HEAD(&nbl->nbl_list); INIT_LIST_HEAD(&nbl->nbl_lru); fh_copy_shallow(&nbl->nbl_fh, fh); locks_init_lock(&nbl->nbl_lock); kref_init(&nbl->nbl_kref); nfsd4_init_cb(&nbl->nbl_cb, lo->lo_owner.so_client, &nfsd4_cb_notify_lock_ops, NFSPROC4_CLNT_CB_NOTIFY_LOCK); } } return nbl; } static void free_nbl(struct kref *kref) { struct nfsd4_blocked_lock *nbl; nbl = container_of(kref, struct nfsd4_blocked_lock, nbl_kref); locks_release_private(&nbl->nbl_lock); kfree(nbl); } static void free_blocked_lock(struct nfsd4_blocked_lock *nbl) { locks_delete_block(&nbl->nbl_lock); kref_put(&nbl->nbl_kref, free_nbl); } static void remove_blocked_locks(struct nfs4_lockowner *lo) { struct nfs4_client *clp = lo->lo_owner.so_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); struct nfsd4_blocked_lock *nbl; LIST_HEAD(reaplist); /* Dequeue all blocked locks */ spin_lock(&nn->blocked_locks_lock); while (!list_empty(&lo->lo_blocked)) { nbl = list_first_entry(&lo->lo_blocked, struct nfsd4_blocked_lock, nbl_list); list_del_init(&nbl->nbl_list); WARN_ON(list_empty(&nbl->nbl_lru)); list_move(&nbl->nbl_lru, &reaplist); } spin_unlock(&nn->blocked_locks_lock); /* Now free them */ while (!list_empty(&reaplist)) { nbl = list_first_entry(&reaplist, struct nfsd4_blocked_lock, nbl_lru); list_del_init(&nbl->nbl_lru); free_blocked_lock(nbl); } } static void nfsd4_cb_notify_lock_prepare(struct nfsd4_callback *cb) { struct nfsd4_blocked_lock *nbl = container_of(cb, struct nfsd4_blocked_lock, nbl_cb); locks_delete_block(&nbl->nbl_lock); } static int nfsd4_cb_notify_lock_done(struct nfsd4_callback *cb, struct rpc_task *task) { trace_nfsd_cb_notify_lock_done(&zero_stateid, task); /* * Since this is just an optimization, we don't try very hard if it * turns out not to succeed. We'll requeue it on NFS4ERR_DELAY, and * just quit trying on anything else. */ switch (task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, 1 * HZ); return 0; default: return 1; } } static void nfsd4_cb_notify_lock_release(struct nfsd4_callback *cb) { struct nfsd4_blocked_lock *nbl = container_of(cb, struct nfsd4_blocked_lock, nbl_cb); free_blocked_lock(nbl); } static const struct nfsd4_callback_ops nfsd4_cb_notify_lock_ops = { .prepare = nfsd4_cb_notify_lock_prepare, .done = nfsd4_cb_notify_lock_done, .release = nfsd4_cb_notify_lock_release, .opcode = OP_CB_NOTIFY_LOCK, }; /* * We store the NONE, READ, WRITE, and BOTH bits separately in the * st_{access,deny}_bmap field of the stateid, in order to track not * only what share bits are currently in force, but also what * combinations of share bits previous opens have used. This allows us * to enforce the recommendation in * https://datatracker.ietf.org/doc/html/rfc7530#section-16.19.4 that * the server return an error if the client attempt to downgrade to a * combination of share bits not explicable by closing some of its * previous opens. * * This enforcement is arguably incomplete, since we don't keep * track of access/deny bit combinations; so, e.g., we allow: * * OPEN allow read, deny write * OPEN allow both, deny none * DOWNGRADE allow read, deny none * * which we should reject. * * But you could also argue that our current code is already overkill, * since it only exists to return NFS4ERR_INVAL on incorrect client * behavior. */ static unsigned int bmap_to_share_mode(unsigned long bmap) { int i; unsigned int access = 0; for (i = 1; i < 4; i++) { if (test_bit(i, &bmap)) access |= i; } return access; } /* set share access for a given stateid */ static inline void set_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH); stp->st_access_bmap |= mask; } /* clear share access for a given stateid */ static inline void clear_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; WARN_ON_ONCE(access > NFS4_SHARE_ACCESS_BOTH); stp->st_access_bmap &= ~mask; } /* test whether a given stateid has access */ static inline bool test_access(u32 access, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << access; return (bool)(stp->st_access_bmap & mask); } /* set share deny for a given stateid */ static inline void set_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH); stp->st_deny_bmap |= mask; } /* clear share deny for a given stateid */ static inline void clear_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; WARN_ON_ONCE(deny > NFS4_SHARE_DENY_BOTH); stp->st_deny_bmap &= ~mask; } /* test whether a given stateid is denying specific access */ static inline bool test_deny(u32 deny, struct nfs4_ol_stateid *stp) { unsigned char mask = 1 << deny; return (bool)(stp->st_deny_bmap & mask); } static int nfs4_access_to_omode(u32 access) { switch (access & NFS4_SHARE_ACCESS_BOTH) { case NFS4_SHARE_ACCESS_READ: return O_RDONLY; case NFS4_SHARE_ACCESS_WRITE: return O_WRONLY; case NFS4_SHARE_ACCESS_BOTH: return O_RDWR; } WARN_ON_ONCE(1); return O_RDONLY; } static inline int access_permit_read(struct nfs4_ol_stateid *stp) { return test_access(NFS4_SHARE_ACCESS_READ, stp) || test_access(NFS4_SHARE_ACCESS_BOTH, stp) || test_access(NFS4_SHARE_ACCESS_WRITE, stp); } static inline int access_permit_write(struct nfs4_ol_stateid *stp) { return test_access(NFS4_SHARE_ACCESS_WRITE, stp) || test_access(NFS4_SHARE_ACCESS_BOTH, stp); } static inline struct nfs4_stateowner * nfs4_get_stateowner(struct nfs4_stateowner *sop) { atomic_inc(&sop->so_count); return sop; } static int same_owner_str(struct nfs4_stateowner *sop, struct xdr_netobj *owner) { return (sop->so_owner.len == owner->len) && 0 == memcmp(sop->so_owner.data, owner->data, owner->len); } static struct nfs4_openowner * find_openstateowner_str(unsigned int hashval, struct nfsd4_open *open, struct nfs4_client *clp) { struct nfs4_stateowner *so; lockdep_assert_held(&clp->cl_lock); list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[hashval], so_strhash) { if (!so->so_is_open_owner) continue; if (same_owner_str(so, &open->op_owner)) return openowner(nfs4_get_stateowner(so)); } return NULL; } static inline u32 opaque_hashval(const void *ptr, int nbytes) { unsigned char *cptr = (unsigned char *) ptr; u32 x = 0; while (nbytes--) { x *= 37; x += *cptr++; } return x; } void put_nfs4_file(struct nfs4_file *fi) { if (refcount_dec_and_test(&fi->fi_ref)) { nfsd4_file_hash_remove(fi); WARN_ON_ONCE(!list_empty(&fi->fi_clnt_odstate)); WARN_ON_ONCE(!list_empty(&fi->fi_delegations)); kfree_rcu(fi, fi_rcu); } } static struct nfsd_file * find_writeable_file_locked(struct nfs4_file *f) { struct nfsd_file *ret; lockdep_assert_held(&f->fi_lock); ret = nfsd_file_get(f->fi_fds[O_WRONLY]); if (!ret) ret = nfsd_file_get(f->fi_fds[O_RDWR]); return ret; } static struct nfsd_file * find_writeable_file(struct nfs4_file *f) { struct nfsd_file *ret; spin_lock(&f->fi_lock); ret = find_writeable_file_locked(f); spin_unlock(&f->fi_lock); return ret; } static struct nfsd_file * find_readable_file_locked(struct nfs4_file *f) { struct nfsd_file *ret; lockdep_assert_held(&f->fi_lock); ret = nfsd_file_get(f->fi_fds[O_RDONLY]); if (!ret) ret = nfsd_file_get(f->fi_fds[O_RDWR]); return ret; } static struct nfsd_file * find_readable_file(struct nfs4_file *f) { struct nfsd_file *ret; spin_lock(&f->fi_lock); ret = find_readable_file_locked(f); spin_unlock(&f->fi_lock); return ret; } static struct nfsd_file * find_rw_file(struct nfs4_file *f) { struct nfsd_file *ret; spin_lock(&f->fi_lock); ret = nfsd_file_get(f->fi_fds[O_RDWR]); spin_unlock(&f->fi_lock); return ret; } struct nfsd_file * find_any_file(struct nfs4_file *f) { struct nfsd_file *ret; if (!f) return NULL; spin_lock(&f->fi_lock); ret = nfsd_file_get(f->fi_fds[O_RDWR]); if (!ret) { ret = nfsd_file_get(f->fi_fds[O_WRONLY]); if (!ret) ret = nfsd_file_get(f->fi_fds[O_RDONLY]); } spin_unlock(&f->fi_lock); return ret; } static struct nfsd_file *find_any_file_locked(struct nfs4_file *f) { lockdep_assert_held(&f->fi_lock); if (f->fi_fds[O_RDWR]) return f->fi_fds[O_RDWR]; if (f->fi_fds[O_WRONLY]) return f->fi_fds[O_WRONLY]; if (f->fi_fds[O_RDONLY]) return f->fi_fds[O_RDONLY]; return NULL; } static atomic_long_t num_delegations; unsigned long max_delegations; /* * Open owner state (share locks) */ /* hash tables for lock and open owners */ #define OWNER_HASH_BITS 8 #define OWNER_HASH_SIZE (1 << OWNER_HASH_BITS) #define OWNER_HASH_MASK (OWNER_HASH_SIZE - 1) static unsigned int ownerstr_hashval(struct xdr_netobj *ownername) { unsigned int ret; ret = opaque_hashval(ownername->data, ownername->len); return ret & OWNER_HASH_MASK; } static struct rhltable nfs4_file_rhltable ____cacheline_aligned_in_smp; static const struct rhashtable_params nfs4_file_rhash_params = { .key_len = sizeof_field(struct nfs4_file, fi_inode), .key_offset = offsetof(struct nfs4_file, fi_inode), .head_offset = offsetof(struct nfs4_file, fi_rlist), /* * Start with a single page hash table to reduce resizing churn * on light workloads. */ .min_size = 256, .automatic_shrinking = true, }; /* * Check if courtesy clients have conflicting access and resolve it if possible * * access: is op_share_access if share_access is true. * Check if access mode, op_share_access, would conflict with * the current deny mode of the file 'fp'. * access: is op_share_deny if share_access is false. * Check if the deny mode, op_share_deny, would conflict with * current access of the file 'fp'. * stp: skip checking this entry. * new_stp: normal open, not open upgrade. * * Function returns: * false - access/deny mode conflict with normal client. * true - no conflict or conflict with courtesy client(s) is resolved. */ static bool nfs4_resolve_deny_conflicts_locked(struct nfs4_file *fp, bool new_stp, struct nfs4_ol_stateid *stp, u32 access, bool share_access) { struct nfs4_ol_stateid *st; bool resolvable = true; unsigned char bmap; struct nfsd_net *nn; struct nfs4_client *clp; lockdep_assert_held(&fp->fi_lock); list_for_each_entry(st, &fp->fi_stateids, st_perfile) { /* ignore lock stateid */ if (st->st_openstp) continue; if (st == stp && new_stp) continue; /* check file access against deny mode or vice versa */ bmap = share_access ? st->st_deny_bmap : st->st_access_bmap; if (!(access & bmap_to_share_mode(bmap))) continue; clp = st->st_stid.sc_client; if (try_to_expire_client(clp)) continue; resolvable = false; break; } if (resolvable) { clp = stp->st_stid.sc_client; nn = net_generic(clp->net, nfsd_net_id); mod_delayed_work(laundry_wq, &nn->laundromat_work, 0); } return resolvable; } static void __nfs4_file_get_access(struct nfs4_file *fp, u32 access) { lockdep_assert_held(&fp->fi_lock); if (access & NFS4_SHARE_ACCESS_WRITE) atomic_inc(&fp->fi_access[O_WRONLY]); if (access & NFS4_SHARE_ACCESS_READ) atomic_inc(&fp->fi_access[O_RDONLY]); } static __be32 nfs4_file_get_access(struct nfs4_file *fp, u32 access) { lockdep_assert_held(&fp->fi_lock); /* Does this access mode make sense? */ if (access & ~NFS4_SHARE_ACCESS_BOTH) return nfserr_inval; /* Does it conflict with a deny mode already set? */ if ((access & fp->fi_share_deny) != 0) return nfserr_share_denied; __nfs4_file_get_access(fp, access); return nfs_ok; } static __be32 nfs4_file_check_deny(struct nfs4_file *fp, u32 deny) { /* Common case is that there is no deny mode. */ if (deny) { /* Does this deny mode make sense? */ if (deny & ~NFS4_SHARE_DENY_BOTH) return nfserr_inval; if ((deny & NFS4_SHARE_DENY_READ) && atomic_read(&fp->fi_access[O_RDONLY])) return nfserr_share_denied; if ((deny & NFS4_SHARE_DENY_WRITE) && atomic_read(&fp->fi_access[O_WRONLY])) return nfserr_share_denied; } return nfs_ok; } static void __nfs4_file_put_access(struct nfs4_file *fp, int oflag) { might_lock(&fp->fi_lock); if (atomic_dec_and_lock(&fp->fi_access[oflag], &fp->fi_lock)) { struct nfsd_file *f1 = NULL; struct nfsd_file *f2 = NULL; swap(f1, fp->fi_fds[oflag]); if (atomic_read(&fp->fi_access[1 - oflag]) == 0) swap(f2, fp->fi_fds[O_RDWR]); spin_unlock(&fp->fi_lock); if (f1) nfsd_file_put(f1); if (f2) nfsd_file_put(f2); } } static void nfs4_file_put_access(struct nfs4_file *fp, u32 access) { WARN_ON_ONCE(access & ~NFS4_SHARE_ACCESS_BOTH); if (access & NFS4_SHARE_ACCESS_WRITE) __nfs4_file_put_access(fp, O_WRONLY); if (access & NFS4_SHARE_ACCESS_READ) __nfs4_file_put_access(fp, O_RDONLY); } /* * Allocate a new open/delegation state counter. This is needed for * pNFS for proper return on close semantics. * * Note that we only allocate it for pNFS-enabled exports, otherwise * all pointers to struct nfs4_clnt_odstate are always NULL. */ static struct nfs4_clnt_odstate * alloc_clnt_odstate(struct nfs4_client *clp) { struct nfs4_clnt_odstate *co; co = kmem_cache_zalloc(odstate_slab, GFP_KERNEL); if (co) { co->co_client = clp; refcount_set(&co->co_odcount, 1); } return co; } static void hash_clnt_odstate_locked(struct nfs4_clnt_odstate *co) { struct nfs4_file *fp = co->co_file; lockdep_assert_held(&fp->fi_lock); list_add(&co->co_perfile, &fp->fi_clnt_odstate); } static inline void get_clnt_odstate(struct nfs4_clnt_odstate *co) { if (co) refcount_inc(&co->co_odcount); } static void put_clnt_odstate(struct nfs4_clnt_odstate *co) { struct nfs4_file *fp; if (!co) return; fp = co->co_file; if (refcount_dec_and_lock(&co->co_odcount, &fp->fi_lock)) { list_del(&co->co_perfile); spin_unlock(&fp->fi_lock); nfsd4_return_all_file_layouts(co->co_client, fp); kmem_cache_free(odstate_slab, co); } } static struct nfs4_clnt_odstate * find_or_hash_clnt_odstate(struct nfs4_file *fp, struct nfs4_clnt_odstate *new) { struct nfs4_clnt_odstate *co; struct nfs4_client *cl; if (!new) return NULL; cl = new->co_client; spin_lock(&fp->fi_lock); list_for_each_entry(co, &fp->fi_clnt_odstate, co_perfile) { if (co->co_client == cl) { get_clnt_odstate(co); goto out; } } co = new; co->co_file = fp; hash_clnt_odstate_locked(new); out: spin_unlock(&fp->fi_lock); return co; } struct nfs4_stid *nfs4_alloc_stid(struct nfs4_client *cl, struct kmem_cache *slab, void (*sc_free)(struct nfs4_stid *)) { struct nfs4_stid *stid; int new_id; stid = kmem_cache_zalloc(slab, GFP_KERNEL); if (!stid) return NULL; idr_preload(GFP_KERNEL); spin_lock(&cl->cl_lock); /* Reserving 0 for start of file in nfsdfs "states" file: */ new_id = idr_alloc_cyclic(&cl->cl_stateids, stid, 1, 0, GFP_NOWAIT); spin_unlock(&cl->cl_lock); idr_preload_end(); if (new_id < 0) goto out_free; stid->sc_free = sc_free; stid->sc_client = cl; stid->sc_stateid.si_opaque.so_id = new_id; stid->sc_stateid.si_opaque.so_clid = cl->cl_clientid; /* Will be incremented before return to client: */ refcount_set(&stid->sc_count, 1); spin_lock_init(&stid->sc_lock); INIT_LIST_HEAD(&stid->sc_cp_list); /* * It shouldn't be a problem to reuse an opaque stateid value. * I don't think it is for 4.1. But with 4.0 I worry that, for * example, a stray write retransmission could be accepted by * the server when it should have been rejected. Therefore, * adopt a trick from the sctp code to attempt to maximize the * amount of time until an id is reused, by ensuring they always * "increase" (mod INT_MAX): */ return stid; out_free: kmem_cache_free(slab, stid); return NULL; } /* * Create a unique stateid_t to represent each COPY. */ static int nfs4_init_cp_state(struct nfsd_net *nn, copy_stateid_t *stid, unsigned char cs_type) { int new_id; stid->cs_stid.si_opaque.so_clid.cl_boot = (u32)nn->boot_time; stid->cs_stid.si_opaque.so_clid.cl_id = nn->s2s_cp_cl_id; idr_preload(GFP_KERNEL); spin_lock(&nn->s2s_cp_lock); new_id = idr_alloc_cyclic(&nn->s2s_cp_stateids, stid, 0, 0, GFP_NOWAIT); stid->cs_stid.si_opaque.so_id = new_id; stid->cs_stid.si_generation = 1; spin_unlock(&nn->s2s_cp_lock); idr_preload_end(); if (new_id < 0) return 0; stid->cs_type = cs_type; return 1; } int nfs4_init_copy_state(struct nfsd_net *nn, struct nfsd4_copy *copy) { return nfs4_init_cp_state(nn, ©->cp_stateid, NFS4_COPY_STID); } struct nfs4_cpntf_state *nfs4_alloc_init_cpntf_state(struct nfsd_net *nn, struct nfs4_stid *p_stid) { struct nfs4_cpntf_state *cps; cps = kzalloc(sizeof(struct nfs4_cpntf_state), GFP_KERNEL); if (!cps) return NULL; cps->cpntf_time = ktime_get_boottime_seconds(); refcount_set(&cps->cp_stateid.cs_count, 1); if (!nfs4_init_cp_state(nn, &cps->cp_stateid, NFS4_COPYNOTIFY_STID)) goto out_free; spin_lock(&nn->s2s_cp_lock); list_add(&cps->cp_list, &p_stid->sc_cp_list); spin_unlock(&nn->s2s_cp_lock); return cps; out_free: kfree(cps); return NULL; } void nfs4_free_copy_state(struct nfsd4_copy *copy) { struct nfsd_net *nn; if (copy->cp_stateid.cs_type != NFS4_COPY_STID) return; nn = net_generic(copy->cp_clp->net, nfsd_net_id); spin_lock(&nn->s2s_cp_lock); idr_remove(&nn->s2s_cp_stateids, copy->cp_stateid.cs_stid.si_opaque.so_id); spin_unlock(&nn->s2s_cp_lock); } static void nfs4_free_cpntf_statelist(struct net *net, struct nfs4_stid *stid) { struct nfs4_cpntf_state *cps; struct nfsd_net *nn; nn = net_generic(net, nfsd_net_id); spin_lock(&nn->s2s_cp_lock); while (!list_empty(&stid->sc_cp_list)) { cps = list_first_entry(&stid->sc_cp_list, struct nfs4_cpntf_state, cp_list); _free_cpntf_state_locked(nn, cps); } spin_unlock(&nn->s2s_cp_lock); } static struct nfs4_ol_stateid * nfs4_alloc_open_stateid(struct nfs4_client *clp) { struct nfs4_stid *stid; stid = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_ol_stateid); if (!stid) return NULL; return openlockstateid(stid); } static void nfs4_free_deleg(struct nfs4_stid *stid) { struct nfs4_delegation *dp = delegstateid(stid); WARN_ON_ONCE(!list_empty(&stid->sc_cp_list)); WARN_ON_ONCE(!list_empty(&dp->dl_perfile)); WARN_ON_ONCE(!list_empty(&dp->dl_perclnt)); WARN_ON_ONCE(!list_empty(&dp->dl_recall_lru)); kmem_cache_free(deleg_slab, stid); atomic_long_dec(&num_delegations); } /* * When we recall a delegation, we should be careful not to hand it * out again straight away. * To ensure this we keep a pair of bloom filters ('new' and 'old') * in which the filehandles of recalled delegations are "stored". * If a filehandle appear in either filter, a delegation is blocked. * When a delegation is recalled, the filehandle is stored in the "new" * filter. * Every 30 seconds we swap the filters and clear the "new" one, * unless both are empty of course. This results in delegations for a * given filehandle being blocked for between 30 and 60 seconds. * * Each filter is 256 bits. We hash the filehandle to 32bit and use the * low 3 bytes as hash-table indices. * * 'blocked_delegations_lock', which is always taken in block_delegations(), * is used to manage concurrent access. Testing does not need the lock * except when swapping the two filters. */ static DEFINE_SPINLOCK(blocked_delegations_lock); static struct bloom_pair { int entries, old_entries; time64_t swap_time; int new; /* index into 'set' */ DECLARE_BITMAP(set[2], 256); } blocked_delegations; static int delegation_blocked(struct knfsd_fh *fh) { u32 hash; struct bloom_pair *bd = &blocked_delegations; if (bd->entries == 0) return 0; if (ktime_get_seconds() - bd->swap_time > 30) { spin_lock(&blocked_delegations_lock); if (ktime_get_seconds() - bd->swap_time > 30) { bd->entries -= bd->old_entries; bd->old_entries = bd->entries; bd->new = 1-bd->new; memset(bd->set[bd->new], 0, sizeof(bd->set[0])); bd->swap_time = ktime_get_seconds(); } spin_unlock(&blocked_delegations_lock); } hash = jhash(&fh->fh_raw, fh->fh_size, 0); if (test_bit(hash&255, bd->set[0]) && test_bit((hash>>8)&255, bd->set[0]) && test_bit((hash>>16)&255, bd->set[0])) return 1; if (test_bit(hash&255, bd->set[1]) && test_bit((hash>>8)&255, bd->set[1]) && test_bit((hash>>16)&255, bd->set[1])) return 1; return 0; } static void block_delegations(struct knfsd_fh *fh) { u32 hash; struct bloom_pair *bd = &blocked_delegations; hash = jhash(&fh->fh_raw, fh->fh_size, 0); spin_lock(&blocked_delegations_lock); __set_bit(hash&255, bd->set[bd->new]); __set_bit((hash>>8)&255, bd->set[bd->new]); __set_bit((hash>>16)&255, bd->set[bd->new]); if (bd->entries == 0) bd->swap_time = ktime_get_seconds(); bd->entries += 1; spin_unlock(&blocked_delegations_lock); } static struct nfs4_delegation * alloc_init_deleg(struct nfs4_client *clp, struct nfs4_file *fp, struct nfs4_clnt_odstate *odstate, u32 dl_type) { struct nfs4_delegation *dp; struct nfs4_stid *stid; long n; dprintk("NFSD alloc_init_deleg\n"); n = atomic_long_inc_return(&num_delegations); if (n < 0 || n > max_delegations) goto out_dec; if (delegation_blocked(&fp->fi_fhandle)) goto out_dec; stid = nfs4_alloc_stid(clp, deleg_slab, nfs4_free_deleg); if (stid == NULL) goto out_dec; dp = delegstateid(stid); /* * delegation seqid's are never incremented. The 4.1 special * meaning of seqid 0 isn't meaningful, really, but let's avoid * 0 anyway just for consistency and use 1: */ dp->dl_stid.sc_stateid.si_generation = 1; INIT_LIST_HEAD(&dp->dl_perfile); INIT_LIST_HEAD(&dp->dl_perclnt); INIT_LIST_HEAD(&dp->dl_recall_lru); dp->dl_clnt_odstate = odstate; get_clnt_odstate(odstate); dp->dl_type = dl_type; dp->dl_retries = 1; dp->dl_recalled = false; nfsd4_init_cb(&dp->dl_recall, dp->dl_stid.sc_client, &nfsd4_cb_recall_ops, NFSPROC4_CLNT_CB_RECALL); nfsd4_init_cb(&dp->dl_cb_fattr.ncf_getattr, dp->dl_stid.sc_client, &nfsd4_cb_getattr_ops, NFSPROC4_CLNT_CB_GETATTR); dp->dl_cb_fattr.ncf_file_modified = false; get_nfs4_file(fp); dp->dl_stid.sc_file = fp; return dp; out_dec: atomic_long_dec(&num_delegations); return NULL; } void nfs4_put_stid(struct nfs4_stid *s) { struct nfs4_file *fp = s->sc_file; struct nfs4_client *clp = s->sc_client; might_lock(&clp->cl_lock); if (!refcount_dec_and_lock(&s->sc_count, &clp->cl_lock)) { wake_up_all(&close_wq); return; } idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id); if (s->sc_status & SC_STATUS_ADMIN_REVOKED) atomic_dec(&s->sc_client->cl_admin_revoked); nfs4_free_cpntf_statelist(clp->net, s); spin_unlock(&clp->cl_lock); s->sc_free(s); if (fp) put_nfs4_file(fp); } void nfs4_inc_and_copy_stateid(stateid_t *dst, struct nfs4_stid *stid) { stateid_t *src = &stid->sc_stateid; spin_lock(&stid->sc_lock); if (unlikely(++src->si_generation == 0)) src->si_generation = 1; memcpy(dst, src, sizeof(*dst)); spin_unlock(&stid->sc_lock); } static void put_deleg_file(struct nfs4_file *fp) { struct nfsd_file *nf = NULL; spin_lock(&fp->fi_lock); if (--fp->fi_delegees == 0) swap(nf, fp->fi_deleg_file); spin_unlock(&fp->fi_lock); if (nf) nfsd_file_put(nf); } static void nfs4_unlock_deleg_lease(struct nfs4_delegation *dp) { struct nfs4_file *fp = dp->dl_stid.sc_file; struct nfsd_file *nf = fp->fi_deleg_file; WARN_ON_ONCE(!fp->fi_delegees); kernel_setlease(nf->nf_file, F_UNLCK, NULL, (void **)&dp); put_deleg_file(fp); } static void destroy_unhashed_deleg(struct nfs4_delegation *dp) { put_clnt_odstate(dp->dl_clnt_odstate); nfs4_unlock_deleg_lease(dp); nfs4_put_stid(&dp->dl_stid); } /** * nfs4_delegation_exists - Discover if this delegation already exists * @clp: a pointer to the nfs4_client we're granting a delegation to * @fp: a pointer to the nfs4_file we're granting a delegation on * * Return: * On success: true iff an existing delegation is found */ static bool nfs4_delegation_exists(struct nfs4_client *clp, struct nfs4_file *fp) { struct nfs4_delegation *searchdp = NULL; struct nfs4_client *searchclp = NULL; lockdep_assert_held(&state_lock); lockdep_assert_held(&fp->fi_lock); list_for_each_entry(searchdp, &fp->fi_delegations, dl_perfile) { searchclp = searchdp->dl_stid.sc_client; if (clp == searchclp) { return true; } } return false; } /** * hash_delegation_locked - Add a delegation to the appropriate lists * @dp: a pointer to the nfs4_delegation we are adding. * @fp: a pointer to the nfs4_file we're granting a delegation on * * Return: * On success: NULL if the delegation was successfully hashed. * * On error: -EAGAIN if one was previously granted to this * nfs4_client for this nfs4_file. Delegation is not hashed. * */ static int hash_delegation_locked(struct nfs4_delegation *dp, struct nfs4_file *fp) { struct nfs4_client *clp = dp->dl_stid.sc_client; lockdep_assert_held(&state_lock); lockdep_assert_held(&fp->fi_lock); lockdep_assert_held(&clp->cl_lock); if (nfs4_delegation_exists(clp, fp)) return -EAGAIN; refcount_inc(&dp->dl_stid.sc_count); dp->dl_stid.sc_type = SC_TYPE_DELEG; list_add(&dp->dl_perfile, &fp->fi_delegations); list_add(&dp->dl_perclnt, &clp->cl_delegations); return 0; } static bool delegation_hashed(struct nfs4_delegation *dp) { return !(list_empty(&dp->dl_perfile)); } static bool unhash_delegation_locked(struct nfs4_delegation *dp, unsigned short statusmask) { struct nfs4_file *fp = dp->dl_stid.sc_file; lockdep_assert_held(&state_lock); if (!delegation_hashed(dp)) return false; if (statusmask == SC_STATUS_REVOKED && dp->dl_stid.sc_client->cl_minorversion == 0) statusmask = SC_STATUS_CLOSED; dp->dl_stid.sc_status |= statusmask; if (statusmask & SC_STATUS_ADMIN_REVOKED) atomic_inc(&dp->dl_stid.sc_client->cl_admin_revoked); /* Ensure that deleg break won't try to requeue it */ ++dp->dl_time; spin_lock(&fp->fi_lock); list_del_init(&dp->dl_perclnt); list_del_init(&dp->dl_recall_lru); list_del_init(&dp->dl_perfile); spin_unlock(&fp->fi_lock); return true; } static void destroy_delegation(struct nfs4_delegation *dp) { bool unhashed; spin_lock(&state_lock); unhashed = unhash_delegation_locked(dp, SC_STATUS_CLOSED); spin_unlock(&state_lock); if (unhashed) destroy_unhashed_deleg(dp); } /** * revoke_delegation - perform nfs4 delegation structure cleanup * @dp: pointer to the delegation * * This function assumes that it's called either from the administrative * interface (nfsd4_revoke_states()) that's revoking a specific delegation * stateid or it's called from a laundromat thread (nfsd4_landromat()) that * determined that this specific state has expired and needs to be revoked * (both mark state with the appropriate stid sc_status mode). It is also * assumed that a reference was taken on the @dp state. * * If this function finds that the @dp state is SC_STATUS_FREED it means * that a FREE_STATEID operation for this stateid has been processed and * we can proceed to removing it from recalled list. However, if @dp state * isn't marked SC_STATUS_FREED, it means we need place it on the cl_revoked * list and wait for the FREE_STATEID to arrive from the client. At the same * time, we need to mark it as SC_STATUS_FREEABLE to indicate to the * nfsd4_free_stateid() function that this stateid has already been added * to the cl_revoked list and that nfsd4_free_stateid() is now responsible * for removing it from the list. Inspection of where the delegation state * in the revocation process is protected by the clp->cl_lock. */ static void revoke_delegation(struct nfs4_delegation *dp) { struct nfs4_client *clp = dp->dl_stid.sc_client; WARN_ON(!list_empty(&dp->dl_recall_lru)); WARN_ON_ONCE(!(dp->dl_stid.sc_status & (SC_STATUS_REVOKED | SC_STATUS_ADMIN_REVOKED))); trace_nfsd_stid_revoke(&dp->dl_stid); spin_lock(&clp->cl_lock); if (dp->dl_stid.sc_status & SC_STATUS_FREED) { list_del_init(&dp->dl_recall_lru); goto out; } list_add(&dp->dl_recall_lru, &clp->cl_revoked); dp->dl_stid.sc_status |= SC_STATUS_FREEABLE; out: spin_unlock(&clp->cl_lock); destroy_unhashed_deleg(dp); } /* * SETCLIENTID state */ static unsigned int clientid_hashval(u32 id) { return id & CLIENT_HASH_MASK; } static unsigned int clientstr_hashval(struct xdr_netobj name) { return opaque_hashval(name.data, 8) & CLIENT_HASH_MASK; } /* * A stateid that had a deny mode associated with it is being released * or downgraded. Recalculate the deny mode on the file. */ static void recalculate_deny_mode(struct nfs4_file *fp) { struct nfs4_ol_stateid *stp; u32 old_deny; spin_lock(&fp->fi_lock); old_deny = fp->fi_share_deny; fp->fi_share_deny = 0; list_for_each_entry(stp, &fp->fi_stateids, st_perfile) { fp->fi_share_deny |= bmap_to_share_mode(stp->st_deny_bmap); if (fp->fi_share_deny == old_deny) break; } spin_unlock(&fp->fi_lock); } static void reset_union_bmap_deny(u32 deny, struct nfs4_ol_stateid *stp) { int i; bool change = false; for (i = 1; i < 4; i++) { if ((i & deny) != i) { change = true; clear_deny(i, stp); } } /* Recalculate per-file deny mode if there was a change */ if (change) recalculate_deny_mode(stp->st_stid.sc_file); } /* release all access and file references for a given stateid */ static void release_all_access(struct nfs4_ol_stateid *stp) { int i; struct nfs4_file *fp = stp->st_stid.sc_file; if (fp && stp->st_deny_bmap != 0) recalculate_deny_mode(fp); for (i = 1; i < 4; i++) { if (test_access(i, stp)) nfs4_file_put_access(stp->st_stid.sc_file, i); clear_access(i, stp); } } static inline void nfs4_free_stateowner(struct nfs4_stateowner *sop) { kfree(sop->so_owner.data); sop->so_ops->so_free(sop); } static void nfs4_put_stateowner(struct nfs4_stateowner *sop) { struct nfs4_client *clp = sop->so_client; might_lock(&clp->cl_lock); if (!atomic_dec_and_lock(&sop->so_count, &clp->cl_lock)) return; sop->so_ops->so_unhash(sop); spin_unlock(&clp->cl_lock); nfs4_free_stateowner(sop); } static bool nfs4_ol_stateid_unhashed(const struct nfs4_ol_stateid *stp) { return list_empty(&stp->st_perfile); } static bool unhash_ol_stateid(struct nfs4_ol_stateid *stp) { struct nfs4_file *fp = stp->st_stid.sc_file; lockdep_assert_held(&stp->st_stateowner->so_client->cl_lock); if (list_empty(&stp->st_perfile)) return false; spin_lock(&fp->fi_lock); list_del_init(&stp->st_perfile); spin_unlock(&fp->fi_lock); list_del(&stp->st_perstateowner); return true; } static void nfs4_free_ol_stateid(struct nfs4_stid *stid) { struct nfs4_ol_stateid *stp = openlockstateid(stid); put_clnt_odstate(stp->st_clnt_odstate); release_all_access(stp); if (stp->st_stateowner) nfs4_put_stateowner(stp->st_stateowner); WARN_ON(!list_empty(&stid->sc_cp_list)); kmem_cache_free(stateid_slab, stid); } static void nfs4_free_lock_stateid(struct nfs4_stid *stid) { struct nfs4_ol_stateid *stp = openlockstateid(stid); struct nfs4_lockowner *lo = lockowner(stp->st_stateowner); struct nfsd_file *nf; nf = find_any_file(stp->st_stid.sc_file); if (nf) { get_file(nf->nf_file); filp_close(nf->nf_file, (fl_owner_t)lo); nfsd_file_put(nf); } nfs4_free_ol_stateid(stid); } /* * Put the persistent reference to an already unhashed generic stateid, while * holding the cl_lock. If it's the last reference, then put it onto the * reaplist for later destruction. */ static void put_ol_stateid_locked(struct nfs4_ol_stateid *stp, struct list_head *reaplist) { struct nfs4_stid *s = &stp->st_stid; struct nfs4_client *clp = s->sc_client; lockdep_assert_held(&clp->cl_lock); WARN_ON_ONCE(!list_empty(&stp->st_locks)); if (!refcount_dec_and_test(&s->sc_count)) { wake_up_all(&close_wq); return; } idr_remove(&clp->cl_stateids, s->sc_stateid.si_opaque.so_id); if (s->sc_status & SC_STATUS_ADMIN_REVOKED) atomic_dec(&s->sc_client->cl_admin_revoked); list_add(&stp->st_locks, reaplist); } static bool unhash_lock_stateid(struct nfs4_ol_stateid *stp) { lockdep_assert_held(&stp->st_stid.sc_client->cl_lock); if (!unhash_ol_stateid(stp)) return false; list_del_init(&stp->st_locks); stp->st_stid.sc_status |= SC_STATUS_CLOSED; return true; } static void release_lock_stateid(struct nfs4_ol_stateid *stp) { struct nfs4_client *clp = stp->st_stid.sc_client; bool unhashed; spin_lock(&clp->cl_lock); unhashed = unhash_lock_stateid(stp); spin_unlock(&clp->cl_lock); if (unhashed) nfs4_put_stid(&stp->st_stid); } static void unhash_lockowner_locked(struct nfs4_lockowner *lo) { struct nfs4_client *clp = lo->lo_owner.so_client; lockdep_assert_held(&clp->cl_lock); list_del_init(&lo->lo_owner.so_strhash); } /* * Free a list of generic stateids that were collected earlier after being * fully unhashed. */ static void free_ol_stateid_reaplist(struct list_head *reaplist) { struct nfs4_ol_stateid *stp; struct nfs4_file *fp; might_sleep(); while (!list_empty(reaplist)) { stp = list_first_entry(reaplist, struct nfs4_ol_stateid, st_locks); list_del(&stp->st_locks); fp = stp->st_stid.sc_file; stp->st_stid.sc_free(&stp->st_stid); if (fp) put_nfs4_file(fp); } } static void release_open_stateid_locks(struct nfs4_ol_stateid *open_stp, struct list_head *reaplist) { struct nfs4_ol_stateid *stp; lockdep_assert_held(&open_stp->st_stid.sc_client->cl_lock); while (!list_empty(&open_stp->st_locks)) { stp = list_entry(open_stp->st_locks.next, struct nfs4_ol_stateid, st_locks); unhash_lock_stateid(stp); put_ol_stateid_locked(stp, reaplist); } } static bool unhash_open_stateid(struct nfs4_ol_stateid *stp, struct list_head *reaplist) { lockdep_assert_held(&stp->st_stid.sc_client->cl_lock); if (!unhash_ol_stateid(stp)) return false; release_open_stateid_locks(stp, reaplist); return true; } static void release_open_stateid(struct nfs4_ol_stateid *stp) { LIST_HEAD(reaplist); spin_lock(&stp->st_stid.sc_client->cl_lock); stp->st_stid.sc_status |= SC_STATUS_CLOSED; if (unhash_open_stateid(stp, &reaplist)) put_ol_stateid_locked(stp, &reaplist); spin_unlock(&stp->st_stid.sc_client->cl_lock); free_ol_stateid_reaplist(&reaplist); } static bool nfs4_openowner_unhashed(struct nfs4_openowner *oo) { lockdep_assert_held(&oo->oo_owner.so_client->cl_lock); return list_empty(&oo->oo_owner.so_strhash) && list_empty(&oo->oo_perclient); } static void unhash_openowner_locked(struct nfs4_openowner *oo) { struct nfs4_client *clp = oo->oo_owner.so_client; lockdep_assert_held(&clp->cl_lock); list_del_init(&oo->oo_owner.so_strhash); list_del_init(&oo->oo_perclient); } static void release_last_closed_stateid(struct nfs4_openowner *oo) { struct nfsd_net *nn = net_generic(oo->oo_owner.so_client->net, nfsd_net_id); struct nfs4_ol_stateid *s; spin_lock(&nn->client_lock); s = oo->oo_last_closed_stid; if (s) { list_del_init(&oo->oo_close_lru); oo->oo_last_closed_stid = NULL; } spin_unlock(&nn->client_lock); if (s) nfs4_put_stid(&s->st_stid); } static void release_openowner(struct nfs4_openowner *oo) { struct nfs4_ol_stateid *stp; struct nfs4_client *clp = oo->oo_owner.so_client; LIST_HEAD(reaplist); spin_lock(&clp->cl_lock); unhash_openowner_locked(oo); while (!list_empty(&oo->oo_owner.so_stateids)) { stp = list_first_entry(&oo->oo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); if (unhash_open_stateid(stp, &reaplist)) put_ol_stateid_locked(stp, &reaplist); } spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); release_last_closed_stateid(oo); nfs4_put_stateowner(&oo->oo_owner); } static struct nfs4_stid *find_one_sb_stid(struct nfs4_client *clp, struct super_block *sb, unsigned int sc_types) { unsigned long id, tmp; struct nfs4_stid *stid; spin_lock(&clp->cl_lock); idr_for_each_entry_ul(&clp->cl_stateids, stid, tmp, id) if ((stid->sc_type & sc_types) && stid->sc_status == 0 && stid->sc_file->fi_inode->i_sb == sb) { refcount_inc(&stid->sc_count); break; } spin_unlock(&clp->cl_lock); return stid; } /** * nfsd4_revoke_states - revoke all nfsv4 states associated with given filesystem * @net: used to identify instance of nfsd (there is one per net namespace) * @sb: super_block used to identify target filesystem * * All nfs4 states (open, lock, delegation, layout) held by the server instance * and associated with a file on the given filesystem will be revoked resulting * in any files being closed and so all references from nfsd to the filesystem * being released. Thus nfsd will no longer prevent the filesystem from being * unmounted. * * The clients which own the states will subsequently being notified that the * states have been "admin-revoked". */ void nfsd4_revoke_states(struct net *net, struct super_block *sb) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); unsigned int idhashval; unsigned int sc_types; sc_types = SC_TYPE_OPEN | SC_TYPE_LOCK | SC_TYPE_DELEG | SC_TYPE_LAYOUT; spin_lock(&nn->client_lock); for (idhashval = 0; idhashval < CLIENT_HASH_MASK; idhashval++) { struct list_head *head = &nn->conf_id_hashtbl[idhashval]; struct nfs4_client *clp; retry: list_for_each_entry(clp, head, cl_idhash) { struct nfs4_stid *stid = find_one_sb_stid(clp, sb, sc_types); if (stid) { struct nfs4_ol_stateid *stp; struct nfs4_delegation *dp; struct nfs4_layout_stateid *ls; spin_unlock(&nn->client_lock); switch (stid->sc_type) { case SC_TYPE_OPEN: stp = openlockstateid(stid); mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX); spin_lock(&clp->cl_lock); if (stid->sc_status == 0) { stid->sc_status |= SC_STATUS_ADMIN_REVOKED; atomic_inc(&clp->cl_admin_revoked); spin_unlock(&clp->cl_lock); release_all_access(stp); } else spin_unlock(&clp->cl_lock); mutex_unlock(&stp->st_mutex); break; case SC_TYPE_LOCK: stp = openlockstateid(stid); mutex_lock_nested(&stp->st_mutex, LOCK_STATEID_MUTEX); spin_lock(&clp->cl_lock); if (stid->sc_status == 0) { struct nfs4_lockowner *lo = lockowner(stp->st_stateowner); struct nfsd_file *nf; stid->sc_status |= SC_STATUS_ADMIN_REVOKED; atomic_inc(&clp->cl_admin_revoked); spin_unlock(&clp->cl_lock); nf = find_any_file(stp->st_stid.sc_file); if (nf) { get_file(nf->nf_file); filp_close(nf->nf_file, (fl_owner_t)lo); nfsd_file_put(nf); } release_all_access(stp); } else spin_unlock(&clp->cl_lock); mutex_unlock(&stp->st_mutex); break; case SC_TYPE_DELEG: refcount_inc(&stid->sc_count); dp = delegstateid(stid); spin_lock(&state_lock); if (!unhash_delegation_locked( dp, SC_STATUS_ADMIN_REVOKED)) dp = NULL; spin_unlock(&state_lock); if (dp) revoke_delegation(dp); break; case SC_TYPE_LAYOUT: ls = layoutstateid(stid); nfsd4_close_layout(ls); break; } nfs4_put_stid(stid); spin_lock(&nn->client_lock); if (clp->cl_minorversion == 0) /* Allow cleanup after a lease period. * store_release ensures cleanup will * see any newly revoked states if it * sees the time updated. */ nn->nfs40_last_revoke = ktime_get_boottime_seconds(); goto retry; } } } spin_unlock(&nn->client_lock); } static inline int hash_sessionid(struct nfs4_sessionid *sessionid) { struct nfsd4_sessionid *sid = (struct nfsd4_sessionid *)sessionid; return sid->sequence % SESSION_HASH_SIZE; } #ifdef CONFIG_SUNRPC_DEBUG static inline void dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid) { u32 *ptr = (u32 *)(&sessionid->data[0]); dprintk("%s: %u:%u:%u:%u\n", fn, ptr[0], ptr[1], ptr[2], ptr[3]); } #else static inline void dump_sessionid(const char *fn, struct nfs4_sessionid *sessionid) { } #endif /* * Bump the seqid on cstate->replay_owner, and clear replay_owner if it * won't be used for replay. */ void nfsd4_bump_seqid(struct nfsd4_compound_state *cstate, __be32 nfserr) { struct nfs4_stateowner *so = cstate->replay_owner; if (nfserr == nfserr_replay_me) return; if (!seqid_mutating_err(ntohl(nfserr))) { nfsd4_cstate_clear_replay(cstate); return; } if (!so) return; if (so->so_is_open_owner) release_last_closed_stateid(openowner(so)); so->so_seqid++; return; } static void gen_sessionid(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_sessionid *sid; sid = (struct nfsd4_sessionid *)ses->se_sessionid.data; sid->clientid = clp->cl_clientid; sid->sequence = current_sessionid++; sid->reserved = 0; } /* * The protocol defines ca_maxresponssize_cached to include the size of * the rpc header, but all we need to cache is the data starting after * the end of the initial SEQUENCE operation--the rest we regenerate * each time. Therefore we can advertise a ca_maxresponssize_cached * value that is the number of bytes in our cache plus a few additional * bytes. In order to stay on the safe side, and not promise more than * we can cache, those additional bytes must be the minimum possible: 24 * bytes of rpc header (xid through accept state, with AUTH_NULL * verifier), 12 for the compound header (with zero-length tag), and 44 * for the SEQUENCE op response: */ #define NFSD_MIN_HDR_SEQ_SZ (24 + 12 + 44) static void free_session_slots(struct nfsd4_session *ses) { int i; for (i = 0; i < ses->se_fchannel.maxreqs; i++) { free_svc_cred(&ses->se_slots[i]->sl_cred); kfree(ses->se_slots[i]); } } /* * We don't actually need to cache the rpc and session headers, so we * can allocate a little less for each slot: */ static inline u32 slot_bytes(struct nfsd4_channel_attrs *ca) { u32 size; if (ca->maxresp_cached < NFSD_MIN_HDR_SEQ_SZ) size = 0; else size = ca->maxresp_cached - NFSD_MIN_HDR_SEQ_SZ; return size + sizeof(struct nfsd4_slot); } /* * XXX: If we run out of reserved DRC memory we could (up to a point) * re-negotiate active sessions and reduce their slot usage to make * room for new connections. For now we just fail the create session. */ static u32 nfsd4_get_drc_mem(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn) { u32 slotsize = slot_bytes(ca); u32 num = ca->maxreqs; unsigned long avail, total_avail; unsigned int scale_factor; spin_lock(&nfsd_drc_lock); if (nfsd_drc_max_mem > nfsd_drc_mem_used) total_avail = nfsd_drc_max_mem - nfsd_drc_mem_used; else /* We have handed out more space than we chose in * set_max_drc() to allow. That isn't really a * problem as long as that doesn't make us think we * have lots more due to integer overflow. */ total_avail = 0; avail = min((unsigned long)NFSD_MAX_MEM_PER_SESSION, total_avail); /* * Never use more than a fraction of the remaining memory, * unless it's the only way to give this client a slot. * The chosen fraction is either 1/8 or 1/number of threads, * whichever is smaller. This ensures there are adequate * slots to support multiple clients per thread. * Give the client one slot even if that would require * over-allocation--it is better than failure. */ scale_factor = max_t(unsigned int, 8, nn->nfsd_serv->sv_nrthreads); avail = clamp_t(unsigned long, avail, slotsize, total_avail/scale_factor); num = min_t(int, num, avail / slotsize); num = max_t(int, num, 1); nfsd_drc_mem_used += num * slotsize; spin_unlock(&nfsd_drc_lock); return num; } static void nfsd4_put_drc_mem(struct nfsd4_channel_attrs *ca) { int slotsize = slot_bytes(ca); spin_lock(&nfsd_drc_lock); nfsd_drc_mem_used -= slotsize * ca->maxreqs; spin_unlock(&nfsd_drc_lock); } static struct nfsd4_session *alloc_session(struct nfsd4_channel_attrs *fattrs, struct nfsd4_channel_attrs *battrs) { int numslots = fattrs->maxreqs; int slotsize = slot_bytes(fattrs); struct nfsd4_session *new; int i; BUILD_BUG_ON(struct_size(new, se_slots, NFSD_MAX_SLOTS_PER_SESSION) > PAGE_SIZE); new = kzalloc(struct_size(new, se_slots, numslots), GFP_KERNEL); if (!new) return NULL; /* allocate each struct nfsd4_slot and data cache in one piece */ for (i = 0; i < numslots; i++) { new->se_slots[i] = kzalloc(slotsize, GFP_KERNEL); if (!new->se_slots[i]) goto out_free; } memcpy(&new->se_fchannel, fattrs, sizeof(struct nfsd4_channel_attrs)); new->se_cb_slot_avail = ~0U; new->se_cb_highest_slot = min(battrs->maxreqs - 1, NFSD_BC_SLOT_TABLE_SIZE - 1); spin_lock_init(&new->se_lock); return new; out_free: while (i--) kfree(new->se_slots[i]); kfree(new); return NULL; } static void free_conn(struct nfsd4_conn *c) { svc_xprt_put(c->cn_xprt); kfree(c); } static void nfsd4_conn_lost(struct svc_xpt_user *u) { struct nfsd4_conn *c = container_of(u, struct nfsd4_conn, cn_xpt_user); struct nfs4_client *clp = c->cn_session->se_client; trace_nfsd_cb_lost(clp); spin_lock(&clp->cl_lock); if (!list_empty(&c->cn_persession)) { list_del(&c->cn_persession); free_conn(c); } nfsd4_probe_callback(clp); spin_unlock(&clp->cl_lock); } static struct nfsd4_conn *alloc_conn(struct svc_rqst *rqstp, u32 flags) { struct nfsd4_conn *conn; conn = kmalloc(sizeof(struct nfsd4_conn), GFP_KERNEL); if (!conn) return NULL; svc_xprt_get(rqstp->rq_xprt); conn->cn_xprt = rqstp->rq_xprt; conn->cn_flags = flags; INIT_LIST_HEAD(&conn->cn_xpt_user.list); return conn; } static void __nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { conn->cn_session = ses; list_add(&conn->cn_persession, &ses->se_conns); } static void nfsd4_hash_conn(struct nfsd4_conn *conn, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; spin_lock(&clp->cl_lock); __nfsd4_hash_conn(conn, ses); spin_unlock(&clp->cl_lock); } static int nfsd4_register_conn(struct nfsd4_conn *conn) { conn->cn_xpt_user.callback = nfsd4_conn_lost; return register_xpt_user(conn->cn_xprt, &conn->cn_xpt_user); } static void nfsd4_init_conn(struct svc_rqst *rqstp, struct nfsd4_conn *conn, struct nfsd4_session *ses) { int ret; nfsd4_hash_conn(conn, ses); ret = nfsd4_register_conn(conn); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&conn->cn_xpt_user); /* We may have gained or lost a callback channel: */ nfsd4_probe_callback_sync(ses->se_client); } static struct nfsd4_conn *alloc_conn_from_crses(struct svc_rqst *rqstp, struct nfsd4_create_session *cses) { u32 dir = NFS4_CDFC4_FORE; if (cses->flags & SESSION4_BACK_CHAN) dir |= NFS4_CDFC4_BACK; return alloc_conn(rqstp, dir); } /* must be called under client_lock */ static void nfsd4_del_conns(struct nfsd4_session *s) { struct nfs4_client *clp = s->se_client; struct nfsd4_conn *c; spin_lock(&clp->cl_lock); while (!list_empty(&s->se_conns)) { c = list_first_entry(&s->se_conns, struct nfsd4_conn, cn_persession); list_del_init(&c->cn_persession); spin_unlock(&clp->cl_lock); unregister_xpt_user(c->cn_xprt, &c->cn_xpt_user); free_conn(c); spin_lock(&clp->cl_lock); } spin_unlock(&clp->cl_lock); } static void __free_session(struct nfsd4_session *ses) { free_session_slots(ses); kfree(ses); } static void free_session(struct nfsd4_session *ses) { nfsd4_del_conns(ses); nfsd4_put_drc_mem(&ses->se_fchannel); __free_session(ses); } static void init_session(struct svc_rqst *rqstp, struct nfsd4_session *new, struct nfs4_client *clp, struct nfsd4_create_session *cses) { int idx; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); new->se_client = clp; gen_sessionid(new); INIT_LIST_HEAD(&new->se_conns); atomic_set(&new->se_ref, 0); new->se_dead = false; new->se_cb_prog = cses->callback_prog; new->se_cb_sec = cses->cb_sec; for (idx = 0; idx < NFSD_BC_SLOT_TABLE_SIZE; ++idx) new->se_cb_seq_nr[idx] = 1; idx = hash_sessionid(&new->se_sessionid); list_add(&new->se_hash, &nn->sessionid_hashtbl[idx]); spin_lock(&clp->cl_lock); list_add(&new->se_perclnt, &clp->cl_sessions); spin_unlock(&clp->cl_lock); { struct sockaddr *sa = svc_addr(rqstp); /* * This is a little silly; with sessions there's no real * use for the callback address. Use the peer address * as a reasonable default for now, but consider fixing * the rpc client not to require an address in the * future: */ rpc_copy_addr((struct sockaddr *)&clp->cl_cb_conn.cb_addr, sa); clp->cl_cb_conn.cb_addrlen = svc_addr_len(sa); } } /* caller must hold client_lock */ static struct nfsd4_session * __find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net) { struct nfsd4_session *elem; int idx; struct nfsd_net *nn = net_generic(net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); dump_sessionid(__func__, sessionid); idx = hash_sessionid(sessionid); /* Search in the appropriate list */ list_for_each_entry(elem, &nn->sessionid_hashtbl[idx], se_hash) { if (!memcmp(elem->se_sessionid.data, sessionid->data, NFS4_MAX_SESSIONID_LEN)) { return elem; } } dprintk("%s: session not found\n", __func__); return NULL; } static struct nfsd4_session * find_in_sessionid_hashtbl(struct nfs4_sessionid *sessionid, struct net *net, __be32 *ret) { struct nfsd4_session *session; __be32 status = nfserr_badsession; session = __find_in_sessionid_hashtbl(sessionid, net); if (!session) goto out; status = nfsd4_get_session_locked(session); if (status) session = NULL; out: *ret = status; return session; } /* caller must hold client_lock */ static void unhash_session(struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); list_del(&ses->se_hash); spin_lock(&ses->se_client->cl_lock); list_del(&ses->se_perclnt); spin_unlock(&ses->se_client->cl_lock); } /* SETCLIENTID and SETCLIENTID_CONFIRM Helper functions */ static int STALE_CLIENTID(clientid_t *clid, struct nfsd_net *nn) { /* * We're assuming the clid was not given out from a boot * precisely 2^32 (about 136 years) before this one. That seems * a safe assumption: */ if (clid->cl_boot == (u32)nn->boot_time) return 0; trace_nfsd_clid_stale(clid); return 1; } static struct nfs4_client *alloc_client(struct xdr_netobj name, struct nfsd_net *nn) { struct nfs4_client *clp; int i; if (atomic_read(&nn->nfs4_client_count) >= nn->nfs4_max_clients && atomic_read(&nn->nfsd_courtesy_clients) > 0) mod_delayed_work(laundry_wq, &nn->laundromat_work, 0); clp = kmem_cache_zalloc(client_slab, GFP_KERNEL); if (clp == NULL) return NULL; xdr_netobj_dup(&clp->cl_name, &name, GFP_KERNEL); if (clp->cl_name.data == NULL) goto err_no_name; clp->cl_ownerstr_hashtbl = kmalloc_array(OWNER_HASH_SIZE, sizeof(struct list_head), GFP_KERNEL); if (!clp->cl_ownerstr_hashtbl) goto err_no_hashtbl; clp->cl_callback_wq = alloc_ordered_workqueue("nfsd4_callbacks", 0); if (!clp->cl_callback_wq) goto err_no_callback_wq; for (i = 0; i < OWNER_HASH_SIZE; i++) INIT_LIST_HEAD(&clp->cl_ownerstr_hashtbl[i]); INIT_LIST_HEAD(&clp->cl_sessions); idr_init(&clp->cl_stateids); atomic_set(&clp->cl_rpc_users, 0); clp->cl_cb_state = NFSD4_CB_UNKNOWN; clp->cl_state = NFSD4_ACTIVE; atomic_inc(&nn->nfs4_client_count); atomic_set(&clp->cl_delegs_in_recall, 0); INIT_LIST_HEAD(&clp->cl_idhash); INIT_LIST_HEAD(&clp->cl_openowners); INIT_LIST_HEAD(&clp->cl_delegations); INIT_LIST_HEAD(&clp->cl_lru); INIT_LIST_HEAD(&clp->cl_revoked); #ifdef CONFIG_NFSD_PNFS INIT_LIST_HEAD(&clp->cl_lo_states); #endif INIT_LIST_HEAD(&clp->async_copies); spin_lock_init(&clp->async_lock); spin_lock_init(&clp->cl_lock); rpc_init_wait_queue(&clp->cl_cb_waitq, "Backchannel slot table"); return clp; err_no_callback_wq: kfree(clp->cl_ownerstr_hashtbl); err_no_hashtbl: kfree(clp->cl_name.data); err_no_name: kmem_cache_free(client_slab, clp); return NULL; } static void __free_client(struct kref *k) { struct nfsdfs_client *c = container_of(k, struct nfsdfs_client, cl_ref); struct nfs4_client *clp = container_of(c, struct nfs4_client, cl_nfsdfs); free_svc_cred(&clp->cl_cred); destroy_workqueue(clp->cl_callback_wq); kfree(clp->cl_ownerstr_hashtbl); kfree(clp->cl_name.data); kfree(clp->cl_nii_domain.data); kfree(clp->cl_nii_name.data); idr_destroy(&clp->cl_stateids); kfree(clp->cl_ra); kmem_cache_free(client_slab, clp); } static void drop_client(struct nfs4_client *clp) { kref_put(&clp->cl_nfsdfs.cl_ref, __free_client); } static void free_client(struct nfs4_client *clp) { while (!list_empty(&clp->cl_sessions)) { struct nfsd4_session *ses; ses = list_entry(clp->cl_sessions.next, struct nfsd4_session, se_perclnt); list_del(&ses->se_perclnt); WARN_ON_ONCE(atomic_read(&ses->se_ref)); free_session(ses); } rpc_destroy_wait_queue(&clp->cl_cb_waitq); if (clp->cl_nfsd_dentry) { nfsd_client_rmdir(clp->cl_nfsd_dentry); clp->cl_nfsd_dentry = NULL; wake_up_all(&expiry_wq); } drop_client(clp); } /* must be called under the client_lock */ static void unhash_client_locked(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); struct nfsd4_session *ses; lockdep_assert_held(&nn->client_lock); /* Mark the client as expired! */ clp->cl_time = 0; /* Make it invisible */ if (!list_empty(&clp->cl_idhash)) { list_del_init(&clp->cl_idhash); if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags)) rb_erase(&clp->cl_namenode, &nn->conf_name_tree); else rb_erase(&clp->cl_namenode, &nn->unconf_name_tree); } list_del_init(&clp->cl_lru); spin_lock(&clp->cl_lock); list_for_each_entry(ses, &clp->cl_sessions, se_perclnt) list_del_init(&ses->se_hash); spin_unlock(&clp->cl_lock); } static void unhash_client(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); spin_lock(&nn->client_lock); unhash_client_locked(clp); spin_unlock(&nn->client_lock); } static __be32 mark_client_expired_locked(struct nfs4_client *clp) { int users = atomic_read(&clp->cl_rpc_users); trace_nfsd_mark_client_expired(clp, users); if (users) return nfserr_jukebox; unhash_client_locked(clp); return nfs_ok; } static void __destroy_client(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); int i; struct nfs4_openowner *oo; struct nfs4_delegation *dp; LIST_HEAD(reaplist); spin_lock(&state_lock); while (!list_empty(&clp->cl_delegations)) { dp = list_entry(clp->cl_delegations.next, struct nfs4_delegation, dl_perclnt); unhash_delegation_locked(dp, SC_STATUS_CLOSED); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); while (!list_empty(&reaplist)) { dp = list_entry(reaplist.next, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); destroy_unhashed_deleg(dp); } while (!list_empty(&clp->cl_revoked)) { dp = list_entry(clp->cl_revoked.next, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); nfs4_put_stid(&dp->dl_stid); } while (!list_empty(&clp->cl_openowners)) { oo = list_entry(clp->cl_openowners.next, struct nfs4_openowner, oo_perclient); nfs4_get_stateowner(&oo->oo_owner); release_openowner(oo); } for (i = 0; i < OWNER_HASH_SIZE; i++) { struct nfs4_stateowner *so, *tmp; list_for_each_entry_safe(so, tmp, &clp->cl_ownerstr_hashtbl[i], so_strhash) { /* Should be no openowners at this point */ WARN_ON_ONCE(so->so_is_open_owner); remove_blocked_locks(lockowner(so)); } } nfsd4_return_all_client_layouts(clp); nfsd4_shutdown_copy(clp); nfsd4_shutdown_callback(clp); if (clp->cl_cb_conn.cb_xprt) svc_xprt_put(clp->cl_cb_conn.cb_xprt); atomic_add_unless(&nn->nfs4_client_count, -1, 0); nfsd4_dec_courtesy_client_count(nn, clp); free_client(clp); wake_up_all(&expiry_wq); } static void destroy_client(struct nfs4_client *clp) { unhash_client(clp); __destroy_client(clp); } static void inc_reclaim_complete(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); if (!nn->track_reclaim_completes) return; if (!nfsd4_find_reclaim_client(clp->cl_name, nn)) return; if (atomic_inc_return(&nn->nr_reclaim_complete) == nn->reclaim_str_hashtbl_size) { printk(KERN_INFO "NFSD: all clients done reclaiming, ending NFSv4 grace period (net %x)\n", clp->net->ns.inum); nfsd4_end_grace(nn); } } static void expire_client(struct nfs4_client *clp) { unhash_client(clp); nfsd4_client_record_remove(clp); __destroy_client(clp); } static void copy_verf(struct nfs4_client *target, nfs4_verifier *source) { memcpy(target->cl_verifier.data, source->data, sizeof(target->cl_verifier.data)); } static void copy_clid(struct nfs4_client *target, struct nfs4_client *source) { target->cl_clientid.cl_boot = source->cl_clientid.cl_boot; target->cl_clientid.cl_id = source->cl_clientid.cl_id; } static int copy_cred(struct svc_cred *target, struct svc_cred *source) { target->cr_principal = kstrdup(source->cr_principal, GFP_KERNEL); target->cr_raw_principal = kstrdup(source->cr_raw_principal, GFP_KERNEL); target->cr_targ_princ = kstrdup(source->cr_targ_princ, GFP_KERNEL); if ((source->cr_principal && !target->cr_principal) || (source->cr_raw_principal && !target->cr_raw_principal) || (source->cr_targ_princ && !target->cr_targ_princ)) return -ENOMEM; target->cr_flavor = source->cr_flavor; target->cr_uid = source->cr_uid; target->cr_gid = source->cr_gid; target->cr_group_info = source->cr_group_info; get_group_info(target->cr_group_info); target->cr_gss_mech = source->cr_gss_mech; if (source->cr_gss_mech) gss_mech_get(source->cr_gss_mech); return 0; } static int compare_blob(const struct xdr_netobj *o1, const struct xdr_netobj *o2) { if (o1->len < o2->len) return -1; if (o1->len > o2->len) return 1; return memcmp(o1->data, o2->data, o1->len); } static int same_verf(nfs4_verifier *v1, nfs4_verifier *v2) { return 0 == memcmp(v1->data, v2->data, sizeof(v1->data)); } static int same_clid(clientid_t *cl1, clientid_t *cl2) { return (cl1->cl_boot == cl2->cl_boot) && (cl1->cl_id == cl2->cl_id); } static bool groups_equal(struct group_info *g1, struct group_info *g2) { int i; if (g1->ngroups != g2->ngroups) return false; for (i=0; i<g1->ngroups; i++) if (!gid_eq(g1->gid[i], g2->gid[i])) return false; return true; } /* * RFC 3530 language requires clid_inuse be returned when the * "principal" associated with a requests differs from that previously * used. We use uid, gid's, and gss principal string as our best * approximation. We also don't want to allow non-gss use of a client * established using gss: in theory cr_principal should catch that * change, but in practice cr_principal can be null even in the gss case * since gssd doesn't always pass down a principal string. */ static bool is_gss_cred(struct svc_cred *cr) { /* Is cr_flavor one of the gss "pseudoflavors"?: */ return (cr->cr_flavor > RPC_AUTH_MAXFLAVOR); } static bool same_creds(struct svc_cred *cr1, struct svc_cred *cr2) { if ((is_gss_cred(cr1) != is_gss_cred(cr2)) || (!uid_eq(cr1->cr_uid, cr2->cr_uid)) || (!gid_eq(cr1->cr_gid, cr2->cr_gid)) || !groups_equal(cr1->cr_group_info, cr2->cr_group_info)) return false; /* XXX: check that cr_targ_princ fields match ? */ if (cr1->cr_principal == cr2->cr_principal) return true; if (!cr1->cr_principal || !cr2->cr_principal) return false; return 0 == strcmp(cr1->cr_principal, cr2->cr_principal); } static bool svc_rqst_integrity_protected(struct svc_rqst *rqstp) { struct svc_cred *cr = &rqstp->rq_cred; u32 service; if (!cr->cr_gss_mech) return false; service = gss_pseudoflavor_to_service(cr->cr_gss_mech, cr->cr_flavor); return service == RPC_GSS_SVC_INTEGRITY || service == RPC_GSS_SVC_PRIVACY; } bool nfsd4_mach_creds_match(struct nfs4_client *cl, struct svc_rqst *rqstp) { struct svc_cred *cr = &rqstp->rq_cred; if (!cl->cl_mach_cred) return true; if (cl->cl_cred.cr_gss_mech != cr->cr_gss_mech) return false; if (!svc_rqst_integrity_protected(rqstp)) return false; if (cl->cl_cred.cr_raw_principal) return 0 == strcmp(cl->cl_cred.cr_raw_principal, cr->cr_raw_principal); if (!cr->cr_principal) return false; return 0 == strcmp(cl->cl_cred.cr_principal, cr->cr_principal); } static void gen_confirm(struct nfs4_client *clp, struct nfsd_net *nn) { __be32 verf[2]; /* * This is opaque to client, so no need to byte-swap. Use * __force to keep sparse happy */ verf[0] = (__force __be32)(u32)ktime_get_real_seconds(); verf[1] = (__force __be32)nn->clverifier_counter++; memcpy(clp->cl_confirm.data, verf, sizeof(clp->cl_confirm.data)); } static void gen_clid(struct nfs4_client *clp, struct nfsd_net *nn) { clp->cl_clientid.cl_boot = (u32)nn->boot_time; clp->cl_clientid.cl_id = nn->clientid_counter++; gen_confirm(clp, nn); } static struct nfs4_stid * find_stateid_locked(struct nfs4_client *cl, stateid_t *t) { struct nfs4_stid *ret; ret = idr_find(&cl->cl_stateids, t->si_opaque.so_id); if (!ret || !ret->sc_type) return NULL; return ret; } static struct nfs4_stid * find_stateid_by_type(struct nfs4_client *cl, stateid_t *t, unsigned short typemask, unsigned short ok_states) { struct nfs4_stid *s; spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, t); if (s != NULL) { if ((s->sc_status & ~ok_states) == 0 && (typemask & s->sc_type)) refcount_inc(&s->sc_count); else s = NULL; } spin_unlock(&cl->cl_lock); return s; } static struct nfs4_client *get_nfsdfs_clp(struct inode *inode) { struct nfsdfs_client *nc; nc = get_nfsdfs_client(inode); if (!nc) return NULL; return container_of(nc, struct nfs4_client, cl_nfsdfs); } static void seq_quote_mem(struct seq_file *m, char *data, int len) { seq_puts(m, "\""); seq_escape_mem(m, data, len, ESCAPE_HEX | ESCAPE_NAP | ESCAPE_APPEND, "\"\\"); seq_puts(m, "\""); } static const char *cb_state2str(int state) { switch (state) { case NFSD4_CB_UP: return "UP"; case NFSD4_CB_UNKNOWN: return "UNKNOWN"; case NFSD4_CB_DOWN: return "DOWN"; case NFSD4_CB_FAULT: return "FAULT"; } return "UNDEFINED"; } static int client_info_show(struct seq_file *m, void *v) { struct inode *inode = file_inode(m->file); struct nfs4_client *clp; u64 clid; clp = get_nfsdfs_clp(inode); if (!clp) return -ENXIO; memcpy(&clid, &clp->cl_clientid, sizeof(clid)); seq_printf(m, "clientid: 0x%llx\n", clid); seq_printf(m, "address: \"%pISpc\"\n", (struct sockaddr *)&clp->cl_addr); if (clp->cl_state == NFSD4_COURTESY) seq_puts(m, "status: courtesy\n"); else if (clp->cl_state == NFSD4_EXPIRABLE) seq_puts(m, "status: expirable\n"); else if (test_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags)) seq_puts(m, "status: confirmed\n"); else seq_puts(m, "status: unconfirmed\n"); seq_printf(m, "seconds from last renew: %lld\n", ktime_get_boottime_seconds() - clp->cl_time); seq_puts(m, "name: "); seq_quote_mem(m, clp->cl_name.data, clp->cl_name.len); seq_printf(m, "\nminor version: %d\n", clp->cl_minorversion); if (clp->cl_nii_domain.data) { seq_puts(m, "Implementation domain: "); seq_quote_mem(m, clp->cl_nii_domain.data, clp->cl_nii_domain.len); seq_puts(m, "\nImplementation name: "); seq_quote_mem(m, clp->cl_nii_name.data, clp->cl_nii_name.len); seq_printf(m, "\nImplementation time: [%lld, %ld]\n", clp->cl_nii_time.tv_sec, clp->cl_nii_time.tv_nsec); } seq_printf(m, "callback state: %s\n", cb_state2str(clp->cl_cb_state)); seq_printf(m, "callback address: \"%pISpc\"\n", &clp->cl_cb_conn.cb_addr); seq_printf(m, "admin-revoked states: %d\n", atomic_read(&clp->cl_admin_revoked)); drop_client(clp); return 0; } DEFINE_SHOW_ATTRIBUTE(client_info); static void *states_start(struct seq_file *s, loff_t *pos) __acquires(&clp->cl_lock) { struct nfs4_client *clp = s->private; unsigned long id = *pos; void *ret; spin_lock(&clp->cl_lock); ret = idr_get_next_ul(&clp->cl_stateids, &id); *pos = id; return ret; } static void *states_next(struct seq_file *s, void *v, loff_t *pos) { struct nfs4_client *clp = s->private; unsigned long id = *pos; void *ret; id = *pos; id++; ret = idr_get_next_ul(&clp->cl_stateids, &id); *pos = id; return ret; } static void states_stop(struct seq_file *s, void *v) __releases(&clp->cl_lock) { struct nfs4_client *clp = s->private; spin_unlock(&clp->cl_lock); } static void nfs4_show_fname(struct seq_file *s, struct nfsd_file *f) { seq_printf(s, "filename: \"%pD2\"", f->nf_file); } static void nfs4_show_superblock(struct seq_file *s, struct nfsd_file *f) { struct inode *inode = file_inode(f->nf_file); seq_printf(s, "superblock: \"%02x:%02x:%ld\"", MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), inode->i_ino); } static void nfs4_show_owner(struct seq_file *s, struct nfs4_stateowner *oo) { seq_puts(s, "owner: "); seq_quote_mem(s, oo->so_owner.data, oo->so_owner.len); } static void nfs4_show_stateid(struct seq_file *s, stateid_t *stid) { seq_printf(s, "0x%.8x", stid->si_generation); seq_printf(s, "%12phN", &stid->si_opaque); } static int nfs4_show_open(struct seq_file *s, struct nfs4_stid *st) { struct nfs4_ol_stateid *ols; struct nfs4_file *nf; struct nfsd_file *file; struct nfs4_stateowner *oo; unsigned int access, deny; ols = openlockstateid(st); oo = ols->st_stateowner; nf = st->sc_file; seq_puts(s, "- "); nfs4_show_stateid(s, &st->sc_stateid); seq_puts(s, ": { type: open, "); access = bmap_to_share_mode(ols->st_access_bmap); deny = bmap_to_share_mode(ols->st_deny_bmap); seq_printf(s, "access: %s%s, ", access & NFS4_SHARE_ACCESS_READ ? "r" : "-", access & NFS4_SHARE_ACCESS_WRITE ? "w" : "-"); seq_printf(s, "deny: %s%s, ", deny & NFS4_SHARE_ACCESS_READ ? "r" : "-", deny & NFS4_SHARE_ACCESS_WRITE ? "w" : "-"); if (nf) { spin_lock(&nf->fi_lock); file = find_any_file_locked(nf); if (file) { nfs4_show_superblock(s, file); seq_puts(s, ", "); nfs4_show_fname(s, file); seq_puts(s, ", "); } spin_unlock(&nf->fi_lock); } else seq_puts(s, "closed, "); nfs4_show_owner(s, oo); if (st->sc_status & SC_STATUS_ADMIN_REVOKED) seq_puts(s, ", admin-revoked"); seq_puts(s, " }\n"); return 0; } static int nfs4_show_lock(struct seq_file *s, struct nfs4_stid *st) { struct nfs4_ol_stateid *ols; struct nfs4_file *nf; struct nfsd_file *file; struct nfs4_stateowner *oo; ols = openlockstateid(st); oo = ols->st_stateowner; nf = st->sc_file; seq_puts(s, "- "); nfs4_show_stateid(s, &st->sc_stateid); seq_puts(s, ": { type: lock, "); spin_lock(&nf->fi_lock); file = find_any_file_locked(nf); if (file) { /* * Note: a lock stateid isn't really the same thing as a lock, * it's the locking state held by one owner on a file, and there * may be multiple (or no) lock ranges associated with it. * (Same for the matter is true of open stateids.) */ nfs4_show_superblock(s, file); /* XXX: open stateid? */ seq_puts(s, ", "); nfs4_show_fname(s, file); seq_puts(s, ", "); } nfs4_show_owner(s, oo); if (st->sc_status & SC_STATUS_ADMIN_REVOKED) seq_puts(s, ", admin-revoked"); seq_puts(s, " }\n"); spin_unlock(&nf->fi_lock); return 0; } static int nfs4_show_deleg(struct seq_file *s, struct nfs4_stid *st) { struct nfs4_delegation *ds; struct nfs4_file *nf; struct nfsd_file *file; ds = delegstateid(st); nf = st->sc_file; seq_puts(s, "- "); nfs4_show_stateid(s, &st->sc_stateid); seq_puts(s, ": { type: deleg, "); seq_printf(s, "access: %s", ds->dl_type == NFS4_OPEN_DELEGATE_READ ? "r" : "w"); /* XXX: lease time, whether it's being recalled. */ spin_lock(&nf->fi_lock); file = nf->fi_deleg_file; if (file) { seq_puts(s, ", "); nfs4_show_superblock(s, file); seq_puts(s, ", "); nfs4_show_fname(s, file); } spin_unlock(&nf->fi_lock); if (st->sc_status & SC_STATUS_ADMIN_REVOKED) seq_puts(s, ", admin-revoked"); seq_puts(s, " }\n"); return 0; } static int nfs4_show_layout(struct seq_file *s, struct nfs4_stid *st) { struct nfs4_layout_stateid *ls; struct nfsd_file *file; ls = container_of(st, struct nfs4_layout_stateid, ls_stid); seq_puts(s, "- "); nfs4_show_stateid(s, &st->sc_stateid); seq_puts(s, ": { type: layout"); /* XXX: What else would be useful? */ spin_lock(&ls->ls_stid.sc_file->fi_lock); file = ls->ls_file; if (file) { seq_puts(s, ", "); nfs4_show_superblock(s, file); seq_puts(s, ", "); nfs4_show_fname(s, file); } spin_unlock(&ls->ls_stid.sc_file->fi_lock); if (st->sc_status & SC_STATUS_ADMIN_REVOKED) seq_puts(s, ", admin-revoked"); seq_puts(s, " }\n"); return 0; } static int states_show(struct seq_file *s, void *v) { struct nfs4_stid *st = v; switch (st->sc_type) { case SC_TYPE_OPEN: return nfs4_show_open(s, st); case SC_TYPE_LOCK: return nfs4_show_lock(s, st); case SC_TYPE_DELEG: return nfs4_show_deleg(s, st); case SC_TYPE_LAYOUT: return nfs4_show_layout(s, st); default: return 0; /* XXX: or SEQ_SKIP? */ } /* XXX: copy stateids? */ } static struct seq_operations states_seq_ops = { .start = states_start, .next = states_next, .stop = states_stop, .show = states_show }; static int client_states_open(struct inode *inode, struct file *file) { struct seq_file *s; struct nfs4_client *clp; int ret; clp = get_nfsdfs_clp(inode); if (!clp) return -ENXIO; ret = seq_open(file, &states_seq_ops); if (ret) return ret; s = file->private_data; s->private = clp; return 0; } static int client_opens_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; struct nfs4_client *clp = m->private; /* XXX: alternatively, we could get/drop in seq start/stop */ drop_client(clp); return seq_release(inode, file); } static const struct file_operations client_states_fops = { .open = client_states_open, .read = seq_read, .llseek = seq_lseek, .release = client_opens_release, }; /* * Normally we refuse to destroy clients that are in use, but here the * administrator is telling us to just do it. We also want to wait * so the caller has a guarantee that the client's locks are gone by * the time the write returns: */ static void force_expire_client(struct nfs4_client *clp) { struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); bool already_expired; trace_nfsd_clid_admin_expired(&clp->cl_clientid); spin_lock(&nn->client_lock); clp->cl_time = 0; spin_unlock(&nn->client_lock); wait_event(expiry_wq, atomic_read(&clp->cl_rpc_users) == 0); spin_lock(&nn->client_lock); already_expired = list_empty(&clp->cl_lru); if (!already_expired) unhash_client_locked(clp); spin_unlock(&nn->client_lock); if (!already_expired) expire_client(clp); else wait_event(expiry_wq, clp->cl_nfsd_dentry == NULL); } static ssize_t client_ctl_write(struct file *file, const char __user *buf, size_t size, loff_t *pos) { char *data; struct nfs4_client *clp; data = simple_transaction_get(file, buf, size); if (IS_ERR(data)) return PTR_ERR(data); if (size != 7 || 0 != memcmp(data, "expire\n", 7)) return -EINVAL; clp = get_nfsdfs_clp(file_inode(file)); if (!clp) return -ENXIO; force_expire_client(clp); drop_client(clp); return 7; } static const struct file_operations client_ctl_fops = { .write = client_ctl_write, .release = simple_transaction_release, }; static const struct tree_descr client_files[] = { [0] = {"info", &client_info_fops, S_IRUSR}, [1] = {"states", &client_states_fops, S_IRUSR}, [2] = {"ctl", &client_ctl_fops, S_IWUSR}, [3] = {""}, }; static int nfsd4_cb_recall_any_done(struct nfsd4_callback *cb, struct rpc_task *task) { trace_nfsd_cb_recall_any_done(cb, task); switch (task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, 2 * HZ); return 0; default: return 1; } } static void nfsd4_cb_recall_any_release(struct nfsd4_callback *cb) { struct nfs4_client *clp = cb->cb_clp; clear_bit(NFSD4_CLIENT_CB_RECALL_ANY, &clp->cl_flags); drop_client(clp); } static int nfsd4_cb_getattr_done(struct nfsd4_callback *cb, struct rpc_task *task) { struct nfs4_cb_fattr *ncf = container_of(cb, struct nfs4_cb_fattr, ncf_getattr); struct nfs4_delegation *dp = container_of(ncf, struct nfs4_delegation, dl_cb_fattr); trace_nfsd_cb_getattr_done(&dp->dl_stid.sc_stateid, task); ncf->ncf_cb_status = task->tk_status; switch (task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, 2 * HZ); return 0; default: return 1; } } static void nfsd4_cb_getattr_release(struct nfsd4_callback *cb) { struct nfs4_cb_fattr *ncf = container_of(cb, struct nfs4_cb_fattr, ncf_getattr); struct nfs4_delegation *dp = container_of(ncf, struct nfs4_delegation, dl_cb_fattr); clear_and_wake_up_bit(CB_GETATTR_BUSY, &ncf->ncf_cb_flags); nfs4_put_stid(&dp->dl_stid); } static const struct nfsd4_callback_ops nfsd4_cb_recall_any_ops = { .done = nfsd4_cb_recall_any_done, .release = nfsd4_cb_recall_any_release, .opcode = OP_CB_RECALL_ANY, }; static const struct nfsd4_callback_ops nfsd4_cb_getattr_ops = { .done = nfsd4_cb_getattr_done, .release = nfsd4_cb_getattr_release, .opcode = OP_CB_GETATTR, }; static void nfs4_cb_getattr(struct nfs4_cb_fattr *ncf) { struct nfs4_delegation *dp = container_of(ncf, struct nfs4_delegation, dl_cb_fattr); if (test_and_set_bit(CB_GETATTR_BUSY, &ncf->ncf_cb_flags)) return; /* set to proper status when nfsd4_cb_getattr_done runs */ ncf->ncf_cb_status = NFS4ERR_IO; refcount_inc(&dp->dl_stid.sc_count); nfsd4_run_cb(&ncf->ncf_getattr); } static struct nfs4_client *create_client(struct xdr_netobj name, struct svc_rqst *rqstp, nfs4_verifier *verf) { struct nfs4_client *clp; struct sockaddr *sa = svc_addr(rqstp); int ret; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct dentry *dentries[ARRAY_SIZE(client_files)]; clp = alloc_client(name, nn); if (clp == NULL) return NULL; ret = copy_cred(&clp->cl_cred, &rqstp->rq_cred); if (ret) { free_client(clp); return NULL; } gen_clid(clp, nn); kref_init(&clp->cl_nfsdfs.cl_ref); nfsd4_init_cb(&clp->cl_cb_null, clp, NULL, NFSPROC4_CLNT_CB_NULL); clp->cl_time = ktime_get_boottime_seconds(); copy_verf(clp, verf); memcpy(&clp->cl_addr, sa, sizeof(struct sockaddr_storage)); clp->cl_cb_session = NULL; clp->net = net; clp->cl_nfsd_dentry = nfsd_client_mkdir( nn, &clp->cl_nfsdfs, clp->cl_clientid.cl_id - nn->clientid_base, client_files, dentries); clp->cl_nfsd_info_dentry = dentries[0]; if (!clp->cl_nfsd_dentry) { free_client(clp); return NULL; } clp->cl_ra = kzalloc(sizeof(*clp->cl_ra), GFP_KERNEL); if (!clp->cl_ra) { free_client(clp); return NULL; } clp->cl_ra_time = 0; nfsd4_init_cb(&clp->cl_ra->ra_cb, clp, &nfsd4_cb_recall_any_ops, NFSPROC4_CLNT_CB_RECALL_ANY); return clp; } static void add_clp_to_name_tree(struct nfs4_client *new_clp, struct rb_root *root) { struct rb_node **new = &(root->rb_node), *parent = NULL; struct nfs4_client *clp; while (*new) { clp = rb_entry(*new, struct nfs4_client, cl_namenode); parent = *new; if (compare_blob(&clp->cl_name, &new_clp->cl_name) > 0) new = &((*new)->rb_left); else new = &((*new)->rb_right); } rb_link_node(&new_clp->cl_namenode, parent, new); rb_insert_color(&new_clp->cl_namenode, root); } static struct nfs4_client * find_clp_in_name_tree(struct xdr_netobj *name, struct rb_root *root) { int cmp; struct rb_node *node = root->rb_node; struct nfs4_client *clp; while (node) { clp = rb_entry(node, struct nfs4_client, cl_namenode); cmp = compare_blob(&clp->cl_name, name); if (cmp > 0) node = node->rb_left; else if (cmp < 0) node = node->rb_right; else return clp; } return NULL; } static void add_to_unconfirmed(struct nfs4_client *clp) { unsigned int idhashval; struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); clear_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags); add_clp_to_name_tree(clp, &nn->unconf_name_tree); idhashval = clientid_hashval(clp->cl_clientid.cl_id); list_add(&clp->cl_idhash, &nn->unconf_id_hashtbl[idhashval]); renew_client_locked(clp); } static void move_to_confirmed(struct nfs4_client *clp) { unsigned int idhashval = clientid_hashval(clp->cl_clientid.cl_id); struct nfsd_net *nn = net_generic(clp->net, nfsd_net_id); lockdep_assert_held(&nn->client_lock); list_move(&clp->cl_idhash, &nn->conf_id_hashtbl[idhashval]); rb_erase(&clp->cl_namenode, &nn->unconf_name_tree); add_clp_to_name_tree(clp, &nn->conf_name_tree); set_bit(NFSD4_CLIENT_CONFIRMED, &clp->cl_flags); trace_nfsd_clid_confirmed(&clp->cl_clientid); renew_client_locked(clp); } static struct nfs4_client * find_client_in_id_table(struct list_head *tbl, clientid_t *clid, bool sessions) { struct nfs4_client *clp; unsigned int idhashval = clientid_hashval(clid->cl_id); list_for_each_entry(clp, &tbl[idhashval], cl_idhash) { if (same_clid(&clp->cl_clientid, clid)) { if ((bool)clp->cl_minorversion != sessions) return NULL; renew_client_locked(clp); return clp; } } return NULL; } static struct nfs4_client * find_confirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn) { struct list_head *tbl = nn->conf_id_hashtbl; lockdep_assert_held(&nn->client_lock); return find_client_in_id_table(tbl, clid, sessions); } static struct nfs4_client * find_unconfirmed_client(clientid_t *clid, bool sessions, struct nfsd_net *nn) { struct list_head *tbl = nn->unconf_id_hashtbl; lockdep_assert_held(&nn->client_lock); return find_client_in_id_table(tbl, clid, sessions); } static bool clp_used_exchangeid(struct nfs4_client *clp) { return clp->cl_exchange_flags != 0; } static struct nfs4_client * find_confirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn) { lockdep_assert_held(&nn->client_lock); return find_clp_in_name_tree(name, &nn->conf_name_tree); } static struct nfs4_client * find_unconfirmed_client_by_name(struct xdr_netobj *name, struct nfsd_net *nn) { lockdep_assert_held(&nn->client_lock); return find_clp_in_name_tree(name, &nn->unconf_name_tree); } static void gen_callback(struct nfs4_client *clp, struct nfsd4_setclientid *se, struct svc_rqst *rqstp) { struct nfs4_cb_conn *conn = &clp->cl_cb_conn; struct sockaddr *sa = svc_addr(rqstp); u32 scopeid = rpc_get_scope_id(sa); unsigned short expected_family; /* Currently, we only support tcp and tcp6 for the callback channel */ if (se->se_callback_netid_len == 3 && !memcmp(se->se_callback_netid_val, "tcp", 3)) expected_family = AF_INET; else if (se->se_callback_netid_len == 4 && !memcmp(se->se_callback_netid_val, "tcp6", 4)) expected_family = AF_INET6; else goto out_err; conn->cb_addrlen = rpc_uaddr2sockaddr(clp->net, se->se_callback_addr_val, se->se_callback_addr_len, (struct sockaddr *)&conn->cb_addr, sizeof(conn->cb_addr)); if (!conn->cb_addrlen || conn->cb_addr.ss_family != expected_family) goto out_err; if (conn->cb_addr.ss_family == AF_INET6) ((struct sockaddr_in6 *)&conn->cb_addr)->sin6_scope_id = scopeid; conn->cb_prog = se->se_callback_prog; conn->cb_ident = se->se_callback_ident; memcpy(&conn->cb_saddr, &rqstp->rq_daddr, rqstp->rq_daddrlen); trace_nfsd_cb_args(clp, conn); return; out_err: conn->cb_addr.ss_family = AF_UNSPEC; conn->cb_addrlen = 0; trace_nfsd_cb_nodelegs(clp); return; } /* * Cache a reply. nfsd4_check_resp_size() has bounded the cache size. */ static void nfsd4_store_cache_entry(struct nfsd4_compoundres *resp) { struct xdr_buf *buf = resp->xdr->buf; struct nfsd4_slot *slot = resp->cstate.slot; unsigned int base; dprintk("--> %s slot %p\n", __func__, slot); slot->sl_flags |= NFSD4_SLOT_INITIALIZED; slot->sl_opcnt = resp->opcnt; slot->sl_status = resp->cstate.status; free_svc_cred(&slot->sl_cred); copy_cred(&slot->sl_cred, &resp->rqstp->rq_cred); if (!nfsd4_cache_this(resp)) { slot->sl_flags &= ~NFSD4_SLOT_CACHED; return; } slot->sl_flags |= NFSD4_SLOT_CACHED; base = resp->cstate.data_offset; slot->sl_datalen = buf->len - base; if (read_bytes_from_xdr_buf(buf, base, slot->sl_data, slot->sl_datalen)) WARN(1, "%s: sessions DRC could not cache compound\n", __func__); return; } /* * Encode the replay sequence operation from the slot values. * If cachethis is FALSE encode the uncached rep error on the next * operation which sets resp->p and increments resp->opcnt for * nfs4svc_encode_compoundres. * */ static __be32 nfsd4_enc_sequence_replay(struct nfsd4_compoundargs *args, struct nfsd4_compoundres *resp) { struct nfsd4_op *op; struct nfsd4_slot *slot = resp->cstate.slot; /* Encode the replayed sequence operation */ op = &args->ops[resp->opcnt - 1]; nfsd4_encode_operation(resp, op); if (slot->sl_flags & NFSD4_SLOT_CACHED) return op->status; if (args->opcnt == 1) { /* * The original operation wasn't a solo sequence--we * always cache those--so this retry must not match the * original: */ op->status = nfserr_seq_false_retry; } else { op = &args->ops[resp->opcnt++]; op->status = nfserr_retry_uncached_rep; nfsd4_encode_operation(resp, op); } return op->status; } /* * The sequence operation is not cached because we can use the slot and * session values. */ static __be32 nfsd4_replay_cache_entry(struct nfsd4_compoundres *resp, struct nfsd4_sequence *seq) { struct nfsd4_slot *slot = resp->cstate.slot; struct xdr_stream *xdr = resp->xdr; __be32 *p; __be32 status; dprintk("--> %s slot %p\n", __func__, slot); status = nfsd4_enc_sequence_replay(resp->rqstp->rq_argp, resp); if (status) return status; p = xdr_reserve_space(xdr, slot->sl_datalen); if (!p) { WARN_ON_ONCE(1); return nfserr_serverfault; } xdr_encode_opaque_fixed(p, slot->sl_data, slot->sl_datalen); xdr_commit_encode(xdr); resp->opcnt = slot->sl_opcnt; return slot->sl_status; } /* * Set the exchange_id flags returned by the server. */ static void nfsd4_set_ex_flags(struct nfs4_client *new, struct nfsd4_exchange_id *clid) { #ifdef CONFIG_NFSD_PNFS new->cl_exchange_flags |= EXCHGID4_FLAG_USE_PNFS_MDS; #else new->cl_exchange_flags |= EXCHGID4_FLAG_USE_NON_PNFS; #endif /* Referrals are supported, Migration is not. */ new->cl_exchange_flags |= EXCHGID4_FLAG_SUPP_MOVED_REFER; /* set the wire flags to return to client. */ clid->flags = new->cl_exchange_flags; } static bool client_has_openowners(struct nfs4_client *clp) { struct nfs4_openowner *oo; list_for_each_entry(oo, &clp->cl_openowners, oo_perclient) { if (!list_empty(&oo->oo_owner.so_stateids)) return true; } return false; } static bool client_has_state(struct nfs4_client *clp) { return client_has_openowners(clp) #ifdef CONFIG_NFSD_PNFS || !list_empty(&clp->cl_lo_states) #endif || !list_empty(&clp->cl_delegations) || !list_empty(&clp->cl_sessions) || nfsd4_has_active_async_copies(clp); } static __be32 copy_impl_id(struct nfs4_client *clp, struct nfsd4_exchange_id *exid) { if (!exid->nii_domain.data) return 0; xdr_netobj_dup(&clp->cl_nii_domain, &exid->nii_domain, GFP_KERNEL); if (!clp->cl_nii_domain.data) return nfserr_jukebox; xdr_netobj_dup(&clp->cl_nii_name, &exid->nii_name, GFP_KERNEL); if (!clp->cl_nii_name.data) return nfserr_jukebox; clp->cl_nii_time = exid->nii_time; return 0; } __be32 nfsd4_exchange_id(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_exchange_id *exid = &u->exchange_id; struct nfs4_client *conf, *new; struct nfs4_client *unconf = NULL; __be32 status; char addr_str[INET6_ADDRSTRLEN]; nfs4_verifier verf = exid->verifier; struct sockaddr *sa = svc_addr(rqstp); bool update = exid->flags & EXCHGID4_FLAG_UPD_CONFIRMED_REC_A; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); rpc_ntop(sa, addr_str, sizeof(addr_str)); dprintk("%s rqstp=%p exid=%p clname.len=%u clname.data=%p " "ip_addr=%s flags %x, spa_how %u\n", __func__, rqstp, exid, exid->clname.len, exid->clname.data, addr_str, exid->flags, exid->spa_how); exid->server_impl_name = kasprintf(GFP_KERNEL, "%s %s %s %s", utsname()->sysname, utsname()->release, utsname()->version, utsname()->machine); if (!exid->server_impl_name) return nfserr_jukebox; if (exid->flags & ~EXCHGID4_FLAG_MASK_A) return nfserr_inval; new = create_client(exid->clname, rqstp, &verf); if (new == NULL) return nfserr_jukebox; status = copy_impl_id(new, exid); if (status) goto out_nolock; switch (exid->spa_how) { case SP4_MACH_CRED: exid->spo_must_enforce[0] = 0; exid->spo_must_enforce[1] = ( 1 << (OP_BIND_CONN_TO_SESSION - 32) | 1 << (OP_EXCHANGE_ID - 32) | 1 << (OP_CREATE_SESSION - 32) | 1 << (OP_DESTROY_SESSION - 32) | 1 << (OP_DESTROY_CLIENTID - 32)); exid->spo_must_allow[0] &= (1 << (OP_CLOSE) | 1 << (OP_OPEN_DOWNGRADE) | 1 << (OP_LOCKU) | 1 << (OP_DELEGRETURN)); exid->spo_must_allow[1] &= ( 1 << (OP_TEST_STATEID - 32) | 1 << (OP_FREE_STATEID - 32)); if (!svc_rqst_integrity_protected(rqstp)) { status = nfserr_inval; goto out_nolock; } /* * Sometimes userspace doesn't give us a principal. * Which is a bug, really. Anyway, we can't enforce * MACH_CRED in that case, better to give up now: */ if (!new->cl_cred.cr_principal && !new->cl_cred.cr_raw_principal) { status = nfserr_serverfault; goto out_nolock; } new->cl_mach_cred = true; break; case SP4_NONE: break; default: /* checked by xdr code */ WARN_ON_ONCE(1); fallthrough; case SP4_SSV: status = nfserr_encr_alg_unsupp; goto out_nolock; } /* Cases below refer to rfc 5661 section 18.35.4: */ spin_lock(&nn->client_lock); conf = find_confirmed_client_by_name(&exid->clname, nn); if (conf) { bool creds_match = same_creds(&conf->cl_cred, &rqstp->rq_cred); bool verfs_match = same_verf(&verf, &conf->cl_verifier); if (update) { if (!clp_used_exchangeid(conf)) { /* buggy client */ status = nfserr_inval; goto out; } if (!nfsd4_mach_creds_match(conf, rqstp)) { status = nfserr_wrong_cred; goto out; } if (!creds_match) { /* case 9 */ status = nfserr_perm; goto out; } if (!verfs_match) { /* case 8 */ status = nfserr_not_same; goto out; } /* case 6 */ exid->flags |= EXCHGID4_FLAG_CONFIRMED_R; trace_nfsd_clid_confirmed_r(conf); goto out_copy; } if (!creds_match) { /* case 3 */ if (client_has_state(conf)) { status = nfserr_clid_inuse; trace_nfsd_clid_cred_mismatch(conf, rqstp); goto out; } goto out_new; } if (verfs_match) { /* case 2 */ conf->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R; trace_nfsd_clid_confirmed_r(conf); goto out_copy; } /* case 5, client reboot */ trace_nfsd_clid_verf_mismatch(conf, rqstp, &verf); conf = NULL; goto out_new; } if (update) { /* case 7 */ status = nfserr_noent; goto out; } unconf = find_unconfirmed_client_by_name(&exid->clname, nn); if (unconf) /* case 4, possible retry or client restart */ unhash_client_locked(unconf); /* case 1, new owner ID */ trace_nfsd_clid_fresh(new); out_new: if (conf) { status = mark_client_expired_locked(conf); if (status) goto out; trace_nfsd_clid_replaced(&conf->cl_clientid); } new->cl_minorversion = cstate->minorversion; new->cl_spo_must_allow.u.words[0] = exid->spo_must_allow[0]; new->cl_spo_must_allow.u.words[1] = exid->spo_must_allow[1]; /* Contrived initial CREATE_SESSION response */ new->cl_cs_slot.sl_status = nfserr_seq_misordered; add_to_unconfirmed(new); swap(new, conf); out_copy: exid->clientid.cl_boot = conf->cl_clientid.cl_boot; exid->clientid.cl_id = conf->cl_clientid.cl_id; exid->seqid = conf->cl_cs_slot.sl_seqid + 1; nfsd4_set_ex_flags(conf, exid); exid->nii_domain.len = sizeof("kernel.org") - 1; exid->nii_domain.data = "kernel.org"; /* * Note that RFC 8881 places no length limit on * nii_name, but this implementation permits no * more than NFS4_OPAQUE_LIMIT bytes. */ exid->nii_name.len = strlen(exid->server_impl_name); if (exid->nii_name.len > NFS4_OPAQUE_LIMIT) exid->nii_name.len = NFS4_OPAQUE_LIMIT; exid->nii_name.data = exid->server_impl_name; /* just send zeros - the date is in nii_name */ exid->nii_time.tv_sec = 0; exid->nii_time.tv_nsec = 0; dprintk("nfsd4_exchange_id seqid %d flags %x\n", conf->cl_cs_slot.sl_seqid, conf->cl_exchange_flags); status = nfs_ok; out: spin_unlock(&nn->client_lock); out_nolock: if (new) expire_client(new); if (unconf) { trace_nfsd_clid_expire_unconf(&unconf->cl_clientid); expire_client(unconf); } return status; } void nfsd4_exchange_id_release(union nfsd4_op_u *u) { struct nfsd4_exchange_id *exid = &u->exchange_id; kfree(exid->server_impl_name); } static __be32 check_slot_seqid(u32 seqid, u32 slot_seqid, bool slot_inuse) { /* The slot is in use, and no response has been sent. */ if (slot_inuse) { if (seqid == slot_seqid) return nfserr_jukebox; else return nfserr_seq_misordered; } /* Note unsigned 32-bit arithmetic handles wraparound: */ if (likely(seqid == slot_seqid + 1)) return nfs_ok; if (seqid == slot_seqid) return nfserr_replay_cache; return nfserr_seq_misordered; } /* * Cache the create session result into the create session single DRC * slot cache by saving the xdr structure. sl_seqid has been set. * Do this for solo or embedded create session operations. */ static void nfsd4_cache_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot, __be32 nfserr) { slot->sl_status = nfserr; memcpy(&slot->sl_cr_ses, cr_ses, sizeof(*cr_ses)); } static __be32 nfsd4_replay_create_session(struct nfsd4_create_session *cr_ses, struct nfsd4_clid_slot *slot) { memcpy(cr_ses, &slot->sl_cr_ses, sizeof(*cr_ses)); return slot->sl_status; } #define NFSD_MIN_REQ_HDR_SEQ_SZ ((\ 2 * 2 + /* credential,verifier: AUTH_NULL, length 0 */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* version, opcount, opcode */ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, cache */ \ 4 ) * sizeof(__be32)) #define NFSD_MIN_RESP_HDR_SEQ_SZ ((\ 2 + /* verifier: AUTH_NULL, length 0 */\ 1 + /* status */ \ 1 + /* MIN tag is length with zero, only length */ \ 3 + /* opcount, opcode, opstatus*/ \ XDR_QUADLEN(NFS4_MAX_SESSIONID_LEN) + \ /* seqid, slotID, slotID, slotID, status */ \ 5 ) * sizeof(__be32)) static __be32 check_forechannel_attrs(struct nfsd4_channel_attrs *ca, struct nfsd_net *nn) { u32 maxrpc = nn->nfsd_serv->sv_max_mesg; if (ca->maxreq_sz < NFSD_MIN_REQ_HDR_SEQ_SZ) return nfserr_toosmall; if (ca->maxresp_sz < NFSD_MIN_RESP_HDR_SEQ_SZ) return nfserr_toosmall; ca->headerpadsz = 0; ca->maxreq_sz = min_t(u32, ca->maxreq_sz, maxrpc); ca->maxresp_sz = min_t(u32, ca->maxresp_sz, maxrpc); ca->maxops = min_t(u32, ca->maxops, NFSD_MAX_OPS_PER_COMPOUND); ca->maxresp_cached = min_t(u32, ca->maxresp_cached, NFSD_SLOT_CACHE_SIZE + NFSD_MIN_HDR_SEQ_SZ); ca->maxreqs = min_t(u32, ca->maxreqs, NFSD_MAX_SLOTS_PER_SESSION); /* * Note decreasing slot size below client's request may make it * difficult for client to function correctly, whereas * decreasing the number of slots will (just?) affect * performance. When short on memory we therefore prefer to * decrease number of slots instead of their size. Clients that * request larger slots than they need will get poor results: * Note that we always allow at least one slot, because our * accounting is soft and provides no guarantees either way. */ ca->maxreqs = nfsd4_get_drc_mem(ca, nn); return nfs_ok; } /* * Server's NFSv4.1 backchannel support is AUTH_SYS-only for now. * These are based on similar macros in linux/sunrpc/msg_prot.h . */ #define RPC_MAX_HEADER_WITH_AUTH_SYS \ (RPC_CALLHDRSIZE + 2 * (2 + UNX_CALLSLACK)) #define RPC_MAX_REPHEADER_WITH_AUTH_SYS \ (RPC_REPHDRSIZE + (2 + NUL_REPLYSLACK)) #define NFSD_CB_MAX_REQ_SZ ((NFS4_enc_cb_recall_sz + \ RPC_MAX_HEADER_WITH_AUTH_SYS) * sizeof(__be32)) #define NFSD_CB_MAX_RESP_SZ ((NFS4_dec_cb_recall_sz + \ RPC_MAX_REPHEADER_WITH_AUTH_SYS) * \ sizeof(__be32)) static __be32 check_backchannel_attrs(struct nfsd4_channel_attrs *ca) { ca->headerpadsz = 0; if (ca->maxreq_sz < NFSD_CB_MAX_REQ_SZ) return nfserr_toosmall; if (ca->maxresp_sz < NFSD_CB_MAX_RESP_SZ) return nfserr_toosmall; ca->maxresp_cached = 0; if (ca->maxops < 2) return nfserr_toosmall; return nfs_ok; } static __be32 nfsd4_check_cb_sec(struct nfsd4_cb_sec *cbs) { switch (cbs->flavor) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: return nfs_ok; default: /* * GSS case: the spec doesn't allow us to return this * error. But it also doesn't allow us not to support * GSS. * I'd rather this fail hard than return some error the * client might think it can already handle: */ return nfserr_encr_alg_unsupp; } } __be32 nfsd4_create_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_create_session *cr_ses = &u->create_session; struct sockaddr *sa = svc_addr(rqstp); struct nfs4_client *conf, *unconf; struct nfsd4_clid_slot *cs_slot; struct nfs4_client *old = NULL; struct nfsd4_session *new; struct nfsd4_conn *conn; __be32 status = 0; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (cr_ses->flags & ~SESSION4_FLAG_MASK_A) return nfserr_inval; status = nfsd4_check_cb_sec(&cr_ses->cb_sec); if (status) return status; status = check_forechannel_attrs(&cr_ses->fore_channel, nn); if (status) return status; status = check_backchannel_attrs(&cr_ses->back_channel); if (status) goto out_release_drc_mem; status = nfserr_jukebox; new = alloc_session(&cr_ses->fore_channel, &cr_ses->back_channel); if (!new) goto out_release_drc_mem; conn = alloc_conn_from_crses(rqstp, cr_ses); if (!conn) goto out_free_session; spin_lock(&nn->client_lock); /* RFC 8881 Section 18.36.4 Phase 1: Client record look-up. */ unconf = find_unconfirmed_client(&cr_ses->clientid, true, nn); conf = find_confirmed_client(&cr_ses->clientid, true, nn); if (!conf && !unconf) { status = nfserr_stale_clientid; goto out_free_conn; } /* RFC 8881 Section 18.36.4 Phase 2: Sequence ID processing. */ if (conf) { cs_slot = &conf->cl_cs_slot; trace_nfsd_slot_seqid_conf(conf, cr_ses); } else { cs_slot = &unconf->cl_cs_slot; trace_nfsd_slot_seqid_unconf(unconf, cr_ses); } status = check_slot_seqid(cr_ses->seqid, cs_slot->sl_seqid, 0); switch (status) { case nfs_ok: cs_slot->sl_seqid++; cr_ses->seqid = cs_slot->sl_seqid; break; case nfserr_replay_cache: status = nfsd4_replay_create_session(cr_ses, cs_slot); fallthrough; case nfserr_jukebox: /* The server MUST NOT cache NFS4ERR_DELAY */ goto out_free_conn; default: goto out_cache_error; } /* RFC 8881 Section 18.36.4 Phase 3: Client ID confirmation. */ if (conf) { status = nfserr_wrong_cred; if (!nfsd4_mach_creds_match(conf, rqstp)) goto out_cache_error; } else { status = nfserr_clid_inuse; if (!same_creds(&unconf->cl_cred, &rqstp->rq_cred) || !rpc_cmp_addr(sa, (struct sockaddr *) &unconf->cl_addr)) { trace_nfsd_clid_cred_mismatch(unconf, rqstp); goto out_cache_error; } status = nfserr_wrong_cred; if (!nfsd4_mach_creds_match(unconf, rqstp)) goto out_cache_error; old = find_confirmed_client_by_name(&unconf->cl_name, nn); if (old) { status = mark_client_expired_locked(old); if (status) goto out_expired_error; trace_nfsd_clid_replaced(&old->cl_clientid); } move_to_confirmed(unconf); conf = unconf; } /* RFC 8881 Section 18.36.4 Phase 4: Session creation. */ status = nfs_ok; /* Persistent sessions are not supported */ cr_ses->flags &= ~SESSION4_PERSIST; /* Upshifting from TCP to RDMA is not supported */ cr_ses->flags &= ~SESSION4_RDMA; /* Report the correct number of backchannel slots */ cr_ses->back_channel.maxreqs = new->se_cb_highest_slot + 1; init_session(rqstp, new, conf, cr_ses); nfsd4_get_session_locked(new); memcpy(cr_ses->sessionid.data, new->se_sessionid.data, NFS4_MAX_SESSIONID_LEN); /* cache solo and embedded create sessions under the client_lock */ nfsd4_cache_create_session(cr_ses, cs_slot, status); spin_unlock(&nn->client_lock); if (conf == unconf) fsnotify_dentry(conf->cl_nfsd_info_dentry, FS_MODIFY); /* init connection and backchannel */ nfsd4_init_conn(rqstp, conn, new); nfsd4_put_session(new); if (old) expire_client(old); return status; out_expired_error: /* * Revert the slot seq_nr change so the server will process * the client's resend instead of returning a cached response. */ if (status == nfserr_jukebox) { cs_slot->sl_seqid--; cr_ses->seqid = cs_slot->sl_seqid; goto out_free_conn; } out_cache_error: nfsd4_cache_create_session(cr_ses, cs_slot, status); out_free_conn: spin_unlock(&nn->client_lock); free_conn(conn); out_free_session: __free_session(new); out_release_drc_mem: nfsd4_put_drc_mem(&cr_ses->fore_channel); return status; } static __be32 nfsd4_map_bcts_dir(u32 *dir) { switch (*dir) { case NFS4_CDFC4_FORE: case NFS4_CDFC4_BACK: return nfs_ok; case NFS4_CDFC4_FORE_OR_BOTH: case NFS4_CDFC4_BACK_OR_BOTH: *dir = NFS4_CDFC4_BOTH; return nfs_ok; } return nfserr_inval; } __be32 nfsd4_backchannel_ctl(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_backchannel_ctl *bc = &u->backchannel_ctl; struct nfsd4_session *session = cstate->session; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); __be32 status; status = nfsd4_check_cb_sec(&bc->bc_cb_sec); if (status) return status; spin_lock(&nn->client_lock); session->se_cb_prog = bc->bc_cb_program; session->se_cb_sec = bc->bc_cb_sec; spin_unlock(&nn->client_lock); nfsd4_probe_callback(session->se_client); return nfs_ok; } static struct nfsd4_conn *__nfsd4_find_conn(struct svc_xprt *xpt, struct nfsd4_session *s) { struct nfsd4_conn *c; list_for_each_entry(c, &s->se_conns, cn_persession) { if (c->cn_xprt == xpt) { return c; } } return NULL; } static __be32 nfsd4_match_existing_connection(struct svc_rqst *rqst, struct nfsd4_session *session, u32 req, struct nfsd4_conn **conn) { struct nfs4_client *clp = session->se_client; struct svc_xprt *xpt = rqst->rq_xprt; struct nfsd4_conn *c; __be32 status; /* Following the last paragraph of RFC 5661 Section 18.34.3: */ spin_lock(&clp->cl_lock); c = __nfsd4_find_conn(xpt, session); if (!c) status = nfserr_noent; else if (req == c->cn_flags) status = nfs_ok; else if (req == NFS4_CDFC4_FORE_OR_BOTH && c->cn_flags != NFS4_CDFC4_BACK) status = nfs_ok; else if (req == NFS4_CDFC4_BACK_OR_BOTH && c->cn_flags != NFS4_CDFC4_FORE) status = nfs_ok; else status = nfserr_inval; spin_unlock(&clp->cl_lock); if (status == nfs_ok && conn) *conn = c; return status; } __be32 nfsd4_bind_conn_to_session(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_bind_conn_to_session *bcts = &u->bind_conn_to_session; __be32 status; struct nfsd4_conn *conn; struct nfsd4_session *session; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); if (!nfsd4_last_compound_op(rqstp)) return nfserr_not_only_op; spin_lock(&nn->client_lock); session = find_in_sessionid_hashtbl(&bcts->sessionid, net, &status); spin_unlock(&nn->client_lock); if (!session) goto out_no_session; status = nfserr_wrong_cred; if (!nfsd4_mach_creds_match(session->se_client, rqstp)) goto out; status = nfsd4_match_existing_connection(rqstp, session, bcts->dir, &conn); if (status == nfs_ok) { if (bcts->dir == NFS4_CDFC4_FORE_OR_BOTH || bcts->dir == NFS4_CDFC4_BACK) conn->cn_flags |= NFS4_CDFC4_BACK; nfsd4_probe_callback(session->se_client); goto out; } if (status == nfserr_inval) goto out; status = nfsd4_map_bcts_dir(&bcts->dir); if (status) goto out; conn = alloc_conn(rqstp, bcts->dir); status = nfserr_jukebox; if (!conn) goto out; nfsd4_init_conn(rqstp, conn, session); status = nfs_ok; out: nfsd4_put_session(session); out_no_session: return status; } static bool nfsd4_compound_in_session(struct nfsd4_compound_state *cstate, struct nfs4_sessionid *sid) { if (!cstate->session) return false; return !memcmp(sid, &cstate->session->se_sessionid, sizeof(*sid)); } __be32 nfsd4_destroy_session(struct svc_rqst *r, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfs4_sessionid *sessionid = &u->destroy_session.sessionid; struct nfsd4_session *ses; __be32 status; int ref_held_by_me = 0; struct net *net = SVC_NET(r); struct nfsd_net *nn = net_generic(net, nfsd_net_id); status = nfserr_not_only_op; if (nfsd4_compound_in_session(cstate, sessionid)) { if (!nfsd4_last_compound_op(r)) goto out; ref_held_by_me++; } dump_sessionid(__func__, sessionid); spin_lock(&nn->client_lock); ses = find_in_sessionid_hashtbl(sessionid, net, &status); if (!ses) goto out_client_lock; status = nfserr_wrong_cred; if (!nfsd4_mach_creds_match(ses->se_client, r)) goto out_put_session; status = mark_session_dead_locked(ses, 1 + ref_held_by_me); if (status) goto out_put_session; unhash_session(ses); spin_unlock(&nn->client_lock); nfsd4_probe_callback_sync(ses->se_client); spin_lock(&nn->client_lock); status = nfs_ok; out_put_session: nfsd4_put_session_locked(ses); out_client_lock: spin_unlock(&nn->client_lock); out: return status; } static __be32 nfsd4_sequence_check_conn(struct nfsd4_conn *new, struct nfsd4_session *ses) { struct nfs4_client *clp = ses->se_client; struct nfsd4_conn *c; __be32 status = nfs_ok; int ret; spin_lock(&clp->cl_lock); c = __nfsd4_find_conn(new->cn_xprt, ses); if (c) goto out_free; status = nfserr_conn_not_bound_to_session; if (clp->cl_mach_cred) goto out_free; __nfsd4_hash_conn(new, ses); spin_unlock(&clp->cl_lock); ret = nfsd4_register_conn(new); if (ret) /* oops; xprt is already down: */ nfsd4_conn_lost(&new->cn_xpt_user); return nfs_ok; out_free: spin_unlock(&clp->cl_lock); free_conn(new); return status; } static bool nfsd4_session_too_many_ops(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct nfsd4_compoundargs *args = rqstp->rq_argp; return args->opcnt > session->se_fchannel.maxops; } static bool nfsd4_request_too_big(struct svc_rqst *rqstp, struct nfsd4_session *session) { struct xdr_buf *xb = &rqstp->rq_arg; return xb->len > session->se_fchannel.maxreq_sz; } static bool replay_matches_cache(struct svc_rqst *rqstp, struct nfsd4_sequence *seq, struct nfsd4_slot *slot) { struct nfsd4_compoundargs *argp = rqstp->rq_argp; if ((bool)(slot->sl_flags & NFSD4_SLOT_CACHETHIS) != (bool)seq->cachethis) return false; /* * If there's an error then the reply can have fewer ops than * the call. */ if (slot->sl_opcnt < argp->opcnt && !slot->sl_status) return false; /* * But if we cached a reply with *more* ops than the call you're * sending us now, then this new call is clearly not really a * replay of the old one: */ if (slot->sl_opcnt > argp->opcnt) return false; /* This is the only check explicitly called by spec: */ if (!same_creds(&rqstp->rq_cred, &slot->sl_cred)) return false; /* * There may be more comparisons we could actually do, but the * spec doesn't require us to catch every case where the calls * don't match (that would require caching the call as well as * the reply), so we don't bother. */ return true; } __be32 nfsd4_sequence(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_sequence *seq = &u->sequence; struct nfsd4_compoundres *resp = rqstp->rq_resp; struct xdr_stream *xdr = resp->xdr; struct nfsd4_session *session; struct nfs4_client *clp; struct nfsd4_slot *slot; struct nfsd4_conn *conn; __be32 status; int buflen; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); if (resp->opcnt != 1) return nfserr_sequence_pos; /* * Will be either used or freed by nfsd4_sequence_check_conn * below. */ conn = alloc_conn(rqstp, NFS4_CDFC4_FORE); if (!conn) return nfserr_jukebox; spin_lock(&nn->client_lock); session = find_in_sessionid_hashtbl(&seq->sessionid, net, &status); if (!session) goto out_no_session; clp = session->se_client; status = nfserr_too_many_ops; if (nfsd4_session_too_many_ops(rqstp, session)) goto out_put_session; status = nfserr_req_too_big; if (nfsd4_request_too_big(rqstp, session)) goto out_put_session; status = nfserr_badslot; if (seq->slotid >= session->se_fchannel.maxreqs) goto out_put_session; slot = session->se_slots[seq->slotid]; dprintk("%s: slotid %d\n", __func__, seq->slotid); /* We do not negotiate the number of slots yet, so set the * maxslots to the session maxreqs which is used to encode * sr_highest_slotid and the sr_target_slot id to maxslots */ seq->maxslots = session->se_fchannel.maxreqs; trace_nfsd_slot_seqid_sequence(clp, seq, slot); status = check_slot_seqid(seq->seqid, slot->sl_seqid, slot->sl_flags & NFSD4_SLOT_INUSE); if (status == nfserr_replay_cache) { status = nfserr_seq_misordered; if (!(slot->sl_flags & NFSD4_SLOT_INITIALIZED)) goto out_put_session; status = nfserr_seq_false_retry; if (!replay_matches_cache(rqstp, seq, slot)) goto out_put_session; cstate->slot = slot; cstate->session = session; cstate->clp = clp; /* Return the cached reply status and set cstate->status * for nfsd4_proc_compound processing */ status = nfsd4_replay_cache_entry(resp, seq); cstate->status = nfserr_replay_cache; goto out; } if (status) goto out_put_session; status = nfsd4_sequence_check_conn(conn, session); conn = NULL; if (status) goto out_put_session; buflen = (seq->cachethis) ? session->se_fchannel.maxresp_cached : session->se_fchannel.maxresp_sz; status = (seq->cachethis) ? nfserr_rep_too_big_to_cache : nfserr_rep_too_big; if (xdr_restrict_buflen(xdr, buflen - rqstp->rq_auth_slack)) goto out_put_session; svc_reserve(rqstp, buflen); status = nfs_ok; /* Success! bump slot seqid */ slot->sl_seqid = seq->seqid; slot->sl_flags |= NFSD4_SLOT_INUSE; if (seq->cachethis) slot->sl_flags |= NFSD4_SLOT_CACHETHIS; else slot->sl_flags &= ~NFSD4_SLOT_CACHETHIS; cstate->slot = slot; cstate->session = session; cstate->clp = clp; out: switch (clp->cl_cb_state) { case NFSD4_CB_DOWN: seq->status_flags = SEQ4_STATUS_CB_PATH_DOWN; break; case NFSD4_CB_FAULT: seq->status_flags = SEQ4_STATUS_BACKCHANNEL_FAULT; break; default: seq->status_flags = 0; } if (!list_empty(&clp->cl_revoked)) seq->status_flags |= SEQ4_STATUS_RECALLABLE_STATE_REVOKED; if (atomic_read(&clp->cl_admin_revoked)) seq->status_flags |= SEQ4_STATUS_ADMIN_STATE_REVOKED; trace_nfsd_seq4_status(rqstp, seq); out_no_session: if (conn) free_conn(conn); spin_unlock(&nn->client_lock); return status; out_put_session: nfsd4_put_session_locked(session); goto out_no_session; } void nfsd4_sequence_done(struct nfsd4_compoundres *resp) { struct nfsd4_compound_state *cs = &resp->cstate; if (nfsd4_has_session(cs)) { if (cs->status != nfserr_replay_cache) { nfsd4_store_cache_entry(resp); cs->slot->sl_flags &= ~NFSD4_SLOT_INUSE; } /* Drop session reference that was taken in nfsd4_sequence() */ nfsd4_put_session(cs->session); } else if (cs->clp) put_client_renew(cs->clp); } __be32 nfsd4_destroy_clientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_destroy_clientid *dc = &u->destroy_clientid; struct nfs4_client *conf, *unconf; struct nfs4_client *clp = NULL; __be32 status = 0; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); spin_lock(&nn->client_lock); unconf = find_unconfirmed_client(&dc->clientid, true, nn); conf = find_confirmed_client(&dc->clientid, true, nn); WARN_ON_ONCE(conf && unconf); if (conf) { if (client_has_state(conf)) { status = nfserr_clientid_busy; goto out; } status = mark_client_expired_locked(conf); if (status) goto out; clp = conf; } else if (unconf) clp = unconf; else { status = nfserr_stale_clientid; goto out; } if (!nfsd4_mach_creds_match(clp, rqstp)) { clp = NULL; status = nfserr_wrong_cred; goto out; } trace_nfsd_clid_destroyed(&clp->cl_clientid); unhash_client_locked(clp); out: spin_unlock(&nn->client_lock); if (clp) expire_client(clp); return status; } __be32 nfsd4_reclaim_complete(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_reclaim_complete *rc = &u->reclaim_complete; struct nfs4_client *clp = cstate->clp; __be32 status = 0; if (rc->rca_one_fs) { if (!cstate->current_fh.fh_dentry) return nfserr_nofilehandle; /* * We don't take advantage of the rca_one_fs case. * That's OK, it's optional, we can safely ignore it. */ return nfs_ok; } status = nfserr_complete_already; if (test_and_set_bit(NFSD4_CLIENT_RECLAIM_COMPLETE, &clp->cl_flags)) goto out; status = nfserr_stale_clientid; if (is_client_expired(clp)) /* * The following error isn't really legal. * But we only get here if the client just explicitly * destroyed the client. Surely it no longer cares what * error it gets back on an operation for the dead * client. */ goto out; status = nfs_ok; trace_nfsd_clid_reclaim_complete(&clp->cl_clientid); nfsd4_client_record_create(clp); inc_reclaim_complete(clp); out: return status; } __be32 nfsd4_setclientid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_setclientid *setclid = &u->setclientid; struct xdr_netobj clname = setclid->se_name; nfs4_verifier clverifier = setclid->se_verf; struct nfs4_client *conf, *new; struct nfs4_client *unconf = NULL; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); new = create_client(clname, rqstp, &clverifier); if (new == NULL) return nfserr_jukebox; spin_lock(&nn->client_lock); conf = find_confirmed_client_by_name(&clname, nn); if (conf && client_has_state(conf)) { status = nfserr_clid_inuse; if (clp_used_exchangeid(conf)) goto out; if (!same_creds(&conf->cl_cred, &rqstp->rq_cred)) { trace_nfsd_clid_cred_mismatch(conf, rqstp); goto out; } } unconf = find_unconfirmed_client_by_name(&clname, nn); if (unconf) unhash_client_locked(unconf); if (conf) { if (same_verf(&conf->cl_verifier, &clverifier)) { copy_clid(new, conf); gen_confirm(new, nn); } else trace_nfsd_clid_verf_mismatch(conf, rqstp, &clverifier); } else trace_nfsd_clid_fresh(new); new->cl_minorversion = 0; gen_callback(new, setclid, rqstp); add_to_unconfirmed(new); setclid->se_clientid.cl_boot = new->cl_clientid.cl_boot; setclid->se_clientid.cl_id = new->cl_clientid.cl_id; memcpy(setclid->se_confirm.data, new->cl_confirm.data, sizeof(setclid->se_confirm.data)); new = NULL; status = nfs_ok; out: spin_unlock(&nn->client_lock); if (new) free_client(new); if (unconf) { trace_nfsd_clid_expire_unconf(&unconf->cl_clientid); expire_client(unconf); } return status; } __be32 nfsd4_setclientid_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_setclientid_confirm *setclientid_confirm = &u->setclientid_confirm; struct nfs4_client *conf, *unconf; struct nfs4_client *old = NULL; nfs4_verifier confirm = setclientid_confirm->sc_confirm; clientid_t * clid = &setclientid_confirm->sc_clientid; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (STALE_CLIENTID(clid, nn)) return nfserr_stale_clientid; spin_lock(&nn->client_lock); conf = find_confirmed_client(clid, false, nn); unconf = find_unconfirmed_client(clid, false, nn); /* * We try hard to give out unique clientid's, so if we get an * attempt to confirm the same clientid with a different cred, * the client may be buggy; this should never happen. * * Nevertheless, RFC 7530 recommends INUSE for this case: */ status = nfserr_clid_inuse; if (unconf && !same_creds(&unconf->cl_cred, &rqstp->rq_cred)) { trace_nfsd_clid_cred_mismatch(unconf, rqstp); goto out; } if (conf && !same_creds(&conf->cl_cred, &rqstp->rq_cred)) { trace_nfsd_clid_cred_mismatch(conf, rqstp); goto out; } if (!unconf || !same_verf(&confirm, &unconf->cl_confirm)) { if (conf && same_verf(&confirm, &conf->cl_confirm)) { status = nfs_ok; } else status = nfserr_stale_clientid; goto out; } status = nfs_ok; if (conf) { old = unconf; unhash_client_locked(old); nfsd4_change_callback(conf, &unconf->cl_cb_conn); } else { old = find_confirmed_client_by_name(&unconf->cl_name, nn); if (old) { status = nfserr_clid_inuse; if (client_has_state(old) && !same_creds(&unconf->cl_cred, &old->cl_cred)) { old = NULL; goto out; } status = mark_client_expired_locked(old); if (status) { old = NULL; goto out; } trace_nfsd_clid_replaced(&old->cl_clientid); } move_to_confirmed(unconf); conf = unconf; } get_client_locked(conf); spin_unlock(&nn->client_lock); if (conf == unconf) fsnotify_dentry(conf->cl_nfsd_info_dentry, FS_MODIFY); nfsd4_probe_callback(conf); spin_lock(&nn->client_lock); put_client_renew_locked(conf); out: spin_unlock(&nn->client_lock); if (old) expire_client(old); return status; } static struct nfs4_file *nfsd4_alloc_file(void) { return kmem_cache_alloc(file_slab, GFP_KERNEL); } /* OPEN Share state helper functions */ static void nfsd4_file_init(const struct svc_fh *fh, struct nfs4_file *fp) { refcount_set(&fp->fi_ref, 1); spin_lock_init(&fp->fi_lock); INIT_LIST_HEAD(&fp->fi_stateids); INIT_LIST_HEAD(&fp->fi_delegations); INIT_LIST_HEAD(&fp->fi_clnt_odstate); fh_copy_shallow(&fp->fi_fhandle, &fh->fh_handle); fp->fi_deleg_file = NULL; fp->fi_had_conflict = false; fp->fi_share_deny = 0; memset(fp->fi_fds, 0, sizeof(fp->fi_fds)); memset(fp->fi_access, 0, sizeof(fp->fi_access)); fp->fi_aliased = false; fp->fi_inode = d_inode(fh->fh_dentry); #ifdef CONFIG_NFSD_PNFS INIT_LIST_HEAD(&fp->fi_lo_states); atomic_set(&fp->fi_lo_recalls, 0); #endif } void nfsd4_free_slabs(void) { kmem_cache_destroy(client_slab); kmem_cache_destroy(openowner_slab); kmem_cache_destroy(lockowner_slab); kmem_cache_destroy(file_slab); kmem_cache_destroy(stateid_slab); kmem_cache_destroy(deleg_slab); kmem_cache_destroy(odstate_slab); } int nfsd4_init_slabs(void) { client_slab = KMEM_CACHE(nfs4_client, 0); if (client_slab == NULL) goto out; openowner_slab = KMEM_CACHE(nfs4_openowner, 0); if (openowner_slab == NULL) goto out_free_client_slab; lockowner_slab = KMEM_CACHE(nfs4_lockowner, 0); if (lockowner_slab == NULL) goto out_free_openowner_slab; file_slab = KMEM_CACHE(nfs4_file, 0); if (file_slab == NULL) goto out_free_lockowner_slab; stateid_slab = KMEM_CACHE(nfs4_ol_stateid, 0); if (stateid_slab == NULL) goto out_free_file_slab; deleg_slab = KMEM_CACHE(nfs4_delegation, 0); if (deleg_slab == NULL) goto out_free_stateid_slab; odstate_slab = KMEM_CACHE(nfs4_clnt_odstate, 0); if (odstate_slab == NULL) goto out_free_deleg_slab; return 0; out_free_deleg_slab: kmem_cache_destroy(deleg_slab); out_free_stateid_slab: kmem_cache_destroy(stateid_slab); out_free_file_slab: kmem_cache_destroy(file_slab); out_free_lockowner_slab: kmem_cache_destroy(lockowner_slab); out_free_openowner_slab: kmem_cache_destroy(openowner_slab); out_free_client_slab: kmem_cache_destroy(client_slab); out: return -ENOMEM; } static unsigned long nfsd4_state_shrinker_count(struct shrinker *shrink, struct shrink_control *sc) { int count; struct nfsd_net *nn = shrink->private_data; count = atomic_read(&nn->nfsd_courtesy_clients); if (!count) count = atomic_long_read(&num_delegations); if (count) queue_work(laundry_wq, &nn->nfsd_shrinker_work); return (unsigned long)count; } static unsigned long nfsd4_state_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc) { return SHRINK_STOP; } void nfsd4_init_leases_net(struct nfsd_net *nn) { struct sysinfo si; u64 max_clients; nn->nfsd4_lease = 90; /* default lease time */ nn->nfsd4_grace = 90; nn->somebody_reclaimed = false; nn->track_reclaim_completes = false; nn->clverifier_counter = get_random_u32(); nn->clientid_base = get_random_u32(); nn->clientid_counter = nn->clientid_base + 1; nn->s2s_cp_cl_id = nn->clientid_counter++; atomic_set(&nn->nfs4_client_count, 0); si_meminfo(&si); max_clients = (u64)si.totalram * si.mem_unit / (1024 * 1024 * 1024); max_clients *= NFS4_CLIENTS_PER_GB; nn->nfs4_max_clients = max_t(int, max_clients, NFS4_CLIENTS_PER_GB); atomic_set(&nn->nfsd_courtesy_clients, 0); } enum rp_lock { RP_UNLOCKED, RP_LOCKED, RP_UNHASHED, }; static void init_nfs4_replay(struct nfs4_replay *rp) { rp->rp_status = nfserr_serverfault; rp->rp_buflen = 0; rp->rp_buf = rp->rp_ibuf; atomic_set(&rp->rp_locked, RP_UNLOCKED); } static int nfsd4_cstate_assign_replay(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so) { if (!nfsd4_has_session(cstate)) { wait_var_event(&so->so_replay.rp_locked, atomic_cmpxchg(&so->so_replay.rp_locked, RP_UNLOCKED, RP_LOCKED) != RP_LOCKED); if (atomic_read(&so->so_replay.rp_locked) == RP_UNHASHED) return -EAGAIN; cstate->replay_owner = nfs4_get_stateowner(so); } return 0; } void nfsd4_cstate_clear_replay(struct nfsd4_compound_state *cstate) { struct nfs4_stateowner *so = cstate->replay_owner; if (so != NULL) { cstate->replay_owner = NULL; atomic_set(&so->so_replay.rp_locked, RP_UNLOCKED); smp_mb__after_atomic(); wake_up_var(&so->so_replay.rp_locked); nfs4_put_stateowner(so); } } static inline void *alloc_stateowner(struct kmem_cache *slab, struct xdr_netobj *owner, struct nfs4_client *clp) { struct nfs4_stateowner *sop; sop = kmem_cache_alloc(slab, GFP_KERNEL); if (!sop) return NULL; xdr_netobj_dup(&sop->so_owner, owner, GFP_KERNEL); if (!sop->so_owner.data) { kmem_cache_free(slab, sop); return NULL; } INIT_LIST_HEAD(&sop->so_stateids); sop->so_client = clp; init_nfs4_replay(&sop->so_replay); atomic_set(&sop->so_count, 1); return sop; } static void hash_openowner(struct nfs4_openowner *oo, struct nfs4_client *clp, unsigned int strhashval) { lockdep_assert_held(&clp->cl_lock); list_add(&oo->oo_owner.so_strhash, &clp->cl_ownerstr_hashtbl[strhashval]); list_add(&oo->oo_perclient, &clp->cl_openowners); } static void nfs4_unhash_openowner(struct nfs4_stateowner *so) { unhash_openowner_locked(openowner(so)); } static void nfs4_free_openowner(struct nfs4_stateowner *so) { struct nfs4_openowner *oo = openowner(so); kmem_cache_free(openowner_slab, oo); } static const struct nfs4_stateowner_operations openowner_ops = { .so_unhash = nfs4_unhash_openowner, .so_free = nfs4_free_openowner, }; static struct nfs4_ol_stateid * nfsd4_find_existing_open(struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_ol_stateid *local, *ret = NULL; struct nfs4_openowner *oo = open->op_openowner; lockdep_assert_held(&fp->fi_lock); list_for_each_entry(local, &fp->fi_stateids, st_perfile) { /* ignore lock owners */ if (local->st_stateowner->so_is_open_owner == 0) continue; if (local->st_stateowner != &oo->oo_owner) continue; if (local->st_stid.sc_type == SC_TYPE_OPEN && !local->st_stid.sc_status) { ret = local; refcount_inc(&ret->st_stid.sc_count); break; } } return ret; } static void nfsd4_drop_revoked_stid(struct nfs4_stid *s) __releases(&s->sc_client->cl_lock) { struct nfs4_client *cl = s->sc_client; LIST_HEAD(reaplist); struct nfs4_ol_stateid *stp; struct nfs4_delegation *dp; bool unhashed; switch (s->sc_type) { case SC_TYPE_OPEN: stp = openlockstateid(s); if (unhash_open_stateid(stp, &reaplist)) put_ol_stateid_locked(stp, &reaplist); spin_unlock(&cl->cl_lock); free_ol_stateid_reaplist(&reaplist); break; case SC_TYPE_LOCK: stp = openlockstateid(s); unhashed = unhash_lock_stateid(stp); spin_unlock(&cl->cl_lock); if (unhashed) nfs4_put_stid(s); break; case SC_TYPE_DELEG: dp = delegstateid(s); list_del_init(&dp->dl_recall_lru); spin_unlock(&cl->cl_lock); nfs4_put_stid(s); break; default: spin_unlock(&cl->cl_lock); } } static void nfsd40_drop_revoked_stid(struct nfs4_client *cl, stateid_t *stid) { /* NFSv4.0 has no way for the client to tell the server * that it can forget an admin-revoked stateid. * So we keep it around until the first time that the * client uses it, and drop it the first time * nfserr_admin_revoked is returned. * For v4.1 and later we wait until explicitly told * to free the stateid. */ if (cl->cl_minorversion == 0) { struct nfs4_stid *st; spin_lock(&cl->cl_lock); st = find_stateid_locked(cl, stid); if (st) nfsd4_drop_revoked_stid(st); else spin_unlock(&cl->cl_lock); } } static __be32 nfsd4_verify_open_stid(struct nfs4_stid *s) { __be32 ret = nfs_ok; if (s->sc_status & SC_STATUS_ADMIN_REVOKED) ret = nfserr_admin_revoked; else if (s->sc_status & SC_STATUS_REVOKED) ret = nfserr_deleg_revoked; else if (s->sc_status & SC_STATUS_CLOSED) ret = nfserr_bad_stateid; return ret; } /* Lock the stateid st_mutex, and deal with races with CLOSE */ static __be32 nfsd4_lock_ol_stateid(struct nfs4_ol_stateid *stp) { __be32 ret; mutex_lock_nested(&stp->st_mutex, LOCK_STATEID_MUTEX); ret = nfsd4_verify_open_stid(&stp->st_stid); if (ret == nfserr_admin_revoked) nfsd40_drop_revoked_stid(stp->st_stid.sc_client, &stp->st_stid.sc_stateid); if (ret != nfs_ok) mutex_unlock(&stp->st_mutex); return ret; } static struct nfs4_ol_stateid * nfsd4_find_and_lock_existing_open(struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_ol_stateid *stp; for (;;) { spin_lock(&fp->fi_lock); stp = nfsd4_find_existing_open(fp, open); spin_unlock(&fp->fi_lock); if (!stp || nfsd4_lock_ol_stateid(stp) == nfs_ok) break; nfs4_put_stid(&stp->st_stid); } return stp; } static struct nfs4_openowner * find_or_alloc_open_stateowner(unsigned int strhashval, struct nfsd4_open *open, struct nfsd4_compound_state *cstate) { struct nfs4_client *clp = cstate->clp; struct nfs4_openowner *oo, *new = NULL; retry: spin_lock(&clp->cl_lock); oo = find_openstateowner_str(strhashval, open, clp); if (!oo && new) { hash_openowner(new, clp, strhashval); spin_unlock(&clp->cl_lock); return new; } spin_unlock(&clp->cl_lock); if (oo && !(oo->oo_flags & NFS4_OO_CONFIRMED)) { /* Replace unconfirmed owners without checking for replay. */ release_openowner(oo); oo = NULL; } if (oo) { if (new) nfs4_free_stateowner(&new->oo_owner); return oo; } new = alloc_stateowner(openowner_slab, &open->op_owner, clp); if (!new) return NULL; new->oo_owner.so_ops = &openowner_ops; new->oo_owner.so_is_open_owner = 1; new->oo_owner.so_seqid = open->op_seqid; new->oo_flags = 0; if (nfsd4_has_session(cstate)) new->oo_flags |= NFS4_OO_CONFIRMED; new->oo_time = 0; new->oo_last_closed_stid = NULL; INIT_LIST_HEAD(&new->oo_close_lru); goto retry; } static struct nfs4_ol_stateid * init_open_stateid(struct nfs4_file *fp, struct nfsd4_open *open) { struct nfs4_openowner *oo = open->op_openowner; struct nfs4_ol_stateid *retstp = NULL; struct nfs4_ol_stateid *stp; stp = open->op_stp; /* We are moving these outside of the spinlocks to avoid the warnings */ mutex_init(&stp->st_mutex); mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX); retry: spin_lock(&oo->oo_owner.so_client->cl_lock); spin_lock(&fp->fi_lock); if (nfs4_openowner_unhashed(oo)) { mutex_unlock(&stp->st_mutex); stp = NULL; goto out_unlock; } retstp = nfsd4_find_existing_open(fp, open); if (retstp) goto out_unlock; open->op_stp = NULL; refcount_inc(&stp->st_stid.sc_count); stp->st_stid.sc_type = SC_TYPE_OPEN; INIT_LIST_HEAD(&stp->st_locks); stp->st_stateowner = nfs4_get_stateowner(&oo->oo_owner); get_nfs4_file(fp); stp->st_stid.sc_file = fp; stp->st_access_bmap = 0; stp->st_deny_bmap = 0; stp->st_openstp = NULL; list_add(&stp->st_perstateowner, &oo->oo_owner.so_stateids); list_add(&stp->st_perfile, &fp->fi_stateids); out_unlock: spin_unlock(&fp->fi_lock); spin_unlock(&oo->oo_owner.so_client->cl_lock); if (retstp) { /* Handle races with CLOSE */ if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) { nfs4_put_stid(&retstp->st_stid); goto retry; } /* To keep mutex tracking happy */ mutex_unlock(&stp->st_mutex); stp = retstp; } return stp; } /* * In the 4.0 case we need to keep the owners around a little while to handle * CLOSE replay. We still do need to release any file access that is held by * them before returning however. */ static void move_to_close_lru(struct nfs4_ol_stateid *s, struct net *net) { struct nfs4_ol_stateid *last; struct nfs4_openowner *oo = openowner(s->st_stateowner); struct nfsd_net *nn = net_generic(s->st_stid.sc_client->net, nfsd_net_id); dprintk("NFSD: move_to_close_lru nfs4_openowner %p\n", oo); /* * We know that we hold one reference via nfsd4_close, and another * "persistent" reference for the client. If the refcount is higher * than 2, then there are still calls in progress that are using this * stateid. We can't put the sc_file reference until they are finished. * Wait for the refcount to drop to 2. Since it has been unhashed, * there should be no danger of the refcount going back up again at * this point. * Some threads with a reference might be waiting for rp_locked, * so tell them to stop waiting. */ atomic_set(&oo->oo_owner.so_replay.rp_locked, RP_UNHASHED); smp_mb__after_atomic(); wake_up_var(&oo->oo_owner.so_replay.rp_locked); wait_event(close_wq, refcount_read(&s->st_stid.sc_count) == 2); release_all_access(s); if (s->st_stid.sc_file) { put_nfs4_file(s->st_stid.sc_file); s->st_stid.sc_file = NULL; } spin_lock(&nn->client_lock); last = oo->oo_last_closed_stid; oo->oo_last_closed_stid = s; list_move_tail(&oo->oo_close_lru, &nn->close_lru); oo->oo_time = ktime_get_boottime_seconds(); spin_unlock(&nn->client_lock); if (last) nfs4_put_stid(&last->st_stid); } static noinline_for_stack struct nfs4_file * nfsd4_file_hash_lookup(const struct svc_fh *fhp) { struct inode *inode = d_inode(fhp->fh_dentry); struct rhlist_head *tmp, *list; struct nfs4_file *fi; rcu_read_lock(); list = rhltable_lookup(&nfs4_file_rhltable, &inode, nfs4_file_rhash_params); rhl_for_each_entry_rcu(fi, tmp, list, fi_rlist) { if (fh_match(&fi->fi_fhandle, &fhp->fh_handle)) { if (refcount_inc_not_zero(&fi->fi_ref)) { rcu_read_unlock(); return fi; } } } rcu_read_unlock(); return NULL; } /* * On hash insertion, identify entries with the same inode but * distinct filehandles. They will all be on the list returned * by rhltable_lookup(). * * inode->i_lock prevents racing insertions from adding an entry * for the same inode/fhp pair twice. */ static noinline_for_stack struct nfs4_file * nfsd4_file_hash_insert(struct nfs4_file *new, const struct svc_fh *fhp) { struct inode *inode = d_inode(fhp->fh_dentry); struct rhlist_head *tmp, *list; struct nfs4_file *ret = NULL; bool alias_found = false; struct nfs4_file *fi; int err; rcu_read_lock(); spin_lock(&inode->i_lock); list = rhltable_lookup(&nfs4_file_rhltable, &inode, nfs4_file_rhash_params); rhl_for_each_entry_rcu(fi, tmp, list, fi_rlist) { if (fh_match(&fi->fi_fhandle, &fhp->fh_handle)) { if (refcount_inc_not_zero(&fi->fi_ref)) ret = fi; } else fi->fi_aliased = alias_found = true; } if (ret) goto out_unlock; nfsd4_file_init(fhp, new); err = rhltable_insert(&nfs4_file_rhltable, &new->fi_rlist, nfs4_file_rhash_params); if (err) goto out_unlock; new->fi_aliased = alias_found; ret = new; out_unlock: spin_unlock(&inode->i_lock); rcu_read_unlock(); return ret; } static noinline_for_stack void nfsd4_file_hash_remove(struct nfs4_file *fi) { rhltable_remove(&nfs4_file_rhltable, &fi->fi_rlist, nfs4_file_rhash_params); } /* * Called to check deny when READ with all zero stateid or * WRITE with all zero or all one stateid */ static __be32 nfs4_share_conflict(struct svc_fh *current_fh, unsigned int deny_type) { struct nfs4_file *fp; __be32 ret = nfs_ok; fp = nfsd4_file_hash_lookup(current_fh); if (!fp) return ret; /* Check for conflicting share reservations */ spin_lock(&fp->fi_lock); if (fp->fi_share_deny & deny_type) ret = nfserr_locked; spin_unlock(&fp->fi_lock); put_nfs4_file(fp); return ret; } static bool nfsd4_deleg_present(const struct inode *inode) { struct file_lock_context *ctx = locks_inode_context(inode); return ctx && !list_empty_careful(&ctx->flc_lease); } /** * nfsd_wait_for_delegreturn - wait for delegations to be returned * @rqstp: the RPC transaction being executed * @inode: in-core inode of the file being waited for * * The timeout prevents deadlock if all nfsd threads happen to be * tied up waiting for returning delegations. * * Return values: * %true: delegation was returned * %false: timed out waiting for delegreturn */ bool nfsd_wait_for_delegreturn(struct svc_rqst *rqstp, struct inode *inode) { long __maybe_unused timeo; timeo = wait_var_event_timeout(inode, !nfsd4_deleg_present(inode), NFSD_DELEGRETURN_TIMEOUT); trace_nfsd_delegret_wakeup(rqstp, inode, timeo); return timeo > 0; } static void nfsd4_cb_recall_prepare(struct nfsd4_callback *cb) { struct nfs4_delegation *dp = cb_to_delegation(cb); struct nfsd_net *nn = net_generic(dp->dl_stid.sc_client->net, nfsd_net_id); block_delegations(&dp->dl_stid.sc_file->fi_fhandle); /* * We can't do this in nfsd_break_deleg_cb because it is * already holding inode->i_lock. * * If the dl_time != 0, then we know that it has already been * queued for a lease break. Don't queue it again. */ spin_lock(&state_lock); if (delegation_hashed(dp) && dp->dl_time == 0) { dp->dl_time = ktime_get_boottime_seconds(); list_add_tail(&dp->dl_recall_lru, &nn->del_recall_lru); } spin_unlock(&state_lock); } static int nfsd4_cb_recall_done(struct nfsd4_callback *cb, struct rpc_task *task) { struct nfs4_delegation *dp = cb_to_delegation(cb); trace_nfsd_cb_recall_done(&dp->dl_stid.sc_stateid, task); if (dp->dl_stid.sc_status) /* CLOSED or REVOKED */ return 1; switch (task->tk_status) { case 0: return 1; case -NFS4ERR_DELAY: rpc_delay(task, 2 * HZ); return 0; case -EBADHANDLE: case -NFS4ERR_BAD_STATEID: /* * Race: client probably got cb_recall before open reply * granting delegation. */ if (dp->dl_retries--) { rpc_delay(task, 2 * HZ); return 0; } fallthrough; default: return 1; } } static void nfsd4_cb_recall_release(struct nfsd4_callback *cb) { struct nfs4_delegation *dp = cb_to_delegation(cb); nfs4_put_stid(&dp->dl_stid); } static const struct nfsd4_callback_ops nfsd4_cb_recall_ops = { .prepare = nfsd4_cb_recall_prepare, .done = nfsd4_cb_recall_done, .release = nfsd4_cb_recall_release, .opcode = OP_CB_RECALL, }; static void nfsd_break_one_deleg(struct nfs4_delegation *dp) { /* * We're assuming the state code never drops its reference * without first removing the lease. Since we're in this lease * callback (and since the lease code is serialized by the * flc_lock) we know the server hasn't removed the lease yet, and * we know it's safe to take a reference. */ refcount_inc(&dp->dl_stid.sc_count); WARN_ON_ONCE(!nfsd4_run_cb(&dp->dl_recall)); } /* Called from break_lease() with flc_lock held. */ static bool nfsd_break_deleg_cb(struct file_lease *fl) { struct nfs4_delegation *dp = (struct nfs4_delegation *) fl->c.flc_owner; struct nfs4_file *fp = dp->dl_stid.sc_file; struct nfs4_client *clp = dp->dl_stid.sc_client; struct nfsd_net *nn; trace_nfsd_cb_recall(&dp->dl_stid); dp->dl_recalled = true; atomic_inc(&clp->cl_delegs_in_recall); if (try_to_expire_client(clp)) { nn = net_generic(clp->net, nfsd_net_id); mod_delayed_work(laundry_wq, &nn->laundromat_work, 0); } /* * We don't want the locks code to timeout the lease for us; * we'll remove it ourself if a delegation isn't returned * in time: */ fl->fl_break_time = 0; fp->fi_had_conflict = true; nfsd_break_one_deleg(dp); return false; } /** * nfsd_breaker_owns_lease - Check if lease conflict was resolved * @fl: Lock state to check * * Return values: * %true: Lease conflict was resolved * %false: Lease conflict was not resolved. */ static bool nfsd_breaker_owns_lease(struct file_lease *fl) { struct nfs4_delegation *dl = fl->c.flc_owner; struct svc_rqst *rqst; struct nfs4_client *clp; rqst = nfsd_current_rqst(); if (!nfsd_v4client(rqst)) return false; clp = *(rqst->rq_lease_breaker); return dl->dl_stid.sc_client == clp; } static int nfsd_change_deleg_cb(struct file_lease *onlist, int arg, struct list_head *dispose) { struct nfs4_delegation *dp = (struct nfs4_delegation *) onlist->c.flc_owner; struct nfs4_client *clp = dp->dl_stid.sc_client; if (arg & F_UNLCK) { if (dp->dl_recalled) atomic_dec(&clp->cl_delegs_in_recall); return lease_modify(onlist, arg, dispose); } else return -EAGAIN; } static const struct lease_manager_operations nfsd_lease_mng_ops = { .lm_breaker_owns_lease = nfsd_breaker_owns_lease, .lm_break = nfsd_break_deleg_cb, .lm_change = nfsd_change_deleg_cb, }; static __be32 nfsd4_check_seqid(struct nfsd4_compound_state *cstate, struct nfs4_stateowner *so, u32 seqid) { if (nfsd4_has_session(cstate)) return nfs_ok; if (seqid == so->so_seqid - 1) return nfserr_replay_me; if (seqid == so->so_seqid) return nfs_ok; return nfserr_bad_seqid; } static struct nfs4_client *lookup_clientid(clientid_t *clid, bool sessions, struct nfsd_net *nn) { struct nfs4_client *found; spin_lock(&nn->client_lock); found = find_confirmed_client(clid, sessions, nn); if (found) atomic_inc(&found->cl_rpc_users); spin_unlock(&nn->client_lock); return found; } static __be32 set_client(clientid_t *clid, struct nfsd4_compound_state *cstate, struct nfsd_net *nn) { if (cstate->clp) { if (!same_clid(&cstate->clp->cl_clientid, clid)) return nfserr_stale_clientid; return nfs_ok; } if (STALE_CLIENTID(clid, nn)) return nfserr_stale_clientid; /* * We're in the 4.0 case (otherwise the SEQUENCE op would have * set cstate->clp), so session = false: */ cstate->clp = lookup_clientid(clid, false, nn); if (!cstate->clp) return nfserr_expired; return nfs_ok; } __be32 nfsd4_process_open1(struct nfsd4_compound_state *cstate, struct nfsd4_open *open, struct nfsd_net *nn) { clientid_t *clientid = &open->op_clientid; struct nfs4_client *clp = NULL; unsigned int strhashval; struct nfs4_openowner *oo = NULL; __be32 status; /* * In case we need it later, after we've already created the * file and don't want to risk a further failure: */ open->op_file = nfsd4_alloc_file(); if (open->op_file == NULL) return nfserr_jukebox; status = set_client(clientid, cstate, nn); if (status) return status; clp = cstate->clp; strhashval = ownerstr_hashval(&open->op_owner); retry: oo = find_or_alloc_open_stateowner(strhashval, open, cstate); open->op_openowner = oo; if (!oo) return nfserr_jukebox; if (nfsd4_cstate_assign_replay(cstate, &oo->oo_owner) == -EAGAIN) { nfs4_put_stateowner(&oo->oo_owner); goto retry; } status = nfsd4_check_seqid(cstate, &oo->oo_owner, open->op_seqid); if (status) return status; open->op_stp = nfs4_alloc_open_stateid(clp); if (!open->op_stp) return nfserr_jukebox; if (nfsd4_has_session(cstate) && (cstate->current_fh.fh_export->ex_flags & NFSEXP_PNFS)) { open->op_odstate = alloc_clnt_odstate(clp); if (!open->op_odstate) return nfserr_jukebox; } return nfs_ok; } static inline __be32 nfs4_check_delegmode(struct nfs4_delegation *dp, int flags) { if ((flags & WR_STATE) && (dp->dl_type == NFS4_OPEN_DELEGATE_READ)) return nfserr_openmode; else return nfs_ok; } static int share_access_to_flags(u32 share_access) { return share_access == NFS4_SHARE_ACCESS_READ ? RD_STATE : WR_STATE; } static struct nfs4_delegation *find_deleg_stateid(struct nfs4_client *cl, stateid_t *s) { struct nfs4_stid *ret; ret = find_stateid_by_type(cl, s, SC_TYPE_DELEG, SC_STATUS_REVOKED); if (!ret) return NULL; return delegstateid(ret); } static bool nfsd4_is_deleg_cur(struct nfsd4_open *open) { return open->op_claim_type == NFS4_OPEN_CLAIM_DELEGATE_CUR || open->op_claim_type == NFS4_OPEN_CLAIM_DELEG_CUR_FH; } static __be32 nfs4_check_deleg(struct nfs4_client *cl, struct nfsd4_open *open, struct nfs4_delegation **dp) { int flags; __be32 status = nfserr_bad_stateid; struct nfs4_delegation *deleg; deleg = find_deleg_stateid(cl, &open->op_delegate_stateid); if (deleg == NULL) goto out; if (deleg->dl_stid.sc_status & SC_STATUS_ADMIN_REVOKED) { nfs4_put_stid(&deleg->dl_stid); status = nfserr_admin_revoked; goto out; } if (deleg->dl_stid.sc_status & SC_STATUS_REVOKED) { nfs4_put_stid(&deleg->dl_stid); nfsd40_drop_revoked_stid(cl, &open->op_delegate_stateid); status = nfserr_deleg_revoked; goto out; } flags = share_access_to_flags(open->op_share_access); status = nfs4_check_delegmode(deleg, flags); if (status) { nfs4_put_stid(&deleg->dl_stid); goto out; } *dp = deleg; out: if (!nfsd4_is_deleg_cur(open)) return nfs_ok; if (status) return status; open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; return nfs_ok; } static inline int nfs4_access_to_access(u32 nfs4_access) { int flags = 0; if (nfs4_access & NFS4_SHARE_ACCESS_READ) flags |= NFSD_MAY_READ; if (nfs4_access & NFS4_SHARE_ACCESS_WRITE) flags |= NFSD_MAY_WRITE; return flags; } static inline __be32 nfsd4_truncate(struct svc_rqst *rqstp, struct svc_fh *fh, struct nfsd4_open *open) { struct iattr iattr = { .ia_valid = ATTR_SIZE, .ia_size = 0, }; struct nfsd_attrs attrs = { .na_iattr = &iattr, }; if (!open->op_truncate) return 0; if (!(open->op_share_access & NFS4_SHARE_ACCESS_WRITE)) return nfserr_inval; return nfsd_setattr(rqstp, fh, &attrs, NULL); } static __be32 nfs4_get_vfs_file(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open, bool new_stp) { struct nfsd_file *nf = NULL; __be32 status; int oflag = nfs4_access_to_omode(open->op_share_access); int access = nfs4_access_to_access(open->op_share_access); unsigned char old_access_bmap, old_deny_bmap; spin_lock(&fp->fi_lock); /* * Are we trying to set a deny mode that would conflict with * current access? */ status = nfs4_file_check_deny(fp, open->op_share_deny); if (status != nfs_ok) { if (status != nfserr_share_denied) { spin_unlock(&fp->fi_lock); goto out; } if (nfs4_resolve_deny_conflicts_locked(fp, new_stp, stp, open->op_share_deny, false)) status = nfserr_jukebox; spin_unlock(&fp->fi_lock); goto out; } /* set access to the file */ status = nfs4_file_get_access(fp, open->op_share_access); if (status != nfs_ok) { if (status != nfserr_share_denied) { spin_unlock(&fp->fi_lock); goto out; } if (nfs4_resolve_deny_conflicts_locked(fp, new_stp, stp, open->op_share_access, true)) status = nfserr_jukebox; spin_unlock(&fp->fi_lock); goto out; } /* Set access bits in stateid */ old_access_bmap = stp->st_access_bmap; set_access(open->op_share_access, stp); /* Set new deny mask */ old_deny_bmap = stp->st_deny_bmap; set_deny(open->op_share_deny, stp); fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH); if (!fp->fi_fds[oflag]) { spin_unlock(&fp->fi_lock); status = nfsd_file_acquire_opened(rqstp, cur_fh, access, open->op_filp, &nf); if (status != nfs_ok) goto out_put_access; spin_lock(&fp->fi_lock); if (!fp->fi_fds[oflag]) { fp->fi_fds[oflag] = nf; nf = NULL; } } spin_unlock(&fp->fi_lock); if (nf) nfsd_file_put(nf); status = nfserrno(nfsd_open_break_lease(cur_fh->fh_dentry->d_inode, access)); if (status) goto out_put_access; status = nfsd4_truncate(rqstp, cur_fh, open); if (status) goto out_put_access; out: return status; out_put_access: stp->st_access_bmap = old_access_bmap; nfs4_file_put_access(fp, open->op_share_access); reset_union_bmap_deny(bmap_to_share_mode(old_deny_bmap), stp); goto out; } static __be32 nfs4_upgrade_open(struct svc_rqst *rqstp, struct nfs4_file *fp, struct svc_fh *cur_fh, struct nfs4_ol_stateid *stp, struct nfsd4_open *open) { __be32 status; unsigned char old_deny_bmap = stp->st_deny_bmap; if (!test_access(open->op_share_access, stp)) return nfs4_get_vfs_file(rqstp, fp, cur_fh, stp, open, false); /* test and set deny mode */ spin_lock(&fp->fi_lock); status = nfs4_file_check_deny(fp, open->op_share_deny); switch (status) { case nfs_ok: set_deny(open->op_share_deny, stp); fp->fi_share_deny |= (open->op_share_deny & NFS4_SHARE_DENY_BOTH); break; case nfserr_share_denied: if (nfs4_resolve_deny_conflicts_locked(fp, false, stp, open->op_share_deny, false)) status = nfserr_jukebox; break; } spin_unlock(&fp->fi_lock); if (status != nfs_ok) return status; status = nfsd4_truncate(rqstp, cur_fh, open); if (status != nfs_ok) reset_union_bmap_deny(old_deny_bmap, stp); return status; } /* Should we give out recallable state?: */ static bool nfsd4_cb_channel_good(struct nfs4_client *clp) { if (clp->cl_cb_state == NFSD4_CB_UP) return true; /* * In the sessions case, since we don't have to establish a * separate connection for callbacks, we assume it's OK * until we hear otherwise: */ return clp->cl_minorversion && clp->cl_cb_state == NFSD4_CB_UNKNOWN; } static struct file_lease *nfs4_alloc_init_lease(struct nfs4_delegation *dp, int flag) { struct file_lease *fl; fl = locks_alloc_lease(); if (!fl) return NULL; fl->fl_lmops = &nfsd_lease_mng_ops; fl->c.flc_flags = FL_DELEG; fl->c.flc_type = flag == NFS4_OPEN_DELEGATE_READ? F_RDLCK: F_WRLCK; fl->c.flc_owner = (fl_owner_t)dp; fl->c.flc_pid = current->tgid; fl->c.flc_file = dp->dl_stid.sc_file->fi_deleg_file->nf_file; return fl; } static int nfsd4_check_conflicting_opens(struct nfs4_client *clp, struct nfs4_file *fp) { struct nfs4_ol_stateid *st; struct file *f = fp->fi_deleg_file->nf_file; struct inode *ino = file_inode(f); int writes; writes = atomic_read(&ino->i_writecount); if (!writes) return 0; /* * There could be multiple filehandles (hence multiple * nfs4_files) referencing this file, but that's not too * common; let's just give up in that case rather than * trying to go look up all the clients using that other * nfs4_file as well: */ if (fp->fi_aliased) return -EAGAIN; /* * If there's a close in progress, make sure that we see it * clear any fi_fds[] entries before we see it decrement * i_writecount: */ smp_mb__after_atomic(); if (fp->fi_fds[O_WRONLY]) writes--; if (fp->fi_fds[O_RDWR]) writes--; if (writes > 0) return -EAGAIN; /* There may be non-NFSv4 writers */ /* * It's possible there are non-NFSv4 write opens in progress, * but if they haven't incremented i_writecount yet then they * also haven't called break lease yet; so, they'll break this * lease soon enough. So, all that's left to check for is NFSv4 * opens: */ spin_lock(&fp->fi_lock); list_for_each_entry(st, &fp->fi_stateids, st_perfile) { if (st->st_openstp == NULL /* it's an open */ && access_permit_write(st) && st->st_stid.sc_client != clp) { spin_unlock(&fp->fi_lock); return -EAGAIN; } } spin_unlock(&fp->fi_lock); /* * There's a small chance that we could be racing with another * NFSv4 open. However, any open that hasn't added itself to * the fi_stateids list also hasn't called break_lease yet; so, * they'll break this lease soon enough. */ return 0; } /* * It's possible that between opening the dentry and setting the delegation, * that it has been renamed or unlinked. Redo the lookup to verify that this * hasn't happened. */ static int nfsd4_verify_deleg_dentry(struct nfsd4_open *open, struct nfs4_file *fp, struct svc_fh *parent) { struct svc_export *exp; struct dentry *child; __be32 err; err = nfsd_lookup_dentry(open->op_rqstp, parent, open->op_fname, open->op_fnamelen, &exp, &child); if (err) return -EAGAIN; exp_put(exp); dput(child); if (child != file_dentry(fp->fi_deleg_file->nf_file)) return -EAGAIN; return 0; } /* * We avoid breaking delegations held by a client due to its own activity, but * clearing setuid/setgid bits on a write is an implicit activity and the client * may not notice and continue using the old mode. Avoid giving out a delegation * on setuid/setgid files when the client is requesting an open for write. */ static int nfsd4_verify_setuid_write(struct nfsd4_open *open, struct nfsd_file *nf) { struct inode *inode = file_inode(nf->nf_file); if ((open->op_share_access & NFS4_SHARE_ACCESS_WRITE) && (inode->i_mode & (S_ISUID|S_ISGID))) return -EAGAIN; return 0; } static struct nfs4_delegation * nfs4_set_delegation(struct nfsd4_open *open, struct nfs4_ol_stateid *stp, struct svc_fh *parent) { int status = 0; struct nfs4_client *clp = stp->st_stid.sc_client; struct nfs4_file *fp = stp->st_stid.sc_file; struct nfs4_clnt_odstate *odstate = stp->st_clnt_odstate; struct nfs4_delegation *dp; struct nfsd_file *nf = NULL; struct file_lease *fl; u32 dl_type; /* * The fi_had_conflict and nfs_get_existing_delegation checks * here are just optimizations; we'll need to recheck them at * the end: */ if (fp->fi_had_conflict) return ERR_PTR(-EAGAIN); /* * Try for a write delegation first. RFC8881 section 10.4 says: * * "An OPEN_DELEGATE_WRITE delegation allows the client to handle, * on its own, all opens." * * Furthermore the client can use a write delegation for most READ * operations as well, so we require a O_RDWR file here. * * Offer a write delegation in the case of a BOTH open, and ensure * we get the O_RDWR descriptor. */ if ((open->op_share_access & NFS4_SHARE_ACCESS_BOTH) == NFS4_SHARE_ACCESS_BOTH) { nf = find_rw_file(fp); dl_type = NFS4_OPEN_DELEGATE_WRITE; } /* * If the file is being opened O_RDONLY or we couldn't get a O_RDWR * file for some reason, then try for a read delegation instead. */ if (!nf && (open->op_share_access & NFS4_SHARE_ACCESS_READ)) { nf = find_readable_file(fp); dl_type = NFS4_OPEN_DELEGATE_READ; } if (!nf) return ERR_PTR(-EAGAIN); spin_lock(&state_lock); spin_lock(&fp->fi_lock); if (nfs4_delegation_exists(clp, fp)) status = -EAGAIN; else if (nfsd4_verify_setuid_write(open, nf)) status = -EAGAIN; else if (!fp->fi_deleg_file) { fp->fi_deleg_file = nf; /* increment early to prevent fi_deleg_file from being * cleared */ fp->fi_delegees = 1; nf = NULL; } else fp->fi_delegees++; spin_unlock(&fp->fi_lock); spin_unlock(&state_lock); if (nf) nfsd_file_put(nf); if (status) return ERR_PTR(status); status = -ENOMEM; dp = alloc_init_deleg(clp, fp, odstate, dl_type); if (!dp) goto out_delegees; fl = nfs4_alloc_init_lease(dp, dl_type); if (!fl) goto out_clnt_odstate; status = kernel_setlease(fp->fi_deleg_file->nf_file, fl->c.flc_type, &fl, NULL); if (fl) locks_free_lease(fl); if (status) goto out_clnt_odstate; if (parent) { status = nfsd4_verify_deleg_dentry(open, fp, parent); if (status) goto out_unlock; } status = nfsd4_check_conflicting_opens(clp, fp); if (status) goto out_unlock; /* * Now that the deleg is set, check again to ensure that nothing * raced in and changed the mode while we weren't looking. */ status = nfsd4_verify_setuid_write(open, fp->fi_deleg_file); if (status) goto out_unlock; status = -EAGAIN; if (fp->fi_had_conflict) goto out_unlock; spin_lock(&state_lock); spin_lock(&clp->cl_lock); spin_lock(&fp->fi_lock); status = hash_delegation_locked(dp, fp); spin_unlock(&fp->fi_lock); spin_unlock(&clp->cl_lock); spin_unlock(&state_lock); if (status) goto out_unlock; return dp; out_unlock: kernel_setlease(fp->fi_deleg_file->nf_file, F_UNLCK, NULL, (void **)&dp); out_clnt_odstate: put_clnt_odstate(dp->dl_clnt_odstate); nfs4_put_stid(&dp->dl_stid); out_delegees: put_deleg_file(fp); return ERR_PTR(status); } static void nfsd4_open_deleg_none_ext(struct nfsd4_open *open, int status) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; if (status == -EAGAIN) open->op_why_no_deleg = WND4_CONTENTION; else { open->op_why_no_deleg = WND4_RESOURCE; switch (open->op_deleg_want) { case NFS4_SHARE_WANT_READ_DELEG: case NFS4_SHARE_WANT_WRITE_DELEG: case NFS4_SHARE_WANT_ANY_DELEG: break; case NFS4_SHARE_WANT_CANCEL: open->op_why_no_deleg = WND4_CANCELLED; break; case NFS4_SHARE_WANT_NO_DELEG: WARN_ON_ONCE(1); } } } static bool nfs4_delegation_stat(struct nfs4_delegation *dp, struct svc_fh *currentfh, struct kstat *stat) { struct nfsd_file *nf = find_rw_file(dp->dl_stid.sc_file); struct path path; int rc; if (!nf) return false; path.mnt = currentfh->fh_export->ex_path.mnt; path.dentry = file_dentry(nf->nf_file); rc = vfs_getattr(&path, stat, (STATX_MODE | STATX_SIZE | STATX_CTIME | STATX_CHANGE_COOKIE), AT_STATX_SYNC_AS_STAT); nfsd_file_put(nf); return rc == 0; } /* * The Linux NFS server does not offer write delegations to NFSv4.0 * clients in order to avoid conflicts between write delegations and * GETATTRs requesting CHANGE or SIZE attributes. * * With NFSv4.1 and later minorversions, the SEQUENCE operation that * begins each COMPOUND contains a client ID. Delegation recall can * be avoided when the server recognizes the client sending a * GETATTR also holds write delegation it conflicts with. * * However, the NFSv4.0 protocol does not enable a server to * determine that a GETATTR originated from the client holding the * conflicting delegation versus coming from some other client. Per * RFC 7530 Section 16.7.5, the server must recall or send a * CB_GETATTR even when the GETATTR originates from the client that * holds the conflicting delegation. * * An NFSv4.0 client can trigger a pathological situation if it * always sends a DELEGRETURN preceded by a conflicting GETATTR in * the same COMPOUND. COMPOUND execution will always stop at the * GETATTR and the DELEGRETURN will never get executed. The server * eventually revokes the delegation, which can result in loss of * open or lock state. */ static void nfs4_open_delegation(struct nfsd4_open *open, struct nfs4_ol_stateid *stp, struct svc_fh *currentfh) { struct nfs4_delegation *dp; struct nfs4_openowner *oo = openowner(stp->st_stateowner); struct nfs4_client *clp = stp->st_stid.sc_client; struct svc_fh *parent = NULL; int cb_up; int status = 0; struct kstat stat; cb_up = nfsd4_cb_channel_good(oo->oo_owner.so_client); open->op_recall = false; switch (open->op_claim_type) { case NFS4_OPEN_CLAIM_PREVIOUS: if (!cb_up) open->op_recall = true; break; case NFS4_OPEN_CLAIM_NULL: parent = currentfh; fallthrough; case NFS4_OPEN_CLAIM_FH: /* * Let's not give out any delegations till everyone's * had the chance to reclaim theirs, *and* until * NLM locks have all been reclaimed: */ if (locks_in_grace(clp->net)) goto out_no_deleg; if (!cb_up || !(oo->oo_flags & NFS4_OO_CONFIRMED)) goto out_no_deleg; if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE && !clp->cl_minorversion) goto out_no_deleg; break; default: goto out_no_deleg; } dp = nfs4_set_delegation(open, stp, parent); if (IS_ERR(dp)) goto out_no_deleg; memcpy(&open->op_delegate_stateid, &dp->dl_stid.sc_stateid, sizeof(dp->dl_stid.sc_stateid)); if (open->op_share_access & NFS4_SHARE_ACCESS_WRITE) { if (!nfs4_delegation_stat(dp, currentfh, &stat)) { nfs4_put_stid(&dp->dl_stid); destroy_delegation(dp); goto out_no_deleg; } open->op_delegate_type = NFS4_OPEN_DELEGATE_WRITE; dp->dl_cb_fattr.ncf_cur_fsize = stat.size; dp->dl_cb_fattr.ncf_initial_cinfo = nfsd4_change_attribute(&stat); trace_nfsd_deleg_write(&dp->dl_stid.sc_stateid); } else { open->op_delegate_type = NFS4_OPEN_DELEGATE_READ; trace_nfsd_deleg_read(&dp->dl_stid.sc_stateid); } nfs4_put_stid(&dp->dl_stid); return; out_no_deleg: open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE; if (open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS && open->op_delegate_type != NFS4_OPEN_DELEGATE_NONE) { dprintk("NFSD: WARNING: refusing delegation reclaim\n"); open->op_recall = true; } /* 4.1 client asking for a delegation? */ if (open->op_deleg_want) nfsd4_open_deleg_none_ext(open, status); return; } static void nfsd4_deleg_xgrade_none_ext(struct nfsd4_open *open, struct nfs4_delegation *dp) { if (open->op_deleg_want == NFS4_SHARE_WANT_READ_DELEG && dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_SUPP_DOWNGRADE; } else if (open->op_deleg_want == NFS4_SHARE_WANT_WRITE_DELEG && dp->dl_type == NFS4_OPEN_DELEGATE_WRITE) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_SUPP_UPGRADE; } /* Otherwise the client must be confused wanting a delegation * it already has, therefore we don't return * NFS4_OPEN_DELEGATE_NONE_EXT and reason. */ } /** * nfsd4_process_open2 - finish open processing * @rqstp: the RPC transaction being executed * @current_fh: NFSv4 COMPOUND's current filehandle * @open: OPEN arguments * * If successful, (1) truncate the file if open->op_truncate was * set, (2) set open->op_stateid, (3) set open->op_delegation. * * Returns %nfs_ok on success; otherwise an nfs4stat value in * network byte order is returned. */ __be32 nfsd4_process_open2(struct svc_rqst *rqstp, struct svc_fh *current_fh, struct nfsd4_open *open) { struct nfsd4_compoundres *resp = rqstp->rq_resp; struct nfs4_client *cl = open->op_openowner->oo_owner.so_client; struct nfs4_file *fp = NULL; struct nfs4_ol_stateid *stp = NULL; struct nfs4_delegation *dp = NULL; __be32 status; bool new_stp = false; /* * Lookup file; if found, lookup stateid and check open request, * and check for delegations in the process of being recalled. * If not found, create the nfs4_file struct */ fp = nfsd4_file_hash_insert(open->op_file, current_fh); if (unlikely(!fp)) return nfserr_jukebox; if (fp != open->op_file) { status = nfs4_check_deleg(cl, open, &dp); if (status) goto out; stp = nfsd4_find_and_lock_existing_open(fp, open); } else { open->op_file = NULL; status = nfserr_bad_stateid; if (nfsd4_is_deleg_cur(open)) goto out; } if (!stp) { stp = init_open_stateid(fp, open); if (!stp) { status = nfserr_jukebox; goto out; } if (!open->op_stp) new_stp = true; } /* * OPEN the file, or upgrade an existing OPEN. * If truncate fails, the OPEN fails. * * stp is already locked. */ if (!new_stp) { /* Stateid was found, this is an OPEN upgrade */ status = nfs4_upgrade_open(rqstp, fp, current_fh, stp, open); if (status) { mutex_unlock(&stp->st_mutex); goto out; } } else { status = nfs4_get_vfs_file(rqstp, fp, current_fh, stp, open, true); if (status) { release_open_stateid(stp); mutex_unlock(&stp->st_mutex); goto out; } stp->st_clnt_odstate = find_or_hash_clnt_odstate(fp, open->op_odstate); if (stp->st_clnt_odstate == open->op_odstate) open->op_odstate = NULL; } nfs4_inc_and_copy_stateid(&open->op_stateid, &stp->st_stid); mutex_unlock(&stp->st_mutex); if (nfsd4_has_session(&resp->cstate)) { if (open->op_deleg_want & NFS4_SHARE_WANT_NO_DELEG) { open->op_delegate_type = NFS4_OPEN_DELEGATE_NONE_EXT; open->op_why_no_deleg = WND4_NOT_WANTED; goto nodeleg; } } /* * Attempt to hand out a delegation. No error return, because the * OPEN succeeds even if we fail. */ nfs4_open_delegation(open, stp, &resp->cstate.current_fh); nodeleg: status = nfs_ok; trace_nfsd_open(&stp->st_stid.sc_stateid); out: /* 4.1 client trying to upgrade/downgrade delegation? */ if (open->op_delegate_type == NFS4_OPEN_DELEGATE_NONE && dp && open->op_deleg_want) nfsd4_deleg_xgrade_none_ext(open, dp); if (fp) put_nfs4_file(fp); if (status == 0 && open->op_claim_type == NFS4_OPEN_CLAIM_PREVIOUS) open->op_openowner->oo_flags |= NFS4_OO_CONFIRMED; /* * To finish the open response, we just need to set the rflags. */ open->op_rflags = NFS4_OPEN_RESULT_LOCKTYPE_POSIX; if (nfsd4_has_session(&resp->cstate)) open->op_rflags |= NFS4_OPEN_RESULT_MAY_NOTIFY_LOCK; else if (!(open->op_openowner->oo_flags & NFS4_OO_CONFIRMED)) open->op_rflags |= NFS4_OPEN_RESULT_CONFIRM; if (dp) nfs4_put_stid(&dp->dl_stid); if (stp) nfs4_put_stid(&stp->st_stid); return status; } void nfsd4_cleanup_open_state(struct nfsd4_compound_state *cstate, struct nfsd4_open *open) { if (open->op_openowner) nfs4_put_stateowner(&open->op_openowner->oo_owner); if (open->op_file) kmem_cache_free(file_slab, open->op_file); if (open->op_stp) nfs4_put_stid(&open->op_stp->st_stid); if (open->op_odstate) kmem_cache_free(odstate_slab, open->op_odstate); } __be32 nfsd4_renew(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { clientid_t *clid = &u->renew; struct nfs4_client *clp; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); trace_nfsd_clid_renew(clid); status = set_client(clid, cstate, nn); if (status) return status; clp = cstate->clp; if (!list_empty(&clp->cl_delegations) && clp->cl_cb_state != NFSD4_CB_UP) return nfserr_cb_path_down; return nfs_ok; } void nfsd4_end_grace(struct nfsd_net *nn) { /* do nothing if grace period already ended */ if (nn->grace_ended) return; trace_nfsd_grace_complete(nn); nn->grace_ended = true; /* * If the server goes down again right now, an NFSv4 * client will still be allowed to reclaim after it comes back up, * even if it hasn't yet had a chance to reclaim state this time. * */ nfsd4_record_grace_done(nn); /* * At this point, NFSv4 clients can still reclaim. But if the * server crashes, any that have not yet reclaimed will be out * of luck on the next boot. * * (NFSv4.1+ clients are considered to have reclaimed once they * call RECLAIM_COMPLETE. NFSv4.0 clients are considered to * have reclaimed after their first OPEN.) */ locks_end_grace(&nn->nfsd4_manager); /* * At this point, and once lockd and/or any other containers * exit their grace period, further reclaims will fail and * regular locking can resume. */ } /* * If we've waited a lease period but there are still clients trying to * reclaim, wait a little longer to give them a chance to finish. */ static bool clients_still_reclaiming(struct nfsd_net *nn) { time64_t double_grace_period_end = nn->boot_time + 2 * nn->nfsd4_lease; if (nn->track_reclaim_completes && atomic_read(&nn->nr_reclaim_complete) == nn->reclaim_str_hashtbl_size) return false; if (!nn->somebody_reclaimed) return false; nn->somebody_reclaimed = false; /* * If we've given them *two* lease times to reclaim, and they're * still not done, give up: */ if (ktime_get_boottime_seconds() > double_grace_period_end) return false; return true; } struct laundry_time { time64_t cutoff; time64_t new_timeo; }; static bool state_expired(struct laundry_time *lt, time64_t last_refresh) { time64_t time_remaining; if (last_refresh < lt->cutoff) return true; time_remaining = last_refresh - lt->cutoff; lt->new_timeo = min(lt->new_timeo, time_remaining); return false; } #ifdef CONFIG_NFSD_V4_2_INTER_SSC void nfsd4_ssc_init_umount_work(struct nfsd_net *nn) { spin_lock_init(&nn->nfsd_ssc_lock); INIT_LIST_HEAD(&nn->nfsd_ssc_mount_list); init_waitqueue_head(&nn->nfsd_ssc_waitq); } /* * This is called when nfsd is being shutdown, after all inter_ssc * cleanup were done, to destroy the ssc delayed unmount list. */ static void nfsd4_ssc_shutdown_umount(struct nfsd_net *nn) { struct nfsd4_ssc_umount_item *ni = NULL; struct nfsd4_ssc_umount_item *tmp; spin_lock(&nn->nfsd_ssc_lock); list_for_each_entry_safe(ni, tmp, &nn->nfsd_ssc_mount_list, nsui_list) { list_del(&ni->nsui_list); spin_unlock(&nn->nfsd_ssc_lock); mntput(ni->nsui_vfsmount); kfree(ni); spin_lock(&nn->nfsd_ssc_lock); } spin_unlock(&nn->nfsd_ssc_lock); } static void nfsd4_ssc_expire_umount(struct nfsd_net *nn) { bool do_wakeup = false; struct nfsd4_ssc_umount_item *ni = NULL; struct nfsd4_ssc_umount_item *tmp; spin_lock(&nn->nfsd_ssc_lock); list_for_each_entry_safe(ni, tmp, &nn->nfsd_ssc_mount_list, nsui_list) { if (time_after(jiffies, ni->nsui_expire)) { if (refcount_read(&ni->nsui_refcnt) > 1) continue; /* mark being unmount */ ni->nsui_busy = true; spin_unlock(&nn->nfsd_ssc_lock); mntput(ni->nsui_vfsmount); spin_lock(&nn->nfsd_ssc_lock); /* waiters need to start from begin of list */ list_del(&ni->nsui_list); kfree(ni); /* wakeup ssc_connect waiters */ do_wakeup = true; continue; } break; } if (do_wakeup) wake_up_all(&nn->nfsd_ssc_waitq); spin_unlock(&nn->nfsd_ssc_lock); } #endif /* Check if any lock belonging to this lockowner has any blockers */ static bool nfs4_lockowner_has_blockers(struct nfs4_lockowner *lo) { struct file_lock_context *ctx; struct nfs4_ol_stateid *stp; struct nfs4_file *nf; list_for_each_entry(stp, &lo->lo_owner.so_stateids, st_perstateowner) { nf = stp->st_stid.sc_file; ctx = locks_inode_context(nf->fi_inode); if (!ctx) continue; if (locks_owner_has_blockers(ctx, lo)) return true; } return false; } static bool nfs4_anylock_blockers(struct nfs4_client *clp) { int i; struct nfs4_stateowner *so; struct nfs4_lockowner *lo; if (atomic_read(&clp->cl_delegs_in_recall)) return true; spin_lock(&clp->cl_lock); for (i = 0; i < OWNER_HASH_SIZE; i++) { list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[i], so_strhash) { if (so->so_is_open_owner) continue; lo = lockowner(so); if (nfs4_lockowner_has_blockers(lo)) { spin_unlock(&clp->cl_lock); return true; } } } spin_unlock(&clp->cl_lock); return false; } static void nfs4_get_client_reaplist(struct nfsd_net *nn, struct list_head *reaplist, struct laundry_time *lt) { unsigned int maxreap, reapcnt = 0; struct list_head *pos, *next; struct nfs4_client *clp; maxreap = (atomic_read(&nn->nfs4_client_count) >= nn->nfs4_max_clients) ? NFSD_CLIENT_MAX_TRIM_PER_RUN : 0; INIT_LIST_HEAD(reaplist); spin_lock(&nn->client_lock); list_for_each_safe(pos, next, &nn->client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (clp->cl_state == NFSD4_EXPIRABLE) goto exp_client; if (!state_expired(lt, clp->cl_time)) break; if (!atomic_read(&clp->cl_rpc_users)) { if (clp->cl_state == NFSD4_ACTIVE) atomic_inc(&nn->nfsd_courtesy_clients); clp->cl_state = NFSD4_COURTESY; } if (!client_has_state(clp)) goto exp_client; if (!nfs4_anylock_blockers(clp)) if (reapcnt >= maxreap) continue; exp_client: if (!mark_client_expired_locked(clp)) { list_add(&clp->cl_lru, reaplist); reapcnt++; } } spin_unlock(&nn->client_lock); } static void nfs4_get_courtesy_client_reaplist(struct nfsd_net *nn, struct list_head *reaplist) { unsigned int maxreap = 0, reapcnt = 0; struct list_head *pos, *next; struct nfs4_client *clp; maxreap = NFSD_CLIENT_MAX_TRIM_PER_RUN; INIT_LIST_HEAD(reaplist); spin_lock(&nn->client_lock); list_for_each_safe(pos, next, &nn->client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (clp->cl_state == NFSD4_ACTIVE) break; if (reapcnt >= maxreap) break; if (!mark_client_expired_locked(clp)) { list_add(&clp->cl_lru, reaplist); reapcnt++; } } spin_unlock(&nn->client_lock); } static void nfs4_process_client_reaplist(struct list_head *reaplist) { struct list_head *pos, *next; struct nfs4_client *clp; list_for_each_safe(pos, next, reaplist) { clp = list_entry(pos, struct nfs4_client, cl_lru); trace_nfsd_clid_purged(&clp->cl_clientid); list_del_init(&clp->cl_lru); expire_client(clp); } } static void nfs40_clean_admin_revoked(struct nfsd_net *nn, struct laundry_time *lt) { struct nfs4_client *clp; spin_lock(&nn->client_lock); if (nn->nfs40_last_revoke == 0 || nn->nfs40_last_revoke > lt->cutoff) { spin_unlock(&nn->client_lock); return; } nn->nfs40_last_revoke = 0; retry: list_for_each_entry(clp, &nn->client_lru, cl_lru) { unsigned long id, tmp; struct nfs4_stid *stid; if (atomic_read(&clp->cl_admin_revoked) == 0) continue; spin_lock(&clp->cl_lock); idr_for_each_entry_ul(&clp->cl_stateids, stid, tmp, id) if (stid->sc_status & SC_STATUS_ADMIN_REVOKED) { refcount_inc(&stid->sc_count); spin_unlock(&nn->client_lock); /* this function drops ->cl_lock */ nfsd4_drop_revoked_stid(stid); nfs4_put_stid(stid); spin_lock(&nn->client_lock); goto retry; } spin_unlock(&clp->cl_lock); } spin_unlock(&nn->client_lock); } static time64_t nfs4_laundromat(struct nfsd_net *nn) { struct nfs4_openowner *oo; struct nfs4_delegation *dp; struct nfs4_ol_stateid *stp; struct nfsd4_blocked_lock *nbl; struct list_head *pos, *next, reaplist; struct laundry_time lt = { .cutoff = ktime_get_boottime_seconds() - nn->nfsd4_lease, .new_timeo = nn->nfsd4_lease }; struct nfs4_cpntf_state *cps; copy_stateid_t *cps_t; int i; if (clients_still_reclaiming(nn)) { lt.new_timeo = 0; goto out; } nfsd4_end_grace(nn); spin_lock(&nn->s2s_cp_lock); idr_for_each_entry(&nn->s2s_cp_stateids, cps_t, i) { cps = container_of(cps_t, struct nfs4_cpntf_state, cp_stateid); if (cps->cp_stateid.cs_type == NFS4_COPYNOTIFY_STID && state_expired(<, cps->cpntf_time)) _free_cpntf_state_locked(nn, cps); } spin_unlock(&nn->s2s_cp_lock); nfsd4_async_copy_reaper(nn); nfs4_get_client_reaplist(nn, &reaplist, <); nfs4_process_client_reaplist(&reaplist); nfs40_clean_admin_revoked(nn, <); spin_lock(&state_lock); list_for_each_safe(pos, next, &nn->del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); if (!state_expired(<, dp->dl_time)) break; refcount_inc(&dp->dl_stid.sc_count); unhash_delegation_locked(dp, SC_STATUS_REVOKED); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); while (!list_empty(&reaplist)) { dp = list_first_entry(&reaplist, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); revoke_delegation(dp); } spin_lock(&nn->client_lock); while (!list_empty(&nn->close_lru)) { oo = list_first_entry(&nn->close_lru, struct nfs4_openowner, oo_close_lru); if (!state_expired(<, oo->oo_time)) break; list_del_init(&oo->oo_close_lru); stp = oo->oo_last_closed_stid; oo->oo_last_closed_stid = NULL; spin_unlock(&nn->client_lock); nfs4_put_stid(&stp->st_stid); spin_lock(&nn->client_lock); } spin_unlock(&nn->client_lock); /* * It's possible for a client to try and acquire an already held lock * that is being held for a long time, and then lose interest in it. * So, we clean out any un-revisited request after a lease period * under the assumption that the client is no longer interested. * * RFC5661, sec. 9.6 states that the client must not rely on getting * notifications and must continue to poll for locks, even when the * server supports them. Thus this shouldn't lead to clients blocking * indefinitely once the lock does become free. */ BUG_ON(!list_empty(&reaplist)); spin_lock(&nn->blocked_locks_lock); while (!list_empty(&nn->blocked_locks_lru)) { nbl = list_first_entry(&nn->blocked_locks_lru, struct nfsd4_blocked_lock, nbl_lru); if (!state_expired(<, nbl->nbl_time)) break; list_move(&nbl->nbl_lru, &reaplist); list_del_init(&nbl->nbl_list); } spin_unlock(&nn->blocked_locks_lock); while (!list_empty(&reaplist)) { nbl = list_first_entry(&reaplist, struct nfsd4_blocked_lock, nbl_lru); list_del_init(&nbl->nbl_lru); free_blocked_lock(nbl); } #ifdef CONFIG_NFSD_V4_2_INTER_SSC /* service the server-to-server copy delayed unmount list */ nfsd4_ssc_expire_umount(nn); #endif if (atomic_long_read(&num_delegations) >= max_delegations) deleg_reaper(nn); out: return max_t(time64_t, lt.new_timeo, NFSD_LAUNDROMAT_MINTIMEOUT); } static void laundromat_main(struct work_struct *); static void laundromat_main(struct work_struct *laundry) { time64_t t; struct delayed_work *dwork = to_delayed_work(laundry); struct nfsd_net *nn = container_of(dwork, struct nfsd_net, laundromat_work); t = nfs4_laundromat(nn); queue_delayed_work(laundry_wq, &nn->laundromat_work, t*HZ); } static void courtesy_client_reaper(struct nfsd_net *nn) { struct list_head reaplist; nfs4_get_courtesy_client_reaplist(nn, &reaplist); nfs4_process_client_reaplist(&reaplist); } static void deleg_reaper(struct nfsd_net *nn) { struct list_head *pos, *next; struct nfs4_client *clp; LIST_HEAD(cblist); spin_lock(&nn->client_lock); list_for_each_safe(pos, next, &nn->client_lru) { clp = list_entry(pos, struct nfs4_client, cl_lru); if (clp->cl_state != NFSD4_ACTIVE || list_empty(&clp->cl_delegations) || atomic_read(&clp->cl_delegs_in_recall) || test_bit(NFSD4_CLIENT_CB_RECALL_ANY, &clp->cl_flags) || (ktime_get_boottime_seconds() - clp->cl_ra_time < 5)) { continue; } list_add(&clp->cl_ra_cblist, &cblist); /* release in nfsd4_cb_recall_any_release */ kref_get(&clp->cl_nfsdfs.cl_ref); set_bit(NFSD4_CLIENT_CB_RECALL_ANY, &clp->cl_flags); clp->cl_ra_time = ktime_get_boottime_seconds(); } spin_unlock(&nn->client_lock); while (!list_empty(&cblist)) { clp = list_first_entry(&cblist, struct nfs4_client, cl_ra_cblist); list_del_init(&clp->cl_ra_cblist); clp->cl_ra->ra_keep = 0; clp->cl_ra->ra_bmval[0] = BIT(RCA4_TYPE_MASK_RDATA_DLG) | BIT(RCA4_TYPE_MASK_WDATA_DLG); trace_nfsd_cb_recall_any(clp->cl_ra); nfsd4_run_cb(&clp->cl_ra->ra_cb); } } static void nfsd4_state_shrinker_worker(struct work_struct *work) { struct nfsd_net *nn = container_of(work, struct nfsd_net, nfsd_shrinker_work); courtesy_client_reaper(nn); deleg_reaper(nn); } static inline __be32 nfs4_check_fh(struct svc_fh *fhp, struct nfs4_stid *stp) { if (!fh_match(&fhp->fh_handle, &stp->sc_file->fi_fhandle)) return nfserr_bad_stateid; return nfs_ok; } static __be32 nfs4_check_openmode(struct nfs4_ol_stateid *stp, int flags) { __be32 status = nfserr_openmode; /* For lock stateid's, we test the parent open, not the lock: */ if (stp->st_openstp) stp = stp->st_openstp; if ((flags & WR_STATE) && !access_permit_write(stp)) goto out; if ((flags & RD_STATE) && !access_permit_read(stp)) goto out; status = nfs_ok; out: return status; } static inline __be32 check_special_stateids(struct net *net, svc_fh *current_fh, stateid_t *stateid, int flags) { if (ONE_STATEID(stateid) && (flags & RD_STATE)) return nfs_ok; else if (opens_in_grace(net)) { /* Answer in remaining cases depends on existence of * conflicting state; so we must wait out the grace period. */ return nfserr_grace; } else if (flags & WR_STATE) return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_WRITE); else /* (flags & RD_STATE) && ZERO_STATEID(stateid) */ return nfs4_share_conflict(current_fh, NFS4_SHARE_DENY_READ); } static __be32 check_stateid_generation(stateid_t *in, stateid_t *ref, bool has_session) { /* * When sessions are used the stateid generation number is ignored * when it is zero. */ if (has_session && in->si_generation == 0) return nfs_ok; if (in->si_generation == ref->si_generation) return nfs_ok; /* If the client sends us a stateid from the future, it's buggy: */ if (nfsd4_stateid_generation_after(in, ref)) return nfserr_bad_stateid; /* * However, we could see a stateid from the past, even from a * non-buggy client. For example, if the client sends a lock * while some IO is outstanding, the lock may bump si_generation * while the IO is still in flight. The client could avoid that * situation by waiting for responses on all the IO requests, * but better performance may result in retrying IO that * receives an old_stateid error if requests are rarely * reordered in flight: */ return nfserr_old_stateid; } static __be32 nfsd4_stid_check_stateid_generation(stateid_t *in, struct nfs4_stid *s, bool has_session) { __be32 ret; spin_lock(&s->sc_lock); ret = nfsd4_verify_open_stid(s); if (ret == nfs_ok) ret = check_stateid_generation(in, &s->sc_stateid, has_session); spin_unlock(&s->sc_lock); if (ret == nfserr_admin_revoked) nfsd40_drop_revoked_stid(s->sc_client, &s->sc_stateid); return ret; } static __be32 nfsd4_check_openowner_confirmed(struct nfs4_ol_stateid *ols) { if (ols->st_stateowner->so_is_open_owner && !(openowner(ols->st_stateowner)->oo_flags & NFS4_OO_CONFIRMED)) return nfserr_bad_stateid; return nfs_ok; } static __be32 nfsd4_validate_stateid(struct nfs4_client *cl, stateid_t *stateid) { struct nfs4_stid *s; __be32 status = nfserr_bad_stateid; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) || CLOSE_STATEID(stateid)) return status; spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, stateid); if (!s) goto out_unlock; status = nfsd4_stid_check_stateid_generation(stateid, s, 1); if (status) goto out_unlock; status = nfsd4_verify_open_stid(s); if (status) goto out_unlock; switch (s->sc_type) { case SC_TYPE_DELEG: status = nfs_ok; break; case SC_TYPE_OPEN: case SC_TYPE_LOCK: status = nfsd4_check_openowner_confirmed(openlockstateid(s)); break; default: printk("unknown stateid type %x\n", s->sc_type); status = nfserr_bad_stateid; } out_unlock: spin_unlock(&cl->cl_lock); if (status == nfserr_admin_revoked) nfsd40_drop_revoked_stid(cl, stateid); return status; } __be32 nfsd4_lookup_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid, unsigned short typemask, unsigned short statusmask, struct nfs4_stid **s, struct nfsd_net *nn) { __be32 status; struct nfs4_stid *stid; bool return_revoked = false; /* * only return revoked delegations if explicitly asked. * otherwise we report revoked or bad_stateid status. */ if (statusmask & SC_STATUS_REVOKED) return_revoked = true; if (typemask & SC_TYPE_DELEG) /* Always allow REVOKED for DELEG so we can * retturn the appropriate error. */ statusmask |= SC_STATUS_REVOKED; statusmask |= SC_STATUS_ADMIN_REVOKED; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid) || CLOSE_STATEID(stateid)) return nfserr_bad_stateid; status = set_client(&stateid->si_opaque.so_clid, cstate, nn); if (status == nfserr_stale_clientid) { if (cstate->session) return nfserr_bad_stateid; return nfserr_stale_stateid; } if (status) return status; stid = find_stateid_by_type(cstate->clp, stateid, typemask, statusmask); if (!stid) return nfserr_bad_stateid; if ((stid->sc_status & SC_STATUS_REVOKED) && !return_revoked) { nfs4_put_stid(stid); return nfserr_deleg_revoked; } if (stid->sc_status & SC_STATUS_ADMIN_REVOKED) { nfsd40_drop_revoked_stid(cstate->clp, stateid); nfs4_put_stid(stid); return nfserr_admin_revoked; } *s = stid; return nfs_ok; } static struct nfsd_file * nfs4_find_file(struct nfs4_stid *s, int flags) { struct nfsd_file *ret = NULL; if (!s || s->sc_status) return NULL; switch (s->sc_type) { case SC_TYPE_DELEG: spin_lock(&s->sc_file->fi_lock); ret = nfsd_file_get(s->sc_file->fi_deleg_file); spin_unlock(&s->sc_file->fi_lock); break; case SC_TYPE_OPEN: case SC_TYPE_LOCK: if (flags & RD_STATE) ret = find_readable_file(s->sc_file); else ret = find_writeable_file(s->sc_file); } return ret; } static __be32 nfs4_check_olstateid(struct nfs4_ol_stateid *ols, int flags) { __be32 status; status = nfsd4_check_openowner_confirmed(ols); if (status) return status; return nfs4_check_openmode(ols, flags); } static __be32 nfs4_check_file(struct svc_rqst *rqstp, struct svc_fh *fhp, struct nfs4_stid *s, struct nfsd_file **nfp, int flags) { int acc = (flags & RD_STATE) ? NFSD_MAY_READ : NFSD_MAY_WRITE; struct nfsd_file *nf; __be32 status; nf = nfs4_find_file(s, flags); if (nf) { status = nfsd_permission(&rqstp->rq_cred, fhp->fh_export, fhp->fh_dentry, acc | NFSD_MAY_OWNER_OVERRIDE); if (status) { nfsd_file_put(nf); goto out; } } else { status = nfsd_file_acquire(rqstp, fhp, acc, &nf); if (status) return status; } *nfp = nf; out: return status; } static void _free_cpntf_state_locked(struct nfsd_net *nn, struct nfs4_cpntf_state *cps) { WARN_ON_ONCE(cps->cp_stateid.cs_type != NFS4_COPYNOTIFY_STID); if (!refcount_dec_and_test(&cps->cp_stateid.cs_count)) return; list_del(&cps->cp_list); idr_remove(&nn->s2s_cp_stateids, cps->cp_stateid.cs_stid.si_opaque.so_id); kfree(cps); } /* * A READ from an inter server to server COPY will have a * copy stateid. Look up the copy notify stateid from the * idr structure and take a reference on it. */ __be32 manage_cpntf_state(struct nfsd_net *nn, stateid_t *st, struct nfs4_client *clp, struct nfs4_cpntf_state **cps) { copy_stateid_t *cps_t; struct nfs4_cpntf_state *state = NULL; if (st->si_opaque.so_clid.cl_id != nn->s2s_cp_cl_id) return nfserr_bad_stateid; spin_lock(&nn->s2s_cp_lock); cps_t = idr_find(&nn->s2s_cp_stateids, st->si_opaque.so_id); if (cps_t) { state = container_of(cps_t, struct nfs4_cpntf_state, cp_stateid); if (state->cp_stateid.cs_type != NFS4_COPYNOTIFY_STID) { state = NULL; goto unlock; } if (!clp) refcount_inc(&state->cp_stateid.cs_count); else _free_cpntf_state_locked(nn, state); } unlock: spin_unlock(&nn->s2s_cp_lock); if (!state) return nfserr_bad_stateid; if (!clp) *cps = state; return 0; } static __be32 find_cpntf_state(struct nfsd_net *nn, stateid_t *st, struct nfs4_stid **stid) { __be32 status; struct nfs4_cpntf_state *cps = NULL; struct nfs4_client *found; status = manage_cpntf_state(nn, st, NULL, &cps); if (status) return status; cps->cpntf_time = ktime_get_boottime_seconds(); status = nfserr_expired; found = lookup_clientid(&cps->cp_p_clid, true, nn); if (!found) goto out; *stid = find_stateid_by_type(found, &cps->cp_p_stateid, SC_TYPE_DELEG|SC_TYPE_OPEN|SC_TYPE_LOCK, 0); if (*stid) status = nfs_ok; else status = nfserr_bad_stateid; put_client_renew(found); out: nfs4_put_cpntf_state(nn, cps); return status; } void nfs4_put_cpntf_state(struct nfsd_net *nn, struct nfs4_cpntf_state *cps) { spin_lock(&nn->s2s_cp_lock); _free_cpntf_state_locked(nn, cps); spin_unlock(&nn->s2s_cp_lock); } /** * nfs4_preprocess_stateid_op - find and prep stateid for an operation * @rqstp: incoming request from client * @cstate: current compound state * @fhp: filehandle associated with requested stateid * @stateid: stateid (provided by client) * @flags: flags describing type of operation to be done * @nfp: optional nfsd_file return pointer (may be NULL) * @cstid: optional returned nfs4_stid pointer (may be NULL) * * Given info from the client, look up a nfs4_stid for the operation. On * success, it returns a reference to the nfs4_stid and/or the nfsd_file * associated with it. */ __be32 nfs4_preprocess_stateid_op(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, struct svc_fh *fhp, stateid_t *stateid, int flags, struct nfsd_file **nfp, struct nfs4_stid **cstid) { struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct nfs4_stid *s = NULL; __be32 status; if (nfp) *nfp = NULL; if (ZERO_STATEID(stateid) || ONE_STATEID(stateid)) { status = check_special_stateids(net, fhp, stateid, flags); goto done; } status = nfsd4_lookup_stateid(cstate, stateid, SC_TYPE_DELEG|SC_TYPE_OPEN|SC_TYPE_LOCK, 0, &s, nn); if (status == nfserr_bad_stateid) status = find_cpntf_state(nn, stateid, &s); if (status) return status; status = nfsd4_stid_check_stateid_generation(stateid, s, nfsd4_has_session(cstate)); if (status) goto out; switch (s->sc_type) { case SC_TYPE_DELEG: status = nfs4_check_delegmode(delegstateid(s), flags); break; case SC_TYPE_OPEN: case SC_TYPE_LOCK: status = nfs4_check_olstateid(openlockstateid(s), flags); break; } if (status) goto out; status = nfs4_check_fh(fhp, s); done: if (status == nfs_ok && nfp) status = nfs4_check_file(rqstp, fhp, s, nfp, flags); out: if (s) { if (!status && cstid) *cstid = s; else nfs4_put_stid(s); } return status; } /* * Test if the stateid is valid */ __be32 nfsd4_test_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_test_stateid *test_stateid = &u->test_stateid; struct nfsd4_test_stateid_id *stateid; struct nfs4_client *cl = cstate->clp; list_for_each_entry(stateid, &test_stateid->ts_stateid_list, ts_id_list) stateid->ts_id_status = nfsd4_validate_stateid(cl, &stateid->ts_id_stateid); return nfs_ok; } static __be32 nfsd4_free_lock_stateid(stateid_t *stateid, struct nfs4_stid *s) { struct nfs4_ol_stateid *stp = openlockstateid(s); __be32 ret; ret = nfsd4_lock_ol_stateid(stp); if (ret) goto out_put_stid; ret = check_stateid_generation(stateid, &s->sc_stateid, 1); if (ret) goto out; ret = nfserr_locks_held; if (check_for_locks(stp->st_stid.sc_file, lockowner(stp->st_stateowner))) goto out; release_lock_stateid(stp); ret = nfs_ok; out: mutex_unlock(&stp->st_mutex); out_put_stid: nfs4_put_stid(s); return ret; } __be32 nfsd4_free_stateid(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_free_stateid *free_stateid = &u->free_stateid; stateid_t *stateid = &free_stateid->fr_stateid; struct nfs4_stid *s; struct nfs4_delegation *dp; struct nfs4_client *cl = cstate->clp; __be32 ret = nfserr_bad_stateid; spin_lock(&cl->cl_lock); s = find_stateid_locked(cl, stateid); if (!s || s->sc_status & SC_STATUS_CLOSED) goto out_unlock; if (s->sc_status & SC_STATUS_ADMIN_REVOKED) { nfsd4_drop_revoked_stid(s); ret = nfs_ok; goto out; } spin_lock(&s->sc_lock); switch (s->sc_type) { case SC_TYPE_DELEG: if (s->sc_status & SC_STATUS_REVOKED) { s->sc_status |= SC_STATUS_CLOSED; spin_unlock(&s->sc_lock); dp = delegstateid(s); if (s->sc_status & SC_STATUS_FREEABLE) list_del_init(&dp->dl_recall_lru); s->sc_status |= SC_STATUS_FREED; spin_unlock(&cl->cl_lock); nfs4_put_stid(s); ret = nfs_ok; goto out; } ret = nfserr_locks_held; break; case SC_TYPE_OPEN: ret = check_stateid_generation(stateid, &s->sc_stateid, 1); if (ret) break; ret = nfserr_locks_held; break; case SC_TYPE_LOCK: spin_unlock(&s->sc_lock); refcount_inc(&s->sc_count); spin_unlock(&cl->cl_lock); ret = nfsd4_free_lock_stateid(stateid, s); goto out; } spin_unlock(&s->sc_lock); out_unlock: spin_unlock(&cl->cl_lock); out: return ret; } static inline int setlkflg (int type) { return (type == NFS4_READW_LT || type == NFS4_READ_LT) ? RD_STATE : WR_STATE; } static __be32 nfs4_seqid_op_checks(struct nfsd4_compound_state *cstate, stateid_t *stateid, u32 seqid, struct nfs4_ol_stateid *stp) { struct svc_fh *current_fh = &cstate->current_fh; struct nfs4_stateowner *sop = stp->st_stateowner; __be32 status; status = nfsd4_check_seqid(cstate, sop, seqid); if (status) return status; status = nfsd4_lock_ol_stateid(stp); if (status != nfs_ok) return status; status = check_stateid_generation(stateid, &stp->st_stid.sc_stateid, nfsd4_has_session(cstate)); if (status == nfs_ok) status = nfs4_check_fh(current_fh, &stp->st_stid); if (status != nfs_ok) mutex_unlock(&stp->st_mutex); return status; } /** * nfs4_preprocess_seqid_op - find and prep an ol_stateid for a seqid-morphing op * @cstate: compund state * @seqid: seqid (provided by client) * @stateid: stateid (provided by client) * @typemask: mask of allowable types for this operation * @statusmask: mask of allowed states: 0 or STID_CLOSED * @stpp: return pointer for the stateid found * @nn: net namespace for request * * Given a stateid+seqid from a client, look up an nfs4_ol_stateid and * return it in @stpp. On a nfs_ok return, the returned stateid will * have its st_mutex locked. */ static __be32 nfs4_preprocess_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, unsigned short typemask, unsigned short statusmask, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn) { __be32 status; struct nfs4_stid *s; struct nfs4_ol_stateid *stp = NULL; trace_nfsd_preprocess(seqid, stateid); *stpp = NULL; retry: status = nfsd4_lookup_stateid(cstate, stateid, typemask, statusmask, &s, nn); if (status) return status; stp = openlockstateid(s); if (nfsd4_cstate_assign_replay(cstate, stp->st_stateowner) == -EAGAIN) { nfs4_put_stateowner(stp->st_stateowner); goto retry; } status = nfs4_seqid_op_checks(cstate, stateid, seqid, stp); if (!status) *stpp = stp; else nfs4_put_stid(&stp->st_stid); return status; } static __be32 nfs4_preprocess_confirmed_seqid_op(struct nfsd4_compound_state *cstate, u32 seqid, stateid_t *stateid, struct nfs4_ol_stateid **stpp, struct nfsd_net *nn) { __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; status = nfs4_preprocess_seqid_op(cstate, seqid, stateid, SC_TYPE_OPEN, 0, &stp, nn); if (status) return status; oo = openowner(stp->st_stateowner); if (!(oo->oo_flags & NFS4_OO_CONFIRMED)) { mutex_unlock(&stp->st_mutex); nfs4_put_stid(&stp->st_stid); return nfserr_bad_stateid; } *stpp = stp; return nfs_ok; } __be32 nfsd4_open_confirm(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_open_confirm *oc = &u->open_confirm; __be32 status; struct nfs4_openowner *oo; struct nfs4_ol_stateid *stp; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_open_confirm on file %pd\n", cstate->current_fh.fh_dentry); status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0); if (status) return status; status = nfs4_preprocess_seqid_op(cstate, oc->oc_seqid, &oc->oc_req_stateid, SC_TYPE_OPEN, 0, &stp, nn); if (status) goto out; oo = openowner(stp->st_stateowner); status = nfserr_bad_stateid; if (oo->oo_flags & NFS4_OO_CONFIRMED) { mutex_unlock(&stp->st_mutex); goto put_stateid; } oo->oo_flags |= NFS4_OO_CONFIRMED; nfs4_inc_and_copy_stateid(&oc->oc_resp_stateid, &stp->st_stid); mutex_unlock(&stp->st_mutex); trace_nfsd_open_confirm(oc->oc_seqid, &stp->st_stid.sc_stateid); nfsd4_client_record_create(oo->oo_owner.so_client); status = nfs_ok; put_stateid: nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); return status; } static inline void nfs4_stateid_downgrade_bit(struct nfs4_ol_stateid *stp, u32 access) { if (!test_access(access, stp)) return; nfs4_file_put_access(stp->st_stid.sc_file, access); clear_access(access, stp); } static inline void nfs4_stateid_downgrade(struct nfs4_ol_stateid *stp, u32 to_access) { switch (to_access) { case NFS4_SHARE_ACCESS_READ: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_WRITE); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_WRITE: nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_READ); nfs4_stateid_downgrade_bit(stp, NFS4_SHARE_ACCESS_BOTH); break; case NFS4_SHARE_ACCESS_BOTH: break; default: WARN_ON_ONCE(1); } } __be32 nfsd4_open_downgrade(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_open_downgrade *od = &u->open_downgrade; __be32 status; struct nfs4_ol_stateid *stp; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_open_downgrade on file %pd\n", cstate->current_fh.fh_dentry); /* We don't yet support WANT bits: */ if (od->od_deleg_want) dprintk("NFSD: %s: od_deleg_want=0x%x ignored\n", __func__, od->od_deleg_want); status = nfs4_preprocess_confirmed_seqid_op(cstate, od->od_seqid, &od->od_stateid, &stp, nn); if (status) goto out; status = nfserr_inval; if (!test_access(od->od_share_access, stp)) { dprintk("NFSD: access not a subset of current bitmap: 0x%hhx, input access=%08x\n", stp->st_access_bmap, od->od_share_access); goto put_stateid; } if (!test_deny(od->od_share_deny, stp)) { dprintk("NFSD: deny not a subset of current bitmap: 0x%hhx, input deny=%08x\n", stp->st_deny_bmap, od->od_share_deny); goto put_stateid; } nfs4_stateid_downgrade(stp, od->od_share_access); reset_union_bmap_deny(od->od_share_deny, stp); nfs4_inc_and_copy_stateid(&od->od_stateid, &stp->st_stid); status = nfs_ok; put_stateid: mutex_unlock(&stp->st_mutex); nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); return status; } static bool nfsd4_close_open_stateid(struct nfs4_ol_stateid *s) { struct nfs4_client *clp = s->st_stid.sc_client; bool unhashed; LIST_HEAD(reaplist); struct nfs4_ol_stateid *stp; spin_lock(&clp->cl_lock); unhashed = unhash_open_stateid(s, &reaplist); if (clp->cl_minorversion) { if (unhashed) put_ol_stateid_locked(s, &reaplist); spin_unlock(&clp->cl_lock); list_for_each_entry(stp, &reaplist, st_locks) nfs4_free_cpntf_statelist(clp->net, &stp->st_stid); free_ol_stateid_reaplist(&reaplist); return false; } else { spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); return unhashed; } } /* * nfs4_unlock_state() called after encode */ __be32 nfsd4_close(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_close *close = &u->close; __be32 status; struct nfs4_ol_stateid *stp; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); bool need_move_to_close_list; dprintk("NFSD: nfsd4_close on file %pd\n", cstate->current_fh.fh_dentry); status = nfs4_preprocess_seqid_op(cstate, close->cl_seqid, &close->cl_stateid, SC_TYPE_OPEN, SC_STATUS_CLOSED, &stp, nn); nfsd4_bump_seqid(cstate, status); if (status) goto out; spin_lock(&stp->st_stid.sc_client->cl_lock); stp->st_stid.sc_status |= SC_STATUS_CLOSED; spin_unlock(&stp->st_stid.sc_client->cl_lock); /* * Technically we don't _really_ have to increment or copy it, since * it should just be gone after this operation and we clobber the * copied value below, but we continue to do so here just to ensure * that racing ops see that there was a state change. */ nfs4_inc_and_copy_stateid(&close->cl_stateid, &stp->st_stid); need_move_to_close_list = nfsd4_close_open_stateid(stp); mutex_unlock(&stp->st_mutex); if (need_move_to_close_list) move_to_close_lru(stp, net); /* v4.1+ suggests that we send a special stateid in here, since the * clients should just ignore this anyway. Since this is not useful * for v4.0 clients either, we set it to the special close_stateid * universally. * * See RFC5661 section 18.2.4, and RFC7530 section 16.2.5 */ memcpy(&close->cl_stateid, &close_stateid, sizeof(close->cl_stateid)); /* put reference from nfs4_preprocess_seqid_op */ nfs4_put_stid(&stp->st_stid); out: return status; } __be32 nfsd4_delegreturn(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_delegreturn *dr = &u->delegreturn; struct nfs4_delegation *dp; stateid_t *stateid = &dr->dr_stateid; struct nfs4_stid *s; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) return status; status = nfsd4_lookup_stateid(cstate, stateid, SC_TYPE_DELEG, SC_STATUS_REVOKED | SC_STATUS_FREEABLE, &s, nn); if (status) goto out; dp = delegstateid(s); status = nfsd4_stid_check_stateid_generation(stateid, &dp->dl_stid, nfsd4_has_session(cstate)); if (status) goto put_stateid; trace_nfsd_deleg_return(stateid); destroy_delegation(dp); smp_mb__after_atomic(); wake_up_var(d_inode(cstate->current_fh.fh_dentry)); put_stateid: nfs4_put_stid(&dp->dl_stid); out: return status; } /* last octet in a range */ static inline u64 last_byte_offset(u64 start, u64 len) { u64 end; WARN_ON_ONCE(!len); end = start + len; return end > start ? end - 1: NFS4_MAX_UINT64; } /* * TODO: Linux file offsets are _signed_ 64-bit quantities, which means that * we can't properly handle lock requests that go beyond the (2^63 - 1)-th * byte, because of sign extension problems. Since NFSv4 calls for 64-bit * locking, this prevents us from being completely protocol-compliant. The * real solution to this problem is to start using unsigned file offsets in * the VFS, but this is a very deep change! */ static inline void nfs4_transform_lock_offset(struct file_lock *lock) { if (lock->fl_start < 0) lock->fl_start = OFFSET_MAX; if (lock->fl_end < 0) lock->fl_end = OFFSET_MAX; } static fl_owner_t nfsd4_lm_get_owner(fl_owner_t owner) { struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner; nfs4_get_stateowner(&lo->lo_owner); return owner; } static void nfsd4_lm_put_owner(fl_owner_t owner) { struct nfs4_lockowner *lo = (struct nfs4_lockowner *)owner; if (lo) nfs4_put_stateowner(&lo->lo_owner); } /* return pointer to struct nfs4_client if client is expirable */ static bool nfsd4_lm_lock_expirable(struct file_lock *cfl) { struct nfs4_lockowner *lo = (struct nfs4_lockowner *) cfl->c.flc_owner; struct nfs4_client *clp = lo->lo_owner.so_client; struct nfsd_net *nn; if (try_to_expire_client(clp)) { nn = net_generic(clp->net, nfsd_net_id); mod_delayed_work(laundry_wq, &nn->laundromat_work, 0); return true; } return false; } /* schedule laundromat to run immediately and wait for it to complete */ static void nfsd4_lm_expire_lock(void) { flush_workqueue(laundry_wq); } static void nfsd4_lm_notify(struct file_lock *fl) { struct nfs4_lockowner *lo = (struct nfs4_lockowner *) fl->c.flc_owner; struct net *net = lo->lo_owner.so_client->net; struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct nfsd4_blocked_lock *nbl = container_of(fl, struct nfsd4_blocked_lock, nbl_lock); bool queue = false; /* An empty list means that something else is going to be using it */ spin_lock(&nn->blocked_locks_lock); if (!list_empty(&nbl->nbl_list)) { list_del_init(&nbl->nbl_list); list_del_init(&nbl->nbl_lru); queue = true; } spin_unlock(&nn->blocked_locks_lock); if (queue) { trace_nfsd_cb_notify_lock(lo, nbl); nfsd4_run_cb(&nbl->nbl_cb); } } static const struct lock_manager_operations nfsd_posix_mng_ops = { .lm_mod_owner = THIS_MODULE, .lm_notify = nfsd4_lm_notify, .lm_get_owner = nfsd4_lm_get_owner, .lm_put_owner = nfsd4_lm_put_owner, .lm_lock_expirable = nfsd4_lm_lock_expirable, .lm_expire_lock = nfsd4_lm_expire_lock, }; static inline void nfs4_set_lock_denied(struct file_lock *fl, struct nfsd4_lock_denied *deny) { struct nfs4_lockowner *lo; if (fl->fl_lmops == &nfsd_posix_mng_ops) { lo = (struct nfs4_lockowner *) fl->c.flc_owner; xdr_netobj_dup(&deny->ld_owner, &lo->lo_owner.so_owner, GFP_KERNEL); if (!deny->ld_owner.data) /* We just don't care that much */ goto nevermind; deny->ld_clientid = lo->lo_owner.so_client->cl_clientid; } else { nevermind: deny->ld_owner.len = 0; deny->ld_owner.data = NULL; deny->ld_clientid.cl_boot = 0; deny->ld_clientid.cl_id = 0; } deny->ld_start = fl->fl_start; deny->ld_length = NFS4_MAX_UINT64; if (fl->fl_end != NFS4_MAX_UINT64) deny->ld_length = fl->fl_end - fl->fl_start + 1; deny->ld_type = NFS4_READ_LT; if (fl->c.flc_type != F_RDLCK) deny->ld_type = NFS4_WRITE_LT; } static struct nfs4_lockowner * find_lockowner_str_locked(struct nfs4_client *clp, struct xdr_netobj *owner) { unsigned int strhashval = ownerstr_hashval(owner); struct nfs4_stateowner *so; lockdep_assert_held(&clp->cl_lock); list_for_each_entry(so, &clp->cl_ownerstr_hashtbl[strhashval], so_strhash) { if (so->so_is_open_owner) continue; if (same_owner_str(so, owner)) return lockowner(nfs4_get_stateowner(so)); } return NULL; } static struct nfs4_lockowner * find_lockowner_str(struct nfs4_client *clp, struct xdr_netobj *owner) { struct nfs4_lockowner *lo; spin_lock(&clp->cl_lock); lo = find_lockowner_str_locked(clp, owner); spin_unlock(&clp->cl_lock); return lo; } static void nfs4_unhash_lockowner(struct nfs4_stateowner *sop) { unhash_lockowner_locked(lockowner(sop)); } static void nfs4_free_lockowner(struct nfs4_stateowner *sop) { struct nfs4_lockowner *lo = lockowner(sop); kmem_cache_free(lockowner_slab, lo); } static const struct nfs4_stateowner_operations lockowner_ops = { .so_unhash = nfs4_unhash_lockowner, .so_free = nfs4_free_lockowner, }; /* * Alloc a lock owner structure. * Called in nfsd4_lock - therefore, OPEN and OPEN_CONFIRM (if needed) has * occurred. * * strhashval = ownerstr_hashval */ static struct nfs4_lockowner * alloc_init_lock_stateowner(unsigned int strhashval, struct nfs4_client *clp, struct nfs4_ol_stateid *open_stp, struct nfsd4_lock *lock) { struct nfs4_lockowner *lo, *ret; lo = alloc_stateowner(lockowner_slab, &lock->lk_new_owner, clp); if (!lo) return NULL; INIT_LIST_HEAD(&lo->lo_blocked); INIT_LIST_HEAD(&lo->lo_owner.so_stateids); lo->lo_owner.so_is_open_owner = 0; lo->lo_owner.so_seqid = lock->lk_new_lock_seqid; lo->lo_owner.so_ops = &lockowner_ops; spin_lock(&clp->cl_lock); ret = find_lockowner_str_locked(clp, &lock->lk_new_owner); if (ret == NULL) { list_add(&lo->lo_owner.so_strhash, &clp->cl_ownerstr_hashtbl[strhashval]); ret = lo; } else nfs4_free_stateowner(&lo->lo_owner); spin_unlock(&clp->cl_lock); return ret; } static struct nfs4_ol_stateid * find_lock_stateid(const struct nfs4_lockowner *lo, const struct nfs4_ol_stateid *ost) { struct nfs4_ol_stateid *lst; lockdep_assert_held(&ost->st_stid.sc_client->cl_lock); /* If ost is not hashed, ost->st_locks will not be valid */ if (!nfs4_ol_stateid_unhashed(ost)) list_for_each_entry(lst, &ost->st_locks, st_locks) { if (lst->st_stateowner == &lo->lo_owner) { refcount_inc(&lst->st_stid.sc_count); return lst; } } return NULL; } static struct nfs4_ol_stateid * init_lock_stateid(struct nfs4_ol_stateid *stp, struct nfs4_lockowner *lo, struct nfs4_file *fp, struct inode *inode, struct nfs4_ol_stateid *open_stp) { struct nfs4_client *clp = lo->lo_owner.so_client; struct nfs4_ol_stateid *retstp; mutex_init(&stp->st_mutex); mutex_lock_nested(&stp->st_mutex, OPEN_STATEID_MUTEX); retry: spin_lock(&clp->cl_lock); if (nfs4_ol_stateid_unhashed(open_stp)) goto out_close; retstp = find_lock_stateid(lo, open_stp); if (retstp) goto out_found; refcount_inc(&stp->st_stid.sc_count); stp->st_stid.sc_type = SC_TYPE_LOCK; stp->st_stateowner = nfs4_get_stateowner(&lo->lo_owner); get_nfs4_file(fp); stp->st_stid.sc_file = fp; stp->st_access_bmap = 0; stp->st_deny_bmap = open_stp->st_deny_bmap; stp->st_openstp = open_stp; spin_lock(&fp->fi_lock); list_add(&stp->st_locks, &open_stp->st_locks); list_add(&stp->st_perstateowner, &lo->lo_owner.so_stateids); list_add(&stp->st_perfile, &fp->fi_stateids); spin_unlock(&fp->fi_lock); spin_unlock(&clp->cl_lock); return stp; out_found: spin_unlock(&clp->cl_lock); if (nfsd4_lock_ol_stateid(retstp) != nfs_ok) { nfs4_put_stid(&retstp->st_stid); goto retry; } /* To keep mutex tracking happy */ mutex_unlock(&stp->st_mutex); return retstp; out_close: spin_unlock(&clp->cl_lock); mutex_unlock(&stp->st_mutex); return NULL; } static struct nfs4_ol_stateid * find_or_create_lock_stateid(struct nfs4_lockowner *lo, struct nfs4_file *fi, struct inode *inode, struct nfs4_ol_stateid *ost, bool *new) { struct nfs4_stid *ns = NULL; struct nfs4_ol_stateid *lst; struct nfs4_openowner *oo = openowner(ost->st_stateowner); struct nfs4_client *clp = oo->oo_owner.so_client; *new = false; spin_lock(&clp->cl_lock); lst = find_lock_stateid(lo, ost); spin_unlock(&clp->cl_lock); if (lst != NULL) { if (nfsd4_lock_ol_stateid(lst) == nfs_ok) goto out; nfs4_put_stid(&lst->st_stid); } ns = nfs4_alloc_stid(clp, stateid_slab, nfs4_free_lock_stateid); if (ns == NULL) return NULL; lst = init_lock_stateid(openlockstateid(ns), lo, fi, inode, ost); if (lst == openlockstateid(ns)) *new = true; else nfs4_put_stid(ns); out: return lst; } static int check_lock_length(u64 offset, u64 length) { return ((length == 0) || ((length != NFS4_MAX_UINT64) && (length > ~offset))); } static void get_lock_access(struct nfs4_ol_stateid *lock_stp, u32 access) { struct nfs4_file *fp = lock_stp->st_stid.sc_file; lockdep_assert_held(&fp->fi_lock); if (test_access(access, lock_stp)) return; __nfs4_file_get_access(fp, access); set_access(access, lock_stp); } static __be32 lookup_or_create_lock_state(struct nfsd4_compound_state *cstate, struct nfs4_ol_stateid *ost, struct nfsd4_lock *lock, struct nfs4_ol_stateid **plst, bool *new) { __be32 status; struct nfs4_file *fi = ost->st_stid.sc_file; struct nfs4_openowner *oo = openowner(ost->st_stateowner); struct nfs4_client *cl = oo->oo_owner.so_client; struct inode *inode = d_inode(cstate->current_fh.fh_dentry); struct nfs4_lockowner *lo; struct nfs4_ol_stateid *lst; unsigned int strhashval; lo = find_lockowner_str(cl, &lock->lk_new_owner); if (!lo) { strhashval = ownerstr_hashval(&lock->lk_new_owner); lo = alloc_init_lock_stateowner(strhashval, cl, ost, lock); if (lo == NULL) return nfserr_jukebox; } else { /* with an existing lockowner, seqids must be the same */ status = nfserr_bad_seqid; if (!cstate->minorversion && lock->lk_new_lock_seqid != lo->lo_owner.so_seqid) goto out; } lst = find_or_create_lock_stateid(lo, fi, inode, ost, new); if (lst == NULL) { status = nfserr_jukebox; goto out; } status = nfs_ok; *plst = lst; out: nfs4_put_stateowner(&lo->lo_owner); return status; } /* * LOCK operation */ __be32 nfsd4_lock(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_lock *lock = &u->lock; struct nfs4_openowner *open_sop = NULL; struct nfs4_lockowner *lock_sop = NULL; struct nfs4_ol_stateid *lock_stp = NULL; struct nfs4_ol_stateid *open_stp = NULL; struct nfs4_file *fp; struct nfsd_file *nf = NULL; struct nfsd4_blocked_lock *nbl = NULL; struct file_lock *file_lock = NULL; struct file_lock *conflock = NULL; struct super_block *sb; __be32 status = 0; int lkflg; int err; bool new = false; unsigned char type; unsigned int flags = FL_POSIX; struct net *net = SVC_NET(rqstp); struct nfsd_net *nn = net_generic(net, nfsd_net_id); dprintk("NFSD: nfsd4_lock: start=%Ld length=%Ld\n", (long long) lock->lk_offset, (long long) lock->lk_length); if (check_lock_length(lock->lk_offset, lock->lk_length)) return nfserr_inval; status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0); if (status != nfs_ok) return status; sb = cstate->current_fh.fh_dentry->d_sb; if (lock->lk_is_new) { if (nfsd4_has_session(cstate)) /* See rfc 5661 18.10.3: given clientid is ignored: */ memcpy(&lock->lk_new_clientid, &cstate->clp->cl_clientid, sizeof(clientid_t)); /* validate and update open stateid and open seqid */ status = nfs4_preprocess_confirmed_seqid_op(cstate, lock->lk_new_open_seqid, &lock->lk_new_open_stateid, &open_stp, nn); if (status) goto out; mutex_unlock(&open_stp->st_mutex); open_sop = openowner(open_stp->st_stateowner); status = nfserr_bad_stateid; if (!same_clid(&open_sop->oo_owner.so_client->cl_clientid, &lock->lk_new_clientid)) goto out; status = lookup_or_create_lock_state(cstate, open_stp, lock, &lock_stp, &new); } else { status = nfs4_preprocess_seqid_op(cstate, lock->lk_old_lock_seqid, &lock->lk_old_lock_stateid, SC_TYPE_LOCK, 0, &lock_stp, nn); } if (status) goto out; lock_sop = lockowner(lock_stp->st_stateowner); lkflg = setlkflg(lock->lk_type); status = nfs4_check_openmode(lock_stp, lkflg); if (status) goto out; status = nfserr_grace; if (locks_in_grace(net) && !lock->lk_reclaim) goto out; status = nfserr_no_grace; if (!locks_in_grace(net) && lock->lk_reclaim) goto out; if (lock->lk_reclaim) flags |= FL_RECLAIM; fp = lock_stp->st_stid.sc_file; switch (lock->lk_type) { case NFS4_READW_LT: fallthrough; case NFS4_READ_LT: spin_lock(&fp->fi_lock); nf = find_readable_file_locked(fp); if (nf) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_READ); spin_unlock(&fp->fi_lock); type = F_RDLCK; break; case NFS4_WRITEW_LT: fallthrough; case NFS4_WRITE_LT: spin_lock(&fp->fi_lock); nf = find_writeable_file_locked(fp); if (nf) get_lock_access(lock_stp, NFS4_SHARE_ACCESS_WRITE); spin_unlock(&fp->fi_lock); type = F_WRLCK; break; default: status = nfserr_inval; goto out; } if (!nf) { status = nfserr_openmode; goto out; } if (lock->lk_type & (NFS4_READW_LT | NFS4_WRITEW_LT) && nfsd4_has_session(cstate) && locks_can_async_lock(nf->nf_file->f_op)) flags |= FL_SLEEP; nbl = find_or_allocate_block(lock_sop, &fp->fi_fhandle, nn); if (!nbl) { dprintk("NFSD: %s: unable to allocate block!\n", __func__); status = nfserr_jukebox; goto out; } file_lock = &nbl->nbl_lock; file_lock->c.flc_type = type; file_lock->c.flc_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(&lock_sop->lo_owner)); file_lock->c.flc_pid = current->tgid; file_lock->c.flc_file = nf->nf_file; file_lock->c.flc_flags = flags; file_lock->fl_lmops = &nfsd_posix_mng_ops; file_lock->fl_start = lock->lk_offset; file_lock->fl_end = last_byte_offset(lock->lk_offset, lock->lk_length); nfs4_transform_lock_offset(file_lock); conflock = locks_alloc_lock(); if (!conflock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto out; } if (flags & FL_SLEEP) { nbl->nbl_time = ktime_get_boottime_seconds(); spin_lock(&nn->blocked_locks_lock); list_add_tail(&nbl->nbl_list, &lock_sop->lo_blocked); list_add_tail(&nbl->nbl_lru, &nn->blocked_locks_lru); kref_get(&nbl->nbl_kref); spin_unlock(&nn->blocked_locks_lock); } err = vfs_lock_file(nf->nf_file, F_SETLK, file_lock, conflock); switch (err) { case 0: /* success! */ nfs4_inc_and_copy_stateid(&lock->lk_resp_stateid, &lock_stp->st_stid); status = 0; if (lock->lk_reclaim) nn->somebody_reclaimed = true; break; case FILE_LOCK_DEFERRED: kref_put(&nbl->nbl_kref, free_nbl); nbl = NULL; fallthrough; case -EAGAIN: /* conflock holds conflicting lock */ status = nfserr_denied; dprintk("NFSD: nfsd4_lock: conflicting lock found!\n"); nfs4_set_lock_denied(conflock, &lock->lk_denied); break; case -EDEADLK: status = nfserr_deadlock; break; default: dprintk("NFSD: nfsd4_lock: vfs_lock_file() failed! status %d\n",err); status = nfserrno(err); break; } out: if (nbl) { /* dequeue it if we queued it before */ if (flags & FL_SLEEP) { spin_lock(&nn->blocked_locks_lock); if (!list_empty(&nbl->nbl_list) && !list_empty(&nbl->nbl_lru)) { list_del_init(&nbl->nbl_list); list_del_init(&nbl->nbl_lru); kref_put(&nbl->nbl_kref, free_nbl); } /* nbl can use one of lists to be linked to reaplist */ spin_unlock(&nn->blocked_locks_lock); } free_blocked_lock(nbl); } if (nf) nfsd_file_put(nf); if (lock_stp) { /* Bump seqid manually if the 4.0 replay owner is openowner */ if (cstate->replay_owner && cstate->replay_owner != &lock_sop->lo_owner && seqid_mutating_err(ntohl(status))) lock_sop->lo_owner.so_seqid++; /* * If this is a new, never-before-used stateid, and we are * returning an error, then just go ahead and release it. */ if (status && new) release_lock_stateid(lock_stp); mutex_unlock(&lock_stp->st_mutex); nfs4_put_stid(&lock_stp->st_stid); } if (open_stp) nfs4_put_stid(&open_stp->st_stid); nfsd4_bump_seqid(cstate, status); if (conflock) locks_free_lock(conflock); return status; } void nfsd4_lock_release(union nfsd4_op_u *u) { struct nfsd4_lock *lock = &u->lock; struct nfsd4_lock_denied *deny = &lock->lk_denied; kfree(deny->ld_owner.data); } /* * The NFSv4 spec allows a client to do a LOCKT without holding an OPEN, * so we do a temporary open here just to get an open file to pass to * vfs_test_lock. */ static __be32 nfsd_test_lock(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file_lock *lock) { struct nfsd_file *nf; struct inode *inode; __be32 err; err = nfsd_file_acquire(rqstp, fhp, NFSD_MAY_READ, &nf); if (err) return err; inode = fhp->fh_dentry->d_inode; inode_lock(inode); /* to block new leases till after test_lock: */ err = nfserrno(nfsd_open_break_lease(inode, NFSD_MAY_READ)); if (err) goto out; lock->c.flc_file = nf->nf_file; err = nfserrno(vfs_test_lock(nf->nf_file, lock)); lock->c.flc_file = NULL; out: inode_unlock(inode); nfsd_file_put(nf); return err; } /* * LOCKT operation */ __be32 nfsd4_lockt(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_lockt *lockt = &u->lockt; struct file_lock *file_lock = NULL; struct nfs4_lockowner *lo = NULL; __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); if (locks_in_grace(SVC_NET(rqstp))) return nfserr_grace; if (check_lock_length(lockt->lt_offset, lockt->lt_length)) return nfserr_inval; if (!nfsd4_has_session(cstate)) { status = set_client(&lockt->lt_clientid, cstate, nn); if (status) goto out; } if ((status = fh_verify(rqstp, &cstate->current_fh, S_IFREG, 0))) goto out; file_lock = locks_alloc_lock(); if (!file_lock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto out; } switch (lockt->lt_type) { case NFS4_READ_LT: case NFS4_READW_LT: file_lock->c.flc_type = F_RDLCK; break; case NFS4_WRITE_LT: case NFS4_WRITEW_LT: file_lock->c.flc_type = F_WRLCK; break; default: dprintk("NFSD: nfs4_lockt: bad lock type!\n"); status = nfserr_inval; goto out; } lo = find_lockowner_str(cstate->clp, &lockt->lt_owner); if (lo) file_lock->c.flc_owner = (fl_owner_t)lo; file_lock->c.flc_pid = current->tgid; file_lock->c.flc_flags = FL_POSIX; file_lock->fl_start = lockt->lt_offset; file_lock->fl_end = last_byte_offset(lockt->lt_offset, lockt->lt_length); nfs4_transform_lock_offset(file_lock); status = nfsd_test_lock(rqstp, &cstate->current_fh, file_lock); if (status) goto out; if (file_lock->c.flc_type != F_UNLCK) { status = nfserr_denied; nfs4_set_lock_denied(file_lock, &lockt->lt_denied); } out: if (lo) nfs4_put_stateowner(&lo->lo_owner); if (file_lock) locks_free_lock(file_lock); return status; } void nfsd4_lockt_release(union nfsd4_op_u *u) { struct nfsd4_lockt *lockt = &u->lockt; struct nfsd4_lock_denied *deny = &lockt->lt_denied; kfree(deny->ld_owner.data); } __be32 nfsd4_locku(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_locku *locku = &u->locku; struct nfs4_ol_stateid *stp; struct nfsd_file *nf = NULL; struct file_lock *file_lock = NULL; __be32 status; int err; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); dprintk("NFSD: nfsd4_locku: start=%Ld length=%Ld\n", (long long) locku->lu_offset, (long long) locku->lu_length); if (check_lock_length(locku->lu_offset, locku->lu_length)) return nfserr_inval; status = nfs4_preprocess_seqid_op(cstate, locku->lu_seqid, &locku->lu_stateid, SC_TYPE_LOCK, 0, &stp, nn); if (status) goto out; nf = find_any_file(stp->st_stid.sc_file); if (!nf) { status = nfserr_lock_range; goto put_stateid; } file_lock = locks_alloc_lock(); if (!file_lock) { dprintk("NFSD: %s: unable to allocate lock!\n", __func__); status = nfserr_jukebox; goto put_file; } file_lock->c.flc_type = F_UNLCK; file_lock->c.flc_owner = (fl_owner_t)lockowner(nfs4_get_stateowner(stp->st_stateowner)); file_lock->c.flc_pid = current->tgid; file_lock->c.flc_file = nf->nf_file; file_lock->c.flc_flags = FL_POSIX; file_lock->fl_lmops = &nfsd_posix_mng_ops; file_lock->fl_start = locku->lu_offset; file_lock->fl_end = last_byte_offset(locku->lu_offset, locku->lu_length); nfs4_transform_lock_offset(file_lock); err = vfs_lock_file(nf->nf_file, F_SETLK, file_lock, NULL); if (err) { dprintk("NFSD: nfs4_locku: vfs_lock_file failed!\n"); goto out_nfserr; } nfs4_inc_and_copy_stateid(&locku->lu_stateid, &stp->st_stid); put_file: nfsd_file_put(nf); put_stateid: mutex_unlock(&stp->st_mutex); nfs4_put_stid(&stp->st_stid); out: nfsd4_bump_seqid(cstate, status); if (file_lock) locks_free_lock(file_lock); return status; out_nfserr: status = nfserrno(err); goto put_file; } /* * returns * true: locks held by lockowner * false: no locks held by lockowner */ static bool check_for_locks(struct nfs4_file *fp, struct nfs4_lockowner *lowner) { struct file_lock *fl; int status = false; struct nfsd_file *nf; struct inode *inode; struct file_lock_context *flctx; spin_lock(&fp->fi_lock); nf = find_any_file_locked(fp); if (!nf) { /* Any valid lock stateid should have some sort of access */ WARN_ON_ONCE(1); goto out; } inode = file_inode(nf->nf_file); flctx = locks_inode_context(inode); if (flctx && !list_empty_careful(&flctx->flc_posix)) { spin_lock(&flctx->flc_lock); for_each_file_lock(fl, &flctx->flc_posix) { if (fl->c.flc_owner == (fl_owner_t)lowner) { status = true; break; } } spin_unlock(&flctx->flc_lock); } out: spin_unlock(&fp->fi_lock); return status; } /** * nfsd4_release_lockowner - process NFSv4.0 RELEASE_LOCKOWNER operations * @rqstp: RPC transaction * @cstate: NFSv4 COMPOUND state * @u: RELEASE_LOCKOWNER arguments * * Check if there are any locks still held and if not, free the lockowner * and any lock state that is owned. * * Return values: * %nfs_ok: lockowner released or not found * %nfserr_locks_held: lockowner still in use * %nfserr_stale_clientid: clientid no longer active * %nfserr_expired: clientid not recognized */ __be32 nfsd4_release_lockowner(struct svc_rqst *rqstp, struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { struct nfsd4_release_lockowner *rlockowner = &u->release_lockowner; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); clientid_t *clid = &rlockowner->rl_clientid; struct nfs4_ol_stateid *stp; struct nfs4_lockowner *lo; struct nfs4_client *clp; LIST_HEAD(reaplist); __be32 status; dprintk("nfsd4_release_lockowner clientid: (%08x/%08x):\n", clid->cl_boot, clid->cl_id); status = set_client(clid, cstate, nn); if (status) return status; clp = cstate->clp; spin_lock(&clp->cl_lock); lo = find_lockowner_str_locked(clp, &rlockowner->rl_owner); if (!lo) { spin_unlock(&clp->cl_lock); return nfs_ok; } list_for_each_entry(stp, &lo->lo_owner.so_stateids, st_perstateowner) { if (check_for_locks(stp->st_stid.sc_file, lo)) { spin_unlock(&clp->cl_lock); nfs4_put_stateowner(&lo->lo_owner); return nfserr_locks_held; } } unhash_lockowner_locked(lo); while (!list_empty(&lo->lo_owner.so_stateids)) { stp = list_first_entry(&lo->lo_owner.so_stateids, struct nfs4_ol_stateid, st_perstateowner); unhash_lock_stateid(stp); put_ol_stateid_locked(stp, &reaplist); } spin_unlock(&clp->cl_lock); free_ol_stateid_reaplist(&reaplist); remove_blocked_locks(lo); nfs4_put_stateowner(&lo->lo_owner); return nfs_ok; } static inline struct nfs4_client_reclaim * alloc_reclaim(void) { return kmalloc(sizeof(struct nfs4_client_reclaim), GFP_KERNEL); } bool nfs4_has_reclaimed_state(struct xdr_netobj name, struct nfsd_net *nn) { struct nfs4_client_reclaim *crp; crp = nfsd4_find_reclaim_client(name, nn); return (crp && crp->cr_clp); } /* * failure => all reset bets are off, nfserr_no_grace... * * The caller is responsible for freeing name.data if NULL is returned (it * will be freed in nfs4_remove_reclaim_record in the normal case). */ struct nfs4_client_reclaim * nfs4_client_to_reclaim(struct xdr_netobj name, struct xdr_netobj princhash, struct nfsd_net *nn) { unsigned int strhashval; struct nfs4_client_reclaim *crp; crp = alloc_reclaim(); if (crp) { strhashval = clientstr_hashval(name); INIT_LIST_HEAD(&crp->cr_strhash); list_add(&crp->cr_strhash, &nn->reclaim_str_hashtbl[strhashval]); crp->cr_name.data = name.data; crp->cr_name.len = name.len; crp->cr_princhash.data = princhash.data; crp->cr_princhash.len = princhash.len; crp->cr_clp = NULL; nn->reclaim_str_hashtbl_size++; } return crp; } void nfs4_remove_reclaim_record(struct nfs4_client_reclaim *crp, struct nfsd_net *nn) { list_del(&crp->cr_strhash); kfree(crp->cr_name.data); kfree(crp->cr_princhash.data); kfree(crp); nn->reclaim_str_hashtbl_size--; } void nfs4_release_reclaim(struct nfsd_net *nn) { struct nfs4_client_reclaim *crp = NULL; int i; for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->reclaim_str_hashtbl[i])) { crp = list_entry(nn->reclaim_str_hashtbl[i].next, struct nfs4_client_reclaim, cr_strhash); nfs4_remove_reclaim_record(crp, nn); } } WARN_ON_ONCE(nn->reclaim_str_hashtbl_size); } /* * called from OPEN, CLAIM_PREVIOUS with a new clientid. */ struct nfs4_client_reclaim * nfsd4_find_reclaim_client(struct xdr_netobj name, struct nfsd_net *nn) { unsigned int strhashval; struct nfs4_client_reclaim *crp = NULL; strhashval = clientstr_hashval(name); list_for_each_entry(crp, &nn->reclaim_str_hashtbl[strhashval], cr_strhash) { if (compare_blob(&crp->cr_name, &name) == 0) { return crp; } } return NULL; } __be32 nfs4_check_open_reclaim(struct nfs4_client *clp) { if (test_bit(NFSD4_CLIENT_RECLAIM_COMPLETE, &clp->cl_flags)) return nfserr_no_grace; if (nfsd4_client_record_check(clp)) return nfserr_reclaim_bad; return nfs_ok; } /* * Since the lifetime of a delegation isn't limited to that of an open, a * client may quite reasonably hang on to a delegation as long as it has * the inode cached. This becomes an obvious problem the first time a * client's inode cache approaches the size of the server's total memory. * * For now we avoid this problem by imposing a hard limit on the number * of delegations, which varies according to the server's memory size. */ static void set_max_delegations(void) { /* * Allow at most 4 delegations per megabyte of RAM. Quick * estimates suggest that in the worst case (where every delegation * is for a different inode), a delegation could take about 1.5K, * giving a worst case usage of about 6% of memory. */ max_delegations = nr_free_buffer_pages() >> (20 - 2 - PAGE_SHIFT); } static int nfs4_state_create_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); int i; nn->conf_id_hashtbl = kmalloc_array(CLIENT_HASH_SIZE, sizeof(struct list_head), GFP_KERNEL); if (!nn->conf_id_hashtbl) goto err; nn->unconf_id_hashtbl = kmalloc_array(CLIENT_HASH_SIZE, sizeof(struct list_head), GFP_KERNEL); if (!nn->unconf_id_hashtbl) goto err_unconf_id; nn->sessionid_hashtbl = kmalloc_array(SESSION_HASH_SIZE, sizeof(struct list_head), GFP_KERNEL); if (!nn->sessionid_hashtbl) goto err_sessionid; for (i = 0; i < CLIENT_HASH_SIZE; i++) { INIT_LIST_HEAD(&nn->conf_id_hashtbl[i]); INIT_LIST_HEAD(&nn->unconf_id_hashtbl[i]); } for (i = 0; i < SESSION_HASH_SIZE; i++) INIT_LIST_HEAD(&nn->sessionid_hashtbl[i]); nn->conf_name_tree = RB_ROOT; nn->unconf_name_tree = RB_ROOT; nn->boot_time = ktime_get_real_seconds(); nn->grace_ended = false; nn->nfsd4_manager.block_opens = true; INIT_LIST_HEAD(&nn->nfsd4_manager.list); INIT_LIST_HEAD(&nn->client_lru); INIT_LIST_HEAD(&nn->close_lru); INIT_LIST_HEAD(&nn->del_recall_lru); spin_lock_init(&nn->client_lock); spin_lock_init(&nn->s2s_cp_lock); idr_init(&nn->s2s_cp_stateids); atomic_set(&nn->pending_async_copies, 0); spin_lock_init(&nn->blocked_locks_lock); INIT_LIST_HEAD(&nn->blocked_locks_lru); INIT_DELAYED_WORK(&nn->laundromat_work, laundromat_main); INIT_WORK(&nn->nfsd_shrinker_work, nfsd4_state_shrinker_worker); get_net(net); nn->nfsd_client_shrinker = shrinker_alloc(0, "nfsd-client"); if (!nn->nfsd_client_shrinker) goto err_shrinker; nn->nfsd_client_shrinker->scan_objects = nfsd4_state_shrinker_scan; nn->nfsd_client_shrinker->count_objects = nfsd4_state_shrinker_count; nn->nfsd_client_shrinker->private_data = nn; shrinker_register(nn->nfsd_client_shrinker); return 0; err_shrinker: put_net(net); kfree(nn->sessionid_hashtbl); err_sessionid: kfree(nn->unconf_id_hashtbl); err_unconf_id: kfree(nn->conf_id_hashtbl); err: return -ENOMEM; } static void nfs4_state_destroy_net(struct net *net) { int i; struct nfs4_client *clp = NULL; struct nfsd_net *nn = net_generic(net, nfsd_net_id); for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->conf_id_hashtbl[i])) { clp = list_entry(nn->conf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); destroy_client(clp); } } WARN_ON(!list_empty(&nn->blocked_locks_lru)); for (i = 0; i < CLIENT_HASH_SIZE; i++) { while (!list_empty(&nn->unconf_id_hashtbl[i])) { clp = list_entry(nn->unconf_id_hashtbl[i].next, struct nfs4_client, cl_idhash); destroy_client(clp); } } kfree(nn->sessionid_hashtbl); kfree(nn->unconf_id_hashtbl); kfree(nn->conf_id_hashtbl); put_net(net); } int nfs4_state_start_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); int ret; ret = nfs4_state_create_net(net); if (ret) return ret; locks_start_grace(net, &nn->nfsd4_manager); nfsd4_client_tracking_init(net); if (nn->track_reclaim_completes && nn->reclaim_str_hashtbl_size == 0) goto skip_grace; printk(KERN_INFO "NFSD: starting %lld-second grace period (net %x)\n", nn->nfsd4_grace, net->ns.inum); trace_nfsd_grace_start(nn); queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_grace * HZ); return 0; skip_grace: printk(KERN_INFO "NFSD: no clients to reclaim, skipping NFSv4 grace period (net %x)\n", net->ns.inum); queue_delayed_work(laundry_wq, &nn->laundromat_work, nn->nfsd4_lease * HZ); nfsd4_end_grace(nn); return 0; } /* initialization to perform when the nfsd service is started: */ int nfs4_state_start(void) { int ret; ret = rhltable_init(&nfs4_file_rhltable, &nfs4_file_rhash_params); if (ret) return ret; set_max_delegations(); return 0; } void nfs4_state_shutdown_net(struct net *net) { struct nfs4_delegation *dp = NULL; struct list_head *pos, *next, reaplist; struct nfsd_net *nn = net_generic(net, nfsd_net_id); shrinker_free(nn->nfsd_client_shrinker); cancel_work_sync(&nn->nfsd_shrinker_work); cancel_delayed_work_sync(&nn->laundromat_work); locks_end_grace(&nn->nfsd4_manager); INIT_LIST_HEAD(&reaplist); spin_lock(&state_lock); list_for_each_safe(pos, next, &nn->del_recall_lru) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); unhash_delegation_locked(dp, SC_STATUS_CLOSED); list_add(&dp->dl_recall_lru, &reaplist); } spin_unlock(&state_lock); list_for_each_safe(pos, next, &reaplist) { dp = list_entry (pos, struct nfs4_delegation, dl_recall_lru); list_del_init(&dp->dl_recall_lru); destroy_unhashed_deleg(dp); } nfsd4_client_tracking_exit(net); nfs4_state_destroy_net(net); #ifdef CONFIG_NFSD_V4_2_INTER_SSC nfsd4_ssc_shutdown_umount(nn); #endif } void nfs4_state_shutdown(void) { rhltable_destroy(&nfs4_file_rhltable); } static void get_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid) { if (HAS_CSTATE_FLAG(cstate, CURRENT_STATE_ID_FLAG) && CURRENT_STATEID(stateid)) memcpy(stateid, &cstate->current_stateid, sizeof(stateid_t)); } static void put_stateid(struct nfsd4_compound_state *cstate, stateid_t *stateid) { if (cstate->minorversion) { memcpy(&cstate->current_stateid, stateid, sizeof(stateid_t)); SET_CSTATE_FLAG(cstate, CURRENT_STATE_ID_FLAG); } } void clear_current_stateid(struct nfsd4_compound_state *cstate) { CLEAR_CSTATE_FLAG(cstate, CURRENT_STATE_ID_FLAG); } /* * functions to set current state id */ void nfsd4_set_opendowngradestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { put_stateid(cstate, &u->open_downgrade.od_stateid); } void nfsd4_set_openstateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { put_stateid(cstate, &u->open.op_stateid); } void nfsd4_set_closestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { put_stateid(cstate, &u->close.cl_stateid); } void nfsd4_set_lockstateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { put_stateid(cstate, &u->lock.lk_resp_stateid); } /* * functions to consume current state id */ void nfsd4_get_opendowngradestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->open_downgrade.od_stateid); } void nfsd4_get_delegreturnstateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->delegreturn.dr_stateid); } void nfsd4_get_freestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->free_stateid.fr_stateid); } void nfsd4_get_setattrstateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->setattr.sa_stateid); } void nfsd4_get_closestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->close.cl_stateid); } void nfsd4_get_lockustateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->locku.lu_stateid); } void nfsd4_get_readstateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->read.rd_stateid); } void nfsd4_get_writestateid(struct nfsd4_compound_state *cstate, union nfsd4_op_u *u) { get_stateid(cstate, &u->write.wr_stateid); } /** * nfsd4_deleg_getattr_conflict - Recall if GETATTR causes conflict * @rqstp: RPC transaction context * @dentry: dentry of inode to be checked for a conflict * @pdp: returned WRITE delegation, if one was found * * This function is called when there is a conflict between a write * delegation and a change/size GETATTR from another client. The server * must either use the CB_GETATTR to get the current values of the * attributes from the client that holds the delegation or recall the * delegation before replying to the GETATTR. See RFC 8881 section * 18.7.4. * * Returns 0 if there is no conflict; otherwise an nfs_stat * code is returned. If @pdp is set to a non-NULL value, then the * caller must put the reference. */ __be32 nfsd4_deleg_getattr_conflict(struct svc_rqst *rqstp, struct dentry *dentry, struct nfs4_delegation **pdp) { __be32 status; struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); struct file_lock_context *ctx; struct nfs4_delegation *dp = NULL; struct file_lease *fl; struct iattr attrs; struct nfs4_cb_fattr *ncf; struct inode *inode = d_inode(dentry); ctx = locks_inode_context(inode); if (!ctx) return nfs_ok; #define NON_NFSD_LEASE ((void *)1) spin_lock(&ctx->flc_lock); for_each_file_lock(fl, &ctx->flc_lease) { if (fl->c.flc_flags == FL_LAYOUT) continue; if (fl->c.flc_type == F_WRLCK) { if (fl->fl_lmops == &nfsd_lease_mng_ops) dp = fl->c.flc_owner; else dp = NON_NFSD_LEASE; } break; } if (dp == NULL || dp == NON_NFSD_LEASE || dp->dl_recall.cb_clp == *(rqstp->rq_lease_breaker)) { spin_unlock(&ctx->flc_lock); if (dp == NON_NFSD_LEASE) { status = nfserrno(nfsd_open_break_lease(inode, NFSD_MAY_READ)); if (status != nfserr_jukebox || !nfsd_wait_for_delegreturn(rqstp, inode)) return status; } return 0; } nfsd_stats_wdeleg_getattr_inc(nn); refcount_inc(&dp->dl_stid.sc_count); ncf = &dp->dl_cb_fattr; nfs4_cb_getattr(&dp->dl_cb_fattr); spin_unlock(&ctx->flc_lock); wait_on_bit_timeout(&ncf->ncf_cb_flags, CB_GETATTR_BUSY, TASK_INTERRUPTIBLE, NFSD_CB_GETATTR_TIMEOUT); if (ncf->ncf_cb_status) { /* Recall delegation only if client didn't respond */ status = nfserrno(nfsd_open_break_lease(inode, NFSD_MAY_READ)); if (status != nfserr_jukebox || !nfsd_wait_for_delegreturn(rqstp, inode)) goto out_status; } if (!ncf->ncf_file_modified && (ncf->ncf_initial_cinfo != ncf->ncf_cb_change || ncf->ncf_cur_fsize != ncf->ncf_cb_fsize)) ncf->ncf_file_modified = true; if (ncf->ncf_file_modified) { int err; /* * Per section 10.4.3 of RFC 8881, the server would * not update the file's metadata with the client's * modified size */ attrs.ia_mtime = attrs.ia_ctime = current_time(inode); attrs.ia_valid = ATTR_MTIME | ATTR_CTIME | ATTR_DELEG; inode_lock(inode); err = notify_change(&nop_mnt_idmap, dentry, &attrs, NULL); inode_unlock(inode); if (err) { status = nfserrno(err); goto out_status; } ncf->ncf_cur_fsize = ncf->ncf_cb_fsize; *pdp = dp; return nfs_ok; } status = nfs_ok; out_status: nfs4_put_stid(&dp->dl_stid); return status; } |
| 29 3473 3471 7 3455 21 3434 3450 10 1257 1 2 30 13 45 45 5 7 33 5 3435 1304 2326 1259 43 1260 1253 2 8 3436 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/realpath.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/magic.h> #include <linux/proc_fs.h> /** * tomoyo_encode2 - Encode binary string to ascii string. * * @str: String in binary format. * @str_len: Size of @str in byte. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode2(const char *str, int str_len) { int i; int len = 0; const char *p = str; char *cp; char *cp0; if (!p) return NULL; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') len += 2; else if (c > ' ' && c < 127) len++; else len += 4; } len++; /* Reserve space for appending "/". */ cp = kzalloc(len + 10, GFP_NOFS); if (!cp) return NULL; cp0 = cp; p = str; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') { *cp++ = '\\'; *cp++ = '\\'; } else if (c > ' ' && c < 127) { *cp++ = c; } else { *cp++ = '\\'; *cp++ = (c >> 6) + '0'; *cp++ = ((c >> 3) & 7) + '0'; *cp++ = (c & 7) + '0'; } } return cp0; } /** * tomoyo_encode - Encode binary string to ascii string. * * @str: String in binary format. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode(const char *str) { return str ? tomoyo_encode2(str, strlen(str)) : NULL; } /** * tomoyo_get_absolute_path - Get the path of a dentry but ignores chroot'ed root. * * @path: Pointer to "struct path". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_absolute_path(const struct path *path, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { /* go to whatever namespace root we are under */ pos = d_absolute_path(path, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(path->dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_dentry_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_dentry_path(struct dentry *dentry, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { pos = dentry_path_raw(dentry, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_local_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. */ static char *tomoyo_get_local_path(struct dentry *dentry, char * const buffer, const int buflen) { struct super_block *sb = dentry->d_sb; char *pos = tomoyo_get_dentry_path(dentry, buffer, buflen); if (IS_ERR(pos)) return pos; /* Convert from $PID to self if $PID is current thread. */ if (sb->s_magic == PROC_SUPER_MAGIC && *pos == '/') { char *ep; const pid_t pid = (pid_t) simple_strtoul(pos + 1, &ep, 10); struct pid_namespace *proc_pidns = proc_pid_ns(sb); if (*ep == '/' && pid && pid == task_tgid_nr_ns(current, proc_pidns)) { pos = ep - 5; if (pos < buffer) goto out; memmove(pos, "/self", 5); } goto prepend_filesystem_name; } /* Use filesystem name for unnamed devices. */ if (!MAJOR(sb->s_dev)) goto prepend_filesystem_name; { struct inode *inode = d_backing_inode(sb->s_root); /* * Use filesystem name if filesystem does not support rename() * operation. */ if (!inode->i_op->rename) goto prepend_filesystem_name; } /* Prepend device name. */ { char name[64]; int name_len; const dev_t dev = sb->s_dev; name[sizeof(name) - 1] = '\0'; snprintf(name, sizeof(name) - 1, "dev(%u,%u):", MAJOR(dev), MINOR(dev)); name_len = strlen(name); pos -= name_len; if (pos < buffer) goto out; memmove(pos, name, name_len); return pos; } /* Prepend filesystem name. */ prepend_filesystem_name: { const char *name = sb->s_type->name; const int name_len = strlen(name); pos -= name_len + 1; if (pos < buffer) goto out; memmove(pos, name, name_len); pos[name_len] = ':'; } return pos; out: return ERR_PTR(-ENOMEM); } /** * tomoyo_realpath_from_path - Returns realpath(3) of the given pathname but ignores chroot'ed root. * * @path: Pointer to "struct path". * * Returns the realpath of the given @path on success, NULL otherwise. * * If dentry is a directory, trailing '/' is appended. * Characters out of 0x20 < c < 0x7F range are converted to * \ooo style octal string. * Character \ is converted to \\ string. * * These functions use kzalloc(), so the caller must call kfree() * if these functions didn't return NULL. */ char *tomoyo_realpath_from_path(const struct path *path) { char *buf = NULL; char *name = NULL; unsigned int buf_len = PAGE_SIZE / 2; struct dentry *dentry = path->dentry; struct super_block *sb = dentry->d_sb; while (1) { char *pos; struct inode *inode; buf_len <<= 1; kfree(buf); buf = kmalloc(buf_len, GFP_NOFS); if (!buf) break; /* To make sure that pos is '\0' terminated. */ buf[buf_len - 1] = '\0'; /* For "pipe:[\$]" and "socket:[\$]". */ if (dentry->d_op && dentry->d_op->d_dname) { pos = dentry->d_op->d_dname(dentry, buf, buf_len - 1); goto encode; } inode = d_backing_inode(sb->s_root); /* * Get local name for filesystems without rename() operation */ if ((!inode->i_op->rename && !(sb->s_type->fs_flags & FS_REQUIRES_DEV))) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); /* Get absolute name for the rest. */ else { pos = tomoyo_get_absolute_path(path, buf, buf_len - 1); /* * Fall back to local name if absolute name is not * available. */ if (pos == ERR_PTR(-EINVAL)) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); } encode: if (IS_ERR(pos)) continue; name = tomoyo_encode(pos); break; } kfree(buf); if (!name) tomoyo_warn_oom(__func__); return name; } /** * tomoyo_realpath_nofollow - Get realpath of a pathname. * * @pathname: The pathname to solve. * * Returns the realpath of @pathname on success, NULL otherwise. */ char *tomoyo_realpath_nofollow(const char *pathname) { struct path path; if (pathname && kern_path(pathname, 0, &path) == 0) { char *buf = tomoyo_realpath_from_path(&path); path_put(&path); return buf; } return NULL; } |
| 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 17 17 14 14 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 | /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2024 Intel Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: Wireless regulatory infrastructure * * The usual implementation is for a driver to read a device EEPROM to * determine which regulatory domain it should be operating under, then * looking up the allowable channels in a driver-local table and finally * registering those channels in the wiphy structure. * * Another set of compliance enforcement is for drivers to use their * own compliance limits which can be stored on the EEPROM. The host * driver or firmware may ensure these are used. * * In addition to all this we provide an extra layer of regulatory * conformance. For drivers which do not have any regulatory * information CRDA provides the complete regulatory solution. * For others it provides a community effort on further restrictions * to enhance compliance. * * Note: When number of rules --> infinity we will not be able to * index on alpha2 any more, instead we'll probably have to * rely on some SHA1 checksum of the regdomain for example. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/ctype.h> #include <linux/nl80211.h> #include <linux/platform_device.h> #include <linux/verification.h> #include <linux/moduleparam.h> #include <linux/firmware.h> #include <linux/units.h> #include <net/cfg80211.h> #include "core.h" #include "reg.h" #include "rdev-ops.h" #include "nl80211.h" /* * Grace period we give before making sure all current interfaces reside on * channels allowed by the current regulatory domain. */ #define REG_ENFORCE_GRACE_MS 60000 /** * enum reg_request_treatment - regulatory request treatment * * @REG_REQ_OK: continue processing the regulatory request * @REG_REQ_IGNORE: ignore the regulatory request * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should * be intersected with the current one. * @REG_REQ_ALREADY_SET: the regulatory request will not change the current * regulatory settings, and no further processing is required. */ enum reg_request_treatment { REG_REQ_OK, REG_REQ_IGNORE, REG_REQ_INTERSECT, REG_REQ_ALREADY_SET, }; static struct regulatory_request core_request_world = { .initiator = NL80211_REGDOM_SET_BY_CORE, .alpha2[0] = '0', .alpha2[1] = '0', .intersect = false, .processed = true, .country_ie_env = ENVIRON_ANY, }; /* * Receipt of information from last regulatory request, * protected by RTNL (and can be accessed with RCU protection) */ static struct regulatory_request __rcu *last_request = (void __force __rcu *)&core_request_world; /* To trigger userspace events and load firmware */ static struct platform_device *reg_pdev; /* * Central wireless core regulatory domains, we only need two, * the current one and a world regulatory domain in case we have no * information to give us an alpha2. * (protected by RTNL, can be read under RCU) */ const struct ieee80211_regdomain __rcu *cfg80211_regdomain; /* * Number of devices that registered to the core * that support cellular base station regulatory hints * (protected by RTNL) */ static int reg_num_devs_support_basehint; /* * State variable indicating if the platform on which the devices * are attached is operating in an indoor environment. The state variable * is relevant for all registered devices. */ static bool reg_is_indoor; static DEFINE_SPINLOCK(reg_indoor_lock); /* Used to track the userspace process controlling the indoor setting */ static u32 reg_is_indoor_portid; static void restore_regulatory_settings(bool reset_user, bool cached); static void print_regdomain(const struct ieee80211_regdomain *rd); static void reg_process_hint(struct regulatory_request *reg_request); static const struct ieee80211_regdomain *get_cfg80211_regdom(void) { return rcu_dereference_rtnl(cfg80211_regdomain); } /* * Returns the regulatory domain associated with the wiphy. * * Requires any of RTNL, wiphy mutex or RCU protection. */ const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) { return rcu_dereference_check(wiphy->regd, lockdep_is_held(&wiphy->mtx) || lockdep_rtnl_is_held()); } EXPORT_SYMBOL(get_wiphy_regdom); static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: return "unset"; case NL80211_DFS_FCC: return "FCC"; case NL80211_DFS_ETSI: return "ETSI"; case NL80211_DFS_JP: return "JP"; } return "Unknown"; } enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) { const struct ieee80211_regdomain *regd = NULL; const struct ieee80211_regdomain *wiphy_regd = NULL; enum nl80211_dfs_regions dfs_region; rcu_read_lock(); regd = get_cfg80211_regdom(); dfs_region = regd->dfs_region; if (!wiphy) goto out; wiphy_regd = get_wiphy_regdom(wiphy); if (!wiphy_regd) goto out; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { dfs_region = wiphy_regd->dfs_region; goto out; } if (wiphy_regd->dfs_region == regd->dfs_region) goto out; pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", dev_name(&wiphy->dev), reg_dfs_region_str(wiphy_regd->dfs_region), reg_dfs_region_str(regd->dfs_region)); out: rcu_read_unlock(); return dfs_region; } static void rcu_free_regdom(const struct ieee80211_regdomain *r) { if (!r) return; kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); } static struct regulatory_request *get_last_request(void) { return rcu_dereference_rtnl(last_request); } /* Used to queue up regulatory hints */ static LIST_HEAD(reg_requests_list); static DEFINE_SPINLOCK(reg_requests_lock); /* Used to queue up beacon hints for review */ static LIST_HEAD(reg_pending_beacons); static DEFINE_SPINLOCK(reg_pending_beacons_lock); /* Used to keep track of processed beacon hints */ static LIST_HEAD(reg_beacon_list); struct reg_beacon { struct list_head list; struct ieee80211_channel chan; }; static void reg_check_chans_work(struct work_struct *work); static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); static void reg_todo(struct work_struct *work); static DECLARE_WORK(reg_work, reg_todo); /* We keep a static world regulatory domain in case of the absence of CRDA */ static const struct ieee80211_regdomain world_regdom = { .n_reg_rules = 8, .alpha2 = "00", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), /* IEEE 802.11b/g, channels 12..13. */ REG_RULE(2467-10, 2472+10, 20, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_NO_OFDM), /* IEEE 802.11a, channel 36..48 */ REG_RULE(5180-10, 5240+10, 80, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), /* IEEE 802.11a, channel 52..64 - DFS required */ REG_RULE(5260-10, 5320+10, 80, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW | NL80211_RRF_DFS), /* IEEE 802.11a, channel 100..144 - DFS required */ REG_RULE(5500-10, 5720+10, 160, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_DFS), /* IEEE 802.11a, channel 149..165 */ REG_RULE(5745-10, 5825+10, 80, 6, 20, NL80211_RRF_NO_IR), /* IEEE 802.11ad (60GHz), channels 1..3 */ REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), } }; /* protected by RTNL */ static const struct ieee80211_regdomain *cfg80211_world_regdom = &world_regdom; static char *ieee80211_regdom = "00"; static char user_alpha2[2]; static const struct ieee80211_regdomain *cfg80211_user_regdom; module_param(ieee80211_regdom, charp, 0444); MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); static void reg_free_request(struct regulatory_request *request) { if (request == &core_request_world) return; if (request != get_last_request()) kfree(request); } static void reg_free_last_request(void) { struct regulatory_request *lr = get_last_request(); if (lr != &core_request_world && lr) kfree_rcu(lr, rcu_head); } static void reg_update_last_request(struct regulatory_request *request) { struct regulatory_request *lr; lr = get_last_request(); if (lr == request) return; reg_free_last_request(); rcu_assign_pointer(last_request, request); } static void reset_regdomains(bool full_reset, const struct ieee80211_regdomain *new_regdom) { const struct ieee80211_regdomain *r; ASSERT_RTNL(); r = get_cfg80211_regdom(); /* avoid freeing static information or freeing something twice */ if (r == cfg80211_world_regdom) r = NULL; if (cfg80211_world_regdom == &world_regdom) cfg80211_world_regdom = NULL; if (r == &world_regdom) r = NULL; rcu_free_regdom(r); rcu_free_regdom(cfg80211_world_regdom); cfg80211_world_regdom = &world_regdom; rcu_assign_pointer(cfg80211_regdomain, new_regdom); if (!full_reset) return; reg_update_last_request(&core_request_world); } /* * Dynamic world regulatory domain requested by the wireless * core upon initialization */ static void update_world_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr; lr = get_last_request(); WARN_ON(!lr); reset_regdomains(false, rd); cfg80211_world_regdom = rd; } bool is_world_regdom(const char *alpha2) { if (!alpha2) return false; return alpha2[0] == '0' && alpha2[1] == '0'; } static bool is_alpha2_set(const char *alpha2) { if (!alpha2) return false; return alpha2[0] && alpha2[1]; } static bool is_unknown_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain was built by driver * but a specific alpha2 cannot be determined */ return alpha2[0] == '9' && alpha2[1] == '9'; } static bool is_intersected_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain is the * result of an intersection between two regulatory domain * structures */ return alpha2[0] == '9' && alpha2[1] == '8'; } static bool is_an_alpha2(const char *alpha2) { if (!alpha2) return false; return isalpha(alpha2[0]) && isalpha(alpha2[1]); } static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) { if (!alpha2_x || !alpha2_y) return false; return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; } static bool regdom_changes(const char *alpha2) { const struct ieee80211_regdomain *r = get_cfg80211_regdom(); if (!r) return true; return !alpha2_equal(r->alpha2, alpha2); } /* * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER * has ever been issued. */ static bool is_user_regdom_saved(void) { if (user_alpha2[0] == '9' && user_alpha2[1] == '7') return false; /* This would indicate a mistake on the design */ if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), "Unexpected user alpha2: %c%c\n", user_alpha2[0], user_alpha2[1])) return false; return true; } static const struct ieee80211_regdomain * reg_copy_regd(const struct ieee80211_regdomain *src_regd) { struct ieee80211_regdomain *regd; unsigned int i; regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), GFP_KERNEL); if (!regd) return ERR_PTR(-ENOMEM); memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); for (i = 0; i < src_regd->n_reg_rules; i++) memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], sizeof(struct ieee80211_reg_rule)); return regd; } static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) { ASSERT_RTNL(); if (!IS_ERR(cfg80211_user_regdom)) kfree(cfg80211_user_regdom); cfg80211_user_regdom = reg_copy_regd(rd); } struct reg_regdb_apply_request { struct list_head list; const struct ieee80211_regdomain *regdom; }; static LIST_HEAD(reg_regdb_apply_list); static DEFINE_MUTEX(reg_regdb_apply_mutex); static void reg_regdb_apply(struct work_struct *work) { struct reg_regdb_apply_request *request; rtnl_lock(); mutex_lock(®_regdb_apply_mutex); while (!list_empty(®_regdb_apply_list)) { request = list_first_entry(®_regdb_apply_list, struct reg_regdb_apply_request, list); list_del(&request->list); set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); kfree(request); } mutex_unlock(®_regdb_apply_mutex); rtnl_unlock(); } static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) { struct reg_regdb_apply_request *request; request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); if (!request) { kfree(regdom); return -ENOMEM; } request->regdom = regdom; mutex_lock(®_regdb_apply_mutex); list_add_tail(&request->list, ®_regdb_apply_list); mutex_unlock(®_regdb_apply_mutex); schedule_work(®_regdb_work); return 0; } #ifdef CONFIG_CFG80211_CRDA_SUPPORT /* Max number of consecutive attempts to communicate with CRDA */ #define REG_MAX_CRDA_TIMEOUTS 10 static u32 reg_crda_timeouts; static void crda_timeout_work(struct work_struct *work); static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); static void crda_timeout_work(struct work_struct *work) { pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); rtnl_lock(); reg_crda_timeouts++; restore_regulatory_settings(true, false); rtnl_unlock(); } static void cancel_crda_timeout(void) { cancel_delayed_work(&crda_timeout); } static void cancel_crda_timeout_sync(void) { cancel_delayed_work_sync(&crda_timeout); } static void reset_crda_timeouts(void) { reg_crda_timeouts = 0; } /* * This lets us keep regulatory code which is updated on a regulatory * basis in userspace. */ static int call_crda(const char *alpha2) { char country[12]; char *env[] = { country, NULL }; int ret; snprintf(country, sizeof(country), "COUNTRY=%c%c", alpha2[0], alpha2[1]); if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); return -EINVAL; } if (!is_world_regdom((char *) alpha2)) pr_debug("Calling CRDA for country: %c%c\n", alpha2[0], alpha2[1]); else pr_debug("Calling CRDA to update world regulatory domain\n"); ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); if (ret) return ret; queue_delayed_work(system_power_efficient_wq, &crda_timeout, msecs_to_jiffies(3142)); return 0; } #else static inline void cancel_crda_timeout(void) {} static inline void cancel_crda_timeout_sync(void) {} static inline void reset_crda_timeouts(void) {} static inline int call_crda(const char *alpha2) { return -ENODATA; } #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ /* code to directly load a firmware database through request_firmware */ static const struct fwdb_header *regdb; struct fwdb_country { u8 alpha2[2]; __be16 coll_ptr; /* this struct cannot be extended */ } __packed __aligned(4); struct fwdb_collection { u8 len; u8 n_rules; u8 dfs_region; /* no optional data yet */ /* aligned to 2, then followed by __be16 array of rule pointers */ } __packed __aligned(4); enum fwdb_flags { FWDB_FLAG_NO_OFDM = BIT(0), FWDB_FLAG_NO_OUTDOOR = BIT(1), FWDB_FLAG_DFS = BIT(2), FWDB_FLAG_NO_IR = BIT(3), FWDB_FLAG_AUTO_BW = BIT(4), }; struct fwdb_wmm_ac { u8 ecw; u8 aifsn; __be16 cot; } __packed; struct fwdb_wmm_rule { struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; } __packed; struct fwdb_rule { u8 len; u8 flags; __be16 max_eirp; __be32 start, end, max_bw; /* start of optional data */ __be16 cac_timeout; __be16 wmm_ptr; } __packed __aligned(4); #define FWDB_MAGIC 0x52474442 #define FWDB_VERSION 20 struct fwdb_header { __be32 magic; __be32 version; struct fwdb_country country[]; } __packed __aligned(4); static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static bool valid_wmm(struct fwdb_wmm_rule *rule) { struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; int i; for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); u8 aifsn = ac[i].aifsn; if (cw_min >= cw_max) return false; if (aifsn < 1) return false; } return true; } static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) { struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); if ((u8 *)rule + sizeof(rule->len) > data + size) return false; /* mandatory fields */ if (rule->len < offsetofend(struct fwdb_rule, max_bw)) return false; if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; struct fwdb_wmm_rule *wmm; if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) return false; wmm = (void *)(data + wmm_ptr); if (!valid_wmm(wmm)) return false; } return true; } static bool valid_country(const u8 *data, unsigned int size, const struct fwdb_country *country) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)(data + ptr); __be16 *rules_ptr; unsigned int i; /* make sure we can read len/n_rules */ if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) return false; /* make sure base struct and all rules fit */ if ((u8 *)coll + ALIGN(coll->len, 2) + (coll->n_rules * 2) > data + size) return false; /* mandatory fields must exist */ if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) return false; rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); for (i = 0; i < coll->n_rules; i++) { u16 rule_ptr = be16_to_cpu(rules_ptr[i]); if (!valid_rule(data, size, rule_ptr)) return false; } return true; } #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB #include <keys/asymmetric-type.h> static struct key *builtin_regdb_keys; static int __init load_builtin_regdb_keys(void) { builtin_regdb_keys = keyring_alloc(".builtin_regdb_keys", KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), ((KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH), KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); if (IS_ERR(builtin_regdb_keys)) return PTR_ERR(builtin_regdb_keys); pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS x509_load_certificate_list(shipped_regdb_certs, shipped_regdb_certs_len, builtin_regdb_keys); #endif #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') x509_load_certificate_list(extra_regdb_certs, extra_regdb_certs_len, builtin_regdb_keys); #endif return 0; } MODULE_FIRMWARE("regulatory.db.p7s"); static bool regdb_has_valid_signature(const u8 *data, unsigned int size) { const struct firmware *sig; bool result; if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) return false; result = verify_pkcs7_signature(data, size, sig->data, sig->size, builtin_regdb_keys, VERIFYING_UNSPECIFIED_SIGNATURE, NULL, NULL) == 0; release_firmware(sig); return result; } static void free_regdb_keyring(void) { key_put(builtin_regdb_keys); } #else static int load_builtin_regdb_keys(void) { return 0; } static bool regdb_has_valid_signature(const u8 *data, unsigned int size) { return true; } static void free_regdb_keyring(void) { } #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ static bool valid_regdb(const u8 *data, unsigned int size) { const struct fwdb_header *hdr = (void *)data; const struct fwdb_country *country; if (size < sizeof(*hdr)) return false; if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) return false; if (hdr->version != cpu_to_be32(FWDB_VERSION)) return false; if (!regdb_has_valid_signature(data, size)) return false; country = &hdr->country[0]; while ((u8 *)(country + 1) <= data + size) { if (!country->coll_ptr) break; if (!valid_country(data, size, country)) return false; country++; } return true; } static void set_wmm_rule(const struct fwdb_header *db, const struct fwdb_country *country, const struct fwdb_rule *rule, struct ieee80211_reg_rule *rrule) { struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; struct fwdb_wmm_rule *wmm; unsigned int i, wmm_ptr; wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; wmm = (void *)((u8 *)db + wmm_ptr); if (!valid_wmm(wmm)) { pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", be32_to_cpu(rule->start), be32_to_cpu(rule->end), country->alpha2[0], country->alpha2[1]); return; } for (i = 0; i < IEEE80211_NUM_ACS; i++) { wmm_rule->client[i].cw_min = ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); wmm_rule->client[i].aifsn = wmm->client[i].aifsn; wmm_rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); } rrule->has_wmm = true; } static int __regdb_query_wmm(const struct fwdb_header *db, const struct fwdb_country *country, int freq, struct ieee80211_reg_rule *rrule) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)((u8 *)db + ptr); int i; for (i = 0; i < coll->n_rules; i++) { __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) continue; if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { set_wmm_rule(db, country, rule, rrule); return 0; } } return -ENODATA; } int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) { const struct fwdb_header *hdr = regdb; const struct fwdb_country *country; if (!regdb) return -ENODATA; if (IS_ERR(regdb)) return PTR_ERR(regdb); country = &hdr->country[0]; while (country->coll_ptr) { if (alpha2_equal(alpha2, country->alpha2)) return __regdb_query_wmm(regdb, country, freq, rule); country++; } return -ENODATA; } EXPORT_SYMBOL(reg_query_regdb_wmm); static int regdb_query_country(const struct fwdb_header *db, const struct fwdb_country *country) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)((u8 *)db + ptr); struct ieee80211_regdomain *regdom; unsigned int i; regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), GFP_KERNEL); if (!regdom) return -ENOMEM; regdom->n_reg_rules = coll->n_rules; regdom->alpha2[0] = country->alpha2[0]; regdom->alpha2[1] = country->alpha2[1]; regdom->dfs_region = coll->dfs_region; for (i = 0; i < regdom->n_reg_rules; i++) { __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); rrule->power_rule.max_antenna_gain = 0; rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); rrule->flags = 0; if (rule->flags & FWDB_FLAG_NO_OFDM) rrule->flags |= NL80211_RRF_NO_OFDM; if (rule->flags & FWDB_FLAG_NO_OUTDOOR) rrule->flags |= NL80211_RRF_NO_OUTDOOR; if (rule->flags & FWDB_FLAG_DFS) rrule->flags |= NL80211_RRF_DFS; if (rule->flags & FWDB_FLAG_NO_IR) rrule->flags |= NL80211_RRF_NO_IR; if (rule->flags & FWDB_FLAG_AUTO_BW) rrule->flags |= NL80211_RRF_AUTO_BW; rrule->dfs_cac_ms = 0; /* handle optional data */ if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) rrule->dfs_cac_ms = 1000 * be16_to_cpu(rule->cac_timeout); if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) set_wmm_rule(db, country, rule, rrule); } return reg_schedule_apply(regdom); } static int query_regdb(const char *alpha2) { const struct fwdb_header *hdr = regdb; const struct fwdb_country *country; ASSERT_RTNL(); if (IS_ERR(regdb)) return PTR_ERR(regdb); country = &hdr->country[0]; while (country->coll_ptr) { if (alpha2_equal(alpha2, country->alpha2)) return regdb_query_country(regdb, country); country++; } return -ENODATA; } static void regdb_fw_cb(const struct firmware *fw, void *context) { int set_error = 0; bool restore = true; void *db; if (!fw) { pr_info("failed to load regulatory.db\n"); set_error = -ENODATA; } else if (!valid_regdb(fw->data, fw->size)) { pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); set_error = -EINVAL; } rtnl_lock(); if (regdb && !IS_ERR(regdb)) { /* negative case - a bug * positive case - can happen due to race in case of multiple cb's in * queue, due to usage of asynchronous callback * * Either case, just restore and free new db. */ } else if (set_error) { regdb = ERR_PTR(set_error); } else if (fw) { db = kmemdup(fw->data, fw->size, GFP_KERNEL); if (db) { regdb = db; restore = context && query_regdb(context); } else { restore = true; } } if (restore) restore_regulatory_settings(true, false); rtnl_unlock(); kfree(context); release_firmware(fw); } MODULE_FIRMWARE("regulatory.db"); static int query_regdb_file(const char *alpha2) { int err; ASSERT_RTNL(); if (regdb) return query_regdb(alpha2); alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); if (!alpha2) return -ENOMEM; err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db", ®_pdev->dev, GFP_KERNEL, (void *)alpha2, regdb_fw_cb); if (err) kfree(alpha2); return err; } int reg_reload_regdb(void) { const struct firmware *fw; void *db; int err; const struct ieee80211_regdomain *current_regdomain; struct regulatory_request *request; err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); if (err) return err; if (!valid_regdb(fw->data, fw->size)) { err = -ENODATA; goto out; } db = kmemdup(fw->data, fw->size, GFP_KERNEL); if (!db) { err = -ENOMEM; goto out; } rtnl_lock(); if (!IS_ERR_OR_NULL(regdb)) kfree(regdb); regdb = db; /* reset regulatory domain */ current_regdomain = get_cfg80211_regdom(); request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) { err = -ENOMEM; goto out_unlock; } request->wiphy_idx = WIPHY_IDX_INVALID; request->alpha2[0] = current_regdomain->alpha2[0]; request->alpha2[1] = current_regdomain->alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_CORE; request->user_reg_hint_type = NL80211_USER_REG_HINT_USER; reg_process_hint(request); out_unlock: rtnl_unlock(); out: release_firmware(fw); return err; } static bool reg_query_database(struct regulatory_request *request) { if (query_regdb_file(request->alpha2) == 0) return true; if (call_crda(request->alpha2) == 0) return true; return false; } bool reg_is_valid_request(const char *alpha2) { struct regulatory_request *lr = get_last_request(); if (!lr || lr->processed) return false; return alpha2_equal(lr->alpha2, alpha2); } static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) { struct regulatory_request *lr = get_last_request(); /* * Follow the driver's regulatory domain, if present, unless a country * IE has been processed or a user wants to help compliance further */ if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->initiator != NL80211_REGDOM_SET_BY_USER && wiphy->regd) return get_wiphy_regdom(wiphy); return get_cfg80211_regdom(); } static unsigned int reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; const struct ieee80211_freq_range *freq_range_tmp; const struct ieee80211_reg_rule *tmp; u32 start_freq, end_freq, idx, no; for (idx = 0; idx < rd->n_reg_rules; idx++) if (rule == &rd->reg_rules[idx]) break; if (idx == rd->n_reg_rules) return 0; /* get start_freq */ no = idx; while (no) { tmp = &rd->reg_rules[--no]; freq_range_tmp = &tmp->freq_range; if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) break; freq_range = freq_range_tmp; } start_freq = freq_range->start_freq_khz; /* get end_freq */ freq_range = &rule->freq_range; no = idx; while (no < rd->n_reg_rules - 1) { tmp = &rd->reg_rules[++no]; freq_range_tmp = &tmp->freq_range; if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) break; freq_range = freq_range_tmp; } end_freq = freq_range->end_freq_khz; return end_freq - start_freq; } unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, const struct ieee80211_reg_rule *rule) { unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); if (rule->flags & NL80211_RRF_NO_320MHZ) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160)); if (rule->flags & NL80211_RRF_NO_160MHZ) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); if (rule->flags & NL80211_RRF_NO_80MHZ) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); /* * HT40+/HT40- limits are handled per-channel. Only limit BW if both * are not allowed. */ if (rule->flags & NL80211_RRF_NO_HT40MINUS && rule->flags & NL80211_RRF_NO_HT40PLUS) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); return bw; } /* Sanity check on a regulatory rule */ static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; u32 freq_diff; if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) return false; if (freq_range->start_freq_khz > freq_range->end_freq_khz) return false; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->end_freq_khz <= freq_range->start_freq_khz || freq_range->max_bandwidth_khz > freq_diff) return false; return true; } static bool is_valid_rd(const struct ieee80211_regdomain *rd) { const struct ieee80211_reg_rule *reg_rule = NULL; unsigned int i; if (!rd->n_reg_rules) return false; if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) return false; for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; if (!is_valid_reg_rule(reg_rule)) return false; } return true; } /** * freq_in_rule_band - tells us if a frequency is in a frequency band * @freq_range: frequency rule we want to query * @freq_khz: frequency we are inquiring about * * This lets us know if a specific frequency rule is or is not relevant to * a specific frequency's band. Bands are device specific and artificial * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), * however it is safe for now to assume that a frequency rule should not be * part of a frequency's band if the start freq or end freq are off by more * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the * 60 GHz band. * This resolution can be lowered and should be considered as we add * regulatory rule support for other "bands". * * Returns: whether or not the frequency is in the range */ static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, u32 freq_khz) { /* * From 802.11ad: directional multi-gigabit (DMG): * Pertaining to operation in a frequency band containing a channel * with the Channel starting frequency above 45 GHz. */ u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ; if (abs(freq_khz - freq_range->start_freq_khz) <= limit) return true; if (abs(freq_khz - freq_range->end_freq_khz) <= limit) return true; return false; } /* * Later on we can perhaps use the more restrictive DFS * region but we don't have information for that yet so * for now simply disallow conflicts. */ static enum nl80211_dfs_regions reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, const enum nl80211_dfs_regions dfs_region2) { if (dfs_region1 != dfs_region2) return NL80211_DFS_UNSET; return dfs_region1; } static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, const struct ieee80211_wmm_ac *wmm_ac2, struct ieee80211_wmm_ac *intersect) { intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); } /* * Helper for regdom_intersect(), this does the real * mathematical intersection fun */ static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2, const struct ieee80211_reg_rule *rule1, const struct ieee80211_reg_rule *rule2, struct ieee80211_reg_rule *intersected_rule) { const struct ieee80211_freq_range *freq_range1, *freq_range2; struct ieee80211_freq_range *freq_range; const struct ieee80211_power_rule *power_rule1, *power_rule2; struct ieee80211_power_rule *power_rule; const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; struct ieee80211_wmm_rule *wmm_rule; u32 freq_diff, max_bandwidth1, max_bandwidth2; freq_range1 = &rule1->freq_range; freq_range2 = &rule2->freq_range; freq_range = &intersected_rule->freq_range; power_rule1 = &rule1->power_rule; power_rule2 = &rule2->power_rule; power_rule = &intersected_rule->power_rule; wmm_rule1 = &rule1->wmm_rule; wmm_rule2 = &rule2->wmm_rule; wmm_rule = &intersected_rule->wmm_rule; freq_range->start_freq_khz = max(freq_range1->start_freq_khz, freq_range2->start_freq_khz); freq_range->end_freq_khz = min(freq_range1->end_freq_khz, freq_range2->end_freq_khz); max_bandwidth1 = freq_range1->max_bandwidth_khz; max_bandwidth2 = freq_range2->max_bandwidth_khz; if (rule1->flags & NL80211_RRF_AUTO_BW) max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); if (rule2->flags & NL80211_RRF_AUTO_BW) max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); intersected_rule->flags = rule1->flags | rule2->flags; /* * In case NL80211_RRF_AUTO_BW requested for both rules * set AUTO_BW in intersected rule also. Next we will * calculate BW correctly in handle_channel function. * In other case remove AUTO_BW flag while we calculate * maximum bandwidth correctly and auto calculation is * not required. */ if ((rule1->flags & NL80211_RRF_AUTO_BW) && (rule2->flags & NL80211_RRF_AUTO_BW)) intersected_rule->flags |= NL80211_RRF_AUTO_BW; else intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->max_bandwidth_khz > freq_diff) freq_range->max_bandwidth_khz = freq_diff; power_rule->max_eirp = min(power_rule1->max_eirp, power_rule2->max_eirp); power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, power_rule2->max_antenna_gain); intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, rule2->dfs_cac_ms); if (rule1->has_wmm && rule2->has_wmm) { u8 ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { reg_wmm_rules_intersect(&wmm_rule1->client[ac], &wmm_rule2->client[ac], &wmm_rule->client[ac]); reg_wmm_rules_intersect(&wmm_rule1->ap[ac], &wmm_rule2->ap[ac], &wmm_rule->ap[ac]); } intersected_rule->has_wmm = true; } else if (rule1->has_wmm) { *wmm_rule = *wmm_rule1; intersected_rule->has_wmm = true; } else if (rule2->has_wmm) { *wmm_rule = *wmm_rule2; intersected_rule->has_wmm = true; } else { intersected_rule->has_wmm = false; } if (!is_valid_reg_rule(intersected_rule)) return -EINVAL; return 0; } /* check whether old rule contains new rule */ static bool rule_contains(struct ieee80211_reg_rule *r1, struct ieee80211_reg_rule *r2) { /* for simplicity, currently consider only same flags */ if (r1->flags != r2->flags) return false; /* verify r1 is more restrictive */ if ((r1->power_rule.max_antenna_gain > r2->power_rule.max_antenna_gain) || r1->power_rule.max_eirp > r2->power_rule.max_eirp) return false; /* make sure r2's range is contained within r1 */ if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) return false; /* and finally verify that r1.max_bw >= r2.max_bw */ if (r1->freq_range.max_bandwidth_khz < r2->freq_range.max_bandwidth_khz) return false; return true; } /* add or extend current rules. do nothing if rule is already contained */ static void add_rule(struct ieee80211_reg_rule *rule, struct ieee80211_reg_rule *reg_rules, u32 *n_rules) { struct ieee80211_reg_rule *tmp_rule; int i; for (i = 0; i < *n_rules; i++) { tmp_rule = ®_rules[i]; /* rule is already contained - do nothing */ if (rule_contains(tmp_rule, rule)) return; /* extend rule if possible */ if (rule_contains(rule, tmp_rule)) { memcpy(tmp_rule, rule, sizeof(*rule)); return; } } memcpy(®_rules[*n_rules], rule, sizeof(*rule)); (*n_rules)++; } /** * regdom_intersect - do the intersection between two regulatory domains * @rd1: first regulatory domain * @rd2: second regulatory domain * * Use this function to get the intersection between two regulatory domains. * Once completed we will mark the alpha2 for the rd as intersected, "98", * as no one single alpha2 can represent this regulatory domain. * * Returns a pointer to the regulatory domain structure which will hold the * resulting intersection of rules between rd1 and rd2. We will * kzalloc() this structure for you. * * Returns: the intersected regdomain */ static struct ieee80211_regdomain * regdom_intersect(const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2) { int r; unsigned int x, y; unsigned int num_rules = 0; const struct ieee80211_reg_rule *rule1, *rule2; struct ieee80211_reg_rule intersected_rule; struct ieee80211_regdomain *rd; if (!rd1 || !rd2) return NULL; /* * First we get a count of the rules we'll need, then we actually * build them. This is to so we can malloc() and free() a * regdomain once. The reason we use reg_rules_intersect() here * is it will return -EINVAL if the rule computed makes no sense. * All rules that do check out OK are valid. */ for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; if (!reg_rules_intersect(rd1, rd2, rule1, rule2, &intersected_rule)) num_rules++; } } if (!num_rules) return NULL; rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); if (!rd) return NULL; for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; r = reg_rules_intersect(rd1, rd2, rule1, rule2, &intersected_rule); /* * No need to memset here the intersected rule here as * we're not using the stack anymore */ if (r) continue; add_rule(&intersected_rule, rd->reg_rules, &rd->n_reg_rules); } } rd->alpha2[0] = '9'; rd->alpha2[1] = '8'; rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, rd2->dfs_region); return rd; } /* * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may * want to just have the channel structure use these */ static u32 map_regdom_flags(u32 rd_flags) { u32 channel_flags = 0; if (rd_flags & NL80211_RRF_NO_IR_ALL) channel_flags |= IEEE80211_CHAN_NO_IR; if (rd_flags & NL80211_RRF_DFS) channel_flags |= IEEE80211_CHAN_RADAR; if (rd_flags & NL80211_RRF_NO_OFDM) channel_flags |= IEEE80211_CHAN_NO_OFDM; if (rd_flags & NL80211_RRF_NO_OUTDOOR) channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; if (rd_flags & NL80211_RRF_IR_CONCURRENT) channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; if (rd_flags & NL80211_RRF_NO_HT40MINUS) channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; if (rd_flags & NL80211_RRF_NO_HT40PLUS) channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; if (rd_flags & NL80211_RRF_NO_80MHZ) channel_flags |= IEEE80211_CHAN_NO_80MHZ; if (rd_flags & NL80211_RRF_NO_160MHZ) channel_flags |= IEEE80211_CHAN_NO_160MHZ; if (rd_flags & NL80211_RRF_NO_HE) channel_flags |= IEEE80211_CHAN_NO_HE; if (rd_flags & NL80211_RRF_NO_320MHZ) channel_flags |= IEEE80211_CHAN_NO_320MHZ; if (rd_flags & NL80211_RRF_NO_EHT) channel_flags |= IEEE80211_CHAN_NO_EHT; if (rd_flags & NL80211_RRF_DFS_CONCURRENT) channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT; if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT) channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT; if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT) channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT; if (rd_flags & NL80211_RRF_PSD) channel_flags |= IEEE80211_CHAN_PSD; if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP) channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP; return channel_flags; } static const struct ieee80211_reg_rule * freq_reg_info_regd(u32 center_freq, const struct ieee80211_regdomain *regd, u32 bw) { int i; bool band_rule_found = false; bool bw_fits = false; if (!regd) return ERR_PTR(-EINVAL); for (i = 0; i < regd->n_reg_rules; i++) { const struct ieee80211_reg_rule *rr; const struct ieee80211_freq_range *fr = NULL; rr = ®d->reg_rules[i]; fr = &rr->freq_range; /* * We only need to know if one frequency rule was * in center_freq's band, that's enough, so let's * not overwrite it once found */ if (!band_rule_found) band_rule_found = freq_in_rule_band(fr, center_freq); bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); if (band_rule_found && bw_fits) return rr; } if (!band_rule_found) return ERR_PTR(-ERANGE); return ERR_PTR(-EINVAL); } static const struct ieee80211_reg_rule * __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) { const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20}; const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE); int i = ARRAY_SIZE(bws) - 1; u32 bw; for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) { reg_rule = freq_reg_info_regd(center_freq, regd, bw); if (!IS_ERR(reg_rule)) return reg_rule; } return reg_rule; } const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, u32 center_freq) { u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20; return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw)); } EXPORT_SYMBOL(freq_reg_info); const char *reg_initiator_name(enum nl80211_reg_initiator initiator) { switch (initiator) { case NL80211_REGDOM_SET_BY_CORE: return "core"; case NL80211_REGDOM_SET_BY_USER: return "user"; case NL80211_REGDOM_SET_BY_DRIVER: return "driver"; case NL80211_REGDOM_SET_BY_COUNTRY_IE: return "country element"; default: WARN_ON(1); return "bug"; } } EXPORT_SYMBOL(reg_initiator_name); static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, const struct ieee80211_reg_rule *reg_rule, const struct ieee80211_channel *chan) { const struct ieee80211_freq_range *freq_range = NULL; u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0; bool is_s1g = chan->band == NL80211_BAND_S1GHZ; freq_range = ®_rule->freq_range; max_bandwidth_khz = freq_range->max_bandwidth_khz; center_freq_khz = ieee80211_channel_to_khz(chan); /* Check if auto calculation requested */ if (reg_rule->flags & NL80211_RRF_AUTO_BW) max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); /* If we get a reg_rule we can assume that at least 5Mhz fit */ if (!cfg80211_does_bw_fit_range(freq_range, center_freq_khz, MHZ_TO_KHZ(10))) bw_flags |= IEEE80211_CHAN_NO_10MHZ; if (!cfg80211_does_bw_fit_range(freq_range, center_freq_khz, MHZ_TO_KHZ(20))) bw_flags |= IEEE80211_CHAN_NO_20MHZ; if (is_s1g) { /* S1G is strict about non overlapping channels. We can * calculate which bandwidth is allowed per channel by finding * the largest bandwidth which cleanly divides the freq_range. */ int edge_offset; int ch_bw = max_bandwidth_khz; while (ch_bw) { edge_offset = (center_freq_khz - ch_bw / 2) - freq_range->start_freq_khz; if (edge_offset % ch_bw == 0) { switch (KHZ_TO_MHZ(ch_bw)) { case 1: bw_flags |= IEEE80211_CHAN_1MHZ; break; case 2: bw_flags |= IEEE80211_CHAN_2MHZ; break; case 4: bw_flags |= IEEE80211_CHAN_4MHZ; break; case 8: bw_flags |= IEEE80211_CHAN_8MHZ; break; case 16: bw_flags |= IEEE80211_CHAN_16MHZ; break; default: /* If we got here, no bandwidths fit on * this frequency, ie. band edge. */ bw_flags |= IEEE80211_CHAN_DISABLED; break; } break; } ch_bw /= 2; } } else { if (max_bandwidth_khz < MHZ_TO_KHZ(10)) bw_flags |= IEEE80211_CHAN_NO_10MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(20)) bw_flags |= IEEE80211_CHAN_NO_20MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(40)) bw_flags |= IEEE80211_CHAN_NO_HT40; if (max_bandwidth_khz < MHZ_TO_KHZ(80)) bw_flags |= IEEE80211_CHAN_NO_80MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(160)) bw_flags |= IEEE80211_CHAN_NO_160MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(320)) bw_flags |= IEEE80211_CHAN_NO_320MHZ; } return bw_flags; } static void handle_channel_single_rule(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_channel *chan, u32 flags, struct regulatory_request *lr, struct wiphy *request_wiphy, const struct ieee80211_reg_rule *reg_rule) { u32 bw_flags = 0; const struct ieee80211_power_rule *power_rule = NULL; const struct ieee80211_regdomain *regd; regd = reg_get_regdomain(wiphy); power_rule = ®_rule->power_rule; bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { /* * This guarantees the driver's requested regulatory domain * will always be used as a base for further regulatory * settings */ chan->flags = chan->orig_flags = map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = chan->orig_mag = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = chan->orig_mpwr = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; } if (chan->flags & IEEE80211_CHAN_PSD) chan->psd = reg_rule->psd; return; } chan->dfs_state = NL80211_DFS_USABLE; chan->dfs_state_entered = jiffies; chan->beacon_found = false; chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); chan->max_antenna_gain = min_t(int, chan->orig_mag, MBI_TO_DBI(power_rule->max_antenna_gain)); chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; else chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; } if (chan->flags & IEEE80211_CHAN_PSD) chan->psd = reg_rule->psd; if (chan->orig_mpwr) { /* * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER * will always follow the passed country IE power settings. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) chan->max_power = chan->max_reg_power; else chan->max_power = min(chan->orig_mpwr, chan->max_reg_power); } else chan->max_power = chan->max_reg_power; } static void handle_channel_adjacent_rules(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_channel *chan, u32 flags, struct regulatory_request *lr, struct wiphy *request_wiphy, const struct ieee80211_reg_rule *rrule1, const struct ieee80211_reg_rule *rrule2, struct ieee80211_freq_range *comb_range) { u32 bw_flags1 = 0; u32 bw_flags2 = 0; const struct ieee80211_power_rule *power_rule1 = NULL; const struct ieee80211_power_rule *power_rule2 = NULL; const struct ieee80211_regdomain *regd; regd = reg_get_regdomain(wiphy); power_rule1 = &rrule1->power_rule; power_rule2 = &rrule2->power_rule; bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan); bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan); if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { /* This guarantees the driver's requested regulatory domain * will always be used as a base for further regulatory * settings */ chan->flags = map_regdom_flags(rrule1->flags) | map_regdom_flags(rrule2->flags) | bw_flags1 | bw_flags2; chan->orig_flags = chan->flags; chan->max_antenna_gain = min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), MBI_TO_DBI(power_rule2->max_antenna_gain)); chan->orig_mag = chan->max_antenna_gain; chan->max_reg_power = min_t(int, MBM_TO_DBM(power_rule1->max_eirp), MBM_TO_DBM(power_rule2->max_eirp)); chan->max_power = chan->max_reg_power; chan->orig_mpwr = chan->max_reg_power; if (chan->flags & IEEE80211_CHAN_RADAR) { chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) chan->dfs_cac_ms = max_t(unsigned int, rrule1->dfs_cac_ms, rrule2->dfs_cac_ms); } if ((rrule1->flags & NL80211_RRF_PSD) && (rrule2->flags & NL80211_RRF_PSD)) chan->psd = min_t(s8, rrule1->psd, rrule2->psd); else chan->flags &= ~NL80211_RRF_PSD; return; } chan->dfs_state = NL80211_DFS_USABLE; chan->dfs_state_entered = jiffies; chan->beacon_found = false; chan->flags = flags | bw_flags1 | bw_flags2 | map_regdom_flags(rrule1->flags) | map_regdom_flags(rrule2->flags); /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz * (otherwise no adj. rule case), recheck therefore */ if (cfg80211_does_bw_fit_range(comb_range, ieee80211_channel_to_khz(chan), MHZ_TO_KHZ(10))) chan->flags &= ~IEEE80211_CHAN_NO_10MHZ; if (cfg80211_does_bw_fit_range(comb_range, ieee80211_channel_to_khz(chan), MHZ_TO_KHZ(20))) chan->flags &= ~IEEE80211_CHAN_NO_20MHZ; chan->max_antenna_gain = min_t(int, chan->orig_mag, min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain), MBI_TO_DBI(power_rule2->max_antenna_gain))); chan->max_reg_power = min_t(int, MBM_TO_DBM(power_rule1->max_eirp), MBM_TO_DBM(power_rule2->max_eirp)); if (chan->flags & IEEE80211_CHAN_RADAR) { if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms) chan->dfs_cac_ms = max_t(unsigned int, rrule1->dfs_cac_ms, rrule2->dfs_cac_ms); else chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; } if (chan->orig_mpwr) { /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER * will always follow the passed country IE power settings. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) chan->max_power = chan->max_reg_power; else chan->max_power = min(chan->orig_mpwr, chan->max_reg_power); } else { chan->max_power = chan->max_reg_power; } } /* Note that right now we assume the desired channel bandwidth * is always 20 MHz for each individual channel (HT40 uses 20 MHz * per channel, the primary and the extension channel). */ static void handle_channel(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_channel *chan) { const u32 orig_chan_freq = ieee80211_channel_to_khz(chan); struct regulatory_request *lr = get_last_request(); struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); const struct ieee80211_reg_rule *rrule = NULL; const struct ieee80211_reg_rule *rrule1 = NULL; const struct ieee80211_reg_rule *rrule2 = NULL; u32 flags = chan->orig_flags; rrule = freq_reg_info(wiphy, orig_chan_freq); if (IS_ERR(rrule)) { /* check for adjacent match, therefore get rules for * chan - 20 MHz and chan + 20 MHz and test * if reg rules are adjacent */ rrule1 = freq_reg_info(wiphy, orig_chan_freq - MHZ_TO_KHZ(20)); rrule2 = freq_reg_info(wiphy, orig_chan_freq + MHZ_TO_KHZ(20)); if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) { struct ieee80211_freq_range comb_range; if (rrule1->freq_range.end_freq_khz != rrule2->freq_range.start_freq_khz) goto disable_chan; comb_range.start_freq_khz = rrule1->freq_range.start_freq_khz; comb_range.end_freq_khz = rrule2->freq_range.end_freq_khz; comb_range.max_bandwidth_khz = min_t(u32, rrule1->freq_range.max_bandwidth_khz, rrule2->freq_range.max_bandwidth_khz); if (!cfg80211_does_bw_fit_range(&comb_range, orig_chan_freq, MHZ_TO_KHZ(20))) goto disable_chan; handle_channel_adjacent_rules(wiphy, initiator, chan, flags, lr, request_wiphy, rrule1, rrule2, &comb_range); return; } disable_chan: /* We will disable all channels that do not match our * received regulatory rule unless the hint is coming * from a Country IE and the Country IE had no information * about a band. The IEEE 802.11 spec allows for an AP * to send only a subset of the regulatory rules allowed, * so an AP in the US that only supports 2.4 GHz may only send * a country IE with information for the 2.4 GHz band * while 5 GHz is still supported. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && PTR_ERR(rrule) == -ERANGE) return; if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { pr_debug("Disabling freq %d.%03d MHz for good\n", chan->center_freq, chan->freq_offset); chan->orig_flags |= IEEE80211_CHAN_DISABLED; chan->flags = chan->orig_flags; } else { pr_debug("Disabling freq %d.%03d MHz\n", chan->center_freq, chan->freq_offset); chan->flags |= IEEE80211_CHAN_DISABLED; } return; } handle_channel_single_rule(wiphy, initiator, chan, flags, lr, request_wiphy, rrule); } static void handle_band(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) handle_channel(wiphy, initiator, &sband->channels[i]); } static bool reg_request_cell_base(struct regulatory_request *request) { if (request->initiator != NL80211_REGDOM_SET_BY_USER) return false; return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; } bool reg_last_request_cell_base(void) { return reg_request_cell_base(get_last_request()); } #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS /* Core specific check */ static enum reg_request_treatment reg_ignore_cell_hint(struct regulatory_request *pending_request) { struct regulatory_request *lr = get_last_request(); if (!reg_num_devs_support_basehint) return REG_REQ_IGNORE; if (reg_request_cell_base(lr) && !regdom_changes(pending_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } /* Device specific check */ static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); } #else static enum reg_request_treatment reg_ignore_cell_hint(struct regulatory_request *pending_request) { return REG_REQ_IGNORE; } static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return true; } #endif static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) { if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) return true; return false; } static bool ignore_reg_update(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { struct regulatory_request *lr = get_last_request(); if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) return true; if (!lr) { pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", reg_initiator_name(initiator)); return true; } if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", reg_initiator_name(initiator)); return true; } /* * wiphy->regd will be set once the device has its own * desired regulatory domain set */ if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && !is_world_regdom(lr->alpha2)) { pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", reg_initiator_name(initiator)); return true; } if (reg_request_cell_base(lr)) return reg_dev_ignore_cell_hint(wiphy); return false; } static bool reg_is_world_roaming(struct wiphy *wiphy) { const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); struct regulatory_request *lr = get_last_request(); if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) return true; if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) return true; return false; } static void reg_call_notifier(struct wiphy *wiphy, struct regulatory_request *request) { if (wiphy->reg_notifier) wiphy->reg_notifier(wiphy, request); } static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, struct reg_beacon *reg_beacon) { struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; bool channel_changed = false; struct ieee80211_channel chan_before; struct regulatory_request *lr = get_last_request(); sband = wiphy->bands[reg_beacon->chan.band]; chan = &sband->channels[chan_idx]; if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan))) return; if (chan->beacon_found) return; chan->beacon_found = true; if (!reg_is_world_roaming(wiphy)) return; if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) return; chan_before = *chan; if (chan->flags & IEEE80211_CHAN_NO_IR) { chan->flags &= ~IEEE80211_CHAN_NO_IR; channel_changed = true; } if (channel_changed) { nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON) reg_call_notifier(wiphy, lr); } } /* * Called when a scan on a wiphy finds a beacon on * new channel */ static void wiphy_update_new_beacon(struct wiphy *wiphy, struct reg_beacon *reg_beacon) { unsigned int i; struct ieee80211_supported_band *sband; if (!wiphy->bands[reg_beacon->chan.band]) return; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } /* * Called upon reg changes or a new wiphy is added */ static void wiphy_update_beacon_reg(struct wiphy *wiphy) { unsigned int i; struct ieee80211_supported_band *sband; struct reg_beacon *reg_beacon; list_for_each_entry(reg_beacon, ®_beacon_list, list) { if (!wiphy->bands[reg_beacon->chan.band]) continue; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } } /* Reap the advantages of previously found beacons */ static void reg_process_beacons(struct wiphy *wiphy) { /* * Means we are just firing up cfg80211, so no beacons would * have been processed yet. */ if (!last_request) return; wiphy_update_beacon_reg(wiphy); } static bool is_ht40_allowed(struct ieee80211_channel *chan) { if (!chan) return false; if (chan->flags & IEEE80211_CHAN_DISABLED) return false; /* This would happen when regulatory rules disallow HT40 completely */ if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) return false; return true; } static void reg_process_ht_flags_channel(struct wiphy *wiphy, struct ieee80211_channel *channel) { struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; const struct ieee80211_regdomain *regd; unsigned int i; u32 flags; if (!is_ht40_allowed(channel)) { channel->flags |= IEEE80211_CHAN_NO_HT40; return; } /* * We need to ensure the extension channels exist to * be able to use HT40- or HT40+, this finds them (or not) */ for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *c = &sband->channels[i]; if (c->center_freq == (channel->center_freq - 20)) channel_before = c; if (c->center_freq == (channel->center_freq + 20)) channel_after = c; } flags = 0; regd = get_wiphy_regdom(wiphy); if (regd) { const struct ieee80211_reg_rule *reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), regd, MHZ_TO_KHZ(20)); if (!IS_ERR(reg_rule)) flags = reg_rule->flags; } /* * Please note that this assumes target bandwidth is 20 MHz, * if that ever changes we also need to change the below logic * to include that as well. */ if (!is_ht40_allowed(channel_before) || flags & NL80211_RRF_NO_HT40MINUS) channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; if (!is_ht40_allowed(channel_after) || flags & NL80211_RRF_NO_HT40PLUS) channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; } static void reg_process_ht_flags_band(struct wiphy *wiphy, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) reg_process_ht_flags_channel(wiphy, &sband->channels[i]); } static void reg_process_ht_flags(struct wiphy *wiphy) { enum nl80211_band band; if (!wiphy) return; for (band = 0; band < NUM_NL80211_BANDS; band++) reg_process_ht_flags_band(wiphy, wiphy->bands[band]); } static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) { struct cfg80211_chan_def chandef = {}; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); enum nl80211_iftype iftype; bool ret; int link; iftype = wdev->iftype; /* make sure the interface is active */ if (!wdev->netdev || !netif_running(wdev->netdev)) return true; for (link = 0; link < ARRAY_SIZE(wdev->links); link++) { struct ieee80211_channel *chan; if (!wdev->valid_links && link > 0) break; if (wdev->valid_links && !(wdev->valid_links & BIT(link))) continue; switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (!wdev->links[link].ap.beacon_interval) continue; chandef = wdev->links[link].ap.chandef; break; case NL80211_IFTYPE_MESH_POINT: if (!wdev->u.mesh.beacon_interval) continue; chandef = wdev->u.mesh.chandef; break; case NL80211_IFTYPE_ADHOC: if (!wdev->u.ibss.ssid_len) continue; chandef = wdev->u.ibss.chandef; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: /* Maybe we could consider disabling that link only? */ if (!wdev->links[link].client.current_bss) continue; chan = wdev->links[link].client.current_bss->pub.channel; if (!chan) continue; if (!rdev->ops->get_channel || rdev_get_channel(rdev, wdev, link, &chandef)) cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_NO_HT); break; case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: /* no enforcement required */ break; case NL80211_IFTYPE_OCB: if (!wdev->u.ocb.chandef.chan) continue; chandef = wdev->u.ocb.chandef; break; case NL80211_IFTYPE_NAN: /* we have no info, but NAN is also pretty universal */ continue; default: /* others not implemented for now */ WARN_ON_ONCE(1); break; } switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); if (!ret) return ret; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: ret = cfg80211_chandef_usable(wiphy, &chandef, IEEE80211_CHAN_DISABLED); if (!ret) return ret; break; default: break; } } return true; } static void reg_leave_invalid_chans(struct wiphy *wiphy) { struct wireless_dev *wdev; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); guard(wiphy)(wiphy); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) if (!reg_wdev_chan_valid(wiphy, wdev)) cfg80211_leave(rdev, wdev); } static void reg_check_chans_work(struct work_struct *work) { struct cfg80211_registered_device *rdev; pr_debug("Verifying active interfaces after reg change\n"); rtnl_lock(); for_each_rdev(rdev) reg_leave_invalid_chans(&rdev->wiphy); rtnl_unlock(); } void reg_check_channels(void) { /* * Give usermode a chance to do something nicer (move to another * channel, orderly disconnection), before forcing a disconnection. */ mod_delayed_work(system_power_efficient_wq, ®_check_chans, msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); } static void wiphy_update_regulatory(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { enum nl80211_band band; struct regulatory_request *lr = get_last_request(); if (ignore_reg_update(wiphy, initiator)) { /* * Regulatory updates set by CORE are ignored for custom * regulatory cards. Let us notify the changes to the driver, * as some drivers used this to restore its orig_* reg domain. */ if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && !(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)) reg_call_notifier(wiphy, lr); return; } lr->dfs_region = get_cfg80211_regdom()->dfs_region; for (band = 0; band < NUM_NL80211_BANDS; band++) handle_band(wiphy, initiator, wiphy->bands[band]); reg_process_beacons(wiphy); reg_process_ht_flags(wiphy); reg_call_notifier(wiphy, lr); } static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; ASSERT_RTNL(); for_each_rdev(rdev) { wiphy = &rdev->wiphy; wiphy_update_regulatory(wiphy, initiator); } reg_check_channels(); } static void handle_channel_custom(struct wiphy *wiphy, struct ieee80211_channel *chan, const struct ieee80211_regdomain *regd, u32 min_bw) { u32 bw_flags = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; u32 bw, center_freq_khz; center_freq_khz = ieee80211_channel_to_khz(chan); for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw); if (!IS_ERR(reg_rule)) break; } if (IS_ERR_OR_NULL(reg_rule)) { pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n", chan->center_freq, chan->freq_offset); if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { chan->flags |= IEEE80211_CHAN_DISABLED; } else { chan->orig_flags |= IEEE80211_CHAN_DISABLED; chan->flags = chan->orig_flags; } return; } power_rule = ®_rule->power_rule; bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); chan->dfs_state_entered = jiffies; chan->dfs_state = NL80211_DFS_USABLE; chan->beacon_found = false; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) chan->flags = chan->orig_flags | bw_flags | map_regdom_flags(reg_rule->flags); else chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; else chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; } if (chan->flags & IEEE80211_CHAN_PSD) chan->psd = reg_rule->psd; chan->max_power = chan->max_reg_power; } static void handle_band_custom(struct wiphy *wiphy, struct ieee80211_supported_band *sband, const struct ieee80211_regdomain *regd) { unsigned int i; if (!sband) return; /* * We currently assume that you always want at least 20 MHz, * otherwise channel 12 might get enabled if this rule is * compatible to US, which permits 2402 - 2472 MHz. */ for (i = 0; i < sband->n_channels; i++) handle_channel_custom(wiphy, &sband->channels[i], regd, MHZ_TO_KHZ(20)); } /* Used by drivers prior to wiphy registration */ void wiphy_apply_custom_regulatory(struct wiphy *wiphy, const struct ieee80211_regdomain *regd) { const struct ieee80211_regdomain *new_regd, *tmp; enum nl80211_band band; unsigned int bands_set = 0; WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), "wiphy should have REGULATORY_CUSTOM_REG\n"); wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!wiphy->bands[band]) continue; handle_band_custom(wiphy, wiphy->bands[band], regd); bands_set++; } /* * no point in calling this if it won't have any effect * on your device's supported bands. */ WARN_ON(!bands_set); new_regd = reg_copy_regd(regd); if (IS_ERR(new_regd)) return; rtnl_lock(); scoped_guard(wiphy, wiphy) { tmp = get_wiphy_regdom(wiphy); rcu_assign_pointer(wiphy->regd, new_regd); rcu_free_regdom(tmp); } rtnl_unlock(); } EXPORT_SYMBOL(wiphy_apply_custom_regulatory); static void reg_set_request_processed(void) { bool need_more_processing = false; struct regulatory_request *lr = get_last_request(); lr->processed = true; spin_lock(®_requests_lock); if (!list_empty(®_requests_list)) need_more_processing = true; spin_unlock(®_requests_lock); cancel_crda_timeout(); if (need_more_processing) schedule_work(®_work); } /** * reg_process_hint_core - process core regulatory requests * @core_request: a pending core regulatory request * * The wireless subsystem can use this function to process * a regulatory request issued by the regulatory core. * * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the * hint was processed or ignored */ static enum reg_request_treatment reg_process_hint_core(struct regulatory_request *core_request) { if (reg_query_database(core_request)) { core_request->intersect = false; core_request->processed = false; reg_update_last_request(core_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_user(struct regulatory_request *user_request) { struct regulatory_request *lr = get_last_request(); if (reg_request_cell_base(user_request)) return reg_ignore_cell_hint(user_request); if (reg_request_cell_base(lr)) return REG_REQ_IGNORE; if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) return REG_REQ_INTERSECT; /* * If the user knows better the user should set the regdom * to their country before the IE is picked up */ if (lr->initiator == NL80211_REGDOM_SET_BY_USER && lr->intersect) return REG_REQ_IGNORE; /* * Process user requests only after previous user/driver/core * requests have been processed */ if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || lr->initiator == NL80211_REGDOM_SET_BY_USER) && regdom_changes(lr->alpha2)) return REG_REQ_IGNORE; if (!regdom_changes(user_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } /** * reg_process_hint_user - process user regulatory requests * @user_request: a pending user regulatory request * * The wireless subsystem can use this function to process * a regulatory request initiated by userspace. * * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the * hint was processed or ignored */ static enum reg_request_treatment reg_process_hint_user(struct regulatory_request *user_request) { enum reg_request_treatment treatment; treatment = __reg_process_hint_user(user_request); if (treatment == REG_REQ_IGNORE || treatment == REG_REQ_ALREADY_SET) return REG_REQ_IGNORE; user_request->intersect = treatment == REG_REQ_INTERSECT; user_request->processed = false; if (reg_query_database(user_request)) { reg_update_last_request(user_request); user_alpha2[0] = user_request->alpha2[0]; user_alpha2[1] = user_request->alpha2[1]; return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_driver(struct regulatory_request *driver_request) { struct regulatory_request *lr = get_last_request(); if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { if (regdom_changes(driver_request->alpha2)) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } /* * This would happen if you unplug and plug your card * back in or if you add a new device for which the previously * loaded card also agrees on the regulatory domain. */ if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && !regdom_changes(driver_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_INTERSECT; } /** * reg_process_hint_driver - process driver regulatory requests * @wiphy: the wireless device for the regulatory request * @driver_request: a pending driver regulatory request * * The wireless subsystem can use this function to process * a regulatory request issued by an 802.11 driver. * * Returns: one of the different reg request treatment values. */ static enum reg_request_treatment reg_process_hint_driver(struct wiphy *wiphy, struct regulatory_request *driver_request) { const struct ieee80211_regdomain *regd, *tmp; enum reg_request_treatment treatment; treatment = __reg_process_hint_driver(driver_request); switch (treatment) { case REG_REQ_OK: break; case REG_REQ_IGNORE: return REG_REQ_IGNORE; case REG_REQ_INTERSECT: case REG_REQ_ALREADY_SET: regd = reg_copy_regd(get_cfg80211_regdom()); if (IS_ERR(regd)) return REG_REQ_IGNORE; tmp = get_wiphy_regdom(wiphy); ASSERT_RTNL(); scoped_guard(wiphy, wiphy) { rcu_assign_pointer(wiphy->regd, regd); } rcu_free_regdom(tmp); } driver_request->intersect = treatment == REG_REQ_INTERSECT; driver_request->processed = false; /* * Since CRDA will not be called in this case as we already * have applied the requested regulatory domain before we just * inform userspace we have processed the request */ if (treatment == REG_REQ_ALREADY_SET) { nl80211_send_reg_change_event(driver_request); reg_update_last_request(driver_request); reg_set_request_processed(); return REG_REQ_ALREADY_SET; } if (reg_query_database(driver_request)) { reg_update_last_request(driver_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_country_ie(struct wiphy *wiphy, struct regulatory_request *country_ie_request) { struct wiphy *last_wiphy = NULL; struct regulatory_request *lr = get_last_request(); if (reg_request_cell_base(lr)) { /* Trust a Cell base station over the AP's country IE */ if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } else { if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) return REG_REQ_IGNORE; } if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) return -EINVAL; if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) return REG_REQ_OK; last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (last_wiphy != wiphy) { /* * Two cards with two APs claiming different * Country IE alpha2s. We could * intersect them, but that seems unlikely * to be correct. Reject second one for now. */ if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } /** * reg_process_hint_country_ie - process regulatory requests from country IEs * @wiphy: the wireless device for the regulatory request * @country_ie_request: a regulatory request from a country IE * * The wireless subsystem can use this function to process * a regulatory request issued by a country Information Element. * * Returns: one of the different reg request treatment values. */ static enum reg_request_treatment reg_process_hint_country_ie(struct wiphy *wiphy, struct regulatory_request *country_ie_request) { enum reg_request_treatment treatment; treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); switch (treatment) { case REG_REQ_OK: break; case REG_REQ_IGNORE: return REG_REQ_IGNORE; case REG_REQ_ALREADY_SET: reg_free_request(country_ie_request); return REG_REQ_ALREADY_SET; case REG_REQ_INTERSECT: /* * This doesn't happen yet, not sure we * ever want to support it for this case. */ WARN_ONCE(1, "Unexpected intersection for country elements"); return REG_REQ_IGNORE; } country_ie_request->intersect = false; country_ie_request->processed = false; if (reg_query_database(country_ie_request)) { reg_update_last_request(country_ie_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) { const struct ieee80211_regdomain *wiphy1_regd = NULL; const struct ieee80211_regdomain *wiphy2_regd = NULL; const struct ieee80211_regdomain *cfg80211_regd = NULL; bool dfs_domain_same; rcu_read_lock(); cfg80211_regd = rcu_dereference(cfg80211_regdomain); wiphy1_regd = rcu_dereference(wiphy1->regd); if (!wiphy1_regd) wiphy1_regd = cfg80211_regd; wiphy2_regd = rcu_dereference(wiphy2->regd); if (!wiphy2_regd) wiphy2_regd = cfg80211_regd; dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; rcu_read_unlock(); return dfs_domain_same; } static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, struct ieee80211_channel *src_chan) { if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || !(src_chan->flags & IEEE80211_CHAN_RADAR)) return; if (dst_chan->flags & IEEE80211_CHAN_DISABLED || src_chan->flags & IEEE80211_CHAN_DISABLED) return; if (src_chan->center_freq == dst_chan->center_freq && dst_chan->dfs_state == NL80211_DFS_USABLE) { dst_chan->dfs_state = src_chan->dfs_state; dst_chan->dfs_state_entered = src_chan->dfs_state_entered; } } static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, struct wiphy *src_wiphy) { struct ieee80211_supported_band *src_sband, *dst_sband; struct ieee80211_channel *src_chan, *dst_chan; int i, j, band; if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) return; for (band = 0; band < NUM_NL80211_BANDS; band++) { dst_sband = dst_wiphy->bands[band]; src_sband = src_wiphy->bands[band]; if (!dst_sband || !src_sband) continue; for (i = 0; i < dst_sband->n_channels; i++) { dst_chan = &dst_sband->channels[i]; for (j = 0; j < src_sband->n_channels; j++) { src_chan = &src_sband->channels[j]; reg_copy_dfs_chan_state(dst_chan, src_chan); } } } } static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); for_each_rdev(rdev) { if (wiphy == &rdev->wiphy) continue; wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); } } /* This processes *all* regulatory hints */ static void reg_process_hint(struct regulatory_request *reg_request) { struct wiphy *wiphy = NULL; enum reg_request_treatment treatment; enum nl80211_reg_initiator initiator = reg_request->initiator; if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); switch (initiator) { case NL80211_REGDOM_SET_BY_CORE: treatment = reg_process_hint_core(reg_request); break; case NL80211_REGDOM_SET_BY_USER: treatment = reg_process_hint_user(reg_request); break; case NL80211_REGDOM_SET_BY_DRIVER: if (!wiphy) goto out_free; treatment = reg_process_hint_driver(wiphy, reg_request); break; case NL80211_REGDOM_SET_BY_COUNTRY_IE: if (!wiphy) goto out_free; treatment = reg_process_hint_country_ie(wiphy, reg_request); break; default: WARN(1, "invalid initiator %d\n", initiator); goto out_free; } if (treatment == REG_REQ_IGNORE) goto out_free; WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, "unexpected treatment value %d\n", treatment); /* This is required so that the orig_* parameters are saved. * NOTE: treatment must be set for any case that reaches here! */ if (treatment == REG_REQ_ALREADY_SET && wiphy && wiphy->regulatory_flags & REGULATORY_STRICT_REG) { wiphy_update_regulatory(wiphy, initiator); wiphy_all_share_dfs_chan_state(wiphy); reg_check_channels(); } return; out_free: reg_free_request(reg_request); } static void notify_self_managed_wiphys(struct regulatory_request *request) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; for_each_rdev(rdev) { wiphy = &rdev->wiphy; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && request->initiator == NL80211_REGDOM_SET_BY_USER) reg_call_notifier(wiphy, request); } } /* * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* * Regulatory hints come on a first come first serve basis and we * must process each one atomically. */ static void reg_process_pending_hints(void) { struct regulatory_request *reg_request, *lr; lr = get_last_request(); /* When last_request->processed becomes true this will be rescheduled */ if (lr && !lr->processed) { pr_debug("Pending regulatory request, waiting for it to be processed...\n"); return; } spin_lock(®_requests_lock); if (list_empty(®_requests_list)) { spin_unlock(®_requests_lock); return; } reg_request = list_first_entry(®_requests_list, struct regulatory_request, list); list_del_init(®_request->list); spin_unlock(®_requests_lock); notify_self_managed_wiphys(reg_request); reg_process_hint(reg_request); lr = get_last_request(); spin_lock(®_requests_lock); if (!list_empty(®_requests_list) && lr && lr->processed) schedule_work(®_work); spin_unlock(®_requests_lock); } /* Processes beacon hints -- this has nothing to do with country IEs */ static void reg_process_pending_beacon_hints(void) { struct cfg80211_registered_device *rdev; struct reg_beacon *pending_beacon, *tmp; /* This goes through the _pending_ beacon list */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(pending_beacon, tmp, ®_pending_beacons, list) { list_del_init(&pending_beacon->list); /* Applies the beacon hint to current wiphys */ for_each_rdev(rdev) wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); /* Remembers the beacon hint for new wiphys or reg changes */ list_add_tail(&pending_beacon->list, ®_beacon_list); } spin_unlock_bh(®_pending_beacons_lock); } static void reg_process_self_managed_hint(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); const struct ieee80211_regdomain *tmp; const struct ieee80211_regdomain *regd; enum nl80211_band band; struct regulatory_request request = {}; ASSERT_RTNL(); lockdep_assert_wiphy(wiphy); spin_lock(®_requests_lock); regd = rdev->requested_regd; rdev->requested_regd = NULL; spin_unlock(®_requests_lock); if (!regd) return; tmp = get_wiphy_regdom(wiphy); rcu_assign_pointer(wiphy->regd, regd); rcu_free_regdom(tmp); for (band = 0; band < NUM_NL80211_BANDS; band++) handle_band_custom(wiphy, wiphy->bands[band], regd); reg_process_ht_flags(wiphy); request.wiphy_idx = get_wiphy_idx(wiphy); request.alpha2[0] = regd->alpha2[0]; request.alpha2[1] = regd->alpha2[1]; request.initiator = NL80211_REGDOM_SET_BY_DRIVER; if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER) reg_call_notifier(wiphy, &request); nl80211_send_wiphy_reg_change_event(&request); } static void reg_process_self_managed_hints(void) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); for_each_rdev(rdev) { guard(wiphy)(&rdev->wiphy); reg_process_self_managed_hint(&rdev->wiphy); } reg_check_channels(); } static void reg_todo(struct work_struct *work) { rtnl_lock(); reg_process_pending_hints(); reg_process_pending_beacon_hints(); reg_process_self_managed_hints(); rtnl_unlock(); } static void queue_regulatory_request(struct regulatory_request *request) { request->alpha2[0] = toupper(request->alpha2[0]); request->alpha2[1] = toupper(request->alpha2[1]); spin_lock(®_requests_lock); list_add_tail(&request->list, ®_requests_list); spin_unlock(®_requests_lock); schedule_work(®_work); } /* * Core regulatory hint -- happens during cfg80211_init() * and when we restore regulatory settings. */ static int regulatory_hint_core(const char *alpha2) { struct regulatory_request *request; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_CORE; request->wiphy_idx = WIPHY_IDX_INVALID; queue_regulatory_request(request); return 0; } /* User hints */ int regulatory_hint_user(const char *alpha2, enum nl80211_user_reg_hint_type user_reg_hint_type) { struct regulatory_request *request; if (WARN_ON(!alpha2)) return -EINVAL; if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2)) return -EINVAL; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = WIPHY_IDX_INVALID; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_USER; request->user_reg_hint_type = user_reg_hint_type; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); return 0; } void regulatory_hint_indoor(bool is_indoor, u32 portid) { spin_lock(®_indoor_lock); /* It is possible that more than one user space process is trying to * configure the indoor setting. To handle such cases, clear the indoor * setting in case that some process does not think that the device * is operating in an indoor environment. In addition, if a user space * process indicates that it is controlling the indoor setting, save its * portid, i.e., make it the owner. */ reg_is_indoor = is_indoor; if (reg_is_indoor) { if (!reg_is_indoor_portid) reg_is_indoor_portid = portid; } else { reg_is_indoor_portid = 0; } spin_unlock(®_indoor_lock); if (!is_indoor) reg_check_channels(); } void regulatory_netlink_notify(u32 portid) { spin_lock(®_indoor_lock); if (reg_is_indoor_portid != portid) { spin_unlock(®_indoor_lock); return; } reg_is_indoor = false; reg_is_indoor_portid = 0; spin_unlock(®_indoor_lock); reg_check_channels(); } /* Driver hints */ int regulatory_hint(struct wiphy *wiphy, const char *alpha2) { struct regulatory_request *request; if (WARN_ON(!alpha2 || !wiphy)) return -EINVAL; wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_DRIVER; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); return 0; } EXPORT_SYMBOL(regulatory_hint); void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, const u8 *country_ie, u8 country_ie_len) { char alpha2[2]; enum environment_cap env = ENVIRON_ANY; struct regulatory_request *request = NULL, *lr; /* IE len must be evenly divisible by 2 */ if (country_ie_len & 0x01) return; if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return; request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) return; alpha2[0] = country_ie[0]; alpha2[1] = country_ie[1]; if (country_ie[2] == 'I') env = ENVIRON_INDOOR; else if (country_ie[2] == 'O') env = ENVIRON_OUTDOOR; rcu_read_lock(); lr = get_last_request(); if (unlikely(!lr)) goto out; /* * We will run this only upon a successful connection on cfg80211. * We leave conflict resolution to the workqueue, where can hold * the RTNL. */ if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->wiphy_idx != WIPHY_IDX_INVALID) goto out; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; request->country_ie_env = env; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); request = NULL; out: kfree(request); rcu_read_unlock(); } static void restore_alpha2(char *alpha2, bool reset_user) { /* indicates there is no alpha2 to consider for restoration */ alpha2[0] = '9'; alpha2[1] = '7'; /* The user setting has precedence over the module parameter */ if (is_user_regdom_saved()) { /* Unless we're asked to ignore it and reset it */ if (reset_user) { pr_debug("Restoring regulatory settings including user preference\n"); user_alpha2[0] = '9'; user_alpha2[1] = '7'; /* * If we're ignoring user settings, we still need to * check the module parameter to ensure we put things * back as they were for a full restore. */ if (!is_world_regdom(ieee80211_regdom)) { pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } } else { pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", user_alpha2[0], user_alpha2[1]); alpha2[0] = user_alpha2[0]; alpha2[1] = user_alpha2[1]; } } else if (!is_world_regdom(ieee80211_regdom)) { pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } else pr_debug("Restoring regulatory settings\n"); } static void restore_custom_reg_settings(struct wiphy *wiphy) { struct ieee80211_supported_band *sband; enum nl80211_band band; struct ieee80211_channel *chan; int i; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; chan->flags = chan->orig_flags; chan->max_antenna_gain = chan->orig_mag; chan->max_power = chan->orig_mpwr; chan->beacon_found = false; } } } /* * Restoring regulatory settings involves ignoring any * possibly stale country IE information and user regulatory * settings if so desired, this includes any beacon hints * learned as we could have traveled outside to another country * after disconnection. To restore regulatory settings we do * exactly what we did at bootup: * * - send a core regulatory hint * - send a user regulatory hint if applicable * * Device drivers that send a regulatory hint for a specific country * keep their own regulatory domain on wiphy->regd so that does * not need to be remembered. */ static void restore_regulatory_settings(bool reset_user, bool cached) { char alpha2[2]; char world_alpha2[2]; struct reg_beacon *reg_beacon, *btmp; LIST_HEAD(tmp_reg_req_list); struct cfg80211_registered_device *rdev; ASSERT_RTNL(); /* * Clear the indoor setting in case that it is not controlled by user * space, as otherwise there is no guarantee that the device is still * operating in an indoor environment. */ spin_lock(®_indoor_lock); if (reg_is_indoor && !reg_is_indoor_portid) { reg_is_indoor = false; reg_check_channels(); } spin_unlock(®_indoor_lock); reset_regdomains(true, &world_regdom); restore_alpha2(alpha2, reset_user); /* * If there's any pending requests we simply * stash them to a temporary pending queue and * add then after we've restored regulatory * settings. */ spin_lock(®_requests_lock); list_splice_tail_init(®_requests_list, &tmp_reg_req_list); spin_unlock(®_requests_lock); /* Clear beacon hints */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } spin_unlock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } /* First restore to the basic regulatory settings */ world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; for_each_rdev(rdev) { if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) continue; if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) restore_custom_reg_settings(&rdev->wiphy); } if (cached && (!is_an_alpha2(alpha2) || !IS_ERR_OR_NULL(cfg80211_user_regdom))) { reset_regdomains(false, cfg80211_world_regdom); update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); print_regdomain(get_cfg80211_regdom()); nl80211_send_reg_change_event(&core_request_world); reg_set_request_processed(); if (is_an_alpha2(alpha2) && !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { struct regulatory_request *ureq; spin_lock(®_requests_lock); ureq = list_last_entry(®_requests_list, struct regulatory_request, list); list_del(&ureq->list); spin_unlock(®_requests_lock); notify_self_managed_wiphys(ureq); reg_update_last_request(ureq); set_regdom(reg_copy_regd(cfg80211_user_regdom), REGD_SOURCE_CACHED); } } else { regulatory_hint_core(world_alpha2); /* * This restores the ieee80211_regdom module parameter * preference or the last user requested regulatory * settings, user regulatory settings takes precedence. */ if (is_an_alpha2(alpha2)) regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); } spin_lock(®_requests_lock); list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); spin_unlock(®_requests_lock); pr_debug("Kicking the queue\n"); schedule_work(®_work); } static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; for_each_rdev(rdev) { guard(wiphy)(&rdev->wiphy); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { if (!(wdev->wiphy->regulatory_flags & flag)) return false; } } return true; } void regulatory_hint_disconnect(void) { /* Restore of regulatory settings is not required when wiphy(s) * ignore IE from connected access point but clearance of beacon hints * is required when wiphy(s) supports beacon hints. */ if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { struct reg_beacon *reg_beacon, *btmp; if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) return; spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } spin_unlock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } return; } pr_debug("All devices are disconnected, going to restore regulatory settings\n"); restore_regulatory_settings(false, true); } static bool freq_is_chan_12_13_14(u32 freq) { if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) return true; return false; } static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) { struct reg_beacon *pending_beacon; list_for_each_entry(pending_beacon, ®_pending_beacons, list) if (ieee80211_channel_equal(beacon_chan, &pending_beacon->chan)) return true; return false; } void regulatory_hint_found_beacon(struct wiphy *wiphy, struct ieee80211_channel *beacon_chan, gfp_t gfp) { struct reg_beacon *reg_beacon; bool processing; if (beacon_chan->beacon_found || beacon_chan->flags & IEEE80211_CHAN_RADAR || (beacon_chan->band == NL80211_BAND_2GHZ && !freq_is_chan_12_13_14(beacon_chan->center_freq))) return; spin_lock_bh(®_pending_beacons_lock); processing = pending_reg_beacon(beacon_chan); spin_unlock_bh(®_pending_beacons_lock); if (processing) return; reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); if (!reg_beacon) return; pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n", beacon_chan->center_freq, beacon_chan->freq_offset, ieee80211_freq_khz_to_channel( ieee80211_channel_to_khz(beacon_chan)), wiphy_name(wiphy)); memcpy(®_beacon->chan, beacon_chan, sizeof(struct ieee80211_channel)); /* * Since we can be called from BH or and non-BH context * we must use spin_lock_bh() */ spin_lock_bh(®_pending_beacons_lock); list_add_tail(®_beacon->list, ®_pending_beacons); spin_unlock_bh(®_pending_beacons_lock); schedule_work(®_work); } static void print_rd_rules(const struct ieee80211_regdomain *rd) { unsigned int i; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; const struct ieee80211_power_rule *power_rule = NULL; char bw[32], cac_time[32]; pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; freq_range = ®_rule->freq_range; power_rule = ®_rule->power_rule; if (reg_rule->flags & NL80211_RRF_AUTO_BW) snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO", freq_range->max_bandwidth_khz, reg_get_max_bandwidth(rd, reg_rule)); else snprintf(bw, sizeof(bw), "%d KHz", freq_range->max_bandwidth_khz); if (reg_rule->flags & NL80211_RRF_DFS) scnprintf(cac_time, sizeof(cac_time), "%u s", reg_rule->dfs_cac_ms/1000); else scnprintf(cac_time, sizeof(cac_time), "N/A"); /* * There may not be documentation for max antenna gain * in certain regions */ if (power_rule->max_antenna_gain) pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, bw, power_rule->max_antenna_gain, power_rule->max_eirp, cac_time); else pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, bw, power_rule->max_eirp, cac_time); } } bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: case NL80211_DFS_FCC: case NL80211_DFS_ETSI: case NL80211_DFS_JP: return true; default: pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); return false; } } static void print_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr = get_last_request(); if (is_intersected_alpha2(rd->alpha2)) { if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { struct cfg80211_registered_device *rdev; rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); if (rdev) { pr_debug("Current regulatory domain updated by AP to: %c%c\n", rdev->country_ie_alpha2[0], rdev->country_ie_alpha2[1]); } else pr_debug("Current regulatory domain intersected:\n"); } else pr_debug("Current regulatory domain intersected:\n"); } else if (is_world_regdom(rd->alpha2)) { pr_debug("World regulatory domain updated:\n"); } else { if (is_unknown_alpha2(rd->alpha2)) pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); else { if (reg_request_cell_base(lr)) pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", rd->alpha2[0], rd->alpha2[1]); else pr_debug("Regulatory domain changed to country: %c%c\n", rd->alpha2[0], rd->alpha2[1]); } } pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); print_rd_rules(rd); } static void print_regdomain_info(const struct ieee80211_regdomain *rd) { pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_rd_rules(rd); } static int reg_set_rd_core(const struct ieee80211_regdomain *rd) { if (!is_world_regdom(rd->alpha2)) return -EINVAL; update_world_regdomain(rd); return 0; } static int reg_set_rd_user(const struct ieee80211_regdomain *rd, struct regulatory_request *user_request) { const struct ieee80211_regdomain *intersected_rd = NULL; if (!regdom_changes(rd->alpha2)) return -EALREADY; if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } if (!user_request->intersect) { reset_regdomains(false, rd); return 0; } intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); if (!intersected_rd) return -EINVAL; kfree(rd); rd = NULL; reset_regdomains(false, intersected_rd); return 0; } static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, struct regulatory_request *driver_request) { const struct ieee80211_regdomain *regd; const struct ieee80211_regdomain *intersected_rd = NULL; const struct ieee80211_regdomain *tmp = NULL; struct wiphy *request_wiphy; if (is_world_regdom(rd->alpha2)) return -EINVAL; if (!regdom_changes(rd->alpha2)) return -EALREADY; if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); if (!request_wiphy) return -ENODEV; if (!driver_request->intersect) { ASSERT_RTNL(); scoped_guard(wiphy, request_wiphy) { if (request_wiphy->regd) tmp = get_wiphy_regdom(request_wiphy); regd = reg_copy_regd(rd); if (IS_ERR(regd)) return PTR_ERR(regd); rcu_assign_pointer(request_wiphy->regd, regd); rcu_free_regdom(tmp); } reset_regdomains(false, rd); return 0; } intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); if (!intersected_rd) return -EINVAL; /* * We can trash what CRDA provided now. * However if a driver requested this specific regulatory * domain we keep it for its private use */ tmp = get_wiphy_regdom(request_wiphy); rcu_assign_pointer(request_wiphy->regd, rd); rcu_free_regdom(tmp); rd = NULL; reset_regdomains(false, intersected_rd); return 0; } static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, struct regulatory_request *country_ie_request) { struct wiphy *request_wiphy; if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && !is_unknown_alpha2(rd->alpha2)) return -EINVAL; /* * Lets only bother proceeding on the same alpha2 if the current * rd is non static (it means CRDA was present and was used last) * and the pending request came in from a country IE */ if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); if (!request_wiphy) return -ENODEV; if (country_ie_request->intersect) return -EINVAL; reset_regdomains(false, rd); return 0; } /* * Use this call to set the current regulatory domain. Conflicts with * multiple drivers can be ironed out later. Caller must've already * kmalloc'd the rd structure. */ int set_regdom(const struct ieee80211_regdomain *rd, enum ieee80211_regd_source regd_src) { struct regulatory_request *lr; bool user_reset = false; int r; if (IS_ERR_OR_NULL(rd)) return -ENODATA; if (!reg_is_valid_request(rd->alpha2)) { kfree(rd); return -EINVAL; } if (regd_src == REGD_SOURCE_CRDA) reset_crda_timeouts(); lr = get_last_request(); /* Note that this doesn't update the wiphys, this is done below */ switch (lr->initiator) { case NL80211_REGDOM_SET_BY_CORE: r = reg_set_rd_core(rd); break; case NL80211_REGDOM_SET_BY_USER: cfg80211_save_user_regdom(rd); r = reg_set_rd_user(rd, lr); user_reset = true; break; case NL80211_REGDOM_SET_BY_DRIVER: r = reg_set_rd_driver(rd, lr); break; case NL80211_REGDOM_SET_BY_COUNTRY_IE: r = reg_set_rd_country_ie(rd, lr); break; default: WARN(1, "invalid initiator %d\n", lr->initiator); kfree(rd); return -EINVAL; } if (r) { switch (r) { case -EALREADY: reg_set_request_processed(); break; default: /* Back to world regulatory in case of errors */ restore_regulatory_settings(user_reset, false); } kfree(rd); return r; } /* This would make this whole thing pointless */ if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) return -EINVAL; /* update all wiphys now with the new established regulatory domain */ update_all_wiphy_regulatory(lr->initiator); print_regdomain(get_cfg80211_regdom()); nl80211_send_reg_change_event(lr); reg_set_request_processed(); return 0; } static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { const struct ieee80211_regdomain *regd; const struct ieee80211_regdomain *prev_regd; struct cfg80211_registered_device *rdev; if (WARN_ON(!wiphy || !rd)) return -EINVAL; if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) return -EPERM; if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1])) { print_regdomain_info(rd); return -EINVAL; } regd = reg_copy_regd(rd); if (IS_ERR(regd)) return PTR_ERR(regd); rdev = wiphy_to_rdev(wiphy); spin_lock(®_requests_lock); prev_regd = rdev->requested_regd; rdev->requested_regd = regd; spin_unlock(®_requests_lock); kfree(prev_regd); return 0; } int regulatory_set_wiphy_regd(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { int ret = __regulatory_set_wiphy_regd(wiphy, rd); if (ret) return ret; schedule_work(®_work); return 0; } EXPORT_SYMBOL(regulatory_set_wiphy_regd); int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { int ret; ASSERT_RTNL(); ret = __regulatory_set_wiphy_regd(wiphy, rd); if (ret) return ret; /* process the request immediately */ reg_process_self_managed_hint(wiphy); reg_check_channels(); return 0; } EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync); void wiphy_regulatory_register(struct wiphy *wiphy) { struct regulatory_request *lr = get_last_request(); /* self-managed devices ignore beacon hints and country IE */ if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | REGULATORY_COUNTRY_IE_IGNORE; /* * The last request may have been received before this * registration call. Call the driver notifier if * initiator is USER. */ if (lr->initiator == NL80211_REGDOM_SET_BY_USER) reg_call_notifier(wiphy, lr); } if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint++; wiphy_update_regulatory(wiphy, lr->initiator); wiphy_all_share_dfs_chan_state(wiphy); reg_process_self_managed_hints(); } void wiphy_regulatory_deregister(struct wiphy *wiphy) { struct wiphy *request_wiphy = NULL; struct regulatory_request *lr; lr = get_last_request(); if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint--; rcu_free_regdom(get_wiphy_regdom(wiphy)); RCU_INIT_POINTER(wiphy->regd, NULL); if (lr) request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (!request_wiphy || request_wiphy != wiphy) return; lr->wiphy_idx = WIPHY_IDX_INVALID; lr->country_ie_env = ENVIRON_ANY; } /* * See FCC notices for UNII band definitions * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0 */ int cfg80211_get_unii(int freq) { /* UNII-1 */ if (freq >= 5150 && freq <= 5250) return 0; /* UNII-2A */ if (freq > 5250 && freq <= 5350) return 1; /* UNII-2B */ if (freq > 5350 && freq <= 5470) return 2; /* UNII-2C */ if (freq > 5470 && freq <= 5725) return 3; /* UNII-3 */ if (freq > 5725 && freq <= 5825) return 4; /* UNII-5 */ if (freq > 5925 && freq <= 6425) return 5; /* UNII-6 */ if (freq > 6425 && freq <= 6525) return 6; /* UNII-7 */ if (freq > 6525 && freq <= 6875) return 7; /* UNII-8 */ if (freq > 6875 && freq <= 7125) return 8; return -EINVAL; } bool regulatory_indoor_allowed(void) { return reg_is_indoor; } bool regulatory_pre_cac_allowed(struct wiphy *wiphy) { const struct ieee80211_regdomain *regd = NULL; const struct ieee80211_regdomain *wiphy_regd = NULL; bool pre_cac_allowed = false; rcu_read_lock(); regd = rcu_dereference(cfg80211_regdomain); wiphy_regd = rcu_dereference(wiphy->regd); if (!wiphy_regd) { if (regd->dfs_region == NL80211_DFS_ETSI) pre_cac_allowed = true; rcu_read_unlock(); return pre_cac_allowed; } if (regd->dfs_region == wiphy_regd->dfs_region && wiphy_regd->dfs_region == NL80211_DFS_ETSI) pre_cac_allowed = true; rcu_read_unlock(); return pre_cac_allowed; } EXPORT_SYMBOL(regulatory_pre_cac_allowed); static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; unsigned int link_id; /* If we finished CAC or received radar, we should end any * CAC running on the same channels. * the check !cfg80211_chandef_dfs_usable contain 2 options: * either all channels are available - those the CAC_FINISHED * event has effected another wdev state, or there is a channel * in unavailable state in wdev chandef - those the RADAR_DETECTED * event has effected another wdev state. * In both cases we should end the CAC on the wdev. */ list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { struct cfg80211_chan_def *chandef; for_each_valid_link(wdev, link_id) { if (!wdev->links[link_id].cac_started) continue; chandef = wdev_chandef(wdev, link_id); if (!chandef) continue; if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef)) rdev_end_cac(rdev, wdev->netdev, link_id); } } } void regulatory_propagate_dfs_state(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state, enum nl80211_radar_event event) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); if (WARN_ON(!cfg80211_chandef_valid(chandef))) return; for_each_rdev(rdev) { if (wiphy == &rdev->wiphy) continue; if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) continue; if (!ieee80211_get_channel(&rdev->wiphy, chandef->chan->center_freq)) continue; cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); if (event == NL80211_RADAR_DETECTED || event == NL80211_RADAR_CAC_FINISHED) { cfg80211_sched_dfs_chan_update(rdev); cfg80211_check_and_end_cac(rdev); } nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); } } static int __init regulatory_init_db(void) { int err; /* * It's possible that - due to other bugs/issues - cfg80211 * never called regulatory_init() below, or that it failed; * in that case, don't try to do any further work here as * it's doomed to lead to crashes. */ if (IS_ERR_OR_NULL(reg_pdev)) return -EINVAL; err = load_builtin_regdb_keys(); if (err) { platform_device_unregister(reg_pdev); return err; } /* We always try to get an update for the static regdomain */ err = regulatory_hint_core(cfg80211_world_regdom->alpha2); if (err) { if (err == -ENOMEM) { platform_device_unregister(reg_pdev); return err; } /* * N.B. kobject_uevent_env() can fail mainly for when we're out * memory which is handled and propagated appropriately above * but it can also fail during a netlink_broadcast() or during * early boot for call_usermodehelper(). For now treat these * errors as non-fatal. */ pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); } /* * Finally, if the user set the module parameter treat it * as a user hint. */ if (!is_world_regdom(ieee80211_regdom)) regulatory_hint_user(ieee80211_regdom, NL80211_USER_REG_HINT_USER); return 0; } #ifndef MODULE late_initcall(regulatory_init_db); #endif int __init regulatory_init(void) { reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); if (IS_ERR(reg_pdev)) return PTR_ERR(reg_pdev); rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); user_alpha2[0] = '9'; user_alpha2[1] = '7'; #ifdef MODULE return regulatory_init_db(); #else return 0; #endif } void regulatory_exit(void) { struct regulatory_request *reg_request, *tmp; struct reg_beacon *reg_beacon, *btmp; cancel_work_sync(®_work); cancel_crda_timeout_sync(); cancel_delayed_work_sync(®_check_chans); /* Lock to suppress warnings */ rtnl_lock(); reset_regdomains(true, NULL); rtnl_unlock(); dev_set_uevent_suppress(®_pdev->dev, true); platform_device_unregister(reg_pdev); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { list_del(®_request->list); kfree(reg_request); } if (!IS_ERR_OR_NULL(regdb)) kfree(regdb); if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) kfree(cfg80211_user_regdom); free_regdb_keyring(); } |
| 1077 1079 1077 299 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 | // SPDX-License-Identifier: GPL-2.0 /* net/sched/sch_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> * */ #include <linux/ethtool.h> #include <linux/ethtool_netlink.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/time.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/sch_generic.h> #include <net/sock.h> #include <net/tcp.h> #define TAPRIO_STAT_NOT_SET (~0ULL) #include "sch_mqprio_lib.h" static LIST_HEAD(taprio_list); static struct static_key_false taprio_have_broken_mqprio; static struct static_key_false taprio_have_working_mqprio; #define TAPRIO_ALL_GATES_OPEN -1 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_SUPPORTED_FLAGS \ (TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_FLAGS_INVALID U32_MAX struct sched_entry { /* Durations between this GCL entry and the GCL entry where the * respective traffic class gate closes */ u64 gate_duration[TC_MAX_QUEUE]; atomic_t budget[TC_MAX_QUEUE]; /* The qdisc makes some effort so that no packet leaves * after this time */ ktime_t gate_close_time[TC_MAX_QUEUE]; struct list_head list; /* Used to calculate when to advance the schedule */ ktime_t end_time; ktime_t next_txtime; int index; u32 gate_mask; u32 interval; u8 command; }; struct sched_gate_list { /* Longest non-zero contiguous gate durations per traffic class, * or 0 if a traffic class gate never opens during the schedule. */ u64 max_open_gate_duration[TC_MAX_QUEUE]; u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ struct rcu_head rcu; struct list_head entries; size_t num_entries; ktime_t cycle_end_time; s64 cycle_time; s64 cycle_time_extension; s64 base_time; }; struct taprio_sched { struct Qdisc **qdiscs; struct Qdisc *root; u32 flags; enum tk_offsets tk_offset; int clockid; bool offloaded; bool detected_mqprio; bool broken_mqprio; atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ * speeds it's sub-nanoseconds per byte */ /* Protects the update side of the RCU protected current_entry */ spinlock_t current_entry_lock; struct sched_entry __rcu *current_entry; struct sched_gate_list __rcu *oper_sched; struct sched_gate_list __rcu *admin_sched; struct hrtimer advance_timer; struct list_head taprio_list; int cur_txq[TC_MAX_QUEUE]; u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ u32 txtime_delay; }; struct __tc_taprio_qopt_offload { refcount_t users; struct tc_taprio_qopt_offload offload; }; static void taprio_calculate_gate_durations(struct taprio_sched *q, struct sched_gate_list *sched) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *cur; int tc; list_for_each_entry(entry, &sched->entries, list) { u32 gates_still_open = entry->gate_mask; /* For each traffic class, calculate each open gate duration, * starting at this schedule entry and ending at the schedule * entry containing a gate close event for that TC. */ cur = entry; do { if (!gates_still_open) break; for (tc = 0; tc < num_tc; tc++) { if (!(gates_still_open & BIT(tc))) continue; if (cur->gate_mask & BIT(tc)) entry->gate_duration[tc] += cur->interval; else gates_still_open &= ~BIT(tc); } cur = list_next_entry_circular(cur, &sched->entries, list); } while (cur != entry); /* Keep track of the maximum gate duration for each traffic * class, taking care to not confuse a traffic class which is * temporarily closed with one that is always closed. */ for (tc = 0; tc < num_tc; tc++) if (entry->gate_duration[tc] && sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; } } static bool taprio_entry_allows_tx(ktime_t skb_end_time, struct sched_entry *entry, int tc) { return ktime_before(skb_end_time, entry->gate_close_time[tc]); } static ktime_t sched_base_time(const struct sched_gate_list *sched) { if (!sched) return KTIME_MAX; return ns_to_ktime(sched->base_time); } static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) { /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); switch (tk_offset) { case TK_OFFS_MAX: return mono; default: return ktime_mono_to_any(mono, tk_offset); } } static ktime_t taprio_get_time(const struct taprio_sched *q) { return taprio_mono_to_any(q, ktime_get()); } static void taprio_free_sched_cb(struct rcu_head *head) { struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); struct sched_entry *entry, *n; list_for_each_entry_safe(entry, n, &sched->entries, list) { list_del(&entry->list); kfree(entry); } kfree(sched); } static void switch_schedules(struct taprio_sched *q, struct sched_gate_list **admin, struct sched_gate_list **oper) { rcu_assign_pointer(q->oper_sched, *admin); rcu_assign_pointer(q->admin_sched, NULL); if (*oper) call_rcu(&(*oper)->rcu, taprio_free_sched_cb); *oper = *admin; *admin = NULL; } /* Get how much time has been already elapsed in the current cycle. */ static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) { ktime_t time_since_sched_start; s32 time_elapsed; time_since_sched_start = ktime_sub(time, sched->base_time); div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); return time_elapsed; } static ktime_t get_interval_end_time(struct sched_gate_list *sched, struct sched_gate_list *admin, struct sched_entry *entry, ktime_t intv_start) { s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); ktime_t intv_end, cycle_ext_end, cycle_end; cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); intv_end = ktime_add_ns(intv_start, entry->interval); cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); if (ktime_before(intv_end, cycle_end)) return intv_end; else if (admin && admin != sched && ktime_after(admin->base_time, cycle_end) && ktime_before(admin->base_time, cycle_ext_end)) return admin->base_time; else return cycle_end; } static int length_to_duration(struct taprio_sched *q, int len) { return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); } static int duration_to_length(struct taprio_sched *q, u64 duration) { return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); } /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the * q->max_sdu[] requested by the user and the max_sdu dynamically determined by * the maximum open gate durations at the given link speed. */ static void taprio_update_queue_max_sdu(struct taprio_sched *q, struct sched_gate_list *sched, struct qdisc_size_table *stab) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); u32 max_sdu_from_user; u32 max_sdu_dynamic; u32 max_sdu; int tc; for (tc = 0; tc < num_tc; tc++) { max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; /* TC gate never closes => keep the queueMaxSDU * selected by the user */ if (sched->max_open_gate_duration[tc] == sched->cycle_time) { max_sdu_dynamic = U32_MAX; } else { u32 max_frm_len; max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); /* Compensate for L1 overhead from size table, * but don't let the frame size go negative */ if (stab) { max_frm_len -= stab->szopts.overhead; max_frm_len = max_t(int, max_frm_len, dev->hard_header_len + 1); } max_sdu_dynamic = max_frm_len - dev->hard_header_len; if (max_sdu_dynamic > dev->max_mtu) max_sdu_dynamic = U32_MAX; } max_sdu = min(max_sdu_dynamic, max_sdu_from_user); if (max_sdu != U32_MAX) { sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; sched->max_sdu[tc] = max_sdu; } else { sched->max_frm_len[tc] = U32_MAX; /* never oversized */ sched->max_sdu[tc] = 0; } } } /* Returns the entry corresponding to next available interval. If * validate_interval is set, it only validates whether the timestamp occurs * when the gate corresponding to the skb's traffic class is open. */ static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, struct Qdisc *sch, struct sched_gate_list *sched, struct sched_gate_list *admin, ktime_t time, ktime_t *interval_start, ktime_t *interval_end, bool validate_interval) { ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; struct sched_entry *entry = NULL, *entry_found = NULL; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); bool entry_available = false; s32 cycle_elapsed; int tc, n; tc = netdev_get_prio_tc_map(dev, skb->priority); packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); *interval_start = 0; *interval_end = 0; if (!sched) return NULL; cycle = sched->cycle_time; cycle_elapsed = get_cycle_time_elapsed(sched, time); curr_intv_end = ktime_sub_ns(time, cycle_elapsed); cycle_end = ktime_add_ns(curr_intv_end, cycle); list_for_each_entry(entry, &sched->entries, list) { curr_intv_start = curr_intv_end; curr_intv_end = get_interval_end_time(sched, admin, entry, curr_intv_start); if (ktime_after(curr_intv_start, cycle_end)) break; if (!(entry->gate_mask & BIT(tc)) || packet_transmit_time > entry->interval) continue; txtime = entry->next_txtime; if (ktime_before(txtime, time) || validate_interval) { transmit_end_time = ktime_add_ns(time, packet_transmit_time); if ((ktime_before(curr_intv_start, time) && ktime_before(transmit_end_time, curr_intv_end)) || (ktime_after(curr_intv_start, time) && !validate_interval)) { entry_found = entry; *interval_start = curr_intv_start; *interval_end = curr_intv_end; break; } else if (!entry_available && !validate_interval) { /* Here, we are just trying to find out the * first available interval in the next cycle. */ entry_available = true; entry_found = entry; *interval_start = ktime_add_ns(curr_intv_start, cycle); *interval_end = ktime_add_ns(curr_intv_end, cycle); } } else if (ktime_before(txtime, earliest_txtime) && !entry_available) { earliest_txtime = txtime; entry_found = entry; n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); *interval_start = ktime_add(curr_intv_start, n * cycle); *interval_end = ktime_add(curr_intv_end, n * cycle); } } return entry_found; } static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t interval_start, interval_end; struct sched_entry *entry; rcu_read_lock(); sched = rcu_dereference(q->oper_sched); admin = rcu_dereference(q->admin_sched); entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, &interval_start, &interval_end, true); rcu_read_unlock(); return entry; } /* This returns the tstamp value set by TCP in terms of the set clock. */ static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) { unsigned int offset = skb_network_offset(skb); const struct ipv6hdr *ipv6h; const struct iphdr *iph; struct ipv6hdr _ipv6h; ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h) return 0; if (ipv6h->version == 4) { iph = (struct iphdr *)ipv6h; offset += iph->ihl * 4; /* special-case 6in4 tunnelling, as that is a common way to get * v6 connectivity in the home */ if (iph->protocol == IPPROTO_IPV6) { ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) return 0; } else if (iph->protocol != IPPROTO_TCP) { return 0; } } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { return 0; } return taprio_mono_to_any(q, skb->skb_mstamp_ns); } /* There are a few scenarios where we will have to modify the txtime from * what is read from next_txtime in sched_entry. They are: * 1. If txtime is in the past, * a. The gate for the traffic class is currently open and packet can be * transmitted before it closes, schedule the packet right away. * b. If the gate corresponding to the traffic class is going to open later * in the cycle, set the txtime of packet to the interval start. * 2. If txtime is in the future, there are packets corresponding to the * current traffic class waiting to be transmitted. So, the following * possibilities exist: * a. We can transmit the packet before the window containing the txtime * closes. * b. The window might close before the transmission can be completed * successfully. So, schedule the packet in the next open window. */ static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) { ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t minimum_time, now, txtime; int len, packet_transmit_time; struct sched_entry *entry; bool sched_changed; now = taprio_get_time(q); minimum_time = ktime_add_ns(now, q->txtime_delay); tcp_tstamp = get_tcp_tstamp(q, skb); minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); rcu_read_lock(); admin = rcu_dereference(q->admin_sched); sched = rcu_dereference(q->oper_sched); if (admin && ktime_after(minimum_time, admin->base_time)) switch_schedules(q, &admin, &sched); /* Until the schedule starts, all the queues are open */ if (!sched || ktime_before(minimum_time, sched->base_time)) { txtime = minimum_time; goto done; } len = qdisc_pkt_len(skb); packet_transmit_time = length_to_duration(q, len); do { sched_changed = false; entry = find_entry_to_transmit(skb, sch, sched, admin, minimum_time, &interval_start, &interval_end, false); if (!entry) { txtime = 0; goto done; } txtime = entry->next_txtime; txtime = max_t(ktime_t, txtime, minimum_time); txtime = max_t(ktime_t, txtime, interval_start); if (admin && admin != sched && ktime_after(txtime, admin->base_time)) { sched = admin; sched_changed = true; continue; } transmit_end_time = ktime_add(txtime, packet_transmit_time); minimum_time = transmit_end_time; /* Update the txtime of current entry to the next time it's * interval starts. */ if (ktime_after(transmit_end_time, interval_end)) entry->next_txtime = ktime_add(interval_start, sched->cycle_time); } while (sched_changed || ktime_after(transmit_end_time, interval_end)); entry->next_txtime = transmit_end_time; done: rcu_read_unlock(); return txtime; } /* Devices with full offload are expected to honor this in hardware */ static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *sched; int prio = skb->priority; bool exceeds = false; u8 tc; tc = netdev_get_prio_tc_map(dev, prio); rcu_read_lock(); sched = rcu_dereference(q->oper_sched); if (sched && skb->len > sched->max_frm_len[tc]) exceeds = true; rcu_read_unlock(); return exceeds; } static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); /* sk_flags are only safe to use on full sockets. */ if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { if (!is_valid_interval(skb, sch)) return qdisc_drop(skb, sch, to_free); } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { skb->tstamp = get_packet_txtime(skb, sch); if (!skb->tstamp) return qdisc_drop(skb, sch, to_free); } qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; return qdisc_enqueue(skb, child, to_free); } static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); netdev_features_t features = netif_skb_features(skb); struct sk_buff *segs, *nskb; int ret; segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) return qdisc_drop(skb, sch, to_free); skb_list_walk_safe(segs, segs, nskb) { skb_mark_not_on_list(segs); qdisc_skb_cb(segs)->pkt_len = segs->len; slen += segs->len; /* FIXME: we should be segmenting to a smaller size * rather than dropping these */ if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) ret = qdisc_drop(segs, sch, to_free); else ret = taprio_enqueue_one(segs, sch, child, to_free); if (ret != NET_XMIT_SUCCESS) { if (net_xmit_drop_count(ret)) qdisc_qstats_drop(sch); } else { numsegs++; } } if (numsegs > 1) qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); consume_skb(skb); return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); struct Qdisc *child; int queue; queue = skb_get_queue_mapping(skb); child = q->qdiscs[queue]; if (unlikely(!child)) return qdisc_drop(skb, sch, to_free); if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { /* Large packets might not be transmitted when the transmission * duration exceeds any configured interval. Therefore, segment * the skb into smaller chunks. Drivers with full offload are * expected to handle this in hardware. */ if (skb_is_gso(skb)) return taprio_enqueue_segmented(skb, sch, child, to_free); return qdisc_drop(skb, sch, to_free); } return taprio_enqueue_one(skb, sch, child, to_free); } static struct sk_buff *taprio_peek(struct Qdisc *sch) { WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); return NULL; } static void taprio_set_budgets(struct taprio_sched *q, struct sched_gate_list *sched, struct sched_entry *entry) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); int tc, budget; for (tc = 0; tc < num_tc; tc++) { /* Traffic classes which never close have infinite budget */ if (entry->gate_duration[tc] == sched->cycle_time) budget = INT_MAX; else budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); atomic_set(&entry->budget[tc], budget); } } /* When an skb is sent, it consumes from the budget of all traffic classes */ static int taprio_update_budgets(struct sched_entry *entry, size_t len, int tc_consumed, int num_tc) { int tc, budget, new_budget = 0; for (tc = 0; tc < num_tc; tc++) { budget = atomic_read(&entry->budget[tc]); /* Don't consume from infinite budget */ if (budget == INT_MAX) { if (tc == tc_consumed) new_budget = budget; continue; } if (tc == tc_consumed) new_budget = atomic_sub_return(len, &entry->budget[tc]); else atomic_sub(len, &entry->budget[tc]); } return new_budget; } static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct Qdisc *child = q->qdiscs[txq]; int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; ktime_t guard; int prio; int len; u8 tc; if (unlikely(!child)) return NULL; if (TXTIME_ASSIST_IS_ENABLED(q->flags)) goto skip_peek_checks; skb = child->ops->peek(child); if (!skb) return NULL; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) return NULL; len = qdisc_pkt_len(skb); guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); /* In the case that there's no gate entry, there's no * guard band ... */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && !taprio_entry_allows_tx(guard, entry, tc)) return NULL; /* ... and no budget. */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && taprio_update_budgets(entry, len, tc, num_tc) < 0) return NULL; skip_peek_checks: skb = child->ops->dequeue(child); if (unlikely(!skb)) return NULL; qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; return skb; } static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) { int offset = dev->tc_to_txq[tc].offset; int count = dev->tc_to_txq[tc].count; (*txq)++; if (*txq == offset + count) *txq = offset; } /* Prioritize higher traffic classes, and select among TXQs belonging to the * same TC using round robin */ static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; int tc; for (tc = num_tc - 1; tc >= 0; tc--) { int first_txq = q->cur_txq[tc]; if (!(gate_mask & BIT(tc))) continue; do { skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], entry, gate_mask); taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); if (q->cur_txq[tc] >= dev->num_tx_queues) q->cur_txq[tc] = first_txq; if (skb) return skb; } while (q->cur_txq[tc] != first_txq); } return NULL; } /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic * class other than to determine whether the gate is open or not */ static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct net_device *dev = qdisc_dev(sch); struct sk_buff *skb; int i; for (i = 0; i < dev->num_tx_queues; i++) { skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); if (skb) return skb; } return NULL; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static struct sk_buff *taprio_dequeue(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sk_buff *skb = NULL; struct sched_entry *entry; u32 gate_mask; rcu_read_lock(); entry = rcu_dereference(q->current_entry); /* if there's no entry, it means that the schedule didn't * start yet, so force all gates to be open, this is in * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 * "AdminGateStates" */ gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; if (!gate_mask) goto done; if (static_branch_unlikely(&taprio_have_broken_mqprio) && !static_branch_likely(&taprio_have_working_mqprio)) { /* Single NIC kind which is broken */ skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); } else if (static_branch_likely(&taprio_have_working_mqprio) && !static_branch_unlikely(&taprio_have_broken_mqprio)) { /* Single NIC kind which prioritizes properly */ skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } else { /* Mixed NIC kinds present in system, need dynamic testing */ if (q->broken_mqprio) skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); else skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } done: rcu_read_unlock(); return skb; } static bool should_restart_cycle(const struct sched_gate_list *oper, const struct sched_entry *entry) { if (list_is_last(&entry->list, &oper->entries)) return true; if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) return true; return false; } static bool should_change_schedules(const struct sched_gate_list *admin, const struct sched_gate_list *oper, ktime_t end_time) { ktime_t next_base_time, extension_time; if (!admin) return false; next_base_time = sched_base_time(admin); /* This is the simple case, the end_time would fall after * the next schedule base_time. */ if (ktime_compare(next_base_time, end_time) <= 0) return true; /* This is the cycle_time_extension case, if the end_time * plus the amount that can be extended would fall after the * next schedule base_time, we can extend the current schedule * for that amount. */ extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about * how precisely the extension should be made. So after * conformance testing, this logic may change. */ if (ktime_compare(next_base_time, extension_time) <= 0) return true; return false; } static enum hrtimer_restart advance_sched(struct hrtimer *timer) { struct taprio_sched *q = container_of(timer, struct taprio_sched, advance_timer); struct net_device *dev = qdisc_dev(q->root); struct sched_gate_list *oper, *admin; int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *next; struct Qdisc *sch = q->root; ktime_t end_time; int tc; spin_lock(&q->current_entry_lock); entry = rcu_dereference_protected(q->current_entry, lockdep_is_held(&q->current_entry_lock)); oper = rcu_dereference_protected(q->oper_sched, lockdep_is_held(&q->current_entry_lock)); admin = rcu_dereference_protected(q->admin_sched, lockdep_is_held(&q->current_entry_lock)); if (!oper) switch_schedules(q, &admin, &oper); /* This can happen in two cases: 1. this is the very first run * of this function (i.e. we weren't running any schedule * previously); 2. The previous schedule just ended. The first * entry of all schedules are pre-calculated during the * schedule initialization. */ if (unlikely(!entry || entry->end_time == oper->base_time)) { next = list_first_entry(&oper->entries, struct sched_entry, list); end_time = next->end_time; goto first_run; } if (should_restart_cycle(oper, entry)) { next = list_first_entry(&oper->entries, struct sched_entry, list); oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, oper->cycle_time); } else { next = list_next_entry(entry, list); } end_time = ktime_add_ns(entry->end_time, next->interval); end_time = min_t(ktime_t, end_time, oper->cycle_end_time); for (tc = 0; tc < num_tc; tc++) { if (next->gate_duration[tc] == oper->cycle_time) next->gate_close_time[tc] = KTIME_MAX; else next->gate_close_time[tc] = ktime_add_ns(entry->end_time, next->gate_duration[tc]); } if (should_change_schedules(admin, oper, end_time)) { /* Set things so the next time this runs, the new * schedule runs. */ end_time = sched_base_time(admin); switch_schedules(q, &admin, &oper); } next->end_time = end_time; taprio_set_budgets(q, oper, next); first_run: rcu_assign_pointer(q->current_entry, next); spin_unlock(&q->current_entry_lock); hrtimer_set_expires(&q->advance_timer, end_time); rcu_read_lock(); __netif_schedule(sch); rcu_read_unlock(); return HRTIMER_RESTART; } static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, }; static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, TC_FP_EXPRESS, TC_FP_PREEMPTIBLE), }; static const struct netlink_range_validation_signed taprio_cycle_time_range = { .min = 0, .max = INT_MAX, }; static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { [TCA_TAPRIO_ATTR_PRIOMAP] = { .len = sizeof(struct tc_mqprio_qopt) }, [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_FLAGS] = NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS), [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, }; static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, struct sched_entry *entry, struct netlink_ext_ack *extack) { int min_duration = length_to_duration(q, ETH_ZLEN); u32 interval = 0; if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) entry->command = nla_get_u8( tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) entry->gate_mask = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) interval = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); /* The interval should allow at least the minimum ethernet * frame to go out. */ if (interval < min_duration) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; return 0; } static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, struct sched_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_sched_entry(q, tb, entry, extack); } static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { struct nlattr *n; int err, rem; int i = 0; if (!list) return -EINVAL; nla_for_each_nested(n, list, rem) { struct sched_entry *entry; if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); return -ENOMEM; } err = parse_sched_entry(q, n, entry, i, extack); if (err < 0) { kfree(entry); return err; } list_add_tail(&entry->list, &sched->entries); i++; } sched->num_entries = i; return i; } static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, struct sched_gate_list *new, struct netlink_ext_ack *extack) { int err = 0; if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); return -ENOTSUPP; } if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); if (err < 0) return err; if (!new->cycle_time) { struct sched_entry *entry; ktime_t cycle = 0; list_for_each_entry(entry, &new->entries, list) cycle = ktime_add_ns(cycle, entry->interval); if (cycle < 0 || cycle > INT_MAX) { NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); return -EINVAL; } new->cycle_time = cycle; } if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) { NL_SET_ERR_MSG(extack, "'cycle_time' is too small"); return -EINVAL; } taprio_calculate_gate_durations(q, new); return 0; } static int taprio_parse_mqprio_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt, struct netlink_ext_ack *extack, u32 taprio_flags) { bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); if (!qopt) { if (!dev->num_tc) { NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); return -EINVAL; } return 0; } /* taprio imposes that traffic classes map 1:n to tx queues */ if (qopt->num_tc > dev->num_tx_queues) { NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); return -EINVAL; } /* For some reason, in txtime-assist mode, we allow TXQ ranges for * different TCs to overlap, and just validate the TXQ ranges. */ return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, extack); } static int taprio_get_start_time(struct Qdisc *sch, struct sched_gate_list *sched, ktime_t *start) { struct taprio_sched *q = qdisc_priv(sch); ktime_t now, base, cycle; s64 n; base = sched_base_time(sched); now = taprio_get_time(q); if (ktime_after(base, now)) { *start = base; return 0; } cycle = sched->cycle_time; /* The qdisc is expected to have at least one sched_entry. Moreover, * any entry must have 'interval' > 0. Thus if the cycle time is zero, * something went really wrong. In that case, we should warn about this * inconsistent state and return error. */ if (WARN_ON(!cycle)) return -EFAULT; /* Schedule the start time for the beginning of the next * cycle. */ n = div64_s64(ktime_sub_ns(now, base), cycle); *start = ktime_add_ns(base, (n + 1) * cycle); return 0; } static void setup_first_end_time(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *first; ktime_t cycle; int tc; first = list_first_entry(&sched->entries, struct sched_entry, list); cycle = sched->cycle_time; /* FIXME: find a better place to do this */ sched->cycle_end_time = ktime_add_ns(base, cycle); first->end_time = ktime_add_ns(base, first->interval); taprio_set_budgets(q, sched, first); for (tc = 0; tc < num_tc; tc++) { if (first->gate_duration[tc] == sched->cycle_time) first->gate_close_time[tc] = KTIME_MAX; else first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); } rcu_assign_pointer(q->current_entry, NULL); } static void taprio_start_sched(struct Qdisc *sch, ktime_t start, struct sched_gate_list *new) { struct taprio_sched *q = qdisc_priv(sch); ktime_t expires; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) return; expires = hrtimer_get_expires(&q->advance_timer); if (expires == 0) expires = KTIME_MAX; /* If the new schedule starts before the next expiration, we * reprogram it to the earliest one, so we change the admin * schedule to the operational one at the right time. */ start = min_t(ktime_t, start, expires); hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); } static void taprio_set_picos_per_byte(struct net_device *dev, struct taprio_sched *q) { struct ethtool_link_ksettings ecmd; int speed = SPEED_10; int picos_per_byte; int err; err = __ethtool_get_link_ksettings(dev, &ecmd); if (err < 0) goto skip; if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) speed = ecmd.base.speed; skip: picos_per_byte = (USEC_PER_SEC * 8) / speed; atomic64_set(&q->picos_per_byte, picos_per_byte); netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->picos_per_byte), ecmd.base.speed); } static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct sched_gate_list *oper, *admin; struct qdisc_size_table *stab; struct taprio_sched *q; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; list_for_each_entry(q, &taprio_list, taprio_list) { if (dev != qdisc_dev(q->root)) continue; taprio_set_picos_per_byte(dev, q); stab = rtnl_dereference(q->root->stab); oper = rtnl_dereference(q->oper_sched); if (oper) taprio_update_queue_max_sdu(q, oper, stab); admin = rtnl_dereference(q->admin_sched); if (admin) taprio_update_queue_max_sdu(q, admin, stab); break; } return NOTIFY_DONE; } static void setup_txtime(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct sched_entry *entry; u64 interval = 0; list_for_each_entry(entry, &sched->entries, list) { entry->next_txtime = ktime_add_ns(base, interval); interval += entry->interval; } } static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) { struct __tc_taprio_qopt_offload *__offload; __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), GFP_KERNEL); if (!__offload) return NULL; refcount_set(&__offload->users, 1); return &__offload->offload; } struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); refcount_inc(&__offload->users); return offload; } EXPORT_SYMBOL_GPL(taprio_offload_get); void taprio_offload_free(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); if (!refcount_dec_and_test(&__offload->users)) return; kfree(__offload); } EXPORT_SYMBOL_GPL(taprio_offload_free); /* The function will only serve to keep the pointers to the "oper" and "admin" * schedules valid in relation to their base times, so when calling dump() the * users looks at the right schedules. * When using full offload, the admin configuration is promoted to oper at the * base_time in the PHC time domain. But because the system time is not * necessarily in sync with that, we can't just trigger a hrtimer to call * switch_schedules at the right hardware time. * At the moment we call this by hand right away from taprio, but in the future * it will be useful to create a mechanism for drivers to notify taprio of the * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). * This is left as TODO. */ static void taprio_offload_config_changed(struct taprio_sched *q) { struct sched_gate_list *oper, *admin; oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); switch_schedules(q, &admin, &oper); } static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) { u32 i, queue_mask = 0; for (i = 0; i < dev->num_tc; i++) { u32 offset, count; if (!(tc_mask & BIT(i))) continue; offset = dev->tc_to_txq[i].offset; count = dev->tc_to_txq[i].count; queue_mask |= GENMASK(offset + count - 1, offset); } return queue_mask; } static void taprio_sched_to_offload(struct net_device *dev, struct sched_gate_list *sched, struct tc_taprio_qopt_offload *offload, const struct tc_taprio_caps *caps) { struct sched_entry *entry; int i = 0; offload->base_time = sched->base_time; offload->cycle_time = sched->cycle_time; offload->cycle_time_extension = sched->cycle_time_extension; list_for_each_entry(entry, &sched->entries, list) { struct tc_taprio_sched_entry *e = &offload->entries[i]; e->command = entry->command; e->interval = entry->interval; if (caps->gate_mask_per_txq) e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); else e->gate_mask = entry->gate_mask; i++; } offload->num_entries = i; } static void taprio_detect_broken_mqprio(struct taprio_sched *q) { struct net_device *dev = qdisc_dev(q->root); struct tc_taprio_caps caps; qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); q->broken_mqprio = caps.broken_mqprio; if (q->broken_mqprio) static_branch_inc(&taprio_have_broken_mqprio); else static_branch_inc(&taprio_have_working_mqprio); q->detected_mqprio = true; } static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) { if (!q->detected_mqprio) return; if (q->broken_mqprio) static_branch_dec(&taprio_have_broken_mqprio); else static_branch_dec(&taprio_have_working_mqprio); } static int taprio_enable_offload(struct net_device *dev, struct taprio_sched *q, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; struct tc_taprio_caps caps; int tc, err = 0; if (!ops->ndo_setup_tc) { NL_SET_ERR_MSG(extack, "Device does not support taprio offload"); return -EOPNOTSUPP; } qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); if (!caps.supports_queue_max_sdu) { for (tc = 0; tc < TC_MAX_QUEUE; tc++) { if (q->max_sdu[tc]) { NL_SET_ERR_MSG_MOD(extack, "Device does not handle queueMaxSDU"); return -EOPNOTSUPP; } } } offload = taprio_offload_alloc(sched->num_entries); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory for enabling offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_REPLACE; offload->extack = extack; mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); offload->mqprio.extack = extack; taprio_sched_to_offload(dev, sched, offload, &caps); mqprio_fp_to_offload(q->fp, &offload->mqprio); for (tc = 0; tc < TC_MAX_QUEUE; tc++) offload->max_sdu[tc] = q->max_sdu[tc]; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG_WEAK(extack, "Device failed to setup taprio offload"); goto done; } q->offloaded = true; done: /* The offload structure may linger around via a reference taken by the * device driver, so clear up the netlink extack pointer so that the * driver isn't tempted to dereference data which stopped being valid */ offload->extack = NULL; offload->mqprio.extack = NULL; taprio_offload_free(offload); return err; } static int taprio_disable_offload(struct net_device *dev, struct taprio_sched *q, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; int err; if (!q->offloaded) return 0; offload = taprio_offload_alloc(0); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory to disable offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_DESTROY; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG(extack, "Device failed to disable offload"); goto out; } q->offloaded = false; out: taprio_offload_free(offload); return err; } /* If full offload is enabled, the only possible clockid is the net device's * PHC. For that reason, specifying a clockid through netlink is incorrect. * For txtime-assist, it is implicitly assumed that the device's PHC is kept * in sync with the specified clockid via a user space daemon such as phc2sys. * For both software taprio and txtime-assist, the clockid is used for the * hrtimer that advances the schedule and hence mandatory. */ static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int err = -EINVAL; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { const struct ethtool_ops *ops = dev->ethtool_ops; struct kernel_ethtool_ts_info info = { .cmd = ETHTOOL_GET_TS_INFO, .phc_index = -1, }; if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { NL_SET_ERR_MSG(extack, "The 'clockid' cannot be specified for full offload"); goto out; } if (ops && ops->get_ts_info) err = ops->get_ts_info(dev, &info); if (err || info.phc_index < 0) { NL_SET_ERR_MSG(extack, "Device does not have a PTP clock"); err = -ENOTSUPP; goto out; } } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); enum tk_offsets tk_offset; /* We only support static clockids and we don't allow * for it to be modified after the first init. */ if (clockid < 0 || (q->clockid != -1 && q->clockid != clockid)) { NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); err = -ENOTSUPP; goto out; } switch (clockid) { case CLOCK_REALTIME: tk_offset = TK_OFFS_REAL; break; case CLOCK_MONOTONIC: tk_offset = TK_OFFS_MAX; break; case CLOCK_BOOTTIME: tk_offset = TK_OFFS_BOOT; break; case CLOCK_TAI: tk_offset = TK_OFFS_TAI; break; default: NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); err = -EINVAL; goto out; } /* This pairs with READ_ONCE() in taprio_mono_to_any */ WRITE_ONCE(q->tk_offset, tk_offset); q->clockid = clockid; } else { NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); goto out; } /* Everything went ok, return success. */ err = 0; out: return err; } static int taprio_parse_tc_entry(struct Qdisc *sch, struct nlattr *opt, u32 max_sdu[TC_QOPT_MAX_QUEUE], u32 fp[TC_QOPT_MAX_QUEUE], unsigned long *seen_tcs, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; struct net_device *dev = qdisc_dev(sch); int err, tc; u32 val; err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, taprio_tc_policy, extack); if (err < 0) return err; if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); return -EINVAL; } tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); if (tc >= TC_QOPT_MAX_QUEUE) { NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); return -ERANGE; } if (*seen_tcs & BIT(tc)) { NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); return -EINVAL; } *seen_tcs |= BIT(tc); if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); if (val > dev->max_mtu) { NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); return -ERANGE; } max_sdu[tc] = val; } if (tb[TCA_TAPRIO_TC_ENTRY_FP]) fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); return 0; } static int taprio_parse_tc_entries(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); u32 max_sdu[TC_QOPT_MAX_QUEUE]; bool have_preemption = false; unsigned long seen_tcs = 0; u32 fp[TC_QOPT_MAX_QUEUE]; struct nlattr *n; int tc, rem; int err = 0; for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { max_sdu[tc] = q->max_sdu[tc]; fp[tc] = q->fp[tc]; } nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) { err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, extack); if (err) return err; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { q->max_sdu[tc] = max_sdu[tc]; q->fp[tc] = fp[tc]; if (fp[tc] != TC_FP_EXPRESS) have_preemption = true; } if (have_preemption) { if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG(extack, "Preemption only supported with full offload"); return -EOPNOTSUPP; } if (!ethtool_dev_mm_supported(dev)) { NL_SET_ERR_MSG(extack, "Device does not support preemption"); return -EOPNOTSUPP; } } return err; } static int taprio_mqprio_cmp(const struct net_device *dev, const struct tc_mqprio_qopt *mqprio) { int i; if (!mqprio || mqprio->num_tc != dev->num_tc) return -1; for (i = 0; i < mqprio->num_tc; i++) if (dev->tc_to_txq[i].count != mqprio->count[i] || dev->tc_to_txq[i].offset != mqprio->offset[i]) return -1; for (i = 0; i <= TC_BITMASK; i++) if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) return -1; return 0; } static int taprio_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct qdisc_size_table *stab = rtnl_dereference(sch->stab); struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; struct sched_gate_list *oper, *admin, *new_admin; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt *mqprio = NULL; unsigned long flags; u32 taprio_flags; ktime_t start; int i, err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, taprio_policy, extack); if (err < 0) return err; if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); /* The semantics of the 'flags' argument in relation to 'change()' * requests, are interpreted following two rules (which are applied in * this order): (1) an omitted 'flags' argument is interpreted as * zero; (2) the 'flags' of a "running" taprio instance cannot be * changed. */ taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0); /* txtime-assist and full offload are mutually exclusive */ if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) { NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS], "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive"); return -EINVAL; } if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) { NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); return -EOPNOTSUPP; } q->flags = taprio_flags; /* Needed for length_to_duration() during netlink attribute parsing */ taprio_set_picos_per_byte(dev, q); err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); if (err < 0) return err; err = taprio_parse_tc_entries(sch, opt, extack); if (err) return err; new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); if (!new_admin) { NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); return -ENOMEM; } INIT_LIST_HEAD(&new_admin->entries); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); /* no changes - no new mqprio settings */ if (!taprio_mqprio_cmp(dev, mqprio)) mqprio = NULL; if (mqprio && (oper || admin)) { NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); err = -ENOTSUPP; goto free_sched; } if (mqprio) { err = netdev_set_num_tc(dev, mqprio->num_tc); if (err) goto free_sched; for (i = 0; i < mqprio->num_tc; i++) { netdev_set_tc_queue(dev, i, mqprio->count[i], mqprio->offset[i]); q->cur_txq[i] = mqprio->offset[i]; } /* Always use supplied priority mappings */ for (i = 0; i <= TC_BITMASK; i++) netdev_set_prio_tc_map(dev, i, mqprio->prio_tc_map[i]); } err = parse_taprio_schedule(q, tb, new_admin, extack); if (err < 0) goto free_sched; if (new_admin->num_entries == 0) { NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); err = -EINVAL; goto free_sched; } err = taprio_parse_clockid(sch, tb, extack); if (err < 0) goto free_sched; taprio_update_queue_max_sdu(q, new_admin, stab); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) err = taprio_enable_offload(dev, q, new_admin, extack); else err = taprio_disable_offload(dev, q, extack); if (err) goto free_sched; /* Protects against enqueue()/dequeue() */ spin_lock_bh(qdisc_lock(sch)); if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); err = -EINVAL; goto unlock; } q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); } if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && !FULL_OFFLOAD_IS_ENABLED(q->flags) && !hrtimer_active(&q->advance_timer)) { hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; } err = taprio_get_start_time(sch, new_admin, &start); if (err < 0) { NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); goto unlock; } setup_txtime(q, new_admin, start); if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { if (!oper) { rcu_assign_pointer(q->oper_sched, new_admin); err = 0; new_admin = NULL; goto unlock; } /* Not going to race against advance_sched(), but still */ admin = rcu_replace_pointer(q->admin_sched, new_admin, lockdep_rtnl_is_held()); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); } else { setup_first_end_time(q, new_admin, start); /* Protects against advance_sched() */ spin_lock_irqsave(&q->current_entry_lock, flags); taprio_start_sched(sch, start, new_admin); admin = rcu_replace_pointer(q->admin_sched, new_admin, lockdep_rtnl_is_held()); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); spin_unlock_irqrestore(&q->current_entry_lock, flags); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) taprio_offload_config_changed(q); } new_admin = NULL; err = 0; if (!stab) NL_SET_ERR_MSG_MOD(extack, "Size table not specified, frame length estimations may be inaccurate"); unlock: spin_unlock_bh(qdisc_lock(sch)); free_sched: if (new_admin) call_rcu(&new_admin->rcu, taprio_free_sched_cb); return err; } static void taprio_reset(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i; hrtimer_cancel(&q->advance_timer); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) if (q->qdiscs[i]) qdisc_reset(q->qdiscs[i]); } } static void taprio_destroy(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; unsigned int i; list_del(&q->taprio_list); /* Note that taprio_reset() might not be called if an error * happens in qdisc_create(), after taprio_init() has been called. */ hrtimer_cancel(&q->advance_timer); qdisc_synchronize(sch); taprio_disable_offload(dev, q, NULL); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) qdisc_put(q->qdiscs[i]); kfree(q->qdiscs); } q->qdiscs = NULL; netdev_reset_tc(dev); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); if (oper) call_rcu(&oper->rcu, taprio_free_sched_cb); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); taprio_cleanup_broken_mqprio(q); } static int taprio_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i, tc; spin_lock_init(&q->current_entry_lock); hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; q->root = sch; /* We only support static clockids. Use an invalid value as default * and get the valid one on taprio_change(). */ q->clockid = -1; q->flags = TAPRIO_FLAGS_INVALID; list_add(&q->taprio_list, &taprio_list); if (sch->parent != TC_H_ROOT) { NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); return -EOPNOTSUPP; } if (!netif_is_multiqueue(dev)) { NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); return -EOPNOTSUPP; } q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), GFP_KERNEL); if (!q->qdiscs) return -ENOMEM; if (!opt) return -EINVAL; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; struct Qdisc *qdisc; dev_queue = netdev_get_tx_queue(dev, i); qdisc = qdisc_create_dflt(dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(TC_H_MAJ(sch->handle), TC_H_MIN(i + 1)), extack); if (!qdisc) return -ENOMEM; if (i < dev->real_num_tx_queues) qdisc_hash_add(qdisc, false); q->qdiscs[i] = qdisc; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) q->fp[tc] = TC_FP_EXPRESS; taprio_detect_broken_mqprio(q); return taprio_change(sch, opt, extack); } static void taprio_attach(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx; /* Attach underlying qdisc */ for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); struct Qdisc *old, *dev_queue_qdisc; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { struct Qdisc *qdisc = q->qdiscs[ntx]; /* In offload mode, the root taprio qdisc is bypassed * and the netdev TX queues see the children directly */ qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; dev_queue_qdisc = qdisc; } else { /* In software mode, attach the root taprio qdisc * to all netdev TX queues, so that dev_qdisc_enqueue() * goes through taprio_enqueue(). */ dev_queue_qdisc = sch; } old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); /* The qdisc's refcount requires to be elevated once * for each netdev TX queue it is grafted onto */ qdisc_refcount_inc(dev_queue_qdisc); if (old) qdisc_put(old); } } static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, unsigned long cl) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return netdev_get_tx_queue(dev, ntx); } static int taprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return -EINVAL; if (dev->flags & IFF_UP) dev_deactivate(dev); /* In offload mode, the child Qdisc is directly attached to the netdev * TX queue, and thus, we need to keep its refcount elevated in order * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. * However, save the reference to the new qdisc in the private array in * both software and offload cases, to have an up-to-date reference to * our children. */ *old = q->qdiscs[cl - 1]; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); if (new) qdisc_refcount_inc(new); if (*old) qdisc_put(*old); } q->qdiscs[cl - 1] = new; if (new) new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; if (dev->flags & IFF_UP) dev_activate(dev); return 0; } static int dump_entry(struct sk_buff *msg, const struct sched_entry *entry) { struct nlattr *item; item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, entry->gate_mask)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; return nla_nest_end(msg, item); nla_put_failure: nla_nest_cancel(msg, item); return -1; } static int dump_schedule(struct sk_buff *msg, const struct sched_gate_list *root) { struct nlattr *entry_list; struct sched_entry *entry; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, root->base_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, root->cycle_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, root->cycle_time_extension, TCA_TAPRIO_PAD)) return -1; entry_list = nla_nest_start_noflag(msg, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); if (!entry_list) goto error_nest; list_for_each_entry(entry, &root->entries, list) { if (dump_entry(msg, entry) < 0) goto error_nest; } nla_nest_end(msg, entry_list); return 0; error_nest: nla_nest_cancel(msg, entry_list); return -1; } static int taprio_dump_tc_entries(struct sk_buff *skb, struct taprio_sched *q, struct sched_gate_list *sched) { struct nlattr *n; int tc; for (tc = 0; tc < TC_MAX_QUEUE; tc++) { n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); if (!n) return -EMSGSIZE; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, sched->max_sdu[tc])) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) goto nla_put_failure; nla_nest_end(skb, n); } return 0; nla_put_failure: nla_nest_cancel(skb, n); return -EMSGSIZE; } static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) { if (val == TAPRIO_STAT_NOT_SET) return 0; if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) return -EMSGSIZE; return 0; } static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, struct tc_taprio_qopt_offload *offload, struct tc_taprio_qopt_stats *stats) { struct net_device *dev = qdisc_dev(sch); const struct net_device_ops *ops; struct sk_buff *skb = d->skb; struct nlattr *xstats; int err; ops = qdisc_dev(sch)->netdev_ops; /* FIXME I could use qdisc_offload_dump_helper(), but that messes * with sch->flags depending on whether the device reports taprio * stats, and I'm not sure whether that's a good idea, considering * that stats are optional to the offload itself */ if (!ops->ndo_setup_tc) return 0; memset(stats, 0xff, sizeof(*stats)); err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err == -EOPNOTSUPP) return 0; if (err) return err; xstats = nla_nest_start(skb, TCA_STATS_APP); if (!xstats) goto err; if (taprio_put_stat(skb, stats->window_drops, TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || taprio_put_stat(skb, stats->tx_overruns, TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) goto err_cancel; nla_nest_end(skb, xstats); return 0; err_cancel: nla_nest_cancel(skb, xstats); err: return -EMSGSIZE; } static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_STATS, }; return taprio_dump_xstats(sch, d, &offload, &offload.stats); } static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; struct tc_mqprio_qopt opt = { 0 }; struct nlattr *nest, *sched_nest; mqprio_qopt_reconstruct(dev, &opt); nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!nest) goto start_error; if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) goto options_error; if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) goto options_error; if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) goto options_error; if (q->txtime_delay && nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) goto options_error; rcu_read_lock(); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); if (oper && taprio_dump_tc_entries(skb, q, oper)) goto options_error_rcu; if (oper && dump_schedule(skb, oper)) goto options_error_rcu; if (!admin) goto done; sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); if (!sched_nest) goto options_error_rcu; if (dump_schedule(skb, admin)) goto admin_error; nla_nest_end(skb, sched_nest); done: rcu_read_unlock(); return nla_nest_end(skb, nest); admin_error: nla_nest_cancel(skb, sched_nest); options_error_rcu: rcu_read_unlock(); options_error: nla_nest_cancel(skb, nest); start_error: return -ENOSPC; } static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return q->qdiscs[ntx]; } static unsigned long taprio_find(struct Qdisc *sch, u32 classid) { unsigned int ntx = TC_H_MIN(classid); if (!taprio_queue_get(sch, ntx)) return 0; return ntx; } static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct Qdisc *child = taprio_leaf(sch, cl); tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle |= TC_H_MIN(cl); tcm->tcm_info = child->handle; return 0; } static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) __releases(d->lock) __acquires(d->lock) { struct Qdisc *child = taprio_leaf(sch, cl); struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_QUEUE_STATS, .queue_stats = { .queue = cl - 1, }, }; if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || qdisc_qstats_copy(d, child) < 0) return -1; return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); } static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx; if (arg->stop) return; arg->count = arg->skip; for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) break; } } static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, struct tcmsg *tcm) { return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); } static const struct Qdisc_class_ops taprio_class_ops = { .graft = taprio_graft, .leaf = taprio_leaf, .find = taprio_find, .walk = taprio_walk, .dump = taprio_dump_class, .dump_stats = taprio_dump_class_stats, .select_queue = taprio_select_queue, }; static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { .cl_ops = &taprio_class_ops, .id = "taprio", .priv_size = sizeof(struct taprio_sched), .init = taprio_init, .change = taprio_change, .destroy = taprio_destroy, .reset = taprio_reset, .attach = taprio_attach, .peek = taprio_peek, .dequeue = taprio_dequeue, .enqueue = taprio_enqueue, .dump = taprio_dump, .dump_stats = taprio_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("taprio"); static struct notifier_block taprio_device_notifier = { .notifier_call = taprio_dev_notifier, }; static int __init taprio_module_init(void) { int err = register_netdevice_notifier(&taprio_device_notifier); if (err) return err; return register_qdisc(&taprio_qdisc_ops); } static void __exit taprio_module_exit(void) { unregister_qdisc(&taprio_qdisc_ops); unregister_netdevice_notifier(&taprio_device_notifier); } module_init(taprio_module_init); module_exit(taprio_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Time Aware Priority qdisc"); |
| 905 905 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/blkdev.h> #include <linux/wait.h> #include <linux/rbtree.h> #include <linux/kthread.h> #include <linux/backing-dev.h> #include <linux/blk-cgroup.h> #include <linux/freezer.h> #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/writeback.h> #include <linux/device.h> #include <trace/events/writeback.h> #include "internal.h" struct backing_dev_info noop_backing_dev_info; EXPORT_SYMBOL_GPL(noop_backing_dev_info); static const char *bdi_unknown_name = "(unknown)"; /* * bdi_lock protects bdi_tree and updates to bdi_list. bdi_list has RCU * reader side locking. */ DEFINE_SPINLOCK(bdi_lock); static u64 bdi_id_cursor; static struct rb_root bdi_tree = RB_ROOT; LIST_HEAD(bdi_list); /* bdi_wq serves all asynchronous writeback tasks */ struct workqueue_struct *bdi_wq; #ifdef CONFIG_DEBUG_FS #include <linux/debugfs.h> #include <linux/seq_file.h> struct wb_stats { unsigned long nr_dirty; unsigned long nr_io; unsigned long nr_more_io; unsigned long nr_dirty_time; unsigned long nr_writeback; unsigned long nr_reclaimable; unsigned long nr_dirtied; unsigned long nr_written; unsigned long dirty_thresh; unsigned long wb_thresh; }; static struct dentry *bdi_debug_root; static void bdi_debug_init(void) { bdi_debug_root = debugfs_create_dir("bdi", NULL); } static void collect_wb_stats(struct wb_stats *stats, struct bdi_writeback *wb) { struct inode *inode; spin_lock(&wb->list_lock); list_for_each_entry(inode, &wb->b_dirty, i_io_list) stats->nr_dirty++; list_for_each_entry(inode, &wb->b_io, i_io_list) stats->nr_io++; list_for_each_entry(inode, &wb->b_more_io, i_io_list) stats->nr_more_io++; list_for_each_entry(inode, &wb->b_dirty_time, i_io_list) if (inode->i_state & I_DIRTY_TIME) stats->nr_dirty_time++; spin_unlock(&wb->list_lock); stats->nr_writeback += wb_stat(wb, WB_WRITEBACK); stats->nr_reclaimable += wb_stat(wb, WB_RECLAIMABLE); stats->nr_dirtied += wb_stat(wb, WB_DIRTIED); stats->nr_written += wb_stat(wb, WB_WRITTEN); stats->wb_thresh += wb_calc_thresh(wb, stats->dirty_thresh); } #ifdef CONFIG_CGROUP_WRITEBACK static void bdi_collect_stats(struct backing_dev_info *bdi, struct wb_stats *stats) { struct bdi_writeback *wb; rcu_read_lock(); list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) { if (!wb_tryget(wb)) continue; collect_wb_stats(stats, wb); wb_put(wb); } rcu_read_unlock(); } #else static void bdi_collect_stats(struct backing_dev_info *bdi, struct wb_stats *stats) { collect_wb_stats(stats, &bdi->wb); } #endif static int bdi_debug_stats_show(struct seq_file *m, void *v) { struct backing_dev_info *bdi = m->private; unsigned long background_thresh; unsigned long dirty_thresh; struct wb_stats stats; unsigned long tot_bw; global_dirty_limits(&background_thresh, &dirty_thresh); memset(&stats, 0, sizeof(stats)); stats.dirty_thresh = dirty_thresh; bdi_collect_stats(bdi, &stats); tot_bw = atomic_long_read(&bdi->tot_write_bandwidth); seq_printf(m, "BdiWriteback: %10lu kB\n" "BdiReclaimable: %10lu kB\n" "BdiDirtyThresh: %10lu kB\n" "DirtyThresh: %10lu kB\n" "BackgroundThresh: %10lu kB\n" "BdiDirtied: %10lu kB\n" "BdiWritten: %10lu kB\n" "BdiWriteBandwidth: %10lu kBps\n" "b_dirty: %10lu\n" "b_io: %10lu\n" "b_more_io: %10lu\n" "b_dirty_time: %10lu\n" "bdi_list: %10u\n" "state: %10lx\n", K(stats.nr_writeback), K(stats.nr_reclaimable), K(stats.wb_thresh), K(dirty_thresh), K(background_thresh), K(stats.nr_dirtied), K(stats.nr_written), K(tot_bw), stats.nr_dirty, stats.nr_io, stats.nr_more_io, stats.nr_dirty_time, !list_empty(&bdi->bdi_list), bdi->wb.state); return 0; } DEFINE_SHOW_ATTRIBUTE(bdi_debug_stats); static void wb_stats_show(struct seq_file *m, struct bdi_writeback *wb, struct wb_stats *stats) { seq_printf(m, "WbCgIno: %10lu\n" "WbWriteback: %10lu kB\n" "WbReclaimable: %10lu kB\n" "WbDirtyThresh: %10lu kB\n" "WbDirtied: %10lu kB\n" "WbWritten: %10lu kB\n" "WbWriteBandwidth: %10lu kBps\n" "b_dirty: %10lu\n" "b_io: %10lu\n" "b_more_io: %10lu\n" "b_dirty_time: %10lu\n" "state: %10lx\n\n", #ifdef CONFIG_CGROUP_WRITEBACK cgroup_ino(wb->memcg_css->cgroup), #else 1ul, #endif K(stats->nr_writeback), K(stats->nr_reclaimable), K(stats->wb_thresh), K(stats->nr_dirtied), K(stats->nr_written), K(wb->avg_write_bandwidth), stats->nr_dirty, stats->nr_io, stats->nr_more_io, stats->nr_dirty_time, wb->state); } static int cgwb_debug_stats_show(struct seq_file *m, void *v) { struct backing_dev_info *bdi = m->private; unsigned long background_thresh; unsigned long dirty_thresh; struct bdi_writeback *wb; global_dirty_limits(&background_thresh, &dirty_thresh); rcu_read_lock(); list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) { struct wb_stats stats = { .dirty_thresh = dirty_thresh }; if (!wb_tryget(wb)) continue; collect_wb_stats(&stats, wb); /* * Calculate thresh of wb in writeback cgroup which is min of * thresh in global domain and thresh in cgroup domain. Drop * rcu lock because cgwb_calc_thresh may sleep in * cgroup_rstat_flush. We can do so here because we have a ref. */ if (mem_cgroup_wb_domain(wb)) { rcu_read_unlock(); stats.wb_thresh = min(stats.wb_thresh, cgwb_calc_thresh(wb)); rcu_read_lock(); } wb_stats_show(m, wb, &stats); wb_put(wb); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(cgwb_debug_stats); static void bdi_debug_register(struct backing_dev_info *bdi, const char *name) { bdi->debug_dir = debugfs_create_dir(name, bdi_debug_root); debugfs_create_file("stats", 0444, bdi->debug_dir, bdi, &bdi_debug_stats_fops); debugfs_create_file("wb_stats", 0444, bdi->debug_dir, bdi, &cgwb_debug_stats_fops); } static void bdi_debug_unregister(struct backing_dev_info *bdi) { debugfs_remove_recursive(bdi->debug_dir); } #else /* CONFIG_DEBUG_FS */ static inline void bdi_debug_init(void) { } static inline void bdi_debug_register(struct backing_dev_info *bdi, const char *name) { } static inline void bdi_debug_unregister(struct backing_dev_info *bdi) { } #endif /* CONFIG_DEBUG_FS */ static ssize_t read_ahead_kb_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned long read_ahead_kb; ssize_t ret; ret = kstrtoul(buf, 10, &read_ahead_kb); if (ret < 0) return ret; bdi->ra_pages = read_ahead_kb >> (PAGE_SHIFT - 10); return count; } #define BDI_SHOW(name, expr) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct backing_dev_info *bdi = dev_get_drvdata(dev); \ \ return sysfs_emit(buf, "%lld\n", (long long)expr); \ } \ static DEVICE_ATTR_RW(name); BDI_SHOW(read_ahead_kb, K(bdi->ra_pages)) static ssize_t min_ratio_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned int ratio; ssize_t ret; ret = kstrtouint(buf, 10, &ratio); if (ret < 0) return ret; ret = bdi_set_min_ratio(bdi, ratio); if (!ret) ret = count; return ret; } BDI_SHOW(min_ratio, bdi->min_ratio / BDI_RATIO_SCALE) static ssize_t min_ratio_fine_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned int ratio; ssize_t ret; ret = kstrtouint(buf, 10, &ratio); if (ret < 0) return ret; ret = bdi_set_min_ratio_no_scale(bdi, ratio); if (!ret) ret = count; return ret; } BDI_SHOW(min_ratio_fine, bdi->min_ratio) static ssize_t max_ratio_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned int ratio; ssize_t ret; ret = kstrtouint(buf, 10, &ratio); if (ret < 0) return ret; ret = bdi_set_max_ratio(bdi, ratio); if (!ret) ret = count; return ret; } BDI_SHOW(max_ratio, bdi->max_ratio / BDI_RATIO_SCALE) static ssize_t max_ratio_fine_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned int ratio; ssize_t ret; ret = kstrtouint(buf, 10, &ratio); if (ret < 0) return ret; ret = bdi_set_max_ratio_no_scale(bdi, ratio); if (!ret) ret = count; return ret; } BDI_SHOW(max_ratio_fine, bdi->max_ratio) static ssize_t min_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct backing_dev_info *bdi = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", bdi_get_min_bytes(bdi)); } static ssize_t min_bytes_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); u64 bytes; ssize_t ret; ret = kstrtoull(buf, 10, &bytes); if (ret < 0) return ret; ret = bdi_set_min_bytes(bdi, bytes); if (!ret) ret = count; return ret; } static DEVICE_ATTR_RW(min_bytes); static ssize_t max_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct backing_dev_info *bdi = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", bdi_get_max_bytes(bdi)); } static ssize_t max_bytes_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); u64 bytes; ssize_t ret; ret = kstrtoull(buf, 10, &bytes); if (ret < 0) return ret; ret = bdi_set_max_bytes(bdi, bytes); if (!ret) ret = count; return ret; } static DEVICE_ATTR_RW(max_bytes); static ssize_t stable_pages_required_show(struct device *dev, struct device_attribute *attr, char *buf) { dev_warn_once(dev, "the stable_pages_required attribute has been removed. Use the stable_writes queue attribute instead.\n"); return sysfs_emit(buf, "%d\n", 0); } static DEVICE_ATTR_RO(stable_pages_required); static ssize_t strict_limit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct backing_dev_info *bdi = dev_get_drvdata(dev); unsigned int strict_limit; ssize_t ret; ret = kstrtouint(buf, 10, &strict_limit); if (ret < 0) return ret; ret = bdi_set_strict_limit(bdi, strict_limit); if (!ret) ret = count; return ret; } static ssize_t strict_limit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct backing_dev_info *bdi = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", !!(bdi->capabilities & BDI_CAP_STRICTLIMIT)); } static DEVICE_ATTR_RW(strict_limit); static struct attribute *bdi_dev_attrs[] = { &dev_attr_read_ahead_kb.attr, &dev_attr_min_ratio.attr, &dev_attr_min_ratio_fine.attr, &dev_attr_max_ratio.attr, &dev_attr_max_ratio_fine.attr, &dev_attr_min_bytes.attr, &dev_attr_max_bytes.attr, &dev_attr_stable_pages_required.attr, &dev_attr_strict_limit.attr, NULL, }; ATTRIBUTE_GROUPS(bdi_dev); static const struct class bdi_class = { .name = "bdi", .dev_groups = bdi_dev_groups, }; static __init int bdi_class_init(void) { int ret; ret = class_register(&bdi_class); if (ret) return ret; bdi_debug_init(); return 0; } postcore_initcall(bdi_class_init); static int __init default_bdi_init(void) { bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0); if (!bdi_wq) return -ENOMEM; return 0; } subsys_initcall(default_bdi_init); static void wb_update_bandwidth_workfn(struct work_struct *work) { struct bdi_writeback *wb = container_of(to_delayed_work(work), struct bdi_writeback, bw_dwork); wb_update_bandwidth(wb); } /* * Initial write bandwidth: 100 MB/s */ #define INIT_BW (100 << (20 - PAGE_SHIFT)) static int wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi, gfp_t gfp) { int err; memset(wb, 0, sizeof(*wb)); wb->bdi = bdi; wb->last_old_flush = jiffies; INIT_LIST_HEAD(&wb->b_dirty); INIT_LIST_HEAD(&wb->b_io); INIT_LIST_HEAD(&wb->b_more_io); INIT_LIST_HEAD(&wb->b_dirty_time); spin_lock_init(&wb->list_lock); atomic_set(&wb->writeback_inodes, 0); wb->bw_time_stamp = jiffies; wb->balanced_dirty_ratelimit = INIT_BW; wb->dirty_ratelimit = INIT_BW; wb->write_bandwidth = INIT_BW; wb->avg_write_bandwidth = INIT_BW; spin_lock_init(&wb->work_lock); INIT_LIST_HEAD(&wb->work_list); INIT_DELAYED_WORK(&wb->dwork, wb_workfn); INIT_DELAYED_WORK(&wb->bw_dwork, wb_update_bandwidth_workfn); err = fprop_local_init_percpu(&wb->completions, gfp); if (err) return err; err = percpu_counter_init_many(wb->stat, 0, gfp, NR_WB_STAT_ITEMS); if (err) fprop_local_destroy_percpu(&wb->completions); return err; } static void cgwb_remove_from_bdi_list(struct bdi_writeback *wb); /* * Remove bdi from the global list and shutdown any threads we have running */ static void wb_shutdown(struct bdi_writeback *wb) { /* Make sure nobody queues further work */ spin_lock_irq(&wb->work_lock); if (!test_and_clear_bit(WB_registered, &wb->state)) { spin_unlock_irq(&wb->work_lock); return; } spin_unlock_irq(&wb->work_lock); cgwb_remove_from_bdi_list(wb); /* * Drain work list and shutdown the delayed_work. !WB_registered * tells wb_workfn() that @wb is dying and its work_list needs to * be drained no matter what. */ mod_delayed_work(bdi_wq, &wb->dwork, 0); flush_delayed_work(&wb->dwork); WARN_ON(!list_empty(&wb->work_list)); flush_delayed_work(&wb->bw_dwork); } static void wb_exit(struct bdi_writeback *wb) { WARN_ON(delayed_work_pending(&wb->dwork)); percpu_counter_destroy_many(wb->stat, NR_WB_STAT_ITEMS); fprop_local_destroy_percpu(&wb->completions); } #ifdef CONFIG_CGROUP_WRITEBACK #include <linux/memcontrol.h> /* * cgwb_lock protects bdi->cgwb_tree, blkcg->cgwb_list, offline_cgwbs and * memcg->cgwb_list. bdi->cgwb_tree is also RCU protected. */ static DEFINE_SPINLOCK(cgwb_lock); static struct workqueue_struct *cgwb_release_wq; static LIST_HEAD(offline_cgwbs); static void cleanup_offline_cgwbs_workfn(struct work_struct *work); static DECLARE_WORK(cleanup_offline_cgwbs_work, cleanup_offline_cgwbs_workfn); static void cgwb_free_rcu(struct rcu_head *rcu_head) { struct bdi_writeback *wb = container_of(rcu_head, struct bdi_writeback, rcu); percpu_ref_exit(&wb->refcnt); kfree(wb); } static void cgwb_release_workfn(struct work_struct *work) { struct bdi_writeback *wb = container_of(work, struct bdi_writeback, release_work); struct backing_dev_info *bdi = wb->bdi; mutex_lock(&wb->bdi->cgwb_release_mutex); wb_shutdown(wb); css_put(wb->memcg_css); css_put(wb->blkcg_css); mutex_unlock(&wb->bdi->cgwb_release_mutex); /* triggers blkg destruction if no online users left */ blkcg_unpin_online(wb->blkcg_css); fprop_local_destroy_percpu(&wb->memcg_completions); spin_lock_irq(&cgwb_lock); list_del(&wb->offline_node); spin_unlock_irq(&cgwb_lock); wb_exit(wb); bdi_put(bdi); WARN_ON_ONCE(!list_empty(&wb->b_attached)); call_rcu(&wb->rcu, cgwb_free_rcu); } static void cgwb_release(struct percpu_ref *refcnt) { struct bdi_writeback *wb = container_of(refcnt, struct bdi_writeback, refcnt); queue_work(cgwb_release_wq, &wb->release_work); } static void cgwb_kill(struct bdi_writeback *wb) { lockdep_assert_held(&cgwb_lock); WARN_ON(!radix_tree_delete(&wb->bdi->cgwb_tree, wb->memcg_css->id)); list_del(&wb->memcg_node); list_del(&wb->blkcg_node); list_add(&wb->offline_node, &offline_cgwbs); percpu_ref_kill(&wb->refcnt); } static void cgwb_remove_from_bdi_list(struct bdi_writeback *wb) { spin_lock_irq(&cgwb_lock); list_del_rcu(&wb->bdi_node); spin_unlock_irq(&cgwb_lock); } static int cgwb_create(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css, gfp_t gfp) { struct mem_cgroup *memcg; struct cgroup_subsys_state *blkcg_css; struct list_head *memcg_cgwb_list, *blkcg_cgwb_list; struct bdi_writeback *wb; unsigned long flags; int ret = 0; memcg = mem_cgroup_from_css(memcg_css); blkcg_css = cgroup_get_e_css(memcg_css->cgroup, &io_cgrp_subsys); memcg_cgwb_list = &memcg->cgwb_list; blkcg_cgwb_list = blkcg_get_cgwb_list(blkcg_css); /* look up again under lock and discard on blkcg mismatch */ spin_lock_irqsave(&cgwb_lock, flags); wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id); if (wb && wb->blkcg_css != blkcg_css) { cgwb_kill(wb); wb = NULL; } spin_unlock_irqrestore(&cgwb_lock, flags); if (wb) goto out_put; /* need to create a new one */ wb = kmalloc(sizeof(*wb), gfp); if (!wb) { ret = -ENOMEM; goto out_put; } ret = wb_init(wb, bdi, gfp); if (ret) goto err_free; ret = percpu_ref_init(&wb->refcnt, cgwb_release, 0, gfp); if (ret) goto err_wb_exit; ret = fprop_local_init_percpu(&wb->memcg_completions, gfp); if (ret) goto err_ref_exit; wb->memcg_css = memcg_css; wb->blkcg_css = blkcg_css; INIT_LIST_HEAD(&wb->b_attached); INIT_WORK(&wb->release_work, cgwb_release_workfn); set_bit(WB_registered, &wb->state); bdi_get(bdi); /* * The root wb determines the registered state of the whole bdi and * memcg_cgwb_list and blkcg_cgwb_list's next pointers indicate * whether they're still online. Don't link @wb if any is dead. * See wb_memcg_offline() and wb_blkcg_offline(). */ ret = -ENODEV; spin_lock_irqsave(&cgwb_lock, flags); if (test_bit(WB_registered, &bdi->wb.state) && blkcg_cgwb_list->next && memcg_cgwb_list->next) { /* we might have raced another instance of this function */ ret = radix_tree_insert(&bdi->cgwb_tree, memcg_css->id, wb); if (!ret) { list_add_tail_rcu(&wb->bdi_node, &bdi->wb_list); list_add(&wb->memcg_node, memcg_cgwb_list); list_add(&wb->blkcg_node, blkcg_cgwb_list); blkcg_pin_online(blkcg_css); css_get(memcg_css); css_get(blkcg_css); } } spin_unlock_irqrestore(&cgwb_lock, flags); if (ret) { if (ret == -EEXIST) ret = 0; goto err_fprop_exit; } goto out_put; err_fprop_exit: bdi_put(bdi); fprop_local_destroy_percpu(&wb->memcg_completions); err_ref_exit: percpu_ref_exit(&wb->refcnt); err_wb_exit: wb_exit(wb); err_free: kfree(wb); out_put: css_put(blkcg_css); return ret; } /** * wb_get_lookup - get wb for a given memcg * @bdi: target bdi * @memcg_css: cgroup_subsys_state of the target memcg (must have positive ref) * * Try to get the wb for @memcg_css on @bdi. The returned wb has its * refcount incremented. * * This function uses css_get() on @memcg_css and thus expects its refcnt * to be positive on invocation. IOW, rcu_read_lock() protection on * @memcg_css isn't enough. try_get it before calling this function. * * A wb is keyed by its associated memcg. As blkcg implicitly enables * memcg on the default hierarchy, memcg association is guaranteed to be * more specific (equal or descendant to the associated blkcg) and thus can * identify both the memcg and blkcg associations. * * Because the blkcg associated with a memcg may change as blkcg is enabled * and disabled closer to root in the hierarchy, each wb keeps track of * both the memcg and blkcg associated with it and verifies the blkcg on * each lookup. On mismatch, the existing wb is discarded and a new one is * created. */ struct bdi_writeback *wb_get_lookup(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css) { struct bdi_writeback *wb; if (!memcg_css->parent) return &bdi->wb; rcu_read_lock(); wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id); if (wb) { struct cgroup_subsys_state *blkcg_css; /* see whether the blkcg association has changed */ blkcg_css = cgroup_get_e_css(memcg_css->cgroup, &io_cgrp_subsys); if (unlikely(wb->blkcg_css != blkcg_css || !wb_tryget(wb))) wb = NULL; css_put(blkcg_css); } rcu_read_unlock(); return wb; } /** * wb_get_create - get wb for a given memcg, create if necessary * @bdi: target bdi * @memcg_css: cgroup_subsys_state of the target memcg (must have positive ref) * @gfp: allocation mask to use * * Try to get the wb for @memcg_css on @bdi. If it doesn't exist, try to * create one. See wb_get_lookup() for more details. */ struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css, gfp_t gfp) { struct bdi_writeback *wb; might_alloc(gfp); do { wb = wb_get_lookup(bdi, memcg_css); } while (!wb && !cgwb_create(bdi, memcg_css, gfp)); return wb; } static int cgwb_bdi_init(struct backing_dev_info *bdi) { int ret; INIT_RADIX_TREE(&bdi->cgwb_tree, GFP_ATOMIC); mutex_init(&bdi->cgwb_release_mutex); init_rwsem(&bdi->wb_switch_rwsem); ret = wb_init(&bdi->wb, bdi, GFP_KERNEL); if (!ret) { bdi->wb.memcg_css = &root_mem_cgroup->css; bdi->wb.blkcg_css = blkcg_root_css; } return ret; } static void cgwb_bdi_unregister(struct backing_dev_info *bdi) { struct radix_tree_iter iter; void **slot; struct bdi_writeback *wb; WARN_ON(test_bit(WB_registered, &bdi->wb.state)); spin_lock_irq(&cgwb_lock); radix_tree_for_each_slot(slot, &bdi->cgwb_tree, &iter, 0) cgwb_kill(*slot); spin_unlock_irq(&cgwb_lock); mutex_lock(&bdi->cgwb_release_mutex); spin_lock_irq(&cgwb_lock); while (!list_empty(&bdi->wb_list)) { wb = list_first_entry(&bdi->wb_list, struct bdi_writeback, bdi_node); spin_unlock_irq(&cgwb_lock); wb_shutdown(wb); spin_lock_irq(&cgwb_lock); } spin_unlock_irq(&cgwb_lock); mutex_unlock(&bdi->cgwb_release_mutex); } /* * cleanup_offline_cgwbs_workfn - try to release dying cgwbs * * Try to release dying cgwbs by switching attached inodes to the nearest * living ancestor's writeback. Processed wbs are placed at the end * of the list to guarantee the forward progress. */ static void cleanup_offline_cgwbs_workfn(struct work_struct *work) { struct bdi_writeback *wb; LIST_HEAD(processed); spin_lock_irq(&cgwb_lock); while (!list_empty(&offline_cgwbs)) { wb = list_first_entry(&offline_cgwbs, struct bdi_writeback, offline_node); list_move(&wb->offline_node, &processed); /* * If wb is dirty, cleaning up the writeback by switching * attached inodes will result in an effective removal of any * bandwidth restrictions, which isn't the goal. Instead, * it can be postponed until the next time, when all io * will be likely completed. If in the meantime some inodes * will get re-dirtied, they should be eventually switched to * a new cgwb. */ if (wb_has_dirty_io(wb)) continue; if (!wb_tryget(wb)) continue; spin_unlock_irq(&cgwb_lock); while (cleanup_offline_cgwb(wb)) cond_resched(); spin_lock_irq(&cgwb_lock); wb_put(wb); } if (!list_empty(&processed)) list_splice_tail(&processed, &offline_cgwbs); spin_unlock_irq(&cgwb_lock); } /** * wb_memcg_offline - kill all wb's associated with a memcg being offlined * @memcg: memcg being offlined * * Also prevents creation of any new wb's associated with @memcg. */ void wb_memcg_offline(struct mem_cgroup *memcg) { struct list_head *memcg_cgwb_list = &memcg->cgwb_list; struct bdi_writeback *wb, *next; spin_lock_irq(&cgwb_lock); list_for_each_entry_safe(wb, next, memcg_cgwb_list, memcg_node) cgwb_kill(wb); memcg_cgwb_list->next = NULL; /* prevent new wb's */ spin_unlock_irq(&cgwb_lock); queue_work(system_unbound_wq, &cleanup_offline_cgwbs_work); } /** * wb_blkcg_offline - kill all wb's associated with a blkcg being offlined * @css: blkcg being offlined * * Also prevents creation of any new wb's associated with @blkcg. */ void wb_blkcg_offline(struct cgroup_subsys_state *css) { struct bdi_writeback *wb, *next; struct list_head *list = blkcg_get_cgwb_list(css); spin_lock_irq(&cgwb_lock); list_for_each_entry_safe(wb, next, list, blkcg_node) cgwb_kill(wb); list->next = NULL; /* prevent new wb's */ spin_unlock_irq(&cgwb_lock); } static void cgwb_bdi_register(struct backing_dev_info *bdi) { spin_lock_irq(&cgwb_lock); list_add_tail_rcu(&bdi->wb.bdi_node, &bdi->wb_list); spin_unlock_irq(&cgwb_lock); } static int __init cgwb_init(void) { /* * There can be many concurrent release work items overwhelming * system_wq. Put them in a separate wq and limit concurrency. * There's no point in executing many of these in parallel. */ cgwb_release_wq = alloc_workqueue("cgwb_release", 0, 1); if (!cgwb_release_wq) return -ENOMEM; return 0; } subsys_initcall(cgwb_init); #else /* CONFIG_CGROUP_WRITEBACK */ static int cgwb_bdi_init(struct backing_dev_info *bdi) { return wb_init(&bdi->wb, bdi, GFP_KERNEL); } static void cgwb_bdi_unregister(struct backing_dev_info *bdi) { } static void cgwb_bdi_register(struct backing_dev_info *bdi) { list_add_tail_rcu(&bdi->wb.bdi_node, &bdi->wb_list); } static void cgwb_remove_from_bdi_list(struct bdi_writeback *wb) { list_del_rcu(&wb->bdi_node); } #endif /* CONFIG_CGROUP_WRITEBACK */ int bdi_init(struct backing_dev_info *bdi) { bdi->dev = NULL; kref_init(&bdi->refcnt); bdi->min_ratio = 0; bdi->max_ratio = 100 * BDI_RATIO_SCALE; bdi->max_prop_frac = FPROP_FRAC_BASE; INIT_LIST_HEAD(&bdi->bdi_list); INIT_LIST_HEAD(&bdi->wb_list); init_waitqueue_head(&bdi->wb_waitq); bdi->last_bdp_sleep = jiffies; return cgwb_bdi_init(bdi); } struct backing_dev_info *bdi_alloc(int node_id) { struct backing_dev_info *bdi; bdi = kzalloc_node(sizeof(*bdi), GFP_KERNEL, node_id); if (!bdi) return NULL; if (bdi_init(bdi)) { kfree(bdi); return NULL; } bdi->capabilities = BDI_CAP_WRITEBACK | BDI_CAP_WRITEBACK_ACCT; bdi->ra_pages = VM_READAHEAD_PAGES; bdi->io_pages = VM_READAHEAD_PAGES; timer_setup(&bdi->laptop_mode_wb_timer, laptop_mode_timer_fn, 0); return bdi; } EXPORT_SYMBOL(bdi_alloc); static struct rb_node **bdi_lookup_rb_node(u64 id, struct rb_node **parentp) { struct rb_node **p = &bdi_tree.rb_node; struct rb_node *parent = NULL; struct backing_dev_info *bdi; lockdep_assert_held(&bdi_lock); while (*p) { parent = *p; bdi = rb_entry(parent, struct backing_dev_info, rb_node); if (bdi->id > id) p = &(*p)->rb_left; else if (bdi->id < id) p = &(*p)->rb_right; else break; } if (parentp) *parentp = parent; return p; } /** * bdi_get_by_id - lookup and get bdi from its id * @id: bdi id to lookup * * Find bdi matching @id and get it. Returns NULL if the matching bdi * doesn't exist or is already unregistered. */ struct backing_dev_info *bdi_get_by_id(u64 id) { struct backing_dev_info *bdi = NULL; struct rb_node **p; spin_lock_bh(&bdi_lock); p = bdi_lookup_rb_node(id, NULL); if (*p) { bdi = rb_entry(*p, struct backing_dev_info, rb_node); bdi_get(bdi); } spin_unlock_bh(&bdi_lock); return bdi; } int bdi_register_va(struct backing_dev_info *bdi, const char *fmt, va_list args) { struct device *dev; struct rb_node *parent, **p; if (bdi->dev) /* The driver needs to use separate queues per device */ return 0; vsnprintf(bdi->dev_name, sizeof(bdi->dev_name), fmt, args); dev = device_create(&bdi_class, NULL, MKDEV(0, 0), bdi, bdi->dev_name); if (IS_ERR(dev)) return PTR_ERR(dev); cgwb_bdi_register(bdi); bdi->dev = dev; bdi_debug_register(bdi, dev_name(dev)); set_bit(WB_registered, &bdi->wb.state); spin_lock_bh(&bdi_lock); bdi->id = ++bdi_id_cursor; p = bdi_lookup_rb_node(bdi->id, &parent); rb_link_node(&bdi->rb_node, parent, p); rb_insert_color(&bdi->rb_node, &bdi_tree); list_add_tail_rcu(&bdi->bdi_list, &bdi_list); spin_unlock_bh(&bdi_lock); trace_writeback_bdi_register(bdi); return 0; } int bdi_register(struct backing_dev_info *bdi, const char *fmt, ...) { va_list args; int ret; va_start(args, fmt); ret = bdi_register_va(bdi, fmt, args); va_end(args); return ret; } EXPORT_SYMBOL(bdi_register); void bdi_set_owner(struct backing_dev_info *bdi, struct device *owner) { WARN_ON_ONCE(bdi->owner); bdi->owner = owner; get_device(owner); } /* * Remove bdi from bdi_list, and ensure that it is no longer visible */ static void bdi_remove_from_list(struct backing_dev_info *bdi) { spin_lock_bh(&bdi_lock); rb_erase(&bdi->rb_node, &bdi_tree); list_del_rcu(&bdi->bdi_list); spin_unlock_bh(&bdi_lock); synchronize_rcu_expedited(); } void bdi_unregister(struct backing_dev_info *bdi) { del_timer_sync(&bdi->laptop_mode_wb_timer); /* make sure nobody finds us on the bdi_list anymore */ bdi_remove_from_list(bdi); wb_shutdown(&bdi->wb); cgwb_bdi_unregister(bdi); /* * If this BDI's min ratio has been set, use bdi_set_min_ratio() to * update the global bdi_min_ratio. */ if (bdi->min_ratio) bdi_set_min_ratio(bdi, 0); if (bdi->dev) { bdi_debug_unregister(bdi); device_unregister(bdi->dev); bdi->dev = NULL; } if (bdi->owner) { put_device(bdi->owner); bdi->owner = NULL; } } EXPORT_SYMBOL(bdi_unregister); static void release_bdi(struct kref *ref) { struct backing_dev_info *bdi = container_of(ref, struct backing_dev_info, refcnt); WARN_ON_ONCE(test_bit(WB_registered, &bdi->wb.state)); WARN_ON_ONCE(bdi->dev); wb_exit(&bdi->wb); kfree(bdi); } void bdi_put(struct backing_dev_info *bdi) { kref_put(&bdi->refcnt, release_bdi); } EXPORT_SYMBOL(bdi_put); struct backing_dev_info *inode_to_bdi(struct inode *inode) { struct super_block *sb; if (!inode) return &noop_backing_dev_info; sb = inode->i_sb; #ifdef CONFIG_BLOCK if (sb_is_blkdev_sb(sb)) return I_BDEV(inode)->bd_disk->bdi; #endif return sb->s_bdi; } EXPORT_SYMBOL(inode_to_bdi); const char *bdi_dev_name(struct backing_dev_info *bdi) { if (!bdi || !bdi->dev) return bdi_unknown_name; return bdi->dev_name; } EXPORT_SYMBOL_GPL(bdi_dev_name); |
| 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * File: pep.h * * Phonet Pipe End Point sockets definitions * * Copyright (C) 2008 Nokia Corporation. */ #ifndef NET_PHONET_PEP_H #define NET_PHONET_PEP_H #include <linux/skbuff.h> #include <net/phonet/phonet.h> struct pep_sock { struct pn_sock pn_sk; /* XXX: union-ify listening vs connected stuff ? */ /* Listening socket stuff: */ struct hlist_head hlist; /* Connected socket stuff: */ struct sock *listener; struct sk_buff_head ctrlreq_queue; #define PNPIPE_CTRLREQ_MAX 10 atomic_t tx_credits; int ifindex; u16 peer_type; /* peer type/subtype */ u8 pipe_handle; u8 rx_credits; u8 rx_fc; /* RX flow control */ u8 tx_fc; /* TX flow control */ u8 init_enable; /* auto-enable at creation */ u8 aligned; }; static inline struct pep_sock *pep_sk(struct sock *sk) { return (struct pep_sock *)sk; } extern const struct proto_ops phonet_stream_ops; /* Pipe protocol definitions */ struct pnpipehdr { u8 utid; /* transaction ID */ u8 message_id; u8 pipe_handle; union { u8 state_after_connect; /* connect request */ u8 state_after_reset; /* reset request */ u8 error_code; /* any response */ u8 pep_type; /* status indication */ u8 data0; /* anything else */ }; u8 data[]; }; #define other_pep_type data[0] static inline struct pnpipehdr *pnp_hdr(struct sk_buff *skb) { return (struct pnpipehdr *)skb_transport_header(skb); } #define MAX_PNPIPE_HEADER (MAX_PHONET_HEADER + 4) enum { PNS_PIPE_CREATE_REQ = 0x00, PNS_PIPE_CREATE_RESP, PNS_PIPE_REMOVE_REQ, PNS_PIPE_REMOVE_RESP, PNS_PIPE_DATA = 0x20, PNS_PIPE_ALIGNED_DATA, PNS_PEP_CONNECT_REQ = 0x40, PNS_PEP_CONNECT_RESP, PNS_PEP_DISCONNECT_REQ, PNS_PEP_DISCONNECT_RESP, PNS_PEP_RESET_REQ, PNS_PEP_RESET_RESP, PNS_PEP_ENABLE_REQ, PNS_PEP_ENABLE_RESP, PNS_PEP_CTRL_REQ, PNS_PEP_CTRL_RESP, PNS_PEP_DISABLE_REQ = 0x4C, PNS_PEP_DISABLE_RESP, PNS_PEP_STATUS_IND = 0x60, PNS_PIPE_CREATED_IND, PNS_PIPE_RESET_IND = 0x63, PNS_PIPE_ENABLED_IND, PNS_PIPE_REDIRECTED_IND, PNS_PIPE_DISABLED_IND = 0x66, }; #define PN_PIPE_INVALID_HANDLE 0xff #define PN_PEP_TYPE_COMMON 0x00 /* Phonet pipe status indication */ enum { PN_PEP_IND_FLOW_CONTROL, PN_PEP_IND_ID_MCFC_GRANT_CREDITS, }; /* Phonet pipe error codes */ enum { PN_PIPE_NO_ERROR, PN_PIPE_ERR_INVALID_PARAM, PN_PIPE_ERR_INVALID_HANDLE, PN_PIPE_ERR_INVALID_CTRL_ID, PN_PIPE_ERR_NOT_ALLOWED, PN_PIPE_ERR_PEP_IN_USE, PN_PIPE_ERR_OVERLOAD, PN_PIPE_ERR_DEV_DISCONNECTED, PN_PIPE_ERR_TIMEOUT, PN_PIPE_ERR_ALL_PIPES_IN_USE, PN_PIPE_ERR_GENERAL, PN_PIPE_ERR_NOT_SUPPORTED, }; /* Phonet pipe states */ enum { PN_PIPE_DISABLE, PN_PIPE_ENABLE, }; /* Phonet pipe sub-block types */ enum { PN_PIPE_SB_CREATE_REQ_PEP_SUB_TYPE, PN_PIPE_SB_CONNECT_REQ_PEP_SUB_TYPE, PN_PIPE_SB_REDIRECT_REQ_PEP_SUB_TYPE, PN_PIPE_SB_NEGOTIATED_FC, PN_PIPE_SB_REQUIRED_FC_TX, PN_PIPE_SB_PREFERRED_FC_RX, PN_PIPE_SB_ALIGNED_DATA, }; /* Phonet pipe flow control models */ enum { PN_NO_FLOW_CONTROL, PN_LEGACY_FLOW_CONTROL, PN_ONE_CREDIT_FLOW_CONTROL, PN_MULTI_CREDIT_FLOW_CONTROL, PN_MAX_FLOW_CONTROL, }; #define pn_flow_safe(fc) ((fc) >> 1) /* Phonet pipe flow control states */ enum { PEP_IND_EMPTY, PEP_IND_BUSY, PEP_IND_READY, }; #endif |
| 149 149 428 428 450 448 448 447 448 450 449 450 428 427 428 449 450 448 437 513 439 524 524 149 139 149 144 142 180 171 144 427 426 427 142 142 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | // SPDX-License-Identifier: GPL-2.0 /* * fs/sysfs/group.c - Operations for adding/removing multiple files at once. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * Copyright (c) 2013 Greg Kroah-Hartman * Copyright (c) 2013 The Linux Foundation */ #include <linux/kobject.h> #include <linux/module.h> #include <linux/dcache.h> #include <linux/namei.h> #include <linux/err.h> #include <linux/fs.h> #include "sysfs.h" static void remove_files(struct kernfs_node *parent, const struct attribute_group *grp) { struct attribute *const *attr; struct bin_attribute *const *bin_attr; if (grp->attrs) for (attr = grp->attrs; *attr; attr++) kernfs_remove_by_name(parent, (*attr)->name); if (grp->bin_attrs) for (bin_attr = grp->bin_attrs; *bin_attr; bin_attr++) kernfs_remove_by_name(parent, (*bin_attr)->attr.name); } static umode_t __first_visible(const struct attribute_group *grp, struct kobject *kobj) { if (grp->attrs && grp->attrs[0] && grp->is_visible) return grp->is_visible(kobj, grp->attrs[0], 0); if (grp->bin_attrs && grp->bin_attrs[0] && grp->is_bin_visible) return grp->is_bin_visible(kobj, grp->bin_attrs[0], 0); return 0; } static int create_files(struct kernfs_node *parent, struct kobject *kobj, kuid_t uid, kgid_t gid, const struct attribute_group *grp, int update) { struct attribute *const *attr; struct bin_attribute *const *bin_attr; int error = 0, i; if (grp->attrs) { for (i = 0, attr = grp->attrs; *attr && !error; i++, attr++) { umode_t mode = (*attr)->mode; /* * In update mode, we're changing the permissions or * visibility. Do this by first removing then * re-adding (if required) the file. */ if (update) kernfs_remove_by_name(parent, (*attr)->name); if (grp->is_visible) { mode = grp->is_visible(kobj, *attr, i); mode &= ~SYSFS_GROUP_INVISIBLE; if (!mode) continue; } WARN(mode & ~(SYSFS_PREALLOC | 0664), "Attribute %s: Invalid permissions 0%o\n", (*attr)->name, mode); mode &= SYSFS_PREALLOC | 0664; error = sysfs_add_file_mode_ns(parent, *attr, mode, uid, gid, NULL); if (unlikely(error)) break; } if (error) { remove_files(parent, grp); goto exit; } } if (grp->bin_attrs) { for (i = 0, bin_attr = grp->bin_attrs; *bin_attr; i++, bin_attr++) { umode_t mode = (*bin_attr)->attr.mode; size_t size = (*bin_attr)->size; if (update) kernfs_remove_by_name(parent, (*bin_attr)->attr.name); if (grp->is_bin_visible) { mode = grp->is_bin_visible(kobj, *bin_attr, i); mode &= ~SYSFS_GROUP_INVISIBLE; if (!mode) continue; } if (grp->bin_size) size = grp->bin_size(kobj, *bin_attr, i); WARN(mode & ~(SYSFS_PREALLOC | 0664), "Attribute %s: Invalid permissions 0%o\n", (*bin_attr)->attr.name, mode); mode &= SYSFS_PREALLOC | 0664; error = sysfs_add_bin_file_mode_ns(parent, *bin_attr, mode, size, uid, gid, NULL); if (error) break; } if (error) remove_files(parent, grp); } exit: return error; } static int internal_create_group(struct kobject *kobj, int update, const struct attribute_group *grp) { struct kernfs_node *kn; kuid_t uid; kgid_t gid; int error; if (WARN_ON(!kobj || (!update && !kobj->sd))) return -EINVAL; /* Updates may happen before the object has been instantiated */ if (unlikely(update && !kobj->sd)) return -EINVAL; if (!grp->attrs && !grp->bin_attrs) { pr_debug("sysfs: (bin_)attrs not set by subsystem for group: %s/%s, skipping\n", kobj->name, grp->name ?: ""); return 0; } kobject_get_ownership(kobj, &uid, &gid); if (grp->name) { umode_t mode = __first_visible(grp, kobj); if (mode & SYSFS_GROUP_INVISIBLE) mode = 0; else mode = S_IRWXU | S_IRUGO | S_IXUGO; if (update) { kn = kernfs_find_and_get(kobj->sd, grp->name); if (!kn) { pr_debug("attr grp %s/%s not created yet\n", kobj->name, grp->name); /* may have been invisible prior to this update */ update = 0; } else if (!mode) { sysfs_remove_group(kobj, grp); kernfs_put(kn); return 0; } } if (!update) { if (!mode) return 0; kn = kernfs_create_dir_ns(kobj->sd, grp->name, mode, uid, gid, kobj, NULL); if (IS_ERR(kn)) { if (PTR_ERR(kn) == -EEXIST) sysfs_warn_dup(kobj->sd, grp->name); return PTR_ERR(kn); } } } else { kn = kobj->sd; } kernfs_get(kn); error = create_files(kn, kobj, uid, gid, grp, update); if (error) { if (grp->name) kernfs_remove(kn); } kernfs_put(kn); if (grp->name && update) kernfs_put(kn); return error; } /** * sysfs_create_group - given a directory kobject, create an attribute group * @kobj: The kobject to create the group on * @grp: The attribute group to create * * This function creates a group for the first time. It will explicitly * warn and error if any of the attribute files being created already exist. * * Returns 0 on success or error code on failure. */ int sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp) { return internal_create_group(kobj, 0, grp); } EXPORT_SYMBOL_GPL(sysfs_create_group); static int internal_create_groups(struct kobject *kobj, int update, const struct attribute_group **groups) { int error = 0; int i; if (!groups) return 0; for (i = 0; groups[i]; i++) { error = internal_create_group(kobj, update, groups[i]); if (error) { while (--i >= 0) sysfs_remove_group(kobj, groups[i]); break; } } return error; } /** * sysfs_create_groups - given a directory kobject, create a bunch of attribute groups * @kobj: The kobject to create the group on * @groups: The attribute groups to create, NULL terminated * * This function creates a bunch of attribute groups. If an error occurs when * creating a group, all previously created groups will be removed, unwinding * everything back to the original state when this function was called. * It will explicitly warn and error if any of the attribute files being * created already exist. * * Returns 0 on success or error code from sysfs_create_group on failure. */ int sysfs_create_groups(struct kobject *kobj, const struct attribute_group **groups) { return internal_create_groups(kobj, 0, groups); } EXPORT_SYMBOL_GPL(sysfs_create_groups); /** * sysfs_update_groups - given a directory kobject, create a bunch of attribute groups * @kobj: The kobject to update the group on * @groups: The attribute groups to update, NULL terminated * * This function update a bunch of attribute groups. If an error occurs when * updating a group, all previously updated groups will be removed together * with already existing (not updated) attributes. * * Returns 0 on success or error code from sysfs_update_group on failure. */ int sysfs_update_groups(struct kobject *kobj, const struct attribute_group **groups) { return internal_create_groups(kobj, 1, groups); } EXPORT_SYMBOL_GPL(sysfs_update_groups); /** * sysfs_update_group - given a directory kobject, update an attribute group * @kobj: The kobject to update the group on * @grp: The attribute group to update * * This function updates an attribute group. Unlike * sysfs_create_group(), it will explicitly not warn or error if any * of the attribute files being created already exist. Furthermore, * if the visibility of the files has changed through the is_visible() * callback, it will update the permissions and add or remove the * relevant files. Changing a group's name (subdirectory name under * kobj's directory in sysfs) is not allowed. * * The primary use for this function is to call it after making a change * that affects group visibility. * * Returns 0 on success or error code on failure. */ int sysfs_update_group(struct kobject *kobj, const struct attribute_group *grp) { return internal_create_group(kobj, 1, grp); } EXPORT_SYMBOL_GPL(sysfs_update_group); /** * sysfs_remove_group: remove a group from a kobject * @kobj: kobject to remove the group from * @grp: group to remove * * This function removes a group of attributes from a kobject. The attributes * previously have to have been created for this group, otherwise it will fail. */ void sysfs_remove_group(struct kobject *kobj, const struct attribute_group *grp) { struct kernfs_node *parent = kobj->sd; struct kernfs_node *kn; if (grp->name) { kn = kernfs_find_and_get(parent, grp->name); if (!kn) { pr_debug("sysfs group '%s' not found for kobject '%s'\n", grp->name, kobject_name(kobj)); return; } } else { kn = parent; kernfs_get(kn); } remove_files(kn, grp); if (grp->name) kernfs_remove(kn); kernfs_put(kn); } EXPORT_SYMBOL_GPL(sysfs_remove_group); /** * sysfs_remove_groups - remove a list of groups * * @kobj: The kobject for the groups to be removed from * @groups: NULL terminated list of groups to be removed * * If groups is not NULL, remove the specified groups from the kobject. */ void sysfs_remove_groups(struct kobject *kobj, const struct attribute_group **groups) { int i; if (!groups) return; for (i = 0; groups[i]; i++) sysfs_remove_group(kobj, groups[i]); } EXPORT_SYMBOL_GPL(sysfs_remove_groups); /** * sysfs_merge_group - merge files into a pre-existing named attribute group. * @kobj: The kobject containing the group. * @grp: The files to create and the attribute group they belong to. * * This function returns an error if the group doesn't exist, the .name field is * NULL or any of the files already exist in that group, in which case none of * the new files are created. */ int sysfs_merge_group(struct kobject *kobj, const struct attribute_group *grp) { struct kernfs_node *parent; kuid_t uid; kgid_t gid; int error = 0; struct attribute *const *attr; int i; parent = kernfs_find_and_get(kobj->sd, grp->name); if (!parent) return -ENOENT; kobject_get_ownership(kobj, &uid, &gid); for ((i = 0, attr = grp->attrs); *attr && !error; (++i, ++attr)) error = sysfs_add_file_mode_ns(parent, *attr, (*attr)->mode, uid, gid, NULL); if (error) { while (--i >= 0) kernfs_remove_by_name(parent, (*--attr)->name); } kernfs_put(parent); return error; } EXPORT_SYMBOL_GPL(sysfs_merge_group); /** * sysfs_unmerge_group - remove files from a pre-existing named attribute group. * @kobj: The kobject containing the group. * @grp: The files to remove and the attribute group they belong to. */ void sysfs_unmerge_group(struct kobject *kobj, const struct attribute_group *grp) { struct kernfs_node *parent; struct attribute *const *attr; parent = kernfs_find_and_get(kobj->sd, grp->name); if (parent) { for (attr = grp->attrs; *attr; ++attr) kernfs_remove_by_name(parent, (*attr)->name); kernfs_put(parent); } } EXPORT_SYMBOL_GPL(sysfs_unmerge_group); /** * sysfs_add_link_to_group - add a symlink to an attribute group. * @kobj: The kobject containing the group. * @group_name: The name of the group. * @target: The target kobject of the symlink to create. * @link_name: The name of the symlink to create. */ int sysfs_add_link_to_group(struct kobject *kobj, const char *group_name, struct kobject *target, const char *link_name) { struct kernfs_node *parent; int error = 0; parent = kernfs_find_and_get(kobj->sd, group_name); if (!parent) return -ENOENT; error = sysfs_create_link_sd(parent, target, link_name); kernfs_put(parent); return error; } EXPORT_SYMBOL_GPL(sysfs_add_link_to_group); /** * sysfs_remove_link_from_group - remove a symlink from an attribute group. * @kobj: The kobject containing the group. * @group_name: The name of the group. * @link_name: The name of the symlink to remove. */ void sysfs_remove_link_from_group(struct kobject *kobj, const char *group_name, const char *link_name) { struct kernfs_node *parent; parent = kernfs_find_and_get(kobj->sd, group_name); if (parent) { kernfs_remove_by_name(parent, link_name); kernfs_put(parent); } } EXPORT_SYMBOL_GPL(sysfs_remove_link_from_group); /** * compat_only_sysfs_link_entry_to_kobj - add a symlink to a kobject pointing * to a group or an attribute * @kobj: The kobject containing the group. * @target_kobj: The target kobject. * @target_name: The name of the target group or attribute. * @symlink_name: The name of the symlink file (target_name will be * considered if symlink_name is NULL). */ int compat_only_sysfs_link_entry_to_kobj(struct kobject *kobj, struct kobject *target_kobj, const char *target_name, const char *symlink_name) { struct kernfs_node *target; struct kernfs_node *entry; struct kernfs_node *link; /* * We don't own @target_kobj and it may be removed at any time. * Synchronize using sysfs_symlink_target_lock. See sysfs_remove_dir() * for details. */ spin_lock(&sysfs_symlink_target_lock); target = target_kobj->sd; if (target) kernfs_get(target); spin_unlock(&sysfs_symlink_target_lock); if (!target) return -ENOENT; entry = kernfs_find_and_get(target, target_name); if (!entry) { kernfs_put(target); return -ENOENT; } if (!symlink_name) symlink_name = target_name; link = kernfs_create_link(kobj->sd, symlink_name, entry); if (PTR_ERR(link) == -EEXIST) sysfs_warn_dup(kobj->sd, symlink_name); kernfs_put(entry); kernfs_put(target); return PTR_ERR_OR_ZERO(link); } EXPORT_SYMBOL_GPL(compat_only_sysfs_link_entry_to_kobj); static int sysfs_group_attrs_change_owner(struct kernfs_node *grp_kn, const struct attribute_group *grp, struct iattr *newattrs) { struct kernfs_node *kn; int error; if (grp->attrs) { struct attribute *const *attr; for (attr = grp->attrs; *attr; attr++) { kn = kernfs_find_and_get(grp_kn, (*attr)->name); if (!kn) return -ENOENT; error = kernfs_setattr(kn, newattrs); kernfs_put(kn); if (error) return error; } } if (grp->bin_attrs) { struct bin_attribute *const *bin_attr; for (bin_attr = grp->bin_attrs; *bin_attr; bin_attr++) { kn = kernfs_find_and_get(grp_kn, (*bin_attr)->attr.name); if (!kn) return -ENOENT; error = kernfs_setattr(kn, newattrs); kernfs_put(kn); if (error) return error; } } return 0; } /** * sysfs_group_change_owner - change owner of an attribute group. * @kobj: The kobject containing the group. * @grp: The attribute group. * @kuid: new owner's kuid * @kgid: new owner's kgid * * Returns 0 on success or error code on failure. */ int sysfs_group_change_owner(struct kobject *kobj, const struct attribute_group *grp, kuid_t kuid, kgid_t kgid) { struct kernfs_node *grp_kn; int error; struct iattr newattrs = { .ia_valid = ATTR_UID | ATTR_GID, .ia_uid = kuid, .ia_gid = kgid, }; if (!kobj->state_in_sysfs) return -EINVAL; if (grp->name) { grp_kn = kernfs_find_and_get(kobj->sd, grp->name); } else { kernfs_get(kobj->sd); grp_kn = kobj->sd; } if (!grp_kn) return -ENOENT; error = kernfs_setattr(grp_kn, &newattrs); if (!error) error = sysfs_group_attrs_change_owner(grp_kn, grp, &newattrs); kernfs_put(grp_kn); return error; } EXPORT_SYMBOL_GPL(sysfs_group_change_owner); /** * sysfs_groups_change_owner - change owner of a set of attribute groups. * @kobj: The kobject containing the groups. * @groups: The attribute groups. * @kuid: new owner's kuid * @kgid: new owner's kgid * * Returns 0 on success or error code on failure. */ int sysfs_groups_change_owner(struct kobject *kobj, const struct attribute_group **groups, kuid_t kuid, kgid_t kgid) { int error = 0, i; if (!kobj->state_in_sysfs) return -EINVAL; if (!groups) return 0; for (i = 0; groups[i]; i++) { error = sysfs_group_change_owner(kobj, groups[i], kuid, kgid); if (error) break; } return error; } EXPORT_SYMBOL_GPL(sysfs_groups_change_owner); |
| 13 45 334 29 357 7 7 2 1415 505 1778 1777 1437 356 697 3 2296 1443 9 1196 1196 1231 27 80 43 19 96 13 27 7 1200 172 1271 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_NETLINK_H #define __NET_NETLINK_H #include <linux/types.h> #include <linux/netlink.h> #include <linux/jiffies.h> #include <linux/in6.h> /* ======================================================================== * Netlink Messages and Attributes Interface (As Seen On TV) * ------------------------------------------------------------------------ * Messages Interface * ------------------------------------------------------------------------ * * Message Format: * <--- nlmsg_total_size(payload) ---> * <-- nlmsg_msg_size(payload) -> * +----------+- - -+-------------+- - -+-------- - - * | nlmsghdr | Pad | Payload | Pad | nlmsghdr * +----------+- - -+-------------+- - -+-------- - - * nlmsg_data(nlh)---^ ^ * nlmsg_next(nlh)-----------------------+ * * Payload Format: * <---------------------- nlmsg_len(nlh) ---------------------> * <------ hdrlen ------> <- nlmsg_attrlen(nlh, hdrlen) -> * +----------------------+- - -+--------------------------------+ * | Family Header | Pad | Attributes | * +----------------------+- - -+--------------------------------+ * nlmsg_attrdata(nlh, hdrlen)---^ * * Data Structures: * struct nlmsghdr netlink message header * * Message Construction: * nlmsg_new() create a new netlink message * nlmsg_put() add a netlink message to an skb * nlmsg_put_answer() callback based nlmsg_put() * nlmsg_end() finalize netlink message * nlmsg_get_pos() return current position in message * nlmsg_trim() trim part of message * nlmsg_cancel() cancel message construction * nlmsg_consume() free a netlink message (expected) * nlmsg_free() free a netlink message (drop) * * Message Sending: * nlmsg_multicast() multicast message to several groups * nlmsg_unicast() unicast a message to a single socket * nlmsg_notify() send notification message * * Message Length Calculations: * nlmsg_msg_size(payload) length of message w/o padding * nlmsg_total_size(payload) length of message w/ padding * nlmsg_padlen(payload) length of padding at tail * * Message Payload Access: * nlmsg_data(nlh) head of message payload * nlmsg_len(nlh) length of message payload * nlmsg_attrdata(nlh, hdrlen) head of attributes data * nlmsg_attrlen(nlh, hdrlen) length of attributes data * * Message Parsing: * nlmsg_ok(nlh, remaining) does nlh fit into remaining bytes? * nlmsg_next(nlh, remaining) get next netlink message * nlmsg_parse() parse attributes of a message * nlmsg_find_attr() find an attribute in a message * nlmsg_for_each_msg() loop over all messages * nlmsg_validate() validate netlink message incl. attrs * nlmsg_for_each_attr() loop over all attributes * * Misc: * nlmsg_report() report back to application? * * ------------------------------------------------------------------------ * Attributes Interface * ------------------------------------------------------------------------ * * Attribute Format: * <------- nla_total_size(payload) -------> * <---- nla_attr_size(payload) -----> * +----------+- - -+- - - - - - - - - +- - -+-------- - - * | Header | Pad | Payload | Pad | Header * +----------+- - -+- - - - - - - - - +- - -+-------- - - * <- nla_len(nla) -> ^ * nla_data(nla)----^ | * nla_next(nla)-----------------------------' * * Data Structures: * struct nlattr netlink attribute header * * Attribute Construction: * nla_reserve(skb, type, len) reserve room for an attribute * nla_reserve_nohdr(skb, len) reserve room for an attribute w/o hdr * nla_put(skb, type, len, data) add attribute to skb * nla_put_nohdr(skb, len, data) add attribute w/o hdr * nla_append(skb, len, data) append data to skb * * Attribute Construction for Basic Types: * nla_put_u8(skb, type, value) add u8 attribute to skb * nla_put_u16(skb, type, value) add u16 attribute to skb * nla_put_u32(skb, type, value) add u32 attribute to skb * nla_put_u64_64bit(skb, type, * value, padattr) add u64 attribute to skb * nla_put_s8(skb, type, value) add s8 attribute to skb * nla_put_s16(skb, type, value) add s16 attribute to skb * nla_put_s32(skb, type, value) add s32 attribute to skb * nla_put_s64(skb, type, value, * padattr) add s64 attribute to skb * nla_put_string(skb, type, str) add string attribute to skb * nla_put_flag(skb, type) add flag attribute to skb * nla_put_msecs(skb, type, jiffies, * padattr) add msecs attribute to skb * nla_put_in_addr(skb, type, addr) add IPv4 address attribute to skb * nla_put_in6_addr(skb, type, addr) add IPv6 address attribute to skb * * Nested Attributes Construction: * nla_nest_start(skb, type) start a nested attribute * nla_nest_end(skb, nla) finalize a nested attribute * nla_nest_cancel(skb, nla) cancel nested attribute construction * * Attribute Length Calculations: * nla_attr_size(payload) length of attribute w/o padding * nla_total_size(payload) length of attribute w/ padding * nla_padlen(payload) length of padding * * Attribute Payload Access: * nla_data(nla) head of attribute payload * nla_len(nla) length of attribute payload * * Attribute Payload Access for Basic Types: * nla_get_uint(nla) get payload for a uint attribute * nla_get_sint(nla) get payload for a sint attribute * nla_get_u8(nla) get payload for a u8 attribute * nla_get_u16(nla) get payload for a u16 attribute * nla_get_u32(nla) get payload for a u32 attribute * nla_get_u64(nla) get payload for a u64 attribute * nla_get_s8(nla) get payload for a s8 attribute * nla_get_s16(nla) get payload for a s16 attribute * nla_get_s32(nla) get payload for a s32 attribute * nla_get_s64(nla) get payload for a s64 attribute * nla_get_flag(nla) return 1 if flag is true * nla_get_msecs(nla) get payload for a msecs attribute * * The same functions also exist with _default(). * * Attribute Misc: * nla_memcpy(dest, nla, count) copy attribute into memory * nla_memcmp(nla, data, size) compare attribute with memory area * nla_strscpy(dst, nla, size) copy attribute to a sized string * nla_strcmp(nla, str) compare attribute with string * * Attribute Parsing: * nla_ok(nla, remaining) does nla fit into remaining bytes? * nla_next(nla, remaining) get next netlink attribute * nla_validate() validate a stream of attributes * nla_validate_nested() validate a stream of nested attributes * nla_find() find attribute in stream of attributes * nla_find_nested() find attribute in nested attributes * nla_parse() parse and validate stream of attrs * nla_parse_nested() parse nested attributes * nla_for_each_attr() loop over all attributes * nla_for_each_attr_type() loop over all attributes with the * given type * nla_for_each_nested() loop over the nested attributes * nla_for_each_nested_type() loop over the nested attributes with * the given type *========================================================================= */ /** * Standard attribute types to specify validation policy */ enum { NLA_UNSPEC, NLA_U8, NLA_U16, NLA_U32, NLA_U64, NLA_STRING, NLA_FLAG, NLA_MSECS, NLA_NESTED, NLA_NESTED_ARRAY, NLA_NUL_STRING, NLA_BINARY, NLA_S8, NLA_S16, NLA_S32, NLA_S64, NLA_BITFIELD32, NLA_REJECT, NLA_BE16, NLA_BE32, NLA_SINT, NLA_UINT, __NLA_TYPE_MAX, }; #define NLA_TYPE_MAX (__NLA_TYPE_MAX - 1) struct netlink_range_validation { u64 min, max; }; struct netlink_range_validation_signed { s64 min, max; }; enum nla_policy_validation { NLA_VALIDATE_NONE, NLA_VALIDATE_RANGE, NLA_VALIDATE_RANGE_WARN_TOO_LONG, NLA_VALIDATE_MIN, NLA_VALIDATE_MAX, NLA_VALIDATE_MASK, NLA_VALIDATE_RANGE_PTR, NLA_VALIDATE_FUNCTION, }; /** * struct nla_policy - attribute validation policy * @type: Type of attribute or NLA_UNSPEC * @validation_type: type of attribute validation done in addition to * type-specific validation (e.g. range, function call), see * &enum nla_policy_validation * @len: Type specific length of payload * * Policies are defined as arrays of this struct, the array must be * accessible by attribute type up to the highest identifier to be expected. * * Meaning of `len' field: * NLA_STRING Maximum length of string * NLA_NUL_STRING Maximum length of string (excluding NUL) * NLA_FLAG Unused * NLA_BINARY Maximum length of attribute payload * (but see also below with the validation type) * NLA_NESTED, * NLA_NESTED_ARRAY Length verification is done by checking len of * nested header (or empty); len field is used if * nested_policy is also used, for the max attr * number in the nested policy. * NLA_SINT, NLA_UINT, * NLA_U8, NLA_U16, * NLA_U32, NLA_U64, * NLA_S8, NLA_S16, * NLA_S32, NLA_S64, * NLA_BE16, NLA_BE32, * NLA_MSECS Leaving the length field zero will verify the * given type fits, using it verifies minimum length * just like "All other" * NLA_BITFIELD32 Unused * NLA_REJECT Unused * All other Minimum length of attribute payload * * Meaning of validation union: * NLA_BITFIELD32 This is a 32-bit bitmap/bitselector attribute and * `bitfield32_valid' is the u32 value of valid flags * NLA_REJECT This attribute is always rejected and `reject_message' * may point to a string to report as the error instead * of the generic one in extended ACK. * NLA_NESTED `nested_policy' to a nested policy to validate, must * also set `len' to the max attribute number. Use the * provided NLA_POLICY_NESTED() macro. * Note that nla_parse() will validate, but of course not * parse, the nested sub-policies. * NLA_NESTED_ARRAY `nested_policy' points to a nested policy to validate, * must also set `len' to the max attribute number. Use * the provided NLA_POLICY_NESTED_ARRAY() macro. * The difference to NLA_NESTED is the structure: * NLA_NESTED has the nested attributes directly inside * while an array has the nested attributes at another * level down and the attribute types directly in the * nesting don't matter. * NLA_UINT, * NLA_U8, * NLA_U16, * NLA_U32, * NLA_U64, * NLA_BE16, * NLA_BE32, * NLA_SINT, * NLA_S8, * NLA_S16, * NLA_S32, * NLA_S64 The `min' and `max' fields are used depending on the * validation_type field, if that is min/max/range then * the min, max or both are used (respectively) to check * the value of the integer attribute. * Note that in the interest of code simplicity and * struct size both limits are s16, so you cannot * enforce a range that doesn't fall within the range * of s16 - do that using the NLA_POLICY_FULL_RANGE() * or NLA_POLICY_FULL_RANGE_SIGNED() macros instead. * Use the NLA_POLICY_MIN(), NLA_POLICY_MAX() and * NLA_POLICY_RANGE() macros. * NLA_UINT, * NLA_U8, * NLA_U16, * NLA_U32, * NLA_U64 If the validation_type field instead is set to * NLA_VALIDATE_RANGE_PTR, `range' must be a pointer * to a struct netlink_range_validation that indicates * the min/max values. * Use NLA_POLICY_FULL_RANGE(). * NLA_SINT, * NLA_S8, * NLA_S16, * NLA_S32, * NLA_S64 If the validation_type field instead is set to * NLA_VALIDATE_RANGE_PTR, `range_signed' must be a * pointer to a struct netlink_range_validation_signed * that indicates the min/max values. * Use NLA_POLICY_FULL_RANGE_SIGNED(). * * NLA_BINARY If the validation type is like the ones for integers * above, then the min/max length (not value like for * integers) of the attribute is enforced. * * All other Unused - but note that it's a union * * Meaning of `validate' field, use via NLA_POLICY_VALIDATE_FN: * NLA_BINARY Validation function called for the attribute. * All other Unused - but note that it's a union * * Example: * * static const u32 myvalidflags = 0xff231023; * * static const struct nla_policy my_policy[ATTR_MAX+1] = { * [ATTR_FOO] = { .type = NLA_U16 }, * [ATTR_BAR] = { .type = NLA_STRING, .len = BARSIZ }, * [ATTR_BAZ] = NLA_POLICY_EXACT_LEN(sizeof(struct mystruct)), * [ATTR_GOO] = NLA_POLICY_BITFIELD32(myvalidflags), * }; */ struct nla_policy { u8 type; u8 validation_type; u16 len; union { /** * @strict_start_type: first attribute to validate strictly * * This entry is special, and used for the attribute at index 0 * only, and specifies special data about the policy, namely it * specifies the "boundary type" where strict length validation * starts for any attribute types >= this value, also, strict * nesting validation starts here. * * Additionally, it means that NLA_UNSPEC is actually NLA_REJECT * for any types >= this, so need to use NLA_POLICY_MIN_LEN() to * get the previous pure { .len = xyz } behaviour. The advantage * of this is that types not specified in the policy will be * rejected. * * For completely new families it should be set to 1 so that the * validation is enforced for all attributes. For existing ones * it should be set at least when new attributes are added to * the enum used by the policy, and be set to the new value that * was added to enforce strict validation from thereon. */ u16 strict_start_type; /* private: use NLA_POLICY_*() to set */ const u32 bitfield32_valid; const u32 mask; const char *reject_message; const struct nla_policy *nested_policy; const struct netlink_range_validation *range; const struct netlink_range_validation_signed *range_signed; struct { s16 min, max; }; int (*validate)(const struct nlattr *attr, struct netlink_ext_ack *extack); }; }; #define NLA_POLICY_ETH_ADDR NLA_POLICY_EXACT_LEN(ETH_ALEN) #define NLA_POLICY_ETH_ADDR_COMPAT NLA_POLICY_EXACT_LEN_WARN(ETH_ALEN) #define _NLA_POLICY_NESTED(maxattr, policy) \ { .type = NLA_NESTED, .nested_policy = policy, .len = maxattr } #define _NLA_POLICY_NESTED_ARRAY(maxattr, policy) \ { .type = NLA_NESTED_ARRAY, .nested_policy = policy, .len = maxattr } #define NLA_POLICY_NESTED(policy) \ _NLA_POLICY_NESTED(ARRAY_SIZE(policy) - 1, policy) #define NLA_POLICY_NESTED_ARRAY(policy) \ _NLA_POLICY_NESTED_ARRAY(ARRAY_SIZE(policy) - 1, policy) #define NLA_POLICY_BITFIELD32(valid) \ { .type = NLA_BITFIELD32, .bitfield32_valid = valid } #define __NLA_IS_UINT_TYPE(tp) \ (tp == NLA_U8 || tp == NLA_U16 || tp == NLA_U32 || \ tp == NLA_U64 || tp == NLA_UINT || \ tp == NLA_BE16 || tp == NLA_BE32) #define __NLA_IS_SINT_TYPE(tp) \ (tp == NLA_S8 || tp == NLA_S16 || tp == NLA_S32 || tp == NLA_S64 || \ tp == NLA_SINT) #define __NLA_ENSURE(condition) BUILD_BUG_ON_ZERO(!(condition)) #define NLA_ENSURE_UINT_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp)) + tp) #define NLA_ENSURE_UINT_OR_BINARY_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp) || \ tp == NLA_MSECS || \ tp == NLA_BINARY) + tp) #define NLA_ENSURE_SINT_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_SINT_TYPE(tp)) + tp) #define NLA_ENSURE_INT_OR_BINARY_TYPE(tp) \ (__NLA_ENSURE(__NLA_IS_UINT_TYPE(tp) || \ __NLA_IS_SINT_TYPE(tp) || \ tp == NLA_MSECS || \ tp == NLA_BINARY) + tp) #define NLA_ENSURE_NO_VALIDATION_PTR(tp) \ (__NLA_ENSURE(tp != NLA_BITFIELD32 && \ tp != NLA_REJECT && \ tp != NLA_NESTED && \ tp != NLA_NESTED_ARRAY) + tp) #define NLA_POLICY_RANGE(tp, _min, _max) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE, \ .min = _min, \ .max = _max \ } #define NLA_POLICY_FULL_RANGE(tp, _range) { \ .type = NLA_ENSURE_UINT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE_PTR, \ .range = _range, \ } #define NLA_POLICY_FULL_RANGE_SIGNED(tp, _range) { \ .type = NLA_ENSURE_SINT_TYPE(tp), \ .validation_type = NLA_VALIDATE_RANGE_PTR, \ .range_signed = _range, \ } #define NLA_POLICY_MIN(tp, _min) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_MIN, \ .min = _min, \ } #define NLA_POLICY_MAX(tp, _max) { \ .type = NLA_ENSURE_INT_OR_BINARY_TYPE(tp), \ .validation_type = NLA_VALIDATE_MAX, \ .max = _max, \ } #define NLA_POLICY_MASK(tp, _mask) { \ .type = NLA_ENSURE_UINT_TYPE(tp), \ .validation_type = NLA_VALIDATE_MASK, \ .mask = _mask, \ } #define NLA_POLICY_VALIDATE_FN(tp, fn, ...) { \ .type = NLA_ENSURE_NO_VALIDATION_PTR(tp), \ .validation_type = NLA_VALIDATE_FUNCTION, \ .validate = fn, \ .len = __VA_ARGS__ + 0, \ } #define NLA_POLICY_EXACT_LEN(_len) NLA_POLICY_RANGE(NLA_BINARY, _len, _len) #define NLA_POLICY_EXACT_LEN_WARN(_len) { \ .type = NLA_BINARY, \ .validation_type = NLA_VALIDATE_RANGE_WARN_TOO_LONG, \ .min = _len, \ .max = _len \ } #define NLA_POLICY_MIN_LEN(_len) NLA_POLICY_MIN(NLA_BINARY, _len) #define NLA_POLICY_MAX_LEN(_len) NLA_POLICY_MAX(NLA_BINARY, _len) /** * struct nl_info - netlink source information * @nlh: Netlink message header of original request * @nl_net: Network namespace * @portid: Netlink PORTID of requesting application * @skip_notify: Skip netlink notifications to user space * @skip_notify_kernel: Skip selected in-kernel notifications */ struct nl_info { struct nlmsghdr *nlh; struct net *nl_net; u32 portid; u8 skip_notify:1, skip_notify_kernel:1; }; /** * enum netlink_validation - netlink message/attribute validation levels * @NL_VALIDATE_LIBERAL: Old-style "be liberal" validation, not caring about * extra data at the end of the message, attributes being longer than * they should be, or unknown attributes being present. * @NL_VALIDATE_TRAILING: Reject junk data encountered after attribute parsing. * @NL_VALIDATE_MAXTYPE: Reject attributes > max type; Together with _TRAILING * this is equivalent to the old nla_parse_strict()/nlmsg_parse_strict(). * @NL_VALIDATE_UNSPEC: Reject attributes with NLA_UNSPEC in the policy. * This can safely be set by the kernel when the given policy has no * NLA_UNSPEC anymore, and can thus be used to ensure policy entries * are enforced going forward. * @NL_VALIDATE_STRICT_ATTRS: strict attribute policy parsing (e.g. * U8, U16, U32 must have exact size, etc.) * @NL_VALIDATE_NESTED: Check that NLA_F_NESTED is set for NLA_NESTED(_ARRAY) * and unset for other policies. */ enum netlink_validation { NL_VALIDATE_LIBERAL = 0, NL_VALIDATE_TRAILING = BIT(0), NL_VALIDATE_MAXTYPE = BIT(1), NL_VALIDATE_UNSPEC = BIT(2), NL_VALIDATE_STRICT_ATTRS = BIT(3), NL_VALIDATE_NESTED = BIT(4), }; #define NL_VALIDATE_DEPRECATED_STRICT (NL_VALIDATE_TRAILING |\ NL_VALIDATE_MAXTYPE) #define NL_VALIDATE_STRICT (NL_VALIDATE_TRAILING |\ NL_VALIDATE_MAXTYPE |\ NL_VALIDATE_UNSPEC |\ NL_VALIDATE_STRICT_ATTRS |\ NL_VALIDATE_NESTED) int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *)); int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, int report, gfp_t flags); int __nla_validate(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack); int __nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack); int nla_policy_len(const struct nla_policy *, int); struct nlattr *nla_find(const struct nlattr *head, int len, int attrtype); ssize_t nla_strscpy(char *dst, const struct nlattr *nla, size_t dstsize); char *nla_strdup(const struct nlattr *nla, gfp_t flags); int nla_memcpy(void *dest, const struct nlattr *src, int count); int nla_memcmp(const struct nlattr *nla, const void *data, size_t size); int nla_strcmp(const struct nlattr *nla, const char *str); struct nlattr *__nla_reserve(struct sk_buff *skb, int attrtype, int attrlen); struct nlattr *__nla_reserve_64bit(struct sk_buff *skb, int attrtype, int attrlen, int padattr); void *__nla_reserve_nohdr(struct sk_buff *skb, int attrlen); struct nlattr *nla_reserve(struct sk_buff *skb, int attrtype, int attrlen); struct nlattr *nla_reserve_64bit(struct sk_buff *skb, int attrtype, int attrlen, int padattr); void *nla_reserve_nohdr(struct sk_buff *skb, int attrlen); void __nla_put(struct sk_buff *skb, int attrtype, int attrlen, const void *data); void __nla_put_64bit(struct sk_buff *skb, int attrtype, int attrlen, const void *data, int padattr); void __nla_put_nohdr(struct sk_buff *skb, int attrlen, const void *data); int nla_put(struct sk_buff *skb, int attrtype, int attrlen, const void *data); int nla_put_64bit(struct sk_buff *skb, int attrtype, int attrlen, const void *data, int padattr); int nla_put_nohdr(struct sk_buff *skb, int attrlen, const void *data); int nla_append(struct sk_buff *skb, int attrlen, const void *data); /************************************************************************** * Netlink Messages **************************************************************************/ /** * nlmsg_msg_size - length of netlink message not including padding * @payload: length of message payload */ static inline int nlmsg_msg_size(int payload) { return NLMSG_HDRLEN + payload; } /** * nlmsg_total_size - length of netlink message including padding * @payload: length of message payload */ static inline int nlmsg_total_size(int payload) { return NLMSG_ALIGN(nlmsg_msg_size(payload)); } /** * nlmsg_padlen - length of padding at the message's tail * @payload: length of message payload */ static inline int nlmsg_padlen(int payload) { return nlmsg_total_size(payload) - nlmsg_msg_size(payload); } /** * nlmsg_data - head of message payload * @nlh: netlink message header */ static inline void *nlmsg_data(const struct nlmsghdr *nlh) { return (unsigned char *) nlh + NLMSG_HDRLEN; } /** * nlmsg_len - length of message payload * @nlh: netlink message header */ static inline int nlmsg_len(const struct nlmsghdr *nlh) { return nlh->nlmsg_len - NLMSG_HDRLEN; } /** * nlmsg_attrdata - head of attributes data * @nlh: netlink message header * @hdrlen: length of family specific header */ static inline struct nlattr *nlmsg_attrdata(const struct nlmsghdr *nlh, int hdrlen) { unsigned char *data = nlmsg_data(nlh); return (struct nlattr *) (data + NLMSG_ALIGN(hdrlen)); } /** * nlmsg_attrlen - length of attributes data * @nlh: netlink message header * @hdrlen: length of family specific header */ static inline int nlmsg_attrlen(const struct nlmsghdr *nlh, int hdrlen) { return nlmsg_len(nlh) - NLMSG_ALIGN(hdrlen); } /** * nlmsg_ok - check if the netlink message fits into the remaining bytes * @nlh: netlink message header * @remaining: number of bytes remaining in message stream */ static inline int nlmsg_ok(const struct nlmsghdr *nlh, int remaining) { return (remaining >= (int) sizeof(struct nlmsghdr) && nlh->nlmsg_len >= sizeof(struct nlmsghdr) && nlh->nlmsg_len <= remaining); } /** * nlmsg_next - next netlink message in message stream * @nlh: netlink message header * @remaining: number of bytes remaining in message stream * * Returns: the next netlink message in the message stream and * decrements remaining by the size of the current message. */ static inline struct nlmsghdr * nlmsg_next(const struct nlmsghdr *nlh, int *remaining) { int totlen = NLMSG_ALIGN(nlh->nlmsg_len); *remaining -= totlen; return (struct nlmsghdr *) ((unsigned char *) nlh + totlen); } /** * nla_parse - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be rejected, policy must be specified, attributes * will be validated in the strictest way possible. * * Returns: 0 on success or a negative error code. */ static inline int nla_parse(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_STRICT, extack); } /** * nla_parse_deprecated - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be ignored and attributes from the policy are not * always strictly validated (only for new attributes). * * Returns: 0 on success or a negative error code. */ static inline int nla_parse_deprecated(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_parse_deprecated_strict - Parse a stream of attributes into a tb buffer * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @head: head of attribute stream * @len: length of attribute stream * @policy: validation policy * @extack: extended ACK pointer * * Parses a stream of attributes and stores a pointer to each attribute in * the tb array accessible via the attribute type. Attributes with a type * exceeding maxtype will be rejected as well as trailing data, but the * policy is not completely strictly validated (only for new attributes). * * Returns: 0 on success or a negative error code. */ static inline int nla_parse_deprecated_strict(struct nlattr **tb, int maxtype, const struct nlattr *head, int len, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, head, len, policy, NL_VALIDATE_DEPRECATED_STRICT, extack); } /** * __nlmsg_parse - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @validate: validation strictness * @extack: extended ACK report struct * * See nla_parse() */ static inline int __nlmsg_parse(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack) { if (nlh->nlmsg_len < nlmsg_msg_size(hdrlen)) { NL_SET_ERR_MSG(extack, "Invalid header length"); return -EINVAL; } return __nla_parse(tb, maxtype, nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), policy, validate, extack); } /** * nlmsg_parse - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse() */ static inline int nlmsg_parse(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * nlmsg_parse_deprecated - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated() */ static inline int nlmsg_parse_deprecated(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nlmsg_parse_deprecated_strict - parse attributes of a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated_strict() */ static inline int nlmsg_parse_deprecated_strict(const struct nlmsghdr *nlh, int hdrlen, struct nlattr *tb[], int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nlmsg_parse(nlh, hdrlen, tb, maxtype, policy, NL_VALIDATE_DEPRECATED_STRICT, extack); } /** * nlmsg_find_attr - find a specific attribute in a netlink message * @nlh: netlink message header * @hdrlen: length of family specific header * @attrtype: type of attribute to look for * * Returns: the first attribute which matches the specified type. */ static inline struct nlattr *nlmsg_find_attr(const struct nlmsghdr *nlh, int hdrlen, int attrtype) { return nla_find(nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), attrtype); } /** * nla_validate_deprecated - Validate a stream of attributes * @head: head of attribute stream * @len: length of attribute stream * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * Validates all attributes in the specified attribute stream against the * specified policy. Validation is done in liberal mode. * See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int nla_validate_deprecated(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate(head, len, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_validate - Validate a stream of attributes * @head: head of attribute stream * @len: length of attribute stream * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct * * Validates all attributes in the specified attribute stream against the * specified policy. Validation is done in strict mode. * See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int nla_validate(const struct nlattr *head, int len, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate(head, len, maxtype, policy, NL_VALIDATE_STRICT, extack); } /** * nlmsg_validate_deprecated - validate a netlink message including attributes * @nlh: netlinket message header * @hdrlen: length of family specific header * @maxtype: maximum attribute type to be expected * @policy: validation policy * @extack: extended ACK report struct */ static inline int nlmsg_validate_deprecated(const struct nlmsghdr *nlh, int hdrlen, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { if (nlh->nlmsg_len < nlmsg_msg_size(hdrlen)) return -EINVAL; return __nla_validate(nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nlmsg_report - need to report back to application? * @nlh: netlink message header * * Returns: 1 if a report back to the application is requested. */ static inline int nlmsg_report(const struct nlmsghdr *nlh) { return nlh ? !!(nlh->nlmsg_flags & NLM_F_ECHO) : 0; } /** * nlmsg_seq - return the seq number of netlink message * @nlh: netlink message header * * Returns: 0 if netlink message is NULL */ static inline u32 nlmsg_seq(const struct nlmsghdr *nlh) { return nlh ? nlh->nlmsg_seq : 0; } /** * nlmsg_for_each_attr - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @nlh: netlink message header * @hdrlen: length of family specific header * @rem: initialized to len, holds bytes currently remaining in stream */ #define nlmsg_for_each_attr(pos, nlh, hdrlen, rem) \ nla_for_each_attr(pos, nlmsg_attrdata(nlh, hdrlen), \ nlmsg_attrlen(nlh, hdrlen), rem) /** * nlmsg_put - Add a new netlink message to an skb * @skb: socket buffer to store message in * @portid: netlink PORTID of requesting application * @seq: sequence number of message * @type: message type * @payload: length of message payload * @flags: message flags * * Returns: NULL if the tailroom of the skb is insufficient to store * the message header and payload. */ static inline struct nlmsghdr *nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int payload, int flags) { if (unlikely(skb_tailroom(skb) < nlmsg_total_size(payload))) return NULL; return __nlmsg_put(skb, portid, seq, type, payload, flags); } /** * nlmsg_append - Add more data to a nlmsg in a skb * @skb: socket buffer to store message in * @size: length of message payload * * Append data to an existing nlmsg, used when constructing a message * with multiple fixed-format headers (which is rare). * Returns: NULL if the tailroom of the skb is insufficient to store * the extra payload. */ static inline void *nlmsg_append(struct sk_buff *skb, u32 size) { if (unlikely(skb_tailroom(skb) < NLMSG_ALIGN(size))) return NULL; if (NLMSG_ALIGN(size) - size) memset(skb_tail_pointer(skb) + size, 0, NLMSG_ALIGN(size) - size); return __skb_put(skb, NLMSG_ALIGN(size)); } /** * nlmsg_put_answer - Add a new callback based netlink message to an skb * @skb: socket buffer to store message in * @cb: netlink callback * @type: message type * @payload: length of message payload * @flags: message flags * * Returns: NULL if the tailroom of the skb is insufficient to store * the message header and payload. */ static inline struct nlmsghdr *nlmsg_put_answer(struct sk_buff *skb, struct netlink_callback *cb, int type, int payload, int flags) { return nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, type, payload, flags); } /** * nlmsg_new - Allocate a new netlink message * @payload: size of the message payload * @flags: the type of memory to allocate. * * Use NLMSG_DEFAULT_SIZE if the size of the payload isn't known * and a good default is needed. */ static inline struct sk_buff *nlmsg_new(size_t payload, gfp_t flags) { return alloc_skb(nlmsg_total_size(payload), flags); } /** * nlmsg_new_large - Allocate a new netlink message with non-contiguous * physical memory * @payload: size of the message payload * * The allocated skb is unable to have frag page for shinfo->frags*, * as the NULL setting for skb->head in netlink_skb_destructor() will * bypass most of the handling in skb_release_data() */ static inline struct sk_buff *nlmsg_new_large(size_t payload) { return netlink_alloc_large_skb(nlmsg_total_size(payload), 0); } /** * nlmsg_end - Finalize a netlink message * @skb: socket buffer the message is stored in * @nlh: netlink message header * * Corrects the netlink message header to include the appended * attributes. Only necessary if attributes have been added to * the message. */ static inline void nlmsg_end(struct sk_buff *skb, struct nlmsghdr *nlh) { nlh->nlmsg_len = skb_tail_pointer(skb) - (unsigned char *)nlh; } /** * nlmsg_get_pos - return current position in netlink message * @skb: socket buffer the message is stored in * * Returns: a pointer to the current tail of the message. */ static inline void *nlmsg_get_pos(struct sk_buff *skb) { return skb_tail_pointer(skb); } /** * nlmsg_trim - Trim message to a mark * @skb: socket buffer the message is stored in * @mark: mark to trim to * * Trims the message to the provided mark. */ static inline void nlmsg_trim(struct sk_buff *skb, const void *mark) { if (mark) { WARN_ON((unsigned char *) mark < skb->data); skb_trim(skb, (unsigned char *) mark - skb->data); } } /** * nlmsg_cancel - Cancel construction of a netlink message * @skb: socket buffer the message is stored in * @nlh: netlink message header * * Removes the complete netlink message including all * attributes from the socket buffer again. */ static inline void nlmsg_cancel(struct sk_buff *skb, struct nlmsghdr *nlh) { nlmsg_trim(skb, nlh); } /** * nlmsg_free - drop a netlink message * @skb: socket buffer of netlink message */ static inline void nlmsg_free(struct sk_buff *skb) { kfree_skb(skb); } /** * nlmsg_consume - free a netlink message * @skb: socket buffer of netlink message */ static inline void nlmsg_consume(struct sk_buff *skb) { consume_skb(skb); } /** * nlmsg_multicast_filtered - multicast a netlink message with filter function * @sk: netlink socket to spread messages to * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: multicast group id * @flags: allocation flags * @filter: filter function * @filter_data: filter function private data * * Return: 0 on success, negative error code for failure. */ static inline int nlmsg_multicast_filtered(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags, netlink_filter_fn filter, void *filter_data) { int err; NETLINK_CB(skb).dst_group = group; err = netlink_broadcast_filtered(sk, skb, portid, group, flags, filter, filter_data); if (err > 0) err = 0; return err; } /** * nlmsg_multicast - multicast a netlink message * @sk: netlink socket to spread messages to * @skb: netlink message as socket buffer * @portid: own netlink portid to avoid sending to yourself * @group: multicast group id * @flags: allocation flags */ static inline int nlmsg_multicast(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, gfp_t flags) { return nlmsg_multicast_filtered(sk, skb, portid, group, flags, NULL, NULL); } /** * nlmsg_unicast - unicast a netlink message * @sk: netlink socket to spread message to * @skb: netlink message as socket buffer * @portid: netlink portid of the destination socket */ static inline int nlmsg_unicast(struct sock *sk, struct sk_buff *skb, u32 portid) { int err; err = netlink_unicast(sk, skb, portid, MSG_DONTWAIT); if (err > 0) err = 0; return err; } /** * nlmsg_for_each_msg - iterate over a stream of messages * @pos: loop counter, set to current message * @head: head of message stream * @len: length of message stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nlmsg_for_each_msg(pos, head, len, rem) \ for (pos = head, rem = len; \ nlmsg_ok(pos, rem); \ pos = nlmsg_next(pos, &(rem))) /** * nl_dump_check_consistent - check if sequence is consistent and advertise if not * @cb: netlink callback structure that stores the sequence number * @nlh: netlink message header to write the flag to * * This function checks if the sequence (generation) number changed during dump * and if it did, advertises it in the netlink message header. * * The correct way to use it is to set cb->seq to the generation counter when * all locks for dumping have been acquired, and then call this function for * each message that is generated. * * Note that due to initialisation concerns, 0 is an invalid sequence number * and must not be used by code that uses this functionality. */ static inline void nl_dump_check_consistent(struct netlink_callback *cb, struct nlmsghdr *nlh) { if (cb->prev_seq && cb->seq != cb->prev_seq) nlh->nlmsg_flags |= NLM_F_DUMP_INTR; cb->prev_seq = cb->seq; } /************************************************************************** * Netlink Attributes **************************************************************************/ /** * nla_attr_size - length of attribute not including padding * @payload: length of payload */ static inline int nla_attr_size(int payload) { return NLA_HDRLEN + payload; } /** * nla_total_size - total length of attribute including padding * @payload: length of payload */ static inline int nla_total_size(int payload) { return NLA_ALIGN(nla_attr_size(payload)); } /** * nla_padlen - length of padding at the tail of attribute * @payload: length of payload */ static inline int nla_padlen(int payload) { return nla_total_size(payload) - nla_attr_size(payload); } /** * nla_type - attribute type * @nla: netlink attribute */ static inline int nla_type(const struct nlattr *nla) { return nla->nla_type & NLA_TYPE_MASK; } /** * nla_data - head of payload * @nla: netlink attribute */ static inline void *nla_data(const struct nlattr *nla) { return (char *) nla + NLA_HDRLEN; } /** * nla_len - length of payload * @nla: netlink attribute */ static inline u16 nla_len(const struct nlattr *nla) { return nla->nla_len - NLA_HDRLEN; } /** * nla_ok - check if the netlink attribute fits into the remaining bytes * @nla: netlink attribute * @remaining: number of bytes remaining in attribute stream */ static inline int nla_ok(const struct nlattr *nla, int remaining) { return remaining >= (int) sizeof(*nla) && nla->nla_len >= sizeof(*nla) && nla->nla_len <= remaining; } /** * nla_next - next netlink attribute in attribute stream * @nla: netlink attribute * @remaining: number of bytes remaining in attribute stream * * Returns: the next netlink attribute in the attribute stream and * decrements remaining by the size of the current attribute. */ static inline struct nlattr *nla_next(const struct nlattr *nla, int *remaining) { unsigned int totlen = NLA_ALIGN(nla->nla_len); *remaining -= totlen; return (struct nlattr *) ((char *) nla + totlen); } /** * nla_find_nested - find attribute in a set of nested attributes * @nla: attribute containing the nested attributes * @attrtype: type of attribute to look for * * Returns: the first attribute which matches the specified type. */ static inline struct nlattr * nla_find_nested(const struct nlattr *nla, int attrtype) { return nla_find(nla_data(nla), nla_len(nla), attrtype); } /** * nla_parse_nested - parse nested attributes * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @nla: attribute containing the nested attributes * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse() */ static inline int nla_parse_nested(struct nlattr *tb[], int maxtype, const struct nlattr *nla, const struct nla_policy *policy, struct netlink_ext_ack *extack) { if (!(nla->nla_type & NLA_F_NESTED)) { NL_SET_ERR_MSG_ATTR(extack, nla, "NLA_F_NESTED is missing"); return -EINVAL; } return __nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy, NL_VALIDATE_STRICT, extack); } /** * nla_parse_nested_deprecated - parse nested attributes * @tb: destination array with maxtype+1 elements * @maxtype: maximum attribute type to be expected * @nla: attribute containing the nested attributes * @policy: validation policy * @extack: extended ACK report struct * * See nla_parse_deprecated() */ static inline int nla_parse_nested_deprecated(struct nlattr *tb[], int maxtype, const struct nlattr *nla, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_put_u8 - Add a u8 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u8(struct sk_buff *skb, int attrtype, u8 value) { /* temporary variables to work around GCC PR81715 with asan-stack=1 */ u8 tmp = value; return nla_put(skb, attrtype, sizeof(u8), &tmp); } /** * nla_put_u16 - Add a u16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u16(struct sk_buff *skb, int attrtype, u16 value) { u16 tmp = value; return nla_put(skb, attrtype, sizeof(u16), &tmp); } /** * nla_put_be16 - Add a __be16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_be16(struct sk_buff *skb, int attrtype, __be16 value) { __be16 tmp = value; return nla_put(skb, attrtype, sizeof(__be16), &tmp); } /** * nla_put_net16 - Add 16-bit network byte order netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_net16(struct sk_buff *skb, int attrtype, __be16 value) { __be16 tmp = value; return nla_put_be16(skb, attrtype | NLA_F_NET_BYTEORDER, tmp); } /** * nla_put_le16 - Add a __le16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_le16(struct sk_buff *skb, int attrtype, __le16 value) { __le16 tmp = value; return nla_put(skb, attrtype, sizeof(__le16), &tmp); } /** * nla_put_u32 - Add a u32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_u32(struct sk_buff *skb, int attrtype, u32 value) { u32 tmp = value; return nla_put(skb, attrtype, sizeof(u32), &tmp); } /** * nla_put_uint - Add a variable-size unsigned int to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_uint(struct sk_buff *skb, int attrtype, u64 value) { u64 tmp64 = value; u32 tmp32 = value; if (tmp64 == tmp32) return nla_put_u32(skb, attrtype, tmp32); return nla_put(skb, attrtype, sizeof(u64), &tmp64); } /** * nla_put_be32 - Add a __be32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_be32(struct sk_buff *skb, int attrtype, __be32 value) { __be32 tmp = value; return nla_put(skb, attrtype, sizeof(__be32), &tmp); } /** * nla_put_net32 - Add 32-bit network byte order netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_net32(struct sk_buff *skb, int attrtype, __be32 value) { __be32 tmp = value; return nla_put_be32(skb, attrtype | NLA_F_NET_BYTEORDER, tmp); } /** * nla_put_le32 - Add a __le32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_le32(struct sk_buff *skb, int attrtype, __le32 value) { __le32 tmp = value; return nla_put(skb, attrtype, sizeof(__le32), &tmp); } /** * nla_put_u64_64bit - Add a u64 netlink attribute to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_u64_64bit(struct sk_buff *skb, int attrtype, u64 value, int padattr) { u64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(u64), &tmp, padattr); } /** * nla_put_be64 - Add a __be64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_be64(struct sk_buff *skb, int attrtype, __be64 value, int padattr) { __be64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(__be64), &tmp, padattr); } /** * nla_put_net64 - Add 64-bit network byte order nlattr to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_net64(struct sk_buff *skb, int attrtype, __be64 value, int padattr) { __be64 tmp = value; return nla_put_be64(skb, attrtype | NLA_F_NET_BYTEORDER, tmp, padattr); } /** * nla_put_le64 - Add a __le64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_le64(struct sk_buff *skb, int attrtype, __le64 value, int padattr) { __le64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(__le64), &tmp, padattr); } /** * nla_put_s8 - Add a s8 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s8(struct sk_buff *skb, int attrtype, s8 value) { s8 tmp = value; return nla_put(skb, attrtype, sizeof(s8), &tmp); } /** * nla_put_s16 - Add a s16 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s16(struct sk_buff *skb, int attrtype, s16 value) { s16 tmp = value; return nla_put(skb, attrtype, sizeof(s16), &tmp); } /** * nla_put_s32 - Add a s32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_s32(struct sk_buff *skb, int attrtype, s32 value) { s32 tmp = value; return nla_put(skb, attrtype, sizeof(s32), &tmp); } /** * nla_put_s64 - Add a s64 netlink attribute to a socket buffer and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value * @padattr: attribute type for the padding */ static inline int nla_put_s64(struct sk_buff *skb, int attrtype, s64 value, int padattr) { s64 tmp = value; return nla_put_64bit(skb, attrtype, sizeof(s64), &tmp, padattr); } /** * nla_put_sint - Add a variable-size signed int to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: numeric value */ static inline int nla_put_sint(struct sk_buff *skb, int attrtype, s64 value) { s64 tmp64 = value; s32 tmp32 = value; if (tmp64 == tmp32) return nla_put_s32(skb, attrtype, tmp32); return nla_put(skb, attrtype, sizeof(s64), &tmp64); } /** * nla_put_string - Add a string netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @str: NUL terminated string */ static inline int nla_put_string(struct sk_buff *skb, int attrtype, const char *str) { return nla_put(skb, attrtype, strlen(str) + 1, str); } /** * nla_put_flag - Add a flag netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type */ static inline int nla_put_flag(struct sk_buff *skb, int attrtype) { return nla_put(skb, attrtype, 0, NULL); } /** * nla_put_msecs - Add a msecs netlink attribute to a skb and align it * @skb: socket buffer to add attribute to * @attrtype: attribute type * @njiffies: number of jiffies to convert to msecs * @padattr: attribute type for the padding */ static inline int nla_put_msecs(struct sk_buff *skb, int attrtype, unsigned long njiffies, int padattr) { u64 tmp = jiffies_to_msecs(njiffies); return nla_put_64bit(skb, attrtype, sizeof(u64), &tmp, padattr); } /** * nla_put_in_addr - Add an IPv4 address netlink attribute to a socket * buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @addr: IPv4 address */ static inline int nla_put_in_addr(struct sk_buff *skb, int attrtype, __be32 addr) { __be32 tmp = addr; return nla_put_be32(skb, attrtype, tmp); } /** * nla_put_in6_addr - Add an IPv6 address netlink attribute to a socket * buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @addr: IPv6 address */ static inline int nla_put_in6_addr(struct sk_buff *skb, int attrtype, const struct in6_addr *addr) { return nla_put(skb, attrtype, sizeof(*addr), addr); } /** * nla_put_bitfield32 - Add a bitfield32 netlink attribute to a socket buffer * @skb: socket buffer to add attribute to * @attrtype: attribute type * @value: value carrying bits * @selector: selector of valid bits */ static inline int nla_put_bitfield32(struct sk_buff *skb, int attrtype, __u32 value, __u32 selector) { struct nla_bitfield32 tmp = { value, selector, }; return nla_put(skb, attrtype, sizeof(tmp), &tmp); } /** * nla_get_u32 - return payload of u32 attribute * @nla: u32 netlink attribute */ static inline u32 nla_get_u32(const struct nlattr *nla) { return *(u32 *) nla_data(nla); } /** * nla_get_u32_default - return payload of u32 attribute or default * @nla: u32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u32 nla_get_u32_default(const struct nlattr *nla, u32 defvalue) { if (!nla) return defvalue; return nla_get_u32(nla); } /** * nla_get_be32 - return payload of __be32 attribute * @nla: __be32 netlink attribute */ static inline __be32 nla_get_be32(const struct nlattr *nla) { return *(__be32 *) nla_data(nla); } /** * nla_get_be32_default - return payload of be32 attribute or default * @nla: __be32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be32 nla_get_be32_default(const struct nlattr *nla, __be32 defvalue) { if (!nla) return defvalue; return nla_get_be32(nla); } /** * nla_get_le32 - return payload of __le32 attribute * @nla: __le32 netlink attribute */ static inline __le32 nla_get_le32(const struct nlattr *nla) { return *(__le32 *) nla_data(nla); } /** * nla_get_le32_default - return payload of le32 attribute or default * @nla: __le32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le32 nla_get_le32_default(const struct nlattr *nla, __le32 defvalue) { if (!nla) return defvalue; return nla_get_le32(nla); } /** * nla_get_u16 - return payload of u16 attribute * @nla: u16 netlink attribute */ static inline u16 nla_get_u16(const struct nlattr *nla) { return *(u16 *) nla_data(nla); } /** * nla_get_u16_default - return payload of u16 attribute or default * @nla: u16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u16 nla_get_u16_default(const struct nlattr *nla, u16 defvalue) { if (!nla) return defvalue; return nla_get_u16(nla); } /** * nla_get_be16 - return payload of __be16 attribute * @nla: __be16 netlink attribute */ static inline __be16 nla_get_be16(const struct nlattr *nla) { return *(__be16 *) nla_data(nla); } /** * nla_get_be16_default - return payload of be16 attribute or default * @nla: __be16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be16 nla_get_be16_default(const struct nlattr *nla, __be16 defvalue) { if (!nla) return defvalue; return nla_get_be16(nla); } /** * nla_get_le16 - return payload of __le16 attribute * @nla: __le16 netlink attribute */ static inline __le16 nla_get_le16(const struct nlattr *nla) { return *(__le16 *) nla_data(nla); } /** * nla_get_le16_default - return payload of le16 attribute or default * @nla: __le16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le16 nla_get_le16_default(const struct nlattr *nla, __le16 defvalue) { if (!nla) return defvalue; return nla_get_le16(nla); } /** * nla_get_u8 - return payload of u8 attribute * @nla: u8 netlink attribute */ static inline u8 nla_get_u8(const struct nlattr *nla) { return *(u8 *) nla_data(nla); } /** * nla_get_u8_default - return payload of u8 attribute or default * @nla: u8 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u8 nla_get_u8_default(const struct nlattr *nla, u8 defvalue) { if (!nla) return defvalue; return nla_get_u8(nla); } /** * nla_get_u64 - return payload of u64 attribute * @nla: u64 netlink attribute */ static inline u64 nla_get_u64(const struct nlattr *nla) { u64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_u64_default - return payload of u64 attribute or default * @nla: u64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u64 nla_get_u64_default(const struct nlattr *nla, u64 defvalue) { if (!nla) return defvalue; return nla_get_u64(nla); } /** * nla_get_uint - return payload of uint attribute * @nla: uint netlink attribute */ static inline u64 nla_get_uint(const struct nlattr *nla) { if (nla_len(nla) == sizeof(u32)) return nla_get_u32(nla); return nla_get_u64(nla); } /** * nla_get_uint_default - return payload of uint attribute or default * @nla: uint netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline u64 nla_get_uint_default(const struct nlattr *nla, u64 defvalue) { if (!nla) return defvalue; return nla_get_uint(nla); } /** * nla_get_be64 - return payload of __be64 attribute * @nla: __be64 netlink attribute */ static inline __be64 nla_get_be64(const struct nlattr *nla) { __be64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_be64_default - return payload of be64 attribute or default * @nla: __be64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be64 nla_get_be64_default(const struct nlattr *nla, __be64 defvalue) { if (!nla) return defvalue; return nla_get_be64(nla); } /** * nla_get_le64 - return payload of __le64 attribute * @nla: __le64 netlink attribute */ static inline __le64 nla_get_le64(const struct nlattr *nla) { return *(__le64 *) nla_data(nla); } /** * nla_get_le64_default - return payload of le64 attribute or default * @nla: __le64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __le64 nla_get_le64_default(const struct nlattr *nla, __le64 defvalue) { if (!nla) return defvalue; return nla_get_le64(nla); } /** * nla_get_s32 - return payload of s32 attribute * @nla: s32 netlink attribute */ static inline s32 nla_get_s32(const struct nlattr *nla) { return *(s32 *) nla_data(nla); } /** * nla_get_s32_default - return payload of s32 attribute or default * @nla: s32 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s32 nla_get_s32_default(const struct nlattr *nla, s32 defvalue) { if (!nla) return defvalue; return nla_get_s32(nla); } /** * nla_get_s16 - return payload of s16 attribute * @nla: s16 netlink attribute */ static inline s16 nla_get_s16(const struct nlattr *nla) { return *(s16 *) nla_data(nla); } /** * nla_get_s16_default - return payload of s16 attribute or default * @nla: s16 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s16 nla_get_s16_default(const struct nlattr *nla, s16 defvalue) { if (!nla) return defvalue; return nla_get_s16(nla); } /** * nla_get_s8 - return payload of s8 attribute * @nla: s8 netlink attribute */ static inline s8 nla_get_s8(const struct nlattr *nla) { return *(s8 *) nla_data(nla); } /** * nla_get_s8_default - return payload of s8 attribute or default * @nla: s8 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s8 nla_get_s8_default(const struct nlattr *nla, s8 defvalue) { if (!nla) return defvalue; return nla_get_s8(nla); } /** * nla_get_s64 - return payload of s64 attribute * @nla: s64 netlink attribute */ static inline s64 nla_get_s64(const struct nlattr *nla) { s64 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_s64_default - return payload of s64 attribute or default * @nla: s64 netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s64 nla_get_s64_default(const struct nlattr *nla, s64 defvalue) { if (!nla) return defvalue; return nla_get_s64(nla); } /** * nla_get_sint - return payload of uint attribute * @nla: uint netlink attribute */ static inline s64 nla_get_sint(const struct nlattr *nla) { if (nla_len(nla) == sizeof(s32)) return nla_get_s32(nla); return nla_get_s64(nla); } /** * nla_get_sint_default - return payload of sint attribute or default * @nla: sint netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline s64 nla_get_sint_default(const struct nlattr *nla, s64 defvalue) { if (!nla) return defvalue; return nla_get_sint(nla); } /** * nla_get_flag - return payload of flag attribute * @nla: flag netlink attribute */ static inline int nla_get_flag(const struct nlattr *nla) { return !!nla; } /** * nla_get_msecs - return payload of msecs attribute * @nla: msecs netlink attribute * * Returns: the number of milliseconds in jiffies. */ static inline unsigned long nla_get_msecs(const struct nlattr *nla) { u64 msecs = nla_get_u64(nla); return msecs_to_jiffies((unsigned long) msecs); } /** * nla_get_msecs_default - return payload of msecs attribute or default * @nla: msecs netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline unsigned long nla_get_msecs_default(const struct nlattr *nla, unsigned long defvalue) { if (!nla) return defvalue; return nla_get_msecs(nla); } /** * nla_get_in_addr - return payload of IPv4 address attribute * @nla: IPv4 address netlink attribute */ static inline __be32 nla_get_in_addr(const struct nlattr *nla) { return *(__be32 *) nla_data(nla); } /** * nla_get_in_addr_default - return payload of be32 attribute or default * @nla: IPv4 address netlink attribute, may be %NULL * @defvalue: default value to use if @nla is %NULL * * Return: the value of the attribute, or the default value if not present */ static inline __be32 nla_get_in_addr_default(const struct nlattr *nla, __be32 defvalue) { if (!nla) return defvalue; return nla_get_in_addr(nla); } /** * nla_get_in6_addr - return payload of IPv6 address attribute * @nla: IPv6 address netlink attribute */ static inline struct in6_addr nla_get_in6_addr(const struct nlattr *nla) { struct in6_addr tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_get_bitfield32 - return payload of 32 bitfield attribute * @nla: nla_bitfield32 attribute */ static inline struct nla_bitfield32 nla_get_bitfield32(const struct nlattr *nla) { struct nla_bitfield32 tmp; nla_memcpy(&tmp, nla, sizeof(tmp)); return tmp; } /** * nla_memdup - duplicate attribute memory (kmemdup) * @src: netlink attribute to duplicate from * @gfp: GFP mask */ static inline void *nla_memdup_noprof(const struct nlattr *src, gfp_t gfp) { return kmemdup_noprof(nla_data(src), nla_len(src), gfp); } #define nla_memdup(...) alloc_hooks(nla_memdup_noprof(__VA_ARGS__)) /** * nla_nest_start_noflag - Start a new level of nested attributes * @skb: socket buffer to add attributes to * @attrtype: attribute type of container * * This function exists for backward compatibility to use in APIs which never * marked their nest attributes with NLA_F_NESTED flag. New APIs should use * nla_nest_start() which sets the flag. * * Returns: the container attribute or NULL on error */ static inline struct nlattr *nla_nest_start_noflag(struct sk_buff *skb, int attrtype) { struct nlattr *start = (struct nlattr *)skb_tail_pointer(skb); if (nla_put(skb, attrtype, 0, NULL) < 0) return NULL; return start; } /** * nla_nest_start - Start a new level of nested attributes, with NLA_F_NESTED * @skb: socket buffer to add attributes to * @attrtype: attribute type of container * * Unlike nla_nest_start_noflag(), mark the nest attribute with NLA_F_NESTED * flag. This is the preferred function to use in new code. * * Returns: the container attribute or NULL on error */ static inline struct nlattr *nla_nest_start(struct sk_buff *skb, int attrtype) { return nla_nest_start_noflag(skb, attrtype | NLA_F_NESTED); } /** * nla_nest_end - Finalize nesting of attributes * @skb: socket buffer the attributes are stored in * @start: container attribute * * Corrects the container attribute header to include the all * appended attributes. * * Returns: the total data length of the skb. */ static inline int nla_nest_end(struct sk_buff *skb, struct nlattr *start) { start->nla_len = skb_tail_pointer(skb) - (unsigned char *)start; return skb->len; } /** * nla_nest_cancel - Cancel nesting of attributes * @skb: socket buffer the message is stored in * @start: container attribute * * Removes the container attribute and including all nested * attributes. Returns -EMSGSIZE */ static inline void nla_nest_cancel(struct sk_buff *skb, struct nlattr *start) { nlmsg_trim(skb, start); } /** * __nla_validate_nested - Validate a stream of nested attributes * @start: container attribute * @maxtype: maximum attribute type to be expected * @policy: validation policy * @validate: validation strictness * @extack: extended ACK report struct * * Validates all attributes in the nested attribute stream against the * specified policy. Attributes with a type exceeding maxtype will be * ignored. See documentation of struct nla_policy for more details. * * Returns: 0 on success or a negative error code. */ static inline int __nla_validate_nested(const struct nlattr *start, int maxtype, const struct nla_policy *policy, unsigned int validate, struct netlink_ext_ack *extack) { return __nla_validate(nla_data(start), nla_len(start), maxtype, policy, validate, extack); } static inline int nla_validate_nested(const struct nlattr *start, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate_nested(start, maxtype, policy, NL_VALIDATE_STRICT, extack); } static inline int nla_validate_nested_deprecated(const struct nlattr *start, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack) { return __nla_validate_nested(start, maxtype, policy, NL_VALIDATE_LIBERAL, extack); } /** * nla_need_padding_for_64bit - test 64-bit alignment of the next attribute * @skb: socket buffer the message is stored in * * Return: true if padding is needed to align the next attribute (nla_data()) to * a 64-bit aligned area. */ static inline bool nla_need_padding_for_64bit(struct sk_buff *skb) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS /* The nlattr header is 4 bytes in size, that's why we test * if the skb->data _is_ aligned. A NOP attribute, plus * nlattr header for next attribute, will make nla_data() * 8-byte aligned. */ if (IS_ALIGNED((unsigned long)skb_tail_pointer(skb), 8)) return true; #endif return false; } /** * nla_align_64bit - 64-bit align the nla_data() of next attribute * @skb: socket buffer the message is stored in * @padattr: attribute type for the padding * * Conditionally emit a padding netlink attribute in order to make * the next attribute we emit have a 64-bit aligned nla_data() area. * This will only be done in architectures which do not have * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS defined. * * Returns: zero on success or a negative error code. */ static inline int nla_align_64bit(struct sk_buff *skb, int padattr) { if (nla_need_padding_for_64bit(skb) && !nla_reserve(skb, padattr, 0)) return -EMSGSIZE; return 0; } /** * nla_total_size_64bit - total length of attribute including padding * @payload: length of payload */ static inline int nla_total_size_64bit(int payload) { return NLA_ALIGN(nla_attr_size(payload)) #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS + NLA_ALIGN(nla_attr_size(0)) #endif ; } /** * nla_for_each_attr - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @head: head of attribute stream * @len: length of attribute stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_attr(pos, head, len, rem) \ for (pos = head, rem = len; \ nla_ok(pos, rem); \ pos = nla_next(pos, &(rem))) /** * nla_for_each_attr_type - iterate over a stream of attributes * @pos: loop counter, set to current attribute * @type: required attribute type for @pos * @head: head of attribute stream * @len: length of attribute stream * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_attr_type(pos, type, head, len, rem) \ nla_for_each_attr(pos, head, len, rem) \ if (nla_type(pos) == type) /** * nla_for_each_nested - iterate over nested attributes * @pos: loop counter, set to current attribute * @nla: attribute containing the nested attributes * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_nested(pos, nla, rem) \ nla_for_each_attr(pos, nla_data(nla), nla_len(nla), rem) /** * nla_for_each_nested_type - iterate over nested attributes * @pos: loop counter, set to current attribute * @type: required attribute type for @pos * @nla: attribute containing the nested attributes * @rem: initialized to len, holds bytes currently remaining in stream */ #define nla_for_each_nested_type(pos, type, nla, rem) \ nla_for_each_nested(pos, nla, rem) \ if (nla_type(pos) == type) /** * nla_is_last - Test if attribute is last in stream * @nla: attribute to test * @rem: bytes remaining in stream */ static inline bool nla_is_last(const struct nlattr *nla, int rem) { return nla->nla_len == rem; } void nla_get_range_unsigned(const struct nla_policy *pt, struct netlink_range_validation *range); void nla_get_range_signed(const struct nla_policy *pt, struct netlink_range_validation_signed *range); struct netlink_policy_dump_state; int netlink_policy_dump_add_policy(struct netlink_policy_dump_state **pstate, const struct nla_policy *policy, unsigned int maxtype); int netlink_policy_dump_get_policy_idx(struct netlink_policy_dump_state *state, const struct nla_policy *policy, unsigned int maxtype); bool netlink_policy_dump_loop(struct netlink_policy_dump_state *state); int netlink_policy_dump_write(struct sk_buff *skb, struct netlink_policy_dump_state *state); int netlink_policy_dump_attr_size_estimate(const struct nla_policy *pt); int netlink_policy_dump_write_attr(struct sk_buff *skb, const struct nla_policy *pt, int nestattr); void netlink_policy_dump_free(struct netlink_policy_dump_state *state); #endif |
| 30 30 30 30 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | // SPDX-License-Identifier: GPL-2.0-only /* * File: sysctl.c * * Phonet /proc/sys/net/phonet interface implementation * * Copyright (C) 2008 Nokia Corporation. * * Author: Rémi Denis-Courmont */ #include <linux/seqlock.h> #include <linux/sysctl.h> #include <linux/errno.h> #include <linux/init.h> #include <net/sock.h> #include <linux/phonet.h> #include <net/phonet/phonet.h> #define DYNAMIC_PORT_MIN 0x40 #define DYNAMIC_PORT_MAX 0x7f static DEFINE_SEQLOCK(local_port_range_lock); static int local_port_range_min[2] = {0, 0}; static int local_port_range_max[2] = {1023, 1023}; static int local_port_range[2] = {DYNAMIC_PORT_MIN, DYNAMIC_PORT_MAX}; static struct ctl_table_header *phonet_table_hrd; static void set_local_port_range(int range[2]) { write_seqlock(&local_port_range_lock); local_port_range[0] = range[0]; local_port_range[1] = range[1]; write_sequnlock(&local_port_range_lock); } void phonet_get_local_port_range(int *min, int *max) { unsigned int seq; do { seq = read_seqbegin(&local_port_range_lock); if (min) *min = local_port_range[0]; if (max) *max = local_port_range[1]; } while (read_seqretry(&local_port_range_lock, seq)); } static int proc_local_port_range(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; int range[2] = {local_port_range[0], local_port_range[1]}; struct ctl_table tmp = { .data = &range, .maxlen = sizeof(range), .mode = table->mode, .extra1 = &local_port_range_min, .extra2 = &local_port_range_max, }; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && ret == 0) { if (range[1] < range[0]) ret = -EINVAL; else set_local_port_range(range); } return ret; } static struct ctl_table phonet_table[] = { { .procname = "local_port_range", .data = &local_port_range, .maxlen = sizeof(local_port_range), .mode = 0644, .proc_handler = proc_local_port_range, }, }; int __init phonet_sysctl_init(void) { phonet_table_hrd = register_net_sysctl(&init_net, "net/phonet", phonet_table); return phonet_table_hrd == NULL ? -ENOMEM : 0; } void phonet_sysctl_exit(void) { unregister_net_sysctl_table(phonet_table_hrd); } |
| 126 11 277 93 101 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | #undef TRACE_SYSTEM #define TRACE_SYSTEM qdisc #if !defined(_TRACE_QDISC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_QDISC_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <linux/ftrace.h> #include <linux/pkt_sched.h> #include <net/sch_generic.h> TRACE_EVENT(qdisc_dequeue, TP_PROTO(struct Qdisc *qdisc, const struct netdev_queue *txq, int packets, struct sk_buff *skb), TP_ARGS(qdisc, txq, packets, skb), TP_STRUCT__entry( __field( struct Qdisc *, qdisc ) __field(const struct netdev_queue *, txq ) __field( int, packets ) __field( void *, skbaddr ) __field( int, ifindex ) __field( u32, handle ) __field( u32, parent ) __field( unsigned long, txq_state) ), /* skb==NULL indicate packets dequeued was 0, even when packets==1 */ TP_fast_assign( __entry->qdisc = qdisc; __entry->txq = txq; __entry->packets = skb ? packets : 0; __entry->skbaddr = skb; __entry->ifindex = txq->dev ? txq->dev->ifindex : 0; __entry->handle = qdisc->handle; __entry->parent = qdisc->parent; __entry->txq_state = txq->state; ), TP_printk("dequeue ifindex=%d qdisc handle=0x%X parent=0x%X txq_state=0x%lX packets=%d skbaddr=%p", __entry->ifindex, __entry->handle, __entry->parent, __entry->txq_state, __entry->packets, __entry->skbaddr ) ); TRACE_EVENT(qdisc_enqueue, TP_PROTO(struct Qdisc *qdisc, const struct netdev_queue *txq, struct sk_buff *skb), TP_ARGS(qdisc, txq, skb), TP_STRUCT__entry( __field(struct Qdisc *, qdisc) __field(const struct netdev_queue *, txq) __field(void *, skbaddr) __field(int, ifindex) __field(u32, handle) __field(u32, parent) ), TP_fast_assign( __entry->qdisc = qdisc; __entry->txq = txq; __entry->skbaddr = skb; __entry->ifindex = txq->dev ? txq->dev->ifindex : 0; __entry->handle = qdisc->handle; __entry->parent = qdisc->parent; ), TP_printk("enqueue ifindex=%d qdisc handle=0x%X parent=0x%X skbaddr=%p", __entry->ifindex, __entry->handle, __entry->parent, __entry->skbaddr) ); TRACE_EVENT(qdisc_reset, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q) ? qdisc_dev(q)->name : "(null)" ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev); __assign_str(kind); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_destroy, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q)->name ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev); __assign_str(kind); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_create, TP_PROTO(const struct Qdisc_ops *ops, struct net_device *dev, u32 parent), TP_ARGS(ops, dev, parent), TP_STRUCT__entry( __string( dev, dev->name ) __string( kind, ops->id ) __field( u32, parent ) ), TP_fast_assign( __assign_str(dev); __assign_str(kind); __entry->parent = parent; ), TP_printk("dev=%s kind=%s parent=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent)) ); #endif /* _TRACE_QDISC_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 2461 508 607 30 5531 5532 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | // SPDX-License-Identifier: GPL-2.0 #include <linux/compiler.h> #include <linux/export.h> #include <linux/fault-inject-usercopy.h> #include <linux/kasan-checks.h> #include <linux/thread_info.h> #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/mm.h> #include <asm/byteorder.h> #include <asm/word-at-a-time.h> #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS #define IS_UNALIGNED(src, dst) 0 #else #define IS_UNALIGNED(src, dst) \ (((long) dst | (long) src) & (sizeof(long) - 1)) #endif /* * Do a strncpy, return length of string without final '\0'. * 'count' is the user-supplied count (return 'count' if we * hit it), 'max' is the address space maximum (and we return * -EFAULT if we hit it). */ static __always_inline long do_strncpy_from_user(char *dst, const char __user *src, unsigned long count, unsigned long max) { const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; unsigned long res = 0; if (IS_UNALIGNED(src, dst)) goto byte_at_a_time; while (max >= sizeof(unsigned long)) { unsigned long c, data, mask; /* Fall back to byte-at-a-time if we get a page fault */ unsafe_get_user(c, (unsigned long __user *)(src+res), byte_at_a_time); /* * Note that we mask out the bytes following the NUL. This is * important to do because string oblivious code may read past * the NUL. For those routines, we don't want to give them * potentially random bytes after the NUL in `src`. * * One example of such code is BPF map keys. BPF treats map keys * as an opaque set of bytes. Without the post-NUL mask, any BPF * maps keyed by strings returned from strncpy_from_user() may * have multiple entries for semantically identical strings. */ if (has_zero(c, &data, &constants)) { data = prep_zero_mask(c, data, &constants); data = create_zero_mask(data); mask = zero_bytemask(data); *(unsigned long *)(dst+res) = c & mask; return res + find_zero(data); } *(unsigned long *)(dst+res) = c; res += sizeof(unsigned long); max -= sizeof(unsigned long); } byte_at_a_time: while (max) { char c; unsafe_get_user(c,src+res, efault); dst[res] = c; if (!c) return res; res++; max--; } /* * Uhhuh. We hit 'max'. But was that the user-specified maximum * too? If so, that's ok - we got as much as the user asked for. */ if (res >= count) return res; /* * Nope: we hit the address space limit, and we still had more * characters the caller would have wanted. That's an EFAULT. */ efault: return -EFAULT; } /** * strncpy_from_user: - Copy a NUL terminated string from userspace. * @dst: Destination address, in kernel space. This buffer must be at * least @count bytes long. * @src: Source address, in user space. * @count: Maximum number of bytes to copy, including the trailing NUL. * * Copies a NUL-terminated string from userspace to kernel space. * * On success, returns the length of the string (not including the trailing * NUL). * * If access to userspace fails, returns -EFAULT (some data may have been * copied). * * If @count is smaller than the length of the string, copies @count bytes * and returns @count. */ long strncpy_from_user(char *dst, const char __user *src, long count) { unsigned long max_addr, src_addr; might_fault(); if (should_fail_usercopy()) return -EFAULT; if (unlikely(count <= 0)) return 0; kasan_check_write(dst, count); check_object_size(dst, count, false); if (can_do_masked_user_access()) { long retval; src = masked_user_access_begin(src); retval = do_strncpy_from_user(dst, src, count, count); user_read_access_end(); return retval; } max_addr = TASK_SIZE_MAX; src_addr = (unsigned long)untagged_addr(src); if (likely(src_addr < max_addr)) { unsigned long max = max_addr - src_addr; long retval; /* * Truncate 'max' to the user-specified limit, so that * we only have one limit we need to check in the loop */ if (max > count) max = count; if (user_read_access_begin(src, max)) { retval = do_strncpy_from_user(dst, src, count, max); user_read_access_end(); return retval; } } return -EFAULT; } EXPORT_SYMBOL(strncpy_from_user); |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_EXTEND_H #define _NF_CONNTRACK_EXTEND_H #include <linux/slab.h> #include <net/netfilter/nf_conntrack.h> enum nf_ct_ext_id { NF_CT_EXT_HELPER, #if IS_ENABLED(CONFIG_NF_NAT) NF_CT_EXT_NAT, #endif NF_CT_EXT_SEQADJ, NF_CT_EXT_ACCT, #ifdef CONFIG_NF_CONNTRACK_EVENTS NF_CT_EXT_ECACHE, #endif #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP NF_CT_EXT_TSTAMP, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT NF_CT_EXT_TIMEOUT, #endif #ifdef CONFIG_NF_CONNTRACK_LABELS NF_CT_EXT_LABELS, #endif #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) NF_CT_EXT_SYNPROXY, #endif #if IS_ENABLED(CONFIG_NET_ACT_CT) NF_CT_EXT_ACT_CT, #endif NF_CT_EXT_NUM, }; /* Extensions: optional stuff which isn't permanently in struct. */ struct nf_ct_ext { u8 offset[NF_CT_EXT_NUM]; u8 len; unsigned int gen_id; char data[] __aligned(8); }; static inline bool __nf_ct_ext_exist(const struct nf_ct_ext *ext, u8 id) { return !!ext->offset[id]; } static inline bool nf_ct_ext_exist(const struct nf_conn *ct, u8 id) { return (ct->ext && __nf_ct_ext_exist(ct->ext, id)); } void *__nf_ct_ext_find(const struct nf_ct_ext *ext, u8 id); static inline void *nf_ct_ext_find(const struct nf_conn *ct, u8 id) { struct nf_ct_ext *ext = ct->ext; if (!ext || !__nf_ct_ext_exist(ext, id)) return NULL; if (unlikely(ext->gen_id)) return __nf_ct_ext_find(ext, id); return (void *)ct->ext + ct->ext->offset[id]; } /* Add this type, returns pointer to data or NULL. */ void *nf_ct_ext_add(struct nf_conn *ct, enum nf_ct_ext_id id, gfp_t gfp); /* ext genid. if ext->id != ext_genid, extensions cannot be used * anymore unless conntrack has CONFIRMED bit set. */ extern atomic_t nf_conntrack_ext_genid; void nf_ct_ext_bump_genid(void); #endif /* _NF_CONNTRACK_EXTEND_H */ |
| 135 11426 9930 8677 8861 1988 6934 162 163 2217 2219 64 20 31 106 188 340 66 2231 1452 305 77 1272 2941 5115 12 731 45 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_H #define _LINUX_LIST_H #include <linux/container_of.h> #include <linux/types.h> #include <linux/stddef.h> #include <linux/poison.h> #include <linux/const.h> #include <asm/barrier.h> /* * Circular doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * INIT_LIST_HEAD - Initialize a list_head structure * @list: list_head structure to be initialized. * * Initializes the list_head to point to itself. If it is a list header, * the result is an empty list. */ static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); WRITE_ONCE(list->prev, list); } #ifdef CONFIG_LIST_HARDENED #ifdef CONFIG_DEBUG_LIST # define __list_valid_slowpath #else # define __list_valid_slowpath __cold __preserve_most #endif /* * Performs the full set of list corruption checks before __list_add(). * On list corruption reports a warning, and returns false. */ extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new, struct list_head *prev, struct list_head *next); /* * Performs list corruption checks before __list_add(). Returns false if a * corruption is detected, true otherwise. * * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking * inline to catch non-faulting corruptions, and only if a corruption is * detected calls the reporting function __list_add_valid_or_report(). */ static __always_inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) { bool ret = true; if (!IS_ENABLED(CONFIG_DEBUG_LIST)) { /* * With the hardening version, elide checking if next and prev * are NULL, since the immediate dereference of them below would * result in a fault if NULL. * * With the reduced set of checks, we can afford to inline the * checks, which also gives the compiler a chance to elide some * of them completely if they can be proven at compile-time. If * one of the pre-conditions does not hold, the slow-path will * show a report which pre-condition failed. */ if (likely(next->prev == prev && prev->next == next && new != prev && new != next)) return true; ret = false; } ret &= __list_add_valid_or_report(new, prev, next); return ret; } /* * Performs the full set of list corruption checks before __list_del_entry(). * On list corruption reports a warning, and returns false. */ extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry); /* * Performs list corruption checks before __list_del_entry(). Returns false if a * corruption is detected, true otherwise. * * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking * inline to catch non-faulting corruptions, and only if a corruption is * detected calls the reporting function __list_del_entry_valid_or_report(). */ static __always_inline bool __list_del_entry_valid(struct list_head *entry) { bool ret = true; if (!IS_ENABLED(CONFIG_DEBUG_LIST)) { struct list_head *prev = entry->prev; struct list_head *next = entry->next; /* * With the hardening version, elide checking if next and prev * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate * dereference of them below would result in a fault. */ if (likely(prev->next == entry && next->prev == entry)) return true; ret = false; } ret &= __list_del_entry_valid_or_report(entry); return ret; } #else static inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) { return true; } static inline bool __list_del_entry_valid(struct list_head *entry) { return true; } #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new); } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; WRITE_ONCE(prev->next, next); } /* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */ static inline void __list_del_clearprev(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->prev = NULL; } static inline void __list_del_entry(struct list_head *entry) { if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next); } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } /** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * list_replace_init - replace old entry by new one and initialize the old one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); } /** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */ static inline void list_swap(struct list_head *entry1, struct list_head *entry2) { struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del_entry(entry); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add_tail(list, head); } /** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */ static inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last) { first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last; } /** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_first(const struct list_head *list, const struct list_head *head) { return list->prev == head; } /** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; } /** * list_is_head - tests whether @list is the list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_head(const struct list_head *list, const struct list_head *head) { return list == head; } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return READ_ONCE(head->next) == head; } /** * list_del_init_careful - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. * * This is the same as list_del_init(), except designed to be used * together with list_empty_careful() in a way to guarantee ordering * of other memory operations. * * Any memory operations done before a list_del_init_careful() are * guaranteed to be visible after a list_empty_careful() test. */ static inline void list_del_init_careful(struct list_head *entry) { __list_del_entry(entry); WRITE_ONCE(entry->prev, entry); smp_store_release(&entry->next, entry); } /** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = smp_load_acquire(&head->next); return list_is_head(next, head) && (next == READ_ONCE(head->prev)); } /** * list_rotate_left - rotate the list to the left * @head: the head of the list */ static inline void list_rotate_left(struct list_head *head) { struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); } } /** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */ static inline void list_rotate_to_front(struct list_head *list, struct list_head *head) { /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list); } /** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } static inline void __list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { struct list_head *new_first = entry->next; list->next = head->next; list->next->prev = list; list->prev = entry; entry->next = list; head->next = new_first; new_first->prev = head; } /** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */ static inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { if (list_empty(head)) return; if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next)) return; if (list_is_head(entry, head)) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry); } /** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */ static inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry) { if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head; } static inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next) { struct list_head *first = list->next; struct list_head *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } /** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head, head->next); } /** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice_tail(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head->prev, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); } } /** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) /** * list_last_entry - get the last element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_last_entry(ptr, type, member) \ list_entry((ptr)->prev, type, member) /** * list_first_entry_or_null - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */ #define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ }) /** * list_next_entry - get the next element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member) /** * list_next_entry_circular - get the next element in list * @pos: the type * to cursor. * @head: the list head to take the element from. * @member: the name of the list_head within the struct. * * Wraparound if pos is the last element (return the first element). * Note, that list is expected to be not empty. */ #define list_next_entry_circular(pos, head, member) \ (list_is_last(&(pos)->member, head) ? \ list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member)) /** * list_prev_entry - get the prev element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_prev_entry(pos, member) \ list_entry((pos)->member.prev, typeof(*(pos)), member) /** * list_prev_entry_circular - get the prev element in list * @pos: the type * to cursor. * @head: the list head to take the element from. * @member: the name of the list_head within the struct. * * Wraparound if pos is the first element (return the last element). * Note, that list is expected to be not empty. */ #define list_prev_entry_circular(pos, head, member) \ (list_is_first(&(pos)->member, head) ? \ list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member)) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next) /** * list_for_each_rcu - Iterate over a list in an RCU-safe fashion * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_rcu(pos, head) \ for (pos = rcu_dereference((head)->next); \ !list_is_head(pos, (head)); \ pos = rcu_dereference(pos->next)) /** * list_for_each_continue - continue iteration over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. * * Continue to iterate over a list, continuing after the current position. */ #define list_for_each_continue(pos, head) \ for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; \ !list_is_head(pos, (head)); \ pos = n, n = pos->next) /** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ !list_is_head(pos, (head)); \ pos = n, n = pos->prev) /** * list_count_nodes - count nodes in the list * @head: the head for your list. */ static inline size_t list_count_nodes(struct list_head *head) { struct list_head *pos; size_t count = 0; list_for_each(pos, head) count++; return count; } /** * list_entry_is_head - test if the entry points to the head of the list * @pos: the type * to cursor * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_entry_is_head(pos, head, member) \ list_is_head(&pos->member, (head)) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_head within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */ #define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member)) /** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */ #define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */ #define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing from current position. */ #define list_for_each_entry_from(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_from_reverse - iterate backwards over list of given type * from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, continuing from current position. */ #define list_for_each_entry_from_reverse(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_continue - continue list iteration safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */ #define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_from - iterate over list from current point safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */ #define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */ #define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_prev_entry(n, member)) /** * list_safe_reset_next - reset a stale list_for_each_entry_safe loop * @pos: the loop cursor used in the list_for_each_entry_safe loop * @n: temporary storage used in list_for_each_entry_safe * @member: the name of the list_head within the struct. * * list_safe_reset_next is not safe to use in general if the list may be * modified concurrently (eg. the lock is dropped in the loop body). An * exception to this is if the cursor element (pos) is pinned in the list, * and list_safe_reset_next is called after re-taking the lock and before * completing the current iteration of the loop body. */ #define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member) /* * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */ #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { h->next = NULL; h->pprev = NULL; } /** * hlist_unhashed - Has node been removed from list and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed * state. For example, hlist_nulls_del_init_rcu() does leave the * node in unhashed state, but hlist_nulls_del() does not. */ static inline int hlist_unhashed(const struct hlist_node *h) { return !h->pprev; } /** * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use * @h: Node to be checked * * This variant of hlist_unhashed() must be used in lockless contexts * to avoid potential load-tearing. The READ_ONCE() is paired with the * various WRITE_ONCE() in hlist helpers that are defined below. */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { return !READ_ONCE(h->pprev); } /** * hlist_empty - Is the specified hlist_head structure an empty hlist? * @h: Structure to check. */ static inline int hlist_empty(const struct hlist_head *h) { return !READ_ONCE(h->first); } static inline void __hlist_del(struct hlist_node *n) { struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) WRITE_ONCE(next->pprev, pprev); } /** * hlist_del - Delete the specified hlist_node from its list * @n: Node to delete. * * Note that this function leaves the node in hashed state. Use * hlist_del_init() or similar instead to unhash @n. */ static inline void hlist_del(struct hlist_node *n) { __hlist_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } /** * hlist_del_init - Delete the specified hlist_node from its list and initialize * @n: Node to delete. * * Note that this function leaves the node in unhashed state. */ static inline void hlist_del_init(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); } } /** * hlist_add_head - add a new entry at the beginning of the hlist * @n: new entry to be added * @h: hlist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; WRITE_ONCE(n->next, first); if (first) WRITE_ONCE(first->pprev, &n->next); WRITE_ONCE(h->first, n); WRITE_ONCE(n->pprev, &h->first); } /** * hlist_add_before - add a new entry before the one specified * @n: new entry to be added * @next: hlist node to add it before, which must be non-NULL */ static inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); WRITE_ONCE(n->next, next); WRITE_ONCE(next->pprev, &n->next); WRITE_ONCE(*(n->pprev), n); } /** * hlist_add_behind - add a new entry after the one specified * @n: new entry to be added * @prev: hlist node to add it after, which must be non-NULL */ static inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev) { WRITE_ONCE(n->next, prev->next); WRITE_ONCE(prev->next, n); WRITE_ONCE(n->pprev, &prev->next); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } /** * hlist_add_fake - create a fake hlist consisting of a single headless node * @n: Node to make a fake list out of * * This makes @n appear to be its own predecessor on a headless hlist. * The point of this is to allow things like hlist_del() to work correctly * in cases where there is no list. */ static inline void hlist_add_fake(struct hlist_node *n) { n->pprev = &n->next; } /** * hlist_fake: Is this node a fake hlist? * @h: Node to check for being a self-referential fake hlist. */ static inline bool hlist_fake(struct hlist_node *h) { return h->pprev == &h->next; } /** * hlist_is_singular_node - is node the only element of the specified hlist? * @n: Node to check for singularity. * @h: Header for potentially singular list. * * Check whether the node is the only node of the head without * accessing head, thus avoiding unnecessary cache misses. */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { return !n->next && n->pprev == &h->first; } /** * hlist_move_list - Move an hlist * @old: hlist_head for old list. * @new: hlist_head for new list. * * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */ static inline void hlist_move_list(struct hlist_head *old, struct hlist_head *new) { new->first = old->first; if (new->first) new->first->pprev = &new->first; old->first = NULL; } /** * hlist_splice_init() - move all entries from one list to another * @from: hlist_head from which entries will be moved * @last: last entry on the @from list * @to: hlist_head to which entries will be moved * * @to can be empty, @from must contain at least @last. */ static inline void hlist_splice_init(struct hlist_head *from, struct hlist_node *last, struct hlist_head *to) { if (to->first) to->first->pprev = &last->next; last->next = to->first; to->first = from->first; from->first->pprev = &to->first; from->first = NULL; } #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next) #define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n) #define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ }) /** * hlist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_continue - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_from - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: a &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member)) /** * hlist_count_nodes - count nodes in the hlist * @head: the head for your hlist. */ static inline size_t hlist_count_nodes(struct hlist_head *head) { struct hlist_node *pos; size_t count = 0; hlist_for_each(pos, head) count++; return count; } #endif |
| 2971 37 2967 305 305 3003 36 3000 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/rcuwait.h> #include <linux/wait.h> #include <linux/rcu_sync.h> #include <linux/lockdep.h> struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int __percpu *read_count; struct rcuwait writer; wait_queue_head_t waiters; atomic_t block; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname }, #else #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) #endif #define __DEFINE_PERCPU_RWSEM(name, is_static) \ static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \ is_static struct percpu_rw_semaphore name = { \ .rss = __RCU_SYNC_INITIALIZER(name.rss), \ .read_count = &__percpu_rwsem_rc_##name, \ .writer = __RCUWAIT_INITIALIZER(name.writer), \ .waiters = __WAIT_QUEUE_HEAD_INITIALIZER(name.waiters), \ .block = ATOMIC_INIT(0), \ __PERCPU_RWSEM_DEP_MAP_INIT(name) \ } #define DEFINE_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, /* not static */) #define DEFINE_STATIC_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, static) extern bool __percpu_down_read(struct percpu_rw_semaphore *, bool); static inline void percpu_down_read(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); preempt_disable(); /* * We are in an RCU-sched read-side critical section, so the writer * cannot both change sem->state from readers_fast and start checking * counters while we are here. So if we see !sem->state, we know that * the writer won't be checking until we're past the preempt_enable() * and that once the synchronize_rcu() is done, the writer will see * anything we did within this RCU-sched read-size critical section. */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else __percpu_down_read(sem, false); /* Unconditional memory barrier */ /* * The preempt_enable() prevents the compiler from * bleeding the critical section out. */ preempt_enable(); } static inline bool percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { bool ret = true; preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */ preempt_enable(); /* * The barrier() from preempt_enable() prevents the compiler from * bleeding the critical section out. */ if (ret) rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); return ret; } static inline void percpu_up_read(struct percpu_rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) { this_cpu_dec(*sem->read_count); } else { /* * slowpath; reader will only ever wake a single blocked * writer. */ smp_mb(); /* B matches C */ /* * In other words, if they see our decrement (presumably to * aggregate zero, as that is the only time it matters) they * will also see our critical section. */ this_cpu_dec(*sem->read_count); rcuwait_wake_up(&sem->writer); } preempt_enable(); } extern bool percpu_is_read_locked(struct percpu_rw_semaphore *); extern void percpu_down_write(struct percpu_rw_semaphore *); extern void percpu_up_write(struct percpu_rw_semaphore *); static inline bool percpu_is_write_locked(struct percpu_rw_semaphore *sem) { return atomic_read(&sem->block); } extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, const char *, struct lock_class_key *); extern void percpu_free_rwsem(struct percpu_rw_semaphore *); #define percpu_init_rwsem(sem) \ ({ \ static struct lock_class_key rwsem_key; \ __percpu_init_rwsem(sem, #sem, &rwsem_key); \ }) #define percpu_rwsem_is_held(sem) lockdep_is_held(sem) #define percpu_rwsem_assert_held(sem) lockdep_assert_held(sem) static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, unsigned long ip) { lock_release(&sem->dep_map, ip); } static inline void percpu_rwsem_acquire(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_acquire(&sem->dep_map, 0, 1, read, 1, NULL, ip); } #endif |
| 12 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | // SPDX-License-Identifier: GPL-2.0 /* * Supplementary group IDs */ #include <linux/cred.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/sort.h> #include <linux/syscalls.h> #include <linux/user_namespace.h> #include <linux/vmalloc.h> #include <linux/uaccess.h> struct group_info *groups_alloc(int gidsetsize) { struct group_info *gi; gi = kvmalloc(struct_size(gi, gid, gidsetsize), GFP_KERNEL_ACCOUNT); if (!gi) return NULL; refcount_set(&gi->usage, 1); gi->ngroups = gidsetsize; return gi; } EXPORT_SYMBOL(groups_alloc); void groups_free(struct group_info *group_info) { kvfree(group_info); } EXPORT_SYMBOL(groups_free); /* export the group_info to a user-space array */ static int groups_to_user(gid_t __user *grouplist, const struct group_info *group_info) { struct user_namespace *user_ns = current_user_ns(); int i; unsigned int count = group_info->ngroups; for (i = 0; i < count; i++) { gid_t gid; gid = from_kgid_munged(user_ns, group_info->gid[i]); if (put_user(gid, grouplist+i)) return -EFAULT; } return 0; } /* fill a group_info from a user-space array - it must be allocated already */ static int groups_from_user(struct group_info *group_info, gid_t __user *grouplist) { struct user_namespace *user_ns = current_user_ns(); int i; unsigned int count = group_info->ngroups; for (i = 0; i < count; i++) { gid_t gid; kgid_t kgid; if (get_user(gid, grouplist+i)) return -EFAULT; kgid = make_kgid(user_ns, gid); if (!gid_valid(kgid)) return -EINVAL; group_info->gid[i] = kgid; } return 0; } static int gid_cmp(const void *_a, const void *_b) { kgid_t a = *(kgid_t *)_a; kgid_t b = *(kgid_t *)_b; return gid_gt(a, b) - gid_lt(a, b); } void groups_sort(struct group_info *group_info) { sort(group_info->gid, group_info->ngroups, sizeof(*group_info->gid), gid_cmp, NULL); } EXPORT_SYMBOL(groups_sort); /* a simple bsearch */ int groups_search(const struct group_info *group_info, kgid_t grp) { unsigned int left, right; if (!group_info) return 0; left = 0; right = group_info->ngroups; while (left < right) { unsigned int mid = (left+right)/2; if (gid_gt(grp, group_info->gid[mid])) left = mid + 1; else if (gid_lt(grp, group_info->gid[mid])) right = mid; else return 1; } return 0; } /** * set_groups - Change a group subscription in a set of credentials * @new: The newly prepared set of credentials to alter * @group_info: The group list to install */ void set_groups(struct cred *new, struct group_info *group_info) { put_group_info(new->group_info); get_group_info(group_info); new->group_info = group_info; } EXPORT_SYMBOL(set_groups); /** * set_current_groups - Change current's group subscription * @group_info: The group list to impose * * Validate a group subscription and, if valid, impose it upon current's task * security record. */ int set_current_groups(struct group_info *group_info) { struct cred *new; const struct cred *old; int retval; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); set_groups(new, group_info); retval = security_task_fix_setgroups(new, old); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } EXPORT_SYMBOL(set_current_groups); SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist) { const struct cred *cred = current_cred(); int i; if (gidsetsize < 0) return -EINVAL; /* no need to grab task_lock here; it cannot change */ i = cred->group_info->ngroups; if (gidsetsize) { if (i > gidsetsize) { i = -EINVAL; goto out; } if (groups_to_user(grouplist, cred->group_info)) { i = -EFAULT; goto out; } } out: return i; } bool may_setgroups(void) { struct user_namespace *user_ns = current_user_ns(); return ns_capable_setid(user_ns, CAP_SETGID) && userns_may_setgroups(user_ns); } /* * SMP: Our groups are copy-on-write. We can set them safely * without another task interfering. */ SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist) { struct group_info *group_info; int retval; if (!may_setgroups()) return -EPERM; if ((unsigned)gidsetsize > NGROUPS_MAX) return -EINVAL; group_info = groups_alloc(gidsetsize); if (!group_info) return -ENOMEM; retval = groups_from_user(group_info, grouplist); if (retval) { put_group_info(group_info); return retval; } groups_sort(group_info); retval = set_current_groups(group_info); put_group_info(group_info); return retval; } /* * Check whether we're fsgid/egid or in the supplemental group.. */ int in_group_p(kgid_t grp) { const struct cred *cred = current_cred(); int retval = 1; if (!gid_eq(grp, cred->fsgid)) retval = groups_search(cred->group_info, grp); return retval; } EXPORT_SYMBOL(in_group_p); int in_egroup_p(kgid_t grp) { const struct cred *cred = current_cred(); int retval = 1; if (!gid_eq(grp, cred->egid)) retval = groups_search(cred->group_info, grp); return retval; } EXPORT_SYMBOL(in_egroup_p); |
| 12485 12476 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | // SPDX-License-Identifier: GPL-2.0-only /* * x86 APERF/MPERF KHz calculation for * /sys/.../cpufreq/scaling_cur_freq * * Copyright (C) 2017 Intel Corp. * Author: Len Brown <len.brown@intel.com> */ #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/ktime.h> #include <linux/math64.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/sched/isolation.h> #include <linux/sched/topology.h> #include <linux/smp.h> #include <linux/syscore_ops.h> #include <asm/cpu.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include "cpu.h" struct aperfmperf { seqcount_t seq; unsigned long last_update; u64 acnt; u64 mcnt; u64 aperf; u64 mperf; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = { .seq = SEQCNT_ZERO(cpu_samples.seq) }; static void init_counter_refs(void) { u64 aperf, mperf; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); this_cpu_write(cpu_samples.aperf, aperf); this_cpu_write(cpu_samples.mperf, mperf); } #if defined(CONFIG_X86_64) && defined(CONFIG_SMP) /* * APERF/MPERF frequency ratio computation. * * The scheduler wants to do frequency invariant accounting and needs a <1 * ratio to account for the 'current' frequency, corresponding to * freq_curr / freq_max. * * Since the frequency freq_curr on x86 is controlled by micro-controller and * our P-state setting is little more than a request/hint, we need to observe * the effective frequency 'BusyMHz', i.e. the average frequency over a time * interval after discarding idle time. This is given by: * * BusyMHz = delta_APERF / delta_MPERF * freq_base * * where freq_base is the max non-turbo P-state. * * The freq_max term has to be set to a somewhat arbitrary value, because we * can't know which turbo states will be available at a given point in time: * it all depends on the thermal headroom of the entire package. We set it to * the turbo level with 4 cores active. * * Benchmarks show that's a good compromise between the 1C turbo ratio * (freq_curr/freq_max would rarely reach 1) and something close to freq_base, * which would ignore the entire turbo range (a conspicuous part, making * freq_curr/freq_max always maxed out). * * An exception to the heuristic above is the Atom uarch, where we choose the * highest turbo level for freq_max since Atom's are generally oriented towards * power efficiency. * * Setting freq_max to anything less than the 1C turbo ratio makes the ratio * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1. */ DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key); static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE; static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE; void arch_set_max_freq_ratio(bool turbo_disabled) { arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE : arch_turbo_freq_ratio; } EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio); static bool __init turbo_disabled(void) { u64 misc_en; int err; err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en); if (err) return false; return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); } static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { int err; err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq); if (err) return false; err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq); if (err) return false; *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */ *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */ return true; } #define X86_MATCH(vfm) \ X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, NULL) static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_XEON_PHI_KNL), X86_MATCH(INTEL_XEON_PHI_KNM), {} }; static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_SKYLAKE_X), {} }; static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = { X86_MATCH(INTEL_ATOM_GOLDMONT), X86_MATCH(INTEL_ATOM_GOLDMONT_D), X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS), {} }; static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int num_delta_fratio) { int fratio, delta_fratio, found; int err, i; u64 msr; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; fratio = (msr >> 8) & 0xFF; i = 16; found = 0; do { if (found >= num_delta_fratio) { *turbo_freq = fratio; return true; } delta_fratio = (msr >> (i + 5)) & 0x7; if (delta_fratio) { found += 1; fratio -= delta_fratio; } i += 8; } while (i < 64); return true; } static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size) { u64 ratios, counts; u32 group_size; int err, i; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts); if (err) return false; for (i = 0; i < 64; i += 8) { group_size = (counts >> i) & 0xFF; if (group_size >= size) { *turbo_freq = (ratios >> i) & 0xFF; return true; } } return false; } static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { u64 msr; int err; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */ /* The CPU may have less than 4 cores */ if (!*turbo_freq) *turbo_freq = msr & 0xFF; /* 1C turbo */ return true; } static bool __init intel_set_max_freq_ratio(void) { u64 base_freq, turbo_freq; u64 turbo_ratio; if (slv_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; if (x86_match_cpu(has_glm_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_knl_turbo_ratio_limits) && knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_skx_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4)) goto out; if (core_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; return false; out: /* * Some hypervisors advertise X86_FEATURE_APERFMPERF * but then fill all MSR's with zeroes. * Some CPUs have turbo boost but don't declare any turbo ratio * in MSR_TURBO_RATIO_LIMIT. */ if (!base_freq || !turbo_freq) { pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n"); return false; } turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq); if (!turbo_ratio) { pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n"); return false; } arch_turbo_freq_ratio = turbo_ratio; arch_set_max_freq_ratio(turbo_disabled()); return true; } #ifdef CONFIG_PM_SLEEP static struct syscore_ops freq_invariance_syscore_ops = { .resume = init_counter_refs, }; static void register_freq_invariance_syscore_ops(void) { register_syscore_ops(&freq_invariance_syscore_ops); } #else static inline void register_freq_invariance_syscore_ops(void) {} #endif static void freq_invariance_enable(void) { if (static_branch_unlikely(&arch_scale_freq_key)) { WARN_ON_ONCE(1); return; } static_branch_enable_cpuslocked(&arch_scale_freq_key); register_freq_invariance_syscore_ops(); pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio); } void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled) { arch_turbo_freq_ratio = ratio; arch_set_max_freq_ratio(turbo_disabled); freq_invariance_enable(); } static void __init bp_init_freq_invariance(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return; if (intel_set_max_freq_ratio()) { guard(cpus_read_lock)(); freq_invariance_enable(); } } static void disable_freq_invariance_workfn(struct work_struct *work) { int cpu; static_branch_disable(&arch_scale_freq_key); /* * Set arch_freq_scale to a default value on all cpus * This negates the effect of scaling */ for_each_possible_cpu(cpu) per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE; } static DECLARE_WORK(disable_freq_invariance_work, disable_freq_invariance_workfn); DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); static DEFINE_STATIC_KEY_FALSE(arch_hybrid_cap_scale_key); struct arch_hybrid_cpu_scale { unsigned long capacity; unsigned long freq_ratio; }; static struct arch_hybrid_cpu_scale __percpu *arch_cpu_scale; /** * arch_enable_hybrid_capacity_scale() - Enable hybrid CPU capacity scaling * * Allocate memory for per-CPU data used by hybrid CPU capacity scaling, * initialize it and set the static key controlling its code paths. * * Must be called before arch_set_cpu_capacity(). */ bool arch_enable_hybrid_capacity_scale(void) { int cpu; if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) { WARN_ONCE(1, "Hybrid CPU capacity scaling already enabled"); return true; } arch_cpu_scale = alloc_percpu(struct arch_hybrid_cpu_scale); if (!arch_cpu_scale) return false; for_each_possible_cpu(cpu) { per_cpu_ptr(arch_cpu_scale, cpu)->capacity = SCHED_CAPACITY_SCALE; per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio = arch_max_freq_ratio; } static_branch_enable(&arch_hybrid_cap_scale_key); pr_info("Hybrid CPU capacity scaling enabled\n"); return true; } /** * arch_set_cpu_capacity() - Set scale-invariance parameters for a CPU * @cpu: Target CPU. * @cap: Capacity of @cpu at its maximum frequency, relative to @max_cap. * @max_cap: System-wide maximum CPU capacity. * @cap_freq: Frequency of @cpu corresponding to @cap. * @base_freq: Frequency of @cpu at which MPERF counts. * * The units in which @cap and @max_cap are expressed do not matter, so long * as they are consistent, because the former is effectively divided by the * latter. Analogously for @cap_freq and @base_freq. * * After calling this function for all CPUs, call arch_rebuild_sched_domains() * to let the scheduler know that capacity-aware scheduling can be used going * forward. */ void arch_set_cpu_capacity(int cpu, unsigned long cap, unsigned long max_cap, unsigned long cap_freq, unsigned long base_freq) { if (static_branch_likely(&arch_hybrid_cap_scale_key)) { WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity, div_u64(cap << SCHED_CAPACITY_SHIFT, max_cap)); WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio, div_u64(cap_freq << SCHED_CAPACITY_SHIFT, base_freq)); } else { WARN_ONCE(1, "Hybrid CPU capacity scaling not enabled"); } } unsigned long arch_scale_cpu_capacity(int cpu) { if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) return READ_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity); return SCHED_CAPACITY_SCALE; } EXPORT_SYMBOL_GPL(arch_scale_cpu_capacity); static void scale_freq_tick(u64 acnt, u64 mcnt) { u64 freq_scale, freq_ratio; if (!arch_scale_freq_invariant()) return; if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt)) goto error; if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) freq_ratio = READ_ONCE(this_cpu_ptr(arch_cpu_scale)->freq_ratio); else freq_ratio = arch_max_freq_ratio; if (check_mul_overflow(mcnt, freq_ratio, &mcnt) || !mcnt) goto error; freq_scale = div64_u64(acnt, mcnt); if (!freq_scale) goto error; if (freq_scale > SCHED_CAPACITY_SCALE) freq_scale = SCHED_CAPACITY_SCALE; this_cpu_write(arch_freq_scale, freq_scale); return; error: pr_warn("Scheduler frequency invariance went wobbly, disabling!\n"); schedule_work(&disable_freq_invariance_work); } #else static inline void bp_init_freq_invariance(void) { } static inline void scale_freq_tick(u64 acnt, u64 mcnt) { } #endif /* CONFIG_X86_64 && CONFIG_SMP */ void arch_scale_freq_tick(void) { struct aperfmperf *s = this_cpu_ptr(&cpu_samples); u64 acnt, mcnt, aperf, mperf; if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) return; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); acnt = aperf - s->aperf; mcnt = mperf - s->mperf; s->aperf = aperf; s->mperf = mperf; raw_write_seqcount_begin(&s->seq); s->last_update = jiffies; s->acnt = acnt; s->mcnt = mcnt; raw_write_seqcount_end(&s->seq); scale_freq_tick(acnt, mcnt); } /* * Discard samples older than the define maximum sample age of 20ms. There * is no point in sending IPIs in such a case. If the scheduler tick was * not running then the CPU is either idle or isolated. */ #define MAX_SAMPLE_AGE ((unsigned long)HZ / 50) unsigned int arch_freq_get_on_cpu(int cpu) { struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu); unsigned int seq, freq; unsigned long last; u64 acnt, mcnt; if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) goto fallback; do { seq = raw_read_seqcount_begin(&s->seq); last = s->last_update; acnt = s->acnt; mcnt = s->mcnt; } while (read_seqcount_retry(&s->seq, seq)); /* * Bail on invalid count and when the last update was too long ago, * which covers idle and NOHZ full CPUs. */ if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE) goto fallback; return div64_u64((cpu_khz * acnt), mcnt); fallback: freq = cpufreq_quick_get(cpu); return freq ? freq : cpu_khz; } static int __init bp_init_aperfmperf(void) { if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF)) return 0; init_counter_refs(); bp_init_freq_invariance(); return 0; } early_initcall(bp_init_aperfmperf); void ap_init_aperfmperf(void) { if (cpu_feature_enabled(X86_FEATURE_APERFMPERF)) init_counter_refs(); } |
| 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // SPDX-License-Identifier: GPL-2.0-only /* * RDMA resource limiting controller for cgroups. * * Used to allow a cgroup hierarchy to stop processes from consuming * additional RDMA resources after a certain limit is reached. * * Copyright (C) 2016 Parav Pandit <pandit.parav@gmail.com> */ #include <linux/bitops.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/cgroup.h> #include <linux/parser.h> #include <linux/cgroup_rdma.h> #define RDMACG_MAX_STR "max" /* * Protects list of resource pools maintained on per cgroup basis * and rdma device list. */ static DEFINE_MUTEX(rdmacg_mutex); static LIST_HEAD(rdmacg_devices); enum rdmacg_file_type { RDMACG_RESOURCE_TYPE_MAX, RDMACG_RESOURCE_TYPE_STAT, }; /* * resource table definition as to be seen by the user. * Need to add entries to it when more resources are * added/defined at IB verb/core layer. */ static char const *rdmacg_resource_names[] = { [RDMACG_RESOURCE_HCA_HANDLE] = "hca_handle", [RDMACG_RESOURCE_HCA_OBJECT] = "hca_object", }; /* resource tracker for each resource of rdma cgroup */ struct rdmacg_resource { int max; int usage; }; /* * resource pool object which represents per cgroup, per device * resources. There are multiple instances of this object per cgroup, * therefore it cannot be embedded within rdma_cgroup structure. It * is maintained as list. */ struct rdmacg_resource_pool { struct rdmacg_device *device; struct rdmacg_resource resources[RDMACG_RESOURCE_MAX]; struct list_head cg_node; struct list_head dev_node; /* count active user tasks of this pool */ u64 usage_sum; /* total number counts which are set to max */ int num_max_cnt; }; static struct rdma_cgroup *css_rdmacg(struct cgroup_subsys_state *css) { return container_of(css, struct rdma_cgroup, css); } static struct rdma_cgroup *parent_rdmacg(struct rdma_cgroup *cg) { return css_rdmacg(cg->css.parent); } static inline struct rdma_cgroup *get_current_rdmacg(void) { return css_rdmacg(task_get_css(current, rdma_cgrp_id)); } static void set_resource_limit(struct rdmacg_resource_pool *rpool, int index, int new_max) { if (new_max == S32_MAX) { if (rpool->resources[index].max != S32_MAX) rpool->num_max_cnt++; } else { if (rpool->resources[index].max == S32_MAX) rpool->num_max_cnt--; } rpool->resources[index].max = new_max; } static void set_all_resource_max_limit(struct rdmacg_resource_pool *rpool) { int i; for (i = 0; i < RDMACG_RESOURCE_MAX; i++) set_resource_limit(rpool, i, S32_MAX); } static void free_cg_rpool_locked(struct rdmacg_resource_pool *rpool) { lockdep_assert_held(&rdmacg_mutex); list_del(&rpool->cg_node); list_del(&rpool->dev_node); kfree(rpool); } static struct rdmacg_resource_pool * find_cg_rpool_locked(struct rdma_cgroup *cg, struct rdmacg_device *device) { struct rdmacg_resource_pool *pool; lockdep_assert_held(&rdmacg_mutex); list_for_each_entry(pool, &cg->rpools, cg_node) if (pool->device == device) return pool; return NULL; } static struct rdmacg_resource_pool * get_cg_rpool_locked(struct rdma_cgroup *cg, struct rdmacg_device *device) { struct rdmacg_resource_pool *rpool; rpool = find_cg_rpool_locked(cg, device); if (rpool) return rpool; rpool = kzalloc(sizeof(*rpool), GFP_KERNEL); if (!rpool) return ERR_PTR(-ENOMEM); rpool->device = device; set_all_resource_max_limit(rpool); INIT_LIST_HEAD(&rpool->cg_node); INIT_LIST_HEAD(&rpool->dev_node); list_add_tail(&rpool->cg_node, &cg->rpools); list_add_tail(&rpool->dev_node, &device->rpools); return rpool; } /** * uncharge_cg_locked - uncharge resource for rdma cgroup * @cg: pointer to cg to uncharge and all parents in hierarchy * @device: pointer to rdmacg device * @index: index of the resource to uncharge in cg (resource pool) * * It also frees the resource pool which was created as part of * charging operation when there are no resources attached to * resource pool. */ static void uncharge_cg_locked(struct rdma_cgroup *cg, struct rdmacg_device *device, enum rdmacg_resource_type index) { struct rdmacg_resource_pool *rpool; rpool = find_cg_rpool_locked(cg, device); /* * rpool cannot be null at this stage. Let kernel operate in case * if there a bug in IB stack or rdma controller, instead of crashing * the system. */ if (unlikely(!rpool)) { pr_warn("Invalid device %p or rdma cgroup %p\n", cg, device); return; } rpool->resources[index].usage--; /* * A negative count (or overflow) is invalid, * it indicates a bug in the rdma controller. */ WARN_ON_ONCE(rpool->resources[index].usage < 0); rpool->usage_sum--; if (rpool->usage_sum == 0 && rpool->num_max_cnt == RDMACG_RESOURCE_MAX) { /* * No user of the rpool and all entries are set to max, so * safe to delete this rpool. */ free_cg_rpool_locked(rpool); } } /** * rdmacg_uncharge_hierarchy - hierarchically uncharge rdma resource count * @cg: pointer to cg to uncharge and all parents in hierarchy * @device: pointer to rdmacg device * @stop_cg: while traversing hirerchy, when meet with stop_cg cgroup * stop uncharging * @index: index of the resource to uncharge in cg in given resource pool */ static void rdmacg_uncharge_hierarchy(struct rdma_cgroup *cg, struct rdmacg_device *device, struct rdma_cgroup *stop_cg, enum rdmacg_resource_type index) { struct rdma_cgroup *p; mutex_lock(&rdmacg_mutex); for (p = cg; p != stop_cg; p = parent_rdmacg(p)) uncharge_cg_locked(p, device, index); mutex_unlock(&rdmacg_mutex); css_put(&cg->css); } /** * rdmacg_uncharge - hierarchically uncharge rdma resource count * @cg: pointer to cg to uncharge and all parents in hierarchy * @device: pointer to rdmacg device * @index: index of the resource to uncharge in cgroup in given resource pool */ void rdmacg_uncharge(struct rdma_cgroup *cg, struct rdmacg_device *device, enum rdmacg_resource_type index) { if (index >= RDMACG_RESOURCE_MAX) return; rdmacg_uncharge_hierarchy(cg, device, NULL, index); } EXPORT_SYMBOL(rdmacg_uncharge); /** * rdmacg_try_charge - hierarchically try to charge the rdma resource * @rdmacg: pointer to rdma cgroup which will own this resource * @device: pointer to rdmacg device * @index: index of the resource to charge in cgroup (resource pool) * * This function follows charging resource in hierarchical way. * It will fail if the charge would cause the new value to exceed the * hierarchical limit. * Returns 0 if the charge succeeded, otherwise -EAGAIN, -ENOMEM or -EINVAL. * Returns pointer to rdmacg for this resource when charging is successful. * * Charger needs to account resources on two criteria. * (a) per cgroup & (b) per device resource usage. * Per cgroup resource usage ensures that tasks of cgroup doesn't cross * the configured limits. Per device provides granular configuration * in multi device usage. It allocates resource pool in the hierarchy * for each parent it come across for first resource. Later on resource * pool will be available. Therefore it will be much faster thereon * to charge/uncharge. */ int rdmacg_try_charge(struct rdma_cgroup **rdmacg, struct rdmacg_device *device, enum rdmacg_resource_type index) { struct rdma_cgroup *cg, *p; struct rdmacg_resource_pool *rpool; s64 new; int ret = 0; if (index >= RDMACG_RESOURCE_MAX) return -EINVAL; /* * hold on to css, as cgroup can be removed but resource * accounting happens on css. */ cg = get_current_rdmacg(); mutex_lock(&rdmacg_mutex); for (p = cg; p; p = parent_rdmacg(p)) { rpool = get_cg_rpool_locked(p, device); if (IS_ERR(rpool)) { ret = PTR_ERR(rpool); goto err; } else { new = rpool->resources[index].usage + 1; if (new > rpool->resources[index].max) { ret = -EAGAIN; goto err; } else { rpool->resources[index].usage = new; rpool->usage_sum++; } } } mutex_unlock(&rdmacg_mutex); *rdmacg = cg; return 0; err: mutex_unlock(&rdmacg_mutex); rdmacg_uncharge_hierarchy(cg, device, p, index); return ret; } EXPORT_SYMBOL(rdmacg_try_charge); /** * rdmacg_register_device - register rdmacg device to rdma controller. * @device: pointer to rdmacg device whose resources need to be accounted. * * If IB stack wish a device to participate in rdma cgroup resource * tracking, it must invoke this API to register with rdma cgroup before * any user space application can start using the RDMA resources. */ void rdmacg_register_device(struct rdmacg_device *device) { INIT_LIST_HEAD(&device->dev_node); INIT_LIST_HEAD(&device->rpools); mutex_lock(&rdmacg_mutex); list_add_tail(&device->dev_node, &rdmacg_devices); mutex_unlock(&rdmacg_mutex); } EXPORT_SYMBOL(rdmacg_register_device); /** * rdmacg_unregister_device - unregister rdmacg device from rdma controller. * @device: pointer to rdmacg device which was previously registered with rdma * controller using rdmacg_register_device(). * * IB stack must invoke this after all the resources of the IB device * are destroyed and after ensuring that no more resources will be created * when this API is invoked. */ void rdmacg_unregister_device(struct rdmacg_device *device) { struct rdmacg_resource_pool *rpool, *tmp; /* * Synchronize with any active resource settings, * usage query happening via configfs. */ mutex_lock(&rdmacg_mutex); list_del_init(&device->dev_node); /* * Now that this device is off the cgroup list, its safe to free * all the rpool resources. */ list_for_each_entry_safe(rpool, tmp, &device->rpools, dev_node) free_cg_rpool_locked(rpool); mutex_unlock(&rdmacg_mutex); } EXPORT_SYMBOL(rdmacg_unregister_device); static int parse_resource(char *c, int *intval) { substring_t argstr; char *name, *value = c; size_t len; int ret, i; name = strsep(&value, "="); if (!name || !value) return -EINVAL; i = match_string(rdmacg_resource_names, RDMACG_RESOURCE_MAX, name); if (i < 0) return i; len = strlen(value); argstr.from = value; argstr.to = value + len; ret = match_int(&argstr, intval); if (ret >= 0) { if (*intval < 0) return -EINVAL; return i; } if (strncmp(value, RDMACG_MAX_STR, len) == 0) { *intval = S32_MAX; return i; } return -EINVAL; } static int rdmacg_parse_limits(char *options, int *new_limits, unsigned long *enables) { char *c; int err = -EINVAL; /* parse resource options */ while ((c = strsep(&options, " ")) != NULL) { int index, intval; index = parse_resource(c, &intval); if (index < 0) goto err; new_limits[index] = intval; *enables |= BIT(index); } return 0; err: return err; } static struct rdmacg_device *rdmacg_get_device_locked(const char *name) { struct rdmacg_device *device; lockdep_assert_held(&rdmacg_mutex); list_for_each_entry(device, &rdmacg_devices, dev_node) if (!strcmp(name, device->name)) return device; return NULL; } static ssize_t rdmacg_resource_set_max(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdma_cgroup *cg = css_rdmacg(of_css(of)); const char *dev_name; struct rdmacg_resource_pool *rpool; struct rdmacg_device *device; char *options = strstrip(buf); int *new_limits; unsigned long enables = 0; int i = 0, ret = 0; /* extract the device name first */ dev_name = strsep(&options, " "); if (!dev_name) { ret = -EINVAL; goto err; } new_limits = kcalloc(RDMACG_RESOURCE_MAX, sizeof(int), GFP_KERNEL); if (!new_limits) { ret = -ENOMEM; goto err; } ret = rdmacg_parse_limits(options, new_limits, &enables); if (ret) goto parse_err; /* acquire lock to synchronize with hot plug devices */ mutex_lock(&rdmacg_mutex); device = rdmacg_get_device_locked(dev_name); if (!device) { ret = -ENODEV; goto dev_err; } rpool = get_cg_rpool_locked(cg, device); if (IS_ERR(rpool)) { ret = PTR_ERR(rpool); goto dev_err; } /* now set the new limits of the rpool */ for_each_set_bit(i, &enables, RDMACG_RESOURCE_MAX) set_resource_limit(rpool, i, new_limits[i]); if (rpool->usage_sum == 0 && rpool->num_max_cnt == RDMACG_RESOURCE_MAX) { /* * No user of the rpool and all entries are set to max, so * safe to delete this rpool. */ free_cg_rpool_locked(rpool); } dev_err: mutex_unlock(&rdmacg_mutex); parse_err: kfree(new_limits); err: return ret ?: nbytes; } static void print_rpool_values(struct seq_file *sf, struct rdmacg_resource_pool *rpool) { enum rdmacg_file_type sf_type; int i; u32 value; sf_type = seq_cft(sf)->private; for (i = 0; i < RDMACG_RESOURCE_MAX; i++) { seq_puts(sf, rdmacg_resource_names[i]); seq_putc(sf, '='); if (sf_type == RDMACG_RESOURCE_TYPE_MAX) { if (rpool) value = rpool->resources[i].max; else value = S32_MAX; } else { if (rpool) value = rpool->resources[i].usage; else value = 0; } if (value == S32_MAX) seq_puts(sf, RDMACG_MAX_STR); else seq_printf(sf, "%d", value); seq_putc(sf, ' '); } } static int rdmacg_resource_read(struct seq_file *sf, void *v) { struct rdmacg_device *device; struct rdmacg_resource_pool *rpool; struct rdma_cgroup *cg = css_rdmacg(seq_css(sf)); mutex_lock(&rdmacg_mutex); list_for_each_entry(device, &rdmacg_devices, dev_node) { seq_printf(sf, "%s ", device->name); rpool = find_cg_rpool_locked(cg, device); print_rpool_values(sf, rpool); seq_putc(sf, '\n'); } mutex_unlock(&rdmacg_mutex); return 0; } static struct cftype rdmacg_files[] = { { .name = "max", .write = rdmacg_resource_set_max, .seq_show = rdmacg_resource_read, .private = RDMACG_RESOURCE_TYPE_MAX, .flags = CFTYPE_NOT_ON_ROOT, }, { .name = "current", .seq_show = rdmacg_resource_read, .private = RDMACG_RESOURCE_TYPE_STAT, .flags = CFTYPE_NOT_ON_ROOT, }, { } /* terminate */ }; static struct cgroup_subsys_state * rdmacg_css_alloc(struct cgroup_subsys_state *parent) { struct rdma_cgroup *cg; cg = kzalloc(sizeof(*cg), GFP_KERNEL); if (!cg) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&cg->rpools); return &cg->css; } static void rdmacg_css_free(struct cgroup_subsys_state *css) { struct rdma_cgroup *cg = css_rdmacg(css); kfree(cg); } /** * rdmacg_css_offline - cgroup css_offline callback * @css: css of interest * * This function is called when @css is about to go away and responsible * for shooting down all rdmacg associated with @css. As part of that it * marks all the resource pool entries to max value, so that when resources are * uncharged, associated resource pool can be freed as well. */ static void rdmacg_css_offline(struct cgroup_subsys_state *css) { struct rdma_cgroup *cg = css_rdmacg(css); struct rdmacg_resource_pool *rpool; mutex_lock(&rdmacg_mutex); list_for_each_entry(rpool, &cg->rpools, cg_node) set_all_resource_max_limit(rpool); mutex_unlock(&rdmacg_mutex); } struct cgroup_subsys rdma_cgrp_subsys = { .css_alloc = rdmacg_css_alloc, .css_free = rdmacg_css_free, .css_offline = rdmacg_css_offline, .legacy_cftypes = rdmacg_files, .dfl_cftypes = rdmacg_files, }; |
| 2 2 2 2 2 2 2 2 2 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include "devl_internal.h" struct devlink_sb { struct list_head list; unsigned int index; u32 size; u16 ingress_pools_count; u16 egress_pools_count; u16 ingress_tc_count; u16 egress_tc_count; }; static u16 devlink_sb_pool_count(struct devlink_sb *devlink_sb) { return devlink_sb->ingress_pools_count + devlink_sb->egress_pools_count; } static struct devlink_sb *devlink_sb_get_by_index(struct devlink *devlink, unsigned int sb_index) { struct devlink_sb *devlink_sb; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { if (devlink_sb->index == sb_index) return devlink_sb; } return NULL; } static bool devlink_sb_index_exists(struct devlink *devlink, unsigned int sb_index) { return devlink_sb_get_by_index(devlink, sb_index); } static struct devlink_sb *devlink_sb_get_from_attrs(struct devlink *devlink, struct nlattr **attrs) { if (attrs[DEVLINK_ATTR_SB_INDEX]) { u32 sb_index = nla_get_u32(attrs[DEVLINK_ATTR_SB_INDEX]); struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_by_index(devlink, sb_index); if (!devlink_sb) return ERR_PTR(-ENODEV); return devlink_sb; } return ERR_PTR(-EINVAL); } static struct devlink_sb *devlink_sb_get_from_info(struct devlink *devlink, struct genl_info *info) { return devlink_sb_get_from_attrs(devlink, info->attrs); } static int devlink_sb_pool_index_get_from_attrs(struct devlink_sb *devlink_sb, struct nlattr **attrs, u16 *p_pool_index) { u16 val; if (!attrs[DEVLINK_ATTR_SB_POOL_INDEX]) return -EINVAL; val = nla_get_u16(attrs[DEVLINK_ATTR_SB_POOL_INDEX]); if (val >= devlink_sb_pool_count(devlink_sb)) return -EINVAL; *p_pool_index = val; return 0; } static int devlink_sb_pool_index_get_from_info(struct devlink_sb *devlink_sb, struct genl_info *info, u16 *p_pool_index) { return devlink_sb_pool_index_get_from_attrs(devlink_sb, info->attrs, p_pool_index); } static int devlink_sb_pool_type_get_from_attrs(struct nlattr **attrs, enum devlink_sb_pool_type *p_pool_type) { u8 val; if (!attrs[DEVLINK_ATTR_SB_POOL_TYPE]) return -EINVAL; val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_TYPE]); if (val != DEVLINK_SB_POOL_TYPE_INGRESS && val != DEVLINK_SB_POOL_TYPE_EGRESS) return -EINVAL; *p_pool_type = val; return 0; } static int devlink_sb_pool_type_get_from_info(struct genl_info *info, enum devlink_sb_pool_type *p_pool_type) { return devlink_sb_pool_type_get_from_attrs(info->attrs, p_pool_type); } static int devlink_sb_th_type_get_from_attrs(struct nlattr **attrs, enum devlink_sb_threshold_type *p_th_type) { u8 val; if (!attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE]) return -EINVAL; val = nla_get_u8(attrs[DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE]); if (val != DEVLINK_SB_THRESHOLD_TYPE_STATIC && val != DEVLINK_SB_THRESHOLD_TYPE_DYNAMIC) return -EINVAL; *p_th_type = val; return 0; } static int devlink_sb_th_type_get_from_info(struct genl_info *info, enum devlink_sb_threshold_type *p_th_type) { return devlink_sb_th_type_get_from_attrs(info->attrs, p_th_type); } static int devlink_sb_tc_index_get_from_attrs(struct devlink_sb *devlink_sb, struct nlattr **attrs, enum devlink_sb_pool_type pool_type, u16 *p_tc_index) { u16 val; if (!attrs[DEVLINK_ATTR_SB_TC_INDEX]) return -EINVAL; val = nla_get_u16(attrs[DEVLINK_ATTR_SB_TC_INDEX]); if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS && val >= devlink_sb->ingress_tc_count) return -EINVAL; if (pool_type == DEVLINK_SB_POOL_TYPE_EGRESS && val >= devlink_sb->egress_tc_count) return -EINVAL; *p_tc_index = val; return 0; } static int devlink_sb_tc_index_get_from_info(struct devlink_sb *devlink_sb, struct genl_info *info, enum devlink_sb_pool_type pool_type, u16 *p_tc_index) { return devlink_sb_tc_index_get_from_attrs(devlink_sb, info->attrs, pool_type, p_tc_index); } static int devlink_nl_sb_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_sb *devlink_sb, enum devlink_command cmd, u32 portid, u32 seq, int flags) { void *hdr; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_SIZE, devlink_sb->size)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_POOL_COUNT, devlink_sb->ingress_pools_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_POOL_COUNT, devlink_sb->egress_pools_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_INGRESS_TC_COUNT, devlink_sb->ingress_tc_count)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_EGRESS_TC_COUNT, devlink_sb->egress_tc_count)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; struct sk_buff *msg; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_fill(msg, devlink, devlink_sb, DEVLINK_CMD_SB_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_sb_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { if (idx < state->idx) { idx++; continue; } err = devlink_nl_sb_fill(msg, devlink, devlink_sb, DEVLINK_CMD_SB_NEW, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err) { state->idx = idx; break; } idx++; } return err; } int devlink_nl_sb_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_get_dump_one); } static int devlink_nl_sb_pool_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_sb *devlink_sb, u16 pool_index, enum devlink_command cmd, u32 portid, u32 seq, int flags) { struct devlink_sb_pool_info pool_info; void *hdr; int err; err = devlink->ops->sb_pool_get(devlink, devlink_sb->index, pool_index, &pool_info); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_info.pool_type)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_SIZE, pool_info.size)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_THRESHOLD_TYPE, pool_info.threshold_type)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_POOL_CELL_SIZE, pool_info.cell_size)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_pool_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; struct sk_buff *msg; u16 pool_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (!devlink->ops->sb_pool_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_pool_fill(msg, devlink, devlink_sb, pool_index, DEVLINK_CMD_SB_POOL_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { u16 pool_count = devlink_sb_pool_count(devlink_sb); u16 pool_index; int err; for (pool_index = 0; pool_index < pool_count; pool_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_pool_fill(msg, devlink, devlink_sb, pool_index, DEVLINK_CMD_SB_POOL_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } return 0; } static int devlink_nl_sb_pool_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int err = 0; int idx = 0; if (!devlink->ops->sb_pool_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_pool_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_pool_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_pool_get_dump_one); } static int devlink_sb_pool_set(struct devlink *devlink, unsigned int sb_index, u16 pool_index, u32 size, enum devlink_sb_threshold_type threshold_type, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink->ops; if (ops->sb_pool_set) return ops->sb_pool_set(devlink, sb_index, pool_index, size, threshold_type, extack); return -EOPNOTSUPP; } int devlink_nl_sb_pool_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; enum devlink_sb_threshold_type threshold_type; struct devlink_sb *devlink_sb; u16 pool_index; u32 size; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; err = devlink_sb_th_type_get_from_info(info, &threshold_type); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_POOL_SIZE)) return -EINVAL; size = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_POOL_SIZE]); return devlink_sb_pool_set(devlink, devlink_sb->index, pool_index, size, threshold_type, info->extack); } static int devlink_nl_sb_port_pool_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_port *devlink_port, struct devlink_sb *devlink_sb, u16 pool_index, enum devlink_command cmd, u32 portid, u32 seq, int flags) { const struct devlink_ops *ops = devlink->ops; u32 threshold; void *hdr; int err; err = ops->sb_port_pool_get(devlink_port, devlink_sb->index, pool_index, &threshold); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold)) goto nla_put_failure; if (ops->sb_occ_port_pool_get) { u32 cur; u32 max; err = ops->sb_occ_port_pool_get(devlink_port, devlink_sb->index, pool_index, &cur, &max); if (err && err != -EOPNOTSUPP) goto sb_occ_get_failure; if (!err) { if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max)) goto nla_put_failure; } } genlmsg_end(msg, hdr); return 0; nla_put_failure: err = -EMSGSIZE; sb_occ_get_failure: genlmsg_cancel(msg, hdr); return err; } int devlink_nl_sb_port_pool_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = devlink_port->devlink; struct devlink_sb *devlink_sb; struct sk_buff *msg; u16 pool_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (!devlink->ops->sb_port_pool_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_port_pool_fill(msg, devlink, devlink_port, devlink_sb, pool_index, DEVLINK_CMD_SB_PORT_POOL_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_port_pool_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { struct devlink_port *devlink_port; u16 pool_count = devlink_sb_pool_count(devlink_sb); unsigned long port_index; u16 pool_index; int err; xa_for_each(&devlink->ports, port_index, devlink_port) { for (pool_index = 0; pool_index < pool_count; pool_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_port_pool_fill(msg, devlink, devlink_port, devlink_sb, pool_index, DEVLINK_CMD_SB_PORT_POOL_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } } return 0; } static int devlink_nl_sb_port_pool_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; if (!devlink->ops->sb_port_pool_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_port_pool_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_port_pool_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_port_pool_get_dump_one); } static int devlink_sb_port_pool_set(struct devlink_port *devlink_port, unsigned int sb_index, u16 pool_index, u32 threshold, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink_port->devlink->ops; if (ops->sb_port_pool_set) return ops->sb_port_pool_set(devlink_port, sb_index, pool_index, threshold, extack); return -EOPNOTSUPP; } int devlink_nl_sb_port_pool_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = info->user_ptr[0]; struct devlink_sb *devlink_sb; u16 pool_index; u32 threshold; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_THRESHOLD)) return -EINVAL; threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]); return devlink_sb_port_pool_set(devlink_port, devlink_sb->index, pool_index, threshold, info->extack); } static int devlink_nl_sb_tc_pool_bind_fill(struct sk_buff *msg, struct devlink *devlink, struct devlink_port *devlink_port, struct devlink_sb *devlink_sb, u16 tc_index, enum devlink_sb_pool_type pool_type, enum devlink_command cmd, u32 portid, u32 seq, int flags) { const struct devlink_ops *ops = devlink->ops; u16 pool_index; u32 threshold; void *hdr; int err; err = ops->sb_tc_pool_bind_get(devlink_port, devlink_sb->index, tc_index, pool_type, &pool_index, &threshold); if (err) return err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_PORT_INDEX, devlink_port->index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_INDEX, devlink_sb->index)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_TC_INDEX, tc_index)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_SB_POOL_TYPE, pool_type)) goto nla_put_failure; if (nla_put_u16(msg, DEVLINK_ATTR_SB_POOL_INDEX, pool_index)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_THRESHOLD, threshold)) goto nla_put_failure; if (ops->sb_occ_tc_port_bind_get) { u32 cur; u32 max; err = ops->sb_occ_tc_port_bind_get(devlink_port, devlink_sb->index, tc_index, pool_type, &cur, &max); if (err && err != -EOPNOTSUPP) return err; if (!err) { if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_CUR, cur)) goto nla_put_failure; if (nla_put_u32(msg, DEVLINK_ATTR_SB_OCC_MAX, max)) goto nla_put_failure; } } genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } int devlink_nl_sb_tc_pool_bind_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = devlink_port->devlink; struct devlink_sb *devlink_sb; struct sk_buff *msg; enum devlink_sb_pool_type pool_type; u16 tc_index; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_type_get_from_info(info, &pool_type); if (err) return err; err = devlink_sb_tc_index_get_from_info(devlink_sb, info, pool_type, &tc_index); if (err) return err; if (!devlink->ops->sb_tc_pool_bind_get) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, pool_type, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int __sb_tc_pool_bind_get_dumpit(struct sk_buff *msg, int start, int *p_idx, struct devlink *devlink, struct devlink_sb *devlink_sb, u32 portid, u32 seq, int flags) { struct devlink_port *devlink_port; unsigned long port_index; u16 tc_index; int err; xa_for_each(&devlink->ports, port_index, devlink_port) { for (tc_index = 0; tc_index < devlink_sb->ingress_tc_count; tc_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, DEVLINK_SB_POOL_TYPE_INGRESS, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } for (tc_index = 0; tc_index < devlink_sb->egress_tc_count; tc_index++) { if (*p_idx < start) { (*p_idx)++; continue; } err = devlink_nl_sb_tc_pool_bind_fill(msg, devlink, devlink_port, devlink_sb, tc_index, DEVLINK_SB_POOL_TYPE_EGRESS, DEVLINK_CMD_SB_TC_POOL_BIND_NEW, portid, seq, flags); if (err) return err; (*p_idx)++; } } return 0; } static int devlink_nl_sb_tc_pool_bind_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { struct devlink_nl_dump_state *state = devlink_dump_state(cb); struct devlink_sb *devlink_sb; int idx = 0; int err = 0; if (!devlink->ops->sb_tc_pool_bind_get) return 0; list_for_each_entry(devlink_sb, &devlink->sb_list, list) { err = __sb_tc_pool_bind_get_dumpit(msg, state->idx, &idx, devlink, devlink_sb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); if (err == -EOPNOTSUPP) { err = 0; } else if (err) { state->idx = idx; break; } } return err; } int devlink_nl_sb_tc_pool_bind_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_sb_tc_pool_bind_get_dump_one); } static int devlink_sb_tc_pool_bind_set(struct devlink_port *devlink_port, unsigned int sb_index, u16 tc_index, enum devlink_sb_pool_type pool_type, u16 pool_index, u32 threshold, struct netlink_ext_ack *extack) { const struct devlink_ops *ops = devlink_port->devlink->ops; if (ops->sb_tc_pool_bind_set) return ops->sb_tc_pool_bind_set(devlink_port, sb_index, tc_index, pool_type, pool_index, threshold, extack); return -EOPNOTSUPP; } int devlink_nl_sb_tc_pool_bind_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink_port *devlink_port = info->user_ptr[1]; struct devlink *devlink = info->user_ptr[0]; enum devlink_sb_pool_type pool_type; struct devlink_sb *devlink_sb; u16 tc_index; u16 pool_index; u32 threshold; int err; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); err = devlink_sb_pool_type_get_from_info(info, &pool_type); if (err) return err; err = devlink_sb_tc_index_get_from_info(devlink_sb, info, pool_type, &tc_index); if (err) return err; err = devlink_sb_pool_index_get_from_info(devlink_sb, info, &pool_index); if (err) return err; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SB_THRESHOLD)) return -EINVAL; threshold = nla_get_u32(info->attrs[DEVLINK_ATTR_SB_THRESHOLD]); return devlink_sb_tc_pool_bind_set(devlink_port, devlink_sb->index, tc_index, pool_type, pool_index, threshold, info->extack); } int devlink_nl_sb_occ_snapshot_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const struct devlink_ops *ops = devlink->ops; struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); if (ops->sb_occ_snapshot) return ops->sb_occ_snapshot(devlink, devlink_sb->index); return -EOPNOTSUPP; } int devlink_nl_sb_occ_max_clear_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const struct devlink_ops *ops = devlink->ops; struct devlink_sb *devlink_sb; devlink_sb = devlink_sb_get_from_info(devlink, info); if (IS_ERR(devlink_sb)) return PTR_ERR(devlink_sb); if (ops->sb_occ_max_clear) return ops->sb_occ_max_clear(devlink, devlink_sb->index); return -EOPNOTSUPP; } int devl_sb_register(struct devlink *devlink, unsigned int sb_index, u32 size, u16 ingress_pools_count, u16 egress_pools_count, u16 ingress_tc_count, u16 egress_tc_count) { struct devlink_sb *devlink_sb; lockdep_assert_held(&devlink->lock); if (devlink_sb_index_exists(devlink, sb_index)) return -EEXIST; devlink_sb = kzalloc(sizeof(*devlink_sb), GFP_KERNEL); if (!devlink_sb) return -ENOMEM; devlink_sb->index = sb_index; devlink_sb->size = size; devlink_sb->ingress_pools_count = ingress_pools_count; devlink_sb->egress_pools_count = egress_pools_count; devlink_sb->ingress_tc_count = ingress_tc_count; devlink_sb->egress_tc_count = egress_tc_count; list_add_tail(&devlink_sb->list, &devlink->sb_list); return 0; } EXPORT_SYMBOL_GPL(devl_sb_register); int devlink_sb_register(struct devlink *devlink, unsigned int sb_index, u32 size, u16 ingress_pools_count, u16 egress_pools_count, u16 ingress_tc_count, u16 egress_tc_count) { int err; devl_lock(devlink); err = devl_sb_register(devlink, sb_index, size, ingress_pools_count, egress_pools_count, ingress_tc_count, egress_tc_count); devl_unlock(devlink); return err; } EXPORT_SYMBOL_GPL(devlink_sb_register); void devl_sb_unregister(struct devlink *devlink, unsigned int sb_index) { struct devlink_sb *devlink_sb; lockdep_assert_held(&devlink->lock); devlink_sb = devlink_sb_get_by_index(devlink, sb_index); WARN_ON(!devlink_sb); list_del(&devlink_sb->list); kfree(devlink_sb); } EXPORT_SYMBOL_GPL(devl_sb_unregister); void devlink_sb_unregister(struct devlink *devlink, unsigned int sb_index) { devl_lock(devlink); devl_sb_unregister(devlink, sb_index); devl_unlock(devlink); } EXPORT_SYMBOL_GPL(devlink_sb_unregister); |
| 367 368 366 366 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BACKING_DEV_DEFS_H #define __LINUX_BACKING_DEV_DEFS_H #include <linux/list.h> #include <linux/radix-tree.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/percpu_counter.h> #include <linux/percpu-refcount.h> #include <linux/flex_proportions.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/kref.h> #include <linux/refcount.h> struct page; struct device; struct dentry; /* * Bits in bdi_writeback.state */ enum wb_state { WB_registered, /* bdi_register() was done */ WB_writeback_running, /* Writeback is in progress */ WB_has_dirty_io, /* Dirty inodes on ->b_{dirty|io|more_io} */ WB_start_all, /* nr_pages == 0 (all) work pending */ }; enum wb_stat_item { WB_RECLAIMABLE, WB_WRITEBACK, WB_DIRTIED, WB_WRITTEN, NR_WB_STAT_ITEMS }; #define WB_STAT_BATCH (8*(1+ilog2(nr_cpu_ids))) /* * why some writeback work was initiated */ enum wb_reason { WB_REASON_BACKGROUND, WB_REASON_VMSCAN, WB_REASON_SYNC, WB_REASON_PERIODIC, WB_REASON_LAPTOP_TIMER, WB_REASON_FS_FREE_SPACE, /* * There is no bdi forker thread any more and works are done * by emergency worker, however, this is TPs userland visible * and we'll be exposing exactly the same information, * so it has a mismatch name. */ WB_REASON_FORKER_THREAD, WB_REASON_FOREIGN_FLUSH, WB_REASON_MAX, }; struct wb_completion { atomic_t cnt; wait_queue_head_t *waitq; }; #define __WB_COMPLETION_INIT(_waitq) \ (struct wb_completion){ .cnt = ATOMIC_INIT(1), .waitq = (_waitq) } /* * If one wants to wait for one or more wb_writeback_works, each work's * ->done should be set to a wb_completion defined using the following * macro. Once all work items are issued with wb_queue_work(), the caller * can wait for the completion of all using wb_wait_for_completion(). Work * items which are waited upon aren't freed automatically on completion. */ #define WB_COMPLETION_INIT(bdi) __WB_COMPLETION_INIT(&(bdi)->wb_waitq) #define DEFINE_WB_COMPLETION(cmpl, bdi) \ struct wb_completion cmpl = WB_COMPLETION_INIT(bdi) /* * Each wb (bdi_writeback) can perform writeback operations, is measured * and throttled, independently. Without cgroup writeback, each bdi * (bdi_writeback) is served by its embedded bdi->wb. * * On the default hierarchy, blkcg implicitly enables memcg. This allows * using memcg's page ownership for attributing writeback IOs, and every * memcg - blkcg combination can be served by its own wb by assigning a * dedicated wb to each memcg, which enables isolation across different * cgroups and propagation of IO back pressure down from the IO layer upto * the tasks which are generating the dirty pages to be written back. * * A cgroup wb is indexed on its bdi by the ID of the associated memcg, * refcounted with the number of inodes attached to it, and pins the memcg * and the corresponding blkcg. As the corresponding blkcg for a memcg may * change as blkcg is disabled and enabled higher up in the hierarchy, a wb * is tested for blkcg after lookup and removed from index on mismatch so * that a new wb for the combination can be created. * * Each bdi_writeback that is not embedded into the backing_dev_info must hold * a reference to the parent backing_dev_info. See cgwb_create() for details. */ struct bdi_writeback { struct backing_dev_info *bdi; /* our parent bdi */ unsigned long state; /* Always use atomic bitops on this */ unsigned long last_old_flush; /* last old data flush */ struct list_head b_dirty; /* dirty inodes */ struct list_head b_io; /* parked for writeback */ struct list_head b_more_io; /* parked for more writeback */ struct list_head b_dirty_time; /* time stamps are dirty */ spinlock_t list_lock; /* protects the b_* lists */ atomic_t writeback_inodes; /* number of inodes under writeback */ struct percpu_counter stat[NR_WB_STAT_ITEMS]; unsigned long bw_time_stamp; /* last time write bw is updated */ unsigned long dirtied_stamp; unsigned long written_stamp; /* pages written at bw_time_stamp */ unsigned long write_bandwidth; /* the estimated write bandwidth */ unsigned long avg_write_bandwidth; /* further smoothed write bw, > 0 */ /* * The base dirty throttle rate, re-calculated on every 200ms. * All the bdi tasks' dirty rate will be curbed under it. * @dirty_ratelimit tracks the estimated @balanced_dirty_ratelimit * in small steps and is much more smooth/stable than the latter. */ unsigned long dirty_ratelimit; unsigned long balanced_dirty_ratelimit; struct fprop_local_percpu completions; int dirty_exceeded; enum wb_reason start_all_reason; spinlock_t work_lock; /* protects work_list & dwork scheduling */ struct list_head work_list; struct delayed_work dwork; /* work item used for writeback */ struct delayed_work bw_dwork; /* work item used for bandwidth estimate */ struct list_head bdi_node; /* anchored at bdi->wb_list */ #ifdef CONFIG_CGROUP_WRITEBACK struct percpu_ref refcnt; /* used only for !root wb's */ struct fprop_local_percpu memcg_completions; struct cgroup_subsys_state *memcg_css; /* the associated memcg */ struct cgroup_subsys_state *blkcg_css; /* and blkcg */ struct list_head memcg_node; /* anchored at memcg->cgwb_list */ struct list_head blkcg_node; /* anchored at blkcg->cgwb_list */ struct list_head b_attached; /* attached inodes, protected by list_lock */ struct list_head offline_node; /* anchored at offline_cgwbs */ union { struct work_struct release_work; struct rcu_head rcu; }; #endif }; struct backing_dev_info { u64 id; struct rb_node rb_node; /* keyed by ->id */ struct list_head bdi_list; unsigned long ra_pages; /* max readahead in PAGE_SIZE units */ unsigned long io_pages; /* max allowed IO size */ struct kref refcnt; /* Reference counter for the structure */ unsigned int capabilities; /* Device capabilities */ unsigned int min_ratio; unsigned int max_ratio, max_prop_frac; /* * Sum of avg_write_bw of wbs with dirty inodes. > 0 if there are * any dirty wbs, which is depended upon by bdi_has_dirty(). */ atomic_long_t tot_write_bandwidth; /* * Jiffies when last process was dirty throttled on this bdi. Used by * blk-wbt. */ unsigned long last_bdp_sleep; struct bdi_writeback wb; /* the root writeback info for this bdi */ struct list_head wb_list; /* list of all wbs */ #ifdef CONFIG_CGROUP_WRITEBACK struct radix_tree_root cgwb_tree; /* radix tree of active cgroup wbs */ struct mutex cgwb_release_mutex; /* protect shutdown of wb structs */ struct rw_semaphore wb_switch_rwsem; /* no cgwb switch while syncing */ #endif wait_queue_head_t wb_waitq; struct device *dev; char dev_name[64]; struct device *owner; struct timer_list laptop_mode_wb_timer; #ifdef CONFIG_DEBUG_FS struct dentry *debug_dir; #endif }; struct wb_lock_cookie { bool locked; unsigned long flags; }; #ifdef CONFIG_CGROUP_WRITEBACK /** * wb_tryget - try to increment a wb's refcount * @wb: bdi_writeback to get */ static inline bool wb_tryget(struct bdi_writeback *wb) { if (wb != &wb->bdi->wb) return percpu_ref_tryget(&wb->refcnt); return true; } /** * wb_get - increment a wb's refcount * @wb: bdi_writeback to get */ static inline void wb_get(struct bdi_writeback *wb) { if (wb != &wb->bdi->wb) percpu_ref_get(&wb->refcnt); } /** * wb_put - decrement a wb's refcount * @wb: bdi_writeback to put * @nr: number of references to put */ static inline void wb_put_many(struct bdi_writeback *wb, unsigned long nr) { if (WARN_ON_ONCE(!wb->bdi)) { /* * A driver bug might cause a file to be removed before bdi was * initialized. */ return; } if (wb != &wb->bdi->wb) percpu_ref_put_many(&wb->refcnt, nr); } /** * wb_put - decrement a wb's refcount * @wb: bdi_writeback to put */ static inline void wb_put(struct bdi_writeback *wb) { wb_put_many(wb, 1); } /** * wb_dying - is a wb dying? * @wb: bdi_writeback of interest * * Returns whether @wb is unlinked and being drained. */ static inline bool wb_dying(struct bdi_writeback *wb) { return percpu_ref_is_dying(&wb->refcnt); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline bool wb_tryget(struct bdi_writeback *wb) { return true; } static inline void wb_get(struct bdi_writeback *wb) { } static inline void wb_put(struct bdi_writeback *wb) { } static inline void wb_put_many(struct bdi_writeback *wb, unsigned long nr) { } static inline bool wb_dying(struct bdi_writeback *wb) { return false; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* __LINUX_BACKING_DEV_DEFS_H */ |
| 1077 1068 12 8 3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* raw.c - Raw sockets for protocol family CAN * * Copyright (c) 2002-2007 Volkswagen Group Electronic Research * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Volkswagen nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * The provided data structures and external interfaces from this code * are not restricted to be used by modules with a GPL compatible license. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include <linux/module.h> #include <linux/init.h> #include <linux/uio.h> #include <linux/net.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/socket.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/can.h> #include <linux/can/core.h> #include <linux/can/dev.h> /* for can_is_canxl_dev_mtu() */ #include <linux/can/skb.h> #include <linux/can/raw.h> #include <net/sock.h> #include <net/net_namespace.h> MODULE_DESCRIPTION("PF_CAN raw protocol"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>"); MODULE_ALIAS("can-proto-1"); #define RAW_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_ifindex) #define MASK_ALL 0 /* A raw socket has a list of can_filters attached to it, each receiving * the CAN frames matching that filter. If the filter list is empty, * no CAN frames will be received by the socket. The default after * opening the socket, is to have one filter which receives all frames. * The filter list is allocated dynamically with the exception of the * list containing only one item. This common case is optimized by * storing the single filter in dfilter, to avoid using dynamic memory. */ struct uniqframe { int skbcnt; const struct sk_buff *skb; unsigned int join_rx_count; }; struct raw_sock { struct sock sk; int bound; int ifindex; struct net_device *dev; netdevice_tracker dev_tracker; struct list_head notifier; int loopback; int recv_own_msgs; int fd_frames; int xl_frames; struct can_raw_vcid_options raw_vcid_opts; canid_t tx_vcid_shifted; canid_t rx_vcid_shifted; canid_t rx_vcid_mask_shifted; int join_filters; int count; /* number of active filters */ struct can_filter dfilter; /* default/single filter */ struct can_filter *filter; /* pointer to filter(s) */ can_err_mask_t err_mask; struct uniqframe __percpu *uniq; }; static LIST_HEAD(raw_notifier_list); static DEFINE_SPINLOCK(raw_notifier_lock); static struct raw_sock *raw_busy_notifier; /* Return pointer to store the extra msg flags for raw_recvmsg(). * We use the space of one unsigned int beyond the 'struct sockaddr_can' * in skb->cb. */ static inline unsigned int *raw_flags(struct sk_buff *skb) { sock_skb_cb_check_size(sizeof(struct sockaddr_can) + sizeof(unsigned int)); /* return pointer after struct sockaddr_can */ return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]); } static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static void raw_rcv(struct sk_buff *oskb, void *data) { struct sock *sk = (struct sock *)data; struct raw_sock *ro = raw_sk(sk); struct sockaddr_can *addr; struct sk_buff *skb; unsigned int *pflags; /* check the received tx sock reference */ if (!ro->recv_own_msgs && oskb->sk == sk) return; /* make sure to not pass oversized frames to the socket */ if (!ro->fd_frames && can_is_canfd_skb(oskb)) return; if (can_is_canxl_skb(oskb)) { struct canxl_frame *cxl = (struct canxl_frame *)oskb->data; /* make sure to not pass oversized frames to the socket */ if (!ro->xl_frames) return; /* filter CAN XL VCID content */ if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_RX_FILTER) { /* apply VCID filter if user enabled the filter */ if ((cxl->prio & ro->rx_vcid_mask_shifted) != (ro->rx_vcid_shifted & ro->rx_vcid_mask_shifted)) return; } else { /* no filter => do not forward VCID tagged frames */ if (cxl->prio & CANXL_VCID_MASK) return; } } /* eliminate multiple filter matches for the same skb */ if (this_cpu_ptr(ro->uniq)->skb == oskb && this_cpu_ptr(ro->uniq)->skbcnt == can_skb_prv(oskb)->skbcnt) { if (!ro->join_filters) return; this_cpu_inc(ro->uniq->join_rx_count); /* drop frame until all enabled filters matched */ if (this_cpu_ptr(ro->uniq)->join_rx_count < ro->count) return; } else { this_cpu_ptr(ro->uniq)->skb = oskb; this_cpu_ptr(ro->uniq)->skbcnt = can_skb_prv(oskb)->skbcnt; this_cpu_ptr(ro->uniq)->join_rx_count = 1; /* drop first frame to check all enabled filters? */ if (ro->join_filters && ro->count > 1) return; } /* clone the given skb to be able to enqueue it into the rcv queue */ skb = skb_clone(oskb, GFP_ATOMIC); if (!skb) return; /* Put the datagram to the queue so that raw_recvmsg() can get * it from there. We need to pass the interface index to * raw_recvmsg(). We pass a whole struct sockaddr_can in * skb->cb containing the interface index. */ sock_skb_cb_check_size(sizeof(struct sockaddr_can)); addr = (struct sockaddr_can *)skb->cb; memset(addr, 0, sizeof(*addr)); addr->can_family = AF_CAN; addr->can_ifindex = skb->dev->ifindex; /* add CAN specific message flags for raw_recvmsg() */ pflags = raw_flags(skb); *pflags = 0; if (oskb->sk) *pflags |= MSG_DONTROUTE; if (oskb->sk == sk) *pflags |= MSG_CONFIRM; if (sock_queue_rcv_skb(sk, skb) < 0) kfree_skb(skb); } static int raw_enable_filters(struct net *net, struct net_device *dev, struct sock *sk, struct can_filter *filter, int count) { int err = 0; int i; for (i = 0; i < count; i++) { err = can_rx_register(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk, "raw", sk); if (err) { /* clean up successfully registered filters */ while (--i >= 0) can_rx_unregister(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk); break; } } return err; } static int raw_enable_errfilter(struct net *net, struct net_device *dev, struct sock *sk, can_err_mask_t err_mask) { int err = 0; if (err_mask) err = can_rx_register(net, dev, 0, err_mask | CAN_ERR_FLAG, raw_rcv, sk, "raw", sk); return err; } static void raw_disable_filters(struct net *net, struct net_device *dev, struct sock *sk, struct can_filter *filter, int count) { int i; for (i = 0; i < count; i++) can_rx_unregister(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk); } static inline void raw_disable_errfilter(struct net *net, struct net_device *dev, struct sock *sk, can_err_mask_t err_mask) { if (err_mask) can_rx_unregister(net, dev, 0, err_mask | CAN_ERR_FLAG, raw_rcv, sk); } static inline void raw_disable_allfilters(struct net *net, struct net_device *dev, struct sock *sk) { struct raw_sock *ro = raw_sk(sk); raw_disable_filters(net, dev, sk, ro->filter, ro->count); raw_disable_errfilter(net, dev, sk, ro->err_mask); } static int raw_enable_allfilters(struct net *net, struct net_device *dev, struct sock *sk) { struct raw_sock *ro = raw_sk(sk); int err; err = raw_enable_filters(net, dev, sk, ro->filter, ro->count); if (!err) { err = raw_enable_errfilter(net, dev, sk, ro->err_mask); if (err) raw_disable_filters(net, dev, sk, ro->filter, ro->count); } return err; } static void raw_notify(struct raw_sock *ro, unsigned long msg, struct net_device *dev) { struct sock *sk = &ro->sk; if (!net_eq(dev_net(dev), sock_net(sk))) return; if (ro->dev != dev) return; switch (msg) { case NETDEV_UNREGISTER: lock_sock(sk); /* remove current filters & unregister */ if (ro->bound) { raw_disable_allfilters(dev_net(dev), dev, sk); netdev_put(dev, &ro->dev_tracker); } if (ro->count > 1) kfree(ro->filter); ro->ifindex = 0; ro->bound = 0; ro->dev = NULL; ro->count = 0; release_sock(sk); sk->sk_err = ENODEV; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); break; case NETDEV_DOWN: sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); break; } } static int raw_notifier(struct notifier_block *nb, unsigned long msg, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (dev->type != ARPHRD_CAN) return NOTIFY_DONE; if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN) return NOTIFY_DONE; if (unlikely(raw_busy_notifier)) /* Check for reentrant bug. */ return NOTIFY_DONE; spin_lock(&raw_notifier_lock); list_for_each_entry(raw_busy_notifier, &raw_notifier_list, notifier) { spin_unlock(&raw_notifier_lock); raw_notify(raw_busy_notifier, msg, dev); spin_lock(&raw_notifier_lock); } raw_busy_notifier = NULL; spin_unlock(&raw_notifier_lock); return NOTIFY_DONE; } static int raw_init(struct sock *sk) { struct raw_sock *ro = raw_sk(sk); ro->bound = 0; ro->ifindex = 0; ro->dev = NULL; /* set default filter to single entry dfilter */ ro->dfilter.can_id = 0; ro->dfilter.can_mask = MASK_ALL; ro->filter = &ro->dfilter; ro->count = 1; /* set default loopback behaviour */ ro->loopback = 1; ro->recv_own_msgs = 0; ro->fd_frames = 0; ro->xl_frames = 0; ro->join_filters = 0; /* alloc_percpu provides zero'ed memory */ ro->uniq = alloc_percpu(struct uniqframe); if (unlikely(!ro->uniq)) return -ENOMEM; /* set notifier */ spin_lock(&raw_notifier_lock); list_add_tail(&ro->notifier, &raw_notifier_list); spin_unlock(&raw_notifier_lock); return 0; } static int raw_release(struct socket *sock) { struct sock *sk = sock->sk; struct raw_sock *ro; if (!sk) return 0; ro = raw_sk(sk); spin_lock(&raw_notifier_lock); while (raw_busy_notifier == ro) { spin_unlock(&raw_notifier_lock); schedule_timeout_uninterruptible(1); spin_lock(&raw_notifier_lock); } list_del(&ro->notifier); spin_unlock(&raw_notifier_lock); rtnl_lock(); lock_sock(sk); /* remove current filters & unregister */ if (ro->bound) { if (ro->dev) { raw_disable_allfilters(dev_net(ro->dev), ro->dev, sk); netdev_put(ro->dev, &ro->dev_tracker); } else { raw_disable_allfilters(sock_net(sk), NULL, sk); } } if (ro->count > 1) kfree(ro->filter); ro->ifindex = 0; ro->bound = 0; ro->dev = NULL; ro->count = 0; free_percpu(ro->uniq); sock_orphan(sk); sock->sk = NULL; release_sock(sk); rtnl_unlock(); sock_put(sk); return 0; } static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len) { struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct net_device *dev = NULL; int ifindex; int err = 0; int notify_enetdown = 0; if (len < RAW_MIN_NAMELEN) return -EINVAL; if (addr->can_family != AF_CAN) return -EINVAL; rtnl_lock(); lock_sock(sk); if (ro->bound && addr->can_ifindex == ro->ifindex) goto out; if (addr->can_ifindex) { dev = dev_get_by_index(sock_net(sk), addr->can_ifindex); if (!dev) { err = -ENODEV; goto out; } if (dev->type != ARPHRD_CAN) { err = -ENODEV; goto out_put_dev; } if (!(dev->flags & IFF_UP)) notify_enetdown = 1; ifindex = dev->ifindex; /* filters set by default/setsockopt */ err = raw_enable_allfilters(sock_net(sk), dev, sk); if (err) goto out_put_dev; } else { ifindex = 0; /* filters set by default/setsockopt */ err = raw_enable_allfilters(sock_net(sk), NULL, sk); } if (!err) { if (ro->bound) { /* unregister old filters */ if (ro->dev) { raw_disable_allfilters(dev_net(ro->dev), ro->dev, sk); /* drop reference to old ro->dev */ netdev_put(ro->dev, &ro->dev_tracker); } else { raw_disable_allfilters(sock_net(sk), NULL, sk); } } ro->ifindex = ifindex; ro->bound = 1; /* bind() ok -> hold a reference for new ro->dev */ ro->dev = dev; if (ro->dev) netdev_hold(ro->dev, &ro->dev_tracker, GFP_KERNEL); } out_put_dev: /* remove potential reference from dev_get_by_index() */ dev_put(dev); out: release_sock(sk); rtnl_unlock(); if (notify_enetdown) { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } return err; } static int raw_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); if (peer) return -EOPNOTSUPP; memset(addr, 0, RAW_MIN_NAMELEN); addr->can_family = AF_CAN; addr->can_ifindex = ro->ifindex; return RAW_MIN_NAMELEN; } static int raw_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct can_filter *filter = NULL; /* dyn. alloc'ed filters */ struct can_filter sfilter; /* single filter */ struct net_device *dev = NULL; can_err_mask_t err_mask = 0; int fd_frames; int count = 0; int err = 0; if (level != SOL_CAN_RAW) return -EINVAL; switch (optname) { case CAN_RAW_FILTER: if (optlen % sizeof(struct can_filter) != 0) return -EINVAL; if (optlen > CAN_RAW_FILTER_MAX * sizeof(struct can_filter)) return -EINVAL; count = optlen / sizeof(struct can_filter); if (count > 1) { /* filter does not fit into dfilter => alloc space */ filter = memdup_sockptr(optval, optlen); if (IS_ERR(filter)) return PTR_ERR(filter); } else if (count == 1) { if (copy_from_sockptr(&sfilter, optval, sizeof(sfilter))) return -EFAULT; } rtnl_lock(); lock_sock(sk); dev = ro->dev; if (ro->bound && dev) { if (dev->reg_state != NETREG_REGISTERED) { if (count > 1) kfree(filter); err = -ENODEV; goto out_fil; } } if (ro->bound) { /* (try to) register the new filters */ if (count == 1) err = raw_enable_filters(sock_net(sk), dev, sk, &sfilter, 1); else err = raw_enable_filters(sock_net(sk), dev, sk, filter, count); if (err) { if (count > 1) kfree(filter); goto out_fil; } /* remove old filter registrations */ raw_disable_filters(sock_net(sk), dev, sk, ro->filter, ro->count); } /* remove old filter space */ if (ro->count > 1) kfree(ro->filter); /* link new filters to the socket */ if (count == 1) { /* copy filter data for single filter */ ro->dfilter = sfilter; filter = &ro->dfilter; } ro->filter = filter; ro->count = count; out_fil: release_sock(sk); rtnl_unlock(); break; case CAN_RAW_ERR_FILTER: if (optlen != sizeof(err_mask)) return -EINVAL; if (copy_from_sockptr(&err_mask, optval, optlen)) return -EFAULT; err_mask &= CAN_ERR_MASK; rtnl_lock(); lock_sock(sk); dev = ro->dev; if (ro->bound && dev) { if (dev->reg_state != NETREG_REGISTERED) { err = -ENODEV; goto out_err; } } /* remove current error mask */ if (ro->bound) { /* (try to) register the new err_mask */ err = raw_enable_errfilter(sock_net(sk), dev, sk, err_mask); if (err) goto out_err; /* remove old err_mask registration */ raw_disable_errfilter(sock_net(sk), dev, sk, ro->err_mask); } /* link new err_mask to the socket */ ro->err_mask = err_mask; out_err: release_sock(sk); rtnl_unlock(); break; case CAN_RAW_LOOPBACK: if (optlen != sizeof(ro->loopback)) return -EINVAL; if (copy_from_sockptr(&ro->loopback, optval, optlen)) return -EFAULT; break; case CAN_RAW_RECV_OWN_MSGS: if (optlen != sizeof(ro->recv_own_msgs)) return -EINVAL; if (copy_from_sockptr(&ro->recv_own_msgs, optval, optlen)) return -EFAULT; break; case CAN_RAW_FD_FRAMES: if (optlen != sizeof(fd_frames)) return -EINVAL; if (copy_from_sockptr(&fd_frames, optval, optlen)) return -EFAULT; /* Enabling CAN XL includes CAN FD */ if (ro->xl_frames && !fd_frames) return -EINVAL; ro->fd_frames = fd_frames; break; case CAN_RAW_XL_FRAMES: if (optlen != sizeof(ro->xl_frames)) return -EINVAL; if (copy_from_sockptr(&ro->xl_frames, optval, optlen)) return -EFAULT; /* Enabling CAN XL includes CAN FD */ if (ro->xl_frames) ro->fd_frames = ro->xl_frames; break; case CAN_RAW_XL_VCID_OPTS: if (optlen != sizeof(ro->raw_vcid_opts)) return -EINVAL; if (copy_from_sockptr(&ro->raw_vcid_opts, optval, optlen)) return -EFAULT; /* prepare 32 bit values for handling in hot path */ ro->tx_vcid_shifted = ro->raw_vcid_opts.tx_vcid << CANXL_VCID_OFFSET; ro->rx_vcid_shifted = ro->raw_vcid_opts.rx_vcid << CANXL_VCID_OFFSET; ro->rx_vcid_mask_shifted = ro->raw_vcid_opts.rx_vcid_mask << CANXL_VCID_OFFSET; break; case CAN_RAW_JOIN_FILTERS: if (optlen != sizeof(ro->join_filters)) return -EINVAL; if (copy_from_sockptr(&ro->join_filters, optval, optlen)) return -EFAULT; break; default: return -ENOPROTOOPT; } return err; } static int raw_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); int len; void *val; if (level != SOL_CAN_RAW) return -EINVAL; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case CAN_RAW_FILTER: { int err = 0; lock_sock(sk); if (ro->count > 0) { int fsize = ro->count * sizeof(struct can_filter); /* user space buffer to small for filter list? */ if (len < fsize) { /* return -ERANGE and needed space in optlen */ err = -ERANGE; if (put_user(fsize, optlen)) err = -EFAULT; } else { if (len > fsize) len = fsize; if (copy_to_user(optval, ro->filter, len)) err = -EFAULT; } } else { len = 0; } release_sock(sk); if (!err) err = put_user(len, optlen); return err; } case CAN_RAW_ERR_FILTER: if (len > sizeof(can_err_mask_t)) len = sizeof(can_err_mask_t); val = &ro->err_mask; break; case CAN_RAW_LOOPBACK: if (len > sizeof(int)) len = sizeof(int); val = &ro->loopback; break; case CAN_RAW_RECV_OWN_MSGS: if (len > sizeof(int)) len = sizeof(int); val = &ro->recv_own_msgs; break; case CAN_RAW_FD_FRAMES: if (len > sizeof(int)) len = sizeof(int); val = &ro->fd_frames; break; case CAN_RAW_XL_FRAMES: if (len > sizeof(int)) len = sizeof(int); val = &ro->xl_frames; break; case CAN_RAW_XL_VCID_OPTS: { int err = 0; /* user space buffer to small for VCID opts? */ if (len < sizeof(ro->raw_vcid_opts)) { /* return -ERANGE and needed space in optlen */ err = -ERANGE; if (put_user(sizeof(ro->raw_vcid_opts), optlen)) err = -EFAULT; } else { if (len > sizeof(ro->raw_vcid_opts)) len = sizeof(ro->raw_vcid_opts); if (copy_to_user(optval, &ro->raw_vcid_opts, len)) err = -EFAULT; } if (!err) err = put_user(len, optlen); return err; } case CAN_RAW_JOIN_FILTERS: if (len > sizeof(int)) len = sizeof(int); val = &ro->join_filters; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, val, len)) return -EFAULT; return 0; } static void raw_put_canxl_vcid(struct raw_sock *ro, struct sk_buff *skb) { struct canxl_frame *cxl = (struct canxl_frame *)skb->data; /* sanitize non CAN XL bits */ cxl->prio &= (CANXL_PRIO_MASK | CANXL_VCID_MASK); /* clear VCID in CAN XL frame if pass through is disabled */ if (!(ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_PASS)) cxl->prio &= CANXL_PRIO_MASK; /* set VCID in CAN XL frame if enabled */ if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_SET) { cxl->prio &= CANXL_PRIO_MASK; cxl->prio |= ro->tx_vcid_shifted; } } static unsigned int raw_check_txframe(struct raw_sock *ro, struct sk_buff *skb, int mtu) { /* Classical CAN -> no checks for flags and device capabilities */ if (can_is_can_skb(skb)) return CAN_MTU; /* CAN FD -> needs to be enabled and a CAN FD or CAN XL device */ if (ro->fd_frames && can_is_canfd_skb(skb) && (mtu == CANFD_MTU || can_is_canxl_dev_mtu(mtu))) return CANFD_MTU; /* CAN XL -> needs to be enabled and a CAN XL device */ if (ro->xl_frames && can_is_canxl_skb(skb) && can_is_canxl_dev_mtu(mtu)) return CANXL_MTU; return 0; } static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct sockcm_cookie sockc; struct sk_buff *skb; struct net_device *dev; unsigned int txmtu; int ifindex; int err = -EINVAL; /* check for valid CAN frame sizes */ if (size < CANXL_HDR_SIZE + CANXL_MIN_DLEN || size > CANXL_MTU) return -EINVAL; if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name); if (msg->msg_namelen < RAW_MIN_NAMELEN) return -EINVAL; if (addr->can_family != AF_CAN) return -EINVAL; ifindex = addr->can_ifindex; } else { ifindex = ro->ifindex; } dev = dev_get_by_index(sock_net(sk), ifindex); if (!dev) return -ENXIO; skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv), msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) goto put_dev; can_skb_reserve(skb); can_skb_prv(skb)->ifindex = dev->ifindex; can_skb_prv(skb)->skbcnt = 0; /* fill the skb before testing for valid CAN frames */ err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err < 0) goto free_skb; err = -EINVAL; /* check for valid CAN (CC/FD/XL) frame content */ txmtu = raw_check_txframe(ro, skb, dev->mtu); if (!txmtu) goto free_skb; /* only CANXL: clear/forward/set VCID value */ if (txmtu == CANXL_MTU) raw_put_canxl_vcid(ro, skb); sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto free_skb; } skb->dev = dev; skb->priority = sockc.priority; skb->mark = READ_ONCE(sk->sk_mark); skb->tstamp = sockc.transmit_time; skb_setup_tx_timestamp(skb, &sockc); err = can_send(skb, ro->loopback); dev_put(dev); if (err) goto send_failed; return size; free_skb: kfree_skb(skb); put_dev: dev_put(dev); send_failed: return err; } static int raw_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int err = 0; if (flags & MSG_ERRQUEUE) return sock_recv_errqueue(sk, msg, size, SOL_CAN_RAW, SCM_CAN_RAW_ERRQUEUE); skb = skb_recv_datagram(sk, flags, &err); if (!skb) return err; if (size < skb->len) msg->msg_flags |= MSG_TRUNC; else size = skb->len; err = memcpy_to_msg(msg, skb->data, size); if (err < 0) { skb_free_datagram(sk, skb); return err; } sock_recv_cmsgs(msg, sk, skb); if (msg->msg_name) { __sockaddr_check_size(RAW_MIN_NAMELEN); msg->msg_namelen = RAW_MIN_NAMELEN; memcpy(msg->msg_name, skb->cb, msg->msg_namelen); } /* assign the flags that have been recorded in raw_rcv() */ msg->msg_flags |= *(raw_flags(skb)); skb_free_datagram(sk, skb); return size; } static int raw_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd, unsigned long arg) { /* no ioctls for socket layer -> hand it down to NIC layer */ return -ENOIOCTLCMD; } static const struct proto_ops raw_ops = { .family = PF_CAN, .release = raw_release, .bind = raw_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = raw_getname, .poll = datagram_poll, .ioctl = raw_sock_no_ioctlcmd, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = raw_setsockopt, .getsockopt = raw_getsockopt, .sendmsg = raw_sendmsg, .recvmsg = raw_recvmsg, .mmap = sock_no_mmap, }; static struct proto raw_proto __read_mostly = { .name = "CAN_RAW", .owner = THIS_MODULE, .obj_size = sizeof(struct raw_sock), .init = raw_init, }; static const struct can_proto raw_can_proto = { .type = SOCK_RAW, .protocol = CAN_RAW, .ops = &raw_ops, .prot = &raw_proto, }; static struct notifier_block canraw_notifier = { .notifier_call = raw_notifier }; static __init int raw_module_init(void) { int err; pr_info("can: raw protocol\n"); err = register_netdevice_notifier(&canraw_notifier); if (err) return err; err = can_proto_register(&raw_can_proto); if (err < 0) { pr_err("can: registration of raw protocol failed\n"); goto register_proto_failed; } return 0; register_proto_failed: unregister_netdevice_notifier(&canraw_notifier); return err; } static __exit void raw_module_exit(void) { can_proto_unregister(&raw_can_proto); unregister_netdevice_notifier(&canraw_notifier); } module_init(raw_module_init); module_exit(raw_module_exit); |
| 42 42 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | /* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/in.h> #include <linux/module.h> #include <net/tcp.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/addrconf.h> #include "rds.h" #include "tcp.h" /* only for info exporting */ static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); static LIST_HEAD(rds_tcp_tc_list); /* rds_tcp_tc_count counts only IPv4 connections. * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. */ static unsigned int rds_tcp_tc_count; #if IS_ENABLED(CONFIG_IPV6) static unsigned int rds6_tcp_tc_count; #endif /* Track rds_tcp_connection structs so they can be cleaned up */ static DEFINE_SPINLOCK(rds_tcp_conn_lock); static LIST_HEAD(rds_tcp_conn_list); static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); static struct kmem_cache *rds_tcp_conn_slab; static int rds_tcp_sndbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos); static int rds_tcp_rcvbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos); static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; static struct ctl_table rds_tcp_sysctl_table[] = { #define RDS_TCP_SNDBUF 0 { .procname = "rds_tcp_sndbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_sndbuf_handler, .extra1 = &rds_tcp_min_sndbuf, }, #define RDS_TCP_RCVBUF 1 { .procname = "rds_tcp_rcvbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_rcvbuf_handler, .extra1 = &rds_tcp_min_rcvbuf, }, }; u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) { /* seq# of the last byte of data in tcp send buffer */ return tcp_sk(tc->t_sock->sk)->write_seq; } u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) { return tcp_sk(tc->t_sock->sk)->snd_una; } void rds_tcp_restore_callbacks(struct socket *sock, struct rds_tcp_connection *tc) { rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_del_init(&tc->t_list_item); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count--; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count--; spin_unlock(&rds_tcp_tc_list_lock); tc->t_sock = NULL; sock->sk->sk_write_space = tc->t_orig_write_space; sock->sk->sk_data_ready = tc->t_orig_data_ready; sock->sk->sk_state_change = tc->t_orig_state_change; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); } /* * rds_tcp_reset_callbacks() switches the to the new sock and * returns the existing tc->t_sock. * * The only functions that set tc->t_sock are rds_tcp_set_callbacks * and rds_tcp_reset_callbacks. Send and receive trust that * it is set. The absence of RDS_CONN_UP bit protects those paths * from being called while it isn't set. */ void rds_tcp_reset_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *osock = tc->t_sock; if (!osock) goto newsock; /* Need to resolve a duelling SYN between peers. * We have an outstanding SYN to this peer, which may * potentially have transitioned to the RDS_CONN_UP state, * so we must quiesce any send threads before resetting * cp_transport_data. We quiesce these threads by setting * cp_state to something other than RDS_CONN_UP, and then * waiting for any existing threads in rds_send_xmit to * complete release_in_xmit(). (Subsequent threads entering * rds_send_xmit() will bail on !rds_conn_up(). * * However an incoming syn-ack at this point would end up * marking the conn as RDS_CONN_UP, and would again permit * rds_send_xmi() threads through, so ideally we would * synchronize on RDS_CONN_UP after lock_sock(), but cannot * do that: waiting on !RDS_IN_XMIT after lock_sock() may * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT * would not get set. As a result, we set c_state to * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change * cannot mark rds_conn_path_up() in the window before lock_sock() */ atomic_set(&cp->cp_state, RDS_CONN_RESETTING); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); /* reset receive side state for rds_tcp_data_recv() for osock */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); lock_sock(osock->sk); if (tc->t_tinc) { rds_inc_put(&tc->t_tinc->ti_inc); tc->t_tinc = NULL; } tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; rds_tcp_restore_callbacks(osock, tc); release_sock(osock->sk); sock_release(osock); newsock: rds_send_path_reset(cp); lock_sock(sock->sk); rds_tcp_set_callbacks(sock, cp); release_sock(sock->sk); } /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments * above rds_tcp_reset_callbacks for notes about synchronization * with data path */ void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count++; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count++; spin_unlock(&rds_tcp_tc_list_lock); /* accepted sockets need our listen data ready undone */ if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) sock->sk->sk_data_ready = sock->sk->sk_user_data; tc->t_sock = sock; tc->t_cpath = cp; tc->t_orig_data_ready = sock->sk->sk_data_ready; tc->t_orig_write_space = sock->sk->sk_write_space; tc->t_orig_state_change = sock->sk->sk_state_change; sock->sk->sk_user_data = cp; sock->sk->sk_data_ready = rds_tcp_data_ready; sock->sk->sk_write_space = rds_tcp_write_space; sock->sk->sk_state_change = rds_tcp_state_change; write_unlock_bh(&sock->sk->sk_callback_lock); } /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 * connections for backward compatibility. */ static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_tcp_socket tsinfo; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo) < rds_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct inet_sock *inet = inet_sk(tc->t_sock->sk); if (tc->t_cpath->cp_conn->c_isv6) continue; tsinfo.local_addr = inet->inet_saddr; tsinfo.local_port = inet->inet_sport; tsinfo.peer_addr = inet->inet_daddr; tsinfo.peer_port = inet->inet_dport; tsinfo.hdr_rem = tc->t_tinc_hdr_rem; tsinfo.data_rem = tc->t_tinc_data_rem; tsinfo.last_sent_nxt = tc->t_last_sent_nxt; tsinfo.last_expected_una = tc->t_last_expected_una; tsinfo.last_seen_una = tc->t_last_seen_una; tsinfo.tos = tc->t_cpath->cp_conn->c_tos; rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); } out: lens->nr = rds_tcp_tc_count; lens->each = sizeof(tsinfo); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #if IS_ENABLED(CONFIG_IPV6) /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped * address. */ static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds6_info_tcp_socket tsinfo6; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct sock *sk = tc->t_sock->sk; struct inet_sock *inet = inet_sk(sk); tsinfo6.local_addr = sk->sk_v6_rcv_saddr; tsinfo6.local_port = inet->inet_sport; tsinfo6.peer_addr = sk->sk_v6_daddr; tsinfo6.peer_port = inet->inet_dport; tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; tsinfo6.data_rem = tc->t_tinc_data_rem; tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; tsinfo6.last_expected_una = tc->t_last_expected_una; tsinfo6.last_seen_una = tc->t_last_seen_una; rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); } out: lens->nr = rds6_tcp_tc_count; lens->each = sizeof(tsinfo6); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #endif int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, __u32 scope_id) { struct net_device *dev = NULL; #if IS_ENABLED(CONFIG_IPV6) int ret; #endif if (ipv6_addr_v4mapped(addr)) { if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) return 0; return -EADDRNOTAVAIL; } /* If the scope_id is specified, check only those addresses * hosted on the specified interface. */ if (scope_id != 0) { rcu_read_lock(); dev = dev_get_by_index_rcu(net, scope_id); /* scope_id is not valid... */ if (!dev) { rcu_read_unlock(); return -EADDRNOTAVAIL; } rcu_read_unlock(); } #if IS_ENABLED(CONFIG_IPV6) ret = ipv6_chk_addr(net, addr, dev, 0); if (ret) return 0; #endif return -EADDRNOTAVAIL; } static void rds_tcp_conn_free(void *arg) { struct rds_tcp_connection *tc = arg; unsigned long flags; rdsdebug("freeing tc %p\n", tc); spin_lock_irqsave(&rds_tcp_conn_lock, flags); if (!tc->t_tcp_node_detached) list_del(&tc->t_tcp_node); spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); kmem_cache_free(rds_tcp_conn_slab, tc); } static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_tcp_connection *tc; int i, j; int ret = 0; for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); if (!tc) { ret = -ENOMEM; goto fail; } mutex_init(&tc->t_conn_path_lock); tc->t_sock = NULL; tc->t_tinc = NULL; tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; conn->c_path[i].cp_transport_data = tc; tc->t_cpath = &conn->c_path[i]; tc->t_tcp_node_detached = true; rdsdebug("rds_conn_path [%d] tc %p\n", i, conn->c_path[i].cp_transport_data); } spin_lock_irq(&rds_tcp_conn_lock); for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = conn->c_path[i].cp_transport_data; tc->t_tcp_node_detached = false; list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); } spin_unlock_irq(&rds_tcp_conn_lock); fail: if (ret) { for (j = 0; j < i; j++) rds_tcp_conn_free(conn->c_path[j].cp_transport_data); } return ret; } static bool list_has_conn(struct list_head *list, struct rds_connection *conn) { struct rds_tcp_connection *tc, *_tc; list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { if (tc->t_cpath->cp_conn == conn) return true; } return false; } static void rds_tcp_set_unloading(void) { atomic_set(&rds_tcp_unloading, 1); } static bool rds_tcp_is_unloading(struct rds_connection *conn) { return atomic_read(&rds_tcp_unloading) != 0; } static void rds_tcp_destroy_conns(void) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) list_move_tail(&tc->t_tcp_node, &tmp_list); } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void rds_tcp_exit(void); static u8 rds_tcp_get_tos_map(u8 tos) { /* all user tos mapped to default 0 for TCP transport */ return 0; } struct rds_transport rds_tcp_transport = { .laddr_check = rds_tcp_laddr_check, .xmit_path_prepare = rds_tcp_xmit_path_prepare, .xmit_path_complete = rds_tcp_xmit_path_complete, .xmit = rds_tcp_xmit, .recv_path = rds_tcp_recv_path, .conn_alloc = rds_tcp_conn_alloc, .conn_free = rds_tcp_conn_free, .conn_path_connect = rds_tcp_conn_path_connect, .conn_path_shutdown = rds_tcp_conn_path_shutdown, .inc_copy_to_user = rds_tcp_inc_copy_to_user, .inc_free = rds_tcp_inc_free, .stats_info_copy = rds_tcp_stats_info_copy, .exit = rds_tcp_exit, .get_tos_map = rds_tcp_get_tos_map, .t_owner = THIS_MODULE, .t_name = "tcp", .t_type = RDS_TRANS_TCP, .t_prefer_loopback = 1, .t_mp_capable = 1, .t_unloading = rds_tcp_is_unloading, }; static unsigned int rds_tcp_netid; /* per-network namespace private data for this module */ struct rds_tcp_net { struct socket *rds_tcp_listen_sock; struct work_struct rds_tcp_accept_w; struct ctl_table_header *rds_tcp_sysctl; struct ctl_table *ctl_table; int sndbuf_size; int rcvbuf_size; }; /* All module specific customizations to the RDS-TCP socket should be done in * rds_tcp_tune() and applied after socket creation. */ bool rds_tcp_tune(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct rds_tcp_net *rtn; tcp_sock_set_nodelay(sock->sk); lock_sock(sk); /* TCP timer functions might access net namespace even after * a process which created this net namespace terminated. */ if (!sk->sk_net_refcnt) { if (!maybe_get_net(net)) { release_sock(sk); return false; } /* Update ns_tracker to current stack trace and refcounted tracker */ __netns_tracker_free(net, &sk->ns_tracker, false); sk->sk_net_refcnt = 1; netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); sock_inuse_add(net, 1); } rtn = net_generic(net, rds_tcp_netid); if (rtn->sndbuf_size > 0) { sk->sk_sndbuf = rtn->sndbuf_size; sk->sk_userlocks |= SOCK_SNDBUF_LOCK; } if (rtn->rcvbuf_size > 0) { sk->sk_rcvbuf = rtn->rcvbuf_size; sk->sk_userlocks |= SOCK_RCVBUF_LOCK; } release_sock(sk); return true; } static void rds_tcp_accept_worker(struct work_struct *work) { struct rds_tcp_net *rtn = container_of(work, struct rds_tcp_net, rds_tcp_accept_w); while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) cond_resched(); } void rds_tcp_accept_work(struct sock *sk) { struct net *net = sock_net(sk); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); queue_work(rds_wq, &rtn->rds_tcp_accept_w); } static __net_init int rds_tcp_init_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct ctl_table *tbl; int err = 0; memset(rtn, 0, sizeof(*rtn)); /* {snd, rcv}buf_size default to 0, which implies we let the * stack pick the value, and permit auto-tuning of buffer size. */ if (net == &init_net) { tbl = rds_tcp_sysctl_table; } else { tbl = kmemdup(rds_tcp_sysctl_table, sizeof(rds_tcp_sysctl_table), GFP_KERNEL); if (!tbl) { pr_warn("could not set allocate sysctl table\n"); return -ENOMEM; } rtn->ctl_table = tbl; } tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; rtn->rds_tcp_sysctl = register_net_sysctl_sz(net, "net/rds/tcp", tbl, ARRAY_SIZE(rds_tcp_sysctl_table)); if (!rtn->rds_tcp_sysctl) { pr_warn("could not register sysctl\n"); err = -ENOMEM; goto fail; } #if IS_ENABLED(CONFIG_IPV6) rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); #else rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); #endif if (!rtn->rds_tcp_listen_sock) { pr_warn("could not set up IPv6 listen sock\n"); #if IS_ENABLED(CONFIG_IPV6) /* Try IPv4 as some systems disable IPv6 */ rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); if (!rtn->rds_tcp_listen_sock) { #endif unregister_net_sysctl_table(rtn->rds_tcp_sysctl); rtn->rds_tcp_sysctl = NULL; err = -EAFNOSUPPORT; goto fail; #if IS_ENABLED(CONFIG_IPV6) } #endif } INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); return 0; fail: if (net != &init_net) kfree(tbl); return err; } static void rds_tcp_kill_sock(struct net *net) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; rtn->rds_tcp_listen_sock = NULL; rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net) continue; if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { list_move_tail(&tc->t_tcp_node, &tmp_list); } else { list_del(&tc->t_tcp_node); tc->t_tcp_node_detached = true; } } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void __net_exit rds_tcp_exit_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); rds_tcp_kill_sock(net); if (rtn->rds_tcp_sysctl) unregister_net_sysctl_table(rtn->rds_tcp_sysctl); if (net != &init_net) kfree(rtn->ctl_table); } static struct pernet_operations rds_tcp_net_ops = { .init = rds_tcp_init_net, .exit = rds_tcp_exit_net, .id = &rds_tcp_netid, .size = sizeof(struct rds_tcp_net), }; void *rds_tcp_listen_sock_def_readable(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; if (!lsock) return NULL; return lsock->sk->sk_user_data; } /* when sysctl is used to modify some kernel socket parameters,this * function resets the RDS connections in that netns so that we can * restart with new parameters. The assumption is that such reset * events are few and far-between. */ static void rds_tcp_sysctl_reset(struct net *net) { struct rds_tcp_connection *tc, *_tc; spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net || !tc->t_sock) continue; /* reconnect with new parameters */ rds_conn_path_drop(tc->t_cpath, false); } spin_unlock_irq(&rds_tcp_conn_lock); } static int rds_tcp_skbuf_handler(struct rds_tcp_net *rtn, const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { int err; err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); if (err < 0) { pr_warn("Invalid input. Must be >= %d\n", *(int *)(ctl->extra1)); return err; } if (write && rtn->rds_tcp_listen_sock && rtn->rds_tcp_listen_sock->sk) { struct net *net = sock_net(rtn->rds_tcp_listen_sock->sk); rds_tcp_sysctl_reset(net); } return 0; } static int rds_tcp_sndbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { struct rds_tcp_net *rtn = container_of(ctl->data, struct rds_tcp_net, sndbuf_size); return rds_tcp_skbuf_handler(rtn, ctl, write, buffer, lenp, fpos); } static int rds_tcp_rcvbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { struct rds_tcp_net *rtn = container_of(ctl->data, struct rds_tcp_net, rcvbuf_size); return rds_tcp_skbuf_handler(rtn, ctl, write, buffer, lenp, fpos); } static void rds_tcp_exit(void) { rds_tcp_set_unloading(); synchronize_rcu(); rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif unregister_pernet_device(&rds_tcp_net_ops); rds_tcp_destroy_conns(); rds_trans_unregister(&rds_tcp_transport); rds_tcp_recv_exit(); kmem_cache_destroy(rds_tcp_conn_slab); } module_exit(rds_tcp_exit); static int __init rds_tcp_init(void) { int ret; rds_tcp_conn_slab = KMEM_CACHE(rds_tcp_connection, 0); if (!rds_tcp_conn_slab) { ret = -ENOMEM; goto out; } ret = rds_tcp_recv_init(); if (ret) goto out_slab; ret = register_pernet_device(&rds_tcp_net_ops); if (ret) goto out_recv; rds_trans_register(&rds_tcp_transport); rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif goto out; out_recv: rds_tcp_recv_exit(); out_slab: kmem_cache_destroy(rds_tcp_conn_slab); out: return ret; } module_init(rds_tcp_init); MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); MODULE_DESCRIPTION("RDS: TCP transport"); MODULE_LICENSE("Dual BSD/GPL"); |
| 8 8 7 5 3 2 8 1 7 7 7 7 7 7 18 18 5 13 7 7 7 7 1 1 5 5 15 1 1 13 6 7 7 7 7 6 7 1 1 8 8 8 8 8 8 8 8 14 14 5 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2010 * Author: Sjur Brendeland */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__ #include <linux/filter.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/tcp.h> #include <linux/uaccess.h> #include <linux/debugfs.h> #include <linux/caif/caif_socket.h> #include <linux/pkt_sched.h> #include <net/sock.h> #include <net/tcp_states.h> #include <net/caif/caif_layer.h> #include <net/caif/caif_dev.h> #include <net/caif/cfpkt.h> MODULE_DESCRIPTION("ST-Ericsson CAIF modem protocol socket support (AF_CAIF)"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(AF_CAIF); /* * CAIF state is re-using the TCP socket states. * caif_states stored in sk_state reflect the state as reported by * the CAIF stack, while sk_socket->state is the state of the socket. */ enum caif_states { CAIF_CONNECTED = TCP_ESTABLISHED, CAIF_CONNECTING = TCP_SYN_SENT, CAIF_DISCONNECTED = TCP_CLOSE }; #define TX_FLOW_ON_BIT 1 #define RX_FLOW_ON_BIT 2 struct caifsock { struct sock sk; /* must be first member */ struct cflayer layer; unsigned long flow_state; struct caif_connect_request conn_req; struct mutex readlock; struct dentry *debugfs_socket_dir; int headroom, tailroom, maxframe; }; static int rx_flow_is_on(struct caifsock *cf_sk) { return test_bit(RX_FLOW_ON_BIT, &cf_sk->flow_state); } static int tx_flow_is_on(struct caifsock *cf_sk) { return test_bit(TX_FLOW_ON_BIT, &cf_sk->flow_state); } static void set_rx_flow_off(struct caifsock *cf_sk) { clear_bit(RX_FLOW_ON_BIT, &cf_sk->flow_state); } static void set_rx_flow_on(struct caifsock *cf_sk) { set_bit(RX_FLOW_ON_BIT, &cf_sk->flow_state); } static void set_tx_flow_off(struct caifsock *cf_sk) { clear_bit(TX_FLOW_ON_BIT, &cf_sk->flow_state); } static void set_tx_flow_on(struct caifsock *cf_sk) { set_bit(TX_FLOW_ON_BIT, &cf_sk->flow_state); } static void caif_read_lock(struct sock *sk) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); mutex_lock(&cf_sk->readlock); } static void caif_read_unlock(struct sock *sk) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); mutex_unlock(&cf_sk->readlock); } static int sk_rcvbuf_lowwater(struct caifsock *cf_sk) { /* A quarter of full buffer is used a low water mark */ return cf_sk->sk.sk_rcvbuf / 4; } static void caif_flow_ctrl(struct sock *sk, int mode) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); if (cf_sk->layer.dn && cf_sk->layer.dn->modemcmd) cf_sk->layer.dn->modemcmd(cf_sk->layer.dn, mode); } /* * Copied from sock.c:sock_queue_rcv_skb(), but changed so packets are * not dropped, but CAIF is sending flow off instead. */ static void caif_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); bool queued = false; if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned int)sk->sk_rcvbuf && rx_flow_is_on(cf_sk)) { net_dbg_ratelimited("sending flow OFF (queue len = %d %d)\n", atomic_read(&cf_sk->sk.sk_rmem_alloc), sk_rcvbuf_lowwater(cf_sk)); set_rx_flow_off(cf_sk); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_OFF_REQ); } err = sk_filter(sk, skb); if (err) goto out; if (!sk_rmem_schedule(sk, skb, skb->truesize) && rx_flow_is_on(cf_sk)) { set_rx_flow_off(cf_sk); net_dbg_ratelimited("sending flow OFF due to rmem_schedule\n"); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_OFF_REQ); } skb->dev = NULL; skb_set_owner_r(skb, sk); spin_lock_irqsave(&list->lock, flags); queued = !sock_flag(sk, SOCK_DEAD); if (queued) __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); out: if (queued) sk->sk_data_ready(sk); else kfree_skb(skb); } /* Packet Receive Callback function called from CAIF Stack */ static int caif_sktrecv_cb(struct cflayer *layr, struct cfpkt *pkt) { struct caifsock *cf_sk; struct sk_buff *skb; cf_sk = container_of(layr, struct caifsock, layer); skb = cfpkt_tonative(pkt); if (unlikely(cf_sk->sk.sk_state != CAIF_CONNECTED)) { kfree_skb(skb); return 0; } caif_queue_rcv_skb(&cf_sk->sk, skb); return 0; } static void cfsk_hold(struct cflayer *layr) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); sock_hold(&cf_sk->sk); } static void cfsk_put(struct cflayer *layr) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); sock_put(&cf_sk->sk); } /* Packet Control Callback function called from CAIF */ static void caif_ctrl_cb(struct cflayer *layr, enum caif_ctrlcmd flow, int phyid) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); switch (flow) { case CAIF_CTRLCMD_FLOW_ON_IND: /* OK from modem to start sending again */ set_tx_flow_on(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_FLOW_OFF_IND: /* Modem asks us to shut up */ set_tx_flow_off(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_INIT_RSP: /* We're now connected */ caif_client_register_refcnt(&cf_sk->layer, cfsk_hold, cfsk_put); cf_sk->sk.sk_state = CAIF_CONNECTED; set_tx_flow_on(cf_sk); cf_sk->sk.sk_shutdown = 0; cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_DEINIT_RSP: /* We're now disconnected */ cf_sk->sk.sk_state = CAIF_DISCONNECTED; cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_INIT_FAIL_RSP: /* Connect request failed */ cf_sk->sk.sk_err = ECONNREFUSED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; cf_sk->sk.sk_shutdown = SHUTDOWN_MASK; /* * Socket "standards" seems to require POLLOUT to * be set at connect failure. */ set_tx_flow_on(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND: /* Modem has closed this connection, or device is down. */ cf_sk->sk.sk_shutdown = SHUTDOWN_MASK; cf_sk->sk.sk_err = ECONNRESET; set_rx_flow_on(cf_sk); sk_error_report(&cf_sk->sk); break; default: pr_debug("Unexpected flow command %d\n", flow); } } static void caif_check_flow_release(struct sock *sk) { struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); if (rx_flow_is_on(cf_sk)) return; if (atomic_read(&sk->sk_rmem_alloc) <= sk_rcvbuf_lowwater(cf_sk)) { set_rx_flow_on(cf_sk); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_ON_REQ); } } /* * Copied from unix_dgram_recvmsg, but removed credit checks, * changed locking, address handling and added MSG_TRUNC. */ static int caif_seqpkt_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int ret; int copylen; ret = -EOPNOTSUPP; if (flags & MSG_OOB) goto read_error; skb = skb_recv_datagram(sk, flags, &ret); if (!skb) goto read_error; copylen = skb->len; if (len < copylen) { m->msg_flags |= MSG_TRUNC; copylen = len; } ret = skb_copy_datagram_msg(skb, 0, m, copylen); if (ret) goto out_free; ret = (flags & MSG_TRUNC) ? skb->len : copylen; out_free: skb_free_datagram(sk, skb); caif_check_flow_release(sk); return ret; read_error: return ret; } /* Copied from unix_stream_wait_data, identical except for lock call. */ static long caif_stream_data_wait(struct sock *sk, long timeo) { DEFINE_WAIT(wait); lock_sock(sk); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue) || sk->sk_err || sk->sk_state != CAIF_CONNECTED || sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current) || !timeo) break; sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); if (sock_flag(sk, SOCK_DEAD)) break; sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); } finish_wait(sk_sleep(sk), &wait); release_sock(sk); return timeo; } /* * Copied from unix_stream_recvmsg, but removed credit checks, * changed locking calls, changed address handling. */ static int caif_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int copied = 0; int target; int err = 0; long timeo; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; /* * Lock the socket to prevent queue disordering * while sleeps in memcpy_tomsg */ err = -EAGAIN; if (sk->sk_state == CAIF_CONNECTING) goto out; caif_read_lock(sk); target = sock_rcvlowat(sk, flags&MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT); do { int chunk; struct sk_buff *skb; lock_sock(sk); if (sock_flag(sk, SOCK_DEAD)) { err = -ECONNRESET; goto unlock; } skb = skb_dequeue(&sk->sk_receive_queue); caif_check_flow_release(sk); if (skb == NULL) { if (copied >= target) goto unlock; /* * POSIX 1003.1g mandates this order. */ err = sock_error(sk); if (err) goto unlock; err = -ECONNRESET; if (sk->sk_shutdown & RCV_SHUTDOWN) goto unlock; err = -EPIPE; if (sk->sk_state != CAIF_CONNECTED) goto unlock; if (sock_flag(sk, SOCK_DEAD)) goto unlock; release_sock(sk); err = -EAGAIN; if (!timeo) break; caif_read_unlock(sk); timeo = caif_stream_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } caif_read_lock(sk); continue; unlock: release_sock(sk); break; } release_sock(sk); chunk = min_t(unsigned int, skb->len, size); if (memcpy_to_msg(msg, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); /* put the skb back if we didn't use it up. */ if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); } else { /* * It is questionable, see note in unix_dgram_recvmsg. */ /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); caif_read_unlock(sk); out: return copied ? : err; } /* * Copied from sock.c:sock_wait_for_wmem, but change to wait for * CAIF flow-on and sock_writable. */ static long caif_wait_for_flow_on(struct caifsock *cf_sk, int wait_writeable, long timeo, int *err) { struct sock *sk = &cf_sk->sk; DEFINE_WAIT(wait); for (;;) { *err = 0; if (tx_flow_is_on(cf_sk) && (!wait_writeable || sock_writeable(&cf_sk->sk))) break; *err = -ETIMEDOUT; if (!timeo) break; *err = -ERESTARTSYS; if (signal_pending(current)) break; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); *err = -ECONNRESET; if (sk->sk_shutdown & SHUTDOWN_MASK) break; *err = -sk->sk_err; if (sk->sk_err) break; *err = -EPIPE; if (cf_sk->sk.sk_state != CAIF_CONNECTED) break; timeo = schedule_timeout(timeo); } finish_wait(sk_sleep(sk), &wait); return timeo; } /* * Transmit a SKB. The device may temporarily request re-transmission * by returning EAGAIN. */ static int transmit_skb(struct sk_buff *skb, struct caifsock *cf_sk, int noblock, long timeo) { struct cfpkt *pkt; pkt = cfpkt_fromnative(CAIF_DIR_OUT, skb); memset(skb->cb, 0, sizeof(struct caif_payload_info)); cfpkt_set_prio(pkt, cf_sk->sk.sk_priority); if (cf_sk->layer.dn == NULL) { kfree_skb(skb); return -EINVAL; } return cf_sk->layer.dn->transmit(cf_sk->layer.dn, pkt); } /* Copied from af_unix:unix_dgram_sendmsg, and adapted to CAIF */ static int caif_seqpkt_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int buffer_size; int ret = 0; struct sk_buff *skb = NULL; int noblock; long timeo; caif_assert(cf_sk); ret = sock_error(sk); if (ret) goto err; ret = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto err; ret = -EOPNOTSUPP; if (msg->msg_namelen) goto err; noblock = msg->msg_flags & MSG_DONTWAIT; timeo = sock_sndtimeo(sk, noblock); timeo = caif_wait_for_flow_on(container_of(sk, struct caifsock, sk), 1, timeo, &ret); if (ret) goto err; ret = -EPIPE; if (cf_sk->sk.sk_state != CAIF_CONNECTED || sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) goto err; /* Error if trying to write more than maximum frame size. */ ret = -EMSGSIZE; if (len > cf_sk->maxframe && cf_sk->sk.sk_protocol != CAIFPROTO_RFM) goto err; buffer_size = len + cf_sk->headroom + cf_sk->tailroom; ret = -ENOMEM; skb = sock_alloc_send_skb(sk, buffer_size, noblock, &ret); if (!skb || skb_tailroom(skb) < buffer_size) goto err; skb_reserve(skb, cf_sk->headroom); ret = memcpy_from_msg(skb_put(skb, len), msg, len); if (ret) goto err; ret = transmit_skb(skb, cf_sk, noblock, timeo); if (ret < 0) /* skb is already freed */ return ret; return len; err: kfree_skb(skb); return ret; } /* * Copied from unix_stream_sendmsg and adapted to CAIF: * Changed removed permission handling and added waiting for flow on * and other minor adaptations. */ static int caif_stream_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int err, size; struct sk_buff *skb; int sent = 0; long timeo; err = -EOPNOTSUPP; if (unlikely(msg->msg_flags&MSG_OOB)) goto out_err; if (unlikely(msg->msg_namelen)) goto out_err; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); timeo = caif_wait_for_flow_on(cf_sk, 1, timeo, &err); if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) goto pipe_err; while (sent < len) { size = len-sent; if (size > cf_sk->maxframe) size = cf_sk->maxframe; /* If size is more than half of sndbuf, chop up message */ if (size > ((sk->sk_sndbuf >> 1) - 64)) size = (sk->sk_sndbuf >> 1) - 64; if (size > SKB_MAX_ALLOC) size = SKB_MAX_ALLOC; skb = sock_alloc_send_skb(sk, size + cf_sk->headroom + cf_sk->tailroom, msg->msg_flags&MSG_DONTWAIT, &err); if (skb == NULL) goto out_err; skb_reserve(skb, cf_sk->headroom); /* * If you pass two values to the sock_alloc_send_skb * it tries to grab the large buffer with GFP_NOFS * (which can fail easily), and if it fails grab the * fallback size buffer which is under a page and will * succeed. [Alan] */ size = min_t(int, size, skb_tailroom(skb)); err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err) { kfree_skb(skb); goto out_err; } err = transmit_skb(skb, cf_sk, msg->msg_flags&MSG_DONTWAIT, timeo); if (err < 0) /* skb is already freed */ goto pipe_err; sent += size; } return sent; pipe_err: if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); err = -EPIPE; out_err: return sent ? : err; } static int setsockopt(struct socket *sock, int lvl, int opt, sockptr_t ov, unsigned int ol) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int linksel; if (cf_sk->sk.sk_socket->state != SS_UNCONNECTED) return -ENOPROTOOPT; switch (opt) { case CAIFSO_LINK_SELECT: if (ol < sizeof(int)) return -EINVAL; if (lvl != SOL_CAIF) goto bad_sol; if (copy_from_sockptr(&linksel, ov, sizeof(int))) return -EINVAL; lock_sock(&(cf_sk->sk)); cf_sk->conn_req.link_selector = linksel; release_sock(&cf_sk->sk); return 0; case CAIFSO_REQ_PARAM: if (lvl != SOL_CAIF) goto bad_sol; if (cf_sk->sk.sk_protocol != CAIFPROTO_UTIL) return -ENOPROTOOPT; lock_sock(&(cf_sk->sk)); if (ol > sizeof(cf_sk->conn_req.param.data) || copy_from_sockptr(&cf_sk->conn_req.param.data, ov, ol)) { release_sock(&cf_sk->sk); return -EINVAL; } cf_sk->conn_req.param.size = ol; release_sock(&cf_sk->sk); return 0; default: return -ENOPROTOOPT; } return 0; bad_sol: return -ENOPROTOOPT; } /* * caif_connect() - Connect a CAIF Socket * Copied and modified af_irda.c:irda_connect(). * * Note : by consulting "errno", the user space caller may learn the cause * of the failure. Most of them are visible in the function, others may come * from subroutines called and are listed here : * o -EAFNOSUPPORT: bad socket family or type. * o -ESOCKTNOSUPPORT: bad socket type or protocol * o -EINVAL: bad socket address, or CAIF link type * o -ECONNREFUSED: remote end refused the connection. * o -EINPROGRESS: connect request sent but timed out (or non-blocking) * o -EISCONN: already connected. * o -ETIMEDOUT: Connection timed out (send timeout) * o -ENODEV: No link layer to send request * o -ECONNRESET: Received Shutdown indication or lost link layer * o -ENOMEM: Out of memory * * State Strategy: * o sk_state: holds the CAIF_* protocol state, it's updated by * caif_ctrl_cb. * o sock->state: holds the SS_* socket state and is updated by connect and * disconnect. */ static int caif_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); long timeo; int err; int ifindex, headroom, tailroom; unsigned int mtu; struct net_device *dev; lock_sock(sk); err = -EINVAL; if (addr_len < offsetofend(struct sockaddr, sa_family)) goto out; err = -EAFNOSUPPORT; if (uaddr->sa_family != AF_CAIF) goto out; switch (sock->state) { case SS_UNCONNECTED: /* Normal case, a fresh connect */ caif_assert(sk->sk_state == CAIF_DISCONNECTED); break; case SS_CONNECTING: switch (sk->sk_state) { case CAIF_CONNECTED: sock->state = SS_CONNECTED; err = -EISCONN; goto out; case CAIF_DISCONNECTED: /* Reconnect allowed */ break; case CAIF_CONNECTING: err = -EALREADY; if (flags & O_NONBLOCK) goto out; goto wait_connect; } break; case SS_CONNECTED: caif_assert(sk->sk_state == CAIF_CONNECTED || sk->sk_state == CAIF_DISCONNECTED); if (sk->sk_shutdown & SHUTDOWN_MASK) { /* Allow re-connect after SHUTDOWN_IND */ caif_disconnect_client(sock_net(sk), &cf_sk->layer); caif_free_client(&cf_sk->layer); break; } /* No reconnect on a seqpacket socket */ err = -EISCONN; goto out; case SS_DISCONNECTING: case SS_FREE: caif_assert(1); /*Should never happen */ break; } sk->sk_state = CAIF_DISCONNECTED; sock->state = SS_UNCONNECTED; sk_stream_kill_queues(&cf_sk->sk); err = -EINVAL; if (addr_len != sizeof(struct sockaddr_caif)) goto out; memcpy(&cf_sk->conn_req.sockaddr, uaddr, sizeof(struct sockaddr_caif)); /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->sk_state = CAIF_CONNECTING; /* Check priority value comming from socket */ /* if priority value is out of range it will be ajusted */ if (cf_sk->sk.sk_priority > CAIF_PRIO_MAX) cf_sk->conn_req.priority = CAIF_PRIO_MAX; else if (cf_sk->sk.sk_priority < CAIF_PRIO_MIN) cf_sk->conn_req.priority = CAIF_PRIO_MIN; else cf_sk->conn_req.priority = cf_sk->sk.sk_priority; /*ifindex = id of the interface.*/ cf_sk->conn_req.ifindex = cf_sk->sk.sk_bound_dev_if; cf_sk->layer.receive = caif_sktrecv_cb; err = caif_connect_client(sock_net(sk), &cf_sk->conn_req, &cf_sk->layer, &ifindex, &headroom, &tailroom); if (err < 0) { cf_sk->sk.sk_socket->state = SS_UNCONNECTED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; goto out; } err = -ENODEV; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (!dev) { rcu_read_unlock(); goto out; } cf_sk->headroom = LL_RESERVED_SPACE_EXTRA(dev, headroom); mtu = dev->mtu; rcu_read_unlock(); cf_sk->tailroom = tailroom; cf_sk->maxframe = mtu - (headroom + tailroom); if (cf_sk->maxframe < 1) { pr_warn("CAIF Interface MTU too small (%d)\n", dev->mtu); err = -ENODEV; goto out; } err = -EINPROGRESS; wait_connect: if (sk->sk_state != CAIF_CONNECTED && (flags & O_NONBLOCK)) goto out; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); release_sock(sk); err = -ERESTARTSYS; timeo = wait_event_interruptible_timeout(*sk_sleep(sk), sk->sk_state != CAIF_CONNECTING, timeo); lock_sock(sk); if (timeo < 0) goto out; /* -ERESTARTSYS */ err = -ETIMEDOUT; if (timeo == 0 && sk->sk_state != CAIF_CONNECTED) goto out; if (sk->sk_state != CAIF_CONNECTED) { sock->state = SS_UNCONNECTED; err = sock_error(sk); if (!err) err = -ECONNREFUSED; goto out; } sock->state = SS_CONNECTED; err = 0; out: release_sock(sk); return err; } /* * caif_release() - Disconnect a CAIF Socket * Copied and modified af_irda.c:irda_release(). */ static int caif_release(struct socket *sock) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); if (!sk) return 0; set_tx_flow_off(cf_sk); /* * Ensure that packets are not queued after this point in time. * caif_queue_rcv_skb checks SOCK_DEAD holding the queue lock, * this ensures no packets when sock is dead. */ spin_lock_bh(&sk->sk_receive_queue.lock); sock_set_flag(sk, SOCK_DEAD); spin_unlock_bh(&sk->sk_receive_queue.lock); sock->sk = NULL; WARN_ON(IS_ERR(cf_sk->debugfs_socket_dir)); debugfs_remove_recursive(cf_sk->debugfs_socket_dir); lock_sock(&(cf_sk->sk)); sk->sk_state = CAIF_DISCONNECTED; sk->sk_shutdown = SHUTDOWN_MASK; caif_disconnect_client(sock_net(sk), &cf_sk->layer); cf_sk->sk.sk_socket->state = SS_DISCONNECTING; wake_up_interruptible_poll(sk_sleep(sk), EPOLLERR|EPOLLHUP); sock_orphan(sk); sk_stream_kill_queues(&cf_sk->sk); release_sock(sk); sock_put(sk); return 0; } /* Copied from af_unix.c:unix_poll(), added CAIF tx_flow handling */ static __poll_t caif_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; __poll_t mask; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); sock_poll_wait(file, sock, wait); mask = 0; /* exceptional events? */ if (sk->sk_err) mask |= EPOLLERR; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP; /* readable? */ if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= EPOLLIN | EPOLLRDNORM; /* * we set writable also when the other side has shut down the * connection. This prevents stuck sockets. */ if (sock_writeable(sk) && tx_flow_is_on(cf_sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; return mask; } static const struct proto_ops caif_seqpacket_ops = { .family = PF_CAIF, .owner = THIS_MODULE, .release = caif_release, .bind = sock_no_bind, .connect = caif_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = caif_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = setsockopt, .sendmsg = caif_seqpkt_sendmsg, .recvmsg = caif_seqpkt_recvmsg, .mmap = sock_no_mmap, }; static const struct proto_ops caif_stream_ops = { .family = PF_CAIF, .owner = THIS_MODULE, .release = caif_release, .bind = sock_no_bind, .connect = caif_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = caif_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = setsockopt, .sendmsg = caif_stream_sendmsg, .recvmsg = caif_stream_recvmsg, .mmap = sock_no_mmap, }; /* This function is called when a socket is finally destroyed. */ static void caif_sock_destructor(struct sock *sk) { struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); caif_assert(!refcount_read(&sk->sk_wmem_alloc)); caif_assert(sk_unhashed(sk)); caif_assert(!sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { pr_debug("Attempt to release alive CAIF socket: %p\n", sk); return; } sk_stream_kill_queues(&cf_sk->sk); WARN_ON_ONCE(sk->sk_forward_alloc); caif_free_client(&cf_sk->layer); } static int caif_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk = NULL; struct caifsock *cf_sk = NULL; static struct proto prot = {.name = "PF_CAIF", .owner = THIS_MODULE, .obj_size = sizeof(struct caifsock), .useroffset = offsetof(struct caifsock, conn_req.param), .usersize = sizeof_field(struct caifsock, conn_req.param) }; if (!capable(CAP_SYS_ADMIN) && !capable(CAP_NET_ADMIN)) return -EPERM; /* * The sock->type specifies the socket type to use. * The CAIF socket is a packet stream in the sense * that it is packet based. CAIF trusts the reliability * of the link, no resending is implemented. */ if (sock->type == SOCK_SEQPACKET) sock->ops = &caif_seqpacket_ops; else if (sock->type == SOCK_STREAM) sock->ops = &caif_stream_ops; else return -ESOCKTNOSUPPORT; if (protocol < 0 || protocol >= CAIFPROTO_MAX) return -EPROTONOSUPPORT; /* * Set the socket state to unconnected. The socket state * is really not used at all in the net/core or socket.c but the * initialization makes sure that sock->state is not uninitialized. */ sk = sk_alloc(net, PF_CAIF, GFP_KERNEL, &prot, kern); if (!sk) return -ENOMEM; cf_sk = container_of(sk, struct caifsock, sk); /* Store the protocol */ sk->sk_protocol = (unsigned char) protocol; /* Initialize default priority for well-known cases */ switch (protocol) { case CAIFPROTO_AT: sk->sk_priority = TC_PRIO_CONTROL; break; case CAIFPROTO_RFM: sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; break; default: sk->sk_priority = TC_PRIO_BESTEFFORT; } /* * Lock in order to try to stop someone from opening the socket * too early. */ lock_sock(&(cf_sk->sk)); /* Initialize the nozero default sock structure data. */ sock_init_data(sock, sk); sk->sk_destruct = caif_sock_destructor; mutex_init(&cf_sk->readlock); /* single task reading lock */ cf_sk->layer.ctrlcmd = caif_ctrl_cb; cf_sk->sk.sk_socket->state = SS_UNCONNECTED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; set_tx_flow_off(cf_sk); set_rx_flow_on(cf_sk); /* Set default options on configuration */ cf_sk->conn_req.link_selector = CAIF_LINK_LOW_LATENCY; cf_sk->conn_req.protocol = protocol; release_sock(&cf_sk->sk); return 0; } static const struct net_proto_family caif_family_ops = { .family = PF_CAIF, .create = caif_create, .owner = THIS_MODULE, }; static int __init caif_sktinit_module(void) { return sock_register(&caif_family_ops); } static void __exit caif_sktexit_module(void) { sock_unregister(PF_CAIF); } module_init(caif_sktinit_module); module_exit(caif_sktexit_module); |
| 499 333 1 12 120 38 416 3 296 266 33 296 295 9 293 292 291 20 124 98 57 5 227 57 101 101 99 101 101 2 99 101 99 2 101 81 21 116 116 115 115 116 15 101 101 3 3 1 1 2 1 10 1 1 8 8 4 3 119 119 3 3 2 2 1 1080 1003 110 169 63 219 18 220 36 347 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 | // SPDX-License-Identifier: GPL-2.0-or-later /* linux/net/ipv4/arp.c * * Copyright (C) 1994 by Florian La Roche * * This module implements the Address Resolution Protocol ARP (RFC 826), * which is used to convert IP addresses (or in the future maybe other * high-level addresses) into a low-level hardware address (like an Ethernet * address). * * Fixes: * Alan Cox : Removed the Ethernet assumptions in * Florian's code * Alan Cox : Fixed some small errors in the ARP * logic * Alan Cox : Allow >4K in /proc * Alan Cox : Make ARP add its own protocol entry * Ross Martin : Rewrote arp_rcv() and arp_get_info() * Stephen Henson : Add AX25 support to arp_get_info() * Alan Cox : Drop data when a device is downed. * Alan Cox : Use init_timer(). * Alan Cox : Double lock fixes. * Martin Seine : Move the arphdr structure * to if_arp.h for compatibility. * with BSD based programs. * Andrew Tridgell : Added ARP netmask code and * re-arranged proxy handling. * Alan Cox : Changed to use notifiers. * Niibe Yutaka : Reply for this device or proxies only. * Alan Cox : Don't proxy across hardware types! * Jonathan Naylor : Added support for NET/ROM. * Mike Shaver : RFC1122 checks. * Jonathan Naylor : Only lookup the hardware address for * the correct hardware type. * Germano Caronni : Assorted subtle races. * Craig Schlenter : Don't modify permanent entry * during arp_rcv. * Russ Nelson : Tidied up a few bits. * Alexey Kuznetsov: Major changes to caching and behaviour, * eg intelligent arp probing and * generation * of host down events. * Alan Cox : Missing unlock in device events. * Eckes : ARP ioctl control errors. * Alexey Kuznetsov: Arp free fix. * Manuel Rodriguez: Gratuitous ARP. * Jonathan Layes : Added arpd support through kerneld * message queue (960314) * Mike Shaver : /proc/sys/net/ipv4/arp_* support * Mike McLagan : Routing by source * Stuart Cheshire : Metricom and grat arp fixes * *** FOR 2.1 clean this up *** * Lawrence V. Stefani: (08/12/96) Added FDDI support. * Alan Cox : Took the AP1000 nasty FDDI hack and * folded into the mainstream FDDI code. * Ack spit, Linus how did you allow that * one in... * Jes Sorensen : Make FDDI work again in 2.1.x and * clean up the APFDDI & gen. FDDI bits. * Alexey Kuznetsov: new arp state machine; * now it is in net/core/neighbour.c. * Krzysztof Halasa: Added Frame Relay ARP support. * Arnaldo C. Melo : convert /proc/net/arp to seq_file * Shmulik Hen: Split arp_send to arp_create and * arp_xmit so intermediate drivers like * bonding can change the skb before * sending (e.g. insert 8021q tag). * Harald Welte : convert to make use of jenkins hash * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/capability.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/mm.h> #include <linux/inet.h> #include <linux/inetdevice.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/fddidevice.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/net.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <net/net_namespace.h> #include <net/ip.h> #include <net/icmp.h> #include <net/route.h> #include <net/protocol.h> #include <net/tcp.h> #include <net/sock.h> #include <net/arp.h> #include <net/ax25.h> #include <net/netrom.h> #include <net/dst_metadata.h> #include <net/ip_tunnels.h> #include <linux/uaccess.h> #include <linux/netfilter_arp.h> /* * Interface to generic neighbour cache. */ static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool arp_key_eq(const struct neighbour *n, const void *pkey); static int arp_constructor(struct neighbour *neigh); static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb); static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb); static void parp_redo(struct sk_buff *skb); static int arp_is_multicast(const void *pkey); static const struct neigh_ops arp_generic_ops = { .family = AF_INET, .solicit = arp_solicit, .error_report = arp_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops arp_hh_ops = { .family = AF_INET, .solicit = arp_solicit, .error_report = arp_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops arp_direct_ops = { .family = AF_INET, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table arp_tbl = { .family = AF_INET, .key_len = 4, .protocol = cpu_to_be16(ETH_P_IP), .hash = arp_hash, .key_eq = arp_key_eq, .constructor = arp_constructor, .proxy_redo = parp_redo, .is_multicast = arp_is_multicast, .id = "arp_cache", .parms = { .tbl = &arp_tbl, .reachable_time = 30 * HZ, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = 1 * HZ, [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, [NEIGH_VAR_LOCKTIME] = 1 * HZ, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL(arp_tbl); int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_FDDI: case ARPHRD_IEEE802: ip_eth_mc_map(addr, haddr); return 0; case ARPHRD_INFINIBAND: ip_ib_mc_map(addr, dev->broadcast, haddr); return 0; case ARPHRD_IPGRE: ip_ipgre_mc_map(addr, dev->broadcast, haddr); return 0; default: if (dir) { memcpy(haddr, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return arp_hashfn(pkey, dev, hash_rnd); } static bool arp_key_eq(const struct neighbour *neigh, const void *pkey) { return neigh_key_eq32(neigh, pkey); } static int arp_constructor(struct neighbour *neigh) { __be32 addr; struct net_device *dev = neigh->dev; struct in_device *in_dev; struct neigh_parms *parms; u32 inaddr_any = INADDR_ANY; if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len); addr = *(__be32 *)neigh->primary_key; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (!in_dev) { rcu_read_unlock(); return -EINVAL; } neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr); parms = in_dev->arp_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); rcu_read_unlock(); if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &arp_direct_ops; neigh->output = neigh_direct_output; } else { /* Good devices (checked by reading texts, but only Ethernet is tested) ARPHRD_ETHER: (ethernet, apfddi) ARPHRD_FDDI: (fddi) ARPHRD_IEEE802: (tr) ARPHRD_METRICOM: (strip) ARPHRD_ARCNET: etc. etc. etc. ARPHRD_IPDDP will also work, if author repairs it. I did not it, because this driver does not work even in old paradigm. */ if (neigh->type == RTN_MULTICAST) { neigh->nud_state = NUD_NOARP; arp_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); } else if (neigh->type == RTN_BROADCAST || (dev->flags & IFF_POINTOPOINT)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &arp_hh_ops; else neigh->ops = &arp_generic_ops; if (neigh->nud_state & NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } return 0; } static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb) { dst_link_failure(skb); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED); } /* Create and send an arp packet. */ static void arp_send_dst(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const unsigned char *target_hw, struct dst_entry *dst) { struct sk_buff *skb; /* arp on this interface. */ if (dev->flags & IFF_NOARP) return; skb = arp_create(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw, target_hw); if (!skb) return; skb_dst_set(skb, dst_clone(dst)); arp_xmit(skb); } void arp_send(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const unsigned char *target_hw) { arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw, target_hw, NULL); } EXPORT_SYMBOL(arp_send); static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb) { __be32 saddr = 0; u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL; struct net_device *dev = neigh->dev; __be32 target = *(__be32 *)neigh->primary_key; int probes = atomic_read(&neigh->probes); struct in_device *in_dev; struct dst_entry *dst = NULL; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (!in_dev) { rcu_read_unlock(); return; } switch (IN_DEV_ARP_ANNOUNCE(in_dev)) { default: case 0: /* By default announce any local IP */ if (skb && inet_addr_type_dev_table(dev_net(dev), dev, ip_hdr(skb)->saddr) == RTN_LOCAL) saddr = ip_hdr(skb)->saddr; break; case 1: /* Restrict announcements of saddr in same subnet */ if (!skb) break; saddr = ip_hdr(skb)->saddr; if (inet_addr_type_dev_table(dev_net(dev), dev, saddr) == RTN_LOCAL) { /* saddr should be known to target */ if (inet_addr_onlink(in_dev, target, saddr)) break; } saddr = 0; break; case 2: /* Avoid secondary IPs, get a primary/preferred one */ break; } rcu_read_unlock(); if (!saddr) saddr = inet_select_addr(dev, target, RT_SCOPE_LINK); probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) pr_debug("trying to ucast probe in NUD_INVALID\n"); neigh_ha_snapshot(dst_ha, neigh, dev); dst_hw = dst_ha; } else { probes -= NEIGH_VAR(neigh->parms, APP_PROBES); if (probes < 0) { neigh_app_ns(neigh); return; } } if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE)) dst = skb_dst(skb); arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr, dst_hw, dev->dev_addr, NULL, dst); } static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip) { struct net *net = dev_net(in_dev->dev); int scope; switch (IN_DEV_ARP_IGNORE(in_dev)) { case 0: /* Reply, the tip is already validated */ return 0; case 1: /* Reply only if tip is configured on the incoming interface */ sip = 0; scope = RT_SCOPE_HOST; break; case 2: /* * Reply only if tip is configured on the incoming interface * and is in same subnet as sip */ scope = RT_SCOPE_HOST; break; case 3: /* Do not reply for scope host addresses */ sip = 0; scope = RT_SCOPE_LINK; in_dev = NULL; break; case 4: /* Reserved */ case 5: case 6: case 7: return 0; case 8: /* Do not reply */ return 1; default: return 0; } return !inet_confirm_addr(net, in_dev, sip, tip, scope); } static int arp_accept(struct in_device *in_dev, __be32 sip) { struct net *net = dev_net(in_dev->dev); int scope = RT_SCOPE_LINK; switch (IN_DEV_ARP_ACCEPT(in_dev)) { case 0: /* Don't create new entries from garp */ return 0; case 1: /* Create new entries from garp */ return 1; case 2: /* Create a neighbor in the arp table only if sip * is in the same subnet as an address configured * on the interface that received the garp message */ return !!inet_confirm_addr(net, in_dev, sip, 0, scope); default: return 0; } } static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev) { struct rtable *rt; int flag = 0; /*unsigned long now; */ struct net *net = dev_net(dev); rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev), RT_SCOPE_UNIVERSE); if (IS_ERR(rt)) return 1; if (rt->dst.dev != dev) { __NET_INC_STATS(net, LINUX_MIB_ARPFILTER); flag = 1; } ip_rt_put(rt); return flag; } /* * Check if we can use proxy ARP for this path */ static inline int arp_fwd_proxy(struct in_device *in_dev, struct net_device *dev, struct rtable *rt) { struct in_device *out_dev; int imi, omi = -1; if (rt->dst.dev == dev) return 0; if (!IN_DEV_PROXY_ARP(in_dev)) return 0; imi = IN_DEV_MEDIUM_ID(in_dev); if (imi == 0) return 1; if (imi == -1) return 0; /* place to check for proxy_arp for routes */ out_dev = __in_dev_get_rcu(rt->dst.dev); if (out_dev) omi = IN_DEV_MEDIUM_ID(out_dev); return omi != imi && omi != -1; } /* * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev) * * RFC3069 supports proxy arp replies back to the same interface. This * is done to support (ethernet) switch features, like RFC 3069, where * the individual ports are not allowed to communicate with each * other, BUT they are allowed to talk to the upstream router. As * described in RFC 3069, it is possible to allow these hosts to * communicate through the upstream router, by proxy_arp'ing. * * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation" * * This technology is known by different names: * In RFC 3069 it is called VLAN Aggregation. * Cisco and Allied Telesyn call it Private VLAN. * Hewlett-Packard call it Source-Port filtering or port-isolation. * Ericsson call it MAC-Forced Forwarding (RFC Draft). * */ static inline int arp_fwd_pvlan(struct in_device *in_dev, struct net_device *dev, struct rtable *rt, __be32 sip, __be32 tip) { /* Private VLAN is only concerned about the same ethernet segment */ if (rt->dst.dev != dev) return 0; /* Don't reply on self probes (often done by windowz boxes)*/ if (sip == tip) return 0; if (IN_DEV_PROXY_ARP_PVLAN(in_dev)) return 1; else return 0; } /* * Interface to link layer: send routine and receive handler. */ /* * Create an arp packet. If dest_hw is not set, we create a broadcast * message. */ struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const unsigned char *target_hw) { struct sk_buff *skb; struct arphdr *arp; unsigned char *arp_ptr; int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; /* * Allocate a buffer */ skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC); if (!skb) return NULL; skb_reserve(skb, hlen); skb_reset_network_header(skb); arp = skb_put(skb, arp_hdr_len(dev)); skb->dev = dev; skb->protocol = htons(ETH_P_ARP); if (!src_hw) src_hw = dev->dev_addr; if (!dest_hw) dest_hw = dev->broadcast; /* * Fill the device header for the ARP frame */ if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0) goto out; /* * Fill out the arp protocol part. * * The arp hardware type should match the device type, except for FDDI, * which (according to RFC 1390) should always equal 1 (Ethernet). */ /* * Exceptions everywhere. AX.25 uses the AX.25 PID value not the * DIX code for the protocol. Make these device structure fields. */ switch (dev->type) { default: arp->ar_hrd = htons(dev->type); arp->ar_pro = htons(ETH_P_IP); break; #if IS_ENABLED(CONFIG_AX25) case ARPHRD_AX25: arp->ar_hrd = htons(ARPHRD_AX25); arp->ar_pro = htons(AX25_P_IP); break; #if IS_ENABLED(CONFIG_NETROM) case ARPHRD_NETROM: arp->ar_hrd = htons(ARPHRD_NETROM); arp->ar_pro = htons(AX25_P_IP); break; #endif #endif #if IS_ENABLED(CONFIG_FDDI) case ARPHRD_FDDI: arp->ar_hrd = htons(ARPHRD_ETHER); arp->ar_pro = htons(ETH_P_IP); break; #endif } arp->ar_hln = dev->addr_len; arp->ar_pln = 4; arp->ar_op = htons(type); arp_ptr = (unsigned char *)(arp + 1); memcpy(arp_ptr, src_hw, dev->addr_len); arp_ptr += dev->addr_len; memcpy(arp_ptr, &src_ip, 4); arp_ptr += 4; switch (dev->type) { #if IS_ENABLED(CONFIG_FIREWIRE_NET) case ARPHRD_IEEE1394: break; #endif default: if (target_hw) memcpy(arp_ptr, target_hw, dev->addr_len); else memset(arp_ptr, 0, dev->addr_len); arp_ptr += dev->addr_len; } memcpy(arp_ptr, &dest_ip, 4); return skb; out: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(arp_create); static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { return dev_queue_xmit(skb); } /* * Send an arp packet. */ void arp_xmit(struct sk_buff *skb) { /* Send it off, maybe filter it using firewalling first. */ NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, dev_net(skb->dev), NULL, skb, NULL, skb->dev, arp_xmit_finish); } EXPORT_SYMBOL(arp_xmit); static bool arp_is_garp(struct net *net, struct net_device *dev, int *addr_type, __be16 ar_op, __be32 sip, __be32 tip, unsigned char *sha, unsigned char *tha) { bool is_garp = tip == sip; /* Gratuitous ARP _replies_ also require target hwaddr to be * the same as source. */ if (is_garp && ar_op == htons(ARPOP_REPLY)) is_garp = /* IPv4 over IEEE 1394 doesn't provide target * hardware address field in its ARP payload. */ tha && !memcmp(tha, sha, dev->addr_len); if (is_garp) { *addr_type = inet_addr_type_dev_table(net, dev, sip); if (*addr_type != RTN_UNICAST) is_garp = false; } return is_garp; } /* * Process an arp request. */ static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb->dev; struct in_device *in_dev = __in_dev_get_rcu(dev); struct arphdr *arp; unsigned char *arp_ptr; struct rtable *rt; unsigned char *sha; unsigned char *tha = NULL; __be32 sip, tip; u16 dev_type = dev->type; int addr_type; struct neighbour *n; struct dst_entry *reply_dst = NULL; bool is_garp = false; /* arp_rcv below verifies the ARP header and verifies the device * is ARP'able. */ if (!in_dev) goto out_free_skb; arp = arp_hdr(skb); switch (dev_type) { default: if (arp->ar_pro != htons(ETH_P_IP) || htons(dev_type) != arp->ar_hrd) goto out_free_skb; break; case ARPHRD_ETHER: case ARPHRD_FDDI: case ARPHRD_IEEE802: /* * ETHERNET, and Fibre Channel (which are IEEE 802 * devices, according to RFC 2625) devices will accept ARP * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2). * This is the case also of FDDI, where the RFC 1390 says that * FDDI devices should accept ARP hardware of (1) Ethernet, * however, to be more robust, we'll accept both 1 (Ethernet) * or 6 (IEEE 802.2) */ if ((arp->ar_hrd != htons(ARPHRD_ETHER) && arp->ar_hrd != htons(ARPHRD_IEEE802)) || arp->ar_pro != htons(ETH_P_IP)) goto out_free_skb; break; case ARPHRD_AX25: if (arp->ar_pro != htons(AX25_P_IP) || arp->ar_hrd != htons(ARPHRD_AX25)) goto out_free_skb; break; case ARPHRD_NETROM: if (arp->ar_pro != htons(AX25_P_IP) || arp->ar_hrd != htons(ARPHRD_NETROM)) goto out_free_skb; break; } /* Understand only these message types */ if (arp->ar_op != htons(ARPOP_REPLY) && arp->ar_op != htons(ARPOP_REQUEST)) goto out_free_skb; /* * Extract fields */ arp_ptr = (unsigned char *)(arp + 1); sha = arp_ptr; arp_ptr += dev->addr_len; memcpy(&sip, arp_ptr, 4); arp_ptr += 4; switch (dev_type) { #if IS_ENABLED(CONFIG_FIREWIRE_NET) case ARPHRD_IEEE1394: break; #endif default: tha = arp_ptr; arp_ptr += dev->addr_len; } memcpy(&tip, arp_ptr, 4); /* * Check for bad requests for 127.x.x.x and requests for multicast * addresses. If this is one such, delete it. */ if (ipv4_is_multicast(tip) || (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip))) goto out_free_skb; /* * For some 802.11 wireless deployments (and possibly other networks), * there will be an ARP proxy and gratuitous ARP frames are attacks * and thus should not be accepted. */ if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP)) goto out_free_skb; /* * Special case: We must set Frame Relay source Q.922 address */ if (dev_type == ARPHRD_DLCI) sha = dev->broadcast; /* * Process entry. The idea here is we want to send a reply if it is a * request for us or if it is a request for someone else that we hold * a proxy for. We want to add an entry to our cache if it is a reply * to us or if it is a request for our address. * (The assumption for this last is that if someone is requesting our * address, they are probably intending to talk to us, so it saves time * if we cache their address. Their address is also probably not in * our cache, since ours is not in their cache.) * * Putting this another way, we only care about replies if they are to * us, in which case we add them to the cache. For requests, we care * about those for us and those for our proxies. We reply to both, * and in the case of requests for us we add the requester to the arp * cache. */ if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb)) reply_dst = (struct dst_entry *) iptunnel_metadata_reply(skb_metadata_dst(skb), GFP_ATOMIC); /* Special case: IPv4 duplicate address detection packet (RFC2131) */ if (sip == 0) { if (arp->ar_op == htons(ARPOP_REQUEST) && inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL && !arp_ignore(in_dev, sip, tip)) arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, dev->dev_addr, sha, reply_dst); goto out_consume_skb; } if (arp->ar_op == htons(ARPOP_REQUEST) && ip_route_input_noref(skb, tip, sip, 0, dev) == 0) { rt = skb_rtable(skb); addr_type = rt->rt_type; if (addr_type == RTN_LOCAL) { int dont_send; dont_send = arp_ignore(in_dev, sip, tip); if (!dont_send && IN_DEV_ARPFILTER(in_dev)) dont_send = arp_filter(sip, tip, dev); if (!dont_send) { n = neigh_event_ns(&arp_tbl, sha, &sip, dev); if (n) { arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, dev->dev_addr, sha, reply_dst); neigh_release(n); } } goto out_consume_skb; } else if (IN_DEV_FORWARD(in_dev)) { if (addr_type == RTN_UNICAST && (arp_fwd_proxy(in_dev, dev, rt) || arp_fwd_pvlan(in_dev, dev, rt, sip, tip) || (rt->dst.dev != dev && pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) { n = neigh_event_ns(&arp_tbl, sha, &sip, dev); if (n) neigh_release(n); if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED || skb->pkt_type == PACKET_HOST || NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) { arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, dev->dev_addr, sha, reply_dst); } else { pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb); goto out_free_dst; } goto out_consume_skb; } } } /* Update our ARP tables */ n = __neigh_lookup(&arp_tbl, &sip, dev, 0); addr_type = -1; if (n || arp_accept(in_dev, sip)) { is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op, sip, tip, sha, tha); } if (arp_accept(in_dev, sip)) { /* Unsolicited ARP is not accepted by default. It is possible, that this option should be enabled for some devices (strip is candidate) */ if (!n && (is_garp || (arp->ar_op == htons(ARPOP_REPLY) && (addr_type == RTN_UNICAST || (addr_type < 0 && /* postpone calculation to as late as possible */ inet_addr_type_dev_table(net, dev, sip) == RTN_UNICAST))))) n = __neigh_lookup(&arp_tbl, &sip, dev, 1); } if (n) { int state = NUD_REACHABLE; int override; /* If several different ARP replies follows back-to-back, use the FIRST one. It is possible, if several proxy agents are active. Taking the first reply prevents arp trashing and chooses the fastest router. */ override = time_after(jiffies, n->updated + NEIGH_VAR(n->parms, LOCKTIME)) || is_garp; /* Broadcast replies and request packets do not assert neighbour reachability. */ if (arp->ar_op != htons(ARPOP_REPLY) || skb->pkt_type != PACKET_HOST) state = NUD_STALE; neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0); neigh_release(n); } out_consume_skb: consume_skb(skb); out_free_dst: dst_release(reply_dst); return NET_RX_SUCCESS; out_free_skb: kfree_skb(skb); return NET_RX_DROP; } static void parp_redo(struct sk_buff *skb) { arp_process(dev_net(skb->dev), NULL, skb); } static int arp_is_multicast(const void *pkey) { return ipv4_is_multicast(*((__be32 *)pkey)); } /* * Receive an arp request from the device layer. */ static int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { const struct arphdr *arp; /* do not tweak dropwatch on an ARP we will ignore */ if (dev->flags & IFF_NOARP || skb->pkt_type == PACKET_OTHERHOST || skb->pkt_type == PACKET_LOOPBACK) goto consumeskb; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto out_of_mem; /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ if (!pskb_may_pull(skb, arp_hdr_len(dev))) goto freeskb; arp = arp_hdr(skb); if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4) goto freeskb; memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, dev_net(dev), NULL, skb, dev, NULL, arp_process); consumeskb: consume_skb(skb); return NET_RX_SUCCESS; freeskb: kfree_skb(skb); out_of_mem: return NET_RX_DROP; } /* * User level interface (ioctl) */ static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r, bool getarp) { struct net_device *dev; if (getarp) dev = dev_get_by_name_rcu(net, r->arp_dev); else dev = __dev_get_by_name(net, r->arp_dev); if (!dev) return ERR_PTR(-ENODEV); /* Mmmm... It is wrong... ARPHRD_NETROM == 0 */ if (!r->arp_ha.sa_family) r->arp_ha.sa_family = dev->type; if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type) return ERR_PTR(-EINVAL); return dev; } static struct net_device *arp_req_dev(struct net *net, struct arpreq *r) { struct net_device *dev; struct rtable *rt; __be32 ip; if (r->arp_dev[0]) return arp_req_dev_by_name(net, r, false); if (r->arp_flags & ATF_PUBL) return NULL; ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK); if (IS_ERR(rt)) return ERR_CAST(rt); dev = rt->dst.dev; ip_rt_put(rt); if (!dev) return ERR_PTR(-EINVAL); return dev; } /* * Set (create) an ARP cache entry. */ static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on) { if (!dev) { IPV4_DEVCONF_ALL(net, PROXY_ARP) = on; return 0; } if (__in_dev_get_rtnl(dev)) { IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on); return 0; } return -ENXIO; } static int arp_req_set_public(struct net *net, struct arpreq *r, struct net_device *dev) { __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; if (!dev && (r->arp_flags & ATF_COM)) { dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family, r->arp_ha.sa_data); if (!dev) return -ENODEV; } if (mask) { __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1)) return -ENOBUFS; return 0; } return arp_req_set_proxy(net, dev, 1); } static int arp_req_set(struct net *net, struct arpreq *r) { struct neighbour *neigh; struct net_device *dev; __be32 ip; int err; dev = arp_req_dev(net, r); if (IS_ERR(dev)) return PTR_ERR(dev); if (r->arp_flags & ATF_PUBL) return arp_req_set_public(net, r, dev); switch (dev->type) { #if IS_ENABLED(CONFIG_FDDI) case ARPHRD_FDDI: /* * According to RFC 1390, FDDI devices should accept ARP * hardware types of 1 (Ethernet). However, to be more * robust, we'll accept hardware types of either 1 (Ethernet) * or 6 (IEEE 802.2). */ if (r->arp_ha.sa_family != ARPHRD_FDDI && r->arp_ha.sa_family != ARPHRD_ETHER && r->arp_ha.sa_family != ARPHRD_IEEE802) return -EINVAL; break; #endif default: if (r->arp_ha.sa_family != dev->type) return -EINVAL; break; } ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev); err = PTR_ERR(neigh); if (!IS_ERR(neigh)) { unsigned int state = NUD_STALE; if (r->arp_flags & ATF_PERM) { r->arp_flags |= ATF_COM; state = NUD_PERMANENT; } err = neigh_update(neigh, (r->arp_flags & ATF_COM) ? r->arp_ha.sa_data : NULL, state, NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 0); neigh_release(neigh); } return err; } static unsigned int arp_state_to_flags(struct neighbour *neigh) { if (neigh->nud_state&NUD_PERMANENT) return ATF_PERM | ATF_COM; else if (neigh->nud_state&NUD_VALID) return ATF_COM; else return 0; } /* * Get an ARP cache entry. */ static int arp_req_get(struct net *net, struct arpreq *r) { __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; struct neighbour *neigh; struct net_device *dev; if (!r->arp_dev[0]) return -ENODEV; dev = arp_req_dev_by_name(net, r, true); if (IS_ERR(dev)) return PTR_ERR(dev); neigh = neigh_lookup(&arp_tbl, &ip, dev); if (!neigh) return -ENXIO; if (READ_ONCE(neigh->nud_state) & NUD_NOARP) { neigh_release(neigh); return -ENXIO; } read_lock_bh(&neigh->lock); memcpy(r->arp_ha.sa_data, neigh->ha, min(dev->addr_len, sizeof(r->arp_ha.sa_data_min))); r->arp_flags = arp_state_to_flags(neigh); read_unlock_bh(&neigh->lock); neigh_release(neigh); r->arp_ha.sa_family = dev->type; netdev_copy_name(dev, r->arp_dev); return 0; } int arp_invalidate(struct net_device *dev, __be32 ip, bool force) { struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev); int err = -ENXIO; struct neigh_table *tbl = &arp_tbl; if (neigh) { if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) { neigh_release(neigh); return 0; } if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP) err = neigh_update(neigh, NULL, NUD_FAILED, NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_ADMIN, 0); write_lock_bh(&tbl->lock); neigh_release(neigh); neigh_remove_one(neigh); write_unlock_bh(&tbl->lock); } return err; } static int arp_req_delete_public(struct net *net, struct arpreq *r, struct net_device *dev) { __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr; if (mask) { __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; return pneigh_delete(&arp_tbl, net, &ip, dev); } return arp_req_set_proxy(net, dev, 0); } static int arp_req_delete(struct net *net, struct arpreq *r) { struct net_device *dev; __be32 ip; dev = arp_req_dev(net, r); if (IS_ERR(dev)) return PTR_ERR(dev); if (r->arp_flags & ATF_PUBL) return arp_req_delete_public(net, r, dev); ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; return arp_invalidate(dev, ip, true); } /* * Handle an ARP layer I/O control request. */ int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg) { struct arpreq r; __be32 *netmask; int err; switch (cmd) { case SIOCDARP: case SIOCSARP: if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; fallthrough; case SIOCGARP: err = copy_from_user(&r, arg, sizeof(struct arpreq)); if (err) return -EFAULT; break; default: return -EINVAL; } if (r.arp_pa.sa_family != AF_INET) return -EPFNOSUPPORT; if (!(r.arp_flags & ATF_PUBL) && (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB))) return -EINVAL; netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr; if (!(r.arp_flags & ATF_NETMASK)) *netmask = htonl(0xFFFFFFFFUL); else if (*netmask && *netmask != htonl(0xFFFFFFFFUL)) return -EINVAL; switch (cmd) { case SIOCDARP: rtnl_lock(); err = arp_req_delete(net, &r); rtnl_unlock(); break; case SIOCSARP: rtnl_lock(); err = arp_req_set(net, &r); rtnl_unlock(); break; case SIOCGARP: rcu_read_lock(); err = arp_req_get(net, &r); rcu_read_unlock(); if (!err && copy_to_user(arg, &r, sizeof(r))) err = -EFAULT; break; } return err; } static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct in_device *in_dev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&arp_tbl, dev); rt_cache_flush(dev_net(dev)); break; case NETDEV_CHANGE: change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&arp_tbl, dev); in_dev = __in_dev_get_rtnl(dev); if (!in_dev) evict_nocarrier = true; else evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&arp_tbl, dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block arp_netdev_notifier = { .notifier_call = arp_netdev_event, }; /* Note, that it is not on notifier chain. It is necessary, that this routine was called after route cache will be flushed. */ void arp_ifdown(struct net_device *dev) { neigh_ifdown(&arp_tbl, dev); } /* * Called once on startup. */ static struct packet_type arp_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_ARP), .func = arp_rcv, }; #ifdef CONFIG_PROC_FS #if IS_ENABLED(CONFIG_AX25) /* * ax25 -> ASCII conversion */ static void ax2asc2(ax25_address *a, char *buf) { char c, *s; int n; for (n = 0, s = buf; n < 6; n++) { c = (a->ax25_call[n] >> 1) & 0x7F; if (c != ' ') *s++ = c; } *s++ = '-'; n = (a->ax25_call[6] >> 1) & 0x0F; if (n > 9) { *s++ = '1'; n -= 10; } *s++ = n + '0'; *s++ = '\0'; if (*buf == '\0' || *buf == '-') { buf[0] = '*'; buf[1] = '\0'; } } #endif /* CONFIG_AX25 */ #define HBUFFERLEN 30 static void arp_format_neigh_entry(struct seq_file *seq, struct neighbour *n) { char hbuffer[HBUFFERLEN]; int k, j; char tbuf[16]; struct net_device *dev = n->dev; int hatype = dev->type; read_lock(&n->lock); /* Convert hardware address to XX:XX:XX:XX ... form. */ #if IS_ENABLED(CONFIG_AX25) if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM) ax2asc2((ax25_address *)n->ha, hbuffer); else { #endif for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) { hbuffer[k++] = hex_asc_hi(n->ha[j]); hbuffer[k++] = hex_asc_lo(n->ha[j]); hbuffer[k++] = ':'; } if (k != 0) --k; hbuffer[k] = 0; #if IS_ENABLED(CONFIG_AX25) } #endif sprintf(tbuf, "%pI4", n->primary_key); seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s * %s\n", tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name); read_unlock(&n->lock); } static void arp_format_pneigh_entry(struct seq_file *seq, struct pneigh_entry *n) { struct net_device *dev = n->dev; int hatype = dev ? dev->type : 0; char tbuf[16]; sprintf(tbuf, "%pI4", n->key); seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n", tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00", dev ? dev->name : "*"); } static int arp_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "IP address HW type Flags " "HW address Mask Device\n"); } else { struct neigh_seq_state *state = seq->private; if (state->flags & NEIGH_SEQ_IS_PNEIGH) arp_format_pneigh_entry(seq, v); else arp_format_neigh_entry(seq, v); } return 0; } static void *arp_seq_start(struct seq_file *seq, loff_t *pos) { /* Don't want to confuse "arp -a" w/ magic entries, * so we tell the generic iterator to skip NUD_NOARP. */ return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP); } static const struct seq_operations arp_seq_ops = { .start = arp_seq_start, .next = neigh_seq_next, .stop = neigh_seq_stop, .show = arp_seq_show, }; #endif /* CONFIG_PROC_FS */ static int __net_init arp_net_init(struct net *net) { if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops, sizeof(struct neigh_seq_state))) return -ENOMEM; return 0; } static void __net_exit arp_net_exit(struct net *net) { remove_proc_entry("arp", net->proc_net); } static struct pernet_operations arp_net_ops = { .init = arp_net_init, .exit = arp_net_exit, }; void __init arp_init(void) { neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl); dev_add_pack(&arp_packet_type); register_pernet_subsys(&arp_net_ops); #ifdef CONFIG_SYSCTL neigh_sysctl_register(NULL, &arp_tbl.parms, NULL); #endif register_netdevice_notifier(&arp_netdev_notifier); } |
| 6 6 9 9 6 7 7 6 4 6 6 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 | // SPDX-License-Identifier: GPL-2.0-or-later /* * xfrm algorithm interface * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> */ #include <crypto/aead.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/pfkeyv2.h> #include <linux/crypto.h> #include <linux/scatterlist.h> #include <net/xfrm.h> #if IS_ENABLED(CONFIG_INET_ESP) || IS_ENABLED(CONFIG_INET6_ESP) #include <net/esp.h> #endif /* * Algorithms supported by IPsec. These entries contain properties which * are used in key negotiation and xfrm processing, and are used to verify * that instantiated crypto transforms have correct parameters for IPsec * purposes. */ static struct xfrm_algo_desc aead_list[] = { { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 64, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 96, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4106(gcm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 64, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 96, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4309(ccm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc4543(gcm(aes))", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc7539esp(chacha20,poly1305)", .uinfo = { .aead = { .geniv = "seqiv", .icv_truncbits = 128, } }, .pfkey_supported = 0, }, }; static struct xfrm_algo_desc aalg_list[] = { { .name = "digest_null", .uinfo = { .auth = { .icv_truncbits = 0, .icv_fullbits = 0, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_NULL, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 0, .sadb_alg_maxbits = 0 } }, { .name = "hmac(md5)", .compat = "md5", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_AALG_MD5HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 128 } }, { .name = "hmac(sha1)", .compat = "sha1", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 160, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_AALG_SHA1HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 160, .sadb_alg_maxbits = 160 } }, { .name = "hmac(sha256)", .compat = "sha256", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 256, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 256, .sadb_alg_maxbits = 256 } }, { .name = "hmac(sha384)", .uinfo = { .auth = { .icv_truncbits = 192, .icv_fullbits = 384, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 384, .sadb_alg_maxbits = 384 } }, { .name = "hmac(sha512)", .uinfo = { .auth = { .icv_truncbits = 256, .icv_fullbits = 512, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 512, .sadb_alg_maxbits = 512 } }, { .name = "hmac(rmd160)", .compat = "rmd160", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 160, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 160, .sadb_alg_maxbits = 160 } }, { .name = "xcbc(aes)", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 128 } }, { /* rfc4494 */ .name = "cmac(aes)", .uinfo = { .auth = { .icv_truncbits = 96, .icv_fullbits = 128, } }, .pfkey_supported = 0, }, { .name = "hmac(sm3)", .compat = "sm3", .uinfo = { .auth = { .icv_truncbits = 256, .icv_fullbits = 256, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_AALG_SM3_256HMAC, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 256, .sadb_alg_maxbits = 256 } }, }; static struct xfrm_algo_desc ealg_list[] = { { .name = "ecb(cipher_null)", .compat = "cipher_null", .uinfo = { .encr = { .blockbits = 8, .defkeybits = 0, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_EALG_NULL, .sadb_alg_ivlen = 0, .sadb_alg_minbits = 0, .sadb_alg_maxbits = 0 } }, { .name = "cbc(des)", .compat = "des", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 64, .defkeybits = 64, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_EALG_DESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 64, .sadb_alg_maxbits = 64 } }, { .name = "cbc(des3_ede)", .compat = "des3_ede", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 64, .defkeybits = 192, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_EALG_3DESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 192, .sadb_alg_maxbits = 192 } }, { .name = "cbc(cast5)", .compat = "cast5", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 64, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_CASTCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 40, .sadb_alg_maxbits = 128 } }, { .name = "cbc(blowfish)", .compat = "blowfish", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 64, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 40, .sadb_alg_maxbits = 448 } }, { .name = "cbc(aes)", .compat = "aes", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 128, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AESCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "cbc(serpent)", .compat = "serpent", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 128, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_SERPENTCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256, } }, { .name = "cbc(camellia)", .compat = "camellia", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 128, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_CAMELLIACBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "cbc(twofish)", .compat = "twofish", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 128, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_TWOFISHCBC, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, { .name = "rfc3686(ctr(aes))", .uinfo = { .encr = { .geniv = "seqiv", .blockbits = 128, .defkeybits = 160, /* 128-bit key + 32-bit nonce */ } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_AESCTR, .sadb_alg_ivlen = 8, .sadb_alg_minbits = 160, .sadb_alg_maxbits = 288 } }, { .name = "cbc(sm4)", .compat = "sm4", .uinfo = { .encr = { .geniv = "echainiv", .blockbits = 128, .defkeybits = 128, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_EALG_SM4CBC, .sadb_alg_ivlen = 16, .sadb_alg_minbits = 128, .sadb_alg_maxbits = 256 } }, }; static struct xfrm_algo_desc calg_list[] = { { .name = "deflate", .uinfo = { .comp = { .threshold = 90, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE } }, { .name = "lzs", .uinfo = { .comp = { .threshold = 90, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_CALG_LZS } }, { .name = "lzjh", .uinfo = { .comp = { .threshold = 50, } }, .pfkey_supported = 1, .desc = { .sadb_alg_id = SADB_X_CALG_LZJH } }, }; static inline int aalg_entries(void) { return ARRAY_SIZE(aalg_list); } static inline int ealg_entries(void) { return ARRAY_SIZE(ealg_list); } static inline int calg_entries(void) { return ARRAY_SIZE(calg_list); } struct xfrm_algo_list { int (*find)(const char *name, u32 type, u32 mask); struct xfrm_algo_desc *algs; int entries; }; static const struct xfrm_algo_list xfrm_aead_list = { .find = crypto_has_aead, .algs = aead_list, .entries = ARRAY_SIZE(aead_list), }; static const struct xfrm_algo_list xfrm_aalg_list = { .find = crypto_has_ahash, .algs = aalg_list, .entries = ARRAY_SIZE(aalg_list), }; static const struct xfrm_algo_list xfrm_ealg_list = { .find = crypto_has_skcipher, .algs = ealg_list, .entries = ARRAY_SIZE(ealg_list), }; static const struct xfrm_algo_list xfrm_calg_list = { .find = crypto_has_comp, .algs = calg_list, .entries = ARRAY_SIZE(calg_list), }; static struct xfrm_algo_desc *xfrm_find_algo( const struct xfrm_algo_list *algo_list, int match(const struct xfrm_algo_desc *entry, const void *data), const void *data, int probe) { struct xfrm_algo_desc *list = algo_list->algs; int i, status; for (i = 0; i < algo_list->entries; i++) { if (!match(list + i, data)) continue; if (list[i].available) return &list[i]; if (!probe) break; status = algo_list->find(list[i].name, 0, 0); if (!status) break; list[i].available = status; return &list[i]; } return NULL; } static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry, const void *data) { return entry->desc.sadb_alg_id == (unsigned long)data; } struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id) { return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match, (void *)(unsigned long)alg_id, 1); } EXPORT_SYMBOL_GPL(xfrm_calg_get_byid); static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry, const void *data) { const char *name = data; return name && (!strcmp(name, entry->name) || (entry->compat && !strcmp(name, entry->compat))); } struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe) { return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname); struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe) { return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname); struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe) { return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name, probe); } EXPORT_SYMBOL_GPL(xfrm_calg_get_byname); struct xfrm_aead_name { const char *name; int icvbits; }; static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry, const void *data) { const struct xfrm_aead_name *aead = data; const char *name = aead->name; return aead->icvbits == entry->uinfo.aead.icv_truncbits && name && !strcmp(name, entry->name); } struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe) { struct xfrm_aead_name data = { .name = name, .icvbits = icv_len, }; return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data, probe); } EXPORT_SYMBOL_GPL(xfrm_aead_get_byname); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx) { if (idx >= aalg_entries()) return NULL; return &aalg_list[idx]; } EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx) { if (idx >= ealg_entries()) return NULL; return &ealg_list[idx]; } EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx); /* * Probe for the availability of crypto algorithms, and set the available * flag for any algorithms found on the system. This is typically called by * pfkey during userspace SA add, update or register. */ void xfrm_probe_algs(void) { int i, status; BUG_ON(in_softirq()); for (i = 0; i < aalg_entries(); i++) { status = crypto_has_ahash(aalg_list[i].name, 0, 0); if (aalg_list[i].available != status) aalg_list[i].available = status; } for (i = 0; i < ealg_entries(); i++) { status = crypto_has_skcipher(ealg_list[i].name, 0, 0); if (ealg_list[i].available != status) ealg_list[i].available = status; } for (i = 0; i < calg_entries(); i++) { status = crypto_has_comp(calg_list[i].name, 0, CRYPTO_ALG_ASYNC); if (calg_list[i].available != status) calg_list[i].available = status; } } EXPORT_SYMBOL_GPL(xfrm_probe_algs); int xfrm_count_pfkey_auth_supported(void) { int i, n; for (i = 0, n = 0; i < aalg_entries(); i++) if (aalg_list[i].available && aalg_list[i].pfkey_supported) n++; return n; } EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported); int xfrm_count_pfkey_enc_supported(void) { int i, n; for (i = 0, n = 0; i < ealg_entries(); i++) if (ealg_list[i].available && ealg_list[i].pfkey_supported) n++; return n; } EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported); MODULE_DESCRIPTION("XFRM Algorithm interface"); MODULE_LICENSE("GPL"); |
| 197 197 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | // SPDX-License-Identifier: GPL-2.0-or-later /* * cn_proc.c - process events connector * * Copyright (C) Matt Helsley, IBM Corp. 2005 * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net> * Original copyright notice follows: * Copyright (C) 2005 BULL SA. */ #include <linux/kernel.h> #include <linux/ktime.h> #include <linux/init.h> #include <linux/connector.h> #include <linux/gfp.h> #include <linux/ptrace.h> #include <linux/atomic.h> #include <linux/pid_namespace.h> #include <linux/cn_proc.h> #include <linux/local_lock.h> /* * Size of a cn_msg followed by a proc_event structure. Since the * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we * add one 4-byte word to the size here, and then start the actual * cn_msg structure 4 bytes into the stack buffer. The result is that * the immediately following proc_event structure is aligned to 8 bytes. */ #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4) /* See comment above; we test our assumption about sizeof struct cn_msg here. */ static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer) { BUILD_BUG_ON(sizeof(struct cn_msg) != 20); return (struct cn_msg *)(buffer + 4); } static atomic_t proc_event_num_listeners = ATOMIC_INIT(0); static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC }; /* local_event.count is used as the sequence number of the netlink message */ struct local_event { local_lock_t lock; __u32 count; }; static DEFINE_PER_CPU(struct local_event, local_event) = { .lock = INIT_LOCAL_LOCK(lock), }; static int cn_filter(struct sock *dsk, struct sk_buff *skb, void *data) { __u32 what, exit_code, *ptr; enum proc_cn_mcast_op mc_op; uintptr_t val; if (!dsk || !dsk->sk_user_data || !data) return 0; ptr = (__u32 *)data; what = *ptr++; exit_code = *ptr; val = ((struct proc_input *)(dsk->sk_user_data))->event_type; mc_op = ((struct proc_input *)(dsk->sk_user_data))->mcast_op; if (mc_op == PROC_CN_MCAST_IGNORE) return 1; if ((__u32)val == PROC_EVENT_ALL) return 0; /* * Drop packet if we have to report only non-zero exit status * (PROC_EVENT_NONZERO_EXIT) and exit status is 0 */ if (((__u32)val & PROC_EVENT_NONZERO_EXIT) && (what == PROC_EVENT_EXIT)) { if (exit_code) return 0; } if ((__u32)val & what) return 0; return 1; } static inline void send_msg(struct cn_msg *msg) { __u32 filter_data[2]; local_lock(&local_event.lock); msg->seq = __this_cpu_inc_return(local_event.count) - 1; ((struct proc_event *)msg->data)->cpu = smp_processor_id(); /* * local_lock() disables preemption during send to ensure the messages * are ordered according to their sequence numbers. * * If cn_netlink_send() fails, the data is not sent. */ filter_data[0] = ((struct proc_event *)msg->data)->what; if (filter_data[0] == PROC_EVENT_EXIT) { filter_data[1] = ((struct proc_event *)msg->data)->event_data.exit.exit_code; } else { filter_data[1] = 0; } cn_netlink_send_mult(msg, msg->len, 0, CN_IDX_PROC, GFP_NOWAIT, cn_filter, (void *)filter_data); local_unlock(&local_event.lock); } void proc_fork_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); struct task_struct *parent; if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_FORK; rcu_read_lock(); parent = rcu_dereference(task->real_parent); ev->event_data.fork.parent_pid = parent->pid; ev->event_data.fork.parent_tgid = parent->tgid; rcu_read_unlock(); ev->event_data.fork.child_pid = task->pid; ev->event_data.fork.child_tgid = task->tgid; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_exec_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_EXEC; ev->event_data.exec.process_pid = task->pid; ev->event_data.exec.process_tgid = task->tgid; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_id_connector(struct task_struct *task, int which_id) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); const struct cred *cred; if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->what = which_id; ev->event_data.id.process_pid = task->pid; ev->event_data.id.process_tgid = task->tgid; rcu_read_lock(); cred = __task_cred(task); if (which_id == PROC_EVENT_UID) { ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid); ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid); } else if (which_id == PROC_EVENT_GID) { ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid); ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid); } else { rcu_read_unlock(); return; } rcu_read_unlock(); ev->timestamp_ns = ktime_get_ns(); memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_sid_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_SID; ev->event_data.sid.process_pid = task->pid; ev->event_data.sid.process_tgid = task->tgid; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_ptrace_connector(struct task_struct *task, int ptrace_id) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_PTRACE; ev->event_data.ptrace.process_pid = task->pid; ev->event_data.ptrace.process_tgid = task->tgid; if (ptrace_id == PTRACE_ATTACH) { ev->event_data.ptrace.tracer_pid = current->pid; ev->event_data.ptrace.tracer_tgid = current->tgid; } else if (ptrace_id == PTRACE_DETACH) { ev->event_data.ptrace.tracer_pid = 0; ev->event_data.ptrace.tracer_tgid = 0; } else return; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_comm_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_COMM; ev->event_data.comm.process_pid = task->pid; ev->event_data.comm.process_tgid = task->tgid; get_task_comm(ev->event_data.comm.comm, task); memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_coredump_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; struct task_struct *parent; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_COREDUMP; ev->event_data.coredump.process_pid = task->pid; ev->event_data.coredump.process_tgid = task->tgid; rcu_read_lock(); if (pid_alive(task)) { parent = rcu_dereference(task->real_parent); ev->event_data.coredump.parent_pid = parent->pid; ev->event_data.coredump.parent_tgid = parent->tgid; } rcu_read_unlock(); memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } void proc_exit_connector(struct task_struct *task) { struct cn_msg *msg; struct proc_event *ev; struct task_struct *parent; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); ev->timestamp_ns = ktime_get_ns(); ev->what = PROC_EVENT_EXIT; ev->event_data.exit.process_pid = task->pid; ev->event_data.exit.process_tgid = task->tgid; ev->event_data.exit.exit_code = task->exit_code; ev->event_data.exit.exit_signal = task->exit_signal; rcu_read_lock(); if (pid_alive(task)) { parent = rcu_dereference(task->real_parent); ev->event_data.exit.parent_pid = parent->pid; ev->event_data.exit.parent_tgid = parent->tgid; } rcu_read_unlock(); memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = 0; /* not used */ msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } /* * Send an acknowledgement message to userspace * * Use 0 for success, EFOO otherwise. * Note: this is the negative of conventional kernel error * values because it's not being returned via syscall return * mechanisms. */ static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack) { struct cn_msg *msg; struct proc_event *ev; __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8); if (atomic_read(&proc_event_num_listeners) < 1) return; msg = buffer_to_cn_msg(buffer); ev = (struct proc_event *)msg->data; memset(&ev->event_data, 0, sizeof(ev->event_data)); msg->seq = rcvd_seq; ev->timestamp_ns = ktime_get_ns(); ev->cpu = -1; ev->what = PROC_EVENT_NONE; ev->event_data.ack.err = err; memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id)); msg->ack = rcvd_ack + 1; msg->len = sizeof(*ev); msg->flags = 0; /* not used */ send_msg(msg); } /** * cn_proc_mcast_ctl * @msg: message sent from userspace via the connector * @nsp: NETLINK_CB of the client's socket buffer */ static void cn_proc_mcast_ctl(struct cn_msg *msg, struct netlink_skb_parms *nsp) { enum proc_cn_mcast_op mc_op = 0, prev_mc_op = 0; struct proc_input *pinput = NULL; enum proc_cn_event ev_type = 0; int err = 0, initial = 0; struct sock *sk = NULL; /* * Events are reported with respect to the initial pid * and user namespaces so ignore requestors from * other namespaces. */ if ((current_user_ns() != &init_user_ns) || !task_is_in_init_pid_ns(current)) return; if (msg->len == sizeof(*pinput)) { pinput = (struct proc_input *)msg->data; mc_op = pinput->mcast_op; ev_type = pinput->event_type; } else if (msg->len == sizeof(mc_op)) { mc_op = *((enum proc_cn_mcast_op *)msg->data); ev_type = PROC_EVENT_ALL; } else { return; } ev_type = valid_event((enum proc_cn_event)ev_type); if (ev_type == PROC_EVENT_NONE) ev_type = PROC_EVENT_ALL; if (nsp->sk) { sk = nsp->sk; if (sk->sk_user_data == NULL) { sk->sk_user_data = kzalloc(sizeof(struct proc_input), GFP_KERNEL); if (sk->sk_user_data == NULL) { err = ENOMEM; goto out; } initial = 1; } else { prev_mc_op = ((struct proc_input *)(sk->sk_user_data))->mcast_op; } ((struct proc_input *)(sk->sk_user_data))->event_type = ev_type; ((struct proc_input *)(sk->sk_user_data))->mcast_op = mc_op; } switch (mc_op) { case PROC_CN_MCAST_LISTEN: if (initial || (prev_mc_op != PROC_CN_MCAST_LISTEN)) atomic_inc(&proc_event_num_listeners); break; case PROC_CN_MCAST_IGNORE: if (!initial && (prev_mc_op != PROC_CN_MCAST_IGNORE)) atomic_dec(&proc_event_num_listeners); ((struct proc_input *)(sk->sk_user_data))->event_type = PROC_EVENT_NONE; break; default: err = EINVAL; break; } out: cn_proc_ack(err, msg->seq, msg->ack); } /* * cn_proc_init - initialization entry point * * Adds the connector callback to the connector driver. */ static int __init cn_proc_init(void) { int err = cn_add_callback(&cn_proc_event_id, "cn_proc", &cn_proc_mcast_ctl); if (err) { pr_warn("cn_proc failed to register\n"); return err; } return 0; } device_initcall(cn_proc_init); |
| 763 762 19 762 52 763 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MIN_HEAP_H #define _LINUX_MIN_HEAP_H #include <linux/bug.h> #include <linux/string.h> #include <linux/types.h> /** * Data structure to hold a min-heap. * @nr: Number of elements currently in the heap. * @size: Maximum number of elements that can be held in current storage. * @data: Pointer to the start of array holding the heap elements. * @preallocated: Start of the static preallocated array holding the heap elements. */ #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \ struct _name { \ size_t nr; \ size_t size; \ _type *data; \ _type preallocated[_nr]; \ } #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char; #define __minheap_cast(_heap) (typeof((_heap)->data[0]) *) #define __minheap_obj_size(_heap) sizeof((_heap)->data[0]) /** * struct min_heap_callbacks - Data/functions to customise the min_heap. * @less: Partial order function for this heap. * @swp: Swap elements function. */ struct min_heap_callbacks { bool (*less)(const void *lhs, const void *rhs, void *args); void (*swp)(void *lhs, void *rhs, void *args); }; /** * is_aligned - is this pointer & size okay for word-wide copying? * @base: pointer to data * @size: size of each element * @align: required alignment (typically 4 or 8) * * Returns true if elements can be copied using word loads and stores. * The size must be a multiple of the alignment, and the base address must * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. * * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" * to "if ((a | b) & mask)", so we do that by hand. */ __attribute_const__ __always_inline static bool is_aligned(const void *base, size_t size, unsigned char align) { unsigned char lsbits = (unsigned char)size; (void)base; #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS lsbits |= (unsigned char)(uintptr_t)base; #endif return (lsbits & (align - 1)) == 0; } /** * swap_words_32 - swap two elements in 32-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 4) * * Exchange the two objects in memory. This exploits base+index addressing, * which basically all CPUs have, to minimize loop overhead computations. * * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the * bottom of the loop, even though the zero flag is still valid from the * subtract (since the intervening mov instructions don't alter the flags). * Gcc 8.1.0 doesn't have that problem. */ static __always_inline void swap_words_32(void *a, void *b, size_t n) { do { u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; } while (n); } /** * swap_words_64 - swap two elements in 64-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 8) * * Exchange the two objects in memory. This exploits base+index * addressing, which basically all CPUs have, to minimize loop overhead * computations. * * We'd like to use 64-bit loads if possible. If they're not, emulating * one requires base+index+4 addressing which x86 has but most other * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, * but it's possible to have 64-bit loads without 64-bit pointers (e.g. * x32 ABI). Are there any cases the kernel needs to worry about? */ static __always_inline void swap_words_64(void *a, void *b, size_t n) { do { #ifdef CONFIG_64BIT u64 t = *(u64 *)(a + (n -= 8)); *(u64 *)(a + n) = *(u64 *)(b + n); *(u64 *)(b + n) = t; #else /* Use two 32-bit transfers to avoid base+index+4 addressing */ u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; #endif } while (n); } /** * swap_bytes - swap two elements a byte at a time * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size * * This is the fallback if alignment doesn't allow using larger chunks. */ static __always_inline void swap_bytes(void *a, void *b, size_t n) { do { char t = ((char *)a)[--n]; ((char *)a)[n] = ((char *)b)[n]; ((char *)b)[n] = t; } while (n); } /* * The values are arbitrary as long as they can't be confused with * a pointer, but small integers make for the smallest compare * instructions. */ #define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0) #define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1) #define SWAP_BYTES ((void (*)(void *, void *, void *))2) /* * Selects the appropriate swap function based on the element size. */ static __always_inline void *select_swap_func(const void *base, size_t size) { if (is_aligned(base, size, 8)) return SWAP_WORDS_64; else if (is_aligned(base, size, 4)) return SWAP_WORDS_32; else return SWAP_BYTES; } static __always_inline void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args), void *priv) { if (swap_func == SWAP_WORDS_64) swap_words_64(a, b, size); else if (swap_func == SWAP_WORDS_32) swap_words_32(a, b, size); else if (swap_func == SWAP_BYTES) swap_bytes(a, b, size); else swap_func(a, b, priv); } /** * parent - given the offset of the child, find the offset of the parent. * @i: the offset of the heap element whose parent is sought. Non-zero. * @lsbit: a precomputed 1-bit mask, equal to "size & -size" * @size: size of each element * * In terms of array indexes, the parent of element j = @i/@size is simply * (j-1)/2. But when working in byte offsets, we can't use implicit * truncation of integer divides. * * Fortunately, we only need one bit of the quotient, not the full divide. * @size has a least significant bit. That bit will be clear if @i is * an even multiple of @size, and set if it's an odd multiple. * * Logically, we're doing "if (i & lsbit) i -= size;", but since the * branch is unpredictable, it's done with a bit of clever branch-free * code instead. */ __attribute_const__ __always_inline static size_t parent(size_t i, unsigned int lsbit, size_t size) { i -= size; i -= size & -(i & lsbit); return i / 2; } /* Initialize a min-heap. */ static __always_inline void __min_heap_init_inline(min_heap_char *heap, void *data, int size) { heap->nr = 0; heap->size = size; if (data) heap->data = data; else heap->data = heap->preallocated; } #define min_heap_init_inline(_heap, _data, _size) \ __min_heap_init_inline((min_heap_char *)_heap, _data, _size) /* Get the minimum element from the heap. */ static __always_inline void *__min_heap_peek_inline(struct min_heap_char *heap) { return heap->nr ? heap->data : NULL; } #define min_heap_peek_inline(_heap) \ (__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap)) /* Check if the heap is full. */ static __always_inline bool __min_heap_full_inline(min_heap_char *heap) { return heap->nr == heap->size; } #define min_heap_full_inline(_heap) \ __min_heap_full_inline((min_heap_char *)_heap) /* Sift the element at pos down the heap. */ static __always_inline void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size, const struct min_heap_callbacks *func, void *args) { const unsigned long lsbit = elem_size & -elem_size; void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; /* pre-scale counters for performance */ size_t a = pos * elem_size; size_t b, c, d; size_t n = heap->nr * elem_size; if (!swp) swp = select_swap_func(data, elem_size); /* Find the sift-down path all the way to the leaves. */ for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;) b = func->less(data + c, data + d, args) ? c : d; /* Special case for the last leaf with no sibling. */ if (d == n) b = c; /* Backtrack to the correct location. */ while (b != a && func->less(data + a, data + b, args)) b = parent(b, lsbit, elem_size); /* Shift the element into its correct place. */ c = b; while (b != a) { b = parent(b, lsbit, elem_size); do_swap(data + b, data + c, elem_size, swp, args); } } #define min_heap_sift_down_inline(_heap, _pos, _func, _args) \ __min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \ _func, _args) /* Sift up ith element from the heap, O(log2(nr)). */ static __always_inline void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args) { const unsigned long lsbit = elem_size & -elem_size; void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; /* pre-scale counters for performance */ size_t a = idx * elem_size, b; if (!swp) swp = select_swap_func(data, elem_size); while (a) { b = parent(a, lsbit, elem_size); if (func->less(data + b, data + a, args)) break; do_swap(data + a, data + b, elem_size, swp, args); a = b; } } #define min_heap_sift_up_inline(_heap, _idx, _func, _args) \ __min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \ _func, _args) /* Floyd's approach to heapification that is O(nr). */ static __always_inline void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { int i; for (i = heap->nr / 2 - 1; i >= 0; i--) __min_heap_sift_down_inline(heap, i, elem_size, func, args); } #define min_heapify_all_inline(_heap, _func, _args) \ __min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* Remove minimum element from the heap, O(log2(nr)). */ static __always_inline bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return false; /* Place last element at the root (position 0) and then sift down. */ heap->nr--; memcpy(data, data + (heap->nr * elem_size), elem_size); __min_heap_sift_down_inline(heap, 0, elem_size, func, args); return true; } #define min_heap_pop_inline(_heap, _func, _args) \ __min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) /* * Remove the minimum element and then push the given element. The * implementation performs 1 sift (O(log2(nr))) and is therefore more * efficient than a pop followed by a push that does 2. */ static __always_inline void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { memcpy(heap->data, element, elem_size); __min_heap_sift_down_inline(heap, 0, elem_size, func, args); } #define min_heap_pop_push_inline(_heap, _element, _func, _args) \ __min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) /* Push an element on to the heap, O(log2(nr)). */ static __always_inline bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; int pos; if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) return false; /* Place at the end of data. */ pos = heap->nr; memcpy(data + (pos * elem_size), element, elem_size); heap->nr++; /* Sift child at pos up. */ __min_heap_sift_up_inline(heap, elem_size, pos, func, args); return true; } #define min_heap_push_inline(_heap, _element, _func, _args) \ __min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) /* Remove ith element from the heap, O(log2(nr)). */ static __always_inline bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args) { void *data = heap->data; void (*swp)(void *lhs, void *rhs, void *args) = func->swp; if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) return false; if (!swp) swp = select_swap_func(data, elem_size); /* Place last element at the root (position 0) and then sift down. */ heap->nr--; if (idx == heap->nr) return true; do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args); __min_heap_sift_up_inline(heap, elem_size, idx, func, args); __min_heap_sift_down_inline(heap, idx, elem_size, func, args); return true; } #define min_heap_del_inline(_heap, _idx, _func, _args) \ __min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \ _func, _args) void __min_heap_init(min_heap_char *heap, void *data, int size); void *__min_heap_peek(struct min_heap_char *heap); bool __min_heap_full(min_heap_char *heap); void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size, const struct min_heap_callbacks *func, void *args); void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args); void __min_heapify_all(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_pop(min_heap_char *heap, size_t elem_size, const struct min_heap_callbacks *func, void *args); void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size, const struct min_heap_callbacks *func, void *args); bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx, const struct min_heap_callbacks *func, void *args); #define min_heap_init(_heap, _data, _size) \ __min_heap_init((min_heap_char *)_heap, _data, _size) #define min_heap_peek(_heap) \ (__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap)) #define min_heap_full(_heap) \ __min_heap_full((min_heap_char *)_heap) #define min_heap_sift_down(_heap, _pos, _func, _args) \ __min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args) #define min_heap_sift_up(_heap, _idx, _func, _args) \ __min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args) #define min_heapify_all(_heap, _func, _args) \ __min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) #define min_heap_pop(_heap, _func, _args) \ __min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args) #define min_heap_pop_push(_heap, _element, _func, _args) \ __min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \ _func, _args) #define min_heap_push(_heap, _element, _func, _args) \ __min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args) #define min_heap_del(_heap, _idx, _func, _args) \ __min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args) #endif /* _LINUX_MIN_HEAP_H */ |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Mellanox Technologies. All rights reserved. * Copyright (c) 2016 Jiri Pirko <jiri@mellanox.com> */ #include <linux/device.h> #include <net/genetlink.h> #include <net/sock.h> #include "devl_internal.h" struct devlink_info_req { struct sk_buff *msg; void (*version_cb)(const char *version_name, enum devlink_info_version_type version_type, void *version_cb_priv); void *version_cb_priv; }; struct devlink_reload_combination { enum devlink_reload_action action; enum devlink_reload_limit limit; }; static const struct devlink_reload_combination devlink_reload_invalid_combinations[] = { { /* can't reinitialize driver with no down time */ .action = DEVLINK_RELOAD_ACTION_DRIVER_REINIT, .limit = DEVLINK_RELOAD_LIMIT_NO_RESET, }, }; static bool devlink_reload_combination_is_invalid(enum devlink_reload_action action, enum devlink_reload_limit limit) { int i; for (i = 0; i < ARRAY_SIZE(devlink_reload_invalid_combinations); i++) if (devlink_reload_invalid_combinations[i].action == action && devlink_reload_invalid_combinations[i].limit == limit) return true; return false; } static bool devlink_reload_action_is_supported(struct devlink *devlink, enum devlink_reload_action action) { return test_bit(action, &devlink->ops->reload_actions); } static bool devlink_reload_limit_is_supported(struct devlink *devlink, enum devlink_reload_limit limit) { return test_bit(limit, &devlink->ops->reload_limits); } static int devlink_reload_stat_put(struct sk_buff *msg, enum devlink_reload_limit limit, u32 value) { struct nlattr *reload_stats_entry; reload_stats_entry = nla_nest_start(msg, DEVLINK_ATTR_RELOAD_STATS_ENTRY); if (!reload_stats_entry) return -EMSGSIZE; if (nla_put_u8(msg, DEVLINK_ATTR_RELOAD_STATS_LIMIT, limit) || nla_put_u32(msg, DEVLINK_ATTR_RELOAD_STATS_VALUE, value)) goto nla_put_failure; nla_nest_end(msg, reload_stats_entry); return 0; nla_put_failure: nla_nest_cancel(msg, reload_stats_entry); return -EMSGSIZE; } static int devlink_reload_stats_put(struct sk_buff *msg, struct devlink *devlink, bool is_remote) { struct nlattr *reload_stats_attr, *act_info, *act_stats; int i, j, stat_idx; u32 value; if (!is_remote) reload_stats_attr = nla_nest_start(msg, DEVLINK_ATTR_RELOAD_STATS); else reload_stats_attr = nla_nest_start(msg, DEVLINK_ATTR_REMOTE_RELOAD_STATS); if (!reload_stats_attr) return -EMSGSIZE; for (i = 0; i <= DEVLINK_RELOAD_ACTION_MAX; i++) { if ((!is_remote && !devlink_reload_action_is_supported(devlink, i)) || i == DEVLINK_RELOAD_ACTION_UNSPEC) continue; act_info = nla_nest_start(msg, DEVLINK_ATTR_RELOAD_ACTION_INFO); if (!act_info) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_RELOAD_ACTION, i)) goto action_info_nest_cancel; act_stats = nla_nest_start(msg, DEVLINK_ATTR_RELOAD_ACTION_STATS); if (!act_stats) goto action_info_nest_cancel; for (j = 0; j <= DEVLINK_RELOAD_LIMIT_MAX; j++) { /* Remote stats are shown even if not locally supported. * Stats of actions with unspecified limit are shown * though drivers don't need to register unspecified * limit. */ if ((!is_remote && j != DEVLINK_RELOAD_LIMIT_UNSPEC && !devlink_reload_limit_is_supported(devlink, j)) || devlink_reload_combination_is_invalid(i, j)) continue; stat_idx = j * __DEVLINK_RELOAD_ACTION_MAX + i; if (!is_remote) value = devlink->stats.reload_stats[stat_idx]; else value = devlink->stats.remote_reload_stats[stat_idx]; if (devlink_reload_stat_put(msg, j, value)) goto action_stats_nest_cancel; } nla_nest_end(msg, act_stats); nla_nest_end(msg, act_info); } nla_nest_end(msg, reload_stats_attr); return 0; action_stats_nest_cancel: nla_nest_cancel(msg, act_stats); action_info_nest_cancel: nla_nest_cancel(msg, act_info); nla_put_failure: nla_nest_cancel(msg, reload_stats_attr); return -EMSGSIZE; } static int devlink_nl_nested_fill(struct sk_buff *msg, struct devlink *devlink) { unsigned long rel_index; void *unused; int err; xa_for_each(&devlink->nested_rels, rel_index, unused) { err = devlink_rel_devlink_handle_put(msg, devlink, rel_index, DEVLINK_ATTR_NESTED_DEVLINK, NULL); if (err) return err; } return 0; } static int devlink_nl_fill(struct sk_buff *msg, struct devlink *devlink, enum devlink_command cmd, u32 portid, u32 seq, int flags) { struct nlattr *dev_stats; void *hdr; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_u8(msg, DEVLINK_ATTR_RELOAD_FAILED, devlink->reload_failed)) goto nla_put_failure; dev_stats = nla_nest_start(msg, DEVLINK_ATTR_DEV_STATS); if (!dev_stats) goto nla_put_failure; if (devlink_reload_stats_put(msg, devlink, false)) goto dev_stats_nest_cancel; if (devlink_reload_stats_put(msg, devlink, true)) goto dev_stats_nest_cancel; nla_nest_end(msg, dev_stats); if (devlink_nl_nested_fill(msg, devlink)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; dev_stats_nest_cancel: nla_nest_cancel(msg, dev_stats); nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static void devlink_notify(struct devlink *devlink, enum devlink_command cmd) { struct sk_buff *msg; int err; WARN_ON(cmd != DEVLINK_CMD_NEW && cmd != DEVLINK_CMD_DEL); WARN_ON(!devl_is_registered(devlink)); if (!devlink_nl_notify_need(devlink)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; err = devlink_nl_fill(msg, devlink, cmd, 0, 0, 0); if (err) { nlmsg_free(msg); return; } devlink_nl_notify_send(devlink, msg); } int devlink_nl_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct sk_buff *msg; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_fill(msg, devlink, DEVLINK_CMD_NEW, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { return devlink_nl_fill(msg, devlink, DEVLINK_CMD_NEW, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags); } int devlink_nl_get_dumpit(struct sk_buff *msg, struct netlink_callback *cb) { return devlink_nl_dumpit(msg, cb, devlink_nl_get_dump_one); } static void devlink_rel_notify_cb(struct devlink *devlink, u32 obj_index) { devlink_notify(devlink, DEVLINK_CMD_NEW); } static void devlink_rel_cleanup_cb(struct devlink *devlink, u32 obj_index, u32 rel_index) { xa_erase(&devlink->nested_rels, rel_index); } int devl_nested_devlink_set(struct devlink *devlink, struct devlink *nested_devlink) { u32 rel_index; int err; err = devlink_rel_nested_in_add(&rel_index, devlink->index, 0, devlink_rel_notify_cb, devlink_rel_cleanup_cb, nested_devlink); if (err) return err; return xa_insert(&devlink->nested_rels, rel_index, xa_mk_value(0), GFP_KERNEL); } EXPORT_SYMBOL_GPL(devl_nested_devlink_set); void devlink_notify_register(struct devlink *devlink) { devlink_notify(devlink, DEVLINK_CMD_NEW); devlink_linecards_notify_register(devlink); devlink_ports_notify_register(devlink); devlink_trap_policers_notify_register(devlink); devlink_trap_groups_notify_register(devlink); devlink_traps_notify_register(devlink); devlink_rates_notify_register(devlink); devlink_regions_notify_register(devlink); devlink_params_notify_register(devlink); } void devlink_notify_unregister(struct devlink *devlink) { devlink_params_notify_unregister(devlink); devlink_regions_notify_unregister(devlink); devlink_rates_notify_unregister(devlink); devlink_traps_notify_unregister(devlink); devlink_trap_groups_notify_unregister(devlink); devlink_trap_policers_notify_unregister(devlink); devlink_ports_notify_unregister(devlink); devlink_linecards_notify_unregister(devlink); devlink_notify(devlink, DEVLINK_CMD_DEL); } static void devlink_reload_failed_set(struct devlink *devlink, bool reload_failed) { if (devlink->reload_failed == reload_failed) return; devlink->reload_failed = reload_failed; devlink_notify(devlink, DEVLINK_CMD_NEW); } bool devlink_is_reload_failed(const struct devlink *devlink) { return devlink->reload_failed; } EXPORT_SYMBOL_GPL(devlink_is_reload_failed); static void __devlink_reload_stats_update(struct devlink *devlink, u32 *reload_stats, enum devlink_reload_limit limit, u32 actions_performed) { unsigned long actions = actions_performed; int stat_idx; int action; for_each_set_bit(action, &actions, __DEVLINK_RELOAD_ACTION_MAX) { stat_idx = limit * __DEVLINK_RELOAD_ACTION_MAX + action; reload_stats[stat_idx]++; } devlink_notify(devlink, DEVLINK_CMD_NEW); } static void devlink_reload_stats_update(struct devlink *devlink, enum devlink_reload_limit limit, u32 actions_performed) { __devlink_reload_stats_update(devlink, devlink->stats.reload_stats, limit, actions_performed); } /** * devlink_remote_reload_actions_performed - Update devlink on reload actions * performed which are not a direct result of devlink reload call. * * This should be called by a driver after performing reload actions in case it was not * a result of devlink reload call. For example fw_activate was performed as a result * of devlink reload triggered fw_activate on another host. * The motivation for this function is to keep data on reload actions performed on this * function whether it was done due to direct devlink reload call or not. * * @devlink: devlink * @limit: reload limit * @actions_performed: bitmask of actions performed */ void devlink_remote_reload_actions_performed(struct devlink *devlink, enum devlink_reload_limit limit, u32 actions_performed) { if (WARN_ON(!actions_performed || actions_performed & BIT(DEVLINK_RELOAD_ACTION_UNSPEC) || actions_performed >= BIT(__DEVLINK_RELOAD_ACTION_MAX) || limit > DEVLINK_RELOAD_LIMIT_MAX)) return; __devlink_reload_stats_update(devlink, devlink->stats.remote_reload_stats, limit, actions_performed); } EXPORT_SYMBOL_GPL(devlink_remote_reload_actions_performed); static struct net *devlink_netns_get(struct sk_buff *skb, struct genl_info *info) { struct nlattr *netns_pid_attr = info->attrs[DEVLINK_ATTR_NETNS_PID]; struct nlattr *netns_fd_attr = info->attrs[DEVLINK_ATTR_NETNS_FD]; struct nlattr *netns_id_attr = info->attrs[DEVLINK_ATTR_NETNS_ID]; struct net *net; if (!!netns_pid_attr + !!netns_fd_attr + !!netns_id_attr > 1) { NL_SET_ERR_MSG(info->extack, "multiple netns identifying attributes specified"); return ERR_PTR(-EINVAL); } if (netns_pid_attr) { net = get_net_ns_by_pid(nla_get_u32(netns_pid_attr)); } else if (netns_fd_attr) { net = get_net_ns_by_fd(nla_get_u32(netns_fd_attr)); } else if (netns_id_attr) { net = get_net_ns_by_id(sock_net(skb->sk), nla_get_u32(netns_id_attr)); if (!net) net = ERR_PTR(-EINVAL); } else { WARN_ON(1); net = ERR_PTR(-EINVAL); } if (IS_ERR(net)) { NL_SET_ERR_MSG(info->extack, "Unknown network namespace"); return ERR_PTR(-EINVAL); } if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { put_net(net); return ERR_PTR(-EPERM); } return net; } static void devlink_reload_netns_change(struct devlink *devlink, struct net *curr_net, struct net *dest_net) { /* Userspace needs to be notified about devlink objects * removed from original and entering new network namespace. * The rest of the devlink objects are re-created during * reload process so the notifications are generated separatelly. */ devlink_notify_unregister(devlink); write_pnet(&devlink->_net, dest_net); devlink_notify_register(devlink); devlink_rel_nested_in_notify(devlink); } static void devlink_reload_reinit_sanity_check(struct devlink *devlink) { WARN_ON(!list_empty(&devlink->trap_policer_list)); WARN_ON(!list_empty(&devlink->trap_group_list)); WARN_ON(!list_empty(&devlink->trap_list)); WARN_ON(!list_empty(&devlink->dpipe_table_list)); WARN_ON(!list_empty(&devlink->sb_list)); WARN_ON(!list_empty(&devlink->rate_list)); WARN_ON(!list_empty(&devlink->linecard_list)); WARN_ON(!xa_empty(&devlink->ports)); } int devlink_reload(struct devlink *devlink, struct net *dest_net, enum devlink_reload_action action, enum devlink_reload_limit limit, u32 *actions_performed, struct netlink_ext_ack *extack) { u32 remote_reload_stats[DEVLINK_RELOAD_STATS_ARRAY_SIZE]; struct net *curr_net; int err; /* Make sure the reload operations are invoked with the device lock * held to allow drivers to trigger functionality that expects it * (e.g., PCI reset) and to close possible races between these * operations and probe/remove. */ device_lock_assert(devlink->dev); memcpy(remote_reload_stats, devlink->stats.remote_reload_stats, sizeof(remote_reload_stats)); err = devlink->ops->reload_down(devlink, !!dest_net, action, limit, extack); if (err) return err; curr_net = devlink_net(devlink); if (dest_net && !net_eq(dest_net, curr_net)) devlink_reload_netns_change(devlink, curr_net, dest_net); if (action == DEVLINK_RELOAD_ACTION_DRIVER_REINIT) { devlink_params_driverinit_load_new(devlink); devlink_reload_reinit_sanity_check(devlink); } err = devlink->ops->reload_up(devlink, action, limit, actions_performed, extack); devlink_reload_failed_set(devlink, !!err); if (err) return err; WARN_ON(!(*actions_performed & BIT(action))); /* Catch driver on updating the remote action within devlink reload */ WARN_ON(memcmp(remote_reload_stats, devlink->stats.remote_reload_stats, sizeof(remote_reload_stats))); devlink_reload_stats_update(devlink, limit, *actions_performed); return 0; } static int devlink_nl_reload_actions_performed_snd(struct devlink *devlink, u32 actions_performed, enum devlink_command cmd, struct genl_info *info) { struct sk_buff *msg; void *hdr; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &devlink_nl_family, 0, cmd); if (!hdr) goto free_msg; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (nla_put_bitfield32(msg, DEVLINK_ATTR_RELOAD_ACTIONS_PERFORMED, actions_performed, actions_performed)) goto nla_put_failure; genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); nla_put_failure: genlmsg_cancel(msg, hdr); free_msg: nlmsg_free(msg); return -EMSGSIZE; } int devlink_nl_reload_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; enum devlink_reload_action action; enum devlink_reload_limit limit; struct net *dest_net = NULL; u32 actions_performed; int err; err = devlink_resources_validate(devlink, NULL, info); if (err) { NL_SET_ERR_MSG(info->extack, "resources size validation failed"); return err; } action = nla_get_u8_default(info->attrs[DEVLINK_ATTR_RELOAD_ACTION], DEVLINK_RELOAD_ACTION_DRIVER_REINIT); if (!devlink_reload_action_is_supported(devlink, action)) { NL_SET_ERR_MSG(info->extack, "Requested reload action is not supported by the driver"); return -EOPNOTSUPP; } limit = DEVLINK_RELOAD_LIMIT_UNSPEC; if (info->attrs[DEVLINK_ATTR_RELOAD_LIMITS]) { struct nla_bitfield32 limits; u32 limits_selected; limits = nla_get_bitfield32(info->attrs[DEVLINK_ATTR_RELOAD_LIMITS]); limits_selected = limits.value & limits.selector; if (!limits_selected) { NL_SET_ERR_MSG(info->extack, "Invalid limit selected"); return -EINVAL; } for (limit = 0 ; limit <= DEVLINK_RELOAD_LIMIT_MAX ; limit++) if (limits_selected & BIT(limit)) break; /* UAPI enables multiselection, but currently it is not used */ if (limits_selected != BIT(limit)) { NL_SET_ERR_MSG(info->extack, "Multiselection of limit is not supported"); return -EOPNOTSUPP; } if (!devlink_reload_limit_is_supported(devlink, limit)) { NL_SET_ERR_MSG(info->extack, "Requested limit is not supported by the driver"); return -EOPNOTSUPP; } if (devlink_reload_combination_is_invalid(action, limit)) { NL_SET_ERR_MSG(info->extack, "Requested limit is invalid for this action"); return -EINVAL; } } if (info->attrs[DEVLINK_ATTR_NETNS_PID] || info->attrs[DEVLINK_ATTR_NETNS_FD] || info->attrs[DEVLINK_ATTR_NETNS_ID]) { dest_net = devlink_netns_get(skb, info); if (IS_ERR(dest_net)) return PTR_ERR(dest_net); if (!net_eq(dest_net, devlink_net(devlink)) && action != DEVLINK_RELOAD_ACTION_DRIVER_REINIT) { NL_SET_ERR_MSG_MOD(info->extack, "Changing namespace is only supported for reinit action"); return -EOPNOTSUPP; } } err = devlink_reload(devlink, dest_net, action, limit, &actions_performed, info->extack); if (dest_net) put_net(dest_net); if (err) return err; /* For backward compatibility generate reply only if attributes used by user */ if (!info->attrs[DEVLINK_ATTR_RELOAD_ACTION] && !info->attrs[DEVLINK_ATTR_RELOAD_LIMITS]) return 0; return devlink_nl_reload_actions_performed_snd(devlink, actions_performed, DEVLINK_CMD_RELOAD, info); } bool devlink_reload_actions_valid(const struct devlink_ops *ops) { const struct devlink_reload_combination *comb; int i; if (!devlink_reload_supported(ops)) { if (WARN_ON(ops->reload_actions)) return false; return true; } if (WARN_ON(!ops->reload_actions || ops->reload_actions & BIT(DEVLINK_RELOAD_ACTION_UNSPEC) || ops->reload_actions >= BIT(__DEVLINK_RELOAD_ACTION_MAX))) return false; if (WARN_ON(ops->reload_limits & BIT(DEVLINK_RELOAD_LIMIT_UNSPEC) || ops->reload_limits >= BIT(__DEVLINK_RELOAD_LIMIT_MAX))) return false; for (i = 0; i < ARRAY_SIZE(devlink_reload_invalid_combinations); i++) { comb = &devlink_reload_invalid_combinations[i]; if (ops->reload_actions == BIT(comb->action) && ops->reload_limits == BIT(comb->limit)) return false; } return true; } static int devlink_nl_eswitch_fill(struct sk_buff *msg, struct devlink *devlink, enum devlink_command cmd, u32 portid, u32 seq, int flags) { const struct devlink_ops *ops = devlink->ops; enum devlink_eswitch_encap_mode encap_mode; u8 inline_mode; void *hdr; int err = 0; u16 mode; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; err = devlink_nl_put_handle(msg, devlink); if (err) goto nla_put_failure; if (ops->eswitch_mode_get) { err = ops->eswitch_mode_get(devlink, &mode); if (err) goto nla_put_failure; err = nla_put_u16(msg, DEVLINK_ATTR_ESWITCH_MODE, mode); if (err) goto nla_put_failure; } if (ops->eswitch_inline_mode_get) { err = ops->eswitch_inline_mode_get(devlink, &inline_mode); if (err) goto nla_put_failure; err = nla_put_u8(msg, DEVLINK_ATTR_ESWITCH_INLINE_MODE, inline_mode); if (err) goto nla_put_failure; } if (ops->eswitch_encap_mode_get) { err = ops->eswitch_encap_mode_get(devlink, &encap_mode); if (err) goto nla_put_failure; err = nla_put_u8(msg, DEVLINK_ATTR_ESWITCH_ENCAP_MODE, encap_mode); if (err) goto nla_put_failure; } genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return err; } int devlink_nl_eswitch_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct sk_buff *msg; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_eswitch_fill(msg, devlink, DEVLINK_CMD_ESWITCH_GET, info->snd_portid, info->snd_seq, 0); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } int devlink_nl_eswitch_set_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; const struct devlink_ops *ops = devlink->ops; enum devlink_eswitch_encap_mode encap_mode; u8 inline_mode; int err = 0; u16 mode; if (info->attrs[DEVLINK_ATTR_ESWITCH_MODE]) { if (!ops->eswitch_mode_set) return -EOPNOTSUPP; mode = nla_get_u16(info->attrs[DEVLINK_ATTR_ESWITCH_MODE]); err = devlink_rate_nodes_check(devlink, mode, info->extack); if (err) return err; err = ops->eswitch_mode_set(devlink, mode, info->extack); if (err) return err; } if (info->attrs[DEVLINK_ATTR_ESWITCH_INLINE_MODE]) { if (!ops->eswitch_inline_mode_set) return -EOPNOTSUPP; inline_mode = nla_get_u8(info->attrs[DEVLINK_ATTR_ESWITCH_INLINE_MODE]); err = ops->eswitch_inline_mode_set(devlink, inline_mode, info->extack); if (err) return err; } if (info->attrs[DEVLINK_ATTR_ESWITCH_ENCAP_MODE]) { if (!ops->eswitch_encap_mode_set) return -EOPNOTSUPP; encap_mode = nla_get_u8(info->attrs[DEVLINK_ATTR_ESWITCH_ENCAP_MODE]); err = ops->eswitch_encap_mode_set(devlink, encap_mode, info->extack); if (err) return err; } return 0; } int devlink_info_serial_number_put(struct devlink_info_req *req, const char *sn) { if (!req->msg) return 0; return nla_put_string(req->msg, DEVLINK_ATTR_INFO_SERIAL_NUMBER, sn); } EXPORT_SYMBOL_GPL(devlink_info_serial_number_put); int devlink_info_board_serial_number_put(struct devlink_info_req *req, const char *bsn) { if (!req->msg) return 0; return nla_put_string(req->msg, DEVLINK_ATTR_INFO_BOARD_SERIAL_NUMBER, bsn); } EXPORT_SYMBOL_GPL(devlink_info_board_serial_number_put); static int devlink_info_version_put(struct devlink_info_req *req, int attr, const char *version_name, const char *version_value, enum devlink_info_version_type version_type) { struct nlattr *nest; int err; if (req->version_cb) req->version_cb(version_name, version_type, req->version_cb_priv); if (!req->msg) return 0; nest = nla_nest_start_noflag(req->msg, attr); if (!nest) return -EMSGSIZE; err = nla_put_string(req->msg, DEVLINK_ATTR_INFO_VERSION_NAME, version_name); if (err) goto nla_put_failure; err = nla_put_string(req->msg, DEVLINK_ATTR_INFO_VERSION_VALUE, version_value); if (err) goto nla_put_failure; nla_nest_end(req->msg, nest); return 0; nla_put_failure: nla_nest_cancel(req->msg, nest); return err; } int devlink_info_version_fixed_put(struct devlink_info_req *req, const char *version_name, const char *version_value) { return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_FIXED, version_name, version_value, DEVLINK_INFO_VERSION_TYPE_NONE); } EXPORT_SYMBOL_GPL(devlink_info_version_fixed_put); int devlink_info_version_stored_put(struct devlink_info_req *req, const char *version_name, const char *version_value) { return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_STORED, version_name, version_value, DEVLINK_INFO_VERSION_TYPE_NONE); } EXPORT_SYMBOL_GPL(devlink_info_version_stored_put); int devlink_info_version_stored_put_ext(struct devlink_info_req *req, const char *version_name, const char *version_value, enum devlink_info_version_type version_type) { return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_STORED, version_name, version_value, version_type); } EXPORT_SYMBOL_GPL(devlink_info_version_stored_put_ext); int devlink_info_version_running_put(struct devlink_info_req *req, const char *version_name, const char *version_value) { return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_RUNNING, version_name, version_value, DEVLINK_INFO_VERSION_TYPE_NONE); } EXPORT_SYMBOL_GPL(devlink_info_version_running_put); int devlink_info_version_running_put_ext(struct devlink_info_req *req, const char *version_name, const char *version_value, enum devlink_info_version_type version_type) { return devlink_info_version_put(req, DEVLINK_ATTR_INFO_VERSION_RUNNING, version_name, version_value, version_type); } EXPORT_SYMBOL_GPL(devlink_info_version_running_put_ext); static int devlink_nl_driver_info_get(struct device_driver *drv, struct devlink_info_req *req) { if (!drv) return 0; if (drv->name[0]) return nla_put_string(req->msg, DEVLINK_ATTR_INFO_DRIVER_NAME, drv->name); return 0; } static int devlink_nl_info_fill(struct sk_buff *msg, struct devlink *devlink, enum devlink_command cmd, u32 portid, u32 seq, int flags, struct netlink_ext_ack *extack) { struct device *dev = devlink_to_dev(devlink); struct devlink_info_req req = {}; void *hdr; int err; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, cmd); if (!hdr) return -EMSGSIZE; err = -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto err_cancel_msg; req.msg = msg; if (devlink->ops->info_get) { err = devlink->ops->info_get(devlink, &req, extack); if (err) goto err_cancel_msg; } err = devlink_nl_driver_info_get(dev->driver, &req); if (err) goto err_cancel_msg; genlmsg_end(msg, hdr); return 0; err_cancel_msg: genlmsg_cancel(msg, hdr); return err; } int devlink_nl_info_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct sk_buff *msg; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_info_fill(msg, devlink, DEVLINK_CMD_INFO_GET, info->snd_portid, info->snd_seq, 0, info->extack); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_info_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { int err; err = devlink_nl_info_fill(msg, devlink, DEVLINK_CMD_INFO_GET, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags, cb->extack); if (err == -EOPNOTSUPP) err = 0; return err; } int devlink_nl_info_get_dumpit(struct sk_buff *msg, struct netlink_callback *cb) { return devlink_nl_dumpit(msg, cb, devlink_nl_info_get_dump_one); } static int devlink_nl_flash_update_fill(struct sk_buff *msg, struct devlink *devlink, enum devlink_command cmd, struct devlink_flash_notify *params) { void *hdr; hdr = genlmsg_put(msg, 0, 0, &devlink_nl_family, 0, cmd); if (!hdr) return -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto nla_put_failure; if (cmd != DEVLINK_CMD_FLASH_UPDATE_STATUS) goto out; if (params->status_msg && nla_put_string(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_MSG, params->status_msg)) goto nla_put_failure; if (params->component && nla_put_string(msg, DEVLINK_ATTR_FLASH_UPDATE_COMPONENT, params->component)) goto nla_put_failure; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_DONE, params->done)) goto nla_put_failure; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_TOTAL, params->total)) goto nla_put_failure; if (devlink_nl_put_u64(msg, DEVLINK_ATTR_FLASH_UPDATE_STATUS_TIMEOUT, params->timeout)) goto nla_put_failure; out: genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } static void __devlink_flash_update_notify(struct devlink *devlink, enum devlink_command cmd, struct devlink_flash_notify *params) { struct sk_buff *msg; int err; WARN_ON(cmd != DEVLINK_CMD_FLASH_UPDATE && cmd != DEVLINK_CMD_FLASH_UPDATE_END && cmd != DEVLINK_CMD_FLASH_UPDATE_STATUS); if (!devl_is_registered(devlink) || !devlink_nl_notify_need(devlink)) return; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; err = devlink_nl_flash_update_fill(msg, devlink, cmd, params); if (err) goto out_free_msg; devlink_nl_notify_send(devlink, msg); return; out_free_msg: nlmsg_free(msg); } static void devlink_flash_update_begin_notify(struct devlink *devlink) { struct devlink_flash_notify params = {}; __devlink_flash_update_notify(devlink, DEVLINK_CMD_FLASH_UPDATE, ¶ms); } static void devlink_flash_update_end_notify(struct devlink *devlink) { struct devlink_flash_notify params = {}; __devlink_flash_update_notify(devlink, DEVLINK_CMD_FLASH_UPDATE_END, ¶ms); } void devlink_flash_update_status_notify(struct devlink *devlink, const char *status_msg, const char *component, unsigned long done, unsigned long total) { struct devlink_flash_notify params = { .status_msg = status_msg, .component = component, .done = done, .total = total, }; __devlink_flash_update_notify(devlink, DEVLINK_CMD_FLASH_UPDATE_STATUS, ¶ms); } EXPORT_SYMBOL_GPL(devlink_flash_update_status_notify); void devlink_flash_update_timeout_notify(struct devlink *devlink, const char *status_msg, const char *component, unsigned long timeout) { struct devlink_flash_notify params = { .status_msg = status_msg, .component = component, .timeout = timeout, }; __devlink_flash_update_notify(devlink, DEVLINK_CMD_FLASH_UPDATE_STATUS, ¶ms); } EXPORT_SYMBOL_GPL(devlink_flash_update_timeout_notify); struct devlink_flash_component_lookup_ctx { const char *lookup_name; bool lookup_name_found; }; static void devlink_flash_component_lookup_cb(const char *version_name, enum devlink_info_version_type version_type, void *version_cb_priv) { struct devlink_flash_component_lookup_ctx *lookup_ctx = version_cb_priv; if (version_type != DEVLINK_INFO_VERSION_TYPE_COMPONENT || lookup_ctx->lookup_name_found) return; lookup_ctx->lookup_name_found = !strcmp(lookup_ctx->lookup_name, version_name); } static int devlink_flash_component_get(struct devlink *devlink, struct nlattr *nla_component, const char **p_component, struct netlink_ext_ack *extack) { struct devlink_flash_component_lookup_ctx lookup_ctx = {}; struct devlink_info_req req = {}; const char *component; int ret; if (!nla_component) return 0; component = nla_data(nla_component); if (!devlink->ops->info_get) { NL_SET_ERR_MSG_ATTR(extack, nla_component, "component update is not supported by this device"); return -EOPNOTSUPP; } lookup_ctx.lookup_name = component; req.version_cb = devlink_flash_component_lookup_cb; req.version_cb_priv = &lookup_ctx; ret = devlink->ops->info_get(devlink, &req, NULL); if (ret) return ret; if (!lookup_ctx.lookup_name_found) { NL_SET_ERR_MSG_ATTR(extack, nla_component, "selected component is not supported by this device"); return -EINVAL; } *p_component = component; return 0; } int devlink_nl_flash_update_doit(struct sk_buff *skb, struct genl_info *info) { struct nlattr *nla_overwrite_mask, *nla_file_name; struct devlink_flash_update_params params = {}; struct devlink *devlink = info->user_ptr[0]; const char *file_name; u32 supported_params; int ret; if (!devlink->ops->flash_update) return -EOPNOTSUPP; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_FLASH_UPDATE_FILE_NAME)) return -EINVAL; ret = devlink_flash_component_get(devlink, info->attrs[DEVLINK_ATTR_FLASH_UPDATE_COMPONENT], ¶ms.component, info->extack); if (ret) return ret; supported_params = devlink->ops->supported_flash_update_params; nla_overwrite_mask = info->attrs[DEVLINK_ATTR_FLASH_UPDATE_OVERWRITE_MASK]; if (nla_overwrite_mask) { struct nla_bitfield32 sections; if (!(supported_params & DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK)) { NL_SET_ERR_MSG_ATTR(info->extack, nla_overwrite_mask, "overwrite settings are not supported by this device"); return -EOPNOTSUPP; } sections = nla_get_bitfield32(nla_overwrite_mask); params.overwrite_mask = sections.value & sections.selector; } nla_file_name = info->attrs[DEVLINK_ATTR_FLASH_UPDATE_FILE_NAME]; file_name = nla_data(nla_file_name); ret = request_firmware(¶ms.fw, file_name, devlink->dev); if (ret) { NL_SET_ERR_MSG_ATTR(info->extack, nla_file_name, "failed to locate the requested firmware file"); return ret; } devlink_flash_update_begin_notify(devlink); ret = devlink->ops->flash_update(devlink, ¶ms, info->extack); devlink_flash_update_end_notify(devlink); release_firmware(params.fw); return ret; } static void __devlink_compat_running_version(struct devlink *devlink, char *buf, size_t len) { struct devlink_info_req req = {}; const struct nlattr *nlattr; struct sk_buff *msg; int rem, err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return; req.msg = msg; err = devlink->ops->info_get(devlink, &req, NULL); if (err) goto free_msg; nla_for_each_attr_type(nlattr, DEVLINK_ATTR_INFO_VERSION_RUNNING, (void *)msg->data, msg->len, rem) { const struct nlattr *kv; int rem_kv; nla_for_each_nested_type(kv, DEVLINK_ATTR_INFO_VERSION_VALUE, nlattr, rem_kv) { strlcat(buf, nla_data(kv), len); strlcat(buf, " ", len); } } free_msg: nlmsg_consume(msg); } void devlink_compat_running_version(struct devlink *devlink, char *buf, size_t len) { if (!devlink->ops->info_get) return; devl_lock(devlink); if (devl_is_registered(devlink)) __devlink_compat_running_version(devlink, buf, len); devl_unlock(devlink); } int devlink_compat_flash_update(struct devlink *devlink, const char *file_name) { struct devlink_flash_update_params params = {}; int ret; devl_lock(devlink); if (!devl_is_registered(devlink)) { ret = -ENODEV; goto out_unlock; } if (!devlink->ops->flash_update) { ret = -EOPNOTSUPP; goto out_unlock; } ret = request_firmware(¶ms.fw, file_name, devlink->dev); if (ret) goto out_unlock; devlink_flash_update_begin_notify(devlink); ret = devlink->ops->flash_update(devlink, ¶ms, NULL); devlink_flash_update_end_notify(devlink); release_firmware(params.fw); out_unlock: devl_unlock(devlink); return ret; } static int devlink_nl_selftests_fill(struct sk_buff *msg, struct devlink *devlink, u32 portid, u32 seq, int flags, struct netlink_ext_ack *extack) { struct nlattr *selftests; void *hdr; int err; int i; hdr = genlmsg_put(msg, portid, seq, &devlink_nl_family, flags, DEVLINK_CMD_SELFTESTS_GET); if (!hdr) return -EMSGSIZE; err = -EMSGSIZE; if (devlink_nl_put_handle(msg, devlink)) goto err_cancel_msg; selftests = nla_nest_start(msg, DEVLINK_ATTR_SELFTESTS); if (!selftests) goto err_cancel_msg; for (i = DEVLINK_ATTR_SELFTEST_ID_UNSPEC + 1; i <= DEVLINK_ATTR_SELFTEST_ID_MAX; i++) { if (devlink->ops->selftest_check(devlink, i, extack)) { err = nla_put_flag(msg, i); if (err) goto err_cancel_msg; } } nla_nest_end(msg, selftests); genlmsg_end(msg, hdr); return 0; err_cancel_msg: genlmsg_cancel(msg, hdr); return err; } int devlink_nl_selftests_get_doit(struct sk_buff *skb, struct genl_info *info) { struct devlink *devlink = info->user_ptr[0]; struct sk_buff *msg; int err; if (!devlink->ops->selftest_check) return -EOPNOTSUPP; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = devlink_nl_selftests_fill(msg, devlink, info->snd_portid, info->snd_seq, 0, info->extack); if (err) { nlmsg_free(msg); return err; } return genlmsg_reply(msg, info); } static int devlink_nl_selftests_get_dump_one(struct sk_buff *msg, struct devlink *devlink, struct netlink_callback *cb, int flags) { if (!devlink->ops->selftest_check) return 0; return devlink_nl_selftests_fill(msg, devlink, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, flags, cb->extack); } int devlink_nl_selftests_get_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { return devlink_nl_dumpit(skb, cb, devlink_nl_selftests_get_dump_one); } static int devlink_selftest_result_put(struct sk_buff *skb, unsigned int id, enum devlink_selftest_status test_status) { struct nlattr *result_attr; result_attr = nla_nest_start(skb, DEVLINK_ATTR_SELFTEST_RESULT); if (!result_attr) return -EMSGSIZE; if (nla_put_u32(skb, DEVLINK_ATTR_SELFTEST_RESULT_ID, id) || nla_put_u8(skb, DEVLINK_ATTR_SELFTEST_RESULT_STATUS, test_status)) goto nla_put_failure; nla_nest_end(skb, result_attr); return 0; nla_put_failure: nla_nest_cancel(skb, result_attr); return -EMSGSIZE; } static const struct nla_policy devlink_selftest_nl_policy[DEVLINK_ATTR_SELFTEST_ID_MAX + 1] = { [DEVLINK_ATTR_SELFTEST_ID_FLASH] = { .type = NLA_FLAG }, }; int devlink_nl_selftests_run_doit(struct sk_buff *skb, struct genl_info *info) { struct nlattr *tb[DEVLINK_ATTR_SELFTEST_ID_MAX + 1]; struct devlink *devlink = info->user_ptr[0]; struct nlattr *attrs, *selftests; struct sk_buff *msg; void *hdr; int err; int i; if (!devlink->ops->selftest_run || !devlink->ops->selftest_check) return -EOPNOTSUPP; if (GENL_REQ_ATTR_CHECK(info, DEVLINK_ATTR_SELFTESTS)) return -EINVAL; attrs = info->attrs[DEVLINK_ATTR_SELFTESTS]; err = nla_parse_nested(tb, DEVLINK_ATTR_SELFTEST_ID_MAX, attrs, devlink_selftest_nl_policy, info->extack); if (err < 0) return err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; err = -EMSGSIZE; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &devlink_nl_family, 0, DEVLINK_CMD_SELFTESTS_RUN); if (!hdr) goto free_msg; if (devlink_nl_put_handle(msg, devlink)) goto genlmsg_cancel; selftests = nla_nest_start(msg, DEVLINK_ATTR_SELFTESTS); if (!selftests) goto genlmsg_cancel; for (i = DEVLINK_ATTR_SELFTEST_ID_UNSPEC + 1; i <= DEVLINK_ATTR_SELFTEST_ID_MAX; i++) { enum devlink_selftest_status test_status; if (nla_get_flag(tb[i])) { if (!devlink->ops->selftest_check(devlink, i, info->extack)) { if (devlink_selftest_result_put(msg, i, DEVLINK_SELFTEST_STATUS_SKIP)) goto selftests_nest_cancel; continue; } test_status = devlink->ops->selftest_run(devlink, i, info->extack); if (devlink_selftest_result_put(msg, i, test_status)) goto selftests_nest_cancel; } } nla_nest_end(msg, selftests); genlmsg_end(msg, hdr); return genlmsg_reply(msg, info); selftests_nest_cancel: nla_nest_cancel(msg, selftests); genlmsg_cancel: genlmsg_cancel(msg, hdr); free_msg: nlmsg_free(msg); return err; } |
| 47 47 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2006 Patrick McHardy <kaber@trash.net> * Copyright © CC Computer Consultants GmbH, 2007 - 2008 * * This is a replacement of the old ipt_recent module, which carried the * following copyright notice: * * Author: Stephen Frost <sfrost@snowman.net> * Copyright 2002-2003, Stephen Frost, 2.5.x port by laforge@netfilter.org */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/list.h> #include <linux/random.h> #include <linux/jhash.h> #include <linux/bitops.h> #include <linux/skbuff.h> #include <linux/inet.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_recent.h> MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); MODULE_DESCRIPTION("Xtables: \"recently-seen\" host matching"); MODULE_LICENSE("GPL"); MODULE_ALIAS("ipt_recent"); MODULE_ALIAS("ip6t_recent"); static unsigned int ip_list_tot __read_mostly = 100; static unsigned int ip_list_hash_size __read_mostly; static unsigned int ip_list_perms __read_mostly = 0644; static unsigned int ip_list_uid __read_mostly; static unsigned int ip_list_gid __read_mostly; module_param(ip_list_tot, uint, 0400); module_param(ip_list_hash_size, uint, 0400); module_param(ip_list_perms, uint, 0400); module_param(ip_list_uid, uint, 0644); module_param(ip_list_gid, uint, 0644); MODULE_PARM_DESC(ip_list_tot, "number of IPs to remember per list"); MODULE_PARM_DESC(ip_list_hash_size, "size of hash table used to look up IPs"); MODULE_PARM_DESC(ip_list_perms, "permissions on /proc/net/xt_recent/* files"); MODULE_PARM_DESC(ip_list_uid, "default owner of /proc/net/xt_recent/* files"); MODULE_PARM_DESC(ip_list_gid, "default owning group of /proc/net/xt_recent/* files"); /* retained for backwards compatibility */ static unsigned int ip_pkt_list_tot __read_mostly; module_param(ip_pkt_list_tot, uint, 0400); MODULE_PARM_DESC(ip_pkt_list_tot, "number of packets per IP address to remember (max. 65535)"); #define XT_RECENT_MAX_NSTAMPS 65536 struct recent_entry { struct list_head list; struct list_head lru_list; union nf_inet_addr addr; u_int16_t family; u_int8_t ttl; u_int16_t index; u_int16_t nstamps; unsigned long stamps[]; }; struct recent_table { struct list_head list; char name[XT_RECENT_NAME_LEN]; union nf_inet_addr mask; unsigned int refcnt; unsigned int entries; u_int16_t nstamps_max_mask; struct list_head lru_list; struct list_head iphash[]; }; struct recent_net { struct list_head tables; #ifdef CONFIG_PROC_FS struct proc_dir_entry *xt_recent; #endif }; static unsigned int recent_net_id __read_mostly; static inline struct recent_net *recent_pernet(struct net *net) { return net_generic(net, recent_net_id); } static DEFINE_SPINLOCK(recent_lock); static DEFINE_MUTEX(recent_mutex); #ifdef CONFIG_PROC_FS static const struct proc_ops recent_mt_proc_ops; #endif static u_int32_t hash_rnd __read_mostly; static inline unsigned int recent_entry_hash4(const union nf_inet_addr *addr) { return jhash_1word((__force u32)addr->ip, hash_rnd) & (ip_list_hash_size - 1); } static inline unsigned int recent_entry_hash6(const union nf_inet_addr *addr) { return jhash2((u32 *)addr->ip6, ARRAY_SIZE(addr->ip6), hash_rnd) & (ip_list_hash_size - 1); } static struct recent_entry * recent_entry_lookup(const struct recent_table *table, const union nf_inet_addr *addrp, u_int16_t family, u_int8_t ttl) { struct recent_entry *e; unsigned int h; if (family == NFPROTO_IPV4) h = recent_entry_hash4(addrp); else h = recent_entry_hash6(addrp); list_for_each_entry(e, &table->iphash[h], list) if (e->family == family && memcmp(&e->addr, addrp, sizeof(e->addr)) == 0 && (ttl == e->ttl || ttl == 0 || e->ttl == 0)) return e; return NULL; } static void recent_entry_remove(struct recent_table *t, struct recent_entry *e) { list_del(&e->list); list_del(&e->lru_list); kfree(e); t->entries--; } /* * Drop entries with timestamps older then 'time'. */ static void recent_entry_reap(struct recent_table *t, unsigned long time, struct recent_entry *working, bool update) { struct recent_entry *e; /* * The head of the LRU list is always the oldest entry. */ e = list_entry(t->lru_list.next, struct recent_entry, lru_list); /* * Do not reap the entry which are going to be updated. */ if (e == working && update) return; /* * The last time stamp is the most recent. */ if (time_after(time, e->stamps[e->index-1])) recent_entry_remove(t, e); } static struct recent_entry * recent_entry_init(struct recent_table *t, const union nf_inet_addr *addr, u_int16_t family, u_int8_t ttl) { struct recent_entry *e; unsigned int nstamps_max = t->nstamps_max_mask; if (t->entries >= ip_list_tot) { e = list_entry(t->lru_list.next, struct recent_entry, lru_list); recent_entry_remove(t, e); } nstamps_max += 1; e = kmalloc(struct_size(e, stamps, nstamps_max), GFP_ATOMIC); if (e == NULL) return NULL; memcpy(&e->addr, addr, sizeof(e->addr)); e->ttl = ttl; e->stamps[0] = jiffies; e->nstamps = 1; e->index = 1; e->family = family; if (family == NFPROTO_IPV4) list_add_tail(&e->list, &t->iphash[recent_entry_hash4(addr)]); else list_add_tail(&e->list, &t->iphash[recent_entry_hash6(addr)]); list_add_tail(&e->lru_list, &t->lru_list); t->entries++; return e; } static void recent_entry_update(struct recent_table *t, struct recent_entry *e) { e->index &= t->nstamps_max_mask; e->stamps[e->index++] = jiffies; if (e->index > e->nstamps) e->nstamps = e->index; list_move_tail(&e->lru_list, &t->lru_list); } static struct recent_table *recent_table_lookup(struct recent_net *recent_net, const char *name) { struct recent_table *t; list_for_each_entry(t, &recent_net->tables, list) if (!strcmp(t->name, name)) return t; return NULL; } static void recent_table_flush(struct recent_table *t) { struct recent_entry *e, *next; unsigned int i; for (i = 0; i < ip_list_hash_size; i++) list_for_each_entry_safe(e, next, &t->iphash[i], list) recent_entry_remove(t, e); } static bool recent_mt(const struct sk_buff *skb, struct xt_action_param *par) { struct net *net = xt_net(par); struct recent_net *recent_net = recent_pernet(net); const struct xt_recent_mtinfo_v1 *info = par->matchinfo; struct recent_table *t; struct recent_entry *e; union nf_inet_addr addr = {}, addr_mask; u_int8_t ttl; bool ret = info->invert; if (xt_family(par) == NFPROTO_IPV4) { const struct iphdr *iph = ip_hdr(skb); if (info->side == XT_RECENT_DEST) addr.ip = iph->daddr; else addr.ip = iph->saddr; ttl = iph->ttl; } else { const struct ipv6hdr *iph = ipv6_hdr(skb); if (info->side == XT_RECENT_DEST) memcpy(&addr.in6, &iph->daddr, sizeof(addr.in6)); else memcpy(&addr.in6, &iph->saddr, sizeof(addr.in6)); ttl = iph->hop_limit; } /* use TTL as seen before forwarding */ if (xt_out(par) != NULL && (!skb->sk || !net_eq(net, sock_net(skb->sk)))) ttl++; spin_lock_bh(&recent_lock); t = recent_table_lookup(recent_net, info->name); nf_inet_addr_mask(&addr, &addr_mask, &t->mask); e = recent_entry_lookup(t, &addr_mask, xt_family(par), (info->check_set & XT_RECENT_TTL) ? ttl : 0); if (e == NULL) { if (!(info->check_set & XT_RECENT_SET)) goto out; e = recent_entry_init(t, &addr_mask, xt_family(par), ttl); if (e == NULL) par->hotdrop = true; ret = !ret; goto out; } if (info->check_set & XT_RECENT_SET) ret = !ret; else if (info->check_set & XT_RECENT_REMOVE) { recent_entry_remove(t, e); ret = !ret; } else if (info->check_set & (XT_RECENT_CHECK | XT_RECENT_UPDATE)) { unsigned long time = jiffies - info->seconds * HZ; unsigned int i, hits = 0; for (i = 0; i < e->nstamps; i++) { if (info->seconds && time_after(time, e->stamps[i])) continue; if (!info->hit_count || ++hits >= info->hit_count) { ret = !ret; break; } } /* info->seconds must be non-zero */ if (info->check_set & XT_RECENT_REAP) recent_entry_reap(t, time, e, info->check_set & XT_RECENT_UPDATE && ret); } if (info->check_set & XT_RECENT_SET || (info->check_set & XT_RECENT_UPDATE && ret)) { recent_entry_update(t, e); e->ttl = ttl; } out: spin_unlock_bh(&recent_lock); return ret; } static void recent_table_free(void *addr) { kvfree(addr); } static int recent_mt_check(const struct xt_mtchk_param *par, const struct xt_recent_mtinfo_v1 *info) { struct recent_net *recent_net = recent_pernet(par->net); struct recent_table *t; #ifdef CONFIG_PROC_FS struct proc_dir_entry *pde; kuid_t uid; kgid_t gid; #endif unsigned int nstamp_mask; unsigned int i; int ret = -EINVAL; net_get_random_once(&hash_rnd, sizeof(hash_rnd)); if (info->check_set & ~XT_RECENT_VALID_FLAGS) { pr_info_ratelimited("Unsupported userspace flags (%08x)\n", info->check_set); return -EINVAL; } if (hweight8(info->check_set & (XT_RECENT_SET | XT_RECENT_REMOVE | XT_RECENT_CHECK | XT_RECENT_UPDATE)) != 1) return -EINVAL; if ((info->check_set & (XT_RECENT_SET | XT_RECENT_REMOVE)) && (info->seconds || info->hit_count || (info->check_set & XT_RECENT_MODIFIERS))) return -EINVAL; if ((info->check_set & XT_RECENT_REAP) && !info->seconds) return -EINVAL; if (info->hit_count >= XT_RECENT_MAX_NSTAMPS) { pr_info_ratelimited("hitcount (%u) is larger than allowed maximum (%u)\n", info->hit_count, XT_RECENT_MAX_NSTAMPS - 1); return -EINVAL; } ret = xt_check_proc_name(info->name, sizeof(info->name)); if (ret) return ret; if (ip_pkt_list_tot && info->hit_count < ip_pkt_list_tot) nstamp_mask = roundup_pow_of_two(ip_pkt_list_tot) - 1; else if (info->hit_count) nstamp_mask = roundup_pow_of_two(info->hit_count) - 1; else nstamp_mask = 32 - 1; mutex_lock(&recent_mutex); t = recent_table_lookup(recent_net, info->name); if (t != NULL) { if (nstamp_mask > t->nstamps_max_mask) { spin_lock_bh(&recent_lock); recent_table_flush(t); t->nstamps_max_mask = nstamp_mask; spin_unlock_bh(&recent_lock); } t->refcnt++; ret = 0; goto out; } t = kvzalloc(struct_size(t, iphash, ip_list_hash_size), GFP_KERNEL); if (t == NULL) { ret = -ENOMEM; goto out; } t->refcnt = 1; t->nstamps_max_mask = nstamp_mask; memcpy(&t->mask, &info->mask, sizeof(t->mask)); strcpy(t->name, info->name); INIT_LIST_HEAD(&t->lru_list); for (i = 0; i < ip_list_hash_size; i++) INIT_LIST_HEAD(&t->iphash[i]); #ifdef CONFIG_PROC_FS uid = make_kuid(&init_user_ns, ip_list_uid); gid = make_kgid(&init_user_ns, ip_list_gid); if (!uid_valid(uid) || !gid_valid(gid)) { recent_table_free(t); ret = -EINVAL; goto out; } pde = proc_create_data(t->name, ip_list_perms, recent_net->xt_recent, &recent_mt_proc_ops, t); if (pde == NULL) { recent_table_free(t); ret = -ENOMEM; goto out; } proc_set_user(pde, uid, gid); #endif spin_lock_bh(&recent_lock); list_add_tail(&t->list, &recent_net->tables); spin_unlock_bh(&recent_lock); ret = 0; out: mutex_unlock(&recent_mutex); return ret; } static int recent_mt_check_v0(const struct xt_mtchk_param *par) { const struct xt_recent_mtinfo_v0 *info_v0 = par->matchinfo; struct xt_recent_mtinfo_v1 info_v1; /* Copy revision 0 structure to revision 1 */ memcpy(&info_v1, info_v0, sizeof(struct xt_recent_mtinfo)); /* Set default mask to ensure backward compatible behaviour */ memset(info_v1.mask.all, 0xFF, sizeof(info_v1.mask.all)); return recent_mt_check(par, &info_v1); } static int recent_mt_check_v1(const struct xt_mtchk_param *par) { return recent_mt_check(par, par->matchinfo); } static void recent_mt_destroy(const struct xt_mtdtor_param *par) { struct recent_net *recent_net = recent_pernet(par->net); const struct xt_recent_mtinfo_v1 *info = par->matchinfo; struct recent_table *t; mutex_lock(&recent_mutex); t = recent_table_lookup(recent_net, info->name); if (--t->refcnt == 0) { spin_lock_bh(&recent_lock); list_del(&t->list); spin_unlock_bh(&recent_lock); #ifdef CONFIG_PROC_FS if (recent_net->xt_recent != NULL) remove_proc_entry(t->name, recent_net->xt_recent); #endif recent_table_flush(t); recent_table_free(t); } mutex_unlock(&recent_mutex); } #ifdef CONFIG_PROC_FS struct recent_iter_state { const struct recent_table *table; unsigned int bucket; }; static void *recent_seq_start(struct seq_file *seq, loff_t *pos) __acquires(recent_lock) { struct recent_iter_state *st = seq->private; const struct recent_table *t = st->table; struct recent_entry *e; loff_t p = *pos; spin_lock_bh(&recent_lock); for (st->bucket = 0; st->bucket < ip_list_hash_size; st->bucket++) list_for_each_entry(e, &t->iphash[st->bucket], list) if (p-- == 0) return e; return NULL; } static void *recent_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct recent_iter_state *st = seq->private; const struct recent_table *t = st->table; const struct recent_entry *e = v; const struct list_head *head = e->list.next; (*pos)++; while (head == &t->iphash[st->bucket]) { if (++st->bucket >= ip_list_hash_size) return NULL; head = t->iphash[st->bucket].next; } return list_entry(head, struct recent_entry, list); } static void recent_seq_stop(struct seq_file *s, void *v) __releases(recent_lock) { spin_unlock_bh(&recent_lock); } static int recent_seq_show(struct seq_file *seq, void *v) { const struct recent_entry *e = v; struct recent_iter_state *st = seq->private; const struct recent_table *t = st->table; unsigned int i; i = (e->index - 1) & t->nstamps_max_mask; if (e->family == NFPROTO_IPV4) seq_printf(seq, "src=%pI4 ttl: %u last_seen: %lu oldest_pkt: %u", &e->addr.ip, e->ttl, e->stamps[i], e->index); else seq_printf(seq, "src=%pI6 ttl: %u last_seen: %lu oldest_pkt: %u", &e->addr.in6, e->ttl, e->stamps[i], e->index); for (i = 0; i < e->nstamps; i++) seq_printf(seq, "%s %lu", i ? "," : "", e->stamps[i]); seq_putc(seq, '\n'); return 0; } static const struct seq_operations recent_seq_ops = { .start = recent_seq_start, .next = recent_seq_next, .stop = recent_seq_stop, .show = recent_seq_show, }; static int recent_seq_open(struct inode *inode, struct file *file) { struct recent_iter_state *st; st = __seq_open_private(file, &recent_seq_ops, sizeof(*st)); if (st == NULL) return -ENOMEM; st->table = pde_data(inode); return 0; } static ssize_t recent_mt_proc_write(struct file *file, const char __user *input, size_t size, loff_t *loff) { struct recent_table *t = pde_data(file_inode(file)); struct recent_entry *e; char buf[sizeof("+b335:1d35:1e55:dead:c0de:1715:255.255.255.255")]; const char *c = buf; union nf_inet_addr addr = {}; u_int16_t family; bool add, succ; if (size == 0) return 0; if (size > sizeof(buf)) size = sizeof(buf); if (copy_from_user(buf, input, size) != 0) return -EFAULT; /* Strict protocol! */ if (*loff != 0) return -ESPIPE; switch (*c) { case '/': /* flush table */ spin_lock_bh(&recent_lock); recent_table_flush(t); spin_unlock_bh(&recent_lock); return size; case '-': /* remove address */ add = false; break; case '+': /* add address */ add = true; break; default: pr_info_ratelimited("Need \"+ip\", \"-ip\" or \"/\"\n"); return -EINVAL; } ++c; --size; if (strnchr(c, size, ':') != NULL) { family = NFPROTO_IPV6; succ = in6_pton(c, size, (void *)&addr, '\n', NULL); } else { family = NFPROTO_IPV4; succ = in4_pton(c, size, (void *)&addr, '\n', NULL); } if (!succ) return -EINVAL; spin_lock_bh(&recent_lock); e = recent_entry_lookup(t, &addr, family, 0); if (e == NULL) { if (add) recent_entry_init(t, &addr, family, 0); } else { if (add) recent_entry_update(t, e); else recent_entry_remove(t, e); } spin_unlock_bh(&recent_lock); /* Note we removed one above */ *loff += size + 1; return size + 1; } static const struct proc_ops recent_mt_proc_ops = { .proc_open = recent_seq_open, .proc_read = seq_read, .proc_write = recent_mt_proc_write, .proc_release = seq_release_private, .proc_lseek = seq_lseek, }; static int __net_init recent_proc_net_init(struct net *net) { struct recent_net *recent_net = recent_pernet(net); recent_net->xt_recent = proc_mkdir("xt_recent", net->proc_net); if (!recent_net->xt_recent) return -ENOMEM; return 0; } static void __net_exit recent_proc_net_exit(struct net *net) { struct recent_net *recent_net = recent_pernet(net); struct recent_table *t; /* recent_net_exit() is called before recent_mt_destroy(). Make sure * that the parent xt_recent proc entry is empty before trying to * remove it. */ spin_lock_bh(&recent_lock); list_for_each_entry(t, &recent_net->tables, list) remove_proc_entry(t->name, recent_net->xt_recent); recent_net->xt_recent = NULL; spin_unlock_bh(&recent_lock); remove_proc_entry("xt_recent", net->proc_net); } #else static inline int recent_proc_net_init(struct net *net) { return 0; } static inline void recent_proc_net_exit(struct net *net) { } #endif /* CONFIG_PROC_FS */ static int __net_init recent_net_init(struct net *net) { struct recent_net *recent_net = recent_pernet(net); INIT_LIST_HEAD(&recent_net->tables); return recent_proc_net_init(net); } static void __net_exit recent_net_exit(struct net *net) { recent_proc_net_exit(net); } static struct pernet_operations recent_net_ops = { .init = recent_net_init, .exit = recent_net_exit, .id = &recent_net_id, .size = sizeof(struct recent_net), }; static struct xt_match recent_mt_reg[] __read_mostly = { { .name = "recent", .revision = 0, .family = NFPROTO_IPV4, .match = recent_mt, .matchsize = sizeof(struct xt_recent_mtinfo), .checkentry = recent_mt_check_v0, .destroy = recent_mt_destroy, .me = THIS_MODULE, }, { .name = "recent", .revision = 0, .family = NFPROTO_IPV6, .match = recent_mt, .matchsize = sizeof(struct xt_recent_mtinfo), .checkentry = recent_mt_check_v0, .destroy = recent_mt_destroy, .me = THIS_MODULE, }, { .name = "recent", .revision = 1, .family = NFPROTO_IPV4, .match = recent_mt, .matchsize = sizeof(struct xt_recent_mtinfo_v1), .checkentry = recent_mt_check_v1, .destroy = recent_mt_destroy, .me = THIS_MODULE, }, { .name = "recent", .revision = 1, .family = NFPROTO_IPV6, .match = recent_mt, .matchsize = sizeof(struct xt_recent_mtinfo_v1), .checkentry = recent_mt_check_v1, .destroy = recent_mt_destroy, .me = THIS_MODULE, } }; static int __init recent_mt_init(void) { int err; BUILD_BUG_ON_NOT_POWER_OF_2(XT_RECENT_MAX_NSTAMPS); if (!ip_list_tot || ip_pkt_list_tot >= XT_RECENT_MAX_NSTAMPS) return -EINVAL; ip_list_hash_size = 1 << fls(ip_list_tot); err = register_pernet_subsys(&recent_net_ops); if (err) return err; err = xt_register_matches(recent_mt_reg, ARRAY_SIZE(recent_mt_reg)); if (err) unregister_pernet_subsys(&recent_net_ops); return err; } static void __exit recent_mt_exit(void) { xt_unregister_matches(recent_mt_reg, ARRAY_SIZE(recent_mt_reg)); unregister_pernet_subsys(&recent_net_ops); } module_init(recent_mt_init); module_exit(recent_mt_exit); |
| 233 233 424 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/export.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/fs.h> #include <linux/path.h> #include <linux/slab.h> #include <linux/fs_struct.h> #include "internal.h" /* * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. * It can block. */ void set_fs_root(struct fs_struct *fs, const struct path *path) { struct path old_root; path_get(path); spin_lock(&fs->lock); write_seqcount_begin(&fs->seq); old_root = fs->root; fs->root = *path; write_seqcount_end(&fs->seq); spin_unlock(&fs->lock); if (old_root.dentry) path_put(&old_root); } /* * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. * It can block. */ void set_fs_pwd(struct fs_struct *fs, const struct path *path) { struct path old_pwd; path_get(path); spin_lock(&fs->lock); write_seqcount_begin(&fs->seq); old_pwd = fs->pwd; fs->pwd = *path; write_seqcount_end(&fs->seq); spin_unlock(&fs->lock); if (old_pwd.dentry) path_put(&old_pwd); } static inline int replace_path(struct path *p, const struct path *old, const struct path *new) { if (likely(p->dentry != old->dentry || p->mnt != old->mnt)) return 0; *p = *new; return 1; } void chroot_fs_refs(const struct path *old_root, const struct path *new_root) { struct task_struct *g, *p; struct fs_struct *fs; int count = 0; read_lock(&tasklist_lock); for_each_process_thread(g, p) { task_lock(p); fs = p->fs; if (fs) { int hits = 0; spin_lock(&fs->lock); write_seqcount_begin(&fs->seq); hits += replace_path(&fs->root, old_root, new_root); hits += replace_path(&fs->pwd, old_root, new_root); write_seqcount_end(&fs->seq); while (hits--) { count++; path_get(new_root); } spin_unlock(&fs->lock); } task_unlock(p); } read_unlock(&tasklist_lock); while (count--) path_put(old_root); } void free_fs_struct(struct fs_struct *fs) { path_put(&fs->root); path_put(&fs->pwd); kmem_cache_free(fs_cachep, fs); } void exit_fs(struct task_struct *tsk) { struct fs_struct *fs = tsk->fs; if (fs) { int kill; task_lock(tsk); spin_lock(&fs->lock); tsk->fs = NULL; kill = !--fs->users; spin_unlock(&fs->lock); task_unlock(tsk); if (kill) free_fs_struct(fs); } } struct fs_struct *copy_fs_struct(struct fs_struct *old) { struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); /* We don't need to lock fs - think why ;-) */ if (fs) { fs->users = 1; fs->in_exec = 0; spin_lock_init(&fs->lock); seqcount_spinlock_init(&fs->seq, &fs->lock); fs->umask = old->umask; spin_lock(&old->lock); fs->root = old->root; path_get(&fs->root); fs->pwd = old->pwd; path_get(&fs->pwd); spin_unlock(&old->lock); } return fs; } int unshare_fs_struct(void) { struct fs_struct *fs = current->fs; struct fs_struct *new_fs = copy_fs_struct(fs); int kill; if (!new_fs) return -ENOMEM; task_lock(current); spin_lock(&fs->lock); kill = !--fs->users; current->fs = new_fs; spin_unlock(&fs->lock); task_unlock(current); if (kill) free_fs_struct(fs); return 0; } EXPORT_SYMBOL_GPL(unshare_fs_struct); int current_umask(void) { return current->fs->umask; } EXPORT_SYMBOL(current_umask); /* to be mentioned only in INIT_TASK */ struct fs_struct init_fs = { .users = 1, .lock = __SPIN_LOCK_UNLOCKED(init_fs.lock), .seq = SEQCNT_SPINLOCK_ZERO(init_fs.seq, &init_fs.lock), .umask = 0022, }; |
| 5 5 5 5 6 5 5 5 5 5 5 7 5 5 5 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Symmetric key cipher operations. * * Generic encrypt/decrypt wrapper for ciphers, handles operations across * multiple page boundaries by using temporary blocks. In user context, * the kernel is given a chance to schedule us once per page. * * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/internal/aead.h> #include <crypto/internal/cipher.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/bug.h> #include <linux/cryptouser.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/string.h> #include <net/netlink.h> #include "skcipher.h" #define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000000e enum { SKCIPHER_WALK_PHYS = 1 << 0, SKCIPHER_WALK_SLOW = 1 << 1, SKCIPHER_WALK_COPY = 1 << 2, SKCIPHER_WALK_DIFF = 1 << 3, SKCIPHER_WALK_SLEEP = 1 << 4, }; struct skcipher_walk_buffer { struct list_head entry; struct scatter_walk dst; unsigned int len; u8 *data; u8 buffer[]; }; static const struct crypto_type crypto_skcipher_type; static int skcipher_walk_next(struct skcipher_walk *walk); static inline void skcipher_map_src(struct skcipher_walk *walk) { walk->src.virt.addr = scatterwalk_map(&walk->in); } static inline void skcipher_map_dst(struct skcipher_walk *walk) { walk->dst.virt.addr = scatterwalk_map(&walk->out); } static inline void skcipher_unmap_src(struct skcipher_walk *walk) { scatterwalk_unmap(walk->src.virt.addr); } static inline void skcipher_unmap_dst(struct skcipher_walk *walk) { scatterwalk_unmap(walk->dst.virt.addr); } static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk) { return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC; } /* Get a spot of the specified length that does not straddle a page. * The caller needs to ensure that there is enough space for this operation. */ static inline u8 *skcipher_get_spot(u8 *start, unsigned int len) { u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK); return max(start, end_page); } static inline struct skcipher_alg *__crypto_skcipher_alg( struct crypto_alg *alg) { return container_of(alg, struct skcipher_alg, base); } static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize) { u8 *addr; addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1); addr = skcipher_get_spot(addr, bsize); scatterwalk_copychunks(addr, &walk->out, bsize, (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1); return 0; } int skcipher_walk_done(struct skcipher_walk *walk, int err) { unsigned int n = walk->nbytes; unsigned int nbytes = 0; if (!n) goto finish; if (likely(err >= 0)) { n -= err; nbytes = walk->total - n; } if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS | SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | SKCIPHER_WALK_DIFF)))) { unmap_src: skcipher_unmap_src(walk); } else if (walk->flags & SKCIPHER_WALK_DIFF) { skcipher_unmap_dst(walk); goto unmap_src; } else if (walk->flags & SKCIPHER_WALK_COPY) { skcipher_map_dst(walk); memcpy(walk->dst.virt.addr, walk->page, n); skcipher_unmap_dst(walk); } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) { if (err > 0) { /* * Didn't process all bytes. Either the algorithm is * broken, or this was the last step and it turned out * the message wasn't evenly divisible into blocks but * the algorithm requires it. */ err = -EINVAL; nbytes = 0; } else n = skcipher_done_slow(walk, n); } if (err > 0) err = 0; walk->total = nbytes; walk->nbytes = 0; scatterwalk_advance(&walk->in, n); scatterwalk_advance(&walk->out, n); scatterwalk_done(&walk->in, 0, nbytes); scatterwalk_done(&walk->out, 1, nbytes); if (nbytes) { crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ? CRYPTO_TFM_REQ_MAY_SLEEP : 0); return skcipher_walk_next(walk); } finish: /* Short-circuit for the common/fast path. */ if (!((unsigned long)walk->buffer | (unsigned long)walk->page)) goto out; if (walk->flags & SKCIPHER_WALK_PHYS) goto out; if (walk->iv != walk->oiv) memcpy(walk->oiv, walk->iv, walk->ivsize); if (walk->buffer != walk->page) kfree(walk->buffer); if (walk->page) free_page((unsigned long)walk->page); out: return err; } EXPORT_SYMBOL_GPL(skcipher_walk_done); void skcipher_walk_complete(struct skcipher_walk *walk, int err) { struct skcipher_walk_buffer *p, *tmp; list_for_each_entry_safe(p, tmp, &walk->buffers, entry) { u8 *data; if (err) goto done; data = p->data; if (!data) { data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1); data = skcipher_get_spot(data, walk->stride); } scatterwalk_copychunks(data, &p->dst, p->len, 1); if (offset_in_page(p->data) + p->len + walk->stride > PAGE_SIZE) free_page((unsigned long)p->data); done: list_del(&p->entry); kfree(p); } if (!err && walk->iv != walk->oiv) memcpy(walk->oiv, walk->iv, walk->ivsize); if (walk->buffer != walk->page) kfree(walk->buffer); if (walk->page) free_page((unsigned long)walk->page); } EXPORT_SYMBOL_GPL(skcipher_walk_complete); static void skcipher_queue_write(struct skcipher_walk *walk, struct skcipher_walk_buffer *p) { p->dst = walk->out; list_add_tail(&p->entry, &walk->buffers); } static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize) { bool phys = walk->flags & SKCIPHER_WALK_PHYS; unsigned alignmask = walk->alignmask; struct skcipher_walk_buffer *p; unsigned a; unsigned n; u8 *buffer; void *v; if (!phys) { if (!walk->buffer) walk->buffer = walk->page; buffer = walk->buffer; if (buffer) goto ok; } /* Start with the minimum alignment of kmalloc. */ a = crypto_tfm_ctx_alignment() - 1; n = bsize; if (phys) { /* Calculate the minimum alignment of p->buffer. */ a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1; n += sizeof(*p); } /* Minimum size to align p->buffer by alignmask. */ n += alignmask & ~a; /* Minimum size to ensure p->buffer does not straddle a page. */ n += (bsize - 1) & ~(alignmask | a); v = kzalloc(n, skcipher_walk_gfp(walk)); if (!v) return skcipher_walk_done(walk, -ENOMEM); if (phys) { p = v; p->len = bsize; skcipher_queue_write(walk, p); buffer = p->buffer; } else { walk->buffer = v; buffer = v; } ok: walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1); walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize); walk->src.virt.addr = walk->dst.virt.addr; scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0); walk->nbytes = bsize; walk->flags |= SKCIPHER_WALK_SLOW; return 0; } static int skcipher_next_copy(struct skcipher_walk *walk) { struct skcipher_walk_buffer *p; u8 *tmp = walk->page; skcipher_map_src(walk); memcpy(tmp, walk->src.virt.addr, walk->nbytes); skcipher_unmap_src(walk); walk->src.virt.addr = tmp; walk->dst.virt.addr = tmp; if (!(walk->flags & SKCIPHER_WALK_PHYS)) return 0; p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk)); if (!p) return -ENOMEM; p->data = walk->page; p->len = walk->nbytes; skcipher_queue_write(walk, p); if (offset_in_page(walk->page) + walk->nbytes + walk->stride > PAGE_SIZE) walk->page = NULL; else walk->page += walk->nbytes; return 0; } static int skcipher_next_fast(struct skcipher_walk *walk) { unsigned long diff; walk->src.phys.page = scatterwalk_page(&walk->in); walk->src.phys.offset = offset_in_page(walk->in.offset); walk->dst.phys.page = scatterwalk_page(&walk->out); walk->dst.phys.offset = offset_in_page(walk->out.offset); if (walk->flags & SKCIPHER_WALK_PHYS) return 0; diff = walk->src.phys.offset - walk->dst.phys.offset; diff |= walk->src.virt.page - walk->dst.virt.page; skcipher_map_src(walk); walk->dst.virt.addr = walk->src.virt.addr; if (diff) { walk->flags |= SKCIPHER_WALK_DIFF; skcipher_map_dst(walk); } return 0; } static int skcipher_walk_next(struct skcipher_walk *walk) { unsigned int bsize; unsigned int n; int err; walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY | SKCIPHER_WALK_DIFF); n = walk->total; bsize = min(walk->stride, max(n, walk->blocksize)); n = scatterwalk_clamp(&walk->in, n); n = scatterwalk_clamp(&walk->out, n); if (unlikely(n < bsize)) { if (unlikely(walk->total < walk->blocksize)) return skcipher_walk_done(walk, -EINVAL); slow_path: err = skcipher_next_slow(walk, bsize); goto set_phys_lowmem; } if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) { if (!walk->page) { gfp_t gfp = skcipher_walk_gfp(walk); walk->page = (void *)__get_free_page(gfp); if (!walk->page) goto slow_path; } walk->nbytes = min_t(unsigned, n, PAGE_SIZE - offset_in_page(walk->page)); walk->flags |= SKCIPHER_WALK_COPY; err = skcipher_next_copy(walk); goto set_phys_lowmem; } walk->nbytes = n; return skcipher_next_fast(walk); set_phys_lowmem: if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) { walk->src.phys.page = virt_to_page(walk->src.virt.addr); walk->dst.phys.page = virt_to_page(walk->dst.virt.addr); walk->src.phys.offset &= PAGE_SIZE - 1; walk->dst.phys.offset &= PAGE_SIZE - 1; } return err; } static int skcipher_copy_iv(struct skcipher_walk *walk) { unsigned a = crypto_tfm_ctx_alignment() - 1; unsigned alignmask = walk->alignmask; unsigned ivsize = walk->ivsize; unsigned bs = walk->stride; unsigned aligned_bs; unsigned size; u8 *iv; aligned_bs = ALIGN(bs, alignmask + 1); /* Minimum size to align buffer by alignmask. */ size = alignmask & ~a; if (walk->flags & SKCIPHER_WALK_PHYS) size += ivsize; else { size += aligned_bs + ivsize; /* Minimum size to ensure buffer does not straddle a page. */ size += (bs - 1) & ~(alignmask | a); } walk->buffer = kmalloc(size, skcipher_walk_gfp(walk)); if (!walk->buffer) return -ENOMEM; iv = PTR_ALIGN(walk->buffer, alignmask + 1); iv = skcipher_get_spot(iv, bs) + aligned_bs; walk->iv = memcpy(iv, walk->iv, walk->ivsize); return 0; } static int skcipher_walk_first(struct skcipher_walk *walk) { if (WARN_ON_ONCE(in_hardirq())) return -EDEADLK; walk->buffer = NULL; if (unlikely(((unsigned long)walk->iv & walk->alignmask))) { int err = skcipher_copy_iv(walk); if (err) return err; } walk->page = NULL; return skcipher_walk_next(walk); } static int skcipher_walk_skcipher(struct skcipher_walk *walk, struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); walk->total = req->cryptlen; walk->nbytes = 0; walk->iv = req->iv; walk->oiv = req->iv; if (unlikely(!walk->total)) return 0; scatterwalk_start(&walk->in, req->src); scatterwalk_start(&walk->out, req->dst); walk->flags &= ~SKCIPHER_WALK_SLEEP; walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? SKCIPHER_WALK_SLEEP : 0; walk->blocksize = crypto_skcipher_blocksize(tfm); walk->ivsize = crypto_skcipher_ivsize(tfm); walk->alignmask = crypto_skcipher_alignmask(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) walk->stride = alg->co.chunksize; else walk->stride = alg->walksize; return skcipher_walk_first(walk); } int skcipher_walk_virt(struct skcipher_walk *walk, struct skcipher_request *req, bool atomic) { int err; might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); walk->flags &= ~SKCIPHER_WALK_PHYS; err = skcipher_walk_skcipher(walk, req); walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0; return err; } EXPORT_SYMBOL_GPL(skcipher_walk_virt); int skcipher_walk_async(struct skcipher_walk *walk, struct skcipher_request *req) { walk->flags |= SKCIPHER_WALK_PHYS; INIT_LIST_HEAD(&walk->buffers); return skcipher_walk_skcipher(walk, req); } EXPORT_SYMBOL_GPL(skcipher_walk_async); static int skcipher_walk_aead_common(struct skcipher_walk *walk, struct aead_request *req, bool atomic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); int err; walk->nbytes = 0; walk->iv = req->iv; walk->oiv = req->iv; if (unlikely(!walk->total)) return 0; walk->flags &= ~SKCIPHER_WALK_PHYS; scatterwalk_start(&walk->in, req->src); scatterwalk_start(&walk->out, req->dst); scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2); scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2); scatterwalk_done(&walk->in, 0, walk->total); scatterwalk_done(&walk->out, 0, walk->total); if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) walk->flags |= SKCIPHER_WALK_SLEEP; else walk->flags &= ~SKCIPHER_WALK_SLEEP; walk->blocksize = crypto_aead_blocksize(tfm); walk->stride = crypto_aead_chunksize(tfm); walk->ivsize = crypto_aead_ivsize(tfm); walk->alignmask = crypto_aead_alignmask(tfm); err = skcipher_walk_first(walk); if (atomic) walk->flags &= ~SKCIPHER_WALK_SLEEP; return err; } int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic) { walk->total = req->cryptlen; return skcipher_walk_aead_common(walk, req, atomic); } EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt); int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); walk->total = req->cryptlen - crypto_aead_authsize(tfm); return skcipher_walk_aead_common(walk, req, atomic); } EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt); static void skcipher_set_needkey(struct crypto_skcipher *tfm) { if (crypto_skcipher_max_keysize(tfm) != 0) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY); } static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_skcipher_alignmask(tfm); struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); u8 *buffer, *alignbuffer; unsigned long absize; int ret; absize = keylen + alignmask; buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); ret = cipher->setkey(tfm, alignbuffer, keylen); kfree_sensitive(buffer); return ret; } int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct skcipher_alg *cipher = crypto_skcipher_alg(tfm); unsigned long alignmask = crypto_skcipher_alignmask(tfm); int err; if (cipher->co.base.cra_type != &crypto_skcipher_type) { struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm); crypto_lskcipher_clear_flags(*ctx, CRYPTO_TFM_REQ_MASK); crypto_lskcipher_set_flags(*ctx, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_lskcipher_setkey(*ctx, key, keylen); goto out; } if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) return -EINVAL; if ((unsigned long)key & alignmask) err = skcipher_setkey_unaligned(tfm, key, keylen); else err = cipher->setkey(tfm, key, keylen); out: if (unlikely(err)) { skcipher_set_needkey(tfm); return err; } crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); return 0; } EXPORT_SYMBOL_GPL(crypto_skcipher_setkey); int crypto_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_encrypt_sg(req); return alg->encrypt(req); } EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt); int crypto_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_decrypt_sg(req); return alg->decrypt(req); } EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt); static int crypto_lskcipher_export(struct skcipher_request *req, void *out) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); u8 *ivs = skcipher_request_ctx(req); ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1); memcpy(out, ivs + crypto_skcipher_ivsize(tfm), crypto_skcipher_statesize(tfm)); return 0; } static int crypto_lskcipher_import(struct skcipher_request *req, const void *in) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); u8 *ivs = skcipher_request_ctx(req); ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1); memcpy(ivs + crypto_skcipher_ivsize(tfm), in, crypto_skcipher_statesize(tfm)); return 0; } static int skcipher_noexport(struct skcipher_request *req, void *out) { return 0; } static int skcipher_noimport(struct skcipher_request *req, const void *in) { return 0; } int crypto_skcipher_export(struct skcipher_request *req, void *out) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_export(req, out); return alg->export(req, out); } EXPORT_SYMBOL_GPL(crypto_skcipher_export); int crypto_skcipher_import(struct skcipher_request *req, const void *in) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); if (alg->co.base.cra_type != &crypto_skcipher_type) return crypto_lskcipher_import(req, in); return alg->import(req, in); } EXPORT_SYMBOL_GPL(crypto_skcipher_import); static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm) { struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); alg->exit(skcipher); } static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm) { struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); skcipher_set_needkey(skcipher); if (tfm->__crt_alg->cra_type != &crypto_skcipher_type) { unsigned am = crypto_skcipher_alignmask(skcipher); unsigned reqsize; reqsize = am & ~(crypto_tfm_ctx_alignment() - 1); reqsize += crypto_skcipher_ivsize(skcipher); reqsize += crypto_skcipher_statesize(skcipher); crypto_skcipher_set_reqsize(skcipher, reqsize); return crypto_init_lskcipher_ops_sg(tfm); } if (alg->exit) skcipher->base.exit = crypto_skcipher_exit_tfm; if (alg->init) return alg->init(skcipher); return 0; } static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg) { if (alg->cra_type != &crypto_skcipher_type) return sizeof(struct crypto_lskcipher *); return crypto_alg_extsize(alg); } static void crypto_skcipher_free_instance(struct crypto_instance *inst) { struct skcipher_instance *skcipher = container_of(inst, struct skcipher_instance, s.base); skcipher->free(skcipher); } static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg) { struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); seq_printf(m, "type : skcipher\n"); seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "min keysize : %u\n", skcipher->min_keysize); seq_printf(m, "max keysize : %u\n", skcipher->max_keysize); seq_printf(m, "ivsize : %u\n", skcipher->ivsize); seq_printf(m, "chunksize : %u\n", skcipher->chunksize); seq_printf(m, "walksize : %u\n", skcipher->walksize); seq_printf(m, "statesize : %u\n", skcipher->statesize); } static int __maybe_unused crypto_skcipher_report( struct sk_buff *skb, struct crypto_alg *alg) { struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg); struct crypto_report_blkcipher rblkcipher; memset(&rblkcipher, 0, sizeof(rblkcipher)); strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type)); strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv)); rblkcipher.blocksize = alg->cra_blocksize; rblkcipher.min_keysize = skcipher->min_keysize; rblkcipher.max_keysize = skcipher->max_keysize; rblkcipher.ivsize = skcipher->ivsize; return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, sizeof(rblkcipher), &rblkcipher); } static const struct crypto_type crypto_skcipher_type = { .extsize = crypto_skcipher_extsize, .init_tfm = crypto_skcipher_init_tfm, .free = crypto_skcipher_free_instance, #ifdef CONFIG_PROC_FS .show = crypto_skcipher_show, #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) .report = crypto_skcipher_report, #endif .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK, .type = CRYPTO_ALG_TYPE_SKCIPHER, .tfmsize = offsetof(struct crypto_skcipher, base), }; int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { spawn->base.frontend = &crypto_skcipher_type; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } EXPORT_SYMBOL_GPL(crypto_grab_skcipher); struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_skcipher); struct crypto_sync_skcipher *crypto_alloc_sync_skcipher( const char *alg_name, u32 type, u32 mask) { struct crypto_skcipher *tfm; /* Only sync algorithms allowed. */ mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE; tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask); /* * Make sure we do not allocate something that might get used with * an on-stack request: check the request size. */ if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) > MAX_SYNC_SKCIPHER_REQSIZE)) { crypto_free_skcipher(tfm); return ERR_PTR(-EINVAL); } return (struct crypto_sync_skcipher *)tfm; } EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher); int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask) { return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_has_skcipher); int skcipher_prepare_alg_common(struct skcipher_alg_common *alg) { struct crypto_alg *base = &alg->base; if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 || alg->statesize > PAGE_SIZE / 2 || (alg->ivsize + alg->statesize) > PAGE_SIZE / 2) return -EINVAL; if (!alg->chunksize) alg->chunksize = base->cra_blocksize; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; return 0; } static int skcipher_prepare_alg(struct skcipher_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = skcipher_prepare_alg_common(&alg->co); if (err) return err; if (alg->walksize > PAGE_SIZE / 8) return -EINVAL; if (!alg->walksize) alg->walksize = alg->chunksize; if (!alg->statesize) { alg->import = skcipher_noimport; alg->export = skcipher_noexport; } else if (!(alg->import && alg->export)) return -EINVAL; base->cra_type = &crypto_skcipher_type; base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER; return 0; } int crypto_register_skcipher(struct skcipher_alg *alg) { struct crypto_alg *base = &alg->base; int err; err = skcipher_prepare_alg(alg); if (err) return err; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_skcipher); void crypto_unregister_skcipher(struct skcipher_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_skcipher); int crypto_register_skciphers(struct skcipher_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_skcipher(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_skcipher(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_skciphers); void crypto_unregister_skciphers(struct skcipher_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_skcipher(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_skciphers); int skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst) { int err; if (WARN_ON(!inst->free)) return -EINVAL; err = skcipher_prepare_alg(&inst->alg); if (err) return err; return crypto_register_instance(tmpl, skcipher_crypto_instance(inst)); } EXPORT_SYMBOL_GPL(skcipher_register_instance); static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct crypto_cipher *cipher = skcipher_cipher_simple(tfm); crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_cipher_setkey(cipher, key, keylen); } static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->cipher = cipher; return 0; } static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm) { struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); crypto_free_cipher(ctx->cipher); } static void skcipher_free_instance_simple(struct skcipher_instance *inst) { crypto_drop_cipher(skcipher_instance_ctx(inst)); kfree(inst); } /** * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode * * Allocate an skcipher_instance for a simple block cipher mode of operation, * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, * alignmask, and priority are set from the underlying cipher but can be * overridden if needed. The tfm context defaults to skcipher_ctx_simple, and * default ->setkey(), ->init(), and ->exit() methods are installed. * * @tmpl: the template being instantiated * @tb: the template parameters * * Return: a pointer to the new instance, or an ERR_PTR(). The caller still * needs to register the instance. */ struct skcipher_instance *skcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb) { u32 mask; struct skcipher_instance *inst; struct crypto_cipher_spawn *spawn; struct crypto_alg *cipher_alg; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); if (err) return ERR_PTR(err); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = skcipher_instance_ctx(inst); err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; cipher_alg = crypto_spawn_cipher_alg(spawn); err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name, cipher_alg); if (err) goto err_free_inst; inst->free = skcipher_free_instance_simple; /* Default algorithm properties, can be overridden */ inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize; inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask; inst->alg.base.cra_priority = cipher_alg->cra_priority; inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize; inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize; inst->alg.ivsize = cipher_alg->cra_blocksize; /* Use skcipher_ctx_simple by default, can be overridden */ inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple); inst->alg.setkey = skcipher_setkey_simple; inst->alg.init = skcipher_init_tfm_simple; inst->alg.exit = skcipher_exit_tfm_simple; return inst; err_free_inst: skcipher_free_instance_simple(inst); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Symmetric key cipher type"); MODULE_IMPORT_NS("CRYPTO_INTERNAL"); |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001 Intel Corp. * * This file is part of the SCTP kernel implementation * * These are the definitions needed for the tsnmap type. The tsnmap is used * to track out of order TSNs received. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * Jon Grimm <jgrimm@us.ibm.com> * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Sridhar Samudrala <sri@us.ibm.com> */ #include <net/sctp/constants.h> #ifndef __sctp_tsnmap_h__ #define __sctp_tsnmap_h__ /* RFC 2960 12.2 Parameters necessary per association (i.e. the TCB) * Mapping An array of bits or bytes indicating which out of * Array order TSN's have been received (relative to the * Last Rcvd TSN). If no gaps exist, i.e. no out of * order packets have been received, this array * will be set to all zero. This structure may be * in the form of a circular buffer or bit array. */ struct sctp_tsnmap { /* This array counts the number of chunks with each TSN. * It points at one of the two buffers with which we will * ping-pong between. */ unsigned long *tsn_map; /* This is the TSN at tsn_map[0]. */ __u32 base_tsn; /* Last Rcvd : This is the last TSN received in * TSN : sequence. This value is set initially by * : taking the peer's Initial TSN, received in * : the INIT or INIT ACK chunk, and subtracting * : one from it. * * Throughout most of the specification this is called the * "Cumulative TSN ACK Point". In this case, we * ignore the advice in 12.2 in favour of the term * used in the bulk of the text. */ __u32 cumulative_tsn_ack_point; /* This is the highest TSN we've marked. */ __u32 max_tsn_seen; /* This is the minimum number of TSNs we can track. This corresponds * to the size of tsn_map. Note: the overflow_map allows us to * potentially track more than this quantity. */ __u16 len; /* Data chunks pending receipt. used by SCTP_STATUS sockopt */ __u16 pending_data; /* Record duplicate TSNs here. We clear this after * every SACK. Store up to SCTP_MAX_DUP_TSNS worth of * information. */ __u16 num_dup_tsns; __be32 dup_tsns[SCTP_MAX_DUP_TSNS]; }; struct sctp_tsnmap_iter { __u32 start; }; /* Initialize a block of memory as a tsnmap. */ struct sctp_tsnmap *sctp_tsnmap_init(struct sctp_tsnmap *, __u16 len, __u32 initial_tsn, gfp_t gfp); void sctp_tsnmap_free(struct sctp_tsnmap *map); /* Test the tracking state of this TSN. * Returns: * 0 if the TSN has not yet been seen * >0 if the TSN has been seen (duplicate) * <0 if the TSN is invalid (too large to track) */ int sctp_tsnmap_check(const struct sctp_tsnmap *, __u32 tsn); /* Mark this TSN as seen. */ int sctp_tsnmap_mark(struct sctp_tsnmap *, __u32 tsn, struct sctp_transport *trans); /* Mark this TSN and all lower as seen. */ void sctp_tsnmap_skip(struct sctp_tsnmap *map, __u32 tsn); /* Retrieve the Cumulative TSN ACK Point. */ static inline __u32 sctp_tsnmap_get_ctsn(const struct sctp_tsnmap *map) { return map->cumulative_tsn_ack_point; } /* Retrieve the highest TSN we've seen. */ static inline __u32 sctp_tsnmap_get_max_tsn_seen(const struct sctp_tsnmap *map) { return map->max_tsn_seen; } /* How many duplicate TSNs are stored? */ static inline __u16 sctp_tsnmap_num_dups(struct sctp_tsnmap *map) { return map->num_dup_tsns; } /* Return pointer to duplicate tsn array as needed by SACK. */ static inline __be32 *sctp_tsnmap_get_dups(struct sctp_tsnmap *map) { map->num_dup_tsns = 0; return map->dup_tsns; } /* How many gap ack blocks do we have recorded? */ __u16 sctp_tsnmap_num_gabs(struct sctp_tsnmap *map, struct sctp_gap_ack_block *gabs); /* Refresh the count on pending data. */ __u16 sctp_tsnmap_pending(struct sctp_tsnmap *map); /* Is there a gap in the TSN map? */ static inline int sctp_tsnmap_has_gap(const struct sctp_tsnmap *map) { return map->cumulative_tsn_ack_point != map->max_tsn_seen; } /* Mark a duplicate TSN. Note: limit the storage of duplicate TSN * information. */ static inline void sctp_tsnmap_mark_dup(struct sctp_tsnmap *map, __u32 tsn) { if (map->num_dup_tsns < SCTP_MAX_DUP_TSNS) map->dup_tsns[map->num_dup_tsns++] = htonl(tsn); } /* Renege a TSN that was seen. */ void sctp_tsnmap_renege(struct sctp_tsnmap *, __u32 tsn); /* Is there a gap in the TSN map? */ int sctp_tsnmap_has_gap(const struct sctp_tsnmap *); #endif /* __sctp_tsnmap_h__ */ |
| 159 90 58 46 53 92 11 2 36 11 4 58 58 43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* AF_RXRPC tracepoints * * Copyright (C) 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rxrpc #if !defined(_TRACE_RXRPC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RXRPC_H #include <linux/tracepoint.h> #include <linux/errqueue.h> /* * Declare tracing information enums and their string mappings for display. */ #define rxrpc_abort_reasons \ /* AFS errors */ \ EM(afs_abort_general_error, "afs-error") \ EM(afs_abort_interrupted, "afs-intr") \ EM(afs_abort_oom, "afs-oom") \ EM(afs_abort_op_not_supported, "afs-op-notsupp") \ EM(afs_abort_probeuuid_negative, "afs-probeuuid-neg") \ EM(afs_abort_send_data_error, "afs-send-data") \ EM(afs_abort_unmarshal_error, "afs-unmarshal") \ /* rxperf errors */ \ EM(rxperf_abort_general_error, "rxperf-error") \ EM(rxperf_abort_oom, "rxperf-oom") \ EM(rxperf_abort_op_not_supported, "rxperf-op-notsupp") \ EM(rxperf_abort_unmarshal_error, "rxperf-unmarshal") \ /* RxKAD security errors */ \ EM(rxkad_abort_1_short_check, "rxkad1-short-check") \ EM(rxkad_abort_1_short_data, "rxkad1-short-data") \ EM(rxkad_abort_1_short_encdata, "rxkad1-short-encdata") \ EM(rxkad_abort_1_short_header, "rxkad1-short-hdr") \ EM(rxkad_abort_2_short_check, "rxkad2-short-check") \ EM(rxkad_abort_2_short_data, "rxkad2-short-data") \ EM(rxkad_abort_2_short_header, "rxkad2-short-hdr") \ EM(rxkad_abort_2_short_len, "rxkad2-short-len") \ EM(rxkad_abort_bad_checksum, "rxkad2-bad-cksum") \ EM(rxkad_abort_chall_key_expired, "rxkad-chall-key-exp") \ EM(rxkad_abort_chall_level, "rxkad-chall-level") \ EM(rxkad_abort_chall_no_key, "rxkad-chall-nokey") \ EM(rxkad_abort_chall_short, "rxkad-chall-short") \ EM(rxkad_abort_chall_version, "rxkad-chall-version") \ EM(rxkad_abort_resp_bad_callid, "rxkad-resp-bad-callid") \ EM(rxkad_abort_resp_bad_checksum, "rxkad-resp-bad-cksum") \ EM(rxkad_abort_resp_bad_param, "rxkad-resp-bad-param") \ EM(rxkad_abort_resp_call_ctr, "rxkad-resp-call-ctr") \ EM(rxkad_abort_resp_call_state, "rxkad-resp-call-state") \ EM(rxkad_abort_resp_key_expired, "rxkad-resp-key-exp") \ EM(rxkad_abort_resp_key_rejected, "rxkad-resp-key-rej") \ EM(rxkad_abort_resp_level, "rxkad-resp-level") \ EM(rxkad_abort_resp_nokey, "rxkad-resp-nokey") \ EM(rxkad_abort_resp_ooseq, "rxkad-resp-ooseq") \ EM(rxkad_abort_resp_short, "rxkad-resp-short") \ EM(rxkad_abort_resp_short_tkt, "rxkad-resp-short-tkt") \ EM(rxkad_abort_resp_tkt_aname, "rxkad-resp-tk-aname") \ EM(rxkad_abort_resp_tkt_expired, "rxkad-resp-tk-exp") \ EM(rxkad_abort_resp_tkt_future, "rxkad-resp-tk-future") \ EM(rxkad_abort_resp_tkt_inst, "rxkad-resp-tk-inst") \ EM(rxkad_abort_resp_tkt_len, "rxkad-resp-tk-len") \ EM(rxkad_abort_resp_tkt_realm, "rxkad-resp-tk-realm") \ EM(rxkad_abort_resp_tkt_short, "rxkad-resp-tk-short") \ EM(rxkad_abort_resp_tkt_sinst, "rxkad-resp-tk-sinst") \ EM(rxkad_abort_resp_tkt_sname, "rxkad-resp-tk-sname") \ EM(rxkad_abort_resp_unknown_tkt, "rxkad-resp-unknown-tkt") \ EM(rxkad_abort_resp_version, "rxkad-resp-version") \ /* rxrpc errors */ \ EM(rxrpc_abort_call_improper_term, "call-improper-term") \ EM(rxrpc_abort_call_reset, "call-reset") \ EM(rxrpc_abort_call_sendmsg, "call-sendmsg") \ EM(rxrpc_abort_call_sock_release, "call-sock-rel") \ EM(rxrpc_abort_call_sock_release_tba, "call-sock-rel-tba") \ EM(rxrpc_abort_call_timeout, "call-timeout") \ EM(rxrpc_abort_no_service_key, "no-serv-key") \ EM(rxrpc_abort_nomem, "nomem") \ EM(rxrpc_abort_service_not_offered, "serv-not-offered") \ EM(rxrpc_abort_shut_down, "shut-down") \ EM(rxrpc_abort_unsupported_security, "unsup-sec") \ EM(rxrpc_badmsg_bad_abort, "bad-abort") \ EM(rxrpc_badmsg_bad_jumbo, "bad-jumbo") \ EM(rxrpc_badmsg_short_ack, "short-ack") \ EM(rxrpc_badmsg_short_ack_trailer, "short-ack-trailer") \ EM(rxrpc_badmsg_short_hdr, "short-hdr") \ EM(rxrpc_badmsg_unsupported_packet, "unsup-pkt") \ EM(rxrpc_badmsg_zero_call, "zero-call") \ EM(rxrpc_badmsg_zero_seq, "zero-seq") \ EM(rxrpc_badmsg_zero_service, "zero-service") \ EM(rxrpc_eproto_ackr_outside_window, "ackr-out-win") \ EM(rxrpc_eproto_ackr_sack_overflow, "ackr-sack-over") \ EM(rxrpc_eproto_ackr_short_sack, "ackr-short-sack") \ EM(rxrpc_eproto_ackr_zero, "ackr-zero") \ EM(rxrpc_eproto_bad_upgrade, "bad-upgrade") \ EM(rxrpc_eproto_data_after_last, "data-after-last") \ EM(rxrpc_eproto_different_last, "diff-last") \ EM(rxrpc_eproto_early_reply, "early-reply") \ EM(rxrpc_eproto_improper_term, "improper-term") \ EM(rxrpc_eproto_no_client_call, "no-cl-call") \ EM(rxrpc_eproto_no_client_conn, "no-cl-conn") \ EM(rxrpc_eproto_no_service_call, "no-sv-call") \ EM(rxrpc_eproto_reupgrade, "re-upgrade") \ EM(rxrpc_eproto_rxnull_challenge, "rxnull-chall") \ EM(rxrpc_eproto_rxnull_response, "rxnull-resp") \ EM(rxrpc_eproto_tx_rot_last, "tx-rot-last") \ EM(rxrpc_eproto_unexpected_ack, "unex-ack") \ EM(rxrpc_eproto_unexpected_ackall, "unex-ackall") \ EM(rxrpc_eproto_unexpected_implicit_end, "unex-impl-end") \ EM(rxrpc_eproto_unexpected_reply, "unex-reply") \ EM(rxrpc_eproto_wrong_security, "wrong-sec") \ EM(rxrpc_recvmsg_excess_data, "recvmsg-excess") \ EM(rxrpc_recvmsg_short_data, "recvmsg-short") \ E_(rxrpc_sendmsg_late_send, "sendmsg-late") #define rxrpc_call_poke_traces \ EM(rxrpc_call_poke_abort, "Abort") \ EM(rxrpc_call_poke_complete, "Compl") \ EM(rxrpc_call_poke_conn_abort, "Conn-abort") \ EM(rxrpc_call_poke_error, "Error") \ EM(rxrpc_call_poke_idle, "Idle") \ EM(rxrpc_call_poke_rx_packet, "Rx-packet") \ EM(rxrpc_call_poke_set_timeout, "Set-timo") \ EM(rxrpc_call_poke_start, "Start") \ EM(rxrpc_call_poke_timer, "Timer") \ E_(rxrpc_call_poke_timer_now, "Timer-now") #define rxrpc_skb_traces \ EM(rxrpc_skb_eaten_by_unshare, "ETN unshare ") \ EM(rxrpc_skb_eaten_by_unshare_nomem, "ETN unshar-nm") \ EM(rxrpc_skb_get_call_rx, "GET call-rx ") \ EM(rxrpc_skb_get_conn_secured, "GET conn-secd") \ EM(rxrpc_skb_get_conn_work, "GET conn-work") \ EM(rxrpc_skb_get_local_work, "GET locl-work") \ EM(rxrpc_skb_get_reject_work, "GET rej-work ") \ EM(rxrpc_skb_get_to_recvmsg, "GET to-recv ") \ EM(rxrpc_skb_get_to_recvmsg_oos, "GET to-recv-o") \ EM(rxrpc_skb_new_encap_rcv, "NEW encap-rcv") \ EM(rxrpc_skb_new_error_report, "NEW error-rpt") \ EM(rxrpc_skb_new_jumbo_subpacket, "NEW jumbo-sub") \ EM(rxrpc_skb_new_unshared, "NEW unshared ") \ EM(rxrpc_skb_put_call_rx, "PUT call-rx ") \ EM(rxrpc_skb_put_conn_secured, "PUT conn-secd") \ EM(rxrpc_skb_put_conn_work, "PUT conn-work") \ EM(rxrpc_skb_put_error_report, "PUT error-rep") \ EM(rxrpc_skb_put_input, "PUT input ") \ EM(rxrpc_skb_put_jumbo_subpacket, "PUT jumbo-sub") \ EM(rxrpc_skb_put_purge, "PUT purge ") \ EM(rxrpc_skb_put_rotate, "PUT rotate ") \ EM(rxrpc_skb_put_unknown, "PUT unknown ") \ EM(rxrpc_skb_see_conn_work, "SEE conn-work") \ EM(rxrpc_skb_see_recvmsg, "SEE recvmsg ") \ EM(rxrpc_skb_see_reject, "SEE reject ") \ EM(rxrpc_skb_see_rotate, "SEE rotate ") \ E_(rxrpc_skb_see_version, "SEE version ") #define rxrpc_local_traces \ EM(rxrpc_local_free, "FREE ") \ EM(rxrpc_local_get_call, "GET call ") \ EM(rxrpc_local_get_client_conn, "GET conn-cln") \ EM(rxrpc_local_get_for_use, "GET for-use ") \ EM(rxrpc_local_get_peer, "GET peer ") \ EM(rxrpc_local_get_prealloc_conn, "GET conn-pre") \ EM(rxrpc_local_new, "NEW ") \ EM(rxrpc_local_put_bind, "PUT bind ") \ EM(rxrpc_local_put_call, "PUT call ") \ EM(rxrpc_local_put_for_use, "PUT for-use ") \ EM(rxrpc_local_put_kill_conn, "PUT conn-kil") \ EM(rxrpc_local_put_peer, "PUT peer ") \ EM(rxrpc_local_put_prealloc_peer, "PUT peer-pre") \ EM(rxrpc_local_put_release_sock, "PUT rel-sock") \ EM(rxrpc_local_stop, "STOP ") \ EM(rxrpc_local_stopped, "STOPPED ") \ EM(rxrpc_local_unuse_bind, "UNU bind ") \ EM(rxrpc_local_unuse_conn_work, "UNU conn-wrk") \ EM(rxrpc_local_unuse_peer_keepalive, "UNU peer-kpa") \ EM(rxrpc_local_unuse_release_sock, "UNU rel-sock") \ EM(rxrpc_local_use_conn_work, "USE conn-wrk") \ EM(rxrpc_local_use_lookup, "USE lookup ") \ E_(rxrpc_local_use_peer_keepalive, "USE peer-kpa") #define rxrpc_peer_traces \ EM(rxrpc_peer_free, "FREE ") \ EM(rxrpc_peer_get_accept, "GET accept ") \ EM(rxrpc_peer_get_application, "GET app ") \ EM(rxrpc_peer_get_bundle, "GET bundle ") \ EM(rxrpc_peer_get_call, "GET call ") \ EM(rxrpc_peer_get_client_conn, "GET cln-conn") \ EM(rxrpc_peer_get_input, "GET input ") \ EM(rxrpc_peer_get_input_error, "GET inpt-err") \ EM(rxrpc_peer_get_keepalive, "GET keepaliv") \ EM(rxrpc_peer_get_lookup_client, "GET look-cln") \ EM(rxrpc_peer_get_service_conn, "GET srv-conn") \ EM(rxrpc_peer_new_client, "NEW client ") \ EM(rxrpc_peer_new_prealloc, "NEW prealloc") \ EM(rxrpc_peer_put_application, "PUT app ") \ EM(rxrpc_peer_put_bundle, "PUT bundle ") \ EM(rxrpc_peer_put_call, "PUT call ") \ EM(rxrpc_peer_put_conn, "PUT conn ") \ EM(rxrpc_peer_put_input, "PUT input ") \ EM(rxrpc_peer_put_input_error, "PUT inpt-err") \ E_(rxrpc_peer_put_keepalive, "PUT keepaliv") #define rxrpc_bundle_traces \ EM(rxrpc_bundle_free, "FREE ") \ EM(rxrpc_bundle_get_client_call, "GET clt-call") \ EM(rxrpc_bundle_get_client_conn, "GET clt-conn") \ EM(rxrpc_bundle_get_service_conn, "GET svc-conn") \ EM(rxrpc_bundle_put_call, "PUT call ") \ EM(rxrpc_bundle_put_conn, "PUT conn ") \ EM(rxrpc_bundle_put_discard, "PUT discard ") \ E_(rxrpc_bundle_new, "NEW ") #define rxrpc_conn_traces \ EM(rxrpc_conn_free, "FREE ") \ EM(rxrpc_conn_get_activate_call, "GET act-call") \ EM(rxrpc_conn_get_call_input, "GET inp-call") \ EM(rxrpc_conn_get_conn_input, "GET inp-conn") \ EM(rxrpc_conn_get_idle, "GET idle ") \ EM(rxrpc_conn_get_poke_abort, "GET pk-abort") \ EM(rxrpc_conn_get_poke_timer, "GET poke ") \ EM(rxrpc_conn_get_service_conn, "GET svc-conn") \ EM(rxrpc_conn_new_client, "NEW client ") \ EM(rxrpc_conn_new_service, "NEW service ") \ EM(rxrpc_conn_put_call, "PUT call ") \ EM(rxrpc_conn_put_call_input, "PUT inp-call") \ EM(rxrpc_conn_put_conn_input, "PUT inp-conn") \ EM(rxrpc_conn_put_discard_idle, "PUT disc-idl") \ EM(rxrpc_conn_put_local_dead, "PUT loc-dead") \ EM(rxrpc_conn_put_noreuse, "PUT noreuse ") \ EM(rxrpc_conn_put_poke, "PUT poke ") \ EM(rxrpc_conn_put_service_reaped, "PUT svc-reap") \ EM(rxrpc_conn_put_unbundle, "PUT unbundle") \ EM(rxrpc_conn_put_unidle, "PUT unidle ") \ EM(rxrpc_conn_put_work, "PUT work ") \ EM(rxrpc_conn_queue_challenge, "QUE chall ") \ EM(rxrpc_conn_queue_retry_work, "QUE retry-wk") \ EM(rxrpc_conn_queue_rx_work, "QUE rx-work ") \ EM(rxrpc_conn_see_new_service_conn, "SEE new-svc ") \ EM(rxrpc_conn_see_reap_service, "SEE reap-svc") \ E_(rxrpc_conn_see_work, "SEE work ") #define rxrpc_client_traces \ EM(rxrpc_client_activate_chans, "Activa") \ EM(rxrpc_client_alloc, "Alloc ") \ EM(rxrpc_client_chan_activate, "ChActv") \ EM(rxrpc_client_chan_disconnect, "ChDisc") \ EM(rxrpc_client_chan_pass, "ChPass") \ EM(rxrpc_client_cleanup, "Clean ") \ EM(rxrpc_client_discard, "Discar") \ EM(rxrpc_client_exposed, "Expose") \ EM(rxrpc_client_replace, "Replac") \ EM(rxrpc_client_queue_new_call, "Q-Call") \ EM(rxrpc_client_to_active, "->Actv") \ E_(rxrpc_client_to_idle, "->Idle") #define rxrpc_call_traces \ EM(rxrpc_call_get_io_thread, "GET iothread") \ EM(rxrpc_call_get_input, "GET input ") \ EM(rxrpc_call_get_kernel_service, "GET krnl-srv") \ EM(rxrpc_call_get_notify_socket, "GET notify ") \ EM(rxrpc_call_get_poke, "GET poke ") \ EM(rxrpc_call_get_recvmsg, "GET recvmsg ") \ EM(rxrpc_call_get_release_sock, "GET rel-sock") \ EM(rxrpc_call_get_sendmsg, "GET sendmsg ") \ EM(rxrpc_call_get_userid, "GET user-id ") \ EM(rxrpc_call_new_client, "NEW client ") \ EM(rxrpc_call_new_prealloc_service, "NEW prealloc") \ EM(rxrpc_call_put_discard_prealloc, "PUT disc-pre") \ EM(rxrpc_call_put_discard_error, "PUT disc-err") \ EM(rxrpc_call_put_io_thread, "PUT iothread") \ EM(rxrpc_call_put_input, "PUT input ") \ EM(rxrpc_call_put_kernel, "PUT kernel ") \ EM(rxrpc_call_put_poke, "PUT poke ") \ EM(rxrpc_call_put_recvmsg, "PUT recvmsg ") \ EM(rxrpc_call_put_release_sock, "PUT rls-sock") \ EM(rxrpc_call_put_release_sock_tba, "PUT rls-sk-a") \ EM(rxrpc_call_put_sendmsg, "PUT sendmsg ") \ EM(rxrpc_call_put_unnotify, "PUT unnotify") \ EM(rxrpc_call_put_userid_exists, "PUT u-exists") \ EM(rxrpc_call_put_userid, "PUT user-id ") \ EM(rxrpc_call_see_accept, "SEE accept ") \ EM(rxrpc_call_see_activate_client, "SEE act-clnt") \ EM(rxrpc_call_see_connect_failed, "SEE con-fail") \ EM(rxrpc_call_see_connected, "SEE connect ") \ EM(rxrpc_call_see_conn_abort, "SEE conn-abt") \ EM(rxrpc_call_see_disconnected, "SEE disconn ") \ EM(rxrpc_call_see_distribute_error, "SEE dist-err") \ EM(rxrpc_call_see_input, "SEE input ") \ EM(rxrpc_call_see_release, "SEE release ") \ EM(rxrpc_call_see_userid_exists, "SEE u-exists") \ EM(rxrpc_call_see_waiting_call, "SEE q-conn ") \ E_(rxrpc_call_see_zap, "SEE zap ") #define rxrpc_txqueue_traces \ EM(rxrpc_txqueue_await_reply, "AWR") \ EM(rxrpc_txqueue_end, "END") \ EM(rxrpc_txqueue_queue, "QUE") \ EM(rxrpc_txqueue_queue_last, "QLS") \ EM(rxrpc_txqueue_rotate, "ROT") \ EM(rxrpc_txqueue_rotate_last, "RLS") \ E_(rxrpc_txqueue_wait, "WAI") #define rxrpc_txdata_traces \ EM(rxrpc_txdata_inject_loss, " *INJ-LOSS*") \ EM(rxrpc_txdata_new_data, " ") \ EM(rxrpc_txdata_retransmit, " *RETRANS*") \ EM(rxrpc_txdata_tlp_new_data, " *TLP-NEW*") \ E_(rxrpc_txdata_tlp_retransmit, " *TLP-RETRANS*") #define rxrpc_receive_traces \ EM(rxrpc_receive_end, "END") \ EM(rxrpc_receive_front, "FRN") \ EM(rxrpc_receive_incoming, "INC") \ EM(rxrpc_receive_queue, "QUE") \ EM(rxrpc_receive_queue_last, "QLS") \ EM(rxrpc_receive_queue_oos, "QUO") \ EM(rxrpc_receive_queue_oos_last, "QOL") \ EM(rxrpc_receive_oos, "OOS") \ EM(rxrpc_receive_oos_last, "OSL") \ EM(rxrpc_receive_rotate, "ROT") \ E_(rxrpc_receive_rotate_last, "RLS") #define rxrpc_recvmsg_traces \ EM(rxrpc_recvmsg_cont, "CONT") \ EM(rxrpc_recvmsg_data_return, "DATA") \ EM(rxrpc_recvmsg_dequeue, "DEQU") \ EM(rxrpc_recvmsg_enter, "ENTR") \ EM(rxrpc_recvmsg_full, "FULL") \ EM(rxrpc_recvmsg_hole, "HOLE") \ EM(rxrpc_recvmsg_next, "NEXT") \ EM(rxrpc_recvmsg_requeue, "REQU") \ EM(rxrpc_recvmsg_return, "RETN") \ EM(rxrpc_recvmsg_terminal, "TERM") \ EM(rxrpc_recvmsg_to_be_accepted, "TBAC") \ EM(rxrpc_recvmsg_unqueue, "UNQU") \ E_(rxrpc_recvmsg_wait, "WAIT") #define rxrpc_rtt_tx_traces \ EM(rxrpc_rtt_tx_cancel, "CNCE") \ EM(rxrpc_rtt_tx_data, "DATA") \ EM(rxrpc_rtt_tx_no_slot, "FULL") \ E_(rxrpc_rtt_tx_ping, "PING") #define rxrpc_rtt_rx_traces \ EM(rxrpc_rtt_rx_data_ack, "DACK") \ EM(rxrpc_rtt_rx_obsolete, "OBSL") \ EM(rxrpc_rtt_rx_lost, "LOST") \ E_(rxrpc_rtt_rx_ping_response, "PONG") #define rxrpc_timer_traces \ EM(rxrpc_timer_trace_delayed_ack, "DelayAck ") \ EM(rxrpc_timer_trace_expect_rx, "ExpectRx ") \ EM(rxrpc_timer_trace_hard, "HardLimit") \ EM(rxrpc_timer_trace_idle, "IdleLimit") \ EM(rxrpc_timer_trace_keepalive, "KeepAlive") \ EM(rxrpc_timer_trace_ping, "DelayPing") \ EM(rxrpc_timer_trace_rack_off, "RACK-OFF ") \ EM(rxrpc_timer_trace_rack_zwp, "RACK-ZWP ") \ EM(rxrpc_timer_trace_rack_reo, "RACK-Reo ") \ EM(rxrpc_timer_trace_rack_tlp_pto, "TLP-PTO ") \ E_(rxrpc_timer_trace_rack_rto, "RTO ") #define rxrpc_propose_ack_traces \ EM(rxrpc_propose_ack_client_tx_end, "ClTxEnd") \ EM(rxrpc_propose_ack_delayed_ack, "DlydAck") \ EM(rxrpc_propose_ack_input_data, "DataIn ") \ EM(rxrpc_propose_ack_input_data_hole, "DataInH") \ EM(rxrpc_propose_ack_ping_for_keepalive, "KeepAlv") \ EM(rxrpc_propose_ack_ping_for_lost_ack, "LostAck") \ EM(rxrpc_propose_ack_ping_for_lost_reply, "LostRpl") \ EM(rxrpc_propose_ack_ping_for_0_retrans, "0-Retrn") \ EM(rxrpc_propose_ack_ping_for_mtu_probe, "MTUProb") \ EM(rxrpc_propose_ack_ping_for_old_rtt, "OldRtt ") \ EM(rxrpc_propose_ack_ping_for_params, "Params ") \ EM(rxrpc_propose_ack_ping_for_rtt, "Rtt ") \ EM(rxrpc_propose_ack_processing_op, "ProcOp ") \ EM(rxrpc_propose_ack_respond_to_ack, "Rsp2Ack") \ EM(rxrpc_propose_ack_respond_to_ping, "Rsp2Png") \ EM(rxrpc_propose_ack_retransmit, "Retrans") \ EM(rxrpc_propose_ack_retry_tx, "RetryTx") \ EM(rxrpc_propose_ack_rotate_rx, "RxAck ") \ EM(rxrpc_propose_ack_rx_idle, "RxIdle ") \ E_(rxrpc_propose_ack_terminal_ack, "ClTerm ") #define rxrpc_ca_states \ EM(RXRPC_CA_CONGEST_AVOIDANCE, "CongAvoid") \ EM(RXRPC_CA_FAST_RETRANSMIT, "FastReTx ") \ EM(RXRPC_CA_PACKET_LOSS, "PktLoss ") \ E_(RXRPC_CA_SLOW_START, "SlowStart") #define rxrpc_congest_changes \ EM(rxrpc_cong_begin_retransmission, " Retrans") \ EM(rxrpc_cong_cleared_nacks, " Cleared") \ EM(rxrpc_cong_new_low_nack, " NewLowN") \ EM(rxrpc_cong_no_change, " -") \ EM(rxrpc_cong_progress, " Progres") \ EM(rxrpc_cong_idle_reset, " IdleRes") \ EM(rxrpc_cong_retransmit_again, " ReTxAgn") \ EM(rxrpc_cong_rtt_window_end, " RttWinE") \ E_(rxrpc_cong_saw_nack, " SawNack") #define rxrpc_pkts \ EM(0, "?00") \ EM(RXRPC_PACKET_TYPE_DATA, "DATA") \ EM(RXRPC_PACKET_TYPE_ACK, "ACK") \ EM(RXRPC_PACKET_TYPE_BUSY, "BUSY") \ EM(RXRPC_PACKET_TYPE_ABORT, "ABORT") \ EM(RXRPC_PACKET_TYPE_ACKALL, "ACKALL") \ EM(RXRPC_PACKET_TYPE_CHALLENGE, "CHALL") \ EM(RXRPC_PACKET_TYPE_RESPONSE, "RESP") \ EM(RXRPC_PACKET_TYPE_DEBUG, "DEBUG") \ EM(9, "?09") \ EM(10, "?10") \ EM(11, "?11") \ EM(12, "?12") \ EM(RXRPC_PACKET_TYPE_VERSION, "VERSION") \ EM(14, "?14") \ E_(15, "?15") #define rxrpc_ack_names \ EM(0, "-0-") \ EM(RXRPC_ACK_REQUESTED, "REQ") \ EM(RXRPC_ACK_DUPLICATE, "DUP") \ EM(RXRPC_ACK_OUT_OF_SEQUENCE, "OOS") \ EM(RXRPC_ACK_EXCEEDS_WINDOW, "WIN") \ EM(RXRPC_ACK_NOSPACE, "MEM") \ EM(RXRPC_ACK_PING, "PNG") \ EM(RXRPC_ACK_PING_RESPONSE, "PNR") \ EM(RXRPC_ACK_DELAY, "DLY") \ EM(RXRPC_ACK_IDLE, "IDL") \ E_(RXRPC_ACK__INVALID, "-?-") #define rxrpc_sack_traces \ EM(rxrpc_sack_advance, "ADV") \ EM(rxrpc_sack_fill, "FIL") \ EM(rxrpc_sack_nack, "NAK") \ EM(rxrpc_sack_none, "---") \ E_(rxrpc_sack_oos, "OOS") #define rxrpc_completions \ EM(RXRPC_CALL_SUCCEEDED, "Succeeded") \ EM(RXRPC_CALL_REMOTELY_ABORTED, "RemoteAbort") \ EM(RXRPC_CALL_LOCALLY_ABORTED, "LocalAbort") \ EM(RXRPC_CALL_LOCAL_ERROR, "LocalError") \ E_(RXRPC_CALL_NETWORK_ERROR, "NetError") #define rxrpc_tx_points \ EM(rxrpc_tx_point_call_abort, "CallAbort") \ EM(rxrpc_tx_point_call_ack, "CallAck") \ EM(rxrpc_tx_point_call_data_frag, "CallDataFrag") \ EM(rxrpc_tx_point_call_data_nofrag, "CallDataNofrag") \ EM(rxrpc_tx_point_call_final_resend, "CallFinalResend") \ EM(rxrpc_tx_point_conn_abort, "ConnAbort") \ EM(rxrpc_tx_point_reject, "Reject") \ EM(rxrpc_tx_point_rxkad_challenge, "RxkadChall") \ EM(rxrpc_tx_point_rxkad_response, "RxkadResp") \ EM(rxrpc_tx_point_version_keepalive, "VerKeepalive") \ E_(rxrpc_tx_point_version_reply, "VerReply") #define rxrpc_req_ack_traces \ EM(rxrpc_reqack_ack_lost, "ACK-LOST ") \ EM(rxrpc_reqack_app_stall, "APP-STALL ") \ EM(rxrpc_reqack_more_rtt, "MORE-RTT ") \ EM(rxrpc_reqack_no_srv_last, "NO-SRVLAST") \ EM(rxrpc_reqack_old_rtt, "OLD-RTT ") \ EM(rxrpc_reqack_retrans, "RETRANS ") \ EM(rxrpc_reqack_slow_start, "SLOW-START") \ E_(rxrpc_reqack_small_txwin, "SMALL-TXWN") /* ---- Must update size of stat_why_req_ack[] if more are added! */ #define rxrpc_txbuf_traces \ EM(rxrpc_txbuf_alloc_data, "ALLOC DATA ") \ EM(rxrpc_txbuf_free, "FREE ") \ EM(rxrpc_txbuf_get_buffer, "GET BUFFER ") \ EM(rxrpc_txbuf_get_trans, "GET TRANS ") \ EM(rxrpc_txbuf_get_retrans, "GET RETRANS") \ EM(rxrpc_txbuf_put_cleaned, "PUT CLEANED") \ EM(rxrpc_txbuf_put_nomem, "PUT NOMEM ") \ EM(rxrpc_txbuf_put_rotated, "PUT ROTATED") \ EM(rxrpc_txbuf_put_send_aborted, "PUT SEND-X ") \ EM(rxrpc_txbuf_put_trans, "PUT TRANS ") \ EM(rxrpc_txbuf_see_lost, "SEE LOST ") \ EM(rxrpc_txbuf_see_out_of_step, "OUT-OF-STEP") \ E_(rxrpc_txbuf_see_send_more, "SEE SEND+ ") #define rxrpc_tq_traces \ EM(rxrpc_tq_alloc, "ALLOC") \ EM(rxrpc_tq_cleaned, "CLEAN") \ EM(rxrpc_tq_decant, "DCNT ") \ EM(rxrpc_tq_decant_advance, "DCNT>") \ EM(rxrpc_tq_queue, "QUEUE") \ EM(rxrpc_tq_queue_dup, "QUE!!") \ EM(rxrpc_tq_rotate, "ROT ") \ EM(rxrpc_tq_rotate_and_free, "ROT-F") \ EM(rxrpc_tq_rotate_and_keep, "ROT-K") \ EM(rxrpc_tq_transmit, "XMIT ") \ E_(rxrpc_tq_transmit_advance, "XMIT>") #define rxrpc_pmtud_reduce_traces \ EM(rxrpc_pmtud_reduce_ack, "Ack ") \ EM(rxrpc_pmtud_reduce_icmp, "Icmp ") \ E_(rxrpc_pmtud_reduce_route, "Route") #define rxrpc_rotate_traces \ EM(rxrpc_rotate_trace_hack, "hard-ack") \ EM(rxrpc_rotate_trace_sack, "soft-ack") \ E_(rxrpc_rotate_trace_snak, "soft-nack") #define rxrpc_rack_timer_modes \ EM(RXRPC_CALL_RACKTIMER_OFF, "---") \ EM(RXRPC_CALL_RACKTIMER_RACK_REORDER, "REO") \ EM(RXRPC_CALL_RACKTIMER_TLP_PTO, "TLP") \ E_(RXRPC_CALL_RACKTIMER_RTO, "RTO") #define rxrpc_tlp_probe_traces \ EM(rxrpc_tlp_probe_trace_busy, "busy") \ EM(rxrpc_tlp_probe_trace_transmit_new, "transmit-new") \ E_(rxrpc_tlp_probe_trace_retransmit, "retransmit") #define rxrpc_tlp_ack_traces \ EM(rxrpc_tlp_ack_trace_acked, "acked") \ EM(rxrpc_tlp_ack_trace_dup_acked, "dup-acked") \ EM(rxrpc_tlp_ack_trace_hard_beyond, "hard-beyond") \ EM(rxrpc_tlp_ack_trace_incomplete, "incomplete") \ E_(rxrpc_tlp_ack_trace_new_data, "new-data") /* * Generate enums for tracing information. */ #ifndef __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY #define __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY #undef EM #undef E_ #define EM(a, b) a, #define E_(a, b) a enum rxrpc_abort_reason { rxrpc_abort_reasons } __mode(byte); enum rxrpc_bundle_trace { rxrpc_bundle_traces } __mode(byte); enum rxrpc_call_poke_trace { rxrpc_call_poke_traces } __mode(byte); enum rxrpc_call_trace { rxrpc_call_traces } __mode(byte); enum rxrpc_client_trace { rxrpc_client_traces } __mode(byte); enum rxrpc_congest_change { rxrpc_congest_changes } __mode(byte); enum rxrpc_conn_trace { rxrpc_conn_traces } __mode(byte); enum rxrpc_local_trace { rxrpc_local_traces } __mode(byte); enum rxrpc_peer_trace { rxrpc_peer_traces } __mode(byte); enum rxrpc_pmtud_reduce_trace { rxrpc_pmtud_reduce_traces } __mode(byte); enum rxrpc_propose_ack_outcome { rxrpc_propose_ack_outcomes } __mode(byte); enum rxrpc_propose_ack_trace { rxrpc_propose_ack_traces } __mode(byte); enum rxrpc_receive_trace { rxrpc_receive_traces } __mode(byte); enum rxrpc_recvmsg_trace { rxrpc_recvmsg_traces } __mode(byte); enum rxrpc_req_ack_trace { rxrpc_req_ack_traces } __mode(byte); enum rxrpc_rotate_trace { rxrpc_rotate_traces } __mode(byte); enum rxrpc_rtt_rx_trace { rxrpc_rtt_rx_traces } __mode(byte); enum rxrpc_rtt_tx_trace { rxrpc_rtt_tx_traces } __mode(byte); enum rxrpc_sack_trace { rxrpc_sack_traces } __mode(byte); enum rxrpc_skb_trace { rxrpc_skb_traces } __mode(byte); enum rxrpc_timer_trace { rxrpc_timer_traces } __mode(byte); enum rxrpc_tlp_ack_trace { rxrpc_tlp_ack_traces } __mode(byte); enum rxrpc_tlp_probe_trace { rxrpc_tlp_probe_traces } __mode(byte); enum rxrpc_tq_trace { rxrpc_tq_traces } __mode(byte); enum rxrpc_tx_point { rxrpc_tx_points } __mode(byte); enum rxrpc_txbuf_trace { rxrpc_txbuf_traces } __mode(byte); enum rxrpc_txdata_trace { rxrpc_txdata_traces } __mode(byte); enum rxrpc_txqueue_trace { rxrpc_txqueue_traces } __mode(byte); #endif /* end __RXRPC_DECLARE_TRACE_ENUMS_ONCE_ONLY */ /* * Export enum symbols via userspace. */ #undef EM #undef E_ #ifndef RXRPC_TRACE_ONLY_DEFINE_ENUMS #define EM(a, b) TRACE_DEFINE_ENUM(a); #define E_(a, b) TRACE_DEFINE_ENUM(a); rxrpc_abort_reasons; rxrpc_bundle_traces; rxrpc_ca_states; rxrpc_call_poke_traces; rxrpc_call_traces; rxrpc_client_traces; rxrpc_congest_changes; rxrpc_conn_traces; rxrpc_local_traces; rxrpc_pmtud_reduce_traces; rxrpc_propose_ack_traces; rxrpc_rack_timer_modes; rxrpc_receive_traces; rxrpc_recvmsg_traces; rxrpc_req_ack_traces; rxrpc_rotate_traces; rxrpc_rtt_rx_traces; rxrpc_rtt_tx_traces; rxrpc_sack_traces; rxrpc_skb_traces; rxrpc_timer_traces; rxrpc_tlp_ack_traces; rxrpc_tlp_probe_traces; rxrpc_tq_traces; rxrpc_tx_points; rxrpc_txbuf_traces; rxrpc_txdata_traces; rxrpc_txqueue_traces; /* * Now redefine the EM() and E_() macros to map the enums to the strings that * will be printed in the output. */ #undef EM #undef E_ #define EM(a, b) { a, b }, #define E_(a, b) { a, b } TRACE_EVENT(rxrpc_local, TP_PROTO(unsigned int local_debug_id, enum rxrpc_local_trace op, int ref, int usage), TP_ARGS(local_debug_id, op, ref, usage), TP_STRUCT__entry( __field(unsigned int, local) __field(int, op) __field(int, ref) __field(int, usage) ), TP_fast_assign( __entry->local = local_debug_id; __entry->op = op; __entry->ref = ref; __entry->usage = usage; ), TP_printk("L=%08x %s r=%d u=%d", __entry->local, __print_symbolic(__entry->op, rxrpc_local_traces), __entry->ref, __entry->usage) ); TRACE_EVENT(rxrpc_iothread_rx, TP_PROTO(struct rxrpc_local *local, unsigned int nr_rx), TP_ARGS(local, nr_rx), TP_STRUCT__entry( __field(unsigned int, local) __field(unsigned int, nr_rx) ), TP_fast_assign( __entry->local = local->debug_id; __entry->nr_rx = nr_rx; ), TP_printk("L=%08x nrx=%u", __entry->local, __entry->nr_rx) ); TRACE_EVENT(rxrpc_peer, TP_PROTO(unsigned int peer_debug_id, int ref, enum rxrpc_peer_trace why), TP_ARGS(peer_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, peer) __field(int, ref) __field(enum rxrpc_peer_trace, why) ), TP_fast_assign( __entry->peer = peer_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("P=%08x %s r=%d", __entry->peer, __print_symbolic(__entry->why, rxrpc_peer_traces), __entry->ref) ); TRACE_EVENT(rxrpc_bundle, TP_PROTO(unsigned int bundle_debug_id, int ref, enum rxrpc_bundle_trace why), TP_ARGS(bundle_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, bundle) __field(int, ref) __field(int, why) ), TP_fast_assign( __entry->bundle = bundle_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("CB=%08x %s r=%d", __entry->bundle, __print_symbolic(__entry->why, rxrpc_bundle_traces), __entry->ref) ); TRACE_EVENT(rxrpc_conn, TP_PROTO(unsigned int conn_debug_id, int ref, enum rxrpc_conn_trace why), TP_ARGS(conn_debug_id, ref, why), TP_STRUCT__entry( __field(unsigned int, conn) __field(int, ref) __field(int, why) ), TP_fast_assign( __entry->conn = conn_debug_id; __entry->ref = ref; __entry->why = why; ), TP_printk("C=%08x %s r=%d", __entry->conn, __print_symbolic(__entry->why, rxrpc_conn_traces), __entry->ref) ); TRACE_EVENT(rxrpc_client, TP_PROTO(struct rxrpc_connection *conn, int channel, enum rxrpc_client_trace op), TP_ARGS(conn, channel, op), TP_STRUCT__entry( __field(unsigned int, conn) __field(u32, cid) __field(int, channel) __field(int, usage) __field(enum rxrpc_client_trace, op) ), TP_fast_assign( __entry->conn = conn ? conn->debug_id : 0; __entry->channel = channel; __entry->usage = conn ? refcount_read(&conn->ref) : -2; __entry->op = op; __entry->cid = conn ? conn->proto.cid : 0; ), TP_printk("C=%08x h=%2d %s i=%08x u=%d", __entry->conn, __entry->channel, __print_symbolic(__entry->op, rxrpc_client_traces), __entry->cid, __entry->usage) ); TRACE_EVENT(rxrpc_call, TP_PROTO(unsigned int call_debug_id, int ref, unsigned long aux, enum rxrpc_call_trace why), TP_ARGS(call_debug_id, ref, aux, why), TP_STRUCT__entry( __field(unsigned int, call) __field(int, ref) __field(int, why) __field(unsigned long, aux) ), TP_fast_assign( __entry->call = call_debug_id; __entry->ref = ref; __entry->why = why; __entry->aux = aux; ), TP_printk("c=%08x %s r=%d a=%lx", __entry->call, __print_symbolic(__entry->why, rxrpc_call_traces), __entry->ref, __entry->aux) ); TRACE_EVENT(rxrpc_skb, TP_PROTO(struct sk_buff *skb, int usage, int mod_count, enum rxrpc_skb_trace why), TP_ARGS(skb, usage, mod_count, why), TP_STRUCT__entry( __field(struct sk_buff *, skb) __field(int, usage) __field(int, mod_count) __field(enum rxrpc_skb_trace, why) ), TP_fast_assign( __entry->skb = skb; __entry->usage = usage; __entry->mod_count = mod_count; __entry->why = why; ), TP_printk("s=%p Rx %s u=%d m=%d", __entry->skb, __print_symbolic(__entry->why, rxrpc_skb_traces), __entry->usage, __entry->mod_count) ); TRACE_EVENT(rxrpc_rx_packet, TP_PROTO(struct rxrpc_skb_priv *sp), TP_ARGS(sp), TP_STRUCT__entry( __field_struct(struct rxrpc_host_header, hdr) ), TP_fast_assign( memcpy(&__entry->hdr, &sp->hdr, sizeof(__entry->hdr)); ), TP_printk("%08x:%08x:%08x:%04x %08x %08x %02x %02x %s", __entry->hdr.epoch, __entry->hdr.cid, __entry->hdr.callNumber, __entry->hdr.serviceId, __entry->hdr.serial, __entry->hdr.seq, __entry->hdr.securityIndex, __entry->hdr.flags, __print_symbolic(__entry->hdr.type, rxrpc_pkts)) ); TRACE_EVENT(rxrpc_rx_done, TP_PROTO(int result, int abort_code), TP_ARGS(result, abort_code), TP_STRUCT__entry( __field(int, result) __field(int, abort_code) ), TP_fast_assign( __entry->result = result; __entry->abort_code = abort_code; ), TP_printk("r=%d a=%d", __entry->result, __entry->abort_code) ); TRACE_EVENT(rxrpc_abort_call, TP_PROTO(const struct rxrpc_call *call, int abort_code), TP_ARGS(call, abort_code), TP_STRUCT__entry( __field(unsigned int, call_nr) __field(enum rxrpc_abort_reason, why) __field(int, abort_code) __field(int, error) ), TP_fast_assign( __entry->call_nr = call->debug_id; __entry->why = call->send_abort_why; __entry->abort_code = abort_code; __entry->error = call->send_abort_err; ), TP_printk("c=%08x a=%d e=%d %s", __entry->call_nr, __entry->abort_code, __entry->error, __print_symbolic(__entry->why, rxrpc_abort_reasons)) ); TRACE_EVENT(rxrpc_abort, TP_PROTO(unsigned int call_nr, enum rxrpc_abort_reason why, u32 cid, u32 call_id, rxrpc_seq_t seq, int abort_code, int error), TP_ARGS(call_nr, why, cid, call_id, seq, abort_code, error), TP_STRUCT__entry( __field(unsigned int, call_nr) __field(enum rxrpc_abort_reason, why) __field(u32, cid) __field(u32, call_id) __field(rxrpc_seq_t, seq) __field(int, abort_code) __field(int, error) ), TP_fast_assign( __entry->call_nr = call_nr; __entry->why = why; __entry->cid = cid; __entry->call_id = call_id; __entry->abort_code = abort_code; __entry->error = error; __entry->seq = seq; ), TP_printk("c=%08x %08x:%08x s=%u a=%d e=%d %s", __entry->call_nr, __entry->cid, __entry->call_id, __entry->seq, __entry->abort_code, __entry->error, __print_symbolic(__entry->why, rxrpc_abort_reasons)) ); TRACE_EVENT(rxrpc_call_complete, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_call_completion, compl) __field(int, error) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->compl = call->completion; __entry->error = call->error; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x %s r=%d ac=%d", __entry->call, __print_symbolic(__entry->compl, rxrpc_completions), __entry->error, __entry->abort_code) ); TRACE_EVENT(rxrpc_txqueue, TP_PROTO(struct rxrpc_call *call, enum rxrpc_txqueue_trace why), TP_ARGS(call, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_txqueue_trace, why) __field(rxrpc_seq_t, tx_bottom) __field(rxrpc_seq_t, acks_hard_ack) __field(rxrpc_seq_t, tx_top) __field(rxrpc_seq_t, send_top) __field(int, tx_winsize) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->tx_bottom = call->tx_bottom; __entry->acks_hard_ack = call->acks_hard_ack; __entry->tx_top = call->tx_top; __entry->send_top = call->send_top; __entry->tx_winsize = call->tx_winsize; ), TP_printk("c=%08x %s b=%08x h=%08x n=%u/%u/%u/%u", __entry->call, __print_symbolic(__entry->why, rxrpc_txqueue_traces), __entry->tx_bottom, __entry->acks_hard_ack, __entry->acks_hard_ack - __entry->tx_bottom, __entry->tx_top - __entry->acks_hard_ack, __entry->send_top - __entry->tx_top, __entry->tx_winsize) ); TRACE_EVENT(rxrpc_transmit, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t send_top, int space), TP_ARGS(call, send_top, space), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(u16, space) __field(u16, tx_winsize) __field(u16, cong_cwnd) __field(u16, cong_extra) __field(u16, in_flight) __field(u16, prepared) __field(u16, pmtud_jumbo) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = call->tx_top + 1; __entry->space = space; __entry->tx_winsize = call->tx_winsize; __entry->cong_cwnd = call->cong_cwnd; __entry->cong_extra = call->cong_extra; __entry->prepared = send_top - call->tx_bottom; __entry->in_flight = call->tx_top - call->tx_bottom; __entry->pmtud_jumbo = call->peer->pmtud_jumbo; ), TP_printk("c=%08x q=%08x sp=%u tw=%u cw=%u+%u pr=%u if=%u pj=%u", __entry->call, __entry->seq, __entry->space, __entry->tx_winsize, __entry->cong_cwnd, __entry->cong_extra, __entry->prepared, __entry->in_flight, __entry->pmtud_jumbo) ); TRACE_EVENT(rxrpc_tx_rotate, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, rxrpc_seq_t to), TP_ARGS(call, seq, to), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, to) __field(rxrpc_seq_t, top) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = seq; __entry->to = to; __entry->top = call->tx_top; ), TP_printk("c=%08x q=%08x-%08x-%08x", __entry->call, __entry->seq, __entry->to, __entry->top) ); TRACE_EVENT(rxrpc_rx_data, TP_PROTO(unsigned int call, rxrpc_seq_t seq, rxrpc_serial_t serial, u8 flags), TP_ARGS(call, seq, serial, flags), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) __field(u8, flags) ), TP_fast_assign( __entry->call = call; __entry->seq = seq; __entry->serial = serial; __entry->flags = flags; ), TP_printk("c=%08x DATA %08x q=%08x fl=%02x", __entry->call, __entry->serial, __entry->seq, __entry->flags) ); TRACE_EVENT(rxrpc_rx_ack, TP_PROTO(struct rxrpc_call *call, struct rxrpc_skb_priv *sp), TP_ARGS(call, sp), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, first) __field(rxrpc_seq_t, prev) __field(u8, reason) __field(u8, n_acks) __field(u8, user_status) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = sp->hdr.serial; __entry->user_status = sp->hdr.userStatus; __entry->ack_serial = sp->ack.acked_serial; __entry->first = sp->ack.first_ack; __entry->prev = sp->ack.prev_ack; __entry->reason = sp->ack.reason; __entry->n_acks = sp->ack.nr_acks; ), TP_printk("c=%08x %08x %s r=%08x us=%02x f=%08x p=%08x n=%u", __entry->call, __entry->serial, __print_symbolic(__entry->reason, rxrpc_ack_names), __entry->ack_serial, __entry->user_status, __entry->first, __entry->prev, __entry->n_acks) ); TRACE_EVENT(rxrpc_rx_abort, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, u32 abort_code), TP_ARGS(call, serial, abort_code), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = serial; __entry->abort_code = abort_code; ), TP_printk("c=%08x ABORT %08x ac=%d", __entry->call, __entry->serial, __entry->abort_code) ); TRACE_EVENT(rxrpc_rx_conn_abort, TP_PROTO(const struct rxrpc_connection *conn, const struct sk_buff *skb), TP_ARGS(conn, skb), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, abort_code) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = rxrpc_skb(skb)->hdr.serial; __entry->abort_code = skb->priority; ), TP_printk("C=%08x ABORT %08x ac=%d", __entry->conn, __entry->serial, __entry->abort_code) ); TRACE_EVENT(rxrpc_rx_challenge, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t serial, u32 version, u32 nonce, u32 min_level), TP_ARGS(conn, serial, version, nonce, min_level), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, version) __field(u32, nonce) __field(u32, min_level) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = serial; __entry->version = version; __entry->nonce = nonce; __entry->min_level = min_level; ), TP_printk("C=%08x CHALLENGE %08x v=%x n=%x ml=%x", __entry->conn, __entry->serial, __entry->version, __entry->nonce, __entry->min_level) ); TRACE_EVENT(rxrpc_rx_response, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t serial, u32 version, u32 kvno, u32 ticket_len), TP_ARGS(conn, serial, version, kvno, ticket_len), TP_STRUCT__entry( __field(unsigned int, conn) __field(rxrpc_serial_t, serial) __field(u32, version) __field(u32, kvno) __field(u32, ticket_len) ), TP_fast_assign( __entry->conn = conn->debug_id; __entry->serial = serial; __entry->version = version; __entry->kvno = kvno; __entry->ticket_len = ticket_len; ), TP_printk("C=%08x RESPONSE %08x v=%x kvno=%x tl=%x", __entry->conn, __entry->serial, __entry->version, __entry->kvno, __entry->ticket_len) ); TRACE_EVENT(rxrpc_rx_rwind_change, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, u32 rwind, bool wake), TP_ARGS(call, serial, rwind, wake), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(u32, rwind) __field(bool, wake) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = serial; __entry->rwind = rwind; __entry->wake = wake; ), TP_printk("c=%08x %08x rw=%u%s", __entry->call, __entry->serial, __entry->rwind, __entry->wake ? " wake" : "") ); TRACE_EVENT(rxrpc_tx_packet, TP_PROTO(unsigned int call_id, struct rxrpc_wire_header *whdr, enum rxrpc_tx_point where), TP_ARGS(call_id, whdr, where), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_tx_point, where) __field_struct(struct rxrpc_wire_header, whdr) ), TP_fast_assign( __entry->call = call_id; memcpy(&__entry->whdr, whdr, sizeof(__entry->whdr)); __entry->where = where; ), TP_printk("c=%08x %08x:%08x:%08x:%04x %08x %08x %02x %02x %s %s", __entry->call, ntohl(__entry->whdr.epoch), ntohl(__entry->whdr.cid), ntohl(__entry->whdr.callNumber), ntohs(__entry->whdr.serviceId), ntohl(__entry->whdr.serial), ntohl(__entry->whdr.seq), __entry->whdr.type, __entry->whdr.flags, __entry->whdr.type <= 15 ? __print_symbolic(__entry->whdr.type, rxrpc_pkts) : "?UNK", __print_symbolic(__entry->where, rxrpc_tx_points)) ); TRACE_EVENT(rxrpc_tx_data, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, rxrpc_serial_t serial, unsigned int flags, enum rxrpc_txdata_trace trace), TP_ARGS(call, seq, serial, flags, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) __field(u32, cid) __field(u32, call_id) __field(u16, flags) __field(enum rxrpc_txdata_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->seq = seq; __entry->serial = serial; __entry->flags = flags; __entry->trace = trace; ), TP_printk("c=%08x DATA %08x:%08x %08x q=%08x fl=%02x%s", __entry->call, __entry->cid, __entry->call_id, __entry->serial, __entry->seq, __entry->flags & RXRPC_TXBUF_WIRE_FLAGS, __print_symbolic(__entry->trace, rxrpc_txdata_traces)) ); TRACE_EVENT(rxrpc_tx_ack, TP_PROTO(unsigned int call, rxrpc_serial_t serial, rxrpc_seq_t ack_first, rxrpc_serial_t ack_serial, u8 reason, u8 n_acks, u16 rwind, enum rxrpc_propose_ack_trace trace), TP_ARGS(call, serial, ack_first, ack_serial, reason, n_acks, rwind, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, ack_first) __field(rxrpc_serial_t, ack_serial) __field(u8, reason) __field(u8, n_acks) __field(u16, rwind) __field(enum rxrpc_propose_ack_trace, trace) ), TP_fast_assign( __entry->call = call; __entry->serial = serial; __entry->ack_first = ack_first; __entry->ack_serial = ack_serial; __entry->reason = reason; __entry->n_acks = n_acks; __entry->rwind = rwind; __entry->trace = trace; ), TP_printk(" c=%08x ACK %08x %s f=%08x r=%08x n=%u rw=%u %s", __entry->call, __entry->serial, __print_symbolic(__entry->reason, rxrpc_ack_names), __entry->ack_first, __entry->ack_serial, __entry->n_acks, __entry->rwind, __print_symbolic(__entry->trace, rxrpc_propose_ack_traces)) ); TRACE_EVENT(rxrpc_receive, TP_PROTO(struct rxrpc_call *call, enum rxrpc_receive_trace why, rxrpc_serial_t serial, rxrpc_seq_t seq), TP_ARGS(call, why, serial, seq), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_receive_trace, why) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, window) __field(rxrpc_seq_t, wtop) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->seq = seq; __entry->window = call->ackr_window; __entry->wtop = call->ackr_wtop; ), TP_printk("c=%08x %s r=%08x q=%08x w=%08x-%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_receive_traces), __entry->serial, __entry->seq, __entry->window, __entry->wtop) ); TRACE_EVENT(rxrpc_recvmsg, TP_PROTO(unsigned int call_debug_id, enum rxrpc_recvmsg_trace why, int ret), TP_ARGS(call_debug_id, why, ret), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_recvmsg_trace, why) __field(int, ret) ), TP_fast_assign( __entry->call = call_debug_id; __entry->why = why; __entry->ret = ret; ), TP_printk("c=%08x %s ret=%d", __entry->call, __print_symbolic(__entry->why, rxrpc_recvmsg_traces), __entry->ret) ); TRACE_EVENT(rxrpc_recvdata, TP_PROTO(struct rxrpc_call *call, enum rxrpc_recvmsg_trace why, rxrpc_seq_t seq, unsigned int offset, unsigned int len, int ret), TP_ARGS(call, why, seq, offset, len, ret), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_recvmsg_trace, why) __field(rxrpc_seq_t, seq) __field(unsigned int, offset) __field(unsigned int, len) __field(int, ret) ), TP_fast_assign( __entry->call = call ? call->debug_id : 0; __entry->why = why; __entry->seq = seq; __entry->offset = offset; __entry->len = len; __entry->ret = ret; ), TP_printk("c=%08x %s q=%08x o=%u l=%u ret=%d", __entry->call, __print_symbolic(__entry->why, rxrpc_recvmsg_traces), __entry->seq, __entry->offset, __entry->len, __entry->ret) ); TRACE_EVENT(rxrpc_rtt_tx, TP_PROTO(struct rxrpc_call *call, enum rxrpc_rtt_tx_trace why, int slot, rxrpc_serial_t send_serial), TP_ARGS(call, why, slot, send_serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_rtt_tx_trace, why) __field(int, slot) __field(rxrpc_serial_t, send_serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->slot = slot; __entry->send_serial = send_serial; ), TP_printk("c=%08x [%d] %s sr=%08x", __entry->call, __entry->slot, __print_symbolic(__entry->why, rxrpc_rtt_tx_traces), __entry->send_serial) ); TRACE_EVENT(rxrpc_rtt_rx, TP_PROTO(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why, int slot, rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial, u32 rtt, u32 srtt, u32 rto), TP_ARGS(call, why, slot, send_serial, resp_serial, rtt, srtt, rto), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_rtt_rx_trace, why) __field(int, slot) __field(rxrpc_serial_t, send_serial) __field(rxrpc_serial_t, resp_serial) __field(u32, rtt) __field(u32, srtt) __field(u32, rto) __field(u32, min_rtt) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->slot = slot; __entry->send_serial = send_serial; __entry->resp_serial = resp_serial; __entry->rtt = rtt; __entry->srtt = srtt; __entry->rto = rto; __entry->min_rtt = minmax_get(&call->min_rtt) ), TP_printk("c=%08x [%d] %s sr=%08x rr=%08x rtt=%u srtt=%u rto=%u min=%u", __entry->call, __entry->slot, __print_symbolic(__entry->why, rxrpc_rtt_rx_traces), __entry->send_serial, __entry->resp_serial, __entry->rtt, __entry->srtt / 8, __entry->rto, __entry->min_rtt) ); TRACE_EVENT(rxrpc_timer_set, TP_PROTO(struct rxrpc_call *call, ktime_t delay, enum rxrpc_timer_trace why), TP_ARGS(call, delay, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->delay = delay; ), TP_printk("c=%08x %s to=%lld", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces), ktime_to_us(__entry->delay)) ); TRACE_EVENT(rxrpc_timer_exp, TP_PROTO(struct rxrpc_call *call, ktime_t delay, enum rxrpc_timer_trace why), TP_ARGS(call, delay, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->delay = delay; ), TP_printk("c=%08x %s to=%lld", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces), ktime_to_us(__entry->delay)) ); TRACE_EVENT(rxrpc_timer_can, TP_PROTO(struct rxrpc_call *call, enum rxrpc_timer_trace why), TP_ARGS(call, why), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_timer_trace, why) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; ), TP_printk("c=%08x %s", __entry->call, __print_symbolic(__entry->why, rxrpc_timer_traces)) ); TRACE_EVENT(rxrpc_timer_restart, TP_PROTO(struct rxrpc_call *call, ktime_t delay, unsigned long delayj), TP_ARGS(call, delay, delayj), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned long, delayj) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->delayj = delayj; __entry->delay = delay; ), TP_printk("c=%08x to=%lld j=%ld", __entry->call, ktime_to_us(__entry->delay), __entry->delayj) ); TRACE_EVENT(rxrpc_timer_expired, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) ), TP_fast_assign( __entry->call = call->debug_id; ), TP_printk("c=%08x EXPIRED", __entry->call) ); TRACE_EVENT(rxrpc_rx_lose, TP_PROTO(struct rxrpc_skb_priv *sp), TP_ARGS(sp), TP_STRUCT__entry( __field_struct(struct rxrpc_host_header, hdr) ), TP_fast_assign( memcpy(&__entry->hdr, &sp->hdr, sizeof(__entry->hdr)); ), TP_printk("%08x:%08x:%08x:%04x %08x %08x %02x %02x %s *LOSE*", __entry->hdr.epoch, __entry->hdr.cid, __entry->hdr.callNumber, __entry->hdr.serviceId, __entry->hdr.serial, __entry->hdr.seq, __entry->hdr.type, __entry->hdr.flags, __entry->hdr.type <= 15 ? __print_symbolic(__entry->hdr.type, rxrpc_pkts) : "?UNK") ); TRACE_EVENT(rxrpc_propose_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial), TP_ARGS(call, why, ack_reason, serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; ), TP_printk("c=%08x %s %s r=%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial) ); TRACE_EVENT(rxrpc_send_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial), TP_ARGS(call, why, ack_reason, serial), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; ), TP_printk("c=%08x %s %s r=%08x", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial) ); TRACE_EVENT(rxrpc_drop_ack, TP_PROTO(struct rxrpc_call *call, enum rxrpc_propose_ack_trace why, u8 ack_reason, rxrpc_serial_t serial, bool nobuf), TP_ARGS(call, why, ack_reason, serial, nobuf), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_propose_ack_trace, why) __field(rxrpc_serial_t, serial) __field(u8, ack_reason) __field(bool, nobuf) ), TP_fast_assign( __entry->call = call->debug_id; __entry->why = why; __entry->serial = serial; __entry->ack_reason = ack_reason; __entry->nobuf = nobuf; ), TP_printk("c=%08x %s %s r=%08x nbf=%u", __entry->call, __print_symbolic(__entry->why, rxrpc_propose_ack_traces), __print_symbolic(__entry->ack_reason, rxrpc_ack_names), __entry->serial, __entry->nobuf) ); TRACE_EVENT(rxrpc_retransmit, TP_PROTO(struct rxrpc_call *call, struct rxrpc_send_data_req *req, struct rxrpc_txbuf *txb), TP_ARGS(call, req, txb), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned int, qbase) __field(rxrpc_seq_t, seq) __field(rxrpc_serial_t, serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = req->tq->qbase; __entry->seq = req->seq; __entry->serial = txb->serial; ), TP_printk("c=%08x tq=%x q=%x r=%x", __entry->call, __entry->qbase, __entry->seq, __entry->serial) ); TRACE_EVENT(rxrpc_congest, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary), TP_ARGS(call, summary), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_ca_state, ca_state) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, top) __field(rxrpc_seq_t, lowest_nak) __field(u16, nr_sacks) __field(u16, nr_snacks) __field(u16, cwnd) __field(u16, ssthresh) __field(u16, cumul_acks) __field(u16, dup_acks) __field_struct(struct rxrpc_ack_summary, sum) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ca_state = call->cong_ca_state; __entry->hard_ack = call->acks_hard_ack; __entry->top = call->tx_top; __entry->lowest_nak = call->acks_lowest_nak; __entry->nr_sacks = call->acks_nr_sacks; __entry->nr_snacks = call->acks_nr_snacks; __entry->cwnd = call->cong_cwnd; __entry->ssthresh = call->cong_ssthresh; __entry->cumul_acks = call->cong_cumul_acks; __entry->dup_acks = call->cong_dup_acks; memcpy(&__entry->sum, summary, sizeof(__entry->sum)); ), TP_printk("c=%08x r=%08x %s q=%08x %s cw=%u ss=%u A=%u+%u/%u+%u r=%u b=%u u=%u d=%u l=%x%s%s%s", __entry->call, __entry->sum.acked_serial, __print_symbolic(__entry->sum.ack_reason, rxrpc_ack_names), __entry->hard_ack, __print_symbolic(__entry->ca_state, rxrpc_ca_states), __entry->cwnd, __entry->ssthresh, __entry->nr_sacks, __entry->sum.nr_new_sacks, __entry->nr_snacks, __entry->sum.nr_new_snacks, __entry->sum.nr_new_hacks, __entry->top - __entry->hard_ack, __entry->cumul_acks, __entry->dup_acks, __entry->lowest_nak, __entry->sum.new_low_snack ? "!" : "", __print_symbolic(__entry->sum.change, rxrpc_congest_changes), __entry->sum.retrans_timeo ? " rTxTo" : "") ); TRACE_EVENT(rxrpc_reset_cwnd, TP_PROTO(struct rxrpc_call *call, ktime_t since_last_tx, ktime_t rtt), TP_ARGS(call, since_last_tx, rtt), TP_STRUCT__entry( __field(unsigned int, call) __field(enum rxrpc_ca_state, ca_state) __field(unsigned short, cwnd) __field(unsigned short, extra) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, prepared) __field(ktime_t, since_last_tx) __field(ktime_t, rtt) __field(bool, has_data) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ca_state = call->cong_ca_state; __entry->cwnd = call->cong_cwnd; __entry->extra = call->cong_extra; __entry->hard_ack = call->acks_hard_ack; __entry->prepared = call->send_top - call->tx_bottom; __entry->since_last_tx = since_last_tx; __entry->rtt = rtt; __entry->has_data = call->tx_bottom != call->tx_top; ), TP_printk("c=%08x q=%08x %s cw=%u+%u pr=%u tm=%llu/%llu d=%u", __entry->call, __entry->hard_ack, __print_symbolic(__entry->ca_state, rxrpc_ca_states), __entry->cwnd, __entry->extra, __entry->prepared, ktime_to_us(__entry->since_last_tx), ktime_to_us(__entry->rtt), __entry->has_data) ); TRACE_EVENT(rxrpc_disconnect_call, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x ab=%08x", __entry->call, __entry->abort_code) ); TRACE_EVENT(rxrpc_improper_term, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(u32, abort_code) ), TP_fast_assign( __entry->call = call->debug_id; __entry->abort_code = call->abort_code; ), TP_printk("c=%08x ab=%08x", __entry->call, __entry->abort_code) ); TRACE_EVENT(rxrpc_connect_call, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned long, user_call_ID) __field(u32, cid) __field(u32, call_id) __field_struct(struct sockaddr_rxrpc, srx) ), TP_fast_assign( __entry->call = call->debug_id; __entry->user_call_ID = call->user_call_ID; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->srx = call->dest_srx; ), TP_printk("c=%08x u=%p %08x:%08x dst=%pISp", __entry->call, (void *)__entry->user_call_ID, __entry->cid, __entry->call_id, &__entry->srx.transport) ); TRACE_EVENT(rxrpc_apply_acks, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq), TP_ARGS(call, tq), TP_STRUCT__entry( __field(unsigned int, call) __field(unsigned int, nr_rep) __field(rxrpc_seq_t, qbase) __field(unsigned long, acks) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->acks = tq->segment_acked; __entry->nr_rep = tq->nr_reported_acks; ), TP_printk("c=%08x tq=%x acks=%016lx rep=%u", __entry->call, __entry->qbase, __entry->acks, __entry->nr_rep) ); TRACE_EVENT(rxrpc_resend, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t ack_serial), TP_ARGS(call, ack_serial), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, seq) __field(rxrpc_seq_t, transmitted) __field(rxrpc_serial_t, ack_serial) ), TP_fast_assign( __entry->call = call->debug_id; __entry->seq = call->acks_hard_ack; __entry->transmitted = call->tx_transmitted; __entry->ack_serial = ack_serial; ), TP_printk("c=%08x r=%x q=%x tq=%x", __entry->call, __entry->ack_serial, __entry->seq, __entry->transmitted) ); TRACE_EVENT(rxrpc_resend_lost, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, unsigned long lost), TP_ARGS(call, tq, lost), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(u8, nr_rep) __field(unsigned long, lost) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->nr_rep = tq->nr_reported_acks; __entry->lost = lost; ), TP_printk("c=%08x tq=%x lost=%016lx nr=%u", __entry->call, __entry->qbase, __entry->lost, __entry->nr_rep) ); TRACE_EVENT(rxrpc_rotate, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, struct rxrpc_ack_summary *summary, rxrpc_seq_t seq, enum rxrpc_rotate_trace trace), TP_ARGS(call, tq, summary, seq, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, seq) __field(unsigned int, nr_rep) __field(enum rxrpc_rotate_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->seq = seq; __entry->nr_rep = tq->nr_reported_acks; __entry->trace = trace; ), TP_printk("c=%08x tq=%x q=%x nr=%x %s", __entry->call, __entry->qbase, __entry->seq, __entry->nr_rep, __print_symbolic(__entry->trace, rxrpc_rotate_traces)) ); TRACE_EVENT(rxrpc_rx_icmp, TP_PROTO(struct rxrpc_peer *peer, struct sock_extended_err *ee, struct sockaddr_rxrpc *srx), TP_ARGS(peer, ee, srx), TP_STRUCT__entry( __field(unsigned int, peer) __field_struct(struct sock_extended_err, ee) __field_struct(struct sockaddr_rxrpc, srx) ), TP_fast_assign( __entry->peer = peer->debug_id; memcpy(&__entry->ee, ee, sizeof(__entry->ee)); memcpy(&__entry->srx, srx, sizeof(__entry->srx)); ), TP_printk("P=%08x o=%u t=%u c=%u i=%u d=%u e=%d %pISp", __entry->peer, __entry->ee.ee_origin, __entry->ee.ee_type, __entry->ee.ee_code, __entry->ee.ee_info, __entry->ee.ee_data, __entry->ee.ee_errno, &__entry->srx.transport) ); TRACE_EVENT(rxrpc_tx_fail, TP_PROTO(unsigned int debug_id, rxrpc_serial_t serial, int ret, enum rxrpc_tx_point where), TP_ARGS(debug_id, serial, ret, where), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) __field(int, ret) __field(enum rxrpc_tx_point, where) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->serial = serial; __entry->ret = ret; __entry->where = where; ), TP_printk("c=%08x r=%x ret=%d %s", __entry->debug_id, __entry->serial, __entry->ret, __print_symbolic(__entry->where, rxrpc_tx_points)) ); TRACE_EVENT(rxrpc_call_reset, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(u32, cid) __field(u32, call_id) __field(rxrpc_serial_t, call_serial) __field(rxrpc_serial_t, conn_serial) __field(rxrpc_seq_t, tx_seq) __field(rxrpc_seq_t, rx_seq) ), TP_fast_assign( __entry->debug_id = call->debug_id; __entry->cid = call->cid; __entry->call_id = call->call_id; __entry->call_serial = call->rx_serial; __entry->conn_serial = call->conn->hi_serial; __entry->tx_seq = call->acks_hard_ack; __entry->rx_seq = call->rx_highest_seq; ), TP_printk("c=%08x %08x:%08x r=%08x/%08x tx=%08x rx=%08x", __entry->debug_id, __entry->cid, __entry->call_id, __entry->call_serial, __entry->conn_serial, __entry->tx_seq, __entry->rx_seq) ); TRACE_EVENT(rxrpc_notify_socket, TP_PROTO(unsigned int debug_id, rxrpc_serial_t serial), TP_ARGS(debug_id, serial), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->serial = serial; ), TP_printk("c=%08x r=%08x", __entry->debug_id, __entry->serial) ); TRACE_EVENT(rxrpc_rx_discard_ack, TP_PROTO(struct rxrpc_call *call, rxrpc_serial_t serial, rxrpc_seq_t hard_ack, rxrpc_seq_t prev_pkt), TP_ARGS(call, serial, hard_ack, prev_pkt), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, hard_ack) __field(rxrpc_seq_t, prev_pkt) __field(rxrpc_seq_t, acks_hard_ack) __field(rxrpc_seq_t, acks_prev_seq) ), TP_fast_assign( __entry->debug_id = call->debug_id; __entry->serial = serial; __entry->hard_ack = hard_ack; __entry->prev_pkt = prev_pkt; __entry->acks_hard_ack = call->acks_hard_ack; __entry->acks_prev_seq = call->acks_prev_seq; ), TP_printk("c=%08x r=%08x %08x<%08x %08x<%08x", __entry->debug_id, __entry->serial, __entry->hard_ack, __entry->acks_hard_ack, __entry->prev_pkt, __entry->acks_prev_seq) ); TRACE_EVENT(rxrpc_req_ack, TP_PROTO(unsigned int call_debug_id, rxrpc_seq_t seq, enum rxrpc_req_ack_trace why), TP_ARGS(call_debug_id, seq, why), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(enum rxrpc_req_ack_trace, why) ), TP_fast_assign( __entry->call_debug_id = call_debug_id; __entry->seq = seq; __entry->why = why; ), TP_printk("c=%08x q=%08x REQ-%s", __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->why, rxrpc_req_ack_traces)) ); TRACE_EVENT(rxrpc_txbuf, TP_PROTO(unsigned int debug_id, unsigned int call_debug_id, rxrpc_seq_t seq, int ref, enum rxrpc_txbuf_trace what), TP_ARGS(debug_id, call_debug_id, seq, ref, what), TP_STRUCT__entry( __field(unsigned int, debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(int, ref) __field(enum rxrpc_txbuf_trace, what) ), TP_fast_assign( __entry->debug_id = debug_id; __entry->call_debug_id = call_debug_id; __entry->seq = seq; __entry->ref = ref; __entry->what = what; ), TP_printk("B=%08x c=%08x q=%08x %s r=%d", __entry->debug_id, __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->what, rxrpc_txbuf_traces), __entry->ref) ); TRACE_EVENT(rxrpc_tq, TP_PROTO(struct rxrpc_call *call, struct rxrpc_txqueue *tq, rxrpc_seq_t seq, enum rxrpc_tq_trace trace), TP_ARGS(call, tq, seq, trace), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, seq) __field(enum rxrpc_tq_trace, trace) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->qbase = tq ? tq->qbase : call->tx_qbase; __entry->seq = seq; __entry->trace = trace; ), TP_printk("c=%08x bq=%08x q=%08x %s", __entry->call_debug_id, __entry->qbase, __entry->seq, __print_symbolic(__entry->trace, rxrpc_tq_traces)) ); TRACE_EVENT(rxrpc_poke_call, TP_PROTO(struct rxrpc_call *call, bool busy, enum rxrpc_call_poke_trace what), TP_ARGS(call, busy, what), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(bool, busy) __field(enum rxrpc_call_poke_trace, what) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->busy = busy; __entry->what = what; ), TP_printk("c=%08x %s%s", __entry->call_debug_id, __print_symbolic(__entry->what, rxrpc_call_poke_traces), __entry->busy ? "!" : "") ); TRACE_EVENT(rxrpc_call_poked, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call_debug_id) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; ), TP_printk("c=%08x", __entry->call_debug_id) ); TRACE_EVENT(rxrpc_sack, TP_PROTO(struct rxrpc_call *call, rxrpc_seq_t seq, unsigned int sack, enum rxrpc_sack_trace what), TP_ARGS(call, seq, sack, what), TP_STRUCT__entry( __field(unsigned int, call_debug_id) __field(rxrpc_seq_t, seq) __field(unsigned int, sack) __field(enum rxrpc_sack_trace, what) ), TP_fast_assign( __entry->call_debug_id = call->debug_id; __entry->seq = seq; __entry->sack = sack; __entry->what = what; ), TP_printk("c=%08x q=%08x %s k=%x", __entry->call_debug_id, __entry->seq, __print_symbolic(__entry->what, rxrpc_sack_traces), __entry->sack) ); TRACE_EVENT(rxrpc_pmtud_tx, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(unsigned short, pmtud_trial) __field(unsigned short, pmtud_good) __field(unsigned short, pmtud_bad) ), TP_fast_assign( __entry->peer_debug_id = call->peer->debug_id; __entry->call_debug_id = call->debug_id; __entry->ping_serial = call->conn->pmtud_probe; __entry->pmtud_trial = call->peer->pmtud_trial; __entry->pmtud_good = call->peer->pmtud_good; __entry->pmtud_bad = call->peer->pmtud_bad; ), TP_printk("P=%08x c=%08x pr=%08x %u-%u-%u", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->pmtud_good, __entry->pmtud_trial, __entry->pmtud_bad) ); TRACE_EVENT(rxrpc_pmtud_rx, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t resp_serial), TP_ARGS(conn, resp_serial), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(rxrpc_serial_t, resp_serial) __field(unsigned short, max_data) __field(u8, jumbo_max) ), TP_fast_assign( __entry->peer_debug_id = conn->peer->debug_id; __entry->call_debug_id = conn->pmtud_call; __entry->ping_serial = conn->pmtud_probe; __entry->resp_serial = resp_serial; __entry->max_data = conn->peer->max_data; __entry->jumbo_max = conn->peer->pmtud_jumbo; ), TP_printk("P=%08x c=%08x pr=%08x rr=%08x max=%u jm=%u", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->resp_serial, __entry->max_data, __entry->jumbo_max) ); TRACE_EVENT(rxrpc_pmtud_lost, TP_PROTO(struct rxrpc_connection *conn, rxrpc_serial_t resp_serial), TP_ARGS(conn, resp_serial), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(unsigned int, call_debug_id) __field(rxrpc_serial_t, ping_serial) __field(rxrpc_serial_t, resp_serial) ), TP_fast_assign( __entry->peer_debug_id = conn->peer->debug_id; __entry->call_debug_id = conn->pmtud_call; __entry->ping_serial = conn->pmtud_probe; __entry->resp_serial = resp_serial; ), TP_printk("P=%08x c=%08x pr=%08x rr=%08x", __entry->peer_debug_id, __entry->call_debug_id, __entry->ping_serial, __entry->resp_serial) ); TRACE_EVENT(rxrpc_pmtud_reduce, TP_PROTO(struct rxrpc_peer *peer, rxrpc_serial_t serial, unsigned int max_data, enum rxrpc_pmtud_reduce_trace reason), TP_ARGS(peer, serial, max_data, reason), TP_STRUCT__entry( __field(unsigned int, peer_debug_id) __field(rxrpc_serial_t, serial) __field(unsigned int, max_data) __field(enum rxrpc_pmtud_reduce_trace, reason) ), TP_fast_assign( __entry->peer_debug_id = peer->debug_id; __entry->serial = serial; __entry->max_data = max_data; __entry->reason = reason; ), TP_printk("P=%08x %s r=%08x m=%u", __entry->peer_debug_id, __print_symbolic(__entry->reason, rxrpc_pmtud_reduce_traces), __entry->serial, __entry->max_data) ); TRACE_EVENT(rxrpc_rack, TP_PROTO(struct rxrpc_call *call, ktime_t timo), TP_ARGS(call, timo), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) __field(enum rxrpc_rack_timer_mode, mode) __field(unsigned short, nr_sent) __field(unsigned short, nr_lost) __field(unsigned short, nr_resent) __field(unsigned short, nr_sacked) __field(ktime_t, timo) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = call->rack_end_seq; __entry->mode = call->rack_timer_mode; __entry->nr_sent = call->tx_nr_sent; __entry->nr_lost = call->tx_nr_lost; __entry->nr_resent = call->tx_nr_resent; __entry->nr_sacked = call->acks_nr_sacks; __entry->timo = timo; ), TP_printk("c=%08x r=%08x q=%08x %s slrs=%u,%u,%u,%u t=%lld", __entry->call, __entry->ack_serial, __entry->seq, __print_symbolic(__entry->mode, rxrpc_rack_timer_modes), __entry->nr_sent, __entry->nr_lost, __entry->nr_resent, __entry->nr_sacked, ktime_to_us(__entry->timo)) ); TRACE_EVENT(rxrpc_rack_update, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary), TP_ARGS(call, summary), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) __field(int, xmit_ts) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = call->rack_end_seq; __entry->xmit_ts = ktime_sub(call->acks_latest_ts, call->rack_xmit_ts); ), TP_printk("c=%08x r=%08x q=%08x xt=%lld", __entry->call, __entry->ack_serial, __entry->seq, ktime_to_us(__entry->xmit_ts)) ); TRACE_EVENT(rxrpc_rack_scan_loss, TP_PROTO(struct rxrpc_call *call), TP_ARGS(call), TP_STRUCT__entry( __field(unsigned int, call) __field(ktime_t, rack_rtt) __field(ktime_t, rack_reo_wnd) ), TP_fast_assign( __entry->call = call->debug_id; __entry->rack_rtt = call->rack_rtt; __entry->rack_reo_wnd = call->rack_reo_wnd; ), TP_printk("c=%08x rtt=%lld reow=%lld", __entry->call, ktime_to_us(__entry->rack_rtt), ktime_to_us(__entry->rack_reo_wnd)) ); TRACE_EVENT(rxrpc_rack_scan_loss_tq, TP_PROTO(struct rxrpc_call *call, const struct rxrpc_txqueue *tq, unsigned long nacks), TP_ARGS(call, tq, nacks), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(unsigned long, nacks) __field(unsigned long, lost) __field(unsigned long, retrans) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->nacks = nacks; __entry->lost = tq->segment_lost; __entry->retrans = tq->segment_retransmitted; ), TP_printk("c=%08x q=%08x n=%lx l=%lx r=%lx", __entry->call, __entry->qbase, __entry->nacks, __entry->lost, __entry->retrans) ); TRACE_EVENT(rxrpc_rack_detect_loss, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, rxrpc_seq_t seq), TP_ARGS(call, summary, seq), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, ack_serial) __field(rxrpc_seq_t, seq) ), TP_fast_assign( __entry->call = call->debug_id; __entry->ack_serial = call->rx_serial; __entry->seq = seq; ), TP_printk("c=%08x r=%08x q=%08x", __entry->call, __entry->ack_serial, __entry->seq) ); TRACE_EVENT(rxrpc_rack_mark_loss_tq, TP_PROTO(struct rxrpc_call *call, const struct rxrpc_txqueue *tq), TP_ARGS(call, tq), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_seq_t, qbase) __field(rxrpc_seq_t, trans) __field(unsigned long, acked) __field(unsigned long, lost) __field(unsigned long, retrans) ), TP_fast_assign( __entry->call = call->debug_id; __entry->qbase = tq->qbase; __entry->trans = call->tx_transmitted; __entry->acked = tq->segment_acked; __entry->lost = tq->segment_lost; __entry->retrans = tq->segment_retransmitted; ), TP_printk("c=%08x tq=%08x txq=%08x a=%lx l=%lx r=%lx", __entry->call, __entry->qbase, __entry->trans, __entry->acked, __entry->lost, __entry->retrans) ); TRACE_EVENT(rxrpc_tlp_probe, TP_PROTO(struct rxrpc_call *call, enum rxrpc_tlp_probe_trace trace), TP_ARGS(call, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, seq) __field(enum rxrpc_tlp_probe_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = call->tlp_serial; __entry->seq = call->tlp_seq; __entry->trace = trace; ), TP_printk("c=%08x r=%08x pq=%08x %s", __entry->call, __entry->serial, __entry->seq, __print_symbolic(__entry->trace, rxrpc_tlp_probe_traces)) ); TRACE_EVENT(rxrpc_tlp_ack, TP_PROTO(struct rxrpc_call *call, struct rxrpc_ack_summary *summary, enum rxrpc_tlp_ack_trace trace), TP_ARGS(call, summary, trace), TP_STRUCT__entry( __field(unsigned int, call) __field(rxrpc_serial_t, serial) __field(rxrpc_seq_t, tlp_seq) __field(rxrpc_seq_t, hard_ack) __field(enum rxrpc_tlp_ack_trace, trace) ), TP_fast_assign( __entry->call = call->debug_id; __entry->serial = call->tlp_serial; __entry->tlp_seq = call->tlp_seq; __entry->hard_ack = call->acks_hard_ack; __entry->trace = trace; ), TP_printk("c=%08x r=%08x pq=%08x hq=%08x %s", __entry->call, __entry->serial, __entry->tlp_seq, __entry->hard_ack, __print_symbolic(__entry->trace, rxrpc_tlp_ack_traces)) ); TRACE_EVENT(rxrpc_rack_timer, TP_PROTO(struct rxrpc_call *call, ktime_t delay, bool exp), TP_ARGS(call, delay, exp), TP_STRUCT__entry( __field(unsigned int, call) __field(bool, exp) __field(enum rxrpc_rack_timer_mode, mode) __field(ktime_t, delay) ), TP_fast_assign( __entry->call = call->debug_id; __entry->exp = exp; __entry->mode = call->rack_timer_mode; __entry->delay = delay; ), TP_printk("c=%08x %s %s to=%lld", __entry->call, __entry->exp ? "Exp" : "Set", __print_symbolic(__entry->mode, rxrpc_rack_timer_modes), ktime_to_us(__entry->delay)) ); #undef EM #undef E_ #endif /* RXRPC_TRACE_ONLY_DEFINE_ENUMS */ #endif /* _TRACE_RXRPC_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_IBT_H #define _ASM_X86_IBT_H #include <linux/types.h> /* * The rules for enabling IBT are: * * - CC_HAS_IBT: the toolchain supports it * - X86_KERNEL_IBT: it is selected in Kconfig * - !__DISABLE_EXPORTS: this is regular kernel code * * Esp. that latter one is a bit non-obvious, but some code like compressed, * purgatory, realmode etc.. is built with custom CFLAGS that do not include * -fcf-protection=branch and things will go *bang*. * * When all the above are satisfied, HAS_KERNEL_IBT will be 1, otherwise 0. */ #if defined(CONFIG_X86_KERNEL_IBT) && !defined(__DISABLE_EXPORTS) #define HAS_KERNEL_IBT 1 #ifndef __ASSEMBLY__ #ifdef CONFIG_X86_64 #define ASM_ENDBR "endbr64\n\t" #else #define ASM_ENDBR "endbr32\n\t" #endif #define __noendbr __attribute__((nocf_check)) /* * Create a dummy function pointer reference to prevent objtool from marking * the function as needing to be "sealed" (i.e. ENDBR converted to NOP by * apply_seal_endbr()). */ #define IBT_NOSEAL(fname) \ ".pushsection .discard.ibt_endbr_noseal\n\t" \ _ASM_PTR fname "\n\t" \ ".popsection\n\t" static inline __attribute_const__ u32 gen_endbr(void) { u32 endbr; /* * Generate ENDBR64 in a way that is sure to not result in * an ENDBR64 instruction as immediate. */ asm ( "mov $~0xfa1e0ff3, %[endbr]\n\t" "not %[endbr]\n\t" : [endbr] "=&r" (endbr) ); return endbr; } static inline __attribute_const__ u32 gen_endbr_poison(void) { /* * 4 byte NOP that isn't NOP4 (in fact it is OSP NOP3), such that it * will be unique to (former) ENDBR sites. */ return 0x001f0f66; /* osp nopl (%rax) */ } static inline bool is_endbr(u32 val) { if (val == gen_endbr_poison()) return true; val &= ~0x01000000U; /* ENDBR32 -> ENDBR64 */ return val == gen_endbr(); } extern __noendbr u64 ibt_save(bool disable); extern __noendbr void ibt_restore(u64 save); #else /* __ASSEMBLY__ */ #ifdef CONFIG_X86_64 #define ENDBR endbr64 #else #define ENDBR endbr32 #endif #endif /* __ASSEMBLY__ */ #else /* !IBT */ #define HAS_KERNEL_IBT 0 #ifndef __ASSEMBLY__ #define ASM_ENDBR #define IBT_NOSEAL(name) #define __noendbr static inline bool is_endbr(u32 val) { return false; } static inline u64 ibt_save(bool disable) { return 0; } static inline void ibt_restore(u64 save) { } #else /* __ASSEMBLY__ */ #define ENDBR #endif /* __ASSEMBLY__ */ #endif /* CONFIG_X86_KERNEL_IBT */ #define ENDBR_INSN_SIZE (4*HAS_KERNEL_IBT) #endif /* _ASM_X86_IBT_H */ |
| 47 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_skbmod.c skb data modifier * * Copyright (c) 2016 Jamal Hadi Salim <jhs@mojatatu.com> */ #include <linux/module.h> #include <linux/if_arp.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <net/inet_ecn.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/tc_wrapper.h> #include <linux/tc_act/tc_skbmod.h> #include <net/tc_act/tc_skbmod.h> static struct tc_action_ops act_skbmod_ops; TC_INDIRECT_SCOPE int tcf_skbmod_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_skbmod *d = to_skbmod(a); int action, max_edit_len, err; struct tcf_skbmod_params *p; u64 flags; tcf_lastuse_update(&d->tcf_tm); bstats_update(this_cpu_ptr(d->common.cpu_bstats), skb); action = READ_ONCE(d->tcf_action); if (unlikely(action == TC_ACT_SHOT)) goto drop; max_edit_len = skb_mac_header_len(skb); p = rcu_dereference_bh(d->skbmod_p); flags = p->flags; /* tcf_skbmod_init() guarantees "flags" to be one of the following: * 1. a combination of SKBMOD_F_{DMAC,SMAC,ETYPE} * 2. SKBMOD_F_SWAPMAC * 3. SKBMOD_F_ECN * SKBMOD_F_ECN only works with IP packets; all other flags only work with Ethernet * packets. */ if (flags == SKBMOD_F_ECN) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): case cpu_to_be16(ETH_P_IPV6): max_edit_len += skb_network_header_len(skb); break; default: goto out; } } else if (!skb->dev || skb->dev->type != ARPHRD_ETHER) { goto out; } err = skb_ensure_writable(skb, max_edit_len); if (unlikely(err)) /* best policy is to drop on the floor */ goto drop; if (flags & SKBMOD_F_DMAC) ether_addr_copy(eth_hdr(skb)->h_dest, p->eth_dst); if (flags & SKBMOD_F_SMAC) ether_addr_copy(eth_hdr(skb)->h_source, p->eth_src); if (flags & SKBMOD_F_ETYPE) eth_hdr(skb)->h_proto = p->eth_type; if (flags & SKBMOD_F_SWAPMAC) { u16 tmpaddr[ETH_ALEN / 2]; /* ether_addr_copy() requirement */ /*XXX: I am sure we can come up with more efficient swapping*/ ether_addr_copy((u8 *)tmpaddr, eth_hdr(skb)->h_dest); ether_addr_copy(eth_hdr(skb)->h_dest, eth_hdr(skb)->h_source); ether_addr_copy(eth_hdr(skb)->h_source, (u8 *)tmpaddr); } if (flags & SKBMOD_F_ECN) INET_ECN_set_ce(skb); out: return action; drop: qstats_overlimit_inc(this_cpu_ptr(d->common.cpu_qstats)); return TC_ACT_SHOT; } static const struct nla_policy skbmod_policy[TCA_SKBMOD_MAX + 1] = { [TCA_SKBMOD_PARMS] = { .len = sizeof(struct tc_skbmod) }, [TCA_SKBMOD_DMAC] = { .len = ETH_ALEN }, [TCA_SKBMOD_SMAC] = { .len = ETH_ALEN }, [TCA_SKBMOD_ETYPE] = { .type = NLA_U16 }, }; static int tcf_skbmod_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_skbmod_ops.net_id); bool ovr = flags & TCA_ACT_FLAGS_REPLACE; bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_SKBMOD_MAX + 1]; struct tcf_skbmod_params *p, *p_old; struct tcf_chain *goto_ch = NULL; struct tc_skbmod *parm; u32 lflags = 0, index; struct tcf_skbmod *d; bool exists = false; u8 *daddr = NULL; u8 *saddr = NULL; u16 eth_type = 0; int ret = 0, err; if (!nla) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_SKBMOD_MAX, nla, skbmod_policy, NULL); if (err < 0) return err; if (!tb[TCA_SKBMOD_PARMS]) return -EINVAL; if (tb[TCA_SKBMOD_DMAC]) { daddr = nla_data(tb[TCA_SKBMOD_DMAC]); lflags |= SKBMOD_F_DMAC; } if (tb[TCA_SKBMOD_SMAC]) { saddr = nla_data(tb[TCA_SKBMOD_SMAC]); lflags |= SKBMOD_F_SMAC; } if (tb[TCA_SKBMOD_ETYPE]) { eth_type = nla_get_u16(tb[TCA_SKBMOD_ETYPE]); lflags |= SKBMOD_F_ETYPE; } parm = nla_data(tb[TCA_SKBMOD_PARMS]); index = parm->index; if (parm->flags & SKBMOD_F_SWAPMAC) lflags = SKBMOD_F_SWAPMAC; if (parm->flags & SKBMOD_F_ECN) lflags = SKBMOD_F_ECN; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; if (!lflags) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } if (!exists) { ret = tcf_idr_create(tn, index, est, a, &act_skbmod_ops, bind, true, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (!ovr) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; d = to_skbmod(*a); p = kzalloc(sizeof(struct tcf_skbmod_params), GFP_KERNEL); if (unlikely(!p)) { err = -ENOMEM; goto put_chain; } p->flags = lflags; if (ovr) spin_lock_bh(&d->tcf_lock); /* Protected by tcf_lock if overwriting existing action. */ goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); p_old = rcu_dereference_protected(d->skbmod_p, 1); if (lflags & SKBMOD_F_DMAC) ether_addr_copy(p->eth_dst, daddr); if (lflags & SKBMOD_F_SMAC) ether_addr_copy(p->eth_src, saddr); if (lflags & SKBMOD_F_ETYPE) p->eth_type = htons(eth_type); rcu_assign_pointer(d->skbmod_p, p); if (ovr) spin_unlock_bh(&d->tcf_lock); if (p_old) kfree_rcu(p_old, rcu); if (goto_ch) tcf_chain_put_by_act(goto_ch); return ret; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static void tcf_skbmod_cleanup(struct tc_action *a) { struct tcf_skbmod *d = to_skbmod(a); struct tcf_skbmod_params *p; p = rcu_dereference_protected(d->skbmod_p, 1); if (p) kfree_rcu(p, rcu); } static int tcf_skbmod_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { struct tcf_skbmod *d = to_skbmod(a); unsigned char *b = skb_tail_pointer(skb); struct tcf_skbmod_params *p; struct tc_skbmod opt; struct tcf_t t; memset(&opt, 0, sizeof(opt)); opt.index = d->tcf_index; opt.refcnt = refcount_read(&d->tcf_refcnt) - ref; opt.bindcnt = atomic_read(&d->tcf_bindcnt) - bind; spin_lock_bh(&d->tcf_lock); opt.action = d->tcf_action; p = rcu_dereference_protected(d->skbmod_p, lockdep_is_held(&d->tcf_lock)); opt.flags = p->flags; if (nla_put(skb, TCA_SKBMOD_PARMS, sizeof(opt), &opt)) goto nla_put_failure; if ((p->flags & SKBMOD_F_DMAC) && nla_put(skb, TCA_SKBMOD_DMAC, ETH_ALEN, p->eth_dst)) goto nla_put_failure; if ((p->flags & SKBMOD_F_SMAC) && nla_put(skb, TCA_SKBMOD_SMAC, ETH_ALEN, p->eth_src)) goto nla_put_failure; if ((p->flags & SKBMOD_F_ETYPE) && nla_put_u16(skb, TCA_SKBMOD_ETYPE, ntohs(p->eth_type))) goto nla_put_failure; tcf_tm_dump(&t, &d->tcf_tm); if (nla_put_64bit(skb, TCA_SKBMOD_TM, sizeof(t), &t, TCA_SKBMOD_PAD)) goto nla_put_failure; spin_unlock_bh(&d->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&d->tcf_lock); nlmsg_trim(skb, b); return -1; } static struct tc_action_ops act_skbmod_ops = { .kind = "skbmod", .id = TCA_ACT_SKBMOD, .owner = THIS_MODULE, .act = tcf_skbmod_act, .dump = tcf_skbmod_dump, .init = tcf_skbmod_init, .cleanup = tcf_skbmod_cleanup, .size = sizeof(struct tcf_skbmod), }; MODULE_ALIAS_NET_ACT("skbmod"); static __net_init int skbmod_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_skbmod_ops.net_id); return tc_action_net_init(net, tn, &act_skbmod_ops); } static void __net_exit skbmod_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_skbmod_ops.net_id); } static struct pernet_operations skbmod_net_ops = { .init = skbmod_init_net, .exit_batch = skbmod_exit_net, .id = &act_skbmod_ops.net_id, .size = sizeof(struct tc_action_net), }; MODULE_AUTHOR("Jamal Hadi Salim, <jhs@mojatatu.com>"); MODULE_DESCRIPTION("SKB data mod-ing"); MODULE_LICENSE("GPL"); static int __init skbmod_init_module(void) { return tcf_register_action(&act_skbmod_ops, &skbmod_net_ops); } static void __exit skbmod_cleanup_module(void) { tcf_unregister_action(&act_skbmod_ops, &skbmod_net_ops); } module_init(skbmod_init_module); module_exit(skbmod_cleanup_module); |
| 7 3 6 7 7 7 47 479 479 479 478 477 477 479 215 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | // SPDX-License-Identifier: GPL-2.0-only /* -*- linux-c -*- * sysctl_net.c: sysctl interface to net subsystem. * * Begun April 1, 1996, Mike Shaver. * Added /proc/sys/net directories for each protocol family. [MS] * * Revision 1.2 1996/05/08 20:24:40 shaver * Added bits for NET_BRIDGE and the NET_IPV4_ARP stuff and * NET_IPV4_IP_FORWARD. * * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/sysctl.h> #include <linux/nsproxy.h> #include <net/sock.h> #ifdef CONFIG_INET #include <net/ip.h> #endif #ifdef CONFIG_NET #include <linux/if_ether.h> #endif static struct ctl_table_set * net_ctl_header_lookup(struct ctl_table_root *root) { return ¤t->nsproxy->net_ns->sysctls; } static int is_seen(struct ctl_table_set *set) { return ¤t->nsproxy->net_ns->sysctls == set; } /* Return standard mode bits for table entry. */ static int net_ctl_permissions(struct ctl_table_header *head, const struct ctl_table *table) { struct net *net = container_of(head->set, struct net, sysctls); /* Allow network administrator to have same access as root. */ if (ns_capable_noaudit(net->user_ns, CAP_NET_ADMIN)) { int mode = (table->mode >> 6) & 7; return (mode << 6) | (mode << 3) | mode; } return table->mode; } static void net_ctl_set_ownership(struct ctl_table_header *head, kuid_t *uid, kgid_t *gid) { struct net *net = container_of(head->set, struct net, sysctls); kuid_t ns_root_uid; kgid_t ns_root_gid; ns_root_uid = make_kuid(net->user_ns, 0); if (uid_valid(ns_root_uid)) *uid = ns_root_uid; ns_root_gid = make_kgid(net->user_ns, 0); if (gid_valid(ns_root_gid)) *gid = ns_root_gid; } static struct ctl_table_root net_sysctl_root = { .lookup = net_ctl_header_lookup, .permissions = net_ctl_permissions, .set_ownership = net_ctl_set_ownership, }; static int __net_init sysctl_net_init(struct net *net) { setup_sysctl_set(&net->sysctls, &net_sysctl_root, is_seen); return 0; } static void __net_exit sysctl_net_exit(struct net *net) { retire_sysctl_set(&net->sysctls); } static struct pernet_operations sysctl_pernet_ops = { .init = sysctl_net_init, .exit = sysctl_net_exit, }; static struct ctl_table_header *net_header; __init int net_sysctl_init(void) { static struct ctl_table empty[1]; int ret = -ENOMEM; /* Avoid limitations in the sysctl implementation by * registering "/proc/sys/net" as an empty directory not in a * network namespace. */ net_header = register_sysctl_sz("net", empty, 0); if (!net_header) goto out; ret = register_pernet_subsys(&sysctl_pernet_ops); if (ret) goto out1; out: return ret; out1: unregister_sysctl_table(net_header); net_header = NULL; goto out; } /* Verify that sysctls for non-init netns are safe by either: * 1) being read-only, or * 2) having a data pointer which points outside of the global kernel/module * data segment, and rather into the heap where a per-net object was * allocated. */ static void ensure_safe_net_sysctl(struct net *net, const char *path, struct ctl_table *table, size_t table_size) { struct ctl_table *ent; pr_debug("Registering net sysctl (net %p): %s\n", net, path); ent = table; for (size_t i = 0; i < table_size; ent++, i++) { unsigned long addr; const char *where; pr_debug(" procname=%s mode=%o proc_handler=%ps data=%p\n", ent->procname, ent->mode, ent->proc_handler, ent->data); /* If it's not writable inside the netns, then it can't hurt. */ if ((ent->mode & 0222) == 0) { pr_debug(" Not writable by anyone\n"); continue; } /* Where does data point? */ addr = (unsigned long)ent->data; if (is_module_address(addr)) where = "module"; else if (is_kernel_core_data(addr)) where = "kernel"; else continue; /* If it is writable and points to kernel/module global * data, then it's probably a netns leak. */ WARN(1, "sysctl %s/%s: data points to %s global data: %ps\n", path, ent->procname, where, ent->data); /* Make it "safe" by dropping writable perms */ ent->mode &= ~0222; } } struct ctl_table_header *register_net_sysctl_sz(struct net *net, const char *path, struct ctl_table *table, size_t table_size) { if (!net_eq(net, &init_net)) ensure_safe_net_sysctl(net, path, table, table_size); return __register_sysctl_table(&net->sysctls, path, table, table_size); } EXPORT_SYMBOL_GPL(register_net_sysctl_sz); void unregister_net_sysctl_table(struct ctl_table_header *header) { unregister_sysctl_table(header); } EXPORT_SYMBOL_GPL(unregister_net_sysctl_table); |
| 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007 * * Author: Eric Biederman <ebiederm@xmision.com> */ #include <linux/module.h> #include <linux/ipc.h> #include <linux/nsproxy.h> #include <linux/sysctl.h> #include <linux/uaccess.h> #include <linux/capability.h> #include <linux/ipc_namespace.h> #include <linux/msg.h> #include <linux/slab.h> #include <linux/cred.h> #include "util.h" static int proc_ipc_dointvec_minmax_orphans(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ipc_namespace *ns = container_of(table->data, struct ipc_namespace, shm_rmid_forced); int err; err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (err < 0) return err; if (ns->shm_rmid_forced) shm_destroy_orphaned(ns); return err; } static int proc_ipc_auto_msgmni(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table ipc_table; int dummy = 0; memcpy(&ipc_table, table, sizeof(ipc_table)); ipc_table.data = &dummy; if (write) pr_info_once("writing to auto_msgmni has no effect"); return proc_dointvec_minmax(&ipc_table, write, buffer, lenp, ppos); } static int proc_ipc_sem_dointvec(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ipc_namespace *ns = container_of(table->data, struct ipc_namespace, sem_ctls); int ret, semmni; semmni = ns->sem_ctls[3]; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret) ret = sem_check_semmni(ns); /* * Reset the semmni value if an error happens. */ if (ret) ns->sem_ctls[3] = semmni; return ret; } int ipc_mni = IPCMNI; int ipc_mni_shift = IPCMNI_SHIFT; int ipc_min_cycle = RADIX_TREE_MAP_SIZE; static struct ctl_table ipc_sysctls[] = { { .procname = "shmmax", .data = &init_ipc_ns.shm_ctlmax, .maxlen = sizeof(init_ipc_ns.shm_ctlmax), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "shmall", .data = &init_ipc_ns.shm_ctlall, .maxlen = sizeof(init_ipc_ns.shm_ctlall), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "shmmni", .data = &init_ipc_ns.shm_ctlmni, .maxlen = sizeof(init_ipc_ns.shm_ctlmni), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &ipc_mni, }, { .procname = "shm_rmid_forced", .data = &init_ipc_ns.shm_rmid_forced, .maxlen = sizeof(init_ipc_ns.shm_rmid_forced), .mode = 0644, .proc_handler = proc_ipc_dointvec_minmax_orphans, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "msgmax", .data = &init_ipc_ns.msg_ctlmax, .maxlen = sizeof(init_ipc_ns.msg_ctlmax), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, { .procname = "msgmni", .data = &init_ipc_ns.msg_ctlmni, .maxlen = sizeof(init_ipc_ns.msg_ctlmni), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &ipc_mni, }, { .procname = "auto_msgmni", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_ipc_auto_msgmni, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "msgmnb", .data = &init_ipc_ns.msg_ctlmnb, .maxlen = sizeof(init_ipc_ns.msg_ctlmnb), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, { .procname = "sem", .data = &init_ipc_ns.sem_ctls, .maxlen = 4*sizeof(int), .mode = 0644, .proc_handler = proc_ipc_sem_dointvec, }, #ifdef CONFIG_CHECKPOINT_RESTORE { .procname = "sem_next_id", .data = &init_ipc_ns.ids[IPC_SEM_IDS].next_id, .maxlen = sizeof(init_ipc_ns.ids[IPC_SEM_IDS].next_id), .mode = 0444, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, { .procname = "msg_next_id", .data = &init_ipc_ns.ids[IPC_MSG_IDS].next_id, .maxlen = sizeof(init_ipc_ns.ids[IPC_MSG_IDS].next_id), .mode = 0444, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, { .procname = "shm_next_id", .data = &init_ipc_ns.ids[IPC_SHM_IDS].next_id, .maxlen = sizeof(init_ipc_ns.ids[IPC_SHM_IDS].next_id), .mode = 0444, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, }, #endif }; static struct ctl_table_set *set_lookup(struct ctl_table_root *root) { return ¤t->nsproxy->ipc_ns->ipc_set; } static int set_is_seen(struct ctl_table_set *set) { return ¤t->nsproxy->ipc_ns->ipc_set == set; } static void ipc_set_ownership(struct ctl_table_header *head, kuid_t *uid, kgid_t *gid) { struct ipc_namespace *ns = container_of(head->set, struct ipc_namespace, ipc_set); kuid_t ns_root_uid = make_kuid(ns->user_ns, 0); kgid_t ns_root_gid = make_kgid(ns->user_ns, 0); *uid = uid_valid(ns_root_uid) ? ns_root_uid : GLOBAL_ROOT_UID; *gid = gid_valid(ns_root_gid) ? ns_root_gid : GLOBAL_ROOT_GID; } static int ipc_permissions(struct ctl_table_header *head, const struct ctl_table *table) { int mode = table->mode; #ifdef CONFIG_CHECKPOINT_RESTORE struct ipc_namespace *ns = container_of(head->set, struct ipc_namespace, ipc_set); if (((table->data == &ns->ids[IPC_SEM_IDS].next_id) || (table->data == &ns->ids[IPC_MSG_IDS].next_id) || (table->data == &ns->ids[IPC_SHM_IDS].next_id)) && checkpoint_restore_ns_capable(ns->user_ns)) mode = 0666; else #endif { kuid_t ns_root_uid; kgid_t ns_root_gid; ipc_set_ownership(head, &ns_root_uid, &ns_root_gid); if (uid_eq(current_euid(), ns_root_uid)) mode >>= 6; else if (in_egroup_p(ns_root_gid)) mode >>= 3; } mode &= 7; return (mode << 6) | (mode << 3) | mode; } static struct ctl_table_root set_root = { .lookup = set_lookup, .permissions = ipc_permissions, .set_ownership = ipc_set_ownership, }; bool setup_ipc_sysctls(struct ipc_namespace *ns) { struct ctl_table *tbl; setup_sysctl_set(&ns->ipc_set, &set_root, set_is_seen); tbl = kmemdup(ipc_sysctls, sizeof(ipc_sysctls), GFP_KERNEL); if (tbl) { int i; for (i = 0; i < ARRAY_SIZE(ipc_sysctls); i++) { if (tbl[i].data == &init_ipc_ns.shm_ctlmax) tbl[i].data = &ns->shm_ctlmax; else if (tbl[i].data == &init_ipc_ns.shm_ctlall) tbl[i].data = &ns->shm_ctlall; else if (tbl[i].data == &init_ipc_ns.shm_ctlmni) tbl[i].data = &ns->shm_ctlmni; else if (tbl[i].data == &init_ipc_ns.shm_rmid_forced) tbl[i].data = &ns->shm_rmid_forced; else if (tbl[i].data == &init_ipc_ns.msg_ctlmax) tbl[i].data = &ns->msg_ctlmax; else if (tbl[i].data == &init_ipc_ns.msg_ctlmni) tbl[i].data = &ns->msg_ctlmni; else if (tbl[i].data == &init_ipc_ns.msg_ctlmnb) tbl[i].data = &ns->msg_ctlmnb; else if (tbl[i].data == &init_ipc_ns.sem_ctls) tbl[i].data = &ns->sem_ctls; #ifdef CONFIG_CHECKPOINT_RESTORE else if (tbl[i].data == &init_ipc_ns.ids[IPC_SEM_IDS].next_id) tbl[i].data = &ns->ids[IPC_SEM_IDS].next_id; else if (tbl[i].data == &init_ipc_ns.ids[IPC_MSG_IDS].next_id) tbl[i].data = &ns->ids[IPC_MSG_IDS].next_id; else if (tbl[i].data == &init_ipc_ns.ids[IPC_SHM_IDS].next_id) tbl[i].data = &ns->ids[IPC_SHM_IDS].next_id; #endif else tbl[i].data = NULL; } ns->ipc_sysctls = __register_sysctl_table(&ns->ipc_set, "kernel", tbl, ARRAY_SIZE(ipc_sysctls)); } if (!ns->ipc_sysctls) { kfree(tbl); retire_sysctl_set(&ns->ipc_set); return false; } return true; } void retire_ipc_sysctls(struct ipc_namespace *ns) { const struct ctl_table *tbl; tbl = ns->ipc_sysctls->ctl_table_arg; unregister_sysctl_table(ns->ipc_sysctls); retire_sysctl_set(&ns->ipc_set); kfree(tbl); } static int __init ipc_sysctl_init(void) { if (!setup_ipc_sysctls(&init_ipc_ns)) { pr_warn("ipc sysctl registration failed\n"); return -ENOMEM; } return 0; } device_initcall(ipc_sysctl_init); static int __init ipc_mni_extend(char *str) { ipc_mni = IPCMNI_EXTEND; ipc_mni_shift = IPCMNI_EXTEND_SHIFT; ipc_min_cycle = IPCMNI_EXTEND_MIN_CYCLE; pr_info("IPCMNI extended to %d.\n", ipc_mni); return 0; } early_param("ipcmni_extend", ipc_mni_extend); |
| 427 427 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | // SPDX-License-Identifier: GPL-2.0 /* * Device physical location support * * Author: Won Chung <wonchung@google.com> */ #include <linux/acpi.h> #include <linux/sysfs.h> #include "physical_location.h" bool dev_add_physical_location(struct device *dev) { struct acpi_pld_info *pld; if (!has_acpi_companion(dev)) return false; if (!acpi_get_physical_device_location(ACPI_HANDLE(dev), &pld)) return false; dev->physical_location = kzalloc(sizeof(*dev->physical_location), GFP_KERNEL); if (!dev->physical_location) { ACPI_FREE(pld); return false; } dev->physical_location->panel = pld->panel; dev->physical_location->vertical_position = pld->vertical_position; dev->physical_location->horizontal_position = pld->horizontal_position; dev->physical_location->dock = pld->dock; dev->physical_location->lid = pld->lid; ACPI_FREE(pld); return true; } static ssize_t panel_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *panel; switch (dev->physical_location->panel) { case DEVICE_PANEL_TOP: panel = "top"; break; case DEVICE_PANEL_BOTTOM: panel = "bottom"; break; case DEVICE_PANEL_LEFT: panel = "left"; break; case DEVICE_PANEL_RIGHT: panel = "right"; break; case DEVICE_PANEL_FRONT: panel = "front"; break; case DEVICE_PANEL_BACK: panel = "back"; break; default: panel = "unknown"; } return sysfs_emit(buf, "%s\n", panel); } static DEVICE_ATTR_RO(panel); static ssize_t vertical_position_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *vertical_position; switch (dev->physical_location->vertical_position) { case DEVICE_VERT_POS_UPPER: vertical_position = "upper"; break; case DEVICE_VERT_POS_CENTER: vertical_position = "center"; break; case DEVICE_VERT_POS_LOWER: vertical_position = "lower"; break; default: vertical_position = "unknown"; } return sysfs_emit(buf, "%s\n", vertical_position); } static DEVICE_ATTR_RO(vertical_position); static ssize_t horizontal_position_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *horizontal_position; switch (dev->physical_location->horizontal_position) { case DEVICE_HORI_POS_LEFT: horizontal_position = "left"; break; case DEVICE_HORI_POS_CENTER: horizontal_position = "center"; break; case DEVICE_HORI_POS_RIGHT: horizontal_position = "right"; break; default: horizontal_position = "unknown"; } return sysfs_emit(buf, "%s\n", horizontal_position); } static DEVICE_ATTR_RO(horizontal_position); static ssize_t dock_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", dev->physical_location->dock ? "yes" : "no"); } static DEVICE_ATTR_RO(dock); static ssize_t lid_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", dev->physical_location->lid ? "yes" : "no"); } static DEVICE_ATTR_RO(lid); static struct attribute *dev_attr_physical_location[] = { &dev_attr_panel.attr, &dev_attr_vertical_position.attr, &dev_attr_horizontal_position.attr, &dev_attr_dock.attr, &dev_attr_lid.attr, NULL, }; const struct attribute_group dev_attr_physical_location_group = { .name = "physical_location", .attrs = dev_attr_physical_location, }; |
| 33 32 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | #ifndef __LINUX_ERSPAN_H #define __LINUX_ERSPAN_H /* * GRE header for ERSPAN type I encapsulation (4 octets [34:37]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |0|0|0|0|0|00000|000000000|00000| Protocol Type for ERSPAN | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * The Type I ERSPAN frame format is based on the barebones IP + GRE * encapsulation (as described above) on top of the raw mirrored frame. * There is no extra ERSPAN header. * * * GRE header for ERSPAN type II and II encapsulation (8 octets [34:41]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * |0|0|0|1|0|00000|000000000|00000| Protocol Type for ERSPAN | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Sequence Number (increments per packet per session) | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Note that in the above GRE header [RFC1701] out of the C, R, K, S, * s, Recur, Flags, Version fields only S (bit 03) is set to 1. The * other fields are set to zero, so only a sequence number follows. * * ERSPAN Version 1 (Type II) header (8 octets [42:49]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ver | VLAN | COS | En|T| Session ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Reserved | Index | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * * ERSPAN Version 2 (Type III) header (12 octets [42:49]) * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Ver | VLAN | COS |BSO|T| Session ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Timestamp | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | SGT |P| FT | Hw ID |D|Gra|O| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * Platform Specific SubHeader (8 octets, optional) * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Platf ID | Platform Specific Info | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Platform Specific Info | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * GRE proto ERSPAN type I/II = 0x88BE, type III = 0x22EB */ #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/skbuff.h> #include <uapi/linux/erspan.h> #define ERSPAN_VERSION 0x1 /* ERSPAN type II */ #define VER_MASK 0xf000 #define VLAN_MASK 0x0fff #define COS_MASK 0xe000 #define EN_MASK 0x1800 #define T_MASK 0x0400 #define ID_MASK 0x03ff #define INDEX_MASK 0xfffff #define ERSPAN_VERSION2 0x2 /* ERSPAN type III*/ #define BSO_MASK EN_MASK #define SGT_MASK 0xffff0000 #define P_MASK 0x8000 #define FT_MASK 0x7c00 #define HWID_MASK 0x03f0 #define DIR_MASK 0x0008 #define GRA_MASK 0x0006 #define O_MASK 0x0001 #define HWID_OFFSET 4 #define DIR_OFFSET 3 enum erspan_encap_type { ERSPAN_ENCAP_NOVLAN = 0x0, /* originally without VLAN tag */ ERSPAN_ENCAP_ISL = 0x1, /* originally ISL encapsulated */ ERSPAN_ENCAP_8021Q = 0x2, /* originally 802.1Q encapsulated */ ERSPAN_ENCAP_INFRAME = 0x3, /* VLAN tag preserved in frame */ }; #define ERSPAN_V1_MDSIZE 4 #define ERSPAN_V2_MDSIZE 8 struct erspan_base_hdr { #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 vlan_upper:4, ver:4; __u8 vlan:8; __u8 session_id_upper:2, t:1, en:2, cos:3; __u8 session_id:8; #elif defined(__BIG_ENDIAN_BITFIELD) __u8 ver: 4, vlan_upper:4; __u8 vlan:8; __u8 cos:3, en:2, t:1, session_id_upper:2; __u8 session_id:8; #else #error "Please fix <asm/byteorder.h>" #endif }; static inline void set_session_id(struct erspan_base_hdr *ershdr, u16 id) { ershdr->session_id = id & 0xff; ershdr->session_id_upper = (id >> 8) & 0x3; } static inline u16 get_session_id(const struct erspan_base_hdr *ershdr) { return (ershdr->session_id_upper << 8) + ershdr->session_id; } static inline void set_vlan(struct erspan_base_hdr *ershdr, u16 vlan) { ershdr->vlan = vlan & 0xff; ershdr->vlan_upper = (vlan >> 8) & 0xf; } static inline u16 get_vlan(const struct erspan_base_hdr *ershdr) { return (ershdr->vlan_upper << 8) + ershdr->vlan; } static inline void set_hwid(struct erspan_md2 *md2, u8 hwid) { md2->hwid = hwid & 0xf; md2->hwid_upper = (hwid >> 4) & 0x3; } static inline u8 get_hwid(const struct erspan_md2 *md2) { return (md2->hwid_upper << 4) + md2->hwid; } static inline int erspan_hdr_len(int version) { if (version == 0) return 0; return sizeof(struct erspan_base_hdr) + (version == 1 ? ERSPAN_V1_MDSIZE : ERSPAN_V2_MDSIZE); } static inline u8 tos_to_cos(u8 tos) { u8 dscp, cos; dscp = tos >> 2; cos = dscp >> 3; return cos; } static inline void erspan_build_header(struct sk_buff *skb, u32 id, u32 index, bool truncate, bool is_ipv4) { struct ethhdr *eth = (struct ethhdr *)skb->data; enum erspan_encap_type enc_type; struct erspan_base_hdr *ershdr; struct qtag_prefix { __be16 eth_type; __be16 tci; } *qp; u16 vlan_tci = 0; u8 tos; __be32 *idx; tos = is_ipv4 ? ip_hdr(skb)->tos : (ipv6_hdr(skb)->priority << 4) + (ipv6_hdr(skb)->flow_lbl[0] >> 4); enc_type = ERSPAN_ENCAP_NOVLAN; /* If mirrored packet has vlan tag, extract tci and * preserve vlan header in the mirrored frame. */ if (eth->h_proto == htons(ETH_P_8021Q)) { qp = (struct qtag_prefix *)(skb->data + 2 * ETH_ALEN); vlan_tci = ntohs(qp->tci); enc_type = ERSPAN_ENCAP_INFRAME; } skb_push(skb, sizeof(*ershdr) + ERSPAN_V1_MDSIZE); ershdr = (struct erspan_base_hdr *)skb->data; memset(ershdr, 0, sizeof(*ershdr) + ERSPAN_V1_MDSIZE); /* Build base header */ ershdr->ver = ERSPAN_VERSION; ershdr->cos = tos_to_cos(tos); ershdr->en = enc_type; ershdr->t = truncate; set_vlan(ershdr, vlan_tci); set_session_id(ershdr, id); /* Build metadata */ idx = (__be32 *)(ershdr + 1); *idx = htonl(index & INDEX_MASK); } /* ERSPAN GRA: timestamp granularity * 00b --> granularity = 100 microseconds * 01b --> granularity = 100 nanoseconds * 10b --> granularity = IEEE 1588 * Here we only support 100 microseconds. */ static inline __be32 erspan_get_timestamp(void) { u64 h_usecs; ktime_t kt; kt = ktime_get_real(); h_usecs = ktime_divns(kt, 100 * NSEC_PER_USEC); /* ERSPAN base header only has 32-bit, * so it wraps around 4 days. */ return htonl((u32)h_usecs); } /* ERSPAN BSO (Bad/Short/Oversized), see RFC1757 * 00b --> Good frame with no error, or unknown integrity * 01b --> Payload is a Short Frame * 10b --> Payload is an Oversized Frame * 11b --> Payload is a Bad Frame with CRC or Alignment Error */ enum erspan_bso { BSO_NOERROR = 0x0, BSO_SHORT = 0x1, BSO_OVERSIZED = 0x2, BSO_BAD = 0x3, }; static inline u8 erspan_detect_bso(struct sk_buff *skb) { /* BSO_BAD is not handled because the frame CRC * or alignment error information is in FCS. */ if (skb->len < ETH_ZLEN) return BSO_SHORT; if (skb->len > ETH_FRAME_LEN) return BSO_OVERSIZED; return BSO_NOERROR; } static inline void erspan_build_header_v2(struct sk_buff *skb, u32 id, u8 direction, u16 hwid, bool truncate, bool is_ipv4) { struct ethhdr *eth = (struct ethhdr *)skb->data; struct erspan_base_hdr *ershdr; struct erspan_md2 *md2; struct qtag_prefix { __be16 eth_type; __be16 tci; } *qp; u16 vlan_tci = 0; u8 gra = 0; /* 100 usec */ u8 bso = 0; /* Bad/Short/Oversized */ u8 sgt = 0; u8 tos; tos = is_ipv4 ? ip_hdr(skb)->tos : (ipv6_hdr(skb)->priority << 4) + (ipv6_hdr(skb)->flow_lbl[0] >> 4); /* Unlike v1, v2 does not have En field, * so only extract vlan tci field. */ if (eth->h_proto == htons(ETH_P_8021Q)) { qp = (struct qtag_prefix *)(skb->data + 2 * ETH_ALEN); vlan_tci = ntohs(qp->tci); } bso = erspan_detect_bso(skb); skb_push(skb, sizeof(*ershdr) + ERSPAN_V2_MDSIZE); ershdr = (struct erspan_base_hdr *)skb->data; memset(ershdr, 0, sizeof(*ershdr) + ERSPAN_V2_MDSIZE); /* Build base header */ ershdr->ver = ERSPAN_VERSION2; ershdr->cos = tos_to_cos(tos); ershdr->en = bso; ershdr->t = truncate; set_vlan(ershdr, vlan_tci); set_session_id(ershdr, id); /* Build metadata */ md2 = (struct erspan_md2 *)(ershdr + 1); md2->timestamp = erspan_get_timestamp(); md2->sgt = htons(sgt); md2->p = 1; md2->ft = 0; md2->dir = direction; md2->gra = gra; md2->o = 0; set_hwid(md2, hwid); } #endif |
| 1 1 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | // SPDX-License-Identifier: GPL-2.0 #include <linux/utsname.h> #include <net/cfg80211.h> #include "core.h" #include "rdev-ops.h" void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct device *pdev = wiphy_dev(wdev->wiphy); if (pdev->driver) strscpy(info->driver, pdev->driver->name, sizeof(info->driver)); else strscpy(info->driver, "N/A", sizeof(info->driver)); strscpy(info->version, init_utsname()->release, sizeof(info->version)); if (wdev->wiphy->fw_version[0]) strscpy(info->fw_version, wdev->wiphy->fw_version, sizeof(info->fw_version)); else strscpy(info->fw_version, "N/A", sizeof(info->fw_version)); strscpy(info->bus_info, dev_name(wiphy_dev(wdev->wiphy)), sizeof(info->bus_info)); } EXPORT_SYMBOL(cfg80211_get_drvinfo); |
| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (c) 2014 Mahesh Bandewar <maheshb@google.com> */ #ifndef __IPVLAN_H #define __IPVLAN_H #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/init.h> #include <linux/rculist.h> #include <linux/notifier.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/if_link.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/inetdevice.h> #include <linux/netfilter.h> #include <net/ip.h> #include <net/ip6_route.h> #include <net/netns/generic.h> #include <net/rtnetlink.h> #include <net/route.h> #include <net/addrconf.h> #include <net/l3mdev.h> #define IPVLAN_DRV "ipvlan" #define IPV_DRV_VER "0.1" #define IPVLAN_HASH_SIZE (1 << BITS_PER_BYTE) #define IPVLAN_HASH_MASK (IPVLAN_HASH_SIZE - 1) #define IPVLAN_MAC_FILTER_BITS 8 #define IPVLAN_MAC_FILTER_SIZE (1 << IPVLAN_MAC_FILTER_BITS) #define IPVLAN_MAC_FILTER_MASK (IPVLAN_MAC_FILTER_SIZE - 1) #define IPVLAN_QBACKLOG_LIMIT 1000 typedef enum { IPVL_IPV6 = 0, IPVL_ICMPV6, IPVL_IPV4, IPVL_ARP, } ipvl_hdr_type; struct ipvl_pcpu_stats { u64_stats_t rx_pkts; u64_stats_t rx_bytes; u64_stats_t rx_mcast; u64_stats_t tx_pkts; u64_stats_t tx_bytes; struct u64_stats_sync syncp; u32 rx_errs; u32 tx_drps; }; struct ipvl_port; struct ipvl_dev { struct net_device *dev; struct list_head pnode; struct ipvl_port *port; struct net_device *phy_dev; struct list_head addrs; struct ipvl_pcpu_stats __percpu *pcpu_stats; DECLARE_BITMAP(mac_filters, IPVLAN_MAC_FILTER_SIZE); netdev_features_t sfeatures; u32 msg_enable; spinlock_t addrs_lock; }; struct ipvl_addr { struct ipvl_dev *master; /* Back pointer to master */ union { struct in6_addr ip6; /* IPv6 address on logical interface */ struct in_addr ip4; /* IPv4 address on logical interface */ } ipu; #define ip6addr ipu.ip6 #define ip4addr ipu.ip4 struct hlist_node hlnode; /* Hash-table linkage */ struct list_head anode; /* logical-interface linkage */ ipvl_hdr_type atype; struct rcu_head rcu; }; struct ipvl_port { struct net_device *dev; possible_net_t pnet; struct hlist_head hlhead[IPVLAN_HASH_SIZE]; struct list_head ipvlans; u16 mode; u16 flags; u16 dev_id_start; struct work_struct wq; struct sk_buff_head backlog; int count; struct ida ida; netdevice_tracker dev_tracker; }; struct ipvl_skb_cb { bool tx_pkt; }; #define IPVL_SKB_CB(_skb) ((struct ipvl_skb_cb *)&((_skb)->cb[0])) static inline struct ipvl_port *ipvlan_port_get_rcu(const struct net_device *d) { return rcu_dereference(d->rx_handler_data); } static inline struct ipvl_port *ipvlan_port_get_rcu_bh(const struct net_device *d) { return rcu_dereference_bh(d->rx_handler_data); } static inline struct ipvl_port *ipvlan_port_get_rtnl(const struct net_device *d) { return rtnl_dereference(d->rx_handler_data); } static inline bool ipvlan_is_private(const struct ipvl_port *port) { return !!(port->flags & IPVLAN_F_PRIVATE); } static inline void ipvlan_mark_private(struct ipvl_port *port) { port->flags |= IPVLAN_F_PRIVATE; } static inline void ipvlan_clear_private(struct ipvl_port *port) { port->flags &= ~IPVLAN_F_PRIVATE; } static inline bool ipvlan_is_vepa(const struct ipvl_port *port) { return !!(port->flags & IPVLAN_F_VEPA); } static inline void ipvlan_mark_vepa(struct ipvl_port *port) { port->flags |= IPVLAN_F_VEPA; } static inline void ipvlan_clear_vepa(struct ipvl_port *port) { port->flags &= ~IPVLAN_F_VEPA; } void ipvlan_init_secret(void); unsigned int ipvlan_mac_hash(const unsigned char *addr); rx_handler_result_t ipvlan_handle_frame(struct sk_buff **pskb); void ipvlan_process_multicast(struct work_struct *work); int ipvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev); void ipvlan_ht_addr_add(struct ipvl_dev *ipvlan, struct ipvl_addr *addr); struct ipvl_addr *ipvlan_find_addr(const struct ipvl_dev *ipvlan, const void *iaddr, bool is_v6); bool ipvlan_addr_busy(struct ipvl_port *port, void *iaddr, bool is_v6); void ipvlan_ht_addr_del(struct ipvl_addr *addr); struct ipvl_addr *ipvlan_addr_lookup(struct ipvl_port *port, void *lyr3h, int addr_type, bool use_dest); void *ipvlan_get_L3_hdr(struct ipvl_port *port, struct sk_buff *skb, int *type); void ipvlan_count_rx(const struct ipvl_dev *ipvlan, unsigned int len, bool success, bool mcast); int ipvlan_link_new(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); void ipvlan_link_delete(struct net_device *dev, struct list_head *head); void ipvlan_link_setup(struct net_device *dev); int ipvlan_link_register(struct rtnl_link_ops *ops); #ifdef CONFIG_IPVLAN_L3S int ipvlan_l3s_register(struct ipvl_port *port); void ipvlan_l3s_unregister(struct ipvl_port *port); void ipvlan_migrate_l3s_hook(struct net *oldnet, struct net *newnet); int ipvlan_l3s_init(void); void ipvlan_l3s_cleanup(void); #else static inline int ipvlan_l3s_register(struct ipvl_port *port) { return -ENOTSUPP; } static inline void ipvlan_l3s_unregister(struct ipvl_port *port) { } static inline void ipvlan_migrate_l3s_hook(struct net *oldnet, struct net *newnet) { } static inline int ipvlan_l3s_init(void) { return 0; } static inline void ipvlan_l3s_cleanup(void) { } #endif /* CONFIG_IPVLAN_L3S */ static inline bool netif_is_ipvlan_port(const struct net_device *dev) { return rcu_access_pointer(dev->rx_handler) == ipvlan_handle_frame; } #endif /* __IPVLAN_H */ |
| 6 5 4 5 6 14 1 9 6 25 25 15 15 21 4 1 27 1 26 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 | // SPDX-License-Identifier: GPL-2.0-only /* * Minimal file system backend for holding eBPF maps and programs, * used by bpf(2) object pinning. * * Authors: * * Daniel Borkmann <daniel@iogearbox.net> */ #include <linux/init.h> #include <linux/magic.h> #include <linux/major.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/fs.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/kdev_t.h> #include <linux/filter.h> #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <linux/kstrtox.h> #include "preload/bpf_preload.h" enum bpf_type { BPF_TYPE_UNSPEC = 0, BPF_TYPE_PROG, BPF_TYPE_MAP, BPF_TYPE_LINK, }; static void *bpf_any_get(void *raw, enum bpf_type type) { switch (type) { case BPF_TYPE_PROG: bpf_prog_inc(raw); break; case BPF_TYPE_MAP: bpf_map_inc_with_uref(raw); break; case BPF_TYPE_LINK: bpf_link_inc(raw); break; default: WARN_ON_ONCE(1); break; } return raw; } static void bpf_any_put(void *raw, enum bpf_type type) { switch (type) { case BPF_TYPE_PROG: bpf_prog_put(raw); break; case BPF_TYPE_MAP: bpf_map_put_with_uref(raw); break; case BPF_TYPE_LINK: bpf_link_put(raw); break; default: WARN_ON_ONCE(1); break; } } static void *bpf_fd_probe_obj(u32 ufd, enum bpf_type *type) { void *raw; raw = bpf_map_get_with_uref(ufd); if (!IS_ERR(raw)) { *type = BPF_TYPE_MAP; return raw; } raw = bpf_prog_get(ufd); if (!IS_ERR(raw)) { *type = BPF_TYPE_PROG; return raw; } raw = bpf_link_get_from_fd(ufd); if (!IS_ERR(raw)) { *type = BPF_TYPE_LINK; return raw; } return ERR_PTR(-EINVAL); } static const struct inode_operations bpf_dir_iops; static const struct inode_operations bpf_prog_iops = { }; static const struct inode_operations bpf_map_iops = { }; static const struct inode_operations bpf_link_iops = { }; struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, umode_t mode) { struct inode *inode; switch (mode & S_IFMT) { case S_IFDIR: case S_IFREG: case S_IFLNK: break; default: return ERR_PTR(-EINVAL); } inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOSPC); inode->i_ino = get_next_ino(); simple_inode_init_ts(inode); inode_init_owner(&nop_mnt_idmap, inode, dir, mode); return inode; } static int bpf_inode_type(const struct inode *inode, enum bpf_type *type) { *type = BPF_TYPE_UNSPEC; if (inode->i_op == &bpf_prog_iops) *type = BPF_TYPE_PROG; else if (inode->i_op == &bpf_map_iops) *type = BPF_TYPE_MAP; else if (inode->i_op == &bpf_link_iops) *type = BPF_TYPE_LINK; else return -EACCES; return 0; } static void bpf_dentry_finalize(struct dentry *dentry, struct inode *inode, struct inode *dir) { d_instantiate(dentry, inode); dget(dentry); inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); } static int bpf_mkdir(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, umode_t mode) { struct inode *inode; inode = bpf_get_inode(dir->i_sb, dir, mode | S_IFDIR); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &bpf_dir_iops; inode->i_fop = &simple_dir_operations; inc_nlink(inode); inc_nlink(dir); bpf_dentry_finalize(dentry, inode, dir); return 0; } struct map_iter { void *key; bool done; }; static struct map_iter *map_iter(struct seq_file *m) { return m->private; } static struct bpf_map *seq_file_to_map(struct seq_file *m) { return file_inode(m->file)->i_private; } static void map_iter_free(struct map_iter *iter) { if (iter) { kfree(iter->key); kfree(iter); } } static struct map_iter *map_iter_alloc(struct bpf_map *map) { struct map_iter *iter; iter = kzalloc(sizeof(*iter), GFP_KERNEL | __GFP_NOWARN); if (!iter) goto error; iter->key = kzalloc(map->key_size, GFP_KERNEL | __GFP_NOWARN); if (!iter->key) goto error; return iter; error: map_iter_free(iter); return NULL; } static void *map_seq_next(struct seq_file *m, void *v, loff_t *pos) { struct bpf_map *map = seq_file_to_map(m); void *key = map_iter(m)->key; void *prev_key; (*pos)++; if (map_iter(m)->done) return NULL; if (unlikely(v == SEQ_START_TOKEN)) prev_key = NULL; else prev_key = key; rcu_read_lock(); if (map->ops->map_get_next_key(map, prev_key, key)) { map_iter(m)->done = true; key = NULL; } rcu_read_unlock(); return key; } static void *map_seq_start(struct seq_file *m, loff_t *pos) { if (map_iter(m)->done) return NULL; return *pos ? map_iter(m)->key : SEQ_START_TOKEN; } static void map_seq_stop(struct seq_file *m, void *v) { } static int map_seq_show(struct seq_file *m, void *v) { struct bpf_map *map = seq_file_to_map(m); void *key = map_iter(m)->key; if (unlikely(v == SEQ_START_TOKEN)) { seq_puts(m, "# WARNING!! The output is for debug purpose only\n"); seq_puts(m, "# WARNING!! The output format will change\n"); } else { map->ops->map_seq_show_elem(map, key, m); } return 0; } static const struct seq_operations bpffs_map_seq_ops = { .start = map_seq_start, .next = map_seq_next, .show = map_seq_show, .stop = map_seq_stop, }; static int bpffs_map_open(struct inode *inode, struct file *file) { struct bpf_map *map = inode->i_private; struct map_iter *iter; struct seq_file *m; int err; iter = map_iter_alloc(map); if (!iter) return -ENOMEM; err = seq_open(file, &bpffs_map_seq_ops); if (err) { map_iter_free(iter); return err; } m = file->private_data; m->private = iter; return 0; } static int bpffs_map_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; map_iter_free(map_iter(m)); return seq_release(inode, file); } /* bpffs_map_fops should only implement the basic * read operation for a BPF map. The purpose is to * provide a simple user intuitive way to do * "cat bpffs/pathto/a-pinned-map". * * Other operations (e.g. write, lookup...) should be realized by * the userspace tools (e.g. bpftool) through the * BPF_OBJ_GET_INFO_BY_FD and the map's lookup/update * interface. */ static const struct file_operations bpffs_map_fops = { .open = bpffs_map_open, .read = seq_read, .release = bpffs_map_release, }; static int bpffs_obj_open(struct inode *inode, struct file *file) { return -EIO; } static const struct file_operations bpffs_obj_fops = { .open = bpffs_obj_open, }; static int bpf_mkobj_ops(struct dentry *dentry, umode_t mode, void *raw, const struct inode_operations *iops, const struct file_operations *fops) { struct inode *dir = dentry->d_parent->d_inode; struct inode *inode = bpf_get_inode(dir->i_sb, dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = iops; inode->i_fop = fops; inode->i_private = raw; bpf_dentry_finalize(dentry, inode, dir); return 0; } static int bpf_mkprog(struct dentry *dentry, umode_t mode, void *arg) { return bpf_mkobj_ops(dentry, mode, arg, &bpf_prog_iops, &bpffs_obj_fops); } static int bpf_mkmap(struct dentry *dentry, umode_t mode, void *arg) { struct bpf_map *map = arg; return bpf_mkobj_ops(dentry, mode, arg, &bpf_map_iops, bpf_map_support_seq_show(map) ? &bpffs_map_fops : &bpffs_obj_fops); } static int bpf_mklink(struct dentry *dentry, umode_t mode, void *arg) { struct bpf_link *link = arg; return bpf_mkobj_ops(dentry, mode, arg, &bpf_link_iops, bpf_link_is_iter(link) ? &bpf_iter_fops : &bpffs_obj_fops); } static struct dentry * bpf_lookup(struct inode *dir, struct dentry *dentry, unsigned flags) { /* Dots in names (e.g. "/sys/fs/bpf/foo.bar") are reserved for future * extensions. That allows popoulate_bpffs() create special files. */ if ((dir->i_mode & S_IALLUGO) && strchr(dentry->d_name.name, '.')) return ERR_PTR(-EPERM); return simple_lookup(dir, dentry, flags); } static int bpf_symlink(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry, const char *target) { char *link = kstrdup(target, GFP_USER | __GFP_NOWARN); struct inode *inode; if (!link) return -ENOMEM; inode = bpf_get_inode(dir->i_sb, dir, S_IRWXUGO | S_IFLNK); if (IS_ERR(inode)) { kfree(link); return PTR_ERR(inode); } inode->i_op = &simple_symlink_inode_operations; inode->i_link = link; bpf_dentry_finalize(dentry, inode, dir); return 0; } static const struct inode_operations bpf_dir_iops = { .lookup = bpf_lookup, .mkdir = bpf_mkdir, .symlink = bpf_symlink, .rmdir = simple_rmdir, .rename = simple_rename, .link = simple_link, .unlink = simple_unlink, }; /* pin iterator link into bpffs */ static int bpf_iter_link_pin_kernel(struct dentry *parent, const char *name, struct bpf_link *link) { umode_t mode = S_IFREG | S_IRUSR; struct dentry *dentry; int ret; inode_lock(parent->d_inode); dentry = lookup_one_len(name, parent, strlen(name)); if (IS_ERR(dentry)) { inode_unlock(parent->d_inode); return PTR_ERR(dentry); } ret = bpf_mkobj_ops(dentry, mode, link, &bpf_link_iops, &bpf_iter_fops); dput(dentry); inode_unlock(parent->d_inode); return ret; } static int bpf_obj_do_pin(int path_fd, const char __user *pathname, void *raw, enum bpf_type type) { struct dentry *dentry; struct inode *dir; struct path path; umode_t mode; int ret; dentry = user_path_create(path_fd, pathname, &path, 0); if (IS_ERR(dentry)) return PTR_ERR(dentry); dir = d_inode(path.dentry); if (dir->i_op != &bpf_dir_iops) { ret = -EPERM; goto out; } mode = S_IFREG | ((S_IRUSR | S_IWUSR) & ~current_umask()); ret = security_path_mknod(&path, dentry, mode, 0); if (ret) goto out; switch (type) { case BPF_TYPE_PROG: ret = vfs_mkobj(dentry, mode, bpf_mkprog, raw); break; case BPF_TYPE_MAP: ret = vfs_mkobj(dentry, mode, bpf_mkmap, raw); break; case BPF_TYPE_LINK: ret = vfs_mkobj(dentry, mode, bpf_mklink, raw); break; default: ret = -EPERM; } out: done_path_create(&path, dentry); return ret; } int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname) { enum bpf_type type; void *raw; int ret; raw = bpf_fd_probe_obj(ufd, &type); if (IS_ERR(raw)) return PTR_ERR(raw); ret = bpf_obj_do_pin(path_fd, pathname, raw, type); if (ret != 0) bpf_any_put(raw, type); return ret; } static void *bpf_obj_do_get(int path_fd, const char __user *pathname, enum bpf_type *type, int flags) { struct inode *inode; struct path path; void *raw; int ret; ret = user_path_at(path_fd, pathname, LOOKUP_FOLLOW, &path); if (ret) return ERR_PTR(ret); inode = d_backing_inode(path.dentry); ret = path_permission(&path, ACC_MODE(flags)); if (ret) goto out; ret = bpf_inode_type(inode, type); if (ret) goto out; raw = bpf_any_get(inode->i_private, *type); if (!IS_ERR(raw)) touch_atime(&path); path_put(&path); return raw; out: path_put(&path); return ERR_PTR(ret); } int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags) { enum bpf_type type = BPF_TYPE_UNSPEC; int f_flags; void *raw; int ret; f_flags = bpf_get_file_flag(flags); if (f_flags < 0) return f_flags; raw = bpf_obj_do_get(path_fd, pathname, &type, f_flags); if (IS_ERR(raw)) return PTR_ERR(raw); if (type == BPF_TYPE_PROG) ret = bpf_prog_new_fd(raw); else if (type == BPF_TYPE_MAP) ret = bpf_map_new_fd(raw, f_flags); else if (type == BPF_TYPE_LINK) ret = (f_flags != O_RDWR) ? -EINVAL : bpf_link_new_fd(raw); else return -ENOENT; if (ret < 0) bpf_any_put(raw, type); return ret; } static struct bpf_prog *__get_prog_inode(struct inode *inode, enum bpf_prog_type type) { struct bpf_prog *prog; int ret = inode_permission(&nop_mnt_idmap, inode, MAY_READ); if (ret) return ERR_PTR(ret); if (inode->i_op == &bpf_map_iops) return ERR_PTR(-EINVAL); if (inode->i_op == &bpf_link_iops) return ERR_PTR(-EINVAL); if (inode->i_op != &bpf_prog_iops) return ERR_PTR(-EACCES); prog = inode->i_private; ret = security_bpf_prog(prog); if (ret < 0) return ERR_PTR(ret); if (!bpf_prog_get_ok(prog, &type, false)) return ERR_PTR(-EINVAL); bpf_prog_inc(prog); return prog; } struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type) { struct bpf_prog *prog; struct path path; int ret = kern_path(name, LOOKUP_FOLLOW, &path); if (ret) return ERR_PTR(ret); prog = __get_prog_inode(d_backing_inode(path.dentry), type); if (!IS_ERR(prog)) touch_atime(&path); path_put(&path); return prog; } EXPORT_SYMBOL(bpf_prog_get_type_path); struct bpffs_btf_enums { const struct btf *btf; const struct btf_type *cmd_t; const struct btf_type *map_t; const struct btf_type *prog_t; const struct btf_type *attach_t; }; static int find_bpffs_btf_enums(struct bpffs_btf_enums *info) { const struct btf *btf; const struct btf_type *t; const char *name; int i, n; memset(info, 0, sizeof(*info)); btf = bpf_get_btf_vmlinux(); if (IS_ERR(btf)) return PTR_ERR(btf); if (!btf) return -ENOENT; info->btf = btf; for (i = 1, n = btf_nr_types(btf); i < n; i++) { t = btf_type_by_id(btf, i); if (!btf_type_is_enum(t)) continue; name = btf_name_by_offset(btf, t->name_off); if (!name) continue; if (strcmp(name, "bpf_cmd") == 0) info->cmd_t = t; else if (strcmp(name, "bpf_map_type") == 0) info->map_t = t; else if (strcmp(name, "bpf_prog_type") == 0) info->prog_t = t; else if (strcmp(name, "bpf_attach_type") == 0) info->attach_t = t; else continue; if (info->cmd_t && info->map_t && info->prog_t && info->attach_t) return 0; } return -ESRCH; } static bool find_btf_enum_const(const struct btf *btf, const struct btf_type *enum_t, const char *prefix, const char *str, int *value) { const struct btf_enum *e; const char *name; int i, n, pfx_len = strlen(prefix); *value = 0; if (!btf || !enum_t) return false; for (i = 0, n = btf_vlen(enum_t); i < n; i++) { e = &btf_enum(enum_t)[i]; name = btf_name_by_offset(btf, e->name_off); if (!name || strncasecmp(name, prefix, pfx_len) != 0) continue; /* match symbolic name case insensitive and ignoring prefix */ if (strcasecmp(name + pfx_len, str) == 0) { *value = e->val; return true; } } return false; } static void seq_print_delegate_opts(struct seq_file *m, const char *opt_name, const struct btf *btf, const struct btf_type *enum_t, const char *prefix, u64 delegate_msk, u64 any_msk) { const struct btf_enum *e; bool first = true; const char *name; u64 msk; int i, n, pfx_len = strlen(prefix); delegate_msk &= any_msk; /* clear unknown bits */ if (delegate_msk == 0) return; seq_printf(m, ",%s", opt_name); if (delegate_msk == any_msk) { seq_printf(m, "=any"); return; } if (btf && enum_t) { for (i = 0, n = btf_vlen(enum_t); i < n; i++) { e = &btf_enum(enum_t)[i]; name = btf_name_by_offset(btf, e->name_off); if (!name || strncasecmp(name, prefix, pfx_len) != 0) continue; msk = 1ULL << e->val; if (delegate_msk & msk) { /* emit lower-case name without prefix */ seq_putc(m, first ? '=' : ':'); name += pfx_len; while (*name) { seq_putc(m, tolower(*name)); name++; } delegate_msk &= ~msk; first = false; } } } if (delegate_msk) seq_printf(m, "%c0x%llx", first ? '=' : ':', delegate_msk); } /* * Display the mount options in /proc/mounts. */ static int bpf_show_options(struct seq_file *m, struct dentry *root) { struct inode *inode = d_inode(root); umode_t mode = inode->i_mode & S_IALLUGO & ~S_ISVTX; struct bpf_mount_opts *opts = root->d_sb->s_fs_info; u64 mask; if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID)) seq_printf(m, ",uid=%u", from_kuid_munged(&init_user_ns, inode->i_uid)); if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID)) seq_printf(m, ",gid=%u", from_kgid_munged(&init_user_ns, inode->i_gid)); if (mode != S_IRWXUGO) seq_printf(m, ",mode=%o", mode); if (opts->delegate_cmds || opts->delegate_maps || opts->delegate_progs || opts->delegate_attachs) { struct bpffs_btf_enums info; /* ignore errors, fallback to hex */ (void)find_bpffs_btf_enums(&info); mask = (1ULL << __MAX_BPF_CMD) - 1; seq_print_delegate_opts(m, "delegate_cmds", info.btf, info.cmd_t, "BPF_", opts->delegate_cmds, mask); mask = (1ULL << __MAX_BPF_MAP_TYPE) - 1; seq_print_delegate_opts(m, "delegate_maps", info.btf, info.map_t, "BPF_MAP_TYPE_", opts->delegate_maps, mask); mask = (1ULL << __MAX_BPF_PROG_TYPE) - 1; seq_print_delegate_opts(m, "delegate_progs", info.btf, info.prog_t, "BPF_PROG_TYPE_", opts->delegate_progs, mask); mask = (1ULL << __MAX_BPF_ATTACH_TYPE) - 1; seq_print_delegate_opts(m, "delegate_attachs", info.btf, info.attach_t, "BPF_", opts->delegate_attachs, mask); } return 0; } static void bpf_free_inode(struct inode *inode) { enum bpf_type type; if (S_ISLNK(inode->i_mode)) kfree(inode->i_link); if (!bpf_inode_type(inode, &type)) bpf_any_put(inode->i_private, type); free_inode_nonrcu(inode); } const struct super_operations bpf_super_ops = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, .show_options = bpf_show_options, .free_inode = bpf_free_inode, }; enum { OPT_UID, OPT_GID, OPT_MODE, OPT_DELEGATE_CMDS, OPT_DELEGATE_MAPS, OPT_DELEGATE_PROGS, OPT_DELEGATE_ATTACHS, }; static const struct fs_parameter_spec bpf_fs_parameters[] = { fsparam_u32 ("uid", OPT_UID), fsparam_u32 ("gid", OPT_GID), fsparam_u32oct ("mode", OPT_MODE), fsparam_string ("delegate_cmds", OPT_DELEGATE_CMDS), fsparam_string ("delegate_maps", OPT_DELEGATE_MAPS), fsparam_string ("delegate_progs", OPT_DELEGATE_PROGS), fsparam_string ("delegate_attachs", OPT_DELEGATE_ATTACHS), {} }; static int bpf_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct bpf_mount_opts *opts = fc->s_fs_info; struct fs_parse_result result; kuid_t uid; kgid_t gid; int opt, err; opt = fs_parse(fc, bpf_fs_parameters, param, &result); if (opt < 0) { /* We might like to report bad mount options here, but * traditionally we've ignored all mount options, so we'd * better continue to ignore non-existing options for bpf. */ if (opt == -ENOPARAM) { opt = vfs_parse_fs_param_source(fc, param); if (opt != -ENOPARAM) return opt; return 0; } if (opt < 0) return opt; } switch (opt) { case OPT_UID: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) goto bad_value; /* * The requested uid must be representable in the * filesystem's idmapping. */ if (!kuid_has_mapping(fc->user_ns, uid)) goto bad_value; opts->uid = uid; break; case OPT_GID: gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(gid)) goto bad_value; /* * The requested gid must be representable in the * filesystem's idmapping. */ if (!kgid_has_mapping(fc->user_ns, gid)) goto bad_value; opts->gid = gid; break; case OPT_MODE: opts->mode = result.uint_32 & S_IALLUGO; break; case OPT_DELEGATE_CMDS: case OPT_DELEGATE_MAPS: case OPT_DELEGATE_PROGS: case OPT_DELEGATE_ATTACHS: { struct bpffs_btf_enums info; const struct btf_type *enum_t; const char *enum_pfx; u64 *delegate_msk, msk = 0; char *p, *str; int val; /* ignore errors, fallback to hex */ (void)find_bpffs_btf_enums(&info); switch (opt) { case OPT_DELEGATE_CMDS: delegate_msk = &opts->delegate_cmds; enum_t = info.cmd_t; enum_pfx = "BPF_"; break; case OPT_DELEGATE_MAPS: delegate_msk = &opts->delegate_maps; enum_t = info.map_t; enum_pfx = "BPF_MAP_TYPE_"; break; case OPT_DELEGATE_PROGS: delegate_msk = &opts->delegate_progs; enum_t = info.prog_t; enum_pfx = "BPF_PROG_TYPE_"; break; case OPT_DELEGATE_ATTACHS: delegate_msk = &opts->delegate_attachs; enum_t = info.attach_t; enum_pfx = "BPF_"; break; default: return -EINVAL; } str = param->string; while ((p = strsep(&str, ":"))) { if (strcmp(p, "any") == 0) { msk |= ~0ULL; } else if (find_btf_enum_const(info.btf, enum_t, enum_pfx, p, &val)) { msk |= 1ULL << val; } else { err = kstrtou64(p, 0, &msk); if (err) return err; } } /* Setting delegation mount options requires privileges */ if (msk && !capable(CAP_SYS_ADMIN)) return -EPERM; *delegate_msk |= msk; break; } default: /* ignore unknown mount options */ break; } return 0; bad_value: return invalfc(fc, "Bad value for '%s'", param->key); } struct bpf_preload_ops *bpf_preload_ops; EXPORT_SYMBOL_GPL(bpf_preload_ops); static bool bpf_preload_mod_get(void) { /* If bpf_preload.ko wasn't loaded earlier then load it now. * When bpf_preload is built into vmlinux the module's __init * function will populate it. */ if (!bpf_preload_ops) { request_module("bpf_preload"); if (!bpf_preload_ops) return false; } /* And grab the reference, so the module doesn't disappear while the * kernel is interacting with the kernel module and its UMD. */ if (!try_module_get(bpf_preload_ops->owner)) { pr_err("bpf_preload module get failed.\n"); return false; } return true; } static void bpf_preload_mod_put(void) { if (bpf_preload_ops) /* now user can "rmmod bpf_preload" if necessary */ module_put(bpf_preload_ops->owner); } static DEFINE_MUTEX(bpf_preload_lock); static int populate_bpffs(struct dentry *parent) { struct bpf_preload_info objs[BPF_PRELOAD_LINKS] = {}; int err = 0, i; /* grab the mutex to make sure the kernel interactions with bpf_preload * are serialized */ mutex_lock(&bpf_preload_lock); /* if bpf_preload.ko wasn't built into vmlinux then load it */ if (!bpf_preload_mod_get()) goto out; err = bpf_preload_ops->preload(objs); if (err) goto out_put; for (i = 0; i < BPF_PRELOAD_LINKS; i++) { bpf_link_inc(objs[i].link); err = bpf_iter_link_pin_kernel(parent, objs[i].link_name, objs[i].link); if (err) { bpf_link_put(objs[i].link); goto out_put; } } out_put: bpf_preload_mod_put(); out: mutex_unlock(&bpf_preload_lock); return err; } static int bpf_fill_super(struct super_block *sb, struct fs_context *fc) { static const struct tree_descr bpf_rfiles[] = { { "" } }; struct bpf_mount_opts *opts = sb->s_fs_info; struct inode *inode; int ret; /* Mounting an instance of BPF FS requires privileges */ if (fc->user_ns != &init_user_ns && !capable(CAP_SYS_ADMIN)) return -EPERM; ret = simple_fill_super(sb, BPF_FS_MAGIC, bpf_rfiles); if (ret) return ret; sb->s_op = &bpf_super_ops; inode = sb->s_root->d_inode; inode->i_uid = opts->uid; inode->i_gid = opts->gid; inode->i_op = &bpf_dir_iops; inode->i_mode &= ~S_IALLUGO; populate_bpffs(sb->s_root); inode->i_mode |= S_ISVTX | opts->mode; return 0; } static int bpf_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, bpf_fill_super); } static void bpf_free_fc(struct fs_context *fc) { kfree(fc->s_fs_info); } static const struct fs_context_operations bpf_context_ops = { .free = bpf_free_fc, .parse_param = bpf_parse_param, .get_tree = bpf_get_tree, }; /* * Set up the filesystem mount context. */ static int bpf_init_fs_context(struct fs_context *fc) { struct bpf_mount_opts *opts; opts = kzalloc(sizeof(struct bpf_mount_opts), GFP_KERNEL); if (!opts) return -ENOMEM; opts->mode = S_IRWXUGO; opts->uid = current_fsuid(); opts->gid = current_fsgid(); /* start out with no BPF token delegation enabled */ opts->delegate_cmds = 0; opts->delegate_maps = 0; opts->delegate_progs = 0; opts->delegate_attachs = 0; fc->s_fs_info = opts; fc->ops = &bpf_context_ops; return 0; } static void bpf_kill_super(struct super_block *sb) { struct bpf_mount_opts *opts = sb->s_fs_info; kill_litter_super(sb); kfree(opts); } static struct file_system_type bpf_fs_type = { .owner = THIS_MODULE, .name = "bpf", .init_fs_context = bpf_init_fs_context, .parameters = bpf_fs_parameters, .kill_sb = bpf_kill_super, .fs_flags = FS_USERNS_MOUNT, }; static int __init bpf_init(void) { int ret; ret = sysfs_create_mount_point(fs_kobj, "bpf"); if (ret) return ret; ret = register_filesystem(&bpf_fs_type); if (ret) sysfs_remove_mount_point(fs_kobj, "bpf"); return ret; } fs_initcall(bpf_init); |
| 48 48 37 37 47 47 42 42 9 9 9 9 9 9 48 48 48 48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/proc/net.c * * Copyright (C) 2007 * * Author: Eric Biederman <ebiederm@xmission.com> * * proc net directory handling functions */ #include <linux/errno.h> #include <linux/time.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/module.h> #include <linux/bitops.h> #include <linux/mount.h> #include <linux/nsproxy.h> #include <linux/uidgid.h> #include <net/net_namespace.h> #include <linux/seq_file.h> #include "internal.h" static inline struct net *PDE_NET(struct proc_dir_entry *pde) { return pde->parent->data; } static struct net *get_proc_net(const struct inode *inode) { return maybe_get_net(PDE_NET(PDE(inode))); } static int seq_open_net(struct inode *inode, struct file *file) { unsigned int state_size = PDE(inode)->state_size; struct seq_net_private *p; struct net *net; WARN_ON_ONCE(state_size < sizeof(*p)); if (file->f_mode & FMODE_WRITE && !PDE(inode)->write) return -EACCES; net = get_proc_net(inode); if (!net) return -ENXIO; p = __seq_open_private(file, PDE(inode)->seq_ops, state_size); if (!p) { put_net(net); return -ENOMEM; } #ifdef CONFIG_NET_NS p->net = net; netns_tracker_alloc(net, &p->ns_tracker, GFP_KERNEL); #endif return 0; } static void seq_file_net_put_net(struct seq_file *seq) { #ifdef CONFIG_NET_NS struct seq_net_private *priv = seq->private; put_net_track(priv->net, &priv->ns_tracker); #else put_net(&init_net); #endif } static int seq_release_net(struct inode *ino, struct file *f) { struct seq_file *seq = f->private_data; seq_file_net_put_net(seq); seq_release_private(ino, f); return 0; } static const struct proc_ops proc_net_seq_ops = { .proc_open = seq_open_net, .proc_read = seq_read, .proc_write = proc_simple_write, .proc_lseek = seq_lseek, .proc_release = seq_release_net, }; int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux) { #ifdef CONFIG_NET_NS struct seq_net_private *p = priv_data; p->net = get_net_track(current->nsproxy->net_ns, &p->ns_tracker, GFP_KERNEL); #endif return 0; } void bpf_iter_fini_seq_net(void *priv_data) { #ifdef CONFIG_NET_NS struct seq_net_private *p = priv_data; put_net_track(p->net, &p->ns_tracker); #endif } struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_seq_ops; p->seq_ops = ops; p->state_size = state_size; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_data); /** * proc_create_net_data_write - Create a writable net_ns-specific proc file * @name: The name of the file. * @mode: The file's access mode. * @parent: The parent directory in which to create. * @ops: The seq_file ops with which to read the file. * @write: The write method with which to 'modify' the file. * @state_size: The size of the per-file private state to allocate. * @data: Data for retrieval by pde_data(). * * Create a network namespaced proc file in the @parent directory with the * specified @name and @mode that allows reading of a file that displays a * series of elements and also provides for the file accepting writes that have * some arbitrary effect. * * The functions in the @ops table are used to iterate over items to be * presented and extract the readable content using the seq_file interface. * * The @write function is called with the data copied into a kernel space * scratch buffer and has a NUL appended for convenience. The buffer may be * modified by the @write function. @write should return 0 on success. * * The @data value is accessible from the @show and @write functions by calling * pde_data() on the file inode. The network namespace must be accessed by * calling seq_file_net() on the seq_file struct. */ struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_seq_ops; p->seq_ops = ops; p->state_size = state_size; p->write = write; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_data_write); static int single_open_net(struct inode *inode, struct file *file) { struct proc_dir_entry *de = PDE(inode); struct net *net; int err; net = get_proc_net(inode); if (!net) return -ENXIO; err = single_open(file, de->single_show, net); if (err) put_net(net); return err; } static int single_release_net(struct inode *ino, struct file *f) { struct seq_file *seq = f->private_data; put_net(seq->private); return single_release(ino, f); } static const struct proc_ops proc_net_single_ops = { .proc_open = single_open_net, .proc_read = seq_read, .proc_write = proc_simple_write, .proc_lseek = seq_lseek, .proc_release = single_release_net, }; struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_single_ops; p->single_show = show; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_single); /** * proc_create_net_single_write - Create a writable net_ns-specific proc file * @name: The name of the file. * @mode: The file's access mode. * @parent: The parent directory in which to create. * @show: The seqfile show method with which to read the file. * @write: The write method with which to 'modify' the file. * @data: Data for retrieval by pde_data(). * * Create a network-namespaced proc file in the @parent directory with the * specified @name and @mode that allows reading of a file that displays a * single element rather than a series and also provides for the file accepting * writes that have some arbitrary effect. * * The @show function is called to extract the readable content via the * seq_file interface. * * The @write function is called with the data copied into a kernel space * scratch buffer and has a NUL appended for convenience. The buffer may be * modified by the @write function. @write should return 0 on success. * * The @data value is accessible from the @show and @write functions by calling * pde_data() on the file inode. The network namespace must be accessed by * calling seq_file_single_net() on the seq_file struct. */ struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data) { struct proc_dir_entry *p; p = proc_create_reg(name, mode, &parent, data); if (!p) return NULL; pde_force_lookup(p); p->proc_ops = &proc_net_single_ops; p->single_show = show; p->write = write; return proc_register(parent, p); } EXPORT_SYMBOL_GPL(proc_create_net_single_write); static struct net *get_proc_task_net(struct inode *dir) { struct task_struct *task; struct nsproxy *ns; struct net *net = NULL; rcu_read_lock(); task = pid_task(proc_pid(dir), PIDTYPE_PID); if (task != NULL) { task_lock(task); ns = task->nsproxy; if (ns != NULL) net = get_net(ns->net_ns); task_unlock(task); } rcu_read_unlock(); return net; } static struct dentry *proc_tgid_net_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct dentry *de; struct net *net; de = ERR_PTR(-ENOENT); net = get_proc_task_net(dir); if (net != NULL) { de = proc_lookup_de(dir, dentry, net->proc_net); put_net(net); } return de; } static int proc_tgid_net_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct net *net; net = get_proc_task_net(inode); generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); if (net != NULL) { stat->nlink = net->proc_net->nlink; put_net(net); } return 0; } const struct inode_operations proc_net_inode_operations = { .lookup = proc_tgid_net_lookup, .getattr = proc_tgid_net_getattr, .setattr = proc_setattr, }; static int proc_tgid_net_readdir(struct file *file, struct dir_context *ctx) { int ret; struct net *net; ret = -EINVAL; net = get_proc_task_net(file_inode(file)); if (net != NULL) { ret = proc_readdir_de(file, ctx, net->proc_net); put_net(net); } return ret; } const struct file_operations proc_net_operations = { .llseek = generic_file_llseek, .read = generic_read_dir, .iterate_shared = proc_tgid_net_readdir, }; static __net_init int proc_net_ns_init(struct net *net) { struct proc_dir_entry *netd, *net_statd; kuid_t uid; kgid_t gid; int err; /* * This PDE acts only as an anchor for /proc/${pid}/net hierarchy. * Corresponding inode (PDE(inode) == net->proc_net) is never * instantiated therefore blanket zeroing is fine. * net->proc_net_stat inode is instantiated normally. */ err = -ENOMEM; netd = kmem_cache_zalloc(proc_dir_entry_cache, GFP_KERNEL); if (!netd) goto out; netd->subdir = RB_ROOT; netd->data = net; netd->nlink = 2; netd->namelen = 3; netd->parent = &proc_root; netd->name = netd->inline_name; memcpy(netd->name, "net", 4); uid = make_kuid(net->user_ns, 0); if (!uid_valid(uid)) uid = netd->uid; gid = make_kgid(net->user_ns, 0); if (!gid_valid(gid)) gid = netd->gid; proc_set_user(netd, uid, gid); /* Seed dentry revalidation for /proc/${pid}/net */ pde_force_lookup(netd); err = -EEXIST; net_statd = proc_net_mkdir(net, "stat", netd); if (!net_statd) goto free_net; net->proc_net = netd; net->proc_net_stat = net_statd; return 0; free_net: pde_free(netd); out: return err; } static __net_exit void proc_net_ns_exit(struct net *net) { remove_proc_entry("stat", net->proc_net); pde_free(net->proc_net); } static struct pernet_operations __net_initdata proc_net_ns_ops = { .init = proc_net_ns_init, .exit = proc_net_ns_exit, }; int __init proc_net_init(void) { proc_symlink("net", NULL, "self/net"); return register_pernet_subsys(&proc_net_ns_ops); } |
| 97 156 58 399 1418 1419 514 817 110 115 242 154 888 13 359 148 148 148 148 148 148 148 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | // SPDX-License-Identifier: GPL-2.0-only /* * IPv6 library code, needed by static components when full IPv6 support is * not configured or static. */ #include <linux/export.h> #include <net/ipv6.h> #include <net/ipv6_stubs.h> #include <net/addrconf.h> #include <net/ip.h> /* if ipv6 module registers this function is used by xfrm to force all * sockets to relookup their nodes - this is fairly expensive, be * careful */ void (*__fib6_flush_trees)(struct net *); EXPORT_SYMBOL(__fib6_flush_trees); #define IPV6_ADDR_SCOPE_TYPE(scope) ((scope) << 16) static inline unsigned int ipv6_addr_scope2type(unsigned int scope) { switch (scope) { case IPV6_ADDR_SCOPE_NODELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_NODELOCAL) | IPV6_ADDR_LOOPBACK); case IPV6_ADDR_SCOPE_LINKLOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL) | IPV6_ADDR_LINKLOCAL); case IPV6_ADDR_SCOPE_SITELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL) | IPV6_ADDR_SITELOCAL); } return IPV6_ADDR_SCOPE_TYPE(scope); } int __ipv6_addr_type(const struct in6_addr *addr) { __be32 st; st = addr->s6_addr32[0]; /* Consider all addresses with the first three bits different of 000 and 111 as unicasts. */ if ((st & htonl(0xE0000000)) != htonl(0x00000000) && (st & htonl(0xE0000000)) != htonl(0xE0000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); if ((st & htonl(0xFF000000)) == htonl(0xFF000000)) { /* multicast */ /* addr-select 3.1 */ return (IPV6_ADDR_MULTICAST | ipv6_addr_scope2type(IPV6_ADDR_MC_SCOPE(addr))); } if ((st & htonl(0xFFC00000)) == htonl(0xFE800000)) return (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFFC00000)) == htonl(0xFEC00000)) return (IPV6_ADDR_SITELOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFE000000)) == htonl(0xFC000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* RFC 4193 */ if ((addr->s6_addr32[0] | addr->s6_addr32[1]) == 0) { if (addr->s6_addr32[2] == 0) { if (addr->s6_addr32[3] == 0) return IPV6_ADDR_ANY; if (addr->s6_addr32[3] == htonl(0x00000001)) return (IPV6_ADDR_LOOPBACK | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.4 */ return (IPV6_ADDR_COMPATv4 | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } if (addr->s6_addr32[2] == htonl(0x0000ffff)) return (IPV6_ADDR_MAPPED | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.4 */ } EXPORT_SYMBOL(__ipv6_addr_type); static ATOMIC_NOTIFIER_HEAD(inet6addr_chain); static BLOCKING_NOTIFIER_HEAD(inet6addr_validator_chain); int register_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&inet6addr_chain, nb); } EXPORT_SYMBOL(register_inet6addr_notifier); int unregister_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&inet6addr_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_notifier); int inet6addr_notifier_call_chain(unsigned long val, void *v) { return atomic_notifier_call_chain(&inet6addr_chain, val, v); } EXPORT_SYMBOL(inet6addr_notifier_call_chain); int register_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(register_inet6addr_validator_notifier); int unregister_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_validator_notifier); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v) { return blocking_notifier_call_chain(&inet6addr_validator_chain, val, v); } EXPORT_SYMBOL(inet6addr_validator_notifier_call_chain); static struct dst_entry *eafnosupport_ipv6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { return ERR_PTR(-EAFNOSUPPORT); } static int eafnosupport_ipv6_route_input(struct sk_buff *skb) { return -EAFNOSUPPORT; } static struct fib6_table *eafnosupport_fib6_get_table(struct net *net, u32 id) { return NULL; } static int eafnosupport_fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static int eafnosupport_fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static void eafnosupport_fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict) { } static u32 eafnosupport_ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { return 0; } static int eafnosupport_fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "IPv6 support not enabled in kernel"); return -EAFNOSUPPORT; } static int eafnosupport_ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) { return -EAFNOSUPPORT; } static int eafnosupport_ipv6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { kfree_skb(skb); return -EAFNOSUPPORT; } static struct net_device *eafnosupport_ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev) { return ERR_PTR(-EAFNOSUPPORT); } const struct ipv6_stub *ipv6_stub __read_mostly = &(struct ipv6_stub) { .ipv6_dst_lookup_flow = eafnosupport_ipv6_dst_lookup_flow, .ipv6_route_input = eafnosupport_ipv6_route_input, .fib6_get_table = eafnosupport_fib6_get_table, .fib6_table_lookup = eafnosupport_fib6_table_lookup, .fib6_lookup = eafnosupport_fib6_lookup, .fib6_select_path = eafnosupport_fib6_select_path, .ip6_mtu_from_fib6 = eafnosupport_ip6_mtu_from_fib6, .fib6_nh_init = eafnosupport_fib6_nh_init, .ip6_del_rt = eafnosupport_ip6_del_rt, .ipv6_fragment = eafnosupport_ipv6_fragment, .ipv6_dev_find = eafnosupport_ipv6_dev_find, }; EXPORT_SYMBOL_GPL(ipv6_stub); /* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */ const struct in6_addr in6addr_loopback __aligned(BITS_PER_LONG/8) = IN6ADDR_LOOPBACK_INIT; EXPORT_SYMBOL(in6addr_loopback); const struct in6_addr in6addr_any __aligned(BITS_PER_LONG/8) = IN6ADDR_ANY_INIT; EXPORT_SYMBOL(in6addr_any); const struct in6_addr in6addr_linklocal_allnodes __aligned(BITS_PER_LONG/8) = IN6ADDR_LINKLOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_linklocal_allnodes); const struct in6_addr in6addr_linklocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_linklocal_allrouters); const struct in6_addr in6addr_interfacelocal_allnodes __aligned(BITS_PER_LONG/8) = IN6ADDR_INTERFACELOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allnodes); const struct in6_addr in6addr_interfacelocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_INTERFACELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allrouters); const struct in6_addr in6addr_sitelocal_allrouters __aligned(BITS_PER_LONG/8) = IN6ADDR_SITELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_sitelocal_allrouters); static void snmp6_free_dev(struct inet6_dev *idev) { kfree(idev->stats.icmpv6msgdev); kfree(idev->stats.icmpv6dev); free_percpu(idev->stats.ipv6); } static void in6_dev_finish_destroy_rcu(struct rcu_head *head) { struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu); snmp6_free_dev(idev); kfree(idev); } /* Nobody refers to this device, we may destroy it. */ void in6_dev_finish_destroy(struct inet6_dev *idev) { struct net_device *dev = idev->dev; WARN_ON(!list_empty(&idev->addr_list)); WARN_ON(rcu_access_pointer(idev->mc_list)); WARN_ON(timer_pending(&idev->rs_timer)); #ifdef NET_REFCNT_DEBUG pr_debug("%s: %s\n", __func__, dev ? dev->name : "NIL"); #endif netdev_put(dev, &idev->dev_tracker); if (!idev->dead) { pr_warn("Freeing alive inet6 device %p\n", idev); return; } call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu); } EXPORT_SYMBOL(in6_dev_finish_destroy); |
| 1077 19 17 1 1 1 34 34 34 17 17 17 34 34 34 17 17 17 1 1 1 1 3 2 1 1 34 34 2 2 2 2 1 1 3 17 34 49 49 49 34 34 17 17 13 34 34 34 34 34 34 34 17 9 9 8 17 17 17 17 17 17 57 57 1 56 57 42 33 45 45 32 32 44 28 2 2 1 1 48 48 1 1 45 4 44 43 12 11 34 34 6 33 6 12 32 34 34 11 15 17 17 13 17 16 5 17 2 17 9 13 17 17 17 17 49 49 49 49 49 1 1 1 1 4 12 12 3 3 3 3 16 16 16 15 12 15 12 16 28 28 28 28 6 6 4 4 2 2 2 116 116 10 10 10 13 13 52 52 16 16 16 64 66 66 66 2 1 1 1 20 20 20 8 20 20 19 47 1 1 1 4 4 49 48 49 49 49 49 49 56 49 49 49 49 3 3 55 55 46 17 34 32 56 56 56 56 1 1 56 56 49 49 49 49 49 56 56 34 11 21 55 4 8 1 24 16 37 34 17 37 37 1079 1077 1071 80 1 19 18 4 8 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 | // SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/net/team/team.c - Network team device driver * Copyright (c) 2011 Jiri Pirko <jpirko@redhat.com> */ #include <linux/ethtool.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/errno.h> #include <linux/ctype.h> #include <linux/notifier.h> #include <linux/netdevice.h> #include <linux/netpoll.h> #include <linux/if_vlan.h> #include <linux/if_arp.h> #include <linux/socket.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <net/rtnetlink.h> #include <net/genetlink.h> #include <net/netlink.h> #include <net/sch_generic.h> #include <linux/if_team.h> #include "team_nl.h" #define DRV_NAME "team" /********** * Helpers **********/ static struct team_port *team_port_get_rtnl(const struct net_device *dev) { struct team_port *port = rtnl_dereference(dev->rx_handler_data); return netif_is_team_port(dev) ? port : NULL; } /* * Since the ability to change device address for open port device is tested in * team_port_add, this function can be called without control of return value */ static int __set_port_dev_addr(struct net_device *port_dev, const unsigned char *dev_addr) { struct sockaddr_storage addr; memcpy(addr.__data, dev_addr, port_dev->addr_len); addr.ss_family = port_dev->type; return dev_set_mac_address(port_dev, (struct sockaddr *)&addr, NULL); } static int team_port_set_orig_dev_addr(struct team_port *port) { return __set_port_dev_addr(port->dev, port->orig.dev_addr); } static int team_port_set_team_dev_addr(struct team *team, struct team_port *port) { return __set_port_dev_addr(port->dev, team->dev->dev_addr); } int team_modeop_port_enter(struct team *team, struct team_port *port) { return team_port_set_team_dev_addr(team, port); } EXPORT_SYMBOL(team_modeop_port_enter); void team_modeop_port_change_dev_addr(struct team *team, struct team_port *port) { team_port_set_team_dev_addr(team, port); } EXPORT_SYMBOL(team_modeop_port_change_dev_addr); static void team_lower_state_changed(struct team_port *port) { struct netdev_lag_lower_state_info info; info.link_up = port->linkup; info.tx_enabled = team_port_enabled(port); netdev_lower_state_changed(port->dev, &info); } static void team_refresh_port_linkup(struct team_port *port) { bool new_linkup = port->user.linkup_enabled ? port->user.linkup : port->state.linkup; if (port->linkup != new_linkup) { port->linkup = new_linkup; team_lower_state_changed(port); } } /******************* * Options handling *******************/ struct team_option_inst { /* One for each option instance */ struct list_head list; struct list_head tmp_list; struct team_option *option; struct team_option_inst_info info; bool changed; bool removed; }; static struct team_option *__team_find_option(struct team *team, const char *opt_name) { struct team_option *option; list_for_each_entry(option, &team->option_list, list) { if (strcmp(option->name, opt_name) == 0) return option; } return NULL; } static void __team_option_inst_del(struct team_option_inst *opt_inst) { list_del(&opt_inst->list); kfree(opt_inst); } static void __team_option_inst_del_option(struct team *team, struct team_option *option) { struct team_option_inst *opt_inst, *tmp; list_for_each_entry_safe(opt_inst, tmp, &team->option_inst_list, list) { if (opt_inst->option == option) __team_option_inst_del(opt_inst); } } static int __team_option_inst_add(struct team *team, struct team_option *option, struct team_port *port) { struct team_option_inst *opt_inst; unsigned int array_size; unsigned int i; array_size = option->array_size; if (!array_size) array_size = 1; /* No array but still need one instance */ for (i = 0; i < array_size; i++) { opt_inst = kmalloc(sizeof(*opt_inst), GFP_KERNEL); if (!opt_inst) return -ENOMEM; opt_inst->option = option; opt_inst->info.port = port; opt_inst->info.array_index = i; opt_inst->changed = true; opt_inst->removed = false; list_add_tail(&opt_inst->list, &team->option_inst_list); if (option->init) option->init(team, &opt_inst->info); } return 0; } static int __team_option_inst_add_option(struct team *team, struct team_option *option) { int err; if (!option->per_port) { err = __team_option_inst_add(team, option, NULL); if (err) goto inst_del_option; } return 0; inst_del_option: __team_option_inst_del_option(team, option); return err; } static void __team_option_inst_mark_removed_option(struct team *team, struct team_option *option) { struct team_option_inst *opt_inst; list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->option == option) { opt_inst->changed = true; opt_inst->removed = true; } } } static void __team_option_inst_del_port(struct team *team, struct team_port *port) { struct team_option_inst *opt_inst, *tmp; list_for_each_entry_safe(opt_inst, tmp, &team->option_inst_list, list) { if (opt_inst->option->per_port && opt_inst->info.port == port) __team_option_inst_del(opt_inst); } } static int __team_option_inst_add_port(struct team *team, struct team_port *port) { struct team_option *option; int err; list_for_each_entry(option, &team->option_list, list) { if (!option->per_port) continue; err = __team_option_inst_add(team, option, port); if (err) goto inst_del_port; } return 0; inst_del_port: __team_option_inst_del_port(team, port); return err; } static void __team_option_inst_mark_removed_port(struct team *team, struct team_port *port) { struct team_option_inst *opt_inst; list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->info.port == port) { opt_inst->changed = true; opt_inst->removed = true; } } } static int __team_options_register(struct team *team, const struct team_option *option, size_t option_count) { int i; struct team_option **dst_opts; int err; dst_opts = kcalloc(option_count, sizeof(struct team_option *), GFP_KERNEL); if (!dst_opts) return -ENOMEM; for (i = 0; i < option_count; i++, option++) { if (__team_find_option(team, option->name)) { err = -EEXIST; goto alloc_rollback; } dst_opts[i] = kmemdup(option, sizeof(*option), GFP_KERNEL); if (!dst_opts[i]) { err = -ENOMEM; goto alloc_rollback; } } for (i = 0; i < option_count; i++) { err = __team_option_inst_add_option(team, dst_opts[i]); if (err) goto inst_rollback; list_add_tail(&dst_opts[i]->list, &team->option_list); } kfree(dst_opts); return 0; inst_rollback: for (i--; i >= 0; i--) { __team_option_inst_del_option(team, dst_opts[i]); list_del(&dst_opts[i]->list); } i = option_count; alloc_rollback: for (i--; i >= 0; i--) kfree(dst_opts[i]); kfree(dst_opts); return err; } static void __team_options_mark_removed(struct team *team, const struct team_option *option, size_t option_count) { int i; for (i = 0; i < option_count; i++, option++) { struct team_option *del_opt; del_opt = __team_find_option(team, option->name); if (del_opt) __team_option_inst_mark_removed_option(team, del_opt); } } static void __team_options_unregister(struct team *team, const struct team_option *option, size_t option_count) { int i; for (i = 0; i < option_count; i++, option++) { struct team_option *del_opt; del_opt = __team_find_option(team, option->name); if (del_opt) { __team_option_inst_del_option(team, del_opt); list_del(&del_opt->list); kfree(del_opt); } } } static void __team_options_change_check(struct team *team); int team_options_register(struct team *team, const struct team_option *option, size_t option_count) { int err; err = __team_options_register(team, option, option_count); if (err) return err; __team_options_change_check(team); return 0; } EXPORT_SYMBOL(team_options_register); void team_options_unregister(struct team *team, const struct team_option *option, size_t option_count) { __team_options_mark_removed(team, option, option_count); __team_options_change_check(team); __team_options_unregister(team, option, option_count); } EXPORT_SYMBOL(team_options_unregister); static int team_option_get(struct team *team, struct team_option_inst *opt_inst, struct team_gsetter_ctx *ctx) { if (!opt_inst->option->getter) return -EOPNOTSUPP; opt_inst->option->getter(team, ctx); return 0; } static int team_option_set(struct team *team, struct team_option_inst *opt_inst, struct team_gsetter_ctx *ctx) { if (!opt_inst->option->setter) return -EOPNOTSUPP; return opt_inst->option->setter(team, ctx); } void team_option_inst_set_change(struct team_option_inst_info *opt_inst_info) { struct team_option_inst *opt_inst; opt_inst = container_of(opt_inst_info, struct team_option_inst, info); opt_inst->changed = true; } EXPORT_SYMBOL(team_option_inst_set_change); void team_options_change_check(struct team *team) { __team_options_change_check(team); } EXPORT_SYMBOL(team_options_change_check); /**************** * Mode handling ****************/ static LIST_HEAD(mode_list); static DEFINE_SPINLOCK(mode_list_lock); struct team_mode_item { struct list_head list; const struct team_mode *mode; }; static struct team_mode_item *__find_mode(const char *kind) { struct team_mode_item *mitem; list_for_each_entry(mitem, &mode_list, list) { if (strcmp(mitem->mode->kind, kind) == 0) return mitem; } return NULL; } static bool is_good_mode_name(const char *name) { while (*name != '\0') { if (!isalpha(*name) && !isdigit(*name) && *name != '_') return false; name++; } return true; } int team_mode_register(const struct team_mode *mode) { int err = 0; struct team_mode_item *mitem; if (!is_good_mode_name(mode->kind) || mode->priv_size > TEAM_MODE_PRIV_SIZE) return -EINVAL; mitem = kmalloc(sizeof(*mitem), GFP_KERNEL); if (!mitem) return -ENOMEM; spin_lock(&mode_list_lock); if (__find_mode(mode->kind)) { err = -EEXIST; kfree(mitem); goto unlock; } mitem->mode = mode; list_add_tail(&mitem->list, &mode_list); unlock: spin_unlock(&mode_list_lock); return err; } EXPORT_SYMBOL(team_mode_register); void team_mode_unregister(const struct team_mode *mode) { struct team_mode_item *mitem; spin_lock(&mode_list_lock); mitem = __find_mode(mode->kind); if (mitem) { list_del_init(&mitem->list); kfree(mitem); } spin_unlock(&mode_list_lock); } EXPORT_SYMBOL(team_mode_unregister); static const struct team_mode *team_mode_get(const char *kind) { struct team_mode_item *mitem; const struct team_mode *mode = NULL; if (!try_module_get(THIS_MODULE)) return NULL; spin_lock(&mode_list_lock); mitem = __find_mode(kind); if (!mitem) { spin_unlock(&mode_list_lock); request_module("team-mode-%s", kind); spin_lock(&mode_list_lock); mitem = __find_mode(kind); } if (mitem) { mode = mitem->mode; if (!try_module_get(mode->owner)) mode = NULL; } spin_unlock(&mode_list_lock); module_put(THIS_MODULE); return mode; } static void team_mode_put(const struct team_mode *mode) { module_put(mode->owner); } static bool team_dummy_transmit(struct team *team, struct sk_buff *skb) { dev_kfree_skb_any(skb); return false; } static rx_handler_result_t team_dummy_receive(struct team *team, struct team_port *port, struct sk_buff *skb) { return RX_HANDLER_ANOTHER; } static const struct team_mode __team_no_mode = { .kind = "*NOMODE*", }; static bool team_is_mode_set(struct team *team) { return team->mode != &__team_no_mode; } static void team_set_no_mode(struct team *team) { team->user_carrier_enabled = false; team->mode = &__team_no_mode; } static void team_adjust_ops(struct team *team) { /* * To avoid checks in rx/tx skb paths, ensure here that non-null and * correct ops are always set. */ if (!team->en_port_count || !team_is_mode_set(team) || !team->mode->ops->transmit) team->ops.transmit = team_dummy_transmit; else team->ops.transmit = team->mode->ops->transmit; if (!team->en_port_count || !team_is_mode_set(team) || !team->mode->ops->receive) team->ops.receive = team_dummy_receive; else team->ops.receive = team->mode->ops->receive; } /* * We can benefit from the fact that it's ensured no port is present * at the time of mode change. Therefore no packets are in fly so there's no * need to set mode operations in any special way. */ static int __team_change_mode(struct team *team, const struct team_mode *new_mode) { /* Check if mode was previously set and do cleanup if so */ if (team_is_mode_set(team)) { void (*exit_op)(struct team *team) = team->ops.exit; /* Clear ops area so no callback is called any longer */ memset(&team->ops, 0, sizeof(struct team_mode_ops)); team_adjust_ops(team); if (exit_op) exit_op(team); team_mode_put(team->mode); team_set_no_mode(team); /* zero private data area */ memset(&team->mode_priv, 0, sizeof(struct team) - offsetof(struct team, mode_priv)); } if (!new_mode) return 0; if (new_mode->ops->init) { int err; err = new_mode->ops->init(team); if (err) return err; } team->mode = new_mode; memcpy(&team->ops, new_mode->ops, sizeof(struct team_mode_ops)); team_adjust_ops(team); return 0; } static int team_change_mode(struct team *team, const char *kind) { const struct team_mode *new_mode; struct net_device *dev = team->dev; int err; if (!list_empty(&team->port_list)) { netdev_err(dev, "No ports can be present during mode change\n"); return -EBUSY; } if (team_is_mode_set(team) && strcmp(team->mode->kind, kind) == 0) { netdev_err(dev, "Unable to change to the same mode the team is in\n"); return -EINVAL; } new_mode = team_mode_get(kind); if (!new_mode) { netdev_err(dev, "Mode \"%s\" not found\n", kind); return -EINVAL; } err = __team_change_mode(team, new_mode); if (err) { netdev_err(dev, "Failed to change to mode \"%s\"\n", kind); team_mode_put(new_mode); return err; } netdev_info(dev, "Mode changed to \"%s\"\n", kind); return 0; } /********************* * Peers notification *********************/ static void team_notify_peers_work(struct work_struct *work) { struct team *team; int val; team = container_of(work, struct team, notify_peers.dw.work); if (!rtnl_trylock()) { schedule_delayed_work(&team->notify_peers.dw, 0); return; } val = atomic_dec_if_positive(&team->notify_peers.count_pending); if (val < 0) { rtnl_unlock(); return; } call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, team->dev); rtnl_unlock(); if (val) schedule_delayed_work(&team->notify_peers.dw, msecs_to_jiffies(team->notify_peers.interval)); } static void team_notify_peers(struct team *team) { if (!team->notify_peers.count || !netif_running(team->dev)) return; atomic_add(team->notify_peers.count, &team->notify_peers.count_pending); schedule_delayed_work(&team->notify_peers.dw, 0); } static void team_notify_peers_init(struct team *team) { INIT_DELAYED_WORK(&team->notify_peers.dw, team_notify_peers_work); } static void team_notify_peers_fini(struct team *team) { cancel_delayed_work_sync(&team->notify_peers.dw); } /******************************* * Send multicast group rejoins *******************************/ static void team_mcast_rejoin_work(struct work_struct *work) { struct team *team; int val; team = container_of(work, struct team, mcast_rejoin.dw.work); if (!rtnl_trylock()) { schedule_delayed_work(&team->mcast_rejoin.dw, 0); return; } val = atomic_dec_if_positive(&team->mcast_rejoin.count_pending); if (val < 0) { rtnl_unlock(); return; } call_netdevice_notifiers(NETDEV_RESEND_IGMP, team->dev); rtnl_unlock(); if (val) schedule_delayed_work(&team->mcast_rejoin.dw, msecs_to_jiffies(team->mcast_rejoin.interval)); } static void team_mcast_rejoin(struct team *team) { if (!team->mcast_rejoin.count || !netif_running(team->dev)) return; atomic_add(team->mcast_rejoin.count, &team->mcast_rejoin.count_pending); schedule_delayed_work(&team->mcast_rejoin.dw, 0); } static void team_mcast_rejoin_init(struct team *team) { INIT_DELAYED_WORK(&team->mcast_rejoin.dw, team_mcast_rejoin_work); } static void team_mcast_rejoin_fini(struct team *team) { cancel_delayed_work_sync(&team->mcast_rejoin.dw); } /************************ * Rx path frame handler ************************/ /* note: already called with rcu_read_lock */ static rx_handler_result_t team_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct team_port *port; struct team *team; rx_handler_result_t res; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return RX_HANDLER_CONSUMED; *pskb = skb; port = team_port_get_rcu(skb->dev); team = port->team; if (!team_port_enabled(port)) { if (is_link_local_ether_addr(eth_hdr(skb)->h_dest)) /* link-local packets are mostly useful when stack receives them * with the link they arrive on. */ return RX_HANDLER_PASS; /* allow exact match delivery for disabled ports */ res = RX_HANDLER_EXACT; } else { res = team->ops.receive(team, port, skb); } if (res == RX_HANDLER_ANOTHER) { struct team_pcpu_stats *pcpu_stats; pcpu_stats = this_cpu_ptr(team->pcpu_stats); u64_stats_update_begin(&pcpu_stats->syncp); u64_stats_inc(&pcpu_stats->rx_packets); u64_stats_add(&pcpu_stats->rx_bytes, skb->len); if (skb->pkt_type == PACKET_MULTICAST) u64_stats_inc(&pcpu_stats->rx_multicast); u64_stats_update_end(&pcpu_stats->syncp); skb->dev = team->dev; } else if (res == RX_HANDLER_EXACT) { this_cpu_inc(team->pcpu_stats->rx_nohandler); } else { this_cpu_inc(team->pcpu_stats->rx_dropped); } return res; } /************************************* * Multiqueue Tx port select override *************************************/ static int team_queue_override_init(struct team *team) { struct list_head *listarr; unsigned int queue_cnt = team->dev->num_tx_queues - 1; unsigned int i; if (!queue_cnt) return 0; listarr = kmalloc_array(queue_cnt, sizeof(struct list_head), GFP_KERNEL); if (!listarr) return -ENOMEM; team->qom_lists = listarr; for (i = 0; i < queue_cnt; i++) INIT_LIST_HEAD(listarr++); return 0; } static void team_queue_override_fini(struct team *team) { kfree(team->qom_lists); } static struct list_head *__team_get_qom_list(struct team *team, u16 queue_id) { return &team->qom_lists[queue_id - 1]; } /* * note: already called with rcu_read_lock */ static bool team_queue_override_transmit(struct team *team, struct sk_buff *skb) { struct list_head *qom_list; struct team_port *port; if (!team->queue_override_enabled || !skb->queue_mapping) return false; qom_list = __team_get_qom_list(team, skb->queue_mapping); list_for_each_entry_rcu(port, qom_list, qom_list) { if (!team_dev_queue_xmit(team, port, skb)) return true; } return false; } static void __team_queue_override_port_del(struct team *team, struct team_port *port) { if (!port->queue_id) return; list_del_rcu(&port->qom_list); } static bool team_queue_override_port_has_gt_prio_than(struct team_port *port, struct team_port *cur) { if (port->priority < cur->priority) return true; if (port->priority > cur->priority) return false; if (port->index < cur->index) return true; return false; } static void __team_queue_override_port_add(struct team *team, struct team_port *port) { struct team_port *cur; struct list_head *qom_list; struct list_head *node; if (!port->queue_id) return; qom_list = __team_get_qom_list(team, port->queue_id); node = qom_list; list_for_each_entry(cur, qom_list, qom_list) { if (team_queue_override_port_has_gt_prio_than(port, cur)) break; node = &cur->qom_list; } list_add_tail_rcu(&port->qom_list, node); } static void __team_queue_override_enabled_check(struct team *team) { struct team_port *port; bool enabled = false; list_for_each_entry(port, &team->port_list, list) { if (port->queue_id) { enabled = true; break; } } if (enabled == team->queue_override_enabled) return; netdev_dbg(team->dev, "%s queue override\n", enabled ? "Enabling" : "Disabling"); team->queue_override_enabled = enabled; } static void team_queue_override_port_prio_changed(struct team *team, struct team_port *port) { if (!port->queue_id || team_port_enabled(port)) return; __team_queue_override_port_del(team, port); __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } static void team_queue_override_port_change_queue_id(struct team *team, struct team_port *port, u16 new_queue_id) { if (team_port_enabled(port)) { __team_queue_override_port_del(team, port); port->queue_id = new_queue_id; __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } else { port->queue_id = new_queue_id; } } static void team_queue_override_port_add(struct team *team, struct team_port *port) { __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } static void team_queue_override_port_del(struct team *team, struct team_port *port) { __team_queue_override_port_del(team, port); __team_queue_override_enabled_check(team); } /**************** * Port handling ****************/ static bool team_port_find(const struct team *team, const struct team_port *port) { struct team_port *cur; list_for_each_entry(cur, &team->port_list, list) if (cur == port) return true; return false; } /* * Enable/disable port by adding to enabled port hashlist and setting * port->index (Might be racy so reader could see incorrect ifindex when * processing a flying packet, but that is not a problem). Write guarded * by team->lock. */ static void team_port_enable(struct team *team, struct team_port *port) { if (team_port_enabled(port)) return; port->index = team->en_port_count++; hlist_add_head_rcu(&port->hlist, team_port_index_hash(team, port->index)); team_adjust_ops(team); team_queue_override_port_add(team, port); if (team->ops.port_enabled) team->ops.port_enabled(team, port); team_notify_peers(team); team_mcast_rejoin(team); team_lower_state_changed(port); } static void __reconstruct_port_hlist(struct team *team, int rm_index) { int i; struct team_port *port; for (i = rm_index + 1; i < team->en_port_count; i++) { port = team_get_port_by_index(team, i); hlist_del_rcu(&port->hlist); port->index--; hlist_add_head_rcu(&port->hlist, team_port_index_hash(team, port->index)); } } static void team_port_disable(struct team *team, struct team_port *port) { if (!team_port_enabled(port)) return; if (team->ops.port_disabled) team->ops.port_disabled(team, port); hlist_del_rcu(&port->hlist); __reconstruct_port_hlist(team, port->index); port->index = -1; team->en_port_count--; team_queue_override_port_del(team, port); team_adjust_ops(team); team_lower_state_changed(port); } #define TEAM_VLAN_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_FRAGLIST | NETIF_F_GSO_SOFTWARE | \ NETIF_F_HIGHDMA | NETIF_F_LRO | \ NETIF_F_GSO_ENCAP_ALL) #define TEAM_ENC_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_RXCSUM | NETIF_F_GSO_SOFTWARE) static void __team_compute_features(struct team *team) { struct team_port *port; netdev_features_t vlan_features = TEAM_VLAN_FEATURES; netdev_features_t enc_features = TEAM_ENC_FEATURES; unsigned short max_hard_header_len = ETH_HLEN; unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; rcu_read_lock(); if (list_empty(&team->port_list)) goto done; vlan_features = netdev_base_features(vlan_features); enc_features = netdev_base_features(enc_features); list_for_each_entry_rcu(port, &team->port_list, list) { vlan_features = netdev_increment_features(vlan_features, port->dev->vlan_features, TEAM_VLAN_FEATURES); enc_features = netdev_increment_features(enc_features, port->dev->hw_enc_features, TEAM_ENC_FEATURES); dst_release_flag &= port->dev->priv_flags; if (port->dev->hard_header_len > max_hard_header_len) max_hard_header_len = port->dev->hard_header_len; } done: rcu_read_unlock(); team->dev->vlan_features = vlan_features; team->dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; team->dev->hard_header_len = max_hard_header_len; team->dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; if (dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) team->dev->priv_flags |= IFF_XMIT_DST_RELEASE; } static void team_compute_features(struct team *team) { __team_compute_features(team); netdev_change_features(team->dev); } static int team_port_enter(struct team *team, struct team_port *port) { int err = 0; dev_hold(team->dev); if (team->ops.port_enter) { err = team->ops.port_enter(team, port); if (err) { netdev_err(team->dev, "Device %s failed to enter team mode\n", port->dev->name); goto err_port_enter; } } return 0; err_port_enter: dev_put(team->dev); return err; } static void team_port_leave(struct team *team, struct team_port *port) { if (team->ops.port_leave) team->ops.port_leave(team, port); dev_put(team->dev); } #ifdef CONFIG_NET_POLL_CONTROLLER static int __team_port_enable_netpoll(struct team_port *port) { struct netpoll *np; int err; np = kzalloc(sizeof(*np), GFP_KERNEL); if (!np) return -ENOMEM; err = __netpoll_setup(np, port->dev); if (err) { kfree(np); return err; } port->np = np; return err; } static int team_port_enable_netpoll(struct team_port *port) { if (!port->team->dev->npinfo) return 0; return __team_port_enable_netpoll(port); } static void team_port_disable_netpoll(struct team_port *port) { struct netpoll *np = port->np; if (!np) return; port->np = NULL; __netpoll_free(np); } #else static int team_port_enable_netpoll(struct team_port *port) { return 0; } static void team_port_disable_netpoll(struct team_port *port) { } #endif static int team_upper_dev_link(struct team *team, struct team_port *port, struct netlink_ext_ack *extack) { struct netdev_lag_upper_info lag_upper_info; int err; lag_upper_info.tx_type = team->mode->lag_tx_type; lag_upper_info.hash_type = NETDEV_LAG_HASH_UNKNOWN; err = netdev_master_upper_dev_link(port->dev, team->dev, NULL, &lag_upper_info, extack); if (err) return err; port->dev->priv_flags |= IFF_TEAM_PORT; return 0; } static void team_upper_dev_unlink(struct team *team, struct team_port *port) { netdev_upper_dev_unlink(port->dev, team->dev); port->dev->priv_flags &= ~IFF_TEAM_PORT; } static void __team_port_change_port_added(struct team_port *port, bool linkup); static int team_dev_type_check_change(struct net_device *dev, struct net_device *port_dev); static int team_port_add(struct team *team, struct net_device *port_dev, struct netlink_ext_ack *extack) { struct net_device *dev = team->dev; struct team_port *port; char *portname = port_dev->name; int err; if (port_dev->flags & IFF_LOOPBACK) { NL_SET_ERR_MSG(extack, "Loopback device can't be added as a team port"); netdev_err(dev, "Device %s is loopback device. Loopback devices can't be added as a team port\n", portname); return -EINVAL; } if (netif_is_team_port(port_dev)) { NL_SET_ERR_MSG(extack, "Device is already a port of a team device"); netdev_err(dev, "Device %s is already a port " "of a team device\n", portname); return -EBUSY; } if (dev == port_dev) { NL_SET_ERR_MSG(extack, "Cannot enslave team device to itself"); netdev_err(dev, "Cannot enslave team device to itself\n"); return -EINVAL; } if (netdev_has_upper_dev(dev, port_dev)) { NL_SET_ERR_MSG(extack, "Device is already an upper device of the team interface"); netdev_err(dev, "Device %s is already an upper device of the team interface\n", portname); return -EBUSY; } if (netdev_has_upper_dev(port_dev, dev)) { NL_SET_ERR_MSG(extack, "Device is already a lower device of the team interface"); netdev_err(dev, "Device %s is already a lower device of the team interface\n", portname); return -EBUSY; } if (port_dev->features & NETIF_F_VLAN_CHALLENGED && vlan_uses_dev(dev)) { NL_SET_ERR_MSG(extack, "Device is VLAN challenged and team device has VLAN set up"); netdev_err(dev, "Device %s is VLAN challenged and team device has VLAN set up\n", portname); return -EPERM; } err = team_dev_type_check_change(dev, port_dev); if (err) return err; if (port_dev->flags & IFF_UP) { NL_SET_ERR_MSG(extack, "Device is up. Set it down before adding it as a team port"); netdev_err(dev, "Device %s is up. Set it down before adding it as a team port\n", portname); return -EBUSY; } port = kzalloc(sizeof(struct team_port) + team->mode->port_priv_size, GFP_KERNEL); if (!port) return -ENOMEM; port->dev = port_dev; port->team = team; INIT_LIST_HEAD(&port->qom_list); port->orig.mtu = port_dev->mtu; err = dev_set_mtu(port_dev, dev->mtu); if (err) { netdev_dbg(dev, "Error %d calling dev_set_mtu\n", err); goto err_set_mtu; } memcpy(port->orig.dev_addr, port_dev->dev_addr, port_dev->addr_len); err = team_port_enter(team, port); if (err) { netdev_err(dev, "Device %s failed to enter team mode\n", portname); goto err_port_enter; } err = dev_open(port_dev, extack); if (err) { netdev_dbg(dev, "Device %s opening failed\n", portname); goto err_dev_open; } err = vlan_vids_add_by_dev(port_dev, dev); if (err) { netdev_err(dev, "Failed to add vlan ids to device %s\n", portname); goto err_vids_add; } err = team_port_enable_netpoll(port); if (err) { netdev_err(dev, "Failed to enable netpoll on device %s\n", portname); goto err_enable_netpoll; } if (!(dev->features & NETIF_F_LRO)) dev_disable_lro(port_dev); err = netdev_rx_handler_register(port_dev, team_handle_frame, port); if (err) { netdev_err(dev, "Device %s failed to register rx_handler\n", portname); goto err_handler_register; } err = team_upper_dev_link(team, port, extack); if (err) { netdev_err(dev, "Device %s failed to set upper link\n", portname); goto err_set_upper_link; } err = __team_option_inst_add_port(team, port); if (err) { netdev_err(dev, "Device %s failed to add per-port options\n", portname); goto err_option_port_add; } /* set promiscuity level to new slave */ if (dev->flags & IFF_PROMISC) { err = dev_set_promiscuity(port_dev, 1); if (err) goto err_set_slave_promisc; } /* set allmulti level to new slave */ if (dev->flags & IFF_ALLMULTI) { err = dev_set_allmulti(port_dev, 1); if (err) { if (dev->flags & IFF_PROMISC) dev_set_promiscuity(port_dev, -1); goto err_set_slave_promisc; } } if (dev->flags & IFF_UP) { netif_addr_lock_bh(dev); dev_uc_sync_multiple(port_dev, dev); dev_mc_sync_multiple(port_dev, dev); netif_addr_unlock_bh(dev); } port->index = -1; list_add_tail_rcu(&port->list, &team->port_list); team_port_enable(team, port); __team_compute_features(team); __team_port_change_port_added(port, !!netif_oper_up(port_dev)); __team_options_change_check(team); netdev_info(dev, "Port device %s added\n", portname); return 0; err_set_slave_promisc: __team_option_inst_del_port(team, port); err_option_port_add: team_upper_dev_unlink(team, port); err_set_upper_link: netdev_rx_handler_unregister(port_dev); err_handler_register: team_port_disable_netpoll(port); err_enable_netpoll: vlan_vids_del_by_dev(port_dev, dev); err_vids_add: dev_close(port_dev); err_dev_open: team_port_leave(team, port); team_port_set_orig_dev_addr(port); err_port_enter: dev_set_mtu(port_dev, port->orig.mtu); err_set_mtu: kfree(port); return err; } static void __team_port_change_port_removed(struct team_port *port); static int team_port_del(struct team *team, struct net_device *port_dev) { struct net_device *dev = team->dev; struct team_port *port; char *portname = port_dev->name; port = team_port_get_rtnl(port_dev); if (!port || !team_port_find(team, port)) { netdev_err(dev, "Device %s does not act as a port of this team\n", portname); return -ENOENT; } team_port_disable(team, port); list_del_rcu(&port->list); if (dev->flags & IFF_PROMISC) dev_set_promiscuity(port_dev, -1); if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(port_dev, -1); team_upper_dev_unlink(team, port); netdev_rx_handler_unregister(port_dev); team_port_disable_netpoll(port); vlan_vids_del_by_dev(port_dev, dev); if (dev->flags & IFF_UP) { dev_uc_unsync(port_dev, dev); dev_mc_unsync(port_dev, dev); } dev_close(port_dev); team_port_leave(team, port); __team_option_inst_mark_removed_port(team, port); __team_options_change_check(team); __team_option_inst_del_port(team, port); __team_port_change_port_removed(port); team_port_set_orig_dev_addr(port); dev_set_mtu(port_dev, port->orig.mtu); kfree_rcu(port, rcu); netdev_info(dev, "Port device %s removed\n", portname); __team_compute_features(team); return 0; } /***************** * Net device ops *****************/ static void team_mode_option_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.str_val = team->mode->kind; } static int team_mode_option_set(struct team *team, struct team_gsetter_ctx *ctx) { return team_change_mode(team, ctx->data.str_val); } static void team_notify_peers_count_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->notify_peers.count; } static int team_notify_peers_count_set(struct team *team, struct team_gsetter_ctx *ctx) { team->notify_peers.count = ctx->data.u32_val; return 0; } static void team_notify_peers_interval_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->notify_peers.interval; } static int team_notify_peers_interval_set(struct team *team, struct team_gsetter_ctx *ctx) { team->notify_peers.interval = ctx->data.u32_val; return 0; } static void team_mcast_rejoin_count_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->mcast_rejoin.count; } static int team_mcast_rejoin_count_set(struct team *team, struct team_gsetter_ctx *ctx) { team->mcast_rejoin.count = ctx->data.u32_val; return 0; } static void team_mcast_rejoin_interval_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->mcast_rejoin.interval; } static int team_mcast_rejoin_interval_set(struct team *team, struct team_gsetter_ctx *ctx) { team->mcast_rejoin.interval = ctx->data.u32_val; return 0; } static void team_port_en_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = team_port_enabled(port); } static int team_port_en_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; if (ctx->data.bool_val) team_port_enable(team, port); else team_port_disable(team, port); return 0; } static void team_user_linkup_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = port->user.linkup; } static void __team_carrier_check(struct team *team); static int team_user_linkup_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; port->user.linkup = ctx->data.bool_val; team_refresh_port_linkup(port); __team_carrier_check(port->team); return 0; } static void team_user_linkup_en_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = port->user.linkup_enabled; } static int team_user_linkup_en_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; port->user.linkup_enabled = ctx->data.bool_val; team_refresh_port_linkup(port); __team_carrier_check(port->team); return 0; } static void team_priority_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.s32_val = port->priority; } static int team_priority_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; s32 priority = ctx->data.s32_val; if (port->priority == priority) return 0; port->priority = priority; team_queue_override_port_prio_changed(team, port); return 0; } static void team_queue_id_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.u32_val = port->queue_id; } static int team_queue_id_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; u16 new_queue_id = ctx->data.u32_val; if (port->queue_id == new_queue_id) return 0; if (new_queue_id >= team->dev->real_num_tx_queues) return -EINVAL; team_queue_override_port_change_queue_id(team, port, new_queue_id); return 0; } static const struct team_option team_options[] = { { .name = "mode", .type = TEAM_OPTION_TYPE_STRING, .getter = team_mode_option_get, .setter = team_mode_option_set, }, { .name = "notify_peers_count", .type = TEAM_OPTION_TYPE_U32, .getter = team_notify_peers_count_get, .setter = team_notify_peers_count_set, }, { .name = "notify_peers_interval", .type = TEAM_OPTION_TYPE_U32, .getter = team_notify_peers_interval_get, .setter = team_notify_peers_interval_set, }, { .name = "mcast_rejoin_count", .type = TEAM_OPTION_TYPE_U32, .getter = team_mcast_rejoin_count_get, .setter = team_mcast_rejoin_count_set, }, { .name = "mcast_rejoin_interval", .type = TEAM_OPTION_TYPE_U32, .getter = team_mcast_rejoin_interval_get, .setter = team_mcast_rejoin_interval_set, }, { .name = "enabled", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_port_en_option_get, .setter = team_port_en_option_set, }, { .name = "user_linkup", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_user_linkup_option_get, .setter = team_user_linkup_option_set, }, { .name = "user_linkup_enabled", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_user_linkup_en_option_get, .setter = team_user_linkup_en_option_set, }, { .name = "priority", .type = TEAM_OPTION_TYPE_S32, .per_port = true, .getter = team_priority_option_get, .setter = team_priority_option_set, }, { .name = "queue_id", .type = TEAM_OPTION_TYPE_U32, .per_port = true, .getter = team_queue_id_option_get, .setter = team_queue_id_option_set, }, }; static int team_init(struct net_device *dev) { struct team *team = netdev_priv(dev); int i; int err; team->dev = dev; team_set_no_mode(team); team->notifier_ctx = false; team->pcpu_stats = netdev_alloc_pcpu_stats(struct team_pcpu_stats); if (!team->pcpu_stats) return -ENOMEM; for (i = 0; i < TEAM_PORT_HASHENTRIES; i++) INIT_HLIST_HEAD(&team->en_port_hlist[i]); INIT_LIST_HEAD(&team->port_list); err = team_queue_override_init(team); if (err) goto err_team_queue_override_init; team_adjust_ops(team); INIT_LIST_HEAD(&team->option_list); INIT_LIST_HEAD(&team->option_inst_list); team_notify_peers_init(team); team_mcast_rejoin_init(team); err = team_options_register(team, team_options, ARRAY_SIZE(team_options)); if (err) goto err_options_register; netif_carrier_off(dev); lockdep_register_key(&team->team_lock_key); __mutex_init(&team->lock, "team->team_lock_key", &team->team_lock_key); netdev_lockdep_set_classes(dev); return 0; err_options_register: team_mcast_rejoin_fini(team); team_notify_peers_fini(team); team_queue_override_fini(team); err_team_queue_override_init: free_percpu(team->pcpu_stats); return err; } static void team_uninit(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; struct team_port *tmp; mutex_lock(&team->lock); list_for_each_entry_safe(port, tmp, &team->port_list, list) team_port_del(team, port->dev); __team_change_mode(team, NULL); /* cleanup */ __team_options_unregister(team, team_options, ARRAY_SIZE(team_options)); team_mcast_rejoin_fini(team); team_notify_peers_fini(team); team_queue_override_fini(team); mutex_unlock(&team->lock); netdev_change_features(dev); lockdep_unregister_key(&team->team_lock_key); } static void team_destructor(struct net_device *dev) { struct team *team = netdev_priv(dev); free_percpu(team->pcpu_stats); } static int team_open(struct net_device *dev) { return 0; } static int team_close(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; list_for_each_entry(port, &team->port_list, list) { dev_uc_unsync(port->dev, dev); dev_mc_unsync(port->dev, dev); } return 0; } /* * note: already called with rcu_read_lock */ static netdev_tx_t team_xmit(struct sk_buff *skb, struct net_device *dev) { struct team *team = netdev_priv(dev); bool tx_success; unsigned int len = skb->len; tx_success = team_queue_override_transmit(team, skb); if (!tx_success) tx_success = team->ops.transmit(team, skb); if (tx_success) { struct team_pcpu_stats *pcpu_stats; pcpu_stats = this_cpu_ptr(team->pcpu_stats); u64_stats_update_begin(&pcpu_stats->syncp); u64_stats_inc(&pcpu_stats->tx_packets); u64_stats_add(&pcpu_stats->tx_bytes, len); u64_stats_update_end(&pcpu_stats->syncp); } else { this_cpu_inc(team->pcpu_stats->tx_dropped); } return NETDEV_TX_OK; } static u16 team_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { /* * This helper function exists to help dev_pick_tx get the correct * destination queue. Using a helper function skips a call to * skb_tx_hash and will put the skbs in the queue we expect on their * way down to the team driver. */ u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; /* * Save the original txq to restore before passing to the driver */ qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; if (unlikely(txq >= dev->real_num_tx_queues)) { do { txq -= dev->real_num_tx_queues; } while (txq >= dev->real_num_tx_queues); } return txq; } static void team_change_rx_flags(struct net_device *dev, int change) { struct team *team = netdev_priv(dev); struct team_port *port; int inc; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { if (change & IFF_PROMISC) { inc = dev->flags & IFF_PROMISC ? 1 : -1; dev_set_promiscuity(port->dev, inc); } if (change & IFF_ALLMULTI) { inc = dev->flags & IFF_ALLMULTI ? 1 : -1; dev_set_allmulti(port->dev, inc); } } rcu_read_unlock(); } static void team_set_rx_mode(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { dev_uc_sync_multiple(port->dev, dev); dev_mc_sync_multiple(port->dev, dev); } rcu_read_unlock(); } static int team_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct team *team = netdev_priv(dev); struct team_port *port; if (dev->type == ARPHRD_ETHER && !is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; dev_addr_set(dev, addr->sa_data); mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) if (team->ops.port_change_dev_addr) team->ops.port_change_dev_addr(team, port); mutex_unlock(&team->lock); return 0; } static int team_change_mtu(struct net_device *dev, int new_mtu) { struct team *team = netdev_priv(dev); struct team_port *port; int err; /* * Alhough this is reader, it's guarded by team lock. It's not possible * to traverse list in reverse under rcu_read_lock */ mutex_lock(&team->lock); team->port_mtu_change_allowed = true; list_for_each_entry(port, &team->port_list, list) { err = dev_set_mtu(port->dev, new_mtu); if (err) { netdev_err(dev, "Device %s failed to change mtu", port->dev->name); goto unwind; } } team->port_mtu_change_allowed = false; mutex_unlock(&team->lock); WRITE_ONCE(dev->mtu, new_mtu); return 0; unwind: list_for_each_entry_continue_reverse(port, &team->port_list, list) dev_set_mtu(port->dev, dev->mtu); team->port_mtu_change_allowed = false; mutex_unlock(&team->lock); return err; } static void team_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct team *team = netdev_priv(dev); struct team_pcpu_stats *p; u64 rx_packets, rx_bytes, rx_multicast, tx_packets, tx_bytes; u32 rx_dropped = 0, tx_dropped = 0, rx_nohandler = 0; unsigned int start; int i; for_each_possible_cpu(i) { p = per_cpu_ptr(team->pcpu_stats, i); do { start = u64_stats_fetch_begin(&p->syncp); rx_packets = u64_stats_read(&p->rx_packets); rx_bytes = u64_stats_read(&p->rx_bytes); rx_multicast = u64_stats_read(&p->rx_multicast); tx_packets = u64_stats_read(&p->tx_packets); tx_bytes = u64_stats_read(&p->tx_bytes); } while (u64_stats_fetch_retry(&p->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->multicast += rx_multicast; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; /* * rx_dropped, tx_dropped & rx_nohandler are u32, * updated without syncp protection. */ rx_dropped += READ_ONCE(p->rx_dropped); tx_dropped += READ_ONCE(p->tx_dropped); rx_nohandler += READ_ONCE(p->rx_nohandler); } stats->rx_dropped = rx_dropped; stats->tx_dropped = tx_dropped; stats->rx_nohandler = rx_nohandler; } static int team_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct team *team = netdev_priv(dev); struct team_port *port; int err; /* * Alhough this is reader, it's guarded by team lock. It's not possible * to traverse list in reverse under rcu_read_lock */ mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) { err = vlan_vid_add(port->dev, proto, vid); if (err) goto unwind; } mutex_unlock(&team->lock); return 0; unwind: list_for_each_entry_continue_reverse(port, &team->port_list, list) vlan_vid_del(port->dev, proto, vid); mutex_unlock(&team->lock); return err; } static int team_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct team *team = netdev_priv(dev); struct team_port *port; mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) vlan_vid_del(port->dev, proto, vid); mutex_unlock(&team->lock); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void team_poll_controller(struct net_device *dev) { } static void __team_netpoll_cleanup(struct team *team) { struct team_port *port; list_for_each_entry(port, &team->port_list, list) team_port_disable_netpoll(port); } static void team_netpoll_cleanup(struct net_device *dev) { struct team *team = netdev_priv(dev); mutex_lock(&team->lock); __team_netpoll_cleanup(team); mutex_unlock(&team->lock); } static int team_netpoll_setup(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; int err = 0; mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) { err = __team_port_enable_netpoll(port); if (err) { __team_netpoll_cleanup(team); break; } } mutex_unlock(&team->lock); return err; } #endif static int team_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { struct team *team = netdev_priv(dev); int err; mutex_lock(&team->lock); err = team_port_add(team, port_dev, extack); mutex_unlock(&team->lock); if (!err) netdev_change_features(dev); return err; } static int team_del_slave(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); int err; mutex_lock(&team->lock); err = team_port_del(team, port_dev); mutex_unlock(&team->lock); if (err) return err; if (netif_is_team_master(port_dev)) { lockdep_unregister_key(&team->team_lock_key); lockdep_register_key(&team->team_lock_key); lockdep_set_class(&team->lock, &team->team_lock_key); } netdev_change_features(dev); return err; } static netdev_features_t team_fix_features(struct net_device *dev, netdev_features_t features) { struct team_port *port; struct team *team = netdev_priv(dev); netdev_features_t mask; mask = features; features = netdev_base_features(features); rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { features = netdev_increment_features(features, port->dev->features, mask); } rcu_read_unlock(); features = netdev_add_tso_features(features, mask); return features; } static int team_change_carrier(struct net_device *dev, bool new_carrier) { struct team *team = netdev_priv(dev); team->user_carrier_enabled = true; if (new_carrier) netif_carrier_on(dev); else netif_carrier_off(dev); return 0; } static const struct net_device_ops team_netdev_ops = { .ndo_init = team_init, .ndo_uninit = team_uninit, .ndo_open = team_open, .ndo_stop = team_close, .ndo_start_xmit = team_xmit, .ndo_select_queue = team_select_queue, .ndo_change_rx_flags = team_change_rx_flags, .ndo_set_rx_mode = team_set_rx_mode, .ndo_set_mac_address = team_set_mac_address, .ndo_change_mtu = team_change_mtu, .ndo_get_stats64 = team_get_stats64, .ndo_vlan_rx_add_vid = team_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = team_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = team_poll_controller, .ndo_netpoll_setup = team_netpoll_setup, .ndo_netpoll_cleanup = team_netpoll_cleanup, #endif .ndo_add_slave = team_add_slave, .ndo_del_slave = team_del_slave, .ndo_fix_features = team_fix_features, .ndo_change_carrier = team_change_carrier, .ndo_features_check = passthru_features_check, }; /*********************** * ethtool interface ***********************/ static void team_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strscpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); } static int team_ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct team *team= netdev_priv(dev); unsigned long speed = 0; struct team_port *port; cmd->base.duplex = DUPLEX_UNKNOWN; cmd->base.port = PORT_OTHER; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { if (team_port_txable(port)) { if (port->state.speed != SPEED_UNKNOWN) speed += port->state.speed; if (cmd->base.duplex == DUPLEX_UNKNOWN && port->state.duplex != DUPLEX_UNKNOWN) cmd->base.duplex = port->state.duplex; } } rcu_read_unlock(); cmd->base.speed = speed ? : SPEED_UNKNOWN; return 0; } static const struct ethtool_ops team_ethtool_ops = { .get_drvinfo = team_ethtool_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = team_ethtool_get_link_ksettings, }; /*********************** * rt netlink interface ***********************/ static void team_setup_by_port(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); if (port_dev->type == ARPHRD_ETHER) dev->header_ops = team->header_ops_cache; else dev->header_ops = port_dev->header_ops; dev->type = port_dev->type; dev->hard_header_len = port_dev->hard_header_len; dev->needed_headroom = port_dev->needed_headroom; dev->addr_len = port_dev->addr_len; dev->mtu = port_dev->mtu; memcpy(dev->broadcast, port_dev->broadcast, port_dev->addr_len); eth_hw_addr_inherit(dev, port_dev); if (port_dev->flags & IFF_POINTOPOINT) { dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST); dev->flags |= (IFF_POINTOPOINT | IFF_NOARP); } else if ((port_dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) == (IFF_BROADCAST | IFF_MULTICAST)) { dev->flags |= (IFF_BROADCAST | IFF_MULTICAST); dev->flags &= ~(IFF_POINTOPOINT | IFF_NOARP); } } static int team_dev_type_check_change(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); char *portname = port_dev->name; int err; if (dev->type == port_dev->type) return 0; if (!list_empty(&team->port_list)) { netdev_err(dev, "Device %s is of different type\n", portname); return -EBUSY; } err = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, dev); err = notifier_to_errno(err); if (err) { netdev_err(dev, "Refused to change device type\n"); return err; } dev_uc_flush(dev); dev_mc_flush(dev); team_setup_by_port(dev, port_dev); call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev); return 0; } static void team_setup(struct net_device *dev) { struct team *team = netdev_priv(dev); ether_setup(dev); dev->max_mtu = ETH_MAX_MTU; team->header_ops_cache = dev->header_ops; dev->netdev_ops = &team_netdev_ops; dev->ethtool_ops = &team_ethtool_ops; dev->needs_free_netdev = true; dev->priv_destructor = team_destructor; dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); dev->priv_flags |= IFF_NO_QUEUE; dev->priv_flags |= IFF_TEAM; /* * Indicate we support unicast address filtering. That way core won't * bring us to promisc mode in case a unicast addr is added. * Let this up to underlay drivers. */ dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE; dev->lltx = true; /* Don't allow team devices to change network namespaces. */ dev->netns_local = true; dev->features |= NETIF_F_GRO; dev->hw_features = TEAM_VLAN_FEATURES | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_FILTER; dev->hw_features |= NETIF_F_GSO_ENCAP_ALL; dev->features |= dev->hw_features; dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } static int team_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS] == NULL) eth_hw_addr_random(dev); return register_netdevice(dev); } static int team_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } return 0; } static unsigned int team_get_num_tx_queues(void) { return TEAM_DEFAULT_NUM_TX_QUEUES; } static unsigned int team_get_num_rx_queues(void) { return TEAM_DEFAULT_NUM_RX_QUEUES; } static struct rtnl_link_ops team_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct team), .setup = team_setup, .newlink = team_newlink, .validate = team_validate, .get_num_tx_queues = team_get_num_tx_queues, .get_num_rx_queues = team_get_num_rx_queues, }; /*********************************** * Generic netlink custom interface ***********************************/ static struct genl_family team_nl_family; int team_nl_noop_doit(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; void *hdr; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &team_nl_family, 0, TEAM_CMD_NOOP); if (!hdr) { err = -EMSGSIZE; goto err_msg_put; } genlmsg_end(msg, hdr); return genlmsg_unicast(genl_info_net(info), msg, info->snd_portid); err_msg_put: nlmsg_free(msg); return err; } /* * Netlink cmd functions should be locked by following two functions. * Since dev gets held here, that ensures dev won't disappear in between. */ static struct team *team_nl_team_get(struct genl_info *info) { struct net *net = genl_info_net(info); int ifindex; struct net_device *dev; struct team *team; if (!info->attrs[TEAM_ATTR_TEAM_IFINDEX]) return NULL; ifindex = nla_get_u32(info->attrs[TEAM_ATTR_TEAM_IFINDEX]); dev = dev_get_by_index(net, ifindex); if (!dev || dev->netdev_ops != &team_netdev_ops) { dev_put(dev); return NULL; } team = netdev_priv(dev); mutex_lock(&team->lock); return team; } static void team_nl_team_put(struct team *team) { mutex_unlock(&team->lock); dev_put(team->dev); } typedef int team_nl_send_func_t(struct sk_buff *skb, struct team *team, u32 portid); static int team_nl_send_unicast(struct sk_buff *skb, struct team *team, u32 portid) { return genlmsg_unicast(dev_net(team->dev), skb, portid); } static int team_nl_fill_one_option_get(struct sk_buff *skb, struct team *team, struct team_option_inst *opt_inst) { struct nlattr *option_item; struct team_option *option = opt_inst->option; struct team_option_inst_info *opt_inst_info = &opt_inst->info; struct team_gsetter_ctx ctx; int err; ctx.info = opt_inst_info; err = team_option_get(team, opt_inst, &ctx); if (err) return err; option_item = nla_nest_start_noflag(skb, TEAM_ATTR_ITEM_OPTION); if (!option_item) return -EMSGSIZE; if (nla_put_string(skb, TEAM_ATTR_OPTION_NAME, option->name)) goto nest_cancel; if (opt_inst_info->port && nla_put_u32(skb, TEAM_ATTR_OPTION_PORT_IFINDEX, opt_inst_info->port->dev->ifindex)) goto nest_cancel; if (opt_inst->option->array_size && nla_put_u32(skb, TEAM_ATTR_OPTION_ARRAY_INDEX, opt_inst_info->array_index)) goto nest_cancel; switch (option->type) { case TEAM_OPTION_TYPE_U32: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_U32)) goto nest_cancel; if (nla_put_u32(skb, TEAM_ATTR_OPTION_DATA, ctx.data.u32_val)) goto nest_cancel; break; case TEAM_OPTION_TYPE_STRING: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_STRING)) goto nest_cancel; if (nla_put_string(skb, TEAM_ATTR_OPTION_DATA, ctx.data.str_val)) goto nest_cancel; break; case TEAM_OPTION_TYPE_BINARY: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_BINARY)) goto nest_cancel; if (nla_put(skb, TEAM_ATTR_OPTION_DATA, ctx.data.bin_val.len, ctx.data.bin_val.ptr)) goto nest_cancel; break; case TEAM_OPTION_TYPE_BOOL: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_FLAG)) goto nest_cancel; if (ctx.data.bool_val && nla_put_flag(skb, TEAM_ATTR_OPTION_DATA)) goto nest_cancel; break; case TEAM_OPTION_TYPE_S32: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_S32)) goto nest_cancel; if (nla_put_s32(skb, TEAM_ATTR_OPTION_DATA, ctx.data.s32_val)) goto nest_cancel; break; default: BUG(); } if (opt_inst->removed && nla_put_flag(skb, TEAM_ATTR_OPTION_REMOVED)) goto nest_cancel; if (opt_inst->changed) { if (nla_put_flag(skb, TEAM_ATTR_OPTION_CHANGED)) goto nest_cancel; opt_inst->changed = false; } nla_nest_end(skb, option_item); return 0; nest_cancel: nla_nest_cancel(skb, option_item); return -EMSGSIZE; } static int __send_and_alloc_skb(struct sk_buff **pskb, struct team *team, u32 portid, team_nl_send_func_t *send_func) { int err; if (*pskb) { err = send_func(*pskb, team, portid); if (err) return err; } *pskb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!*pskb) return -ENOMEM; return 0; } static int team_nl_send_options_get(struct team *team, u32 portid, u32 seq, int flags, team_nl_send_func_t *send_func, struct list_head *sel_opt_inst_list) { struct nlattr *option_list; struct nlmsghdr *nlh; void *hdr; struct team_option_inst *opt_inst; int err; struct sk_buff *skb = NULL; bool incomplete; int i; opt_inst = list_first_entry(sel_opt_inst_list, struct team_option_inst, tmp_list); start_again: err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; hdr = genlmsg_put(skb, portid, seq, &team_nl_family, flags | NLM_F_MULTI, TEAM_CMD_OPTIONS_GET); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (nla_put_u32(skb, TEAM_ATTR_TEAM_IFINDEX, team->dev->ifindex)) goto nla_put_failure; option_list = nla_nest_start_noflag(skb, TEAM_ATTR_LIST_OPTION); if (!option_list) goto nla_put_failure; i = 0; incomplete = false; list_for_each_entry_from(opt_inst, sel_opt_inst_list, tmp_list) { err = team_nl_fill_one_option_get(skb, team, opt_inst); if (err) { if (err == -EMSGSIZE) { if (!i) goto errout; incomplete = true; break; } goto errout; } i++; } nla_nest_end(skb, option_list); genlmsg_end(skb, hdr); if (incomplete) goto start_again; send_done: nlh = nlmsg_put(skb, portid, seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; goto send_done; } return send_func(skb, team, portid); nla_put_failure: err = -EMSGSIZE; errout: nlmsg_free(skb); return err; } int team_nl_options_get_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; struct team_option_inst *opt_inst; int err; LIST_HEAD(sel_opt_inst_list); team = team_nl_team_get(info); if (!team) return -EINVAL; list_for_each_entry(opt_inst, &team->option_inst_list, list) list_add_tail(&opt_inst->tmp_list, &sel_opt_inst_list); err = team_nl_send_options_get(team, info->snd_portid, info->snd_seq, NLM_F_ACK, team_nl_send_unicast, &sel_opt_inst_list); team_nl_team_put(team); return err; } static int team_nl_send_event_options_get(struct team *team, struct list_head *sel_opt_inst_list); int team_nl_options_set_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; int err = 0; int i; struct nlattr *nl_option; rtnl_lock(); team = team_nl_team_get(info); if (!team) { err = -EINVAL; goto rtnl_unlock; } err = -EINVAL; if (!info->attrs[TEAM_ATTR_LIST_OPTION]) { err = -EINVAL; goto team_put; } nla_for_each_nested(nl_option, info->attrs[TEAM_ATTR_LIST_OPTION], i) { struct nlattr *opt_attrs[TEAM_ATTR_OPTION_MAX + 1]; struct nlattr *attr; struct nlattr *attr_data; LIST_HEAD(opt_inst_list); enum team_option_type opt_type; int opt_port_ifindex = 0; /* != 0 for per-port options */ u32 opt_array_index = 0; bool opt_is_array = false; struct team_option_inst *opt_inst; char *opt_name; bool opt_found = false; if (nla_type(nl_option) != TEAM_ATTR_ITEM_OPTION) { err = -EINVAL; goto team_put; } err = nla_parse_nested_deprecated(opt_attrs, TEAM_ATTR_OPTION_MAX, nl_option, team_attr_option_nl_policy, info->extack); if (err) goto team_put; if (!opt_attrs[TEAM_ATTR_OPTION_NAME] || !opt_attrs[TEAM_ATTR_OPTION_TYPE]) { err = -EINVAL; goto team_put; } switch (nla_get_u8(opt_attrs[TEAM_ATTR_OPTION_TYPE])) { case NLA_U32: opt_type = TEAM_OPTION_TYPE_U32; break; case NLA_STRING: opt_type = TEAM_OPTION_TYPE_STRING; break; case NLA_BINARY: opt_type = TEAM_OPTION_TYPE_BINARY; break; case NLA_FLAG: opt_type = TEAM_OPTION_TYPE_BOOL; break; case NLA_S32: opt_type = TEAM_OPTION_TYPE_S32; break; default: goto team_put; } attr_data = opt_attrs[TEAM_ATTR_OPTION_DATA]; if (opt_type != TEAM_OPTION_TYPE_BOOL && !attr_data) { err = -EINVAL; goto team_put; } opt_name = nla_data(opt_attrs[TEAM_ATTR_OPTION_NAME]); attr = opt_attrs[TEAM_ATTR_OPTION_PORT_IFINDEX]; if (attr) opt_port_ifindex = nla_get_u32(attr); attr = opt_attrs[TEAM_ATTR_OPTION_ARRAY_INDEX]; if (attr) { opt_is_array = true; opt_array_index = nla_get_u32(attr); } list_for_each_entry(opt_inst, &team->option_inst_list, list) { struct team_option *option = opt_inst->option; struct team_gsetter_ctx ctx; struct team_option_inst_info *opt_inst_info; int tmp_ifindex; opt_inst_info = &opt_inst->info; tmp_ifindex = opt_inst_info->port ? opt_inst_info->port->dev->ifindex : 0; if (option->type != opt_type || strcmp(option->name, opt_name) || tmp_ifindex != opt_port_ifindex || (option->array_size && !opt_is_array) || opt_inst_info->array_index != opt_array_index) continue; opt_found = true; ctx.info = opt_inst_info; switch (opt_type) { case TEAM_OPTION_TYPE_U32: ctx.data.u32_val = nla_get_u32(attr_data); break; case TEAM_OPTION_TYPE_STRING: if (nla_len(attr_data) > TEAM_STRING_MAX_LEN) { err = -EINVAL; goto team_put; } ctx.data.str_val = nla_data(attr_data); break; case TEAM_OPTION_TYPE_BINARY: ctx.data.bin_val.len = nla_len(attr_data); ctx.data.bin_val.ptr = nla_data(attr_data); break; case TEAM_OPTION_TYPE_BOOL: ctx.data.bool_val = attr_data ? true : false; break; case TEAM_OPTION_TYPE_S32: ctx.data.s32_val = nla_get_s32(attr_data); break; default: BUG(); } err = team_option_set(team, opt_inst, &ctx); if (err) goto team_put; opt_inst->changed = true; list_add(&opt_inst->tmp_list, &opt_inst_list); } if (!opt_found) { err = -ENOENT; goto team_put; } err = team_nl_send_event_options_get(team, &opt_inst_list); if (err) break; } team_put: team_nl_team_put(team); rtnl_unlock: rtnl_unlock(); return err; } static int team_nl_fill_one_port_get(struct sk_buff *skb, struct team_port *port) { struct nlattr *port_item; port_item = nla_nest_start_noflag(skb, TEAM_ATTR_ITEM_PORT); if (!port_item) goto nest_cancel; if (nla_put_u32(skb, TEAM_ATTR_PORT_IFINDEX, port->dev->ifindex)) goto nest_cancel; if (port->changed) { if (nla_put_flag(skb, TEAM_ATTR_PORT_CHANGED)) goto nest_cancel; port->changed = false; } if ((port->removed && nla_put_flag(skb, TEAM_ATTR_PORT_REMOVED)) || (port->state.linkup && nla_put_flag(skb, TEAM_ATTR_PORT_LINKUP)) || nla_put_u32(skb, TEAM_ATTR_PORT_SPEED, port->state.speed) || nla_put_u8(skb, TEAM_ATTR_PORT_DUPLEX, port->state.duplex)) goto nest_cancel; nla_nest_end(skb, port_item); return 0; nest_cancel: nla_nest_cancel(skb, port_item); return -EMSGSIZE; } static int team_nl_send_port_list_get(struct team *team, u32 portid, u32 seq, int flags, team_nl_send_func_t *send_func, struct team_port *one_port) { struct nlattr *port_list; struct nlmsghdr *nlh; void *hdr; struct team_port *port; int err; struct sk_buff *skb = NULL; bool incomplete; int i; port = list_first_entry_or_null(&team->port_list, struct team_port, list); start_again: err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; hdr = genlmsg_put(skb, portid, seq, &team_nl_family, flags | NLM_F_MULTI, TEAM_CMD_PORT_LIST_GET); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (nla_put_u32(skb, TEAM_ATTR_TEAM_IFINDEX, team->dev->ifindex)) goto nla_put_failure; port_list = nla_nest_start_noflag(skb, TEAM_ATTR_LIST_PORT); if (!port_list) goto nla_put_failure; i = 0; incomplete = false; /* If one port is selected, called wants to send port list containing * only this port. Otherwise go through all listed ports and send all */ if (one_port) { err = team_nl_fill_one_port_get(skb, one_port); if (err) goto errout; } else if (port) { list_for_each_entry_from(port, &team->port_list, list) { err = team_nl_fill_one_port_get(skb, port); if (err) { if (err == -EMSGSIZE) { if (!i) goto errout; incomplete = true; break; } goto errout; } i++; } } nla_nest_end(skb, port_list); genlmsg_end(skb, hdr); if (incomplete) goto start_again; send_done: nlh = nlmsg_put(skb, portid, seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; goto send_done; } return send_func(skb, team, portid); nla_put_failure: err = -EMSGSIZE; errout: nlmsg_free(skb); return err; } int team_nl_port_list_get_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; int err; team = team_nl_team_get(info); if (!team) return -EINVAL; err = team_nl_send_port_list_get(team, info->snd_portid, info->snd_seq, NLM_F_ACK, team_nl_send_unicast, NULL); team_nl_team_put(team); return err; } static const struct genl_multicast_group team_nl_mcgrps[] = { { .name = TEAM_GENL_CHANGE_EVENT_MC_GRP_NAME, }, }; static struct genl_family team_nl_family __ro_after_init = { .name = TEAM_GENL_NAME, .version = TEAM_GENL_VERSION, .maxattr = ARRAY_SIZE(team_nl_policy) - 1, .policy = team_nl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = team_nl_ops, .n_small_ops = ARRAY_SIZE(team_nl_ops), .resv_start_op = TEAM_CMD_PORT_LIST_GET + 1, .mcgrps = team_nl_mcgrps, .n_mcgrps = ARRAY_SIZE(team_nl_mcgrps), }; static int team_nl_send_multicast(struct sk_buff *skb, struct team *team, u32 portid) { return genlmsg_multicast_netns(&team_nl_family, dev_net(team->dev), skb, 0, 0, GFP_KERNEL); } static int team_nl_send_event_options_get(struct team *team, struct list_head *sel_opt_inst_list) { return team_nl_send_options_get(team, 0, 0, 0, team_nl_send_multicast, sel_opt_inst_list); } static int team_nl_send_event_port_get(struct team *team, struct team_port *port) { return team_nl_send_port_list_get(team, 0, 0, 0, team_nl_send_multicast, port); } static int __init team_nl_init(void) { return genl_register_family(&team_nl_family); } static void __exit team_nl_fini(void) { genl_unregister_family(&team_nl_family); } /****************** * Change checkers ******************/ static void __team_options_change_check(struct team *team) { int err; struct team_option_inst *opt_inst; LIST_HEAD(sel_opt_inst_list); list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->changed) list_add_tail(&opt_inst->tmp_list, &sel_opt_inst_list); } err = team_nl_send_event_options_get(team, &sel_opt_inst_list); if (err && err != -ESRCH) netdev_warn(team->dev, "Failed to send options change via netlink (err %d)\n", err); } /* rtnl lock is held */ static void __team_port_change_send(struct team_port *port, bool linkup) { int err; port->changed = true; port->state.linkup = linkup; team_refresh_port_linkup(port); if (linkup) { struct ethtool_link_ksettings ecmd; err = __ethtool_get_link_ksettings(port->dev, &ecmd); if (!err) { port->state.speed = ecmd.base.speed; port->state.duplex = ecmd.base.duplex; goto send_event; } } port->state.speed = 0; port->state.duplex = 0; send_event: err = team_nl_send_event_port_get(port->team, port); if (err && err != -ESRCH) netdev_warn(port->team->dev, "Failed to send port change of device %s via netlink (err %d)\n", port->dev->name, err); } static void __team_carrier_check(struct team *team) { struct team_port *port; bool team_linkup; if (team->user_carrier_enabled) return; team_linkup = false; list_for_each_entry(port, &team->port_list, list) { if (port->linkup) { team_linkup = true; break; } } if (team_linkup) netif_carrier_on(team->dev); else netif_carrier_off(team->dev); } static void __team_port_change_check(struct team_port *port, bool linkup) { if (port->state.linkup != linkup) __team_port_change_send(port, linkup); __team_carrier_check(port->team); } static void __team_port_change_port_added(struct team_port *port, bool linkup) { __team_port_change_send(port, linkup); __team_carrier_check(port->team); } static void __team_port_change_port_removed(struct team_port *port) { port->removed = true; __team_port_change_send(port, false); __team_carrier_check(port->team); } static void team_port_change_check(struct team_port *port, bool linkup) { struct team *team = port->team; mutex_lock(&team->lock); __team_port_change_check(port, linkup); mutex_unlock(&team->lock); } /************************************ * Net device notifier event handler ************************************/ static int team_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct team_port *port; port = team_port_get_rtnl(dev); if (!port) return NOTIFY_DONE; switch (event) { case NETDEV_UP: if (netif_oper_up(dev)) team_port_change_check(port, true); break; case NETDEV_DOWN: team_port_change_check(port, false); break; case NETDEV_CHANGE: if (netif_running(port->dev)) team_port_change_check(port, !!netif_oper_up(port->dev)); break; case NETDEV_UNREGISTER: team_del_slave(port->team->dev, dev); break; case NETDEV_FEAT_CHANGE: if (!port->team->notifier_ctx) { port->team->notifier_ctx = true; team_compute_features(port->team); port->team->notifier_ctx = false; } break; case NETDEV_PRECHANGEMTU: /* Forbid to change mtu of underlaying device */ if (!port->team->port_mtu_change_allowed) return NOTIFY_BAD; break; case NETDEV_PRE_TYPE_CHANGE: /* Forbid to change type of underlaying device */ return NOTIFY_BAD; case NETDEV_RESEND_IGMP: /* Propagate to master device */ call_netdevice_notifiers(event, port->team->dev); break; } return NOTIFY_DONE; } static struct notifier_block team_notifier_block __read_mostly = { .notifier_call = team_device_event, }; /*********************** * Module init and exit ***********************/ static int __init team_module_init(void) { int err; register_netdevice_notifier(&team_notifier_block); err = rtnl_link_register(&team_link_ops); if (err) goto err_rtnl_reg; err = team_nl_init(); if (err) goto err_nl_init; return 0; err_nl_init: rtnl_link_unregister(&team_link_ops); err_rtnl_reg: unregister_netdevice_notifier(&team_notifier_block); return err; } static void __exit team_module_exit(void) { team_nl_fini(); rtnl_link_unregister(&team_link_ops); unregister_netdevice_notifier(&team_notifier_block); } module_init(team_module_init); module_exit(team_module_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Jiri Pirko <jpirko@redhat.com>"); MODULE_DESCRIPTION("Ethernet team device driver"); MODULE_ALIAS_RTNL_LINK(DRV_NAME); |
| 163 162 132 163 163 7501 7499 4589 4194 4188 5848 5854 4380 1876 440 1555 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // SPDX-License-Identifier: GPL-2.0-or-later #define pr_fmt(fmt) "ref_tracker: " fmt #include <linux/export.h> #include <linux/list_sort.h> #include <linux/ref_tracker.h> #include <linux/slab.h> #include <linux/stacktrace.h> #include <linux/stackdepot.h> #define REF_TRACKER_STACK_ENTRIES 16 #define STACK_BUF_SIZE 1024 struct ref_tracker { struct list_head head; /* anchor into dir->list or dir->quarantine */ bool dead; depot_stack_handle_t alloc_stack_handle; depot_stack_handle_t free_stack_handle; }; struct ref_tracker_dir_stats { int total; int count; struct { depot_stack_handle_t stack_handle; unsigned int count; } stacks[]; }; static struct ref_tracker_dir_stats * ref_tracker_get_stats(struct ref_tracker_dir *dir, unsigned int limit) { struct ref_tracker_dir_stats *stats; struct ref_tracker *tracker; stats = kmalloc(struct_size(stats, stacks, limit), GFP_NOWAIT | __GFP_NOWARN); if (!stats) return ERR_PTR(-ENOMEM); stats->total = 0; stats->count = 0; list_for_each_entry(tracker, &dir->list, head) { depot_stack_handle_t stack = tracker->alloc_stack_handle; int i; ++stats->total; for (i = 0; i < stats->count; ++i) if (stats->stacks[i].stack_handle == stack) break; if (i >= limit) continue; if (i >= stats->count) { stats->stacks[i].stack_handle = stack; stats->stacks[i].count = 0; ++stats->count; } ++stats->stacks[i].count; } return stats; } struct ostream { char *buf; int size, used; }; #define pr_ostream(stream, fmt, args...) \ ({ \ struct ostream *_s = (stream); \ \ if (!_s->buf) { \ pr_err(fmt, ##args); \ } else { \ int ret, len = _s->size - _s->used; \ ret = snprintf(_s->buf + _s->used, len, pr_fmt(fmt), ##args); \ _s->used += min(ret, len); \ } \ }) static void __ref_tracker_dir_pr_ostream(struct ref_tracker_dir *dir, unsigned int display_limit, struct ostream *s) { struct ref_tracker_dir_stats *stats; unsigned int i = 0, skipped; depot_stack_handle_t stack; char *sbuf; lockdep_assert_held(&dir->lock); if (list_empty(&dir->list)) return; stats = ref_tracker_get_stats(dir, display_limit); if (IS_ERR(stats)) { pr_ostream(s, "%s@%pK: couldn't get stats, error %pe\n", dir->name, dir, stats); return; } sbuf = kmalloc(STACK_BUF_SIZE, GFP_NOWAIT | __GFP_NOWARN); for (i = 0, skipped = stats->total; i < stats->count; ++i) { stack = stats->stacks[i].stack_handle; if (sbuf && !stack_depot_snprint(stack, sbuf, STACK_BUF_SIZE, 4)) sbuf[0] = 0; pr_ostream(s, "%s@%pK has %d/%d users at\n%s\n", dir->name, dir, stats->stacks[i].count, stats->total, sbuf); skipped -= stats->stacks[i].count; } if (skipped) pr_ostream(s, "%s@%pK skipped reports about %d/%d users.\n", dir->name, dir, skipped, stats->total); kfree(sbuf); kfree(stats); } void ref_tracker_dir_print_locked(struct ref_tracker_dir *dir, unsigned int display_limit) { struct ostream os = {}; __ref_tracker_dir_pr_ostream(dir, display_limit, &os); } EXPORT_SYMBOL(ref_tracker_dir_print_locked); void ref_tracker_dir_print(struct ref_tracker_dir *dir, unsigned int display_limit) { unsigned long flags; spin_lock_irqsave(&dir->lock, flags); ref_tracker_dir_print_locked(dir, display_limit); spin_unlock_irqrestore(&dir->lock, flags); } EXPORT_SYMBOL(ref_tracker_dir_print); int ref_tracker_dir_snprint(struct ref_tracker_dir *dir, char *buf, size_t size) { struct ostream os = { .buf = buf, .size = size }; unsigned long flags; spin_lock_irqsave(&dir->lock, flags); __ref_tracker_dir_pr_ostream(dir, 16, &os); spin_unlock_irqrestore(&dir->lock, flags); return os.used; } EXPORT_SYMBOL(ref_tracker_dir_snprint); void ref_tracker_dir_exit(struct ref_tracker_dir *dir) { struct ref_tracker *tracker, *n; unsigned long flags; bool leak = false; dir->dead = true; spin_lock_irqsave(&dir->lock, flags); list_for_each_entry_safe(tracker, n, &dir->quarantine, head) { list_del(&tracker->head); kfree(tracker); dir->quarantine_avail++; } if (!list_empty(&dir->list)) { ref_tracker_dir_print_locked(dir, 16); leak = true; list_for_each_entry_safe(tracker, n, &dir->list, head) { list_del(&tracker->head); kfree(tracker); } } spin_unlock_irqrestore(&dir->lock, flags); WARN_ON_ONCE(leak); WARN_ON_ONCE(refcount_read(&dir->untracked) != 1); WARN_ON_ONCE(refcount_read(&dir->no_tracker) != 1); } EXPORT_SYMBOL(ref_tracker_dir_exit); int ref_tracker_alloc(struct ref_tracker_dir *dir, struct ref_tracker **trackerp, gfp_t gfp) { unsigned long entries[REF_TRACKER_STACK_ENTRIES]; struct ref_tracker *tracker; unsigned int nr_entries; gfp_t gfp_mask = gfp | __GFP_NOWARN; unsigned long flags; WARN_ON_ONCE(dir->dead); if (!trackerp) { refcount_inc(&dir->no_tracker); return 0; } if (gfp & __GFP_DIRECT_RECLAIM) gfp_mask |= __GFP_NOFAIL; *trackerp = tracker = kzalloc(sizeof(*tracker), gfp_mask); if (unlikely(!tracker)) { pr_err_once("memory allocation failure, unreliable refcount tracker.\n"); refcount_inc(&dir->untracked); return -ENOMEM; } nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 1); tracker->alloc_stack_handle = stack_depot_save(entries, nr_entries, gfp); spin_lock_irqsave(&dir->lock, flags); list_add(&tracker->head, &dir->list); spin_unlock_irqrestore(&dir->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ref_tracker_alloc); int ref_tracker_free(struct ref_tracker_dir *dir, struct ref_tracker **trackerp) { unsigned long entries[REF_TRACKER_STACK_ENTRIES]; depot_stack_handle_t stack_handle; struct ref_tracker *tracker; unsigned int nr_entries; unsigned long flags; WARN_ON_ONCE(dir->dead); if (!trackerp) { refcount_dec(&dir->no_tracker); return 0; } tracker = *trackerp; if (!tracker) { refcount_dec(&dir->untracked); return -EEXIST; } nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 1); stack_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT | __GFP_NOWARN); spin_lock_irqsave(&dir->lock, flags); if (tracker->dead) { pr_err("reference already released.\n"); if (tracker->alloc_stack_handle) { pr_err("allocated in:\n"); stack_depot_print(tracker->alloc_stack_handle); } if (tracker->free_stack_handle) { pr_err("freed in:\n"); stack_depot_print(tracker->free_stack_handle); } spin_unlock_irqrestore(&dir->lock, flags); WARN_ON_ONCE(1); return -EINVAL; } tracker->dead = true; tracker->free_stack_handle = stack_handle; list_move_tail(&tracker->head, &dir->quarantine); if (!dir->quarantine_avail) { tracker = list_first_entry(&dir->quarantine, struct ref_tracker, head); list_del(&tracker->head); } else { dir->quarantine_avail--; tracker = NULL; } spin_unlock_irqrestore(&dir->lock, flags); kfree(tracker); return 0; } EXPORT_SYMBOL_GPL(ref_tracker_free); |
| 27 27 27 27 27 26 233 231 32 34 1079 1074 12 12 47 47 47 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Handle firewalling * Linux ethernet bridge * * Authors: * Lennert Buytenhek <buytenh@gnu.org> * Bart De Schuymer <bdschuym@pandora.be> * * Lennert dedicates this file to Kerstin Wurdinger. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> #include <linux/netfilter_bridge.h> #include <uapi/linux/netfilter_bridge.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_arp.h> #include <linux/in_route.h> #include <linux/rculist.h> #include <linux/inetdevice.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/addrconf.h> #include <net/dst_metadata.h> #include <net/route.h> #include <net/netfilter/br_netfilter.h> #include <net/netns/generic.h> #include <net/inet_dscp.h> #include <linux/uaccess.h> #include "br_private.h" #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack_core.h> #endif static unsigned int brnf_net_id __read_mostly; struct brnf_net { bool enabled; #ifdef CONFIG_SYSCTL struct ctl_table_header *ctl_hdr; #endif /* default value is 1 */ int call_iptables; int call_ip6tables; int call_arptables; /* default value is 0 */ int filter_vlan_tagged; int filter_pppoe_tagged; int pass_vlan_indev; }; #define IS_IP(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP)) #define IS_IPV6(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6)) #define IS_ARP(skb) \ (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP)) static inline __be16 vlan_proto(const struct sk_buff *skb) { if (skb_vlan_tag_present(skb)) return skb->protocol; else if (skb->protocol == htons(ETH_P_8021Q)) return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; else return 0; } static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged; } static inline bool is_vlan_ipv6(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_IPV6) && brnet->filter_vlan_tagged; } static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged; } static inline __be16 pppoe_proto(const struct sk_buff *skb) { return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN + sizeof(struct pppoe_hdr))); } static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return skb->protocol == htons(ETH_P_PPP_SES) && pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged; } static inline bool is_pppoe_ipv6(const struct sk_buff *skb, const struct net *net) { struct brnf_net *brnet = net_generic(net, brnf_net_id); return skb->protocol == htons(ETH_P_PPP_SES) && pppoe_proto(skb) == htons(PPP_IPV6) && brnet->filter_pppoe_tagged; } /* largest possible L2 header, see br_nf_dev_queue_xmit() */ #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN) struct brnf_frag_data { local_lock_t bh_lock; char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH]; u8 encap_size; u8 size; u16 vlan_tci; __be16 vlan_proto; }; static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage) = { .bh_lock = INIT_LOCAL_LOCK(bh_lock), }; static void nf_bridge_info_free(struct sk_buff *skb) { skb_ext_del(skb, SKB_EXT_BRIDGE_NF); } static inline struct net_device *bridge_parent(const struct net_device *dev) { struct net_bridge_port *port; port = br_port_get_rcu(dev); return port ? port->br->dev : NULL; } static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb) { return skb_ext_add(skb, SKB_EXT_BRIDGE_NF); } unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb) { switch (skb->protocol) { case __cpu_to_be16(ETH_P_8021Q): return VLAN_HLEN; case __cpu_to_be16(ETH_P_PPP_SES): return PPPOE_SES_HLEN; default: return 0; } } static inline void nf_bridge_pull_encap_header(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull(skb, len); skb->network_header += len; } static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull_rcsum(skb, len); skb->network_header += len; } /* When handing a packet over to the IP layer * check whether we have a skb that is in the * expected format */ static int br_validate_ipv4(struct net *net, struct sk_buff *skb) { const struct iphdr *iph; u32 len; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto inhdr_error; iph = ip_hdr(skb); /* Basic sanity checks */ if (iph->ihl < 5 || iph->version != 4) goto inhdr_error; if (!pskb_may_pull(skb, iph->ihl*4)) goto inhdr_error; iph = ip_hdr(skb); if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) goto csum_error; len = skb_ip_totlen(skb); if (skb->len < len) { __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS); goto drop; } else if (len < (iph->ihl*4)) goto inhdr_error; if (pskb_trim_rcsum(skb, len)) { __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS); goto drop; } memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); /* We should really parse IP options here but until * somebody who actually uses IP options complains to * us we'll just silently ignore the options because * we're lazy! */ return 0; csum_error: __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS); inhdr_error: __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS); drop: return -1; } void nf_bridge_update_protocol(struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); switch (nf_bridge->orig_proto) { case BRNF_PROTO_8021Q: skb->protocol = htons(ETH_P_8021Q); break; case BRNF_PROTO_PPPOE: skb->protocol = htons(ETH_P_PPP_SES); break; case BRNF_PROTO_UNCHANGED: break; } } /* Obtain the correct destination MAC address, while preserving the original * source MAC address. If we already know this address, we just copy it. If we * don't, we use the neighbour framework to find out. In both cases, we make * sure that br_handle_frame_finish() is called afterwards. */ int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb) { struct neighbour *neigh; struct dst_entry *dst; skb->dev = bridge_parent(skb->dev); if (!skb->dev) goto free_skb; dst = skb_dst(skb); neigh = dst_neigh_lookup_skb(dst, skb); if (neigh) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); int ret; if ((READ_ONCE(neigh->nud_state) & NUD_CONNECTED) && READ_ONCE(neigh->hh.hh_len)) { struct net_device *br_indev; br_indev = nf_bridge_get_physindev(skb, net); if (!br_indev) { neigh_release(neigh); goto free_skb; } neigh_hh_bridge(&neigh->hh, skb); skb->dev = br_indev; ret = br_handle_frame_finish(net, sk, skb); } else { /* the neighbour function below overwrites the complete * MAC header, so we save the Ethernet source address and * protocol number. */ skb_copy_from_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN), nf_bridge->neigh_header, ETH_HLEN-ETH_ALEN); /* tell br_dev_xmit to continue with forwarding */ nf_bridge->bridged_dnat = 1; /* FIXME Need to refragment */ ret = READ_ONCE(neigh->output)(neigh, skb); } neigh_release(neigh); return ret; } free_skb: kfree_skb(skb); return 0; } static inline bool br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb, const struct nf_bridge_info *nf_bridge) { return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr; } /* This requires some explaining. If DNAT has taken place, * we will need to fix up the destination Ethernet address. * This is also true when SNAT takes place (for the reply direction). * * There are two cases to consider: * 1. The packet was DNAT'ed to a device in the same bridge * port group as it was received on. We can still bridge * the packet. * 2. The packet was DNAT'ed to a different device, either * a non-bridged device or another bridge port group. * The packet will need to be routed. * * The correct way of distinguishing between these two cases is to * call ip_route_input() and to look at skb->dst->dev, which is * changed to the destination device if ip_route_input() succeeds. * * Let's first consider the case that ip_route_input() succeeds: * * If the output device equals the logical bridge device the packet * came in on, we can consider this bridging. The corresponding MAC * address will be obtained in br_nf_pre_routing_finish_bridge. * Otherwise, the packet is considered to be routed and we just * change the destination MAC address so that the packet will * later be passed up to the IP stack to be routed. For a redirected * packet, ip_route_input() will give back the localhost as output device, * which differs from the bridge device. * * Let's now consider the case that ip_route_input() fails: * * This can be because the destination address is martian, in which case * the packet will be dropped. * If IP forwarding is disabled, ip_route_input() will fail, while * ip_route_output_key() can return success. The source * address for ip_route_output_key() is set to zero, so ip_route_output_key() * thinks we're handling a locally generated packet and won't care * if IP forwarding is enabled. If the output device equals the logical bridge * device, we proceed as if ip_route_input() succeeded. If it differs from the * logical bridge port or if ip_route_output_key() fails we drop the packet. */ static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *dev = skb->dev, *br_indev; const struct iphdr *iph = ip_hdr(skb); enum skb_drop_reason reason; struct rtable *rt; br_indev = nf_bridge_get_physindev(skb, net); if (!br_indev) { kfree_skb(skb); return 0; } nf_bridge->frag_max_size = IPCB(skb)->frag_max_size; if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } nf_bridge->in_prerouting = 0; if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) { reason = ip_route_input(skb, iph->daddr, iph->saddr, ip4h_dscp(iph), dev); if (reason) { kfree_skb_reason(skb, reason); return 0; } else { if (skb_dst(skb)->dev == dev) { skb->dev = br_indev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL, br_nf_pre_routing_finish_bridge); return 0; } ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr); skb->pkt_type = PACKET_HOST; } } else { rt = bridge_parent_rtable(br_indev); if (!rt) { kfree_skb(skb); return 0; } skb_dst_drop(skb); skb_dst_set_noref(skb, &rt->dst); } skb->dev = br_indev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL, br_handle_frame_finish); return 0; } static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev, const struct net *net) { struct net_device *vlan, *br; struct brnf_net *brnet = net_generic(net, brnf_net_id); br = bridge_parent(dev); if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb)) return br; vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto, skb_vlan_tag_get(skb) & VLAN_VID_MASK); return vlan ? vlan : br; } /* Some common code for IPv4/IPv6 */ struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } nf_bridge->in_prerouting = 1; nf_bridge->physinif = skb->dev->ifindex; skb->dev = brnf_get_logical_dev(skb, skb->dev, net); if (skb->protocol == htons(ETH_P_8021Q)) nf_bridge->orig_proto = BRNF_PROTO_8021Q; else if (skb->protocol == htons(ETH_P_PPP_SES)) nf_bridge->orig_proto = BRNF_PROTO_PPPOE; /* Must drop socket now because of tproxy. */ skb_orphan(skb); return skb->dev; } /* Direct IPv6 traffic to br_nf_pre_routing_ipv6. * Replicate the checks that IPv4 does on packet reception. * Set skb->dev to the bridge device (i.e. parent of the * receiving device) to make netfilter happy, the REDIRECT * target in particular. Save the original destination IP * address to be able to detect DNAT afterwards. */ static unsigned int br_nf_pre_routing(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge; struct net_bridge_port *p; struct net_bridge *br; __u32 len = nf_bridge_encap_header_len(skb); struct brnf_net *brnet; if (unlikely(!pskb_may_pull(skb, len))) return NF_DROP_REASON(skb, SKB_DROP_REASON_PKT_TOO_SMALL, 0); p = br_port_get_rcu(state->in); if (p == NULL) return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0); br = p->br; brnet = net_generic(state->net, brnf_net_id); if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) { if (!brnet->call_ip6tables && !br_opt_get(br, BROPT_NF_CALL_IP6TABLES)) return NF_ACCEPT; if (!ipv6_mod_enabled()) { pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported."); return NF_DROP_REASON(skb, SKB_DROP_REASON_IPV6DISABLED, 0); } nf_bridge_pull_encap_header_rcsum(skb); return br_nf_pre_routing_ipv6(priv, skb, state); } if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES)) return NF_ACCEPT; if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) && !is_pppoe_ip(skb, state->net)) return NF_ACCEPT; nf_bridge_pull_encap_header_rcsum(skb); if (br_validate_ipv4(state->net, skb)) return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0); if (!nf_bridge_alloc(skb)) return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0); if (!setup_pre_routing(skb, state->net)) return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0); nf_bridge = nf_bridge_info_get(skb); nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr; skb->protocol = htons(ETH_P_IP); skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4; NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb, skb->dev, NULL, br_nf_pre_routing_finish); return NF_STOLEN; } #if IS_ENABLED(CONFIG_NF_CONNTRACK) /* conntracks' nf_confirm logic cannot handle cloned skbs referencing * the same nf_conn entry, which will happen for multicast (broadcast) * Frames on bridges. * * Example: * macvlan0 * br0 * ethX ethY * * ethX (or Y) receives multicast or broadcast packet containing * an IP packet, not yet in conntrack table. * * 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting. * -> skb->_nfct now references a unconfirmed entry * 2. skb is broad/mcast packet. bridge now passes clones out on each bridge * interface. * 3. skb gets passed up the stack. * 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb * and schedules a work queue to send them out on the lower devices. * * The clone skb->_nfct is not a copy, it is the same entry as the * original skb. The macvlan rx handler then returns RX_HANDLER_PASS. * 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb. * * The Macvlan broadcast worker and normal confirm path will race. * * This race will not happen if step 2 already confirmed a clone. In that * case later steps perform skb_clone() with skb->_nfct already confirmed (in * hash table). This works fine. * * But such confirmation won't happen when eb/ip/nftables rules dropped the * packets before they reached the nf_confirm step in postrouting. * * Work around this problem by explicit confirmation of the entry at * LOCAL_IN time, before upper layer has a chance to clone the unconfirmed * entry. * */ static unsigned int br_nf_local_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { bool promisc = BR_INPUT_SKB_CB(skb)->promisc; struct nf_conntrack *nfct = skb_nfct(skb); const struct nf_ct_hook *ct_hook; struct nf_conn *ct; int ret; if (promisc) { nf_reset_ct(skb); return NF_ACCEPT; } if (!nfct || skb->pkt_type == PACKET_HOST) return NF_ACCEPT; ct = container_of(nfct, struct nf_conn, ct_general); if (likely(nf_ct_is_confirmed(ct))) return NF_ACCEPT; if (WARN_ON_ONCE(refcount_read(&nfct->use) != 1)) { nf_reset_ct(skb); return NF_ACCEPT; } WARN_ON_ONCE(skb_shared(skb)); /* We can't call nf_confirm here, it would create a dependency * on nf_conntrack module. */ ct_hook = rcu_dereference(nf_ct_hook); if (!ct_hook) { skb->_nfct = 0ul; nf_conntrack_put(nfct); return NF_ACCEPT; } nf_bridge_pull_encap_header(skb); ret = ct_hook->confirm(skb); switch (ret & NF_VERDICT_MASK) { case NF_STOLEN: return NF_STOLEN; default: nf_bridge_push_encap_header(skb); break; } ct = container_of(nfct, struct nf_conn, ct_general); WARN_ON_ONCE(!nf_ct_is_confirmed(ct)); return ret; } #endif /* PF_BRIDGE/FORWARD *************************************************/ static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *in; if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) { if (skb->protocol == htons(ETH_P_IP)) nf_bridge->frag_max_size = IPCB(skb)->frag_max_size; if (skb->protocol == htons(ETH_P_IPV6)) nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size; in = nf_bridge_get_physindev(skb, net); if (!in) { kfree_skb(skb); return 0; } if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } nf_bridge_update_protocol(skb); } else { in = *((struct net_device **)(skb->cb)); } nf_bridge_push_encap_header(skb); br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev, br_forward_finish); return 0; } static unsigned int br_nf_forward_ip(struct sk_buff *skb, const struct nf_hook_state *state, u8 pf) { struct nf_bridge_info *nf_bridge; struct net_device *parent; nf_bridge = nf_bridge_info_get(skb); if (!nf_bridge) return NF_ACCEPT; /* Need exclusive nf_bridge_info since we might have multiple * different physoutdevs. */ if (!nf_bridge_unshare(skb)) return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0); nf_bridge = nf_bridge_info_get(skb); if (!nf_bridge) return NF_DROP_REASON(skb, SKB_DROP_REASON_NOMEM, 0); parent = bridge_parent(state->out); if (!parent) return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0); nf_bridge_pull_encap_header(skb); if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } if (pf == NFPROTO_IPV4) { if (br_validate_ipv4(state->net, skb)) return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0); IPCB(skb)->frag_max_size = nf_bridge->frag_max_size; skb->protocol = htons(ETH_P_IP); } else if (pf == NFPROTO_IPV6) { if (br_validate_ipv6(state->net, skb)) return NF_DROP_REASON(skb, SKB_DROP_REASON_IP_INHDR, 0); IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size; skb->protocol = htons(ETH_P_IPV6); } else { WARN_ON_ONCE(1); return NF_DROP; } nf_bridge->physoutdev = skb->dev; NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb, brnf_get_logical_dev(skb, state->in, state->net), parent, br_nf_forward_finish); return NF_STOLEN; } static unsigned int br_nf_forward_arp(struct sk_buff *skb, const struct nf_hook_state *state) { struct net_bridge_port *p; struct net_bridge *br; struct net_device **d = (struct net_device **)(skb->cb); struct brnf_net *brnet; p = br_port_get_rcu(state->out); if (p == NULL) return NF_ACCEPT; br = p->br; brnet = net_generic(state->net, brnf_net_id); if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES)) return NF_ACCEPT; if (is_vlan_arp(skb, state->net)) nf_bridge_pull_encap_header(skb); if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr)))) return NF_DROP_REASON(skb, SKB_DROP_REASON_PKT_TOO_SMALL, 0); if (arp_hdr(skb)->ar_pln != 4) { if (is_vlan_arp(skb, state->net)) nf_bridge_push_encap_header(skb); return NF_ACCEPT; } *d = state->in; NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb, state->in, state->out, br_nf_forward_finish); return NF_STOLEN; } /* This is the 'purely bridged' case. For IP, we pass the packet to * netfilter with indev and outdev set to the bridge device, * but we are still able to filter on the 'real' indev/outdev * because of the physdev module. For ARP, indev and outdev are the * bridge ports. */ static unsigned int br_nf_forward(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { if (IS_IP(skb) || is_vlan_ip(skb, state->net) || is_pppoe_ip(skb, state->net)) return br_nf_forward_ip(skb, state, NFPROTO_IPV4); if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) return br_nf_forward_ip(skb, state, NFPROTO_IPV6); if (IS_ARP(skb) || is_vlan_arp(skb, state->net)) return br_nf_forward_arp(skb, state); return NF_ACCEPT; } static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { struct brnf_frag_data *data; int err; data = this_cpu_ptr(&brnf_frag_data_storage); err = skb_cow_head(skb, data->size); if (err) { kfree_skb(skb); return 0; } if (data->vlan_proto) __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci); skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size); __skb_push(skb, data->encap_size); nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); } static int br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { unsigned int mtu = ip_skb_dst_mtu(sk, skb); struct iphdr *iph = ip_hdr(skb); if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) || (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size > mtu))) { IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } return ip_do_fragment(net, sk, skb, output); } static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE) return PPPOE_SES_HLEN; return 0; } static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); unsigned int mtu, mtu_reserved; int ret; mtu_reserved = nf_bridge_mtu_reduction(skb); mtu = skb->dev->mtu; if (nf_bridge->pkt_otherhost) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->pkt_otherhost = false; } if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu) mtu = nf_bridge->frag_max_size; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) { nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); } /* Fragmentation on metadata/template dst is not supported */ if (unlikely(!skb_valid_dst(skb))) goto drop; /* This is wrong! We should preserve the original fragment * boundaries by preserving frag_list rather than refragmenting. */ if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) && skb->protocol == htons(ETH_P_IP)) { struct brnf_frag_data *data; if (br_validate_ipv4(net, skb)) goto drop; IPCB(skb)->frag_max_size = nf_bridge->frag_max_size; local_lock_nested_bh(&brnf_frag_data_storage.bh_lock); data = this_cpu_ptr(&brnf_frag_data_storage); if (skb_vlan_tag_present(skb)) { data->vlan_tci = skb->vlan_tci; data->vlan_proto = skb->vlan_proto; } else { data->vlan_proto = 0; } data->encap_size = nf_bridge_encap_header_len(skb); data->size = ETH_HLEN + data->encap_size; skb_copy_from_linear_data_offset(skb, -data->size, data->mac, data->size); ret = br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit); local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock); return ret; } if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) && skb->protocol == htons(ETH_P_IPV6)) { const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); struct brnf_frag_data *data; if (br_validate_ipv6(net, skb)) goto drop; IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size; local_lock_nested_bh(&brnf_frag_data_storage.bh_lock); data = this_cpu_ptr(&brnf_frag_data_storage); data->encap_size = nf_bridge_encap_header_len(skb); data->size = ETH_HLEN + data->encap_size; skb_copy_from_linear_data_offset(skb, -data->size, data->mac, data->size); if (v6ops) { ret = v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit); local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock); return ret; } local_unlock_nested_bh(&brnf_frag_data_storage.bh_lock); kfree_skb(skb); return -EMSGSIZE; } nf_bridge_info_free(skb); return br_dev_queue_push_xmit(net, sk, skb); drop: kfree_skb(skb); return 0; } /* PF_BRIDGE/POST_ROUTING ********************************************/ static unsigned int br_nf_post_routing(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *realoutdev = bridge_parent(skb->dev); u_int8_t pf; /* if nf_bridge is set, but ->physoutdev is NULL, this packet came in * on a bridge, but was delivered locally and is now being routed: * * POST_ROUTING was already invoked from the ip stack. */ if (!nf_bridge || !nf_bridge->physoutdev) return NF_ACCEPT; if (!realoutdev) return NF_DROP_REASON(skb, SKB_DROP_REASON_DEV_READY, 0); if (IS_IP(skb) || is_vlan_ip(skb, state->net) || is_pppoe_ip(skb, state->net)) pf = NFPROTO_IPV4; else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) || is_pppoe_ipv6(skb, state->net)) pf = NFPROTO_IPV6; else return NF_ACCEPT; if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->pkt_otherhost = true; } nf_bridge_pull_encap_header(skb); if (pf == NFPROTO_IPV4) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb, NULL, realoutdev, br_nf_dev_queue_xmit); return NF_STOLEN; } /* IP/SABOTAGE *****************************************************/ /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING * for the second time. */ static unsigned int ip_sabotage_in(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge) { if (nf_bridge->sabotage_in_done) return NF_ACCEPT; if (!nf_bridge->in_prerouting && !netif_is_l3_master(skb->dev) && !netif_is_l3_slave(skb->dev)) { nf_bridge->sabotage_in_done = 1; state->okfn(state->net, state->sk, skb); return NF_STOLEN; } } return NF_ACCEPT; } /* This is called when br_netfilter has called into iptables/netfilter, * and DNAT has taken place on a bridge-forwarded packet. * * neigh->output has created a new MAC header, with local br0 MAC * as saddr. * * This restores the original MAC saddr of the bridged packet * before invoking bridge forward logic to transmit the packet. */ static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); struct net_device *br_indev; br_indev = nf_bridge_get_physindev(skb, dev_net(skb->dev)); if (!br_indev) { kfree_skb(skb); return; } skb_pull(skb, ETH_HLEN); nf_bridge->bridged_dnat = 0; BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN)); skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN), nf_bridge->neigh_header, ETH_HLEN - ETH_ALEN); skb->dev = br_indev; nf_bridge->physoutdev = NULL; br_handle_frame_finish(dev_net(skb->dev), NULL, skb); } static int br_nf_dev_xmit(struct sk_buff *skb) { const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb); if (nf_bridge && nf_bridge->bridged_dnat) { br_nf_pre_routing_finish_bridge_slow(skb); return 1; } return 0; } static const struct nf_br_ops br_ops = { .br_dev_xmit_hook = br_nf_dev_xmit, }; /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because * br_dev_queue_push_xmit is called afterwards */ static const struct nf_hook_ops br_nf_ops[] = { { .hook = br_nf_pre_routing, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_PRE_ROUTING, .priority = NF_BR_PRI_BRNF, }, #if IS_ENABLED(CONFIG_NF_CONNTRACK) { .hook = br_nf_local_in, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_LOCAL_IN, .priority = NF_BR_PRI_LAST, }, #endif { .hook = br_nf_forward, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_FORWARD, .priority = NF_BR_PRI_BRNF, }, { .hook = br_nf_post_routing, .pf = NFPROTO_BRIDGE, .hooknum = NF_BR_POST_ROUTING, .priority = NF_BR_PRI_LAST, }, { .hook = ip_sabotage_in, .pf = NFPROTO_IPV4, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP_PRI_FIRST, }, { .hook = ip_sabotage_in, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_FIRST, }, }; static int brnf_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct brnf_net *brnet; struct net *net; int ret; if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev)) return NOTIFY_DONE; ASSERT_RTNL(); net = dev_net(dev); brnet = net_generic(net, brnf_net_id); if (brnet->enabled) return NOTIFY_OK; ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops)); if (ret) return NOTIFY_BAD; brnet->enabled = true; return NOTIFY_OK; } static struct notifier_block brnf_notifier __read_mostly = { .notifier_call = brnf_device_event, }; /* recursively invokes nf_hook_slow (again), skipping already-called * hooks (< NF_BR_PRI_BRNF). * * Called with rcu read lock held. */ int br_nf_hook_thresh(unsigned int hook, struct net *net, struct sock *sk, struct sk_buff *skb, struct net_device *indev, struct net_device *outdev, int (*okfn)(struct net *, struct sock *, struct sk_buff *)) { const struct nf_hook_entries *e; struct nf_hook_state state; struct nf_hook_ops **ops; unsigned int i; int ret; e = rcu_dereference(net->nf.hooks_bridge[hook]); if (!e) return okfn(net, sk, skb); ops = nf_hook_entries_get_hook_ops(e); for (i = 0; i < e->num_hook_entries; i++) { /* These hooks have already been called */ if (ops[i]->priority < NF_BR_PRI_BRNF) continue; /* These hooks have not been called yet, run them. */ if (ops[i]->priority > NF_BR_PRI_BRNF) break; /* take a closer look at NF_BR_PRI_BRNF. */ if (ops[i]->hook == br_nf_pre_routing) { /* This hook diverted the skb to this function, * hooks after this have not been run yet. */ i++; break; } } nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev, sk, net, okfn); ret = nf_hook_slow(skb, &state, e, i); if (ret == 1) ret = okfn(net, sk, skb); return ret; } #ifdef CONFIG_SYSCTL static int brnf_sysctl_call_tables(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (write && *(int *)(ctl->data)) *(int *)(ctl->data) = 1; return ret; } static struct ctl_table brnf_table[] = { { .procname = "bridge-nf-call-arptables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-iptables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-ip6tables", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-vlan-tagged", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-pppoe-tagged", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-pass-vlan-input-dev", .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, }; static inline void br_netfilter_sysctl_default(struct brnf_net *brnf) { brnf->call_iptables = 1; brnf->call_ip6tables = 1; brnf->call_arptables = 1; brnf->filter_vlan_tagged = 0; brnf->filter_pppoe_tagged = 0; brnf->pass_vlan_indev = 0; } static int br_netfilter_sysctl_init_net(struct net *net) { struct ctl_table *table = brnf_table; struct brnf_net *brnet; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL); if (!table) return -ENOMEM; } brnet = net_generic(net, brnf_net_id); table[0].data = &brnet->call_arptables; table[1].data = &brnet->call_iptables; table[2].data = &brnet->call_ip6tables; table[3].data = &brnet->filter_vlan_tagged; table[4].data = &brnet->filter_pppoe_tagged; table[5].data = &brnet->pass_vlan_indev; br_netfilter_sysctl_default(brnet); brnet->ctl_hdr = register_net_sysctl_sz(net, "net/bridge", table, ARRAY_SIZE(brnf_table)); if (!brnet->ctl_hdr) { if (!net_eq(net, &init_net)) kfree(table); return -ENOMEM; } return 0; } static void br_netfilter_sysctl_exit_net(struct net *net, struct brnf_net *brnet) { const struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg; unregister_net_sysctl_table(brnet->ctl_hdr); if (!net_eq(net, &init_net)) kfree(table); } static int __net_init brnf_init_net(struct net *net) { return br_netfilter_sysctl_init_net(net); } #endif static void __net_exit brnf_exit_net(struct net *net) { struct brnf_net *brnet; brnet = net_generic(net, brnf_net_id); if (brnet->enabled) { nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops)); brnet->enabled = false; } #ifdef CONFIG_SYSCTL br_netfilter_sysctl_exit_net(net, brnet); #endif } static struct pernet_operations brnf_net_ops __read_mostly = { #ifdef CONFIG_SYSCTL .init = brnf_init_net, #endif .exit = brnf_exit_net, .id = &brnf_net_id, .size = sizeof(struct brnf_net), }; static int __init br_netfilter_init(void) { int ret; ret = register_pernet_subsys(&brnf_net_ops); if (ret < 0) return ret; ret = register_netdevice_notifier(&brnf_notifier); if (ret < 0) { unregister_pernet_subsys(&brnf_net_ops); return ret; } RCU_INIT_POINTER(nf_br_ops, &br_ops); printk(KERN_NOTICE "Bridge firewalling registered\n"); return 0; } static void __exit br_netfilter_fini(void) { RCU_INIT_POINTER(nf_br_ops, NULL); unregister_netdevice_notifier(&brnf_notifier); unregister_pernet_subsys(&brnf_net_ops); } module_init(br_netfilter_init); module_exit(br_netfilter_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>"); MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>"); MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge"); |
| 14 4357 507 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM maple_tree #if !defined(_TRACE_MM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MM_H #include <linux/tracepoint.h> struct ma_state; TRACE_EVENT(ma_op, TP_PROTO(const char *fn, struct ma_state *mas), TP_ARGS(fn, mas), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->node = mas->node; ), TP_printk("%s\tNode: %p (%lu %lu) range: %lu-%lu", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last ) ) TRACE_EVENT(ma_read, TP_PROTO(const char *fn, struct ma_state *mas), TP_ARGS(fn, mas), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->node = mas->node; ), TP_printk("%s\tNode: %p (%lu %lu) range: %lu-%lu", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last ) ) TRACE_EVENT(ma_write, TP_PROTO(const char *fn, struct ma_state *mas, unsigned long piv, void *val), TP_ARGS(fn, mas, piv, val), TP_STRUCT__entry( __field(const char *, fn) __field(unsigned long, min) __field(unsigned long, max) __field(unsigned long, index) __field(unsigned long, last) __field(unsigned long, piv) __field(void *, val) __field(void *, node) ), TP_fast_assign( __entry->fn = fn; __entry->min = mas->min; __entry->max = mas->max; __entry->index = mas->index; __entry->last = mas->last; __entry->piv = piv; __entry->val = val; __entry->node = mas->node; ), TP_printk("%s\tNode %p (%lu %lu) range:%lu-%lu piv (%lu) val %p", __entry->fn, (void *) __entry->node, (unsigned long) __entry->min, (unsigned long) __entry->max, (unsigned long) __entry->index, (unsigned long) __entry->last, (unsigned long) __entry->piv, (void *) __entry->val ) ) #endif /* _TRACE_MM_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 124 257 124 250 10 239 240 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | // SPDX-License-Identifier: GPL-2.0-only /* * Helpers for formatting and printing strings * * Copyright 31 August 2008 James Bottomley * Copyright (C) 2013, Intel Corporation */ #include <linux/bug.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/export.h> #include <linux/ctype.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/limits.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/string_helpers.h> #include <kunit/test.h> #include <kunit/test-bug.h> /** * string_get_size - get the size in the specified units * @size: The size to be converted in blocks * @blk_size: Size of the block (use 1 for size in bytes) * @units: Units to use (powers of 1000 or 1024), whether to include space separator * @buf: buffer to format to * @len: length of buffer * * This function returns a string formatted to 3 significant figures * giving the size in the required units. @buf should have room for * at least 9 bytes and will always be zero terminated. * * Return value: number of characters of output that would have been written * (which may be greater than len, if output was truncated). */ int string_get_size(u64 size, u64 blk_size, const enum string_size_units units, char *buf, int len) { enum string_size_units units_base = units & STRING_UNITS_MASK; static const char *const units_10[] = { "", "k", "M", "G", "T", "P", "E", "Z", "Y", }; static const char *const units_2[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi", "Yi", }; static const char *const *const units_str[] = { [STRING_UNITS_10] = units_10, [STRING_UNITS_2] = units_2, }; static const unsigned int divisor[] = { [STRING_UNITS_10] = 1000, [STRING_UNITS_2] = 1024, }; static const unsigned int rounding[] = { 500, 50, 5 }; int i = 0, j; u32 remainder = 0, sf_cap; char tmp[12]; const char *unit; tmp[0] = '\0'; if (blk_size == 0) size = 0; if (size == 0) goto out; /* This is Napier's algorithm. Reduce the original block size to * * coefficient * divisor[units_base]^i * * we do the reduction so both coefficients are just under 32 bits so * that multiplying them together won't overflow 64 bits and we keep * as much precision as possible in the numbers. * * Note: it's safe to throw away the remainders here because all the * precision is in the coefficients. */ while (blk_size >> 32) { do_div(blk_size, divisor[units_base]); i++; } while (size >> 32) { do_div(size, divisor[units_base]); i++; } /* now perform the actual multiplication keeping i as the sum of the * two logarithms */ size *= blk_size; /* and logarithmically reduce it until it's just under the divisor */ while (size >= divisor[units_base]) { remainder = do_div(size, divisor[units_base]); i++; } /* work out in j how many digits of precision we need from the * remainder */ sf_cap = size; for (j = 0; sf_cap*10 < 1000; j++) sf_cap *= 10; if (units_base == STRING_UNITS_2) { /* express the remainder as a decimal. It's currently the * numerator of a fraction whose denominator is * divisor[units_base], which is 1 << 10 for STRING_UNITS_2 */ remainder *= 1000; remainder >>= 10; } /* add a 5 to the digit below what will be printed to ensure * an arithmetical round up and carry it through to size */ remainder += rounding[j]; if (remainder >= 1000) { remainder -= 1000; size += 1; } if (j) { snprintf(tmp, sizeof(tmp), ".%03u", remainder); tmp[j+1] = '\0'; } out: if (i >= ARRAY_SIZE(units_2)) unit = "UNK"; else unit = units_str[units_base][i]; return snprintf(buf, len, "%u%s%s%s%s", (u32)size, tmp, (units & STRING_UNITS_NO_SPACE) ? "" : " ", unit, (units & STRING_UNITS_NO_BYTES) ? "" : "B"); } EXPORT_SYMBOL(string_get_size); /** * parse_int_array_user - Split string into a sequence of integers * @from: The user space buffer to read from * @count: The maximum number of bytes to read * @array: Returned pointer to sequence of integers * * On success @array is allocated and initialized with a sequence of * integers extracted from the @from plus an additional element that * begins the sequence and specifies the integers count. * * Caller takes responsibility for freeing @array when it is no longer * needed. */ int parse_int_array_user(const char __user *from, size_t count, int **array) { int *ints, nints; char *buf; int ret = 0; buf = memdup_user_nul(from, count); if (IS_ERR(buf)) return PTR_ERR(buf); get_options(buf, 0, &nints); if (!nints) { ret = -ENOENT; goto free_buf; } ints = kcalloc(nints + 1, sizeof(*ints), GFP_KERNEL); if (!ints) { ret = -ENOMEM; goto free_buf; } get_options(buf, nints + 1, ints); *array = ints; free_buf: kfree(buf); return ret; } EXPORT_SYMBOL(parse_int_array_user); static bool unescape_space(char **src, char **dst) { char *p = *dst, *q = *src; switch (*q) { case 'n': *p = '\n'; break; case 'r': *p = '\r'; break; case 't': *p = '\t'; break; case 'v': *p = '\v'; break; case 'f': *p = '\f'; break; default: return false; } *dst += 1; *src += 1; return true; } static bool unescape_octal(char **src, char **dst) { char *p = *dst, *q = *src; u8 num; if (isodigit(*q) == 0) return false; num = (*q++) & 7; while (num < 32 && isodigit(*q) && (q - *src < 3)) { num <<= 3; num += (*q++) & 7; } *p = num; *dst += 1; *src = q; return true; } static bool unescape_hex(char **src, char **dst) { char *p = *dst, *q = *src; int digit; u8 num; if (*q++ != 'x') return false; num = digit = hex_to_bin(*q++); if (digit < 0) return false; digit = hex_to_bin(*q); if (digit >= 0) { q++; num = (num << 4) | digit; } *p = num; *dst += 1; *src = q; return true; } static bool unescape_special(char **src, char **dst) { char *p = *dst, *q = *src; switch (*q) { case '\"': *p = '\"'; break; case '\\': *p = '\\'; break; case 'a': *p = '\a'; break; case 'e': *p = '\e'; break; default: return false; } *dst += 1; *src += 1; return true; } /** * string_unescape - unquote characters in the given string * @src: source buffer (escaped) * @dst: destination buffer (unescaped) * @size: size of the destination buffer (0 to unlimit) * @flags: combination of the flags. * * Description: * The function unquotes characters in the given string. * * Because the size of the output will be the same as or less than the size of * the input, the transformation may be performed in place. * * Caller must provide valid source and destination pointers. Be aware that * destination buffer will always be NULL-terminated. Source string must be * NULL-terminated as well. The supported flags are:: * * UNESCAPE_SPACE: * '\f' - form feed * '\n' - new line * '\r' - carriage return * '\t' - horizontal tab * '\v' - vertical tab * UNESCAPE_OCTAL: * '\NNN' - byte with octal value NNN (1 to 3 digits) * UNESCAPE_HEX: * '\xHH' - byte with hexadecimal value HH (1 to 2 digits) * UNESCAPE_SPECIAL: * '\"' - double quote * '\\' - backslash * '\a' - alert (BEL) * '\e' - escape * UNESCAPE_ANY: * all previous together * * Return: * The amount of the characters processed to the destination buffer excluding * trailing '\0' is returned. */ int string_unescape(char *src, char *dst, size_t size, unsigned int flags) { char *out = dst; if (!size) size = SIZE_MAX; while (*src && --size) { if (src[0] == '\\' && src[1] != '\0' && size > 1) { src++; size--; if (flags & UNESCAPE_SPACE && unescape_space(&src, &out)) continue; if (flags & UNESCAPE_OCTAL && unescape_octal(&src, &out)) continue; if (flags & UNESCAPE_HEX && unescape_hex(&src, &out)) continue; if (flags & UNESCAPE_SPECIAL && unescape_special(&src, &out)) continue; *out++ = '\\'; } *out++ = *src++; } *out = '\0'; return out - dst; } EXPORT_SYMBOL(string_unescape); static bool escape_passthrough(unsigned char c, char **dst, char *end) { char *out = *dst; if (out < end) *out = c; *dst = out + 1; return true; } static bool escape_space(unsigned char c, char **dst, char *end) { char *out = *dst; unsigned char to; switch (c) { case '\n': to = 'n'; break; case '\r': to = 'r'; break; case '\t': to = 't'; break; case '\v': to = 'v'; break; case '\f': to = 'f'; break; default: return false; } if (out < end) *out = '\\'; ++out; if (out < end) *out = to; ++out; *dst = out; return true; } static bool escape_special(unsigned char c, char **dst, char *end) { char *out = *dst; unsigned char to; switch (c) { case '\\': to = '\\'; break; case '\a': to = 'a'; break; case '\e': to = 'e'; break; case '"': to = '"'; break; default: return false; } if (out < end) *out = '\\'; ++out; if (out < end) *out = to; ++out; *dst = out; return true; } static bool escape_null(unsigned char c, char **dst, char *end) { char *out = *dst; if (c) return false; if (out < end) *out = '\\'; ++out; if (out < end) *out = '0'; ++out; *dst = out; return true; } static bool escape_octal(unsigned char c, char **dst, char *end) { char *out = *dst; if (out < end) *out = '\\'; ++out; if (out < end) *out = ((c >> 6) & 0x07) + '0'; ++out; if (out < end) *out = ((c >> 3) & 0x07) + '0'; ++out; if (out < end) *out = ((c >> 0) & 0x07) + '0'; ++out; *dst = out; return true; } static bool escape_hex(unsigned char c, char **dst, char *end) { char *out = *dst; if (out < end) *out = '\\'; ++out; if (out < end) *out = 'x'; ++out; if (out < end) *out = hex_asc_hi(c); ++out; if (out < end) *out = hex_asc_lo(c); ++out; *dst = out; return true; } /** * string_escape_mem - quote characters in the given memory buffer * @src: source buffer (unescaped) * @isz: source buffer size * @dst: destination buffer (escaped) * @osz: destination buffer size * @flags: combination of the flags * @only: NULL-terminated string containing characters used to limit * the selected escape class. If characters are included in @only * that would not normally be escaped by the classes selected * in @flags, they will be copied to @dst unescaped. * * Description: * The process of escaping byte buffer includes several parts. They are applied * in the following sequence. * * 1. The character is not matched to the one from @only string and thus * must go as-is to the output. * 2. The character is matched to the printable and ASCII classes, if asked, * and in case of match it passes through to the output. * 3. The character is matched to the printable or ASCII class, if asked, * and in case of match it passes through to the output. * 4. The character is checked if it falls into the class given by @flags. * %ESCAPE_OCTAL and %ESCAPE_HEX are going last since they cover any * character. Note that they actually can't go together, otherwise * %ESCAPE_HEX will be ignored. * * Caller must provide valid source and destination pointers. Be aware that * destination buffer will not be NULL-terminated, thus caller have to append * it if needs. The supported flags are:: * * %ESCAPE_SPACE: (special white space, not space itself) * '\f' - form feed * '\n' - new line * '\r' - carriage return * '\t' - horizontal tab * '\v' - vertical tab * %ESCAPE_SPECIAL: * '\"' - double quote * '\\' - backslash * '\a' - alert (BEL) * '\e' - escape * %ESCAPE_NULL: * '\0' - null * %ESCAPE_OCTAL: * '\NNN' - byte with octal value NNN (3 digits) * %ESCAPE_ANY: * all previous together * %ESCAPE_NP: * escape only non-printable characters, checked by isprint() * %ESCAPE_ANY_NP: * all previous together * %ESCAPE_HEX: * '\xHH' - byte with hexadecimal value HH (2 digits) * %ESCAPE_NA: * escape only non-ascii characters, checked by isascii() * %ESCAPE_NAP: * escape only non-printable or non-ascii characters * %ESCAPE_APPEND: * append characters from @only to be escaped by the given classes * * %ESCAPE_APPEND would help to pass additional characters to the escaped, when * one of %ESCAPE_NP, %ESCAPE_NA, or %ESCAPE_NAP is provided. * * One notable caveat, the %ESCAPE_NAP, %ESCAPE_NP and %ESCAPE_NA have the * higher priority than the rest of the flags (%ESCAPE_NAP is the highest). * It doesn't make much sense to use either of them without %ESCAPE_OCTAL * or %ESCAPE_HEX, because they cover most of the other character classes. * %ESCAPE_NAP can utilize %ESCAPE_SPACE or %ESCAPE_SPECIAL in addition to * the above. * * Return: * The total size of the escaped output that would be generated for * the given input and flags. To check whether the output was * truncated, compare the return value to osz. There is room left in * dst for a '\0' terminator if and only if ret < osz. */ int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, unsigned int flags, const char *only) { char *p = dst; char *end = p + osz; bool is_dict = only && *only; bool is_append = flags & ESCAPE_APPEND; while (isz--) { unsigned char c = *src++; bool in_dict = is_dict && strchr(only, c); /* * Apply rules in the following sequence: * - the @only string is supplied and does not contain a * character under question * - the character is printable and ASCII, when @flags has * %ESCAPE_NAP bit set * - the character is printable, when @flags has * %ESCAPE_NP bit set * - the character is ASCII, when @flags has * %ESCAPE_NA bit set * - the character doesn't fall into a class of symbols * defined by given @flags * In these cases we just pass through a character to the * output buffer. * * When %ESCAPE_APPEND is passed, the characters from @only * have been excluded from the %ESCAPE_NAP, %ESCAPE_NP, and * %ESCAPE_NA cases. */ if (!(is_append || in_dict) && is_dict && escape_passthrough(c, &p, end)) continue; if (!(is_append && in_dict) && isascii(c) && isprint(c) && flags & ESCAPE_NAP && escape_passthrough(c, &p, end)) continue; if (!(is_append && in_dict) && isprint(c) && flags & ESCAPE_NP && escape_passthrough(c, &p, end)) continue; if (!(is_append && in_dict) && isascii(c) && flags & ESCAPE_NA && escape_passthrough(c, &p, end)) continue; if (flags & ESCAPE_SPACE && escape_space(c, &p, end)) continue; if (flags & ESCAPE_SPECIAL && escape_special(c, &p, end)) continue; if (flags & ESCAPE_NULL && escape_null(c, &p, end)) continue; /* ESCAPE_OCTAL and ESCAPE_HEX always go last */ if (flags & ESCAPE_OCTAL && escape_octal(c, &p, end)) continue; if (flags & ESCAPE_HEX && escape_hex(c, &p, end)) continue; escape_passthrough(c, &p, end); } return p - dst; } EXPORT_SYMBOL(string_escape_mem); /* * Return an allocated string that has been escaped of special characters * and double quotes, making it safe to log in quotes. */ char *kstrdup_quotable(const char *src, gfp_t gfp) { size_t slen, dlen; char *dst; const int flags = ESCAPE_HEX; const char esc[] = "\f\n\r\t\v\a\e\\\""; if (!src) return NULL; slen = strlen(src); dlen = string_escape_mem(src, slen, NULL, 0, flags, esc); dst = kmalloc(dlen + 1, gfp); if (!dst) return NULL; WARN_ON(string_escape_mem(src, slen, dst, dlen, flags, esc) != dlen); dst[dlen] = '\0'; return dst; } EXPORT_SYMBOL_GPL(kstrdup_quotable); /* * Returns allocated NULL-terminated string containing process * command line, with inter-argument NULLs replaced with spaces, * and other special characters escaped. */ char *kstrdup_quotable_cmdline(struct task_struct *task, gfp_t gfp) { char *buffer, *quoted; int i, res; buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buffer) return NULL; res = get_cmdline(task, buffer, PAGE_SIZE - 1); buffer[res] = '\0'; /* Collapse trailing NULLs, leave res pointing to last non-NULL. */ while (--res >= 0 && buffer[res] == '\0') ; /* Replace inter-argument NULLs. */ for (i = 0; i <= res; i++) if (buffer[i] == '\0') buffer[i] = ' '; /* Make sure result is printable. */ quoted = kstrdup_quotable(buffer, gfp); kfree(buffer); return quoted; } EXPORT_SYMBOL_GPL(kstrdup_quotable_cmdline); /* * Returns allocated NULL-terminated string containing pathname, * with special characters escaped, able to be safely logged. If * there is an error, the leading character will be "<". */ char *kstrdup_quotable_file(struct file *file, gfp_t gfp) { char *temp, *pathname; if (!file) return kstrdup("<unknown>", gfp); /* We add 11 spaces for ' (deleted)' to be appended */ temp = kmalloc(PATH_MAX + 11, GFP_KERNEL); if (!temp) return kstrdup("<no_memory>", gfp); pathname = file_path(file, temp, PATH_MAX + 11); if (IS_ERR(pathname)) pathname = kstrdup("<too_long>", gfp); else pathname = kstrdup_quotable(pathname, gfp); kfree(temp); return pathname; } EXPORT_SYMBOL_GPL(kstrdup_quotable_file); /* * Returns duplicate string in which the @old characters are replaced by @new. */ char *kstrdup_and_replace(const char *src, char old, char new, gfp_t gfp) { char *dst; dst = kstrdup(src, gfp); if (!dst) return NULL; return strreplace(dst, old, new); } EXPORT_SYMBOL_GPL(kstrdup_and_replace); /** * kasprintf_strarray - allocate and fill array of sequential strings * @gfp: flags for the slab allocator * @prefix: prefix to be used * @n: amount of lines to be allocated and filled * * Allocates and fills @n strings using pattern "%s-%zu", where prefix * is provided by caller. The caller is responsible to free them with * kfree_strarray() after use. * * Returns array of strings or NULL when memory can't be allocated. */ char **kasprintf_strarray(gfp_t gfp, const char *prefix, size_t n) { char **names; size_t i; names = kcalloc(n + 1, sizeof(char *), gfp); if (!names) return NULL; for (i = 0; i < n; i++) { names[i] = kasprintf(gfp, "%s-%zu", prefix, i); if (!names[i]) { kfree_strarray(names, i); return NULL; } } return names; } EXPORT_SYMBOL_GPL(kasprintf_strarray); /** * kfree_strarray - free a number of dynamically allocated strings contained * in an array and the array itself * * @array: Dynamically allocated array of strings to free. * @n: Number of strings (starting from the beginning of the array) to free. * * Passing a non-NULL @array and @n == 0 as well as NULL @array are valid * use-cases. If @array is NULL, the function does nothing. */ void kfree_strarray(char **array, size_t n) { unsigned int i; if (!array) return; for (i = 0; i < n; i++) kfree(array[i]); kfree(array); } EXPORT_SYMBOL_GPL(kfree_strarray); struct strarray { char **array; size_t n; }; static void devm_kfree_strarray(struct device *dev, void *res) { struct strarray *array = res; kfree_strarray(array->array, array->n); } char **devm_kasprintf_strarray(struct device *dev, const char *prefix, size_t n) { struct strarray *ptr; ptr = devres_alloc(devm_kfree_strarray, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); ptr->array = kasprintf_strarray(GFP_KERNEL, prefix, n); if (!ptr->array) { devres_free(ptr); return ERR_PTR(-ENOMEM); } ptr->n = n; devres_add(dev, ptr); return ptr->array; } EXPORT_SYMBOL_GPL(devm_kasprintf_strarray); /** * skip_spaces - Removes leading whitespace from @str. * @str: The string to be stripped. * * Returns a pointer to the first non-whitespace character in @str. */ char *skip_spaces(const char *str) { while (isspace(*str)) ++str; return (char *)str; } EXPORT_SYMBOL(skip_spaces); /** * strim - Removes leading and trailing whitespace from @s. * @s: The string to be stripped. * * Note that the first trailing whitespace is replaced with a %NUL-terminator * in the given string @s. Returns a pointer to the first non-whitespace * character in @s. */ char *strim(char *s) { size_t size; char *end; size = strlen(s); if (!size) return s; end = s + size - 1; while (end >= s && isspace(*end)) end--; *(end + 1) = '\0'; return skip_spaces(s); } EXPORT_SYMBOL(strim); /** * sysfs_streq - return true if strings are equal, modulo trailing newline * @s1: one string * @s2: another string * * This routine returns true iff two strings are equal, treating both * NUL and newline-then-NUL as equivalent string terminations. It's * geared for use with sysfs input strings, which generally terminate * with newlines but are compared against values without newlines. */ bool sysfs_streq(const char *s1, const char *s2) { while (*s1 && *s1 == *s2) { s1++; s2++; } if (*s1 == *s2) return true; if (!*s1 && *s2 == '\n' && !s2[1]) return true; if (*s1 == '\n' && !s1[1] && !*s2) return true; return false; } EXPORT_SYMBOL(sysfs_streq); /** * match_string - matches given string in an array * @array: array of strings * @n: number of strings in the array or -1 for NULL terminated arrays * @string: string to match with * * This routine will look for a string in an array of strings up to the * n-th element in the array or until the first NULL element. * * Historically the value of -1 for @n, was used to search in arrays that * are NULL terminated. However, the function does not make a distinction * when finishing the search: either @n elements have been compared OR * the first NULL element was found. * * Return: * index of a @string in the @array if matches, or %-EINVAL otherwise. */ int match_string(const char * const *array, size_t n, const char *string) { int index; const char *item; for (index = 0; index < n; index++) { item = array[index]; if (!item) break; if (!strcmp(item, string)) return index; } return -EINVAL; } EXPORT_SYMBOL(match_string); /** * __sysfs_match_string - matches given string in an array * @array: array of strings * @n: number of strings in the array or -1 for NULL terminated arrays * @str: string to match with * * Returns index of @str in the @array or -EINVAL, just like match_string(). * Uses sysfs_streq instead of strcmp for matching. * * This routine will look for a string in an array of strings up to the * n-th element in the array or until the first NULL element. * * Historically the value of -1 for @n, was used to search in arrays that * are NULL terminated. However, the function does not make a distinction * when finishing the search: either @n elements have been compared OR * the first NULL element was found. */ int __sysfs_match_string(const char * const *array, size_t n, const char *str) { const char *item; int index; for (index = 0; index < n; index++) { item = array[index]; if (!item) break; if (sysfs_streq(item, str)) return index; } return -EINVAL; } EXPORT_SYMBOL(__sysfs_match_string); /** * strreplace - Replace all occurrences of character in string. * @str: The string to operate on. * @old: The character being replaced. * @new: The character @old is replaced with. * * Replaces the each @old character with a @new one in the given string @str. * * Return: pointer to the string @str itself. */ char *strreplace(char *str, char old, char new) { char *s = str; for (; *s; ++s) if (*s == old) *s = new; return str; } EXPORT_SYMBOL(strreplace); /** * memcpy_and_pad - Copy one buffer to another with padding * @dest: Where to copy to * @dest_len: The destination buffer size * @src: Where to copy from * @count: The number of bytes to copy * @pad: Character to use for padding if space is left in destination. */ void memcpy_and_pad(void *dest, size_t dest_len, const void *src, size_t count, int pad) { if (dest_len > count) { memcpy(dest, src, count); memset(dest + count, pad, dest_len - count); } else { memcpy(dest, src, dest_len); } } EXPORT_SYMBOL(memcpy_and_pad); #ifdef CONFIG_FORTIFY_SOURCE /* These are placeholders for fortify compile-time warnings. */ void __read_overflow2_field(size_t avail, size_t wanted) { } EXPORT_SYMBOL(__read_overflow2_field); void __write_overflow_field(size_t avail, size_t wanted) { } EXPORT_SYMBOL(__write_overflow_field); static const char * const fortify_func_name[] = { #define MAKE_FORTIFY_FUNC_NAME(func) [MAKE_FORTIFY_FUNC(func)] = #func EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC_NAME) #undef MAKE_FORTIFY_FUNC_NAME }; void __fortify_report(const u8 reason, const size_t avail, const size_t size) { const u8 func = FORTIFY_REASON_FUNC(reason); const bool write = FORTIFY_REASON_DIR(reason); const char *name; name = fortify_func_name[umin(func, FORTIFY_FUNC_UNKNOWN)]; WARN(1, "%s: detected buffer overflow: %zu byte %s of buffer size %zu\n", name, size, str_read_write(!write), avail); } EXPORT_SYMBOL(__fortify_report); void __fortify_panic(const u8 reason, const size_t avail, const size_t size) { __fortify_report(reason, avail, size); BUG(); } EXPORT_SYMBOL(__fortify_panic); #endif /* CONFIG_FORTIFY_SOURCE */ |
| 302 106 31 49 31 49 1043 1001 305 1090 990 1043 993 1001 305 569 569 1467 1093 434 1080 426 246 162 79 1242 1264 22 265 19 1 11 80 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_H #define _LINUX_FS_H #include <linux/linkage.h> #include <linux/wait_bit.h> #include <linux/kdev_t.h> #include <linux/dcache.h> #include <linux/path.h> #include <linux/stat.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/list_lru.h> #include <linux/llist.h> #include <linux/radix-tree.h> #include <linux/xarray.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/pid.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/mm_types.h> #include <linux/capability.h> #include <linux/semaphore.h> #include <linux/fcntl.h> #include <linux/rculist_bl.h> #include <linux/atomic.h> #include <linux/shrinker.h> #include <linux/migrate_mode.h> #include <linux/uidgid.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/workqueue.h> #include <linux/delayed_call.h> #include <linux/uuid.h> #include <linux/errseq.h> #include <linux/ioprio.h> #include <linux/fs_types.h> #include <linux/build_bug.h> #include <linux/stddef.h> #include <linux/mount.h> #include <linux/cred.h> #include <linux/mnt_idmapping.h> #include <linux/slab.h> #include <linux/maple_tree.h> #include <linux/rw_hint.h> #include <linux/file_ref.h> #include <linux/unicode.h> #include <asm/byteorder.h> #include <uapi/linux/fs.h> struct backing_dev_info; struct bdi_writeback; struct bio; struct io_comp_batch; struct export_operations; struct fiemap_extent_info; struct hd_geometry; struct iovec; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; struct iov_iter; struct fscrypt_inode_info; struct fscrypt_operations; struct fsverity_info; struct fsverity_operations; struct fsnotify_mark_connector; struct fsnotify_sb_info; struct fs_context; struct fs_parameter_spec; struct fileattr; struct iomap_ops; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern unsigned long get_max_files(void); extern unsigned int sysctl_nr_open; typedef __kernel_rwf_t rwf_t; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)(1 << 0)) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)(1 << 1)) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)(1 << 3)) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)(1 << 5)) /* File writes are restricted (block device specific) */ #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) /* File supports atomic writes */ #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) /* FMODE_* bit 8 */ /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) /* FMODE_* bit 13 */ /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)(1 << 14)) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) /* Write access to underlying fs */ #define FMODE_WRITER ((__force fmode_t)(1 << 16)) /* Has read method(s) */ #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) /* Has write method(s) */ #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) #define FMODE_OPENED ((__force fmode_t)(1 << 19)) #define FMODE_CREATED ((__force fmode_t)(1 << 20)) /* File is stream-like */ #define FMODE_STREAM ((__force fmode_t)(1 << 21)) /* File supports DIRECT IO */ #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) /* FMODE_* bit 24 */ /* File is embedded in backing_file object */ #define FMODE_BACKING ((__force fmode_t)(1 << 25)) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)(1 << 26)) /* File is capable of returning -EAGAIN if I/O will block */ #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) /* File represents mount that needs unmounting */ #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) /* File does not contribute to nr_files count */ #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins <warlord@MIT.EDU> 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; /* * The two anonymous unions wrap structures with the same member. * * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which * are a dedicated type requiring the filesystem to use the dedicated * helpers. Other filesystem can continue to use ia_{g,u}id until they * have been ported. * * They always contain the same value. In other words FS_ALLOW_IDMAP * pass down the same value on idmapped mounts as they would on regular * mounts. */ union { kuid_t ia_uid; vfsuid_t ia_vfsuid; }; union { kgid_t ia_gid; vfsgid_t ia_vfsgid; }; loff_t ia_size; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include <linux/quota.h> /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by read_folio(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct readahead_control; /* Match RWF_* bits to IOCB bits */ #define IOCB_HIPRI (__force int) RWF_HIPRI #define IOCB_DSYNC (__force int) RWF_DSYNC #define IOCB_SYNC (__force int) RWF_SYNC #define IOCB_NOWAIT (__force int) RWF_NOWAIT #define IOCB_APPEND (__force int) RWF_APPEND #define IOCB_ATOMIC (__force int) RWF_ATOMIC #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE /* non-RWF related bits - start at 16 */ #define IOCB_EVENTFD (1 << 16) #define IOCB_DIRECT (1 << 17) #define IOCB_WRITE (1 << 18) /* iocb->ki_waitq is valid */ #define IOCB_WAITQ (1 << 19) #define IOCB_NOIO (1 << 20) /* can use bio alloc cache */ #define IOCB_ALLOC_CACHE (1 << 21) /* * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the * iocb completion can be passed back to the owner for execution from a safe * context rather than needing to be punted through a workqueue. If this * flag is set, the bio completion handling may set iocb->dio_complete to a * handler function and iocb->private to context information for that handler. * The issuer should call the handler with that context information from task * context to complete the processing of the iocb. Note that while this * provides a task context for the dio_complete() callback, it should only be * used on the completion side for non-IO generating completions. It's fine to * call blocking functions from this callback, but they should not wait for * unrelated IO (like cache flushing, new IO generation, etc). */ #define IOCB_DIO_CALLER_COMP (1 << 22) /* kiocb is a read or write operation submitted by fs/aio.c. */ #define IOCB_AIO_RW (1 << 23) #define IOCB_HAS_METADATA (1 << 24) /* for use in trace events */ #define TRACE_IOCB_STRINGS \ { IOCB_HIPRI, "HIPRI" }, \ { IOCB_DSYNC, "DSYNC" }, \ { IOCB_SYNC, "SYNC" }, \ { IOCB_NOWAIT, "NOWAIT" }, \ { IOCB_APPEND, "APPEND" }, \ { IOCB_ATOMIC, "ATOMIC" }, \ { IOCB_DONTCACHE, "DONTCACHE" }, \ { IOCB_EVENTFD, "EVENTFD"}, \ { IOCB_DIRECT, "DIRECT" }, \ { IOCB_WRITE, "WRITE" }, \ { IOCB_WAITQ, "WAITQ" }, \ { IOCB_NOIO, "NOIO" }, \ { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } struct kiocb { struct file *ki_filp; loff_t ki_pos; void (*ki_complete)(struct kiocb *iocb, long ret); void *private; int ki_flags; u16 ki_ioprio; /* See linux/ioprio.h */ union { /* * Only used for async buffered reads, where it denotes the * page waitqueue associated with completing the read. Valid * IFF IOCB_WAITQ is set. */ struct wait_page_queue *ki_waitq; /* * Can be used for O_DIRECT IO, where the completion handling * is punted back to the issuer of the IO. May only be set * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer * must then check for presence of this handler when ki_complete * is invoked. The data passed in to this handler must be * assigned to ->private when dio_complete is assigned. */ ssize_t (*dio_complete)(void *data); }; }; static inline bool is_sync_kiocb(struct kiocb *kiocb) { return kiocb->ki_complete == NULL; } struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*read_folio)(struct file *, struct folio *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Mark a folio dirty. Return true if this dirtied it */ bool (*dirty_folio)(struct address_space *, struct folio *); void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct folio *folio, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidate_folio) (struct folio *, size_t offset, size_t len); bool (*release_folio)(struct folio *, gfp_t); void (*free_folio)(struct folio *folio); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); /* * migrate the contents of a folio to the specified target. If * migrate_mode is MIGRATE_ASYNC, it must not block. */ int (*migrate_folio)(struct address_space *, struct folio *dst, struct folio *src, enum migrate_mode); int (*launder_folio)(struct folio *); bool (*is_partially_uptodate) (struct folio *, size_t from, size_t count); void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); int (*error_remove_folio)(struct address_space *, struct folio *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); }; extern const struct address_space_operations empty_aops; /** * struct address_space - Contents of a cacheable, mappable object. * @host: Owner, either the inode or the block_device. * @i_pages: Cached pages. * @invalidate_lock: Guards coherency between page cache contents and * file offset->disk block mappings in the filesystem during invalidates. * It is also used to block modification of page cache contents through * memory mappings. * @gfp_mask: Memory allocation flags to use for allocating pages. * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. * @nr_thps: Number of THPs in the pagecache (non-shmem only). * @i_mmap: Tree of private and shared mappings. * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. * @nrpages: Number of page entries, protected by the i_pages lock. * @writeback_index: Writeback starts here. * @a_ops: Methods. * @flags: Error bits and flags (AS_*). * @wb_err: The most recent error which has occurred. * @i_private_lock: For use by the owner of the address_space. * @i_private_list: For use by the owner of the address_space. * @i_private_data: For use by the owner of the address_space. */ struct address_space { struct inode *host; struct xarray i_pages; struct rw_semaphore invalidate_lock; gfp_t gfp_mask; atomic_t i_mmap_writable; #ifdef CONFIG_READ_ONLY_THP_FOR_FS /* number of thp, only for non-shmem files */ atomic_t nr_thps; #endif struct rb_root_cached i_mmap; unsigned long nrpages; pgoff_t writeback_index; const struct address_space_operations *a_ops; unsigned long flags; errseq_t wb_err; spinlock_t i_private_lock; struct list_head i_private_list; struct rw_semaphore i_mmap_rwsem; void * i_private_data; } __attribute__((aligned(sizeof(long)))) __randomize_layout; /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ #define PAGECACHE_TAG_DIRTY XA_MARK_0 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 /* * Returns true if any of the pages in the mapping are marked with the tag. */ static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) { return xa_marked(&mapping->i_pages, tag); } static inline void i_mmap_lock_write(struct address_space *mapping) { down_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_write(struct address_space *mapping) { return down_write_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_write(struct address_space *mapping) { up_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_read(struct address_space *mapping) { return down_read_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_lock_read(struct address_space *mapping) { down_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_read(struct address_space *mapping) { up_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_locked(struct address_space *mapping) { lockdep_assert_held(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_write_locked(struct address_space *mapping) { lockdep_assert_held_write(&mapping->i_mmap_rwsem); } /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) /* * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to * cache the ACL. This also means that ->get_inode_acl() can be called in RCU * mode with the LOOKUP_RCU flag. */ #define ACL_DONT_CACHE ((void *)(-3)) static inline struct posix_acl * uncached_acl_sentinel(struct task_struct *task) { return (void *)task + 1; } static inline bool is_uncached_acl(struct posix_acl *acl) { return (long)acl & 1; } #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 #define IOP_XATTR 0x0008 #define IOP_DEFAULT_READLINK 0x0010 #define IOP_MGTIME 0x0020 #define IOP_CACHED_LINK 0x0040 /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; time64_t i_atime_sec; time64_t i_mtime_sec; time64_t i_ctime_sec; u32 i_atime_nsec; u32 i_mtime_nsec; u32 i_ctime_nsec; u32 i_generation; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; u8 i_blkbits; enum rw_hint i_write_hint; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ u32 i_state; /* 32-bit hole */ struct rw_semaphore i_rwsem; unsigned long dirtied_when; /* jiffies of first dirtying */ unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; /* backing dev IO list */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *i_wb; /* the associated cgroup wb */ /* foreign inode detection, see wbc_detach_inode() */ int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; #endif struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; struct list_head i_wb_list; /* backing dev writeback list */ union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; atomic64_t i_version; atomic64_t i_sequence; /* see futex */ atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) atomic_t i_readcount; /* struct files open RO */ #endif union { const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ void (*free_inode)(struct inode *); }; struct file_lock_context *i_flctx; struct address_space i_data; union { struct list_head i_devices; int i_linklen; }; union { struct pipe_inode_info *i_pipe; struct cdev *i_cdev; char *i_link; unsigned i_dir_seq; }; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ /* 32-bit hole reserved for expanding i_fsnotify_mask */ struct fsnotify_mark_connector __rcu *i_fsnotify_marks; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_inode_info *i_crypt_info; #endif #ifdef CONFIG_FS_VERITY struct fsverity_info *i_verity_info; #endif void *i_private; /* fs or device private pointer */ } __randomize_layout; static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) { inode->i_link = link; inode->i_linklen = linklen; inode->i_opflags |= IOP_CACHED_LINK; } /* * Get bit address from inode->i_state to use with wait_var_event() * infrastructre. */ #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, struct inode *inode, u32 bit); static inline void inode_wake_up_bit(struct inode *inode, u32 bit) { /* Caller is responsible for correct memory barriers. */ wake_up_var(inode_state_wait_address(inode, bit)); } struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); static inline unsigned int i_blocksize(const struct inode *node) { return (1 << node->i_blkbits); } static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * __mark_inode_dirty expects inodes to be hashed. Since we don't * want special inodes in the fileset inode space, we make them * appear hashed, but do not put on any lists. hlist_del() * will work fine and require no locking. */ static inline void inode_fake_hash(struct inode *inode) { hlist_add_fake(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { down_write(&inode->i_rwsem); } static inline void inode_unlock(struct inode *inode) { up_write(&inode->i_rwsem); } static inline void inode_lock_shared(struct inode *inode) { down_read(&inode->i_rwsem); } static inline void inode_unlock_shared(struct inode *inode) { up_read(&inode->i_rwsem); } static inline int inode_trylock(struct inode *inode) { return down_write_trylock(&inode->i_rwsem); } static inline int inode_trylock_shared(struct inode *inode) { return down_read_trylock(&inode->i_rwsem); } static inline int inode_is_locked(struct inode *inode) { return rwsem_is_locked(&inode->i_rwsem); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { down_write_nested(&inode->i_rwsem, subclass); } static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) { down_read_nested(&inode->i_rwsem, subclass); } static inline void filemap_invalidate_lock(struct address_space *mapping) { down_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock(struct address_space *mapping) { up_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_lock_shared(struct address_space *mapping) { down_read(&mapping->invalidate_lock); } static inline int filemap_invalidate_trylock_shared( struct address_space *mapping) { return down_read_trylock(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock_shared( struct address_space *mapping) { up_read(&mapping->invalidate_lock); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); void filemap_invalidate_lock_two(struct address_space *mapping1, struct address_space *mapping2); void filemap_invalidate_unlock_two(struct address_space *mapping1, struct address_space *mapping2); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else /* Pairs with smp_store_release() in i_size_write() */ return smp_load_acquire(&inode->i_size); #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else /* * Pairs with smp_load_acquire() in i_size_read() to ensure * changes related to inode size (such as page contents) are * visible before we see the changed inode size. */ smp_store_release(&inode->i_size, i_size); #endif } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } struct fown_struct { struct file *file; /* backpointer for security modules */ rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /** * struct file_ra_state - Track a file's readahead state. * @start: Where the most recent readahead started. * @size: Number of pages read in the most recent readahead. * @async_size: Numer of pages that were/are not needed immediately * and so were/are genuinely "ahead". Start next readahead when * the first of these pages is accessed. * @ra_pages: Maximum size of a readahead request, copied from the bdi. * @mmap_miss: How many mmap accesses missed in the page cache. * @prev_pos: The last byte in the most recent read request. * * When this structure is passed to ->readahead(), the "most recent" * readahead means the current readahead. */ struct file_ra_state { pgoff_t start; unsigned int size; unsigned int async_size; unsigned int ra_pages; unsigned int mmap_miss; loff_t prev_pos; }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } /** * struct file - Represents a file * @f_ref: reference count * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. * @f_mode: FMODE_* flags often used in hotpaths * @f_op: file operations * @f_mapping: Contents of a cacheable, mappable object. * @private_data: filesystem or driver specific data * @f_inode: cached inode * @f_flags: file flags * @f_iocb_flags: iocb flags * @f_cred: stashed credentials of creator/opener * @f_path: path of the file * @f_pos_lock: lock protecting file position * @f_pipe: specific to pipes * @f_pos: file position * @f_security: LSM security context of this file * @f_owner: file owner * @f_wb_err: writeback error * @f_sb_err: per sb writeback errors * @f_ep: link of all epoll hooks for this file * @f_task_work: task work entry point * @f_llist: work queue entrypoint * @f_ra: file's readahead state * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) */ struct file { file_ref_t f_ref; spinlock_t f_lock; fmode_t f_mode; const struct file_operations *f_op; struct address_space *f_mapping; void *private_data; struct inode *f_inode; unsigned int f_flags; unsigned int f_iocb_flags; const struct cred *f_cred; /* --- cacheline 1 boundary (64 bytes) --- */ struct path f_path; union { /* regular files (with FMODE_ATOMIC_POS) and directories */ struct mutex f_pos_lock; /* pipes */ u64 f_pipe; }; loff_t f_pos; #ifdef CONFIG_SECURITY void *f_security; #endif /* --- cacheline 2 boundary (128 bytes) --- */ struct fown_struct *f_owner; errseq_t f_wb_err; errseq_t f_sb_err; #ifdef CONFIG_EPOLL struct hlist_head *f_ep; #endif union { struct callback_head f_task_work; struct llist_node f_llist; struct file_ra_state f_ra; freeptr_t f_freeptr; }; /* --- cacheline 3 boundary (192 bytes) --- */ } __randomize_layout __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[] __counted_by(handle_bytes); }; static inline struct file *get_file(struct file *f) { file_ref_inc(&f->f_ref); return f; } struct file *get_file_rcu(struct file __rcu **f); struct file *get_file_active(struct file **f); #define file_count(f) file_ref_read(&(f)->f_ref) #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) #endif /* legacy typedef, should eventually be removed */ typedef void *fl_owner_t; struct file_lock; struct file_lease; /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define OFFSET_MAX type_max(loff_t) #define OFFT_OFFSET_MAX type_max(off_t) #endif int file_f_owner_allocate(struct file *file); static inline struct fown_struct *file_f_owner(const struct file *file) { return READ_ONCE(file->f_owner); } extern void send_sigio(struct fown_struct *fown, int fd, int band); static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } /* * file_dentry() is a relic from the days that overlayfs was using files with a * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. * In those days, file_dentry() was needed to get the underlying fs dentry that * matches f_inode. * Files with "fake" path should not exist nowadays, so use an assertion to make * sure that file_dentry() was not papering over filesystem bugs. */ static inline struct dentry *file_dentry(const struct file *file) { struct dentry *dentry = file->f_path.dentry; WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); return dentry; } struct fasync_struct { rwlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, int who, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct file *file); /* * sb->s_flags. Note that these mirror the equivalent MS_* flags where * represented in both. */ #define SB_RDONLY BIT(0) /* Mount read-only */ #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ #define SB_NODEV BIT(2) /* Disallow access to device special files */ #define SB_NOEXEC BIT(3) /* Disallow program execution */ #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ #define SB_NOATIME BIT(10) /* Do not update access times. */ #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ #define SB_SILENT BIT(15) #define SB_POSIXACL BIT(16) /* Supports POSIX ACLs */ #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ #define SB_I_VERSION BIT(23) /* Update inode I_version field */ #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ /* These sb flags are internal to the kernel */ #define SB_DEAD BIT(21) #define SB_DYING BIT(24) #define SB_SUBMOUNT BIT(26) #define SB_FORCE BIT(27) #define SB_NOSEC BIT(28) #define SB_BORN BIT(29) #define SB_ACTIVE BIT(30) #define SB_NOUSER BIT(31) /* These flags relate to encoding and casefolding */ #define SB_ENC_STRICT_MODE_FL (1 << 0) #define sb_has_strict_encoding(sb) \ (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ /* sb->s_iflags */ #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 #define SB_I_EVM_HMAC_UNSUPPORTED 0x00000080 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ #define SB_I_NOUMASK 0x00001000 /* VFS does not apply umask */ #define SB_I_NOIDMAP 0x00002000 /* No idmapped mounts on this superblock */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { unsigned short frozen; /* Is sb frozen? */ int freeze_kcount; /* How many kernel freeze requests? */ int freeze_ucount; /* How many userspace freeze requests? */ struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; /* internal SB_I_* flags */ unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler * const *s_xattr; #ifdef CONFIG_FS_ENCRYPTION const struct fscrypt_operations *s_cop; struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ #endif #ifdef CONFIG_FS_VERITY const struct fsverity_operations *s_vop; #endif #if IS_ENABLED(CONFIG_UNICODE) struct unicode_map *s_encoding; __u16 s_encoding_flags; #endif struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; /* can go away once we use an accessor for @s_bdev_file */ struct file *s_bdev_file; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; /* Bitmask of supported quota types */ struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; /* * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and * s_fsnotify_info together for cache efficiency. They are frequently * accessed and rarely modified. */ void *s_fs_info; /* Filesystem private info */ /* Granularity of c/m/atime in ns (cannot be worse than a second) */ u32 s_time_gran; /* Time limits for c/m/atime in seconds */ time64_t s_time_min; time64_t s_time_max; #ifdef CONFIG_FSNOTIFY u32 s_fsnotify_mask; struct fsnotify_sb_info *s_fsnotify_info; #endif /* * q: why are s_id and s_sysfs_name not the same? both are human * readable strings that identify the filesystem * a: s_id is allowed to change at runtime; it's used in log messages, * and we want to when a device starts out as single device (s_id is dev * name) but then a device is hot added and we have to switch to * identifying it by UUID * but s_sysfs_name is a handle for programmatic access, and can't * change at runtime */ char s_id[32]; /* Informational name */ uuid_t s_uuid; /* UUID */ u8 s_uuid_len; /* Default 16, possibly smaller for weird filesystems */ /* if set, fs shows up under sysfs at /sys/fs/$FSTYP/s_sysfs_name */ char s_sysfs_name[UUID_STRING_LEN + 1]; unsigned int s_max_links; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ const char *s_subtype; const struct dentry_operations *s_d_op; /* default d_op for dentries */ struct shrinker *s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* Read-only state of the superblock is being changed */ int s_readonly_remount; /* per-sb errseq_t for reporting writeback errors via syncfs */ errseq_t s_wb_err; /* AIO completions deferred from interrupt context */ struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; /* * Owning user namespace and default context in which to * interpret filesystem uids, gids, quotas, device nodes, * xattrs and security labels. */ struct user_namespace *s_user_ns; /* * The list_lru structure is essentially just a pointer to a table * of per-node lru lists, each of which has its own spinlock. * There is no need to put them into separate cachelines. */ struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct rcu_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; /* sync serialisation lock */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* s_inode_list_lock protects s_inodes */ spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; struct list_head s_inodes; /* all inodes */ spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; /* writeback inodes */ } __randomize_layout; static inline struct user_namespace *i_user_ns(const struct inode *inode) { return inode->i_sb->s_user_ns; } /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(i_user_ns(inode), inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(i_user_ns(inode), inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(i_user_ns(inode), uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(i_user_ns(inode), gid); } /** * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping * @idmap: idmap of the mount the inode was found from * @inode: inode to map * * Return: whe inode's i_uid mapped down according to @idmap. * If the inode's i_uid has no mapping INVALID_VFSUID is returned. */ static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, const struct inode *inode) { return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); } /** * i_uid_needs_update - check whether inode's i_uid needs to be updated * @idmap: idmap of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_uid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_uid field needs to be updated, false if not. */ static inline bool i_uid_needs_update(struct mnt_idmap *idmap, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_UID) && !vfsuid_eq(attr->ia_vfsuid, i_uid_into_vfsuid(idmap, inode))); } /** * i_uid_update - update @inode's i_uid field * @idmap: idmap of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_uid field translating the vfsuid of any idmapped * mount into the filesystem kuid. */ static inline void i_uid_update(struct mnt_idmap *idmap, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_UID) inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), attr->ia_vfsuid); } /** * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping * @idmap: idmap of the mount the inode was found from * @inode: inode to map * * Return: the inode's i_gid mapped down according to @idmap. * If the inode's i_gid has no mapping INVALID_VFSGID is returned. */ static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, const struct inode *inode) { return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); } /** * i_gid_needs_update - check whether inode's i_gid needs to be updated * @idmap: idmap of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_gid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_gid field needs to be updated, false if not. */ static inline bool i_gid_needs_update(struct mnt_idmap *idmap, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_GID) && !vfsgid_eq(attr->ia_vfsgid, i_gid_into_vfsgid(idmap, inode))); } /** * i_gid_update - update @inode's i_gid field * @idmap: idmap of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_gid field translating the vfsgid of any idmapped * mount into the filesystem kgid. */ static inline void i_gid_update(struct mnt_idmap *idmap, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_GID) inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), attr->ia_vfsgid); } /** * inode_fsuid_set - initialize inode's i_uid field with callers fsuid * @inode: inode to initialize * @idmap: idmap of the mount the inode was found from * * Initialize the i_uid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsuid according to @idmap. */ static inline void inode_fsuid_set(struct inode *inode, struct mnt_idmap *idmap) { inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); } /** * inode_fsgid_set - initialize inode's i_gid field with callers fsgid * @inode: inode to initialize * @idmap: idmap of the mount the inode was found from * * Initialize the i_gid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsgid according to @idmap. */ static inline void inode_fsgid_set(struct inode *inode, struct mnt_idmap *idmap) { inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); } /** * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped * @sb: the superblock we want a mapping in * @idmap: idmap of the relevant mount * * Check whether the caller's fsuid and fsgid have a valid mapping in the * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map * the caller's fsuid and fsgid according to the @idmap first. * * Return: true if fsuid and fsgid is mapped, false if not. */ static inline bool fsuidgid_has_mapping(struct super_block *sb, struct mnt_idmap *idmap) { struct user_namespace *fs_userns = sb->s_user_ns; kuid_t kuid; kgid_t kgid; kuid = mapped_fsuid(idmap, fs_userns); if (!uid_valid(kuid)) return false; kgid = mapped_fsgid(idmap, fs_userns); if (!gid_valid(kgid)) return false; return kuid_has_mapping(fs_userns, kuid) && kgid_has_mapping(fs_userns, kgid); } struct timespec64 current_time(struct inode *inode); struct timespec64 inode_set_ctime_current(struct inode *inode); struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update); static inline time64_t inode_get_atime_sec(const struct inode *inode) { return inode->i_atime_sec; } static inline long inode_get_atime_nsec(const struct inode *inode) { return inode->i_atime_nsec; } static inline struct timespec64 inode_get_atime(const struct inode *inode) { struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), .tv_nsec = inode_get_atime_nsec(inode) }; return ts; } static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, struct timespec64 ts) { inode->i_atime_sec = ts.tv_sec; inode->i_atime_nsec = ts.tv_nsec; return ts; } static inline struct timespec64 inode_set_atime(struct inode *inode, time64_t sec, long nsec) { struct timespec64 ts = { .tv_sec = sec, .tv_nsec = nsec }; return inode_set_atime_to_ts(inode, ts); } static inline time64_t inode_get_mtime_sec(const struct inode *inode) { return inode->i_mtime_sec; } static inline long inode_get_mtime_nsec(const struct inode *inode) { return inode->i_mtime_nsec; } static inline struct timespec64 inode_get_mtime(const struct inode *inode) { struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), .tv_nsec = inode_get_mtime_nsec(inode) }; return ts; } static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, struct timespec64 ts) { inode->i_mtime_sec = ts.tv_sec; inode->i_mtime_nsec = ts.tv_nsec; return ts; } static inline struct timespec64 inode_set_mtime(struct inode *inode, time64_t sec, long nsec) { struct timespec64 ts = { .tv_sec = sec, .tv_nsec = nsec }; return inode_set_mtime_to_ts(inode, ts); } /* * Multigrain timestamps * * Conditionally use fine-grained ctime and mtime timestamps when there * are users actively observing them via getattr. The primary use-case * for this is NFS clients that use the ctime to distinguish between * different states of the file, and that are often fooled by multiple * operations that occur in the same coarse-grained timer tick. */ #define I_CTIME_QUERIED ((u32)BIT(31)) static inline time64_t inode_get_ctime_sec(const struct inode *inode) { return inode->i_ctime_sec; } static inline long inode_get_ctime_nsec(const struct inode *inode) { return inode->i_ctime_nsec & ~I_CTIME_QUERIED; } static inline struct timespec64 inode_get_ctime(const struct inode *inode) { struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), .tv_nsec = inode_get_ctime_nsec(inode) }; return ts; } struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); /** * inode_set_ctime - set the ctime in the inode * @inode: inode in which to set the ctime * @sec: tv_sec value to set * @nsec: tv_nsec value to set * * Set the ctime in @inode to { @sec, @nsec } */ static inline struct timespec64 inode_set_ctime(struct inode *inode, time64_t sec, long nsec) { struct timespec64 ts = { .tv_sec = sec, .tv_nsec = nsec }; return inode_set_ctime_to_ts(inode, ts); } struct timespec64 simple_inode_init_ts(struct inode *inode); /* * Snapshotting support. */ /* * These are internal functions, please use sb_start_{write,pagefault,intwrite} * instead. */ static inline void __sb_end_write(struct super_block *sb, int level) { percpu_up_read(sb->s_writers.rw_sem + level-1); } static inline void __sb_start_write(struct super_block *sb, int level) { percpu_down_read(sb->s_writers.rw_sem + level - 1); } static inline bool __sb_start_write_trylock(struct super_block *sb, int level) { return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); } #define __sb_writers_acquired(sb, lev) \ percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) #define __sb_writers_release(sb, lev) \ percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], _THIS_IP_) /** * __sb_write_started - check if sb freeze level is held * @sb: the super we write to * @level: the freeze level * * * > 0 - sb freeze level is held * * 0 - sb freeze level is not held * * < 0 - !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN */ static inline int __sb_write_started(const struct super_block *sb, int level) { return lockdep_is_held_type(sb->s_writers.rw_sem + level - 1, 1); } /** * sb_write_started - check if SB_FREEZE_WRITE is held * @sb: the super we write to * * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. */ static inline bool sb_write_started(const struct super_block *sb) { return __sb_write_started(sb, SB_FREEZE_WRITE); } /** * sb_write_not_started - check if SB_FREEZE_WRITE is not held * @sb: the super we write to * * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. */ static inline bool sb_write_not_started(const struct super_block *sb) { return __sb_write_started(sb, SB_FREEZE_WRITE) <= 0; } /** * file_write_started - check if SB_FREEZE_WRITE is held * @file: the file we write to * * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. * May be false positive with !S_ISREG, because file_start_write() has * no effect on !S_ISREG. */ static inline bool file_write_started(const struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_write_started(file_inode(file)->i_sb); } /** * file_write_not_started - check if SB_FREEZE_WRITE is not held * @file: the file we write to * * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. * May be false positive with !S_ISREG, because file_start_write() has * no effect on !S_ISREG. */ static inline bool file_write_not_started(const struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_write_not_started(file_inode(file)->i_sb); } /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE); } static inline bool sb_start_write_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault * handling code implies lock dependency: * * mmap_lock * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS); } static inline bool sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_FS); } bool inode_owner_or_capable(struct mnt_idmap *idmap, const struct inode *inode); /* * VFS helper functions.. */ int vfs_create(struct mnt_idmap *, struct inode *, struct dentry *, umode_t, bool); int vfs_mkdir(struct mnt_idmap *, struct inode *, struct dentry *, umode_t); int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, umode_t, dev_t); int vfs_symlink(struct mnt_idmap *, struct inode *, struct dentry *, const char *); int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, struct dentry *, struct inode **); int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, struct inode **); /** * struct renamedata - contains all information required for renaming * @old_mnt_idmap: idmap of the old mount the inode was found from * @old_dir: parent of source * @old_dentry: source * @new_mnt_idmap: idmap of the new mount the inode was found from * @new_dir: parent of destination * @new_dentry: destination * @delegated_inode: returns an inode needing a delegation break * @flags: rename flags */ struct renamedata { struct mnt_idmap *old_mnt_idmap; struct inode *old_dir; struct dentry *old_dentry; struct mnt_idmap *new_mnt_idmap; struct inode *new_dir; struct dentry *new_dentry; struct inode **delegated_inode; unsigned int flags; } __randomize_layout; int vfs_rename(struct renamedata *); static inline int vfs_whiteout(struct mnt_idmap *idmap, struct inode *dir, struct dentry *dentry) { return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); } struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, const struct path *parentpath, umode_t mode, int open_flag, const struct cred *cred); struct file *kernel_file_open(const struct path *path, int flags, const struct cred *cred); int vfs_mkobj(struct dentry *, umode_t, int (*f)(struct dentry *, umode_t, void *), void *); int vfs_fchown(struct file *file, uid_t user, gid_t group); int vfs_fchmod(struct file *file, umode_t mode); int vfs_utimes(const struct path *path, struct timespec64 *times); extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #else #define compat_ptr_ioctl NULL #endif /* * VFS file helper functions. */ void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); umode_t mode_strip_sgid(struct mnt_idmap *idmap, const struct inode *dir, umode_t mode); bool in_group_or_capable(struct mnt_idmap *idmap, const struct inode *inode, vfsgid_t vfsgid); /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. * Return 'true' to keep going and 'false' if there are no more entries. */ struct dir_context; typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; /* * These flags let !MMU mmap() govern direct device mapping vs immediate * copying more easily for MAP_PRIVATE, especially for ROM filesystems. * * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) * NOMMU_MAP_READ: Can be mapped for reading * NOMMU_MAP_WRITE: Can be mapped for writing * NOMMU_MAP_EXEC: Can be mapped for execution */ #define NOMMU_MAP_COPY 0x00000001 #define NOMMU_MAP_DIRECT 0x00000008 #define NOMMU_MAP_READ VM_MAYREAD #define NOMMU_MAP_WRITE VM_MAYWRITE #define NOMMU_MAP_EXEC VM_MAYEXEC #define NOMMU_VMFLAGS \ (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) /* * These flags control the behavior of the remap_file_range function pointer. * If it is called with len == 0 that means "remap to end of source file". * See Documentation/filesystems/vfs.rst for more details about this call. * * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request */ #define REMAP_FILE_DEDUP (1 << 0) #define REMAP_FILE_CAN_SHORTEN (1 << 1) /* * These flags signal that the caller is ok with altering various aspects of * the behavior of the remap operation. The changes must be made by the * implementation; the vfs remap helper functions can take advantage of them. * Flags in this category exist to preserve the quirky behavior of the hoisted * btrfs clone/dedupe ioctls. */ #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) /* * These flags control the behavior of vfs_copy_file_range(). * They are not available to the user via syscall. * * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops */ #define COPY_FILE_SPLICE (1 << 0) struct iov_iter; struct io_uring_cmd; struct offset_ctx; typedef unsigned int __bitwise fop_flags_t; struct file_operations { struct module *owner; fop_flags_t fop_flags; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, unsigned int flags); int (*iterate_shared) (struct file *, struct dir_context *); __poll_t (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); void (*splice_eof)(struct file *file); int (*setlease)(struct file *, int, struct file_lease **, void **); long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); void (*show_fdinfo)(struct seq_file *m, struct file *f); #ifndef CONFIG_MMU unsigned (*mmap_capabilities)(struct file *); #endif ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); int (*fadvise)(struct file *, loff_t, loff_t, int); int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, unsigned int poll_flags); } __randomize_layout; /* Supports async buffered reads */ #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) /* Supports async buffered writes */ #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) /* Supports synchronous page faults for mappings */ #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) /* Supports non-exclusive O_DIRECT writes from multiple threads */ #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) /* Contains huge pages */ #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) /* Treat loff_t as unsigned (e.g., /dev/mem) */ #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) /* Supports asynchronous lock callbacks */ #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) /* File system supports uncached read/write buffered IO */ #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) /* Wrap a directory iterator that needs exclusive inode access */ int wrap_directory_iterator(struct file *, struct dir_context *, int (*) (struct file *, struct dir_context *)); #define WRAP_DIR_ITER(x) \ static int shared_##x(struct file *file , struct dir_context *ctx) \ { return wrap_directory_iterator(file, ctx, x); } struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); int (*permission) (struct mnt_idmap *, struct inode *, int); struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); int (*readlink) (struct dentry *, char __user *,int); int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, const char *); int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, umode_t,dev_t); int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); int (*getattr) (struct mnt_idmap *, const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode); int (*tmpfile) (struct mnt_idmap *, struct inode *, struct file *, umode_t); struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, int); int (*set_acl)(struct mnt_idmap *, struct dentry *, struct posix_acl *, int); int (*fileattr_set)(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa); int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); struct offset_ctx *(*get_offset_ctx)(struct inode *inode); } ____cacheline_aligned; static inline int call_mmap(struct file *file, struct vm_area_struct *vma) { return file->f_op->mmap(file, vma); } extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *len, unsigned int remap_flags, const struct iomap_ops *dax_read_ops); int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *count, unsigned int remap_flags); extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same); extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags); /** * enum freeze_holder - holder of the freeze * @FREEZE_HOLDER_KERNEL: kernel wants to freeze or thaw filesystem * @FREEZE_HOLDER_USERSPACE: userspace wants to freeze or thaw filesystem * @FREEZE_MAY_NEST: whether nesting freeze and thaw requests is allowed * * Indicate who the owner of the freeze or thaw request is and whether * the freeze needs to be exclusive or can nest. * Without @FREEZE_MAY_NEST, multiple freeze and thaw requests from the * same holder aren't allowed. It is however allowed to hold a single * @FREEZE_HOLDER_USERSPACE and a single @FREEZE_HOLDER_KERNEL freeze at * the same time. This is relied upon by some filesystems during online * repair or similar. */ enum freeze_holder { FREEZE_HOLDER_KERNEL = (1U << 0), FREEZE_HOLDER_USERSPACE = (1U << 1), FREEZE_MAY_NEST = (1U << 2), }; struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*free_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_super) (struct super_block *, enum freeze_holder who); int (*freeze_fs) (struct super_block *); int (*thaw_super) (struct super_block *, enum freeze_holder who); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); struct dquot __rcu **(*get_dquots)(struct inode *); #endif long (*nr_cached_objects)(struct super_block *, struct shrink_control *); long (*free_cached_objects)(struct super_block *, struct shrink_control *); void (*shutdown)(struct super_block *sb); }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC (1 << 0) /* Writes are synced at once */ #define S_NOATIME (1 << 1) /* Do not update access times */ #define S_APPEND (1 << 2) /* Append-only file */ #define S_IMMUTABLE (1 << 3) /* Immutable file */ #define S_DEAD (1 << 4) /* removed, but still open directory */ #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ #ifdef CONFIG_FS_DAX #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ #define S_CASEFOLD (1 << 15) /* Casefolded file */ #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: SB_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #ifdef CONFIG_FS_POSIX_ACL #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) #else #define IS_POSIXACL(inode) 0 #endif #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #ifdef CONFIG_SWAP #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #else #define IS_SWAPFILE(inode) ((void)(inode), 0U) #endif #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, struct inode *inode) { return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); } static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = filp->f_iocb_flags, .ki_ioprio = get_current_ioprio(), }; } static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = kiocb_src->ki_flags, .ki_ioprio = kiocb_src->ki_ioprio, .ki_pos = kiocb_src->ki_pos, }; } /* * Inode state bits. Protected by inode->i_lock * * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync() (unless I_DIRTY_DATASYNC is also set). * Timestamp updates are the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * e.g. the timestamps have changed. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_DIRTY_TIME The inode itself has dirty timestamps, and the * lazytime mount option is enabled. We keep track of this * separately from I_DIRTY_SYNC in order to implement * lazytime. This gets cleared if I_DIRTY_INODE * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already * in place because writeback might already be in progress * and we don't want to lose the time update * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to * synchronize competing switching instances and to tell * wb stat updates to grab the i_pages lock. See * inode_switch_wbs_work_fn() for details. * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * I_CREATING New object's inode in the middle of setting up. * * I_DONTCACHE Evict inode as soon as it is not used anymore. * * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. * Used to detect that mark_inode_dirty() should not move * inode between dirty lists. * * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. * * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding * i_count. * * Q: What is the difference between I_WILL_FREE and I_FREEING? * * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait * upon. There's one free address left. */ #define __I_NEW 0 #define I_NEW (1 << __I_NEW) #define __I_SYNC 1 #define I_SYNC (1 << __I_SYNC) #define __I_LRU_ISOLATING 2 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) #define I_DIRTY_SYNC (1 << 3) #define I_DIRTY_DATASYNC (1 << 4) #define I_DIRTY_PAGES (1 << 5) #define I_WILL_FREE (1 << 6) #define I_FREEING (1 << 7) #define I_CLEAR (1 << 8) #define I_REFERENCED (1 << 9) #define I_LINKABLE (1 << 10) #define I_DIRTY_TIME (1 << 11) #define I_WB_SWITCH (1 << 12) #define I_OVL_INUSE (1 << 13) #define I_CREATING (1 << 14) #define I_DONTCACHE (1 << 15) #define I_SYNC_QUEUED (1 << 16) #define I_PINNING_NETFS_WB (1 << 17) #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } /* * Returns true if the given inode itself only has dirty timestamps (its pages * may still be dirty) and isn't currently being allocated or freed. * Filesystems should call this if when writing an inode when lazytime is * enabled, they want to opportunistically write the timestamps of other inodes * located very nearby on-disk, e.g. in the same inode block. This returns true * if the given inode is in need of such an opportunistic update. Requires * i_lock, or at least later re-checking under i_lock. */ static inline bool inode_is_dirtytime_only(struct inode *inode) { return (inode->i_state & (I_DIRTY_TIME | I_NEW | I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern bool atime_needs_update(const struct path *, struct inode *); extern void touch_atime(const struct path *); int inode_update_time(struct inode *inode, int flags); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } extern int file_modified(struct file *file); int kiocb_modified(struct kiocb *iocb); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ #define FS_MGTIME 64 /* FS uses multigrain timestamps */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ int (*init_fs_context)(struct fs_context *); const struct fs_parameter_spec *parameters; struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key invalidate_lock_key; struct lock_class_key i_mutex_dir_key; }; #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) /** * is_mgtime: is this inode using multigrain timestamps * @inode: inode to test for multigrain timestamps * * Return true if the inode uses multigrain timestamps, false otherwise. */ static inline bool is_mgtime(const struct inode *inode) { return inode->i_opflags & IOP_MGTIME; } extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void retire_super(struct super_block *sb); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int set_anon_super_fc(struct super_block *s, struct fs_context *fc); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_fc(struct fs_context *fc, int (*test)(struct super_block *, struct fs_context *), int (*set)(struct super_block *, struct fs_context *)); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); struct super_block *sget_dev(struct fs_context *fc, dev_t dev); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) ({ \ const struct file_operations *_fops = (fops); \ (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ }) #define fops_put(fops) ({ \ const struct file_operations *_fops = (fops); \ if (_fops) \ module_put((_fops)->owner); \ }) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); extern int vfs_statfs(const struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); int freeze_super(struct super_block *super, enum freeze_holder who); int thaw_super(struct super_block *super, enum freeze_holder who); extern __printf(2, 3) int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); extern int super_setup_bdi(struct super_block *sb); static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) { if (WARN_ON(len > sizeof(sb->s_uuid))) len = sizeof(sb->s_uuid); sb->s_uuid_len = len; memcpy(&sb->s_uuid, uuid, len); } /* set sb sysfs name based on sb->s_bdev */ static inline void super_set_sysfs_name_bdev(struct super_block *sb) { snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); } /* set sb sysfs name based on sb->s_uuid */ static inline void super_set_sysfs_name_uuid(struct super_block *sb) { WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); } /* set sb sysfs name based on sb->s_id */ static inline void super_set_sysfs_name_id(struct super_block *sb) { strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); } /* try to use something standard before you use this */ __printf(2, 3) static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); va_end(args); } extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); int inode_update_timestamps(struct inode *inode, int flags); int generic_update_time(struct inode *, int); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ atomic_t refcnt; struct audit_names *aname; const char iname[]; }; static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) { return mnt_idmap(file->f_path.mnt); } /** * is_idmapped_mnt - check whether a mount is mapped * @mnt: the mount to check * * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. * * Return: true if mount is mapped, false if not. */ static inline bool is_idmapped_mnt(const struct vfsmount *mnt) { return mnt_idmap(mnt) != &nop_mnt_idmap; } extern long vfs_truncate(const struct path *, loff_t); int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(const struct path *, const char *, int, umode_t); static inline struct file *file_open_root_mnt(struct vfsmount *mnt, const char *name, int flags, umode_t mode) { return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, name, flags, mode); } struct file *dentry_open(const struct path *path, int flags, const struct cred *creds); struct file *dentry_create(const struct path *path, int flags, umode_t mode, const struct cred *cred); struct path *backing_file_user_path(struct file *f); /* * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file * stored in ->vm_file is a backing file whose f_inode is on the underlying * filesystem. When the mapped file path and inode number are displayed to * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the * path and inode number to display to the user, which is the path of the fd * that user has requested to map and the inode number that would be returned * by fstat() on that same fd. */ /* Get the path to display in /proc/<pid>/maps */ static inline const struct path *file_user_path(struct file *f) { if (unlikely(f->f_mode & FMODE_BACKING)) return backing_file_user_path(f); return &f->f_path; } /* Get the inode whose inode number to display in /proc/<pid>/maps */ static inline const struct inode *file_user_inode(struct file *f) { if (unlikely(f->f_mode & FMODE_BACKING)) return d_inode(backing_file_user_path(f)->dentry); return file_inode(f); } static inline struct file *file_clone_open(struct file *file) { return dentry_open(&file->f_path, file->f_flags, file->f_cred); } extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname_flags(const char __user *, int); extern struct filename *getname_uflags(const char __user *, int); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern struct filename *__getname_maybe_null(const char __user *); static inline struct filename *getname_maybe_null(const char __user *name, int flags) { if (!(flags & AT_EMPTY_PATH)) return getname(name); if (!name) return NULL; return __getname_maybe_null(name); } extern void putname(struct filename *name); extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)); extern int finish_no_open(struct file *file, struct dentry *dentry); /* Helper for the simple case when original dentry is used */ static inline int finish_open_simple(struct file *file, int error) { if (error) return error; return finish_open(file, file->f_path.dentry, NULL); } /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) extern struct super_block *blockdev_superblock; static inline bool sb_is_blkdev_sb(struct super_block *sb) { return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; } void emergency_thaw_all(void); extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; /* fs/char_dev.c */ #define CHRDEV_MAJOR_MAX 512 /* Marks the bottom of the first segment of free char majors */ #define CHRDEV_MAJOR_DYN_END 234 /* Marks the top and bottom of the second segment of free char majors */ #define CHRDEV_MAJOR_DYN_EXT_START 511 #define CHRDEV_MAJOR_DYN_EXT_END 384 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern bool is_bad_inode(struct inode *); extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, loff_t lend); extern int __must_check file_check_and_advance_wb_err(struct file *file); extern int __must_check file_write_and_wait_range(struct file *file, loff_t start, loff_t end); static inline int file_write_and_wait(struct file *file) { return file_write_and_wait_range(file, 0, LLONG_MAX); } extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, unsigned int flags); static inline bool iocb_is_dsync(const struct kiocb *iocb) { return (iocb->ki_flags & IOCB_DSYNC) || IS_SYNC(iocb->ki_filp->f_mapping->host); } /* * Sync the bytes written if this was a synchronous write. Expect ki_pos * to already be updated for the write, and will return either the amount * of bytes passed in, or an error if syncing the file failed. */ static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) { if (iocb_is_dsync(iocb)) { int ret = vfs_fsync_range(iocb->ki_filp, iocb->ki_pos - count, iocb->ki_pos - 1, (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); if (ret) return ret; } return count; } extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern int bmap(struct inode *inode, sector_t *block); #else static inline int bmap(struct inode *inode, sector_t *block) { return -EINVAL; } #endif int notify_change(struct mnt_idmap *, struct dentry *, struct iattr *, struct inode **); int inode_permission(struct mnt_idmap *, struct inode *, int); int generic_permission(struct mnt_idmap *, struct inode *, int); static inline int file_permission(struct file *file, int mask) { return inode_permission(file_mnt_idmap(file), file_inode(file), mask); } static inline int path_permission(const struct path *path, int mask) { return inode_permission(mnt_idmap(path->mnt), d_inode(path->dentry), mask); } int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) { return (inode->i_mode ^ mode) & S_IFMT; } /** * file_start_write - get write access to a superblock for regular file io * @file: the file we want to write to * * This is a variant of sb_start_write() which is a noop on non-regualr file. * Should be matched with a call to file_end_write(). */ static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_start_write(file_inode(file)->i_sb); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_start_write_trylock(file_inode(file)->i_sb); } /** * file_end_write - drop write access to a superblock of a regular file * @file: the file we wrote to * * Should be matched with a call to file_start_write(). */ static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_end_write(file_inode(file)->i_sb); } /** * kiocb_start_write - get write access to a superblock for async file io * @iocb: the io context we want to submit the write with * * This is a variant of sb_start_write() for async io submission. * Should be matched with a call to kiocb_end_write(). */ static inline void kiocb_start_write(struct kiocb *iocb) { struct inode *inode = file_inode(iocb->ki_filp); sb_start_write(inode->i_sb); /* * Fool lockdep by telling it the lock got released so that it * doesn't complain about the held lock when we return to userspace. */ __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); } /** * kiocb_end_write - drop write access to a superblock after async file io * @iocb: the io context we sumbitted the write with * * Should be matched with a call to kiocb_start_write(). */ static inline void kiocb_end_write(struct kiocb *iocb) { struct inode *inode = file_inode(iocb->ki_filp); /* * Tell lockdep we inherited freeze protection from submission thread. */ __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); sb_end_write(inode->i_sb); } /* * This is used for regular files where some users -- especially the * currently executed binary in a process, previously handled via * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap * read-write shared) accesses. * * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * deny_write_access() denies write access to a file. * allow_write_access() re-enables write access to a file. * * The i_writecount field of an inode can have the following values: * 0: no write access, no denied write access * < 0: (-i_writecount) users that denied write access to the file. * > 0: (i_writecount) users that have write access to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) static inline void i_readcount_dec(struct inode *inode) { BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern bool is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern char *file_path(struct file *, char *, int); /** * is_dot_dotdot - returns true only if @name is "." or ".." * @name: file name to check * @len: length of file name, in bytes */ static inline bool is_dot_dotdot(const char *name, size_t len) { return len && unlikely(name[0] == '.') && (len == 1 || (len == 2 && name[1] == '.')); } #include <linux/err.h> /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); static inline int inode_init_always(struct super_block *sb, struct inode *inode) { return inode_init_always_gfp(sb, inode, GFP_NOFS); } extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern void d_mark_dontcache(struct inode *inode); extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data); struct inode *iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); struct inode *iget5_locked_rcu(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern struct inode *find_inode_nowait(struct super_block *, unsigned long, int (*match)(struct inode *, unsigned long, void *), void *data); extern struct inode *find_inode_rcu(struct super_block *, unsigned long, int (*)(struct inode *, void *), void *); extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern void discard_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void evict_inodes(struct super_block *sb); void dump_mapping(const struct address_space *); /* * Userspace may rely on the inode number being non-zero. For example, glibc * simply ignores files with zero i_ino in unlink() and other places. * * As an additional complication, if userspace was compiled with * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the * lower 32 bits, so we need to check that those aren't zero explicitly. With * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but * better safe than sorry. */ static inline bool is_zero_ino(ino_t ino) { return (u32)ino == 0; } /* * inode->i_lock must be held */ static inline void __iget(struct inode *inode) { atomic_inc(&inode->i_count); } extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); extern int file_remove_privs_flags(struct file *file, unsigned int flags); extern int file_remove_privs(struct file *); int setattr_should_drop_sgid(struct mnt_idmap *idmap, const struct inode *inode); /* * This must be used for allocating filesystems specific inodes to set * up the inode reclaim context correctly. */ #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); extern void inode_add_lru(struct inode *inode); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); int generic_write_checks_count(struct kiocb *iocb, loff_t *count); extern int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count); extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, ssize_t already_read); extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, ssize_t direct_written, ssize_t buffered_written); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter); ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter); /* fs/splice.c */ ssize_t filemap_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); ssize_t copy_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); extern ssize_t iter_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, u64 *cookie); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); int rw_verify_area(int, struct file *, const loff_t *, size_t); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); extern int stream_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, }; ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct block_device *bdev, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, int flags); static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block) { return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif bool inode_dio_finished(const struct inode *inode); void inode_dio_wait(struct inode *inode); void inode_dio_wait_interruptible(struct inode *inode); /** * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /** * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_var(&inode->i_dio_count); } extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int readlink_copy(char __user *, int, const char *, int); extern int page_readlink(struct dentry *, char __user *, int); extern const char *page_get_link(struct dentry *, struct inode *, struct delayed_call *); extern void page_put_link(void *); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_link(void *); void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); void generic_fill_statx_atomic_writes(struct kstat *stat, unsigned int unit_min, unsigned int unit_max); extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); static inline loff_t __inode_get_bytes(struct inode *inode) { return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; } loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); const char *simple_get_link(struct dentry *, struct inode *, struct delayed_call *); extern const struct inode_operations simple_symlink_inode_operations; extern int iterate_dir(struct file *, struct dir_context *); int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags); int vfs_fstat(int fd, struct kstat *stat); static inline int vfs_stat(const char __user *filename, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, filename, stat, 0); } static inline int vfs_lstat(const char __user *name, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); } extern const char *vfs_get_link(struct dentry *, struct delayed_call *); extern int vfs_readlink(struct dentry *, char __user *, int); extern struct file_system_type *get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern void drop_super(struct super_block *sb); extern void drop_super_exclusive(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, struct dir_context *); extern int simple_setattr(struct mnt_idmap *, struct dentry *, struct iattr *); extern int simple_getattr(struct mnt_idmap *, const struct path *, struct kstat *, u32, unsigned int); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); extern int simple_rename(struct mnt_idmap *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); extern void simple_recursive_removal(struct dentry *, void (*callback)(struct dentry *)); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); extern int simple_empty(struct dentry *); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, void **fsdata); extern const struct address_space_operations ram_aops; extern int always_delete_dentry(const struct dentry *); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, int, struct file_lease **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, const struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); struct offset_ctx { struct maple_tree mt; unsigned long next_offset; }; void simple_offset_init(struct offset_ctx *octx); int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); int simple_offset_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); void simple_offset_destroy(struct offset_ctx *octx); extern const struct file_operations simple_offset_dir_operations; extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); extern void generic_set_sb_d_ops(struct super_block *sb); extern int generic_ci_match(const struct inode *parent, const struct qstr *name, const struct qstr *folded_name, const u8 *de_name, u32 de_name_len); #if IS_ENABLED(CONFIG_UNICODE) int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, const char *str, const struct qstr *name); /** * generic_ci_validate_strict_name - Check if a given name is suitable * for a directory * * This functions checks if the proposed filename is valid for the * parent directory. That means that only valid UTF-8 filenames will be * accepted for casefold directories from filesystems created with the * strict encoding flag. That also means that any name will be * accepted for directories that doesn't have casefold enabled, or * aren't being strict with the encoding. * * @dir: inode of the directory where the new file will be created * @name: name of the new file * * Return: * * True: if the filename is suitable for this directory. It can be * true if a given name is not suitable for a strict encoding * directory, but the directory being used isn't strict * * False if the filename isn't suitable for this directory. This only * happens when a directory is casefolded and the filesystem is strict * about its encoding. */ static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) { if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) return true; /* * A casefold dir must have a encoding set, unless the filesystem * is corrupted */ if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) return true; return !utf8_validate(dir->i_sb->s_encoding, name); } #else static inline bool generic_ci_validate_strict_name(struct inode *dir, struct qstr *name) { return true; } #endif static inline bool sb_has_encoding(const struct super_block *sb) { #if IS_ENABLED(CONFIG_UNICODE) return !!sb->s_encoding; #else return false; #endif } int may_setattr(struct mnt_idmap *idmap, struct inode *inode, unsigned int ia_valid); int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); void setattr_copy(struct mnt_idmap *, struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); static inline bool vma_is_dax(const struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline int iocb_flags(struct file *file) { int res = 0; if (file->f_flags & O_APPEND) res |= IOCB_APPEND; if (file->f_flags & O_DIRECT) res |= IOCB_DIRECT; if (file->f_flags & O_DSYNC) res |= IOCB_DSYNC; if (file->f_flags & __O_SYNC) res |= IOCB_SYNC; return res; } static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, int rw_type) { int kiocb_flags = 0; /* make sure there's no overlap between RWF and private IOCB flags */ BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); if (!flags) return 0; if (unlikely(flags & ~RWF_SUPPORTED)) return -EOPNOTSUPP; if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) return -EINVAL; if (flags & RWF_NOWAIT) { if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) return -EOPNOTSUPP; } if (flags & RWF_ATOMIC) { if (rw_type != WRITE) return -EOPNOTSUPP; if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) return -EOPNOTSUPP; } if (flags & RWF_DONTCACHE) { /* file system must support it */ if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) return -EOPNOTSUPP; /* DAX mappings not supported */ if (IS_DAX(ki->ki_filp->f_mapping->host)) return -EOPNOTSUPP; } kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); if (flags & RWF_SYNC) kiocb_flags |= IOCB_DSYNC; if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { if (IS_APPEND(file_inode(ki->ki_filp))) return -EPERM; ki->ki_flags &= ~IOCB_APPEND; } ki->ki_flags |= kiocb_flags; return 0; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ .llseek = generic_file_llseek, \ } #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int __init list_bdev_fs_names(char *buf, size_t size); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline bool is_sxid(umode_t mode) { return mode & (S_ISUID | S_ISGID); } static inline int check_sticky(struct mnt_idmap *idmap, struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(idmap, dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool is_root_inode(struct inode *inode) { return inode == inode->i_sb->s_root->d_inode; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR); } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, d_parent_ino(file->f_path.dentry), DT_DIR); } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline bool dir_relax(struct inode *inode) { inode_unlock(inode); inode_lock(inode); return !IS_DEADDIR(inode); } static inline bool dir_relax_shared(struct inode *inode) { inode_unlock_shared(inode); inode_lock_shared(inode); return !IS_DEADDIR(inode); } extern bool path_noexec(const struct path *path); extern void inode_nohighmem(struct inode *inode); /* mm/fadvise.c */ extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, int advice); extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, int advice); static inline bool vfs_empty_path(int dfd, const char __user *path) { char c; if (dfd < 0) return false; /* We now allow NULL to be used for empty path. */ if (!path) return true; if (unlikely(get_user(c, path))) return false; return !c; } int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); #endif /* _LINUX_FS_H */ |
| 1078 1074 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | /* Copyright 2011, Siemens AG * written by Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ /* Based on patches from Jon Smirl <jonsmirl@gmail.com> * Copyright (c) 2011 Jon Smirl <jonsmirl@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* Jon's code is based on 6lowpan implementation for Contiki which is: * Copyright (c) 2008, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <linux/module.h> #include <linux/netdevice.h> #include <linux/ieee802154.h> #include <linux/if_arp.h> #include <net/ipv6.h> #include "6lowpan_i.h" static int open_count; static const struct header_ops lowpan_header_ops = { .create = lowpan_header_create, }; static int lowpan_dev_init(struct net_device *ldev) { netdev_lockdep_set_classes(ldev); return 0; } static int lowpan_open(struct net_device *dev) { if (!open_count) lowpan_rx_init(); open_count++; return 0; } static int lowpan_stop(struct net_device *dev) { open_count--; if (!open_count) lowpan_rx_exit(); return 0; } static int lowpan_neigh_construct(struct net_device *dev, struct neighbour *n) { struct lowpan_802154_neigh *neigh = lowpan_802154_neigh(neighbour_priv(n)); /* default no short_addr is available for a neighbour */ neigh->short_addr = cpu_to_le16(IEEE802154_ADDR_SHORT_UNSPEC); return 0; } static int lowpan_get_iflink(const struct net_device *dev) { return READ_ONCE(lowpan_802154_dev(dev)->wdev->ifindex); } static const struct net_device_ops lowpan_netdev_ops = { .ndo_init = lowpan_dev_init, .ndo_start_xmit = lowpan_xmit, .ndo_open = lowpan_open, .ndo_stop = lowpan_stop, .ndo_neigh_construct = lowpan_neigh_construct, .ndo_get_iflink = lowpan_get_iflink, }; static void lowpan_setup(struct net_device *ldev) { memset(ldev->broadcast, 0xff, IEEE802154_ADDR_LEN); /* We need an ipv6hdr as minimum len when calling xmit */ ldev->hard_header_len = sizeof(struct ipv6hdr); ldev->flags = IFF_BROADCAST | IFF_MULTICAST; ldev->priv_flags |= IFF_NO_QUEUE; ldev->netdev_ops = &lowpan_netdev_ops; ldev->header_ops = &lowpan_header_ops; ldev->needs_free_netdev = true; ldev->netns_local = true; } static int lowpan_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != IEEE802154_ADDR_LEN) return -EINVAL; } return 0; } static int lowpan_newlink(struct net *src_net, struct net_device *ldev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net_device *wdev; int ret; ASSERT_RTNL(); pr_debug("adding new link\n"); if (!tb[IFLA_LINK]) return -EINVAL; /* find and hold wpan device */ wdev = dev_get_by_index(dev_net(ldev), nla_get_u32(tb[IFLA_LINK])); if (!wdev) return -ENODEV; if (wdev->type != ARPHRD_IEEE802154) { dev_put(wdev); return -EINVAL; } if (wdev->ieee802154_ptr->lowpan_dev) { dev_put(wdev); return -EBUSY; } lowpan_802154_dev(ldev)->wdev = wdev; /* Set the lowpan hardware address to the wpan hardware address. */ __dev_addr_set(ldev, wdev->dev_addr, IEEE802154_ADDR_LEN); /* We need headroom for possible wpan_dev_hard_header call and tailroom * for encryption/fcs handling. The lowpan interface will replace * the IPv6 header with 6LoWPAN header. At worst case the 6LoWPAN * header has LOWPAN_IPHC_MAX_HEADER_LEN more bytes than the IPv6 * header. */ ldev->needed_headroom = LOWPAN_IPHC_MAX_HEADER_LEN + wdev->needed_headroom; ldev->needed_tailroom = wdev->needed_tailroom; ldev->neigh_priv_len = sizeof(struct lowpan_802154_neigh); ret = lowpan_register_netdevice(ldev, LOWPAN_LLTYPE_IEEE802154); if (ret < 0) { dev_put(wdev); return ret; } wdev->ieee802154_ptr->lowpan_dev = ldev; return 0; } static void lowpan_dellink(struct net_device *ldev, struct list_head *head) { struct net_device *wdev = lowpan_802154_dev(ldev)->wdev; ASSERT_RTNL(); wdev->ieee802154_ptr->lowpan_dev = NULL; lowpan_unregister_netdevice(ldev); dev_put(wdev); } static struct rtnl_link_ops lowpan_link_ops __read_mostly = { .kind = "lowpan", .priv_size = LOWPAN_PRIV_SIZE(sizeof(struct lowpan_802154_dev)), .setup = lowpan_setup, .newlink = lowpan_newlink, .dellink = lowpan_dellink, .validate = lowpan_validate, }; static inline int __init lowpan_netlink_init(void) { return rtnl_link_register(&lowpan_link_ops); } static inline void lowpan_netlink_fini(void) { rtnl_link_unregister(&lowpan_link_ops); } static int lowpan_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct wpan_dev *wpan_dev; if (ndev->type != ARPHRD_IEEE802154) return NOTIFY_DONE; wpan_dev = ndev->ieee802154_ptr; if (!wpan_dev) return NOTIFY_DONE; switch (event) { case NETDEV_UNREGISTER: /* Check if wpan interface is unregistered that we * also delete possible lowpan interfaces which belongs * to the wpan interface. */ if (wpan_dev->lowpan_dev) lowpan_dellink(wpan_dev->lowpan_dev, NULL); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static struct notifier_block lowpan_dev_notifier = { .notifier_call = lowpan_device_event, }; static int __init lowpan_init_module(void) { int err = 0; err = lowpan_net_frag_init(); if (err < 0) goto out; err = lowpan_netlink_init(); if (err < 0) goto out_frag; err = register_netdevice_notifier(&lowpan_dev_notifier); if (err < 0) goto out_pack; return 0; out_pack: lowpan_netlink_fini(); out_frag: lowpan_net_frag_exit(); out: return err; } static void __exit lowpan_cleanup_module(void) { lowpan_netlink_fini(); lowpan_net_frag_exit(); unregister_netdevice_notifier(&lowpan_dev_notifier); } module_init(lowpan_init_module); module_exit(lowpan_cleanup_module); MODULE_DESCRIPTION("IPv6 over Low power Wireless Personal Area Network IEEE 802.15.4 core"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("lowpan"); |
| 5 46 46 5 5 5 5 5 41 41 41 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 | // SPDX-License-Identifier: GPL-2.0 /* * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption * * Copyright (c) 2019, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/rng.h> #include "crypto.h" #include "msg.h" #include "bcast.h" #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */ #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */ #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */ #define TIPC_MAX_TFMS_DEF 10 #define TIPC_MAX_TFMS_LIM 1000 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */ /* * TIPC Key ids */ enum { KEY_MASTER = 0, KEY_MIN = KEY_MASTER, KEY_1 = 1, KEY_2, KEY_3, KEY_MAX = KEY_3, }; /* * TIPC Crypto statistics */ enum { STAT_OK, STAT_NOK, STAT_ASYNC, STAT_ASYNC_OK, STAT_ASYNC_NOK, STAT_BADKEYS, /* tx only */ STAT_BADMSGS = STAT_BADKEYS, /* rx only */ STAT_NOKEYS, STAT_SWITCHES, MAX_STATS, }; /* TIPC crypto statistics' header */ static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", "async_nok", "badmsgs", "nokeys", "switches"}; /* Max TFMs number per key */ int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; /* Key exchange switch, default: on */ int sysctl_tipc_key_exchange_enabled __read_mostly = 1; /* * struct tipc_key - TIPC keys' status indicator * * 7 6 5 4 3 2 1 0 * +-----+-----+-----+-----+-----+-----+-----+-----+ * key: | (reserved)|passive idx| active idx|pending idx| * +-----+-----+-----+-----+-----+-----+-----+-----+ */ struct tipc_key { #define KEY_BITS (2) #define KEY_MASK ((1 << KEY_BITS) - 1) union { struct { #if defined(__LITTLE_ENDIAN_BITFIELD) u8 pending:2, active:2, passive:2, /* rx only */ reserved:2; #elif defined(__BIG_ENDIAN_BITFIELD) u8 reserved:2, passive:2, /* rx only */ active:2, pending:2; #else #error "Please fix <asm/byteorder.h>" #endif } __packed; u8 keys; }; }; /** * struct tipc_tfm - TIPC TFM structure to form a list of TFMs * @tfm: cipher handle/key * @list: linked list of TFMs */ struct tipc_tfm { struct crypto_aead *tfm; struct list_head list; }; /** * struct tipc_aead - TIPC AEAD key structure * @tfm_entry: per-cpu pointer to one entry in TFM list * @crypto: TIPC crypto owns this key * @cloned: reference to the source key in case cloning * @users: the number of the key users (TX/RX) * @salt: the key's SALT value * @authsize: authentication tag size (max = 16) * @mode: crypto mode is applied to the key * @hint: a hint for user key * @rcu: struct rcu_head * @key: the aead key * @gen: the key's generation * @seqno: the key seqno (cluster scope) * @refcnt: the key reference counter */ struct tipc_aead { #define TIPC_AEAD_HINT_LEN (5) struct tipc_tfm * __percpu *tfm_entry; struct tipc_crypto *crypto; struct tipc_aead *cloned; atomic_t users; u32 salt; u8 authsize; u8 mode; char hint[2 * TIPC_AEAD_HINT_LEN + 1]; struct rcu_head rcu; struct tipc_aead_key *key; u16 gen; atomic64_t seqno ____cacheline_aligned; refcount_t refcnt ____cacheline_aligned; } ____cacheline_aligned; /** * struct tipc_crypto_stats - TIPC Crypto statistics * @stat: array of crypto statistics */ struct tipc_crypto_stats { unsigned int stat[MAX_STATS]; }; /** * struct tipc_crypto - TIPC TX/RX crypto structure * @net: struct net * @node: TIPC node (RX) * @aead: array of pointers to AEAD keys for encryption/decryption * @peer_rx_active: replicated peer RX active key index * @key_gen: TX/RX key generation * @key: the key states * @skey_mode: session key's mode * @skey: received session key * @wq: common workqueue on TX crypto * @work: delayed work sched for TX/RX * @key_distr: key distributing state * @rekeying_intv: rekeying interval (in minutes) * @stats: the crypto statistics * @name: the crypto name * @sndnxt: the per-peer sndnxt (TX) * @timer1: general timer 1 (jiffies) * @timer2: general timer 2 (jiffies) * @working: the crypto is working or not * @key_master: flag indicates if master key exists * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.) * @nokey: no key indication * @flags: combined flags field * @lock: tipc_key lock */ struct tipc_crypto { struct net *net; struct tipc_node *node; struct tipc_aead __rcu *aead[KEY_MAX + 1]; atomic_t peer_rx_active; u16 key_gen; struct tipc_key key; u8 skey_mode; struct tipc_aead_key *skey; struct workqueue_struct *wq; struct delayed_work work; #define KEY_DISTR_SCHED 1 #define KEY_DISTR_COMPL 2 atomic_t key_distr; u32 rekeying_intv; struct tipc_crypto_stats __percpu *stats; char name[48]; atomic64_t sndnxt ____cacheline_aligned; unsigned long timer1; unsigned long timer2; union { struct { u8 working:1; u8 key_master:1; u8 legacy_user:1; u8 nokey: 1; }; u8 flags; }; spinlock_t lock; /* crypto lock */ } ____cacheline_aligned; /* struct tipc_crypto_tx_ctx - TX context for callbacks */ struct tipc_crypto_tx_ctx { struct tipc_aead *aead; struct tipc_bearer *bearer; struct tipc_media_addr dst; }; /* struct tipc_crypto_rx_ctx - RX context for callbacks */ struct tipc_crypto_rx_ctx { struct tipc_aead *aead; struct tipc_bearer *bearer; }; static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); static inline void tipc_aead_put(struct tipc_aead *aead); static void tipc_aead_free(struct rcu_head *rp); static int tipc_aead_users(struct tipc_aead __rcu *aead); static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, u8 mode); static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, unsigned int crypto_ctx_size, u8 **iv, struct aead_request **req, struct scatterlist **sg, int nsg); static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, struct tipc_bearer *b, struct tipc_media_addr *dst, struct tipc_node *__dnode); static void tipc_aead_encrypt_done(void *data, int err); static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, struct sk_buff *skb, struct tipc_bearer *b); static void tipc_aead_decrypt_done(void *data, int err); static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, u8 tx_key, struct sk_buff *skb, struct tipc_crypto *__rx); static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, u8 new_passive, u8 new_active, u8 new_pending); static int tipc_crypto_key_attach(struct tipc_crypto *c, struct tipc_aead *aead, u8 pos, bool master_key); static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, struct tipc_crypto *rx, struct sk_buff *skb, u8 tx_key); static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb); static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, struct tipc_bearer *b, struct tipc_media_addr *dst, struct tipc_node *__dnode, u8 type); static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, struct tipc_bearer *b, struct sk_buff **skb, int err); static void tipc_crypto_do_cmd(struct net *net, int cmd); static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, char *buf); static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, u16 gen, u8 mode, u32 dnode); static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr); static void tipc_crypto_work_tx(struct work_struct *work); static void tipc_crypto_work_rx(struct work_struct *work); static int tipc_aead_key_generate(struct tipc_aead_key *skey); #define is_tx(crypto) (!(crypto)->node) #define is_rx(crypto) (!is_tx(crypto)) #define key_next(cur) ((cur) % KEY_MAX + 1) #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ do { \ struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \ lockdep_is_held(lock)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ tipc_aead_put(__tmp); \ } while (0) #define tipc_crypto_key_detach(rcu_ptr, lock) \ tipc_aead_rcu_replace((rcu_ptr), NULL, lock) /** * tipc_aead_key_validate - Validate a AEAD user key * @ukey: pointer to user key data * @info: netlink info pointer */ int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info) { int keylen; /* Check if algorithm exists */ if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)"); return -ENODEV; } /* Currently, we only support the "gcm(aes)" cipher algorithm */ if (strcmp(ukey->alg_name, "gcm(aes)")) { GENL_SET_ERR_MSG(info, "not supported yet the algorithm"); return -ENOTSUPP; } /* Check if key size is correct */ keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && keylen != TIPC_AES_GCM_KEY_SIZE_192 && keylen != TIPC_AES_GCM_KEY_SIZE_256)) { GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)"); return -EKEYREJECTED; } return 0; } /** * tipc_aead_key_generate - Generate new session key * @skey: input/output key with new content * * Return: 0 in case of success, otherwise < 0 */ static int tipc_aead_key_generate(struct tipc_aead_key *skey) { int rc = 0; /* Fill the key's content with a random value via RNG cipher */ rc = crypto_get_default_rng(); if (likely(!rc)) { rc = crypto_rng_get_bytes(crypto_default_rng, skey->key, skey->keylen); crypto_put_default_rng(); } return rc; } static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) { struct tipc_aead *tmp; rcu_read_lock(); tmp = rcu_dereference(aead); if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) tmp = NULL; rcu_read_unlock(); return tmp; } static inline void tipc_aead_put(struct tipc_aead *aead) { if (aead && refcount_dec_and_test(&aead->refcnt)) call_rcu(&aead->rcu, tipc_aead_free); } /** * tipc_aead_free - Release AEAD key incl. all the TFMs in the list * @rp: rcu head pointer */ static void tipc_aead_free(struct rcu_head *rp) { struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); struct tipc_tfm *tfm_entry, *head, *tmp; if (aead->cloned) { tipc_aead_put(aead->cloned); } else { head = *get_cpu_ptr(aead->tfm_entry); put_cpu_ptr(aead->tfm_entry); list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { crypto_free_aead(tfm_entry->tfm); list_del(&tfm_entry->list); kfree(tfm_entry); } /* Free the head */ crypto_free_aead(head->tfm); list_del(&head->list); kfree(head); } free_percpu(aead->tfm_entry); kfree_sensitive(aead->key); kfree(aead); } static int tipc_aead_users(struct tipc_aead __rcu *aead) { struct tipc_aead *tmp; int users = 0; rcu_read_lock(); tmp = rcu_dereference(aead); if (tmp) users = atomic_read(&tmp->users); rcu_read_unlock(); return users; } static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) { struct tipc_aead *tmp; rcu_read_lock(); tmp = rcu_dereference(aead); if (tmp) atomic_add_unless(&tmp->users, 1, lim); rcu_read_unlock(); } static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) { struct tipc_aead *tmp; rcu_read_lock(); tmp = rcu_dereference(aead); if (tmp) atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); rcu_read_unlock(); } static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) { struct tipc_aead *tmp; int cur; rcu_read_lock(); tmp = rcu_dereference(aead); if (tmp) { do { cur = atomic_read(&tmp->users); if (cur == val) break; } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); } rcu_read_unlock(); } /** * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it * @aead: the AEAD key pointer */ static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) { struct tipc_tfm **tfm_entry; struct crypto_aead *tfm; tfm_entry = get_cpu_ptr(aead->tfm_entry); *tfm_entry = list_next_entry(*tfm_entry, list); tfm = (*tfm_entry)->tfm; put_cpu_ptr(tfm_entry); return tfm; } /** * tipc_aead_init - Initiate TIPC AEAD * @aead: returned new TIPC AEAD key handle pointer * @ukey: pointer to user key data * @mode: the key mode * * Allocate a (list of) new cipher transformation (TFM) with the specific user * key data if valid. The number of the allocated TFMs can be set via the sysfs * "net/tipc/max_tfms" first. * Also, all the other AEAD data are also initialized. * * Return: 0 if the initiation is successful, otherwise: < 0 */ static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, u8 mode) { struct tipc_tfm *tfm_entry, *head; struct crypto_aead *tfm; struct tipc_aead *tmp; int keylen, err, cpu; int tfm_cnt = 0; if (unlikely(*aead)) return -EEXIST; /* Allocate a new AEAD */ tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); if (unlikely(!tmp)) return -ENOMEM; /* The key consists of two parts: [AES-KEY][SALT] */ keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; /* Allocate per-cpu TFM entry pointer */ tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); if (!tmp->tfm_entry) { kfree_sensitive(tmp); return -ENOMEM; } /* Make a list of TFMs with the user key data */ do { tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); if (IS_ERR(tfm)) { err = PTR_ERR(tfm); break; } if (unlikely(!tfm_cnt && crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { crypto_free_aead(tfm); err = -ENOTSUPP; break; } err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); err |= crypto_aead_setkey(tfm, ukey->key, keylen); if (unlikely(err)) { crypto_free_aead(tfm); break; } tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); if (unlikely(!tfm_entry)) { crypto_free_aead(tfm); err = -ENOMEM; break; } INIT_LIST_HEAD(&tfm_entry->list); tfm_entry->tfm = tfm; /* First entry? */ if (!tfm_cnt) { head = tfm_entry; for_each_possible_cpu(cpu) { *per_cpu_ptr(tmp->tfm_entry, cpu) = head; } } else { list_add_tail(&tfm_entry->list, &head->list); } } while (++tfm_cnt < sysctl_tipc_max_tfms); /* Not any TFM is allocated? */ if (!tfm_cnt) { free_percpu(tmp->tfm_entry); kfree_sensitive(tmp); return err; } /* Form a hex string of some last bytes as the key's hint */ bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN, TIPC_AEAD_HINT_LEN); /* Initialize the other data */ tmp->mode = mode; tmp->cloned = NULL; tmp->authsize = TIPC_AES_GCM_TAG_SIZE; tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL); if (!tmp->key) { tipc_aead_free(&tmp->rcu); return -ENOMEM; } memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); atomic_set(&tmp->users, 0); atomic64_set(&tmp->seqno, 0); refcount_set(&tmp->refcnt, 1); *aead = tmp; return 0; } /** * tipc_aead_clone - Clone a TIPC AEAD key * @dst: dest key for the cloning * @src: source key to clone from * * Make a "copy" of the source AEAD key data to the dest, the TFMs list is * common for the keys. * A reference to the source is hold in the "cloned" pointer for the later * freeing purposes. * * Note: this must be done in cluster-key mode only! * Return: 0 in case of success, otherwise < 0 */ static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) { struct tipc_aead *aead; int cpu; if (!src) return -ENOKEY; if (src->mode != CLUSTER_KEY) return -EINVAL; if (unlikely(*dst)) return -EEXIST; aead = kzalloc(sizeof(*aead), GFP_ATOMIC); if (unlikely(!aead)) return -ENOMEM; aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); if (unlikely(!aead->tfm_entry)) { kfree_sensitive(aead); return -ENOMEM; } for_each_possible_cpu(cpu) { *per_cpu_ptr(aead->tfm_entry, cpu) = *per_cpu_ptr(src->tfm_entry, cpu); } memcpy(aead->hint, src->hint, sizeof(src->hint)); aead->mode = src->mode; aead->salt = src->salt; aead->authsize = src->authsize; atomic_set(&aead->users, 0); atomic64_set(&aead->seqno, 0); refcount_set(&aead->refcnt, 1); WARN_ON(!refcount_inc_not_zero(&src->refcnt)); aead->cloned = src; *dst = aead; return 0; } /** * tipc_aead_mem_alloc - Allocate memory for AEAD request operations * @tfm: cipher handle to be registered with the request * @crypto_ctx_size: size of crypto context for callback * @iv: returned pointer to IV data * @req: returned pointer to AEAD request data * @sg: returned pointer to SG lists * @nsg: number of SG lists to be allocated * * Allocate memory to store the crypto context data, AEAD request, IV and SG * lists, the memory layout is as follows: * crypto_ctx || iv || aead_req || sg[] * * Return: the pointer to the memory areas in case of success, otherwise NULL */ static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, unsigned int crypto_ctx_size, u8 **iv, struct aead_request **req, struct scatterlist **sg, int nsg) { unsigned int iv_size, req_size; unsigned int len; u8 *mem; iv_size = crypto_aead_ivsize(tfm); req_size = sizeof(**req) + crypto_aead_reqsize(tfm); len = crypto_ctx_size; len += iv_size; len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); len = ALIGN(len, crypto_tfm_ctx_alignment()); len += req_size; len = ALIGN(len, __alignof__(struct scatterlist)); len += nsg * sizeof(**sg); mem = kmalloc(len, GFP_ATOMIC); if (!mem) return NULL; *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, crypto_aead_alignmask(tfm) + 1); *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, crypto_tfm_ctx_alignment()); *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, __alignof__(struct scatterlist)); return (void *)mem; } /** * tipc_aead_encrypt - Encrypt a message * @aead: TIPC AEAD key for the message encryption * @skb: the input/output skb * @b: TIPC bearer where the message will be delivered after the encryption * @dst: the destination media address * @__dnode: TIPC dest node if "known" * * Return: * * 0 : if the encryption has completed * * -EINPROGRESS/-EBUSY : if a callback will be performed * * < 0 : the encryption has failed */ static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, struct tipc_bearer *b, struct tipc_media_addr *dst, struct tipc_node *__dnode) { struct crypto_aead *tfm = tipc_aead_tfm_next(aead); struct tipc_crypto_tx_ctx *tx_ctx; struct aead_request *req; struct sk_buff *trailer; struct scatterlist *sg; struct tipc_ehdr *ehdr; int ehsz, len, tailen, nsg, rc; void *ctx; u32 salt; u8 *iv; /* Make sure message len at least 4-byte aligned */ len = ALIGN(skb->len, 4); tailen = len - skb->len + aead->authsize; /* Expand skb tail for authentication tag: * As for simplicity, we'd have made sure skb having enough tailroom * for authentication tag @skb allocation. Even when skb is nonlinear * but there is no frag_list, it should be still fine! * Otherwise, we must cow it to be a writable buffer with the tailroom. */ SKB_LINEAR_ASSERT(skb); if (tailen > skb_tailroom(skb)) { pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n", skb_tailroom(skb), tailen); } nsg = skb_cow_data(skb, tailen, &trailer); if (unlikely(nsg < 0)) { pr_err("TX: skb_cow_data() returned %d\n", nsg); return nsg; } pskb_put(skb, trailer, tailen); /* Allocate memory for the AEAD operation */ ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); if (unlikely(!ctx)) return -ENOMEM; TIPC_SKB_CB(skb)->crypto_ctx = ctx; /* Map skb to the sg lists */ sg_init_table(sg, nsg); rc = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(rc < 0)) { pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); goto exit; } /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] * In case we're in cluster-key mode, SALT is varied by xor-ing with * the source address (or w0 of id), otherwise with the dest address * if dest is known. */ ehdr = (struct tipc_ehdr *)skb->data; salt = aead->salt; if (aead->mode == CLUSTER_KEY) salt ^= __be32_to_cpu(ehdr->addr); else if (__dnode) salt ^= tipc_node_get_addr(__dnode); memcpy(iv, &salt, 4); memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); /* Prepare request */ ehsz = tipc_ehdr_size(ehdr); aead_request_set_tfm(req, tfm); aead_request_set_ad(req, ehsz); aead_request_set_crypt(req, sg, sg, len - ehsz, iv); /* Set callback function & data */ aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tipc_aead_encrypt_done, skb); tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; tx_ctx->aead = aead; tx_ctx->bearer = b; memcpy(&tx_ctx->dst, dst, sizeof(*dst)); /* Hold bearer */ if (unlikely(!tipc_bearer_hold(b))) { rc = -ENODEV; goto exit; } /* Now, do encrypt */ rc = crypto_aead_encrypt(req); if (rc == -EINPROGRESS || rc == -EBUSY) return rc; tipc_bearer_put(b); exit: kfree(ctx); TIPC_SKB_CB(skb)->crypto_ctx = NULL; return rc; } static void tipc_aead_encrypt_done(void *data, int err) { struct sk_buff *skb = data; struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; struct tipc_bearer *b = tx_ctx->bearer; struct tipc_aead *aead = tx_ctx->aead; struct tipc_crypto *tx = aead->crypto; struct net *net = tx->net; switch (err) { case 0: this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); rcu_read_lock(); if (likely(test_bit(0, &b->up))) b->media->send_msg(net, skb, b, &tx_ctx->dst); else kfree_skb(skb); rcu_read_unlock(); break; case -EINPROGRESS: return; default: this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); kfree_skb(skb); break; } kfree(tx_ctx); tipc_bearer_put(b); tipc_aead_put(aead); } /** * tipc_aead_decrypt - Decrypt an encrypted message * @net: struct net * @aead: TIPC AEAD for the message decryption * @skb: the input/output skb * @b: TIPC bearer where the message has been received * * Return: * * 0 : if the decryption has completed * * -EINPROGRESS/-EBUSY : if a callback will be performed * * < 0 : the decryption has failed */ static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, struct sk_buff *skb, struct tipc_bearer *b) { struct tipc_crypto_rx_ctx *rx_ctx; struct aead_request *req; struct crypto_aead *tfm; struct sk_buff *unused; struct scatterlist *sg; struct tipc_ehdr *ehdr; int ehsz, nsg, rc; void *ctx; u32 salt; u8 *iv; if (unlikely(!aead)) return -ENOKEY; nsg = skb_cow_data(skb, 0, &unused); if (unlikely(nsg < 0)) { pr_err("RX: skb_cow_data() returned %d\n", nsg); return nsg; } /* Allocate memory for the AEAD operation */ tfm = tipc_aead_tfm_next(aead); ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); if (unlikely(!ctx)) return -ENOMEM; TIPC_SKB_CB(skb)->crypto_ctx = ctx; /* Map skb to the sg lists */ sg_init_table(sg, nsg); rc = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(rc < 0)) { pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); goto exit; } /* Reconstruct IV: */ ehdr = (struct tipc_ehdr *)skb->data; salt = aead->salt; if (aead->mode == CLUSTER_KEY) salt ^= __be32_to_cpu(ehdr->addr); else if (ehdr->destined) salt ^= tipc_own_addr(net); memcpy(iv, &salt, 4); memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); /* Prepare request */ ehsz = tipc_ehdr_size(ehdr); aead_request_set_tfm(req, tfm); aead_request_set_ad(req, ehsz); aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); /* Set callback function & data */ aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tipc_aead_decrypt_done, skb); rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; rx_ctx->aead = aead; rx_ctx->bearer = b; /* Hold bearer */ if (unlikely(!tipc_bearer_hold(b))) { rc = -ENODEV; goto exit; } /* Now, do decrypt */ rc = crypto_aead_decrypt(req); if (rc == -EINPROGRESS || rc == -EBUSY) return rc; tipc_bearer_put(b); exit: kfree(ctx); TIPC_SKB_CB(skb)->crypto_ctx = NULL; return rc; } static void tipc_aead_decrypt_done(void *data, int err) { struct sk_buff *skb = data; struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; struct tipc_bearer *b = rx_ctx->bearer; struct tipc_aead *aead = rx_ctx->aead; struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; struct net *net = aead->crypto->net; switch (err) { case 0: this_cpu_inc(stats->stat[STAT_ASYNC_OK]); break; case -EINPROGRESS: return; default: this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); break; } kfree(rx_ctx); tipc_crypto_rcv_complete(net, aead, b, &skb, err); if (likely(skb)) { if (likely(test_bit(0, &b->up))) tipc_rcv(net, skb, b); else kfree_skb(skb); } tipc_bearer_put(b); } static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) { return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; } /** * tipc_ehdr_validate - Validate an encryption message * @skb: the message buffer * * Return: "true" if this is a valid encryption message, otherwise "false" */ bool tipc_ehdr_validate(struct sk_buff *skb) { struct tipc_ehdr *ehdr; int ehsz; if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) return false; ehdr = (struct tipc_ehdr *)skb->data; if (unlikely(ehdr->version != TIPC_EVERSION)) return false; ehsz = tipc_ehdr_size(ehdr); if (unlikely(!pskb_may_pull(skb, ehsz))) return false; if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) return false; return true; } /** * tipc_ehdr_build - Build TIPC encryption message header * @net: struct net * @aead: TX AEAD key to be used for the message encryption * @tx_key: key id used for the message encryption * @skb: input/output message skb * @__rx: RX crypto handle if dest is "known" * * Return: the header size if the building is successful, otherwise < 0 */ static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, u8 tx_key, struct sk_buff *skb, struct tipc_crypto *__rx) { struct tipc_msg *hdr = buf_msg(skb); struct tipc_ehdr *ehdr; u32 user = msg_user(hdr); u64 seqno; int ehsz; /* Make room for encryption header */ ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; WARN_ON(skb_headroom(skb) < ehsz); ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); /* Obtain a seqno first: * Use the key seqno (= cluster wise) if dest is unknown or we're in * cluster key mode, otherwise it's better for a per-peer seqno! */ if (!__rx || aead->mode == CLUSTER_KEY) seqno = atomic64_inc_return(&aead->seqno); else seqno = atomic64_inc_return(&__rx->sndnxt); /* Revoke the key if seqno is wrapped around */ if (unlikely(!seqno)) return tipc_crypto_key_revoke(net, tx_key); /* Word 1-2 */ ehdr->seqno = cpu_to_be64(seqno); /* Words 0, 3- */ ehdr->version = TIPC_EVERSION; ehdr->user = 0; ehdr->keepalive = 0; ehdr->tx_key = tx_key; ehdr->destined = (__rx) ? 1 : 0; ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; ehdr->rx_nokey = (__rx) ? __rx->nokey : 0; ehdr->master_key = aead->crypto->key_master; ehdr->reserved_1 = 0; ehdr->reserved_2 = 0; switch (user) { case LINK_CONFIG: ehdr->user = LINK_CONFIG; memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); break; default: if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { ehdr->user = LINK_PROTOCOL; ehdr->keepalive = msg_is_keepalive(hdr); } ehdr->addr = hdr->hdr[3]; break; } return ehsz; } static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, u8 new_passive, u8 new_active, u8 new_pending) { struct tipc_key old = c->key; char buf[32]; c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | ((new_active & KEY_MASK) << (KEY_BITS)) | ((new_pending & KEY_MASK)); pr_debug("%s: key changing %s ::%pS\n", c->name, tipc_key_change_dump(old, c->key, buf), __builtin_return_address(0)); } /** * tipc_crypto_key_init - Initiate a new user / AEAD key * @c: TIPC crypto to which new key is attached * @ukey: the user key * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) * @master_key: specify this is a cluster master key * * A new TIPC AEAD key will be allocated and initiated with the specified user * key, then attached to the TIPC crypto. * * Return: new key id in case of success, otherwise: < 0 */ int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, u8 mode, bool master_key) { struct tipc_aead *aead = NULL; int rc = 0; /* Initiate with the new user key */ rc = tipc_aead_init(&aead, ukey, mode); /* Attach it to the crypto */ if (likely(!rc)) { rc = tipc_crypto_key_attach(c, aead, 0, master_key); if (rc < 0) tipc_aead_free(&aead->rcu); } return rc; } /** * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto * @c: TIPC crypto to which the new AEAD key is attached * @aead: the new AEAD key pointer * @pos: desired slot in the crypto key array, = 0 if any! * @master_key: specify this is a cluster master key * * Return: new key id in case of success, otherwise: -EBUSY */ static int tipc_crypto_key_attach(struct tipc_crypto *c, struct tipc_aead *aead, u8 pos, bool master_key) { struct tipc_key key; int rc = -EBUSY; u8 new_key; spin_lock_bh(&c->lock); key = c->key; if (master_key) { new_key = KEY_MASTER; goto attach; } if (key.active && key.passive) goto exit; if (key.pending) { if (tipc_aead_users(c->aead[key.pending]) > 0) goto exit; /* if (pos): ok with replacing, will be aligned when needed */ /* Replace it */ new_key = key.pending; } else { if (pos) { if (key.active && pos != key_next(key.active)) { key.passive = pos; new_key = pos; goto attach; } else if (!key.active && !key.passive) { key.pending = pos; new_key = pos; goto attach; } } key.pending = key_next(key.active ?: key.passive); new_key = key.pending; } attach: aead->crypto = c; aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen; tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); if (likely(c->key.keys != key.keys)) tipc_crypto_key_set_state(c, key.passive, key.active, key.pending); c->working = 1; c->nokey = 0; c->key_master |= master_key; rc = new_key; exit: spin_unlock_bh(&c->lock); return rc; } void tipc_crypto_key_flush(struct tipc_crypto *c) { struct tipc_crypto *tx, *rx; int k; spin_lock_bh(&c->lock); if (is_rx(c)) { /* Try to cancel pending work */ rx = c; tx = tipc_net(rx->net)->crypto_tx; if (cancel_delayed_work(&rx->work)) { kfree(rx->skey); rx->skey = NULL; atomic_xchg(&rx->key_distr, 0); tipc_node_put(rx->node); } /* RX stopping => decrease TX key users if any */ k = atomic_xchg(&rx->peer_rx_active, 0); if (k) { tipc_aead_users_dec(tx->aead[k], 0); /* Mark the point TX key users changed */ tx->timer1 = jiffies; } } c->flags = 0; tipc_crypto_key_set_state(c, 0, 0, 0); for (k = KEY_MIN; k <= KEY_MAX; k++) tipc_crypto_key_detach(c->aead[k], &c->lock); atomic64_set(&c->sndnxt, 0); spin_unlock_bh(&c->lock); } /** * tipc_crypto_key_try_align - Align RX keys if possible * @rx: RX crypto handle * @new_pending: new pending slot if aligned (= TX key from peer) * * Peer has used an unknown key slot, this only happens when peer has left and * rejoned, or we are newcomer. * That means, there must be no active key but a pending key at unaligned slot. * If so, we try to move the pending key to the new slot. * Note: A potential passive key can exist, it will be shifted correspondingly! * * Return: "true" if key is successfully aligned, otherwise "false" */ static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) { struct tipc_aead *tmp1, *tmp2 = NULL; struct tipc_key key; bool aligned = false; u8 new_passive = 0; int x; spin_lock(&rx->lock); key = rx->key; if (key.pending == new_pending) { aligned = true; goto exit; } if (key.active) goto exit; if (!key.pending) goto exit; if (tipc_aead_users(rx->aead[key.pending]) > 0) goto exit; /* Try to "isolate" this pending key first */ tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); if (!refcount_dec_if_one(&tmp1->refcnt)) goto exit; rcu_assign_pointer(rx->aead[key.pending], NULL); /* Move passive key if any */ if (key.passive) { tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); x = (key.passive - key.pending + new_pending) % KEY_MAX; new_passive = (x <= 0) ? x + KEY_MAX : x; } /* Re-allocate the key(s) */ tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); rcu_assign_pointer(rx->aead[new_pending], tmp1); if (new_passive) rcu_assign_pointer(rx->aead[new_passive], tmp2); refcount_set(&tmp1->refcnt, 1); aligned = true; pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending, new_pending); exit: spin_unlock(&rx->lock); return aligned; } /** * tipc_crypto_key_pick_tx - Pick one TX key for message decryption * @tx: TX crypto handle * @rx: RX crypto handle (can be NULL) * @skb: the message skb which will be decrypted later * @tx_key: peer TX key id * * This function looks up the existing TX keys and pick one which is suitable * for the message decryption, that must be a cluster key and not used before * on the same message (i.e. recursive). * * Return: the TX AEAD key handle in case of success, otherwise NULL */ static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, struct tipc_crypto *rx, struct sk_buff *skb, u8 tx_key) { struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); struct tipc_aead *aead = NULL; struct tipc_key key = tx->key; u8 k, i = 0; /* Initialize data if not yet */ if (!skb_cb->tx_clone_deferred) { skb_cb->tx_clone_deferred = 1; memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); } skb_cb->tx_clone_ctx.rx = rx; if (++skb_cb->tx_clone_ctx.recurs > 2) return NULL; /* Pick one TX key */ spin_lock(&tx->lock); if (tx_key == KEY_MASTER) { aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock); goto done; } do { k = (i == 0) ? key.pending : ((i == 1) ? key.active : key.passive); if (!k) continue; aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); if (!aead) continue; if (aead->mode != CLUSTER_KEY || aead == skb_cb->tx_clone_ctx.last) { aead = NULL; continue; } /* Ok, found one cluster key */ skb_cb->tx_clone_ctx.last = aead; WARN_ON(skb->next); skb->next = skb_clone(skb, GFP_ATOMIC); if (unlikely(!skb->next)) pr_warn("Failed to clone skb for next round if any\n"); break; } while (++i < 3); done: if (likely(aead)) WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); spin_unlock(&tx->lock); return aead; } /** * tipc_crypto_key_synch: Synch own key data according to peer key status * @rx: RX crypto handle * @skb: TIPCv2 message buffer (incl. the ehdr from peer) * * This function updates the peer node related data as the peer RX active key * has changed, so the number of TX keys' users on this node are increased and * decreased correspondingly. * * It also considers if peer has no key, then we need to make own master key * (if any) taking over i.e. starting grace period and also trigger key * distributing process. * * The "per-peer" sndnxt is also reset when the peer key has switched. */ static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb) { struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb); struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; struct tipc_msg *hdr = buf_msg(skb); u32 self = tipc_own_addr(rx->net); u8 cur, new; unsigned long delay; /* Update RX 'key_master' flag according to peer, also mark "legacy" if * a peer has no master key. */ rx->key_master = ehdr->master_key; if (!rx->key_master) tx->legacy_user = 1; /* For later cases, apply only if message is destined to this node */ if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self) return; /* Case 1: Peer has no keys, let's make master key take over */ if (ehdr->rx_nokey) { /* Set or extend grace period */ tx->timer2 = jiffies; /* Schedule key distributing for the peer if not yet */ if (tx->key.keys && !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) { get_random_bytes(&delay, 2); delay %= 5; delay = msecs_to_jiffies(500 * ++delay); if (queue_delayed_work(tx->wq, &rx->work, delay)) tipc_node_get(rx->node); } } else { /* Cancel a pending key distributing if any */ atomic_xchg(&rx->key_distr, 0); } /* Case 2: Peer RX active key has changed, let's update own TX users */ cur = atomic_read(&rx->peer_rx_active); new = ehdr->rx_key_active; if (tx->key.keys && cur != new && atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) { if (new) tipc_aead_users_inc(tx->aead[new], INT_MAX); if (cur) tipc_aead_users_dec(tx->aead[cur], 0); atomic64_set(&rx->sndnxt, 0); /* Mark the point TX key users changed */ tx->timer1 = jiffies; pr_debug("%s: key users changed %d-- %d++, peer %s\n", tx->name, cur, new, rx->name); } } static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) { struct tipc_crypto *tx = tipc_net(net)->crypto_tx; struct tipc_key key; spin_lock_bh(&tx->lock); key = tx->key; WARN_ON(!key.active || tx_key != key.active); /* Free the active key */ tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); spin_unlock_bh(&tx->lock); pr_warn("%s: key is revoked\n", tx->name); return -EKEYREVOKED; } int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, struct tipc_node *node) { struct tipc_crypto *c; if (*crypto) return -EEXIST; /* Allocate crypto */ c = kzalloc(sizeof(*c), GFP_ATOMIC); if (!c) return -ENOMEM; /* Allocate workqueue on TX */ if (!node) { c->wq = alloc_ordered_workqueue("tipc_crypto", 0); if (!c->wq) { kfree(c); return -ENOMEM; } } /* Allocate statistic structure */ c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); if (!c->stats) { if (c->wq) destroy_workqueue(c->wq); kfree_sensitive(c); return -ENOMEM; } c->flags = 0; c->net = net; c->node = node; get_random_bytes(&c->key_gen, 2); tipc_crypto_key_set_state(c, 0, 0, 0); atomic_set(&c->key_distr, 0); atomic_set(&c->peer_rx_active, 0); atomic64_set(&c->sndnxt, 0); c->timer1 = jiffies; c->timer2 = jiffies; c->rekeying_intv = TIPC_REKEYING_INTV_DEF; spin_lock_init(&c->lock); scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX", (is_rx(c)) ? tipc_node_get_id_str(c->node) : tipc_own_id_string(c->net)); if (is_rx(c)) INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx); else INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx); *crypto = c; return 0; } void tipc_crypto_stop(struct tipc_crypto **crypto) { struct tipc_crypto *c = *crypto; u8 k; if (!c) return; /* Flush any queued works & destroy wq */ if (is_tx(c)) { c->rekeying_intv = 0; cancel_delayed_work_sync(&c->work); destroy_workqueue(c->wq); } /* Release AEAD keys */ rcu_read_lock(); for (k = KEY_MIN; k <= KEY_MAX; k++) tipc_aead_put(rcu_dereference(c->aead[k])); rcu_read_unlock(); pr_debug("%s: has been stopped\n", c->name); /* Free this crypto statistics */ free_percpu(c->stats); *crypto = NULL; kfree_sensitive(c); } void tipc_crypto_timeout(struct tipc_crypto *rx) { struct tipc_net *tn = tipc_net(rx->net); struct tipc_crypto *tx = tn->crypto_tx; struct tipc_key key; int cmd; /* TX pending: taking all users & stable -> active */ spin_lock(&tx->lock); key = tx->key; if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) goto s1; if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) goto s1; if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME)) goto s1; tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); if (key.active) tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); pr_info("%s: key[%d] is activated\n", tx->name, key.pending); s1: spin_unlock(&tx->lock); /* RX pending: having user -> active */ spin_lock(&rx->lock); key = rx->key; if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) goto s2; if (key.active) key.passive = key.active; key.active = key.pending; rx->timer2 = jiffies; tipc_crypto_key_set_state(rx, key.passive, key.active, 0); this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); pr_info("%s: key[%d] is activated\n", rx->name, key.pending); goto s5; s2: /* RX pending: not working -> remove */ if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10) goto s3; tipc_crypto_key_set_state(rx, key.passive, key.active, 0); tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock); pr_debug("%s: key[%d] is removed\n", rx->name, key.pending); goto s5; s3: /* RX active: timed out or no user -> pending */ if (!key.active) goto s4; if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) && tipc_aead_users(rx->aead[key.active]) > 0) goto s4; if (key.pending) key.passive = key.active; else key.pending = key.active; rx->timer2 = jiffies; tipc_crypto_key_set_state(rx, key.passive, 0, key.pending); tipc_aead_users_set(rx->aead[key.pending], 0); pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active); goto s5; s4: /* RX passive: outdated or not working -> free */ if (!key.passive) goto s5; if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) && tipc_aead_users(rx->aead[key.passive]) > -10) goto s5; tipc_crypto_key_set_state(rx, 0, key.active, key.pending); tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); pr_debug("%s: key[%d] is freed\n", rx->name, key.passive); s5: spin_unlock(&rx->lock); /* Relax it here, the flag will be set again if it really is, but only * when we are not in grace period for safety! */ if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) tx->legacy_user = 0; /* Limit max_tfms & do debug commands if needed */ if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) return; cmd = sysctl_tipc_max_tfms; sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; tipc_crypto_do_cmd(rx->net, cmd); } static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, struct tipc_bearer *b, struct tipc_media_addr *dst, struct tipc_node *__dnode, u8 type) { struct sk_buff *skb; skb = skb_clone(_skb, GFP_ATOMIC); if (skb) { TIPC_SKB_CB(skb)->xmit_type = type; tipc_crypto_xmit(net, &skb, b, dst, __dnode); if (skb) b->media->send_msg(net, skb, b, dst); } } /** * tipc_crypto_xmit - Build & encrypt TIPC message for xmit * @net: struct net * @skb: input/output message skb pointer * @b: bearer used for xmit later * @dst: destination media address * @__dnode: destination node for reference if any * * First, build an encryption message header on the top of the message, then * encrypt the original TIPC message by using the pending, master or active * key with this preference order. * If the encryption is successful, the encrypted skb is returned directly or * via the callback. * Otherwise, the skb is freed! * * Return: * * 0 : the encryption has succeeded (or no encryption) * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made * * -ENOKEK : the encryption has failed due to no key * * -EKEYREVOKED : the encryption has failed due to key revoked * * -ENOMEM : the encryption has failed due to no memory * * < 0 : the encryption has failed due to other reasons */ int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, struct tipc_bearer *b, struct tipc_media_addr *dst, struct tipc_node *__dnode) { struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); struct tipc_crypto *tx = tipc_net(net)->crypto_tx; struct tipc_crypto_stats __percpu *stats = tx->stats; struct tipc_msg *hdr = buf_msg(*skb); struct tipc_key key = tx->key; struct tipc_aead *aead = NULL; u32 user = msg_user(hdr); u32 type = msg_type(hdr); int rc = -ENOKEY; u8 tx_key = 0; /* No encryption? */ if (!tx->working) return 0; /* Pending key if peer has active on it or probing time */ if (unlikely(key.pending)) { tx_key = key.pending; if (!tx->key_master && !key.active) goto encrypt; if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) goto encrypt; if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) { pr_debug("%s: probing for key[%d]\n", tx->name, key.pending); goto encrypt; } if (user == LINK_CONFIG || user == LINK_PROTOCOL) tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, SKB_PROBING); } /* Master key if this is a *vital* message or in grace period */ if (tx->key_master) { tx_key = KEY_MASTER; if (!key.active) goto encrypt; if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) { pr_debug("%s: gracing for msg (%d %d)\n", tx->name, user, type); goto encrypt; } if (user == LINK_CONFIG || (user == LINK_PROTOCOL && type == RESET_MSG) || (user == MSG_CRYPTO && type == KEY_DISTR_MSG) || time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) { if (__rx && __rx->key_master && !atomic_read(&__rx->peer_rx_active)) goto encrypt; if (!__rx) { if (likely(!tx->legacy_user)) goto encrypt; tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, SKB_GRACING); } } } /* Else, use the active key if any */ if (likely(key.active)) { tx_key = key.active; goto encrypt; } goto exit; encrypt: aead = tipc_aead_get(tx->aead[tx_key]); if (unlikely(!aead)) goto exit; rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); if (likely(rc > 0)) rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); exit: switch (rc) { case 0: this_cpu_inc(stats->stat[STAT_OK]); break; case -EINPROGRESS: case -EBUSY: this_cpu_inc(stats->stat[STAT_ASYNC]); *skb = NULL; return rc; default: this_cpu_inc(stats->stat[STAT_NOK]); if (rc == -ENOKEY) this_cpu_inc(stats->stat[STAT_NOKEYS]); else if (rc == -EKEYREVOKED) this_cpu_inc(stats->stat[STAT_BADKEYS]); kfree_skb(*skb); *skb = NULL; break; } tipc_aead_put(aead); return rc; } /** * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer * @net: struct net * @rx: RX crypto handle * @skb: input/output message skb pointer * @b: bearer where the message has been received * * If the decryption is successful, the decrypted skb is returned directly or * as the callback, the encryption header and auth tag will be trimed out * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). * Otherwise, the skb will be freed! * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX * cluster key(s) can be taken for decryption (- recursive). * * Return: * * 0 : the decryption has successfully completed * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made * * -ENOKEY : the decryption has failed due to no key * * -EBADMSG : the decryption has failed due to bad message * * -ENOMEM : the decryption has failed due to no memory * * < 0 : the decryption has failed due to other reasons */ int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, struct sk_buff **skb, struct tipc_bearer *b) { struct tipc_crypto *tx = tipc_net(net)->crypto_tx; struct tipc_crypto_stats __percpu *stats; struct tipc_aead *aead = NULL; struct tipc_key key; int rc = -ENOKEY; u8 tx_key, n; tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; /* New peer? * Let's try with TX key (i.e. cluster mode) & verify the skb first! */ if (unlikely(!rx || tx_key == KEY_MASTER)) goto pick_tx; /* Pick RX key according to TX key if any */ key = rx->key; if (tx_key == key.active || tx_key == key.pending || tx_key == key.passive) goto decrypt; /* Unknown key, let's try to align RX key(s) */ if (tipc_crypto_key_try_align(rx, tx_key)) goto decrypt; pick_tx: /* No key suitable? Try to pick one from TX... */ aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key); if (aead) goto decrypt; goto exit; decrypt: rcu_read_lock(); if (!aead) aead = tipc_aead_get(rx->aead[tx_key]); rc = tipc_aead_decrypt(net, aead, *skb, b); rcu_read_unlock(); exit: stats = ((rx) ?: tx)->stats; switch (rc) { case 0: this_cpu_inc(stats->stat[STAT_OK]); break; case -EINPROGRESS: case -EBUSY: this_cpu_inc(stats->stat[STAT_ASYNC]); *skb = NULL; return rc; default: this_cpu_inc(stats->stat[STAT_NOK]); if (rc == -ENOKEY) { kfree_skb(*skb); *skb = NULL; if (rx) { /* Mark rx->nokey only if we dont have a * pending received session key, nor a newer * one i.e. in the next slot. */ n = key_next(tx_key); rx->nokey = !(rx->skey || rcu_access_pointer(rx->aead[n])); pr_debug_ratelimited("%s: nokey %d, key %d/%x\n", rx->name, rx->nokey, tx_key, rx->key.keys); tipc_node_put(rx->node); } this_cpu_inc(stats->stat[STAT_NOKEYS]); return rc; } else if (rc == -EBADMSG) { this_cpu_inc(stats->stat[STAT_BADMSGS]); } break; } tipc_crypto_rcv_complete(net, aead, b, skb, rc); return rc; } static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, struct tipc_bearer *b, struct sk_buff **skb, int err) { struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); struct tipc_crypto *rx = aead->crypto; struct tipc_aead *tmp = NULL; struct tipc_ehdr *ehdr; struct tipc_node *n; /* Is this completed by TX? */ if (unlikely(is_tx(aead->crypto))) { rx = skb_cb->tx_clone_ctx.rx; pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, (*skb)->next, skb_cb->flags); pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, aead->crypto->aead[1], aead->crypto->aead[2], aead->crypto->aead[3]); if (unlikely(err)) { if (err == -EBADMSG && (*skb)->next) tipc_rcv(net, (*skb)->next, b); goto free_skb; } if (likely((*skb)->next)) { kfree_skb((*skb)->next); (*skb)->next = NULL; } ehdr = (struct tipc_ehdr *)(*skb)->data; if (!rx) { WARN_ON(ehdr->user != LINK_CONFIG); n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, true); rx = tipc_node_crypto_rx(n); if (unlikely(!rx)) goto free_skb; } /* Ignore cloning if it was TX master key */ if (ehdr->tx_key == KEY_MASTER) goto rcv; if (tipc_aead_clone(&tmp, aead) < 0) goto rcv; WARN_ON(!refcount_inc_not_zero(&tmp->refcnt)); if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) { tipc_aead_free(&tmp->rcu); goto rcv; } tipc_aead_put(aead); aead = tmp; } if (unlikely(err)) { tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN); goto free_skb; } /* Set the RX key's user */ tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1); /* Mark this point, RX works */ rx->timer1 = jiffies; rcv: /* Remove ehdr & auth. tag prior to tipc_rcv() */ ehdr = (struct tipc_ehdr *)(*skb)->data; /* Mark this point, RX passive still works */ if (rx->key.passive && ehdr->tx_key == rx->key.passive) rx->timer2 = jiffies; skb_reset_network_header(*skb); skb_pull(*skb, tipc_ehdr_size(ehdr)); if (pskb_trim(*skb, (*skb)->len - aead->authsize)) goto free_skb; /* Validate TIPCv2 message */ if (unlikely(!tipc_msg_validate(skb))) { pr_err_ratelimited("Packet dropped after decryption!\n"); goto free_skb; } /* Ok, everything's fine, try to synch own keys according to peers' */ tipc_crypto_key_synch(rx, *skb); /* Re-fetch skb cb as skb might be changed in tipc_msg_validate */ skb_cb = TIPC_SKB_CB(*skb); /* Mark skb decrypted */ skb_cb->decrypted = 1; /* Clear clone cxt if any */ if (likely(!skb_cb->tx_clone_deferred)) goto exit; skb_cb->tx_clone_deferred = 0; memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); goto exit; free_skb: kfree_skb(*skb); *skb = NULL; exit: tipc_aead_put(aead); if (rx) tipc_node_put(rx->node); } static void tipc_crypto_do_cmd(struct net *net, int cmd) { struct tipc_net *tn = tipc_net(net); struct tipc_crypto *tx = tn->crypto_tx, *rx; struct list_head *p; unsigned int stat; int i, j, cpu; char buf[200]; /* Currently only one command is supported */ switch (cmd) { case 0xfff1: goto print_stats; default: return; } print_stats: /* Print a header */ pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); /* Print key status */ pr_info("Key status:\n"); pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), tipc_crypto_key_dump(tx, buf)); rcu_read_lock(); for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { rx = tipc_node_crypto_rx_by_list(p); pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), tipc_crypto_key_dump(rx, buf)); } rcu_read_unlock(); /* Print crypto statistics */ for (i = 0, j = 0; i < MAX_STATS; i++) j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); pr_info("Counter %s", buf); memset(buf, '-', 115); buf[115] = '\0'; pr_info("%s\n", buf); j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); for_each_possible_cpu(cpu) { for (i = 0; i < MAX_STATS; i++) { stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; j += scnprintf(buf + j, 200 - j, "|%11d ", stat); } pr_info("%s", buf); j = scnprintf(buf, 200, "%12s", " "); } rcu_read_lock(); for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { rx = tipc_node_crypto_rx_by_list(p); j = scnprintf(buf, 200, "RX(%7.7s) ", tipc_node_get_id_str(rx->node)); for_each_possible_cpu(cpu) { for (i = 0; i < MAX_STATS; i++) { stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; j += scnprintf(buf + j, 200 - j, "|%11d ", stat); } pr_info("%s", buf); j = scnprintf(buf, 200, "%12s", " "); } } rcu_read_unlock(); pr_info("\n======================== Done ========================\n"); } static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) { struct tipc_key key = c->key; struct tipc_aead *aead; int k, i = 0; char *s; for (k = KEY_MIN; k <= KEY_MAX; k++) { if (k == KEY_MASTER) { if (is_rx(c)) continue; if (time_before(jiffies, c->timer2 + TIPC_TX_GRACE_PERIOD)) s = "ACT"; else s = "PAS"; } else { if (k == key.passive) s = "PAS"; else if (k == key.active) s = "ACT"; else if (k == key.pending) s = "PEN"; else s = "-"; } i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); rcu_read_lock(); aead = rcu_dereference(c->aead[k]); if (aead) i += scnprintf(buf + i, 200 - i, "{\"0x...%s\", \"%s\"}/%d:%d", aead->hint, (aead->mode == CLUSTER_KEY) ? "c" : "p", atomic_read(&aead->users), refcount_read(&aead->refcnt)); rcu_read_unlock(); i += scnprintf(buf + i, 200 - i, "\n"); } if (is_rx(c)) i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", atomic_read(&c->peer_rx_active)); return buf; } static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, char *buf) { struct tipc_key *key = &old; int k, i = 0; char *s; /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ again: i += scnprintf(buf + i, 32 - i, "["); for (k = KEY_1; k <= KEY_3; k++) { if (k == key->passive) s = "pas"; else if (k == key->active) s = "act"; else if (k == key->pending) s = "pen"; else s = "-"; i += scnprintf(buf + i, 32 - i, (k != KEY_3) ? "%s " : "%s", s); } if (key != &new) { i += scnprintf(buf + i, 32 - i, "] -> "); key = &new; goto again; } i += scnprintf(buf + i, 32 - i, "]"); return buf; } /** * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point * @net: the struct net * @skb: the receiving message buffer */ void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb) { struct tipc_crypto *rx; struct tipc_msg *hdr; if (unlikely(skb_linearize(skb))) goto exit; hdr = buf_msg(skb); rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr)); if (unlikely(!rx)) goto exit; switch (msg_type(hdr)) { case KEY_DISTR_MSG: if (tipc_crypto_key_rcv(rx, hdr)) goto exit; break; default: break; } tipc_node_put(rx->node); exit: kfree_skb(skb); } /** * tipc_crypto_key_distr - Distribute a TX key * @tx: the TX crypto * @key: the key's index * @dest: the destination tipc node, = NULL if distributing to all nodes * * Return: 0 in case of success, otherwise < 0 */ int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key, struct tipc_node *dest) { struct tipc_aead *aead; u32 dnode = tipc_node_get_addr(dest); int rc = -ENOKEY; if (!sysctl_tipc_key_exchange_enabled) return 0; if (key) { rcu_read_lock(); aead = tipc_aead_get(tx->aead[key]); if (likely(aead)) { rc = tipc_crypto_key_xmit(tx->net, aead->key, aead->gen, aead->mode, dnode); tipc_aead_put(aead); } rcu_read_unlock(); } return rc; } /** * tipc_crypto_key_xmit - Send a session key * @net: the struct net * @skey: the session key to be sent * @gen: the key's generation * @mode: the key's mode * @dnode: the destination node address, = 0 if broadcasting to all nodes * * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG' * as its data section, then xmit-ed through the uc/bc link. * * Return: 0 in case of success, otherwise < 0 */ static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, u16 gen, u8 mode, u32 dnode) { struct sk_buff_head pkts; struct tipc_msg *hdr; struct sk_buff *skb; u16 size, cong_link_cnt; u8 *data; int rc; size = tipc_aead_key_size(skey); skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC); if (!skb) return -ENOMEM; hdr = buf_msg(skb); tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG, INT_H_SIZE, dnode); msg_set_size(hdr, INT_H_SIZE + size); msg_set_key_gen(hdr, gen); msg_set_key_mode(hdr, mode); data = msg_data(hdr); *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen); memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME); memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key, skey->keylen); __skb_queue_head_init(&pkts); __skb_queue_tail(&pkts, skb); if (dnode) rc = tipc_node_xmit(net, &pkts, dnode, 0); else rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt); return rc; } /** * tipc_crypto_key_rcv - Receive a session key * @rx: the RX crypto * @hdr: the TIPC v2 message incl. the receiving session key in its data * * This function retrieves the session key in the message from peer, then * schedules a RX work to attach the key to the corresponding RX crypto. * * Return: "true" if the key has been scheduled for attaching, otherwise * "false". */ static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr) { struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; struct tipc_aead_key *skey = NULL; u16 key_gen = msg_key_gen(hdr); u32 size = msg_data_sz(hdr); u8 *data = msg_data(hdr); unsigned int keylen; /* Verify whether the size can exist in the packet */ if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) { pr_debug("%s: message data size is too small\n", rx->name); goto exit; } keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME))); /* Verify the supplied size values */ if (unlikely(keylen > TIPC_AEAD_KEY_SIZE_MAX || size != keylen + sizeof(struct tipc_aead_key))) { pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name); goto exit; } spin_lock(&rx->lock); if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) { pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name, rx->skey, key_gen, rx->key_gen); goto exit_unlock; } /* Allocate memory for the key */ skey = kmalloc(size, GFP_ATOMIC); if (unlikely(!skey)) { pr_err("%s: unable to allocate memory for skey\n", rx->name); goto exit_unlock; } /* Copy key from msg data */ skey->keylen = keylen; memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->keylen); rx->key_gen = key_gen; rx->skey_mode = msg_key_mode(hdr); rx->skey = skey; rx->nokey = 0; mb(); /* for nokey flag */ exit_unlock: spin_unlock(&rx->lock); exit: /* Schedule the key attaching on this crypto */ if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0))) return true; return false; } /** * tipc_crypto_work_rx - Scheduled RX works handler * @work: the struct RX work * * The function processes the previous scheduled works i.e. distributing TX key * or attaching a received session key on RX crypto. */ static void tipc_crypto_work_rx(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work); struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; unsigned long delay = msecs_to_jiffies(5000); bool resched = false; u8 key; int rc; /* Case 1: Distribute TX key to peer if scheduled */ if (atomic_cmpxchg(&rx->key_distr, KEY_DISTR_SCHED, KEY_DISTR_COMPL) == KEY_DISTR_SCHED) { /* Always pick the newest one for distributing */ key = tx->key.pending ?: tx->key.active; rc = tipc_crypto_key_distr(tx, key, rx->node); if (unlikely(rc)) pr_warn("%s: unable to distr key[%d] to %s, err %d\n", tx->name, key, tipc_node_get_id_str(rx->node), rc); /* Sched for key_distr releasing */ resched = true; } else { atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0); } /* Case 2: Attach a pending received session key from peer if any */ if (rx->skey) { rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false); if (unlikely(rc < 0)) pr_warn("%s: unable to attach received skey, err %d\n", rx->name, rc); switch (rc) { case -EBUSY: case -ENOMEM: /* Resched the key attaching */ resched = true; break; default: synchronize_rcu(); kfree(rx->skey); rx->skey = NULL; break; } } if (resched && queue_delayed_work(tx->wq, &rx->work, delay)) return; tipc_node_put(rx->node); } /** * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval * @tx: TX crypto * @changed: if the rekeying needs to be rescheduled with new interval * @new_intv: new rekeying interval (when "changed" = true) */ void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed, u32 new_intv) { unsigned long delay; bool now = false; if (changed) { if (new_intv == TIPC_REKEYING_NOW) now = true; else tx->rekeying_intv = new_intv; cancel_delayed_work_sync(&tx->work); } if (tx->rekeying_intv || now) { delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000; queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay)); } } /** * tipc_crypto_work_tx - Scheduled TX works handler * @work: the struct TX work * * The function processes the previous scheduled work, i.e. key rekeying, by * generating a new session key based on current one, then attaching it to the * TX crypto and finally distributing it to peers. It also re-schedules the * rekeying if needed. */ static void tipc_crypto_work_tx(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work); struct tipc_aead_key *skey = NULL; struct tipc_key key = tx->key; struct tipc_aead *aead; int rc = -ENOMEM; if (unlikely(key.pending)) goto resched; /* Take current key as a template */ rcu_read_lock(); aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]); if (unlikely(!aead)) { rcu_read_unlock(); /* At least one key should exist for securing */ return; } /* Lets duplicate it first */ skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC); rcu_read_unlock(); /* Now, generate new key, initiate & distribute it */ if (likely(skey)) { rc = tipc_aead_key_generate(skey) ?: tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false); if (likely(rc > 0)) rc = tipc_crypto_key_distr(tx, rc, NULL); kfree_sensitive(skey); } if (unlikely(rc)) pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc); resched: /* Re-schedule rekeying if any */ tipc_crypto_rekeying_sched(tx, false, 0); } |
| 17 17 17 7 7 7 7 7 7 7 7 7 7 24 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #include "peer.h" #include "device.h" #include "queueing.h" #include "timers.h" #include "peerlookup.h" #include "noise.h" #include <linux/kref.h> #include <linux/lockdep.h> #include <linux/rcupdate.h> #include <linux/list.h> static struct kmem_cache *peer_cache; static atomic64_t peer_counter = ATOMIC64_INIT(0); struct wg_peer *wg_peer_create(struct wg_device *wg, const u8 public_key[NOISE_PUBLIC_KEY_LEN], const u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN]) { struct wg_peer *peer; int ret = -ENOMEM; lockdep_assert_held(&wg->device_update_lock); if (wg->num_peers >= MAX_PEERS_PER_DEVICE) return ERR_PTR(ret); peer = kmem_cache_zalloc(peer_cache, GFP_KERNEL); if (unlikely(!peer)) return ERR_PTR(ret); if (unlikely(dst_cache_init(&peer->endpoint_cache, GFP_KERNEL))) goto err; peer->device = wg; wg_noise_handshake_init(&peer->handshake, &wg->static_identity, public_key, preshared_key, peer); peer->internal_id = atomic64_inc_return(&peer_counter); peer->serial_work_cpu = nr_cpumask_bits; wg_cookie_init(&peer->latest_cookie); wg_timers_init(peer); wg_cookie_checker_precompute_peer_keys(peer); spin_lock_init(&peer->keypairs.keypair_update_lock); INIT_WORK(&peer->transmit_handshake_work, wg_packet_handshake_send_worker); INIT_WORK(&peer->transmit_packet_work, wg_packet_tx_worker); wg_prev_queue_init(&peer->tx_queue); wg_prev_queue_init(&peer->rx_queue); rwlock_init(&peer->endpoint_lock); kref_init(&peer->refcount); skb_queue_head_init(&peer->staged_packet_queue); wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake); set_bit(NAPI_STATE_NO_BUSY_POLL, &peer->napi.state); netif_napi_add(wg->dev, &peer->napi, wg_packet_rx_poll); napi_enable(&peer->napi); list_add_tail(&peer->peer_list, &wg->peer_list); INIT_LIST_HEAD(&peer->allowedips_list); wg_pubkey_hashtable_add(wg->peer_hashtable, peer); ++wg->num_peers; pr_debug("%s: Peer %llu created\n", wg->dev->name, peer->internal_id); return peer; err: kmem_cache_free(peer_cache, peer); return ERR_PTR(ret); } struct wg_peer *wg_peer_get_maybe_zero(struct wg_peer *peer) { RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(), "Taking peer reference without holding the RCU read lock"); if (unlikely(!peer || !kref_get_unless_zero(&peer->refcount))) return NULL; return peer; } static void peer_make_dead(struct wg_peer *peer) { /* Remove from configuration-time lookup structures. */ list_del_init(&peer->peer_list); wg_allowedips_remove_by_peer(&peer->device->peer_allowedips, peer, &peer->device->device_update_lock); wg_pubkey_hashtable_remove(peer->device->peer_hashtable, peer); /* Mark as dead, so that we don't allow jumping contexts after. */ WRITE_ONCE(peer->is_dead, true); /* The caller must now synchronize_net() for this to take effect. */ } static void peer_remove_after_dead(struct wg_peer *peer) { WARN_ON(!peer->is_dead); /* No more keypairs can be created for this peer, since is_dead protects * add_new_keypair, so we can now destroy existing ones. */ wg_noise_keypairs_clear(&peer->keypairs); /* Destroy all ongoing timers that were in-flight at the beginning of * this function. */ wg_timers_stop(peer); /* The transition between packet encryption/decryption queues isn't * guarded by is_dead, but each reference's life is strictly bounded by * two generations: once for parallel crypto and once for serial * ingestion, so we can simply flush twice, and be sure that we no * longer have references inside these queues. */ /* a) For encrypt/decrypt. */ flush_workqueue(peer->device->packet_crypt_wq); /* b.1) For send (but not receive, since that's napi). */ flush_workqueue(peer->device->packet_crypt_wq); /* b.2.1) For receive (but not send, since that's wq). */ napi_disable(&peer->napi); /* b.2.1) It's now safe to remove the napi struct, which must be done * here from process context. */ netif_napi_del(&peer->napi); /* Ensure any workstructs we own (like transmit_handshake_work or * clear_peer_work) no longer are in use. */ flush_workqueue(peer->device->handshake_send_wq); /* After the above flushes, a peer might still be active in a few * different contexts: 1) from xmit(), before hitting is_dead and * returning, 2) from wg_packet_consume_data(), before hitting is_dead * and returning, 3) from wg_receive_handshake_packet() after a point * where it has processed an incoming handshake packet, but where * all calls to pass it off to timers fails because of is_dead. We won't * have new references in (1) eventually, because we're removed from * allowedips; we won't have new references in (2) eventually, because * wg_index_hashtable_lookup will always return NULL, since we removed * all existing keypairs and no more can be created; we won't have new * references in (3) eventually, because we're removed from the pubkey * hash table, which allows for a maximum of one handshake response, * via the still-uncleared index hashtable entry, but not more than one, * and in wg_cookie_message_consume, the lookup eventually gets a peer * with a refcount of zero, so no new reference is taken. */ --peer->device->num_peers; wg_peer_put(peer); } /* We have a separate "remove" function make sure that all active places where * a peer is currently operating will eventually come to an end and not pass * their reference onto another context. */ void wg_peer_remove(struct wg_peer *peer) { if (unlikely(!peer)) return; lockdep_assert_held(&peer->device->device_update_lock); peer_make_dead(peer); synchronize_net(); peer_remove_after_dead(peer); } void wg_peer_remove_all(struct wg_device *wg) { struct wg_peer *peer, *temp; LIST_HEAD(dead_peers); lockdep_assert_held(&wg->device_update_lock); /* Avoid having to traverse individually for each one. */ wg_allowedips_free(&wg->peer_allowedips, &wg->device_update_lock); list_for_each_entry_safe(peer, temp, &wg->peer_list, peer_list) { peer_make_dead(peer); list_add_tail(&peer->peer_list, &dead_peers); } synchronize_net(); list_for_each_entry_safe(peer, temp, &dead_peers, peer_list) peer_remove_after_dead(peer); } static void rcu_release(struct rcu_head *rcu) { struct wg_peer *peer = container_of(rcu, struct wg_peer, rcu); dst_cache_destroy(&peer->endpoint_cache); WARN_ON(wg_prev_queue_peek(&peer->tx_queue) || wg_prev_queue_peek(&peer->rx_queue)); /* The final zeroing takes care of clearing any remaining handshake key * material and other potentially sensitive information. */ memzero_explicit(peer, sizeof(*peer)); kmem_cache_free(peer_cache, peer); } static void kref_release(struct kref *refcount) { struct wg_peer *peer = container_of(refcount, struct wg_peer, refcount); pr_debug("%s: Peer %llu (%pISpfsc) destroyed\n", peer->device->dev->name, peer->internal_id, &peer->endpoint.addr); /* Remove ourself from dynamic runtime lookup structures, now that the * last reference is gone. */ wg_index_hashtable_remove(peer->device->index_hashtable, &peer->handshake.entry); /* Remove any lingering packets that didn't have a chance to be * transmitted. */ wg_packet_purge_staged_packets(peer); /* Free the memory used. */ call_rcu(&peer->rcu, rcu_release); } void wg_peer_put(struct wg_peer *peer) { if (unlikely(!peer)) return; kref_put(&peer->refcount, kref_release); } int __init wg_peer_init(void) { peer_cache = KMEM_CACHE(wg_peer, 0); return peer_cache ? 0 : -ENOMEM; } void wg_peer_uninit(void) { kmem_cache_destroy(peer_cache); } |
| 224 224 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | // SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-2020 Intel Corporation. All rights reserved. */ #include <linux/jump_label.h> #include <linux/uaccess.h> #include <linux/export.h> #include <linux/instrumented.h> #include <linux/string.h> #include <linux/types.h> #include <asm/mce.h> #ifdef CONFIG_X86_MCE static DEFINE_STATIC_KEY_FALSE(copy_mc_fragile_key); void enable_copy_mc_fragile(void) { static_branch_inc(©_mc_fragile_key); } #define copy_mc_fragile_enabled (static_branch_unlikely(©_mc_fragile_key)) /* * Similar to copy_user_handle_tail, probe for the write fault point, or * source exception point. */ __visible notrace unsigned long copy_mc_fragile_handle_tail(char *to, char *from, unsigned len) { for (; len; --len, to++, from++) if (copy_mc_fragile(to, from, 1)) break; return len; } #else /* * No point in doing careful copying, or consulting a static key when * there is no #MC handler in the CONFIG_X86_MCE=n case. */ void enable_copy_mc_fragile(void) { } #define copy_mc_fragile_enabled (0) #endif unsigned long copy_mc_enhanced_fast_string(void *dst, const void *src, unsigned len); /** * copy_mc_to_kernel - memory copy that handles source exceptions * * @dst: destination address * @src: source address * @len: number of bytes to copy * * Call into the 'fragile' version on systems that benefit from avoiding * corner case poison consumption scenarios, For example, accessing * poison across 2 cachelines with a single instruction. Almost all * other uses case can use copy_mc_enhanced_fast_string() for a fast * recoverable copy, or fallback to plain memcpy. * * Return 0 for success, or number of bytes not copied if there was an * exception. */ unsigned long __must_check copy_mc_to_kernel(void *dst, const void *src, unsigned len) { unsigned long ret; if (copy_mc_fragile_enabled) { instrument_memcpy_before(dst, src, len); ret = copy_mc_fragile(dst, src, len); instrument_memcpy_after(dst, src, len, ret); return ret; } if (static_cpu_has(X86_FEATURE_ERMS)) { instrument_memcpy_before(dst, src, len); ret = copy_mc_enhanced_fast_string(dst, src, len); instrument_memcpy_after(dst, src, len, ret); return ret; } memcpy(dst, src, len); return 0; } EXPORT_SYMBOL_GPL(copy_mc_to_kernel); unsigned long __must_check copy_mc_to_user(void __user *dst, const void *src, unsigned len) { unsigned long ret; if (copy_mc_fragile_enabled) { instrument_copy_to_user(dst, src, len); __uaccess_begin(); ret = copy_mc_fragile((__force void *)dst, src, len); __uaccess_end(); return ret; } if (static_cpu_has(X86_FEATURE_ERMS)) { instrument_copy_to_user(dst, src, len); __uaccess_begin(); ret = copy_mc_enhanced_fast_string((__force void *)dst, src, len); __uaccess_end(); return ret; } return copy_user_generic((__force void *)dst, src, len); } |
| 137 1118 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef MPLS_INTERNAL_H #define MPLS_INTERNAL_H #include <net/mpls.h> /* put a reasonable limit on the number of labels * we will accept from userspace */ #define MAX_NEW_LABELS 30 struct mpls_entry_decoded { u32 label; u8 ttl; u8 tc; u8 bos; }; struct mpls_pcpu_stats { struct mpls_link_stats stats; struct u64_stats_sync syncp; }; struct mpls_dev { int input_enabled; struct net_device *dev; struct mpls_pcpu_stats __percpu *stats; struct ctl_table_header *sysctl; struct rcu_head rcu; }; #if BITS_PER_LONG == 32 #define MPLS_INC_STATS_LEN(mdev, len, pkts_field, bytes_field) \ do { \ __typeof__(*(mdev)->stats) *ptr = \ raw_cpu_ptr((mdev)->stats); \ local_bh_disable(); \ u64_stats_update_begin(&ptr->syncp); \ ptr->stats.pkts_field++; \ ptr->stats.bytes_field += (len); \ u64_stats_update_end(&ptr->syncp); \ local_bh_enable(); \ } while (0) #define MPLS_INC_STATS(mdev, field) \ do { \ __typeof__(*(mdev)->stats) *ptr = \ raw_cpu_ptr((mdev)->stats); \ local_bh_disable(); \ u64_stats_update_begin(&ptr->syncp); \ ptr->stats.field++; \ u64_stats_update_end(&ptr->syncp); \ local_bh_enable(); \ } while (0) #else #define MPLS_INC_STATS_LEN(mdev, len, pkts_field, bytes_field) \ do { \ this_cpu_inc((mdev)->stats->stats.pkts_field); \ this_cpu_add((mdev)->stats->stats.bytes_field, (len)); \ } while (0) #define MPLS_INC_STATS(mdev, field) \ this_cpu_inc((mdev)->stats->stats.field) #endif struct sk_buff; #define LABEL_NOT_SPECIFIED (1 << 20) /* This maximum ha length copied from the definition of struct neighbour */ #define VIA_ALEN_ALIGN sizeof(unsigned long) #define MAX_VIA_ALEN (ALIGN(MAX_ADDR_LEN, VIA_ALEN_ALIGN)) enum mpls_payload_type { MPT_UNSPEC, /* IPv4 or IPv6 */ MPT_IPV4 = 4, MPT_IPV6 = 6, /* Other types not implemented: * - Pseudo-wire with or without control word (RFC4385) * - GAL (RFC5586) */ }; struct mpls_nh { /* next hop label forwarding entry */ struct net_device *nh_dev; /* nh_flags is accessed under RCU in the packet path; it is * modified handling netdev events with rtnl lock held */ unsigned int nh_flags; u8 nh_labels; u8 nh_via_alen; u8 nh_via_table; u8 nh_reserved1; u32 nh_label[]; }; /* offset of via from beginning of mpls_nh */ #define MPLS_NH_VIA_OFF(num_labels) \ ALIGN(sizeof(struct mpls_nh) + (num_labels) * sizeof(u32), \ VIA_ALEN_ALIGN) /* all nexthops within a route have the same size based on the * max number of labels and max via length across all nexthops */ #define MPLS_NH_SIZE(num_labels, max_via_alen) \ (MPLS_NH_VIA_OFF((num_labels)) + \ ALIGN((max_via_alen), VIA_ALEN_ALIGN)) enum mpls_ttl_propagation { MPLS_TTL_PROP_DEFAULT, MPLS_TTL_PROP_ENABLED, MPLS_TTL_PROP_DISABLED, }; /* The route, nexthops and vias are stored together in the same memory * block: * * +----------------------+ * | mpls_route | * +----------------------+ * | mpls_nh 0 | * +----------------------+ * | alignment padding | 4 bytes for odd number of labels * +----------------------+ * | via[rt_max_alen] 0 | * +----------------------+ * | alignment padding | via's aligned on sizeof(unsigned long) * +----------------------+ * | ... | * +----------------------+ * | mpls_nh n-1 | * +----------------------+ * | via[rt_max_alen] n-1 | * +----------------------+ */ struct mpls_route { /* next hop label forwarding entry */ struct rcu_head rt_rcu; u8 rt_protocol; u8 rt_payload_type; u8 rt_max_alen; u8 rt_ttl_propagate; u8 rt_nhn; /* rt_nhn_alive is accessed under RCU in the packet path; it * is modified handling netdev events with rtnl lock held */ u8 rt_nhn_alive; u8 rt_nh_size; u8 rt_via_offset; u8 rt_reserved1; struct mpls_nh rt_nh[]; }; #define for_nexthops(rt) { \ int nhsel; const struct mpls_nh *nh; \ for (nhsel = 0, nh = (rt)->rt_nh; \ nhsel < (rt)->rt_nhn; \ nh = (void *)nh + (rt)->rt_nh_size, nhsel++) #define change_nexthops(rt) { \ int nhsel; struct mpls_nh *nh; \ for (nhsel = 0, nh = (rt)->rt_nh; \ nhsel < (rt)->rt_nhn; \ nh = (void *)nh + (rt)->rt_nh_size, nhsel++) #define endfor_nexthops(rt) } static inline struct mpls_entry_decoded mpls_entry_decode(struct mpls_shim_hdr *hdr) { struct mpls_entry_decoded result; unsigned entry = be32_to_cpu(hdr->label_stack_entry); result.label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; result.ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; result.tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; result.bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; return result; } static inline struct mpls_dev *mpls_dev_get(const struct net_device *dev) { return rcu_dereference_rtnl(dev->mpls_ptr); } int nla_put_labels(struct sk_buff *skb, int attrtype, u8 labels, const u32 label[]); int nla_get_labels(const struct nlattr *nla, u8 max_labels, u8 *labels, u32 label[], struct netlink_ext_ack *extack); bool mpls_output_possible(const struct net_device *dev); unsigned int mpls_dev_mtu(const struct net_device *dev); bool mpls_pkt_too_big(const struct sk_buff *skb, unsigned int mtu); void mpls_stats_inc_outucastpkts(struct net_device *dev, const struct sk_buff *skb); #endif /* MPLS_INTERNAL_H */ |
| 246 246 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 | // SPDX-License-Identifier: GPL-2.0-or-later /* auditsc.c -- System-call auditing support * Handles all system-call specific auditing features. * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * Copyright 2005 Hewlett-Packard Development Company, L.P. * Copyright (C) 2005, 2006 IBM Corporation * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> * * Many of the ideas implemented here are from Stephen C. Tweedie, * especially the idea of avoiding a copy by using getname. * * The method for actual interception of syscall entry and exit (not in * this file -- see entry.S) is based on a GPL'd patch written by * okir@suse.de and Copyright 2003 SuSE Linux AG. * * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, * 2006. * * The support of additional filter rules compares (>, <, >=, <=) was * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. * * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional * filesystem information. * * Subject and object context labeling support added by <danjones@us.ibm.com> * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <asm/types.h> #include <linux/atomic.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/mount.h> #include <linux/socket.h> #include <linux/mqueue.h> #include <linux/audit.h> #include <linux/personality.h> #include <linux/time.h> #include <linux/netlink.h> #include <linux/compiler.h> #include <asm/unistd.h> #include <linux/security.h> #include <linux/list.h> #include <linux/binfmts.h> #include <linux/highmem.h> #include <linux/syscalls.h> #include <asm/syscall.h> #include <linux/capability.h> #include <linux/fs_struct.h> #include <linux/compat.h> #include <linux/ctype.h> #include <linux/string.h> #include <linux/uaccess.h> #include <linux/fsnotify_backend.h> #include <uapi/linux/limits.h> #include <uapi/linux/netfilter/nf_tables.h> #include <uapi/linux/openat2.h> // struct open_how #include <uapi/linux/fanotify.h> #include "audit.h" /* flags stating the success for a syscall */ #define AUDITSC_INVALID 0 #define AUDITSC_SUCCESS 1 #define AUDITSC_FAILURE 2 /* no execve audit message should be longer than this (userspace limits), * see the note near the top of audit_log_execve_info() about this value */ #define MAX_EXECVE_AUDIT_LEN 7500 /* max length to print of cmdline/proctitle value during audit */ #define MAX_PROCTITLE_AUDIT_LEN 128 /* number of audit rules */ int audit_n_rules; /* determines whether we collect data for signals sent */ int audit_signals; struct audit_aux_data { struct audit_aux_data *next; int type; }; /* Number of target pids per aux struct. */ #define AUDIT_AUX_PIDS 16 struct audit_aux_data_pids { struct audit_aux_data d; pid_t target_pid[AUDIT_AUX_PIDS]; kuid_t target_auid[AUDIT_AUX_PIDS]; kuid_t target_uid[AUDIT_AUX_PIDS]; unsigned int target_sessionid[AUDIT_AUX_PIDS]; struct lsm_prop target_ref[AUDIT_AUX_PIDS]; char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; int pid_count; }; struct audit_aux_data_bprm_fcaps { struct audit_aux_data d; struct audit_cap_data fcap; unsigned int fcap_ver; struct audit_cap_data old_pcap; struct audit_cap_data new_pcap; }; struct audit_tree_refs { struct audit_tree_refs *next; struct audit_chunk *c[31]; }; struct audit_nfcfgop_tab { enum audit_nfcfgop op; const char *s; }; static const struct audit_nfcfgop_tab audit_nfcfgs[] = { { AUDIT_XT_OP_REGISTER, "xt_register" }, { AUDIT_XT_OP_REPLACE, "xt_replace" }, { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, { AUDIT_NFT_OP_INVALID, "nft_invalid" }, }; static int audit_match_perm(struct audit_context *ctx, int mask) { unsigned n; if (unlikely(!ctx)) return 0; n = ctx->major; switch (audit_classify_syscall(ctx->arch, n)) { case AUDITSC_NATIVE: if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR, n)) return 1; return 0; case AUDITSC_COMPAT: /* 32bit on biarch */ if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE_32, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ_32, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR_32, n)) return 1; return 0; case AUDITSC_OPEN: return mask & ACC_MODE(ctx->argv[1]); case AUDITSC_OPENAT: return mask & ACC_MODE(ctx->argv[2]); case AUDITSC_SOCKETCALL: return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); case AUDITSC_EXECVE: return mask & AUDIT_PERM_EXEC; case AUDITSC_OPENAT2: return mask & ACC_MODE((u32)ctx->openat2.flags); default: return 0; } } static int audit_match_filetype(struct audit_context *ctx, int val) { struct audit_names *n; umode_t mode = (umode_t)val; if (unlikely(!ctx)) return 0; list_for_each_entry(n, &ctx->names_list, list) { if ((n->ino != AUDIT_INO_UNSET) && ((n->mode & S_IFMT) == mode)) return 1; } return 0; } /* * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; * ->first_trees points to its beginning, ->trees - to the current end of data. * ->tree_count is the number of free entries in array pointed to by ->trees. * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, * it's going to remain 1-element for almost any setup) until we free context itself. * References in it _are_ dropped - at the same time we free/drop aux stuff. */ static void audit_set_auditable(struct audit_context *ctx) { if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } } static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) { struct audit_tree_refs *p = ctx->trees; int left = ctx->tree_count; if (likely(left)) { p->c[--left] = chunk; ctx->tree_count = left; return 1; } if (!p) return 0; p = p->next; if (p) { p->c[30] = chunk; ctx->trees = p; ctx->tree_count = 30; return 1; } return 0; } static int grow_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p = ctx->trees; ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); if (!ctx->trees) { ctx->trees = p; return 0; } if (p) p->next = ctx->trees; else ctx->first_trees = ctx->trees; ctx->tree_count = 31; return 1; } static void unroll_tree_refs(struct audit_context *ctx, struct audit_tree_refs *p, int count) { struct audit_tree_refs *q; int n; if (!p) { /* we started with empty chain */ p = ctx->first_trees; count = 31; /* if the very first allocation has failed, nothing to do */ if (!p) return; } n = count; for (q = p; q != ctx->trees; q = q->next, n = 31) { while (n--) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } } while (n-- > ctx->tree_count) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } ctx->trees = p; ctx->tree_count = count; } static void free_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p, *q; for (p = ctx->first_trees; p; p = q) { q = p->next; kfree(p); } } static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) { struct audit_tree_refs *p; int n; if (!tree) return 0; /* full ones */ for (p = ctx->first_trees; p != ctx->trees; p = p->next) { for (n = 0; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } /* partial */ if (p) { for (n = ctx->tree_count; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } return 0; } static int audit_compare_uid(kuid_t uid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_uid_comparator(uid, f->op, name->uid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_uid_comparator(uid, f->op, n->uid); if (rc) return rc; } } return 0; } static int audit_compare_gid(kgid_t gid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_gid_comparator(gid, f->op, name->gid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_gid_comparator(gid, f->op, n->gid); if (rc) return rc; } } return 0; } static int audit_field_compare(struct task_struct *tsk, const struct cred *cred, struct audit_field *f, struct audit_context *ctx, struct audit_names *name) { switch (f->val) { /* process to file object comparisons */ case AUDIT_COMPARE_UID_TO_OBJ_UID: return audit_compare_uid(cred->uid, name, f, ctx); case AUDIT_COMPARE_GID_TO_OBJ_GID: return audit_compare_gid(cred->gid, name, f, ctx); case AUDIT_COMPARE_EUID_TO_OBJ_UID: return audit_compare_uid(cred->euid, name, f, ctx); case AUDIT_COMPARE_EGID_TO_OBJ_GID: return audit_compare_gid(cred->egid, name, f, ctx); case AUDIT_COMPARE_AUID_TO_OBJ_UID: return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); case AUDIT_COMPARE_SUID_TO_OBJ_UID: return audit_compare_uid(cred->suid, name, f, ctx); case AUDIT_COMPARE_SGID_TO_OBJ_GID: return audit_compare_gid(cred->sgid, name, f, ctx); case AUDIT_COMPARE_FSUID_TO_OBJ_UID: return audit_compare_uid(cred->fsuid, name, f, ctx); case AUDIT_COMPARE_FSGID_TO_OBJ_GID: return audit_compare_gid(cred->fsgid, name, f, ctx); /* uid comparisons */ case AUDIT_COMPARE_UID_TO_AUID: return audit_uid_comparator(cred->uid, f->op, audit_get_loginuid(tsk)); case AUDIT_COMPARE_UID_TO_EUID: return audit_uid_comparator(cred->uid, f->op, cred->euid); case AUDIT_COMPARE_UID_TO_SUID: return audit_uid_comparator(cred->uid, f->op, cred->suid); case AUDIT_COMPARE_UID_TO_FSUID: return audit_uid_comparator(cred->uid, f->op, cred->fsuid); /* auid comparisons */ case AUDIT_COMPARE_AUID_TO_EUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->euid); case AUDIT_COMPARE_AUID_TO_SUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->suid); case AUDIT_COMPARE_AUID_TO_FSUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->fsuid); /* euid comparisons */ case AUDIT_COMPARE_EUID_TO_SUID: return audit_uid_comparator(cred->euid, f->op, cred->suid); case AUDIT_COMPARE_EUID_TO_FSUID: return audit_uid_comparator(cred->euid, f->op, cred->fsuid); /* suid comparisons */ case AUDIT_COMPARE_SUID_TO_FSUID: return audit_uid_comparator(cred->suid, f->op, cred->fsuid); /* gid comparisons */ case AUDIT_COMPARE_GID_TO_EGID: return audit_gid_comparator(cred->gid, f->op, cred->egid); case AUDIT_COMPARE_GID_TO_SGID: return audit_gid_comparator(cred->gid, f->op, cred->sgid); case AUDIT_COMPARE_GID_TO_FSGID: return audit_gid_comparator(cred->gid, f->op, cred->fsgid); /* egid comparisons */ case AUDIT_COMPARE_EGID_TO_SGID: return audit_gid_comparator(cred->egid, f->op, cred->sgid); case AUDIT_COMPARE_EGID_TO_FSGID: return audit_gid_comparator(cred->egid, f->op, cred->fsgid); /* sgid comparison */ case AUDIT_COMPARE_SGID_TO_FSGID: return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); default: WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); return 0; } return 0; } /* Determine if any context name data matches a rule's watch data */ /* Compare a task_struct with an audit_rule. Return 1 on match, 0 * otherwise. * * If task_creation is true, this is an explicit indication that we are * filtering a task rule at task creation time. This and tsk == current are * the only situations where tsk->cred may be accessed without an rcu read lock. */ static int audit_filter_rules(struct task_struct *tsk, struct audit_krule *rule, struct audit_context *ctx, struct audit_names *name, enum audit_state *state, bool task_creation) { const struct cred *cred; int i, need_sid = 1; struct lsm_prop prop = { }; unsigned int sessionid; if (ctx && rule->prio <= ctx->prio) return 0; cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; struct audit_names *n; int result = 0; pid_t pid; switch (f->type) { case AUDIT_PID: pid = task_tgid_nr(tsk); result = audit_comparator(pid, f->op, f->val); break; case AUDIT_PPID: if (ctx) { if (!ctx->ppid) ctx->ppid = task_ppid_nr(tsk); result = audit_comparator(ctx->ppid, f->op, f->val); } break; case AUDIT_EXE: result = audit_exe_compare(tsk, rule->exe); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_UID: result = audit_uid_comparator(cred->uid, f->op, f->uid); break; case AUDIT_EUID: result = audit_uid_comparator(cred->euid, f->op, f->uid); break; case AUDIT_SUID: result = audit_uid_comparator(cred->suid, f->op, f->uid); break; case AUDIT_FSUID: result = audit_uid_comparator(cred->fsuid, f->op, f->uid); break; case AUDIT_GID: result = audit_gid_comparator(cred->gid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_EGID: result = audit_gid_comparator(cred->egid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_SGID: result = audit_gid_comparator(cred->sgid, f->op, f->gid); break; case AUDIT_FSGID: result = audit_gid_comparator(cred->fsgid, f->op, f->gid); break; case AUDIT_SESSIONID: sessionid = audit_get_sessionid(tsk); result = audit_comparator(sessionid, f->op, f->val); break; case AUDIT_PERS: result = audit_comparator(tsk->personality, f->op, f->val); break; case AUDIT_ARCH: if (ctx) result = audit_comparator(ctx->arch, f->op, f->val); break; case AUDIT_EXIT: if (ctx && ctx->return_valid != AUDITSC_INVALID) result = audit_comparator(ctx->return_code, f->op, f->val); break; case AUDIT_SUCCESS: if (ctx && ctx->return_valid != AUDITSC_INVALID) { if (f->val) result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); else result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); } break; case AUDIT_DEVMAJOR: if (name) { if (audit_comparator(MAJOR(name->dev), f->op, f->val) || audit_comparator(MAJOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MAJOR(n->dev), f->op, f->val) || audit_comparator(MAJOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_DEVMINOR: if (name) { if (audit_comparator(MINOR(name->dev), f->op, f->val) || audit_comparator(MINOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MINOR(n->dev), f->op, f->val) || audit_comparator(MINOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_INODE: if (name) result = audit_comparator(name->ino, f->op, f->val); else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(n->ino, f->op, f->val)) { ++result; break; } } } break; case AUDIT_OBJ_UID: if (name) { result = audit_uid_comparator(name->uid, f->op, f->uid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_uid_comparator(n->uid, f->op, f->uid)) { ++result; break; } } } break; case AUDIT_OBJ_GID: if (name) { result = audit_gid_comparator(name->gid, f->op, f->gid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_gid_comparator(n->gid, f->op, f->gid)) { ++result; break; } } } break; case AUDIT_WATCH: if (name) { result = audit_watch_compare(rule->watch, name->ino, name->dev); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_DIR: if (ctx) { result = match_tree_refs(ctx, rule->tree); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_LOGINUID: result = audit_uid_comparator(audit_get_loginuid(tsk), f->op, f->uid); break; case AUDIT_LOGINUID_SET: result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); break; case AUDIT_SADDR_FAM: if (ctx && ctx->sockaddr) result = audit_comparator(ctx->sockaddr->ss_family, f->op, f->val); break; case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: /* NOTE: this may return negative values indicating a temporary error. We simply treat this as a match for now to avoid losing information that may be wanted. An error message will also be logged upon error */ if (f->lsm_rule) { if (need_sid) { /* @tsk should always be equal to * @current with the exception of * fork()/copy_process() in which case * the new @tsk creds are still a dup * of @current's creds so we can still * use * security_current_getlsmprop_subj() * here even though it always refs * @current's creds */ security_current_getlsmprop_subj(&prop); need_sid = 0; } result = security_audit_rule_match(&prop, f->type, f->op, f->lsm_rule); } break; case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR also applies here */ if (f->lsm_rule) { /* Find files that match */ if (name) { result = security_audit_rule_match( &name->oprop, f->type, f->op, f->lsm_rule); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (security_audit_rule_match( &n->oprop, f->type, f->op, f->lsm_rule)) { ++result; break; } } } /* Find ipc objects that match */ if (!ctx || ctx->type != AUDIT_IPC) break; if (security_audit_rule_match(&ctx->ipc.oprop, f->type, f->op, f->lsm_rule)) ++result; } break; case AUDIT_ARG0: case AUDIT_ARG1: case AUDIT_ARG2: case AUDIT_ARG3: if (ctx) result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); break; case AUDIT_FILTERKEY: /* ignore this field for filtering */ result = 1; break; case AUDIT_PERM: result = audit_match_perm(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FILETYPE: result = audit_match_filetype(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FIELD_COMPARE: result = audit_field_compare(tsk, cred, f, ctx, name); break; } if (!result) return 0; } if (ctx) { if (rule->filterkey) { kfree(ctx->filterkey); ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); } ctx->prio = rule->prio; } switch (rule->action) { case AUDIT_NEVER: *state = AUDIT_STATE_DISABLED; break; case AUDIT_ALWAYS: *state = AUDIT_STATE_RECORD; break; } return 1; } /* At process creation time, we can determine if system-call auditing is * completely disabled for this task. Since we only have the task * structure at this point, we can only check uid and gid. */ static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) { struct audit_entry *e; enum audit_state state; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state, true)) { if (state == AUDIT_STATE_RECORD) *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); rcu_read_unlock(); return state; } } rcu_read_unlock(); return AUDIT_STATE_BUILD; } static int audit_in_mask(const struct audit_krule *rule, unsigned long val) { int word, bit; if (val > 0xffffffff) return false; word = AUDIT_WORD(val); if (word >= AUDIT_BITMASK_SIZE) return false; bit = AUDIT_BIT(val); return rule->mask[word] & bit; } /** * __audit_filter_op - common filter helper for operations (syscall/uring/etc) * @tsk: associated task * @ctx: audit context * @list: audit filter list * @name: audit_name (can be NULL) * @op: current syscall/uring_op * * Run the udit filters specified in @list against @tsk using @ctx, * @name, and @op, as necessary; the caller is responsible for ensuring * that the call is made while the RCU read lock is held. The @name * parameter can be NULL, but all others must be specified. * Returns 1/true if the filter finds a match, 0/false if none are found. */ static int __audit_filter_op(struct task_struct *tsk, struct audit_context *ctx, struct list_head *list, struct audit_names *name, unsigned long op) { struct audit_entry *e; enum audit_state state; list_for_each_entry_rcu(e, list, list) { if (audit_in_mask(&e->rule, op) && audit_filter_rules(tsk, &e->rule, ctx, name, &state, false)) { ctx->current_state = state; return 1; } } return 0; } /** * audit_filter_uring - apply filters to an io_uring operation * @tsk: associated task * @ctx: audit context */ static void audit_filter_uring(struct task_struct *tsk, struct audit_context *ctx) { if (auditd_test_task(tsk)) return; rcu_read_lock(); __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], NULL, ctx->uring_op); rcu_read_unlock(); } /* At syscall exit time, this filter is called if the audit_state is * not low enough that auditing cannot take place, but is also not * high enough that we already know we have to write an audit record * (i.e., the state is AUDIT_STATE_BUILD). */ static void audit_filter_syscall(struct task_struct *tsk, struct audit_context *ctx) { if (auditd_test_task(tsk)) return; rcu_read_lock(); __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], NULL, ctx->major); rcu_read_unlock(); } /* * Given an audit_name check the inode hash table to see if they match. * Called holding the rcu read lock to protect the use of audit_inode_hash */ static int audit_filter_inode_name(struct task_struct *tsk, struct audit_names *n, struct audit_context *ctx) { int h = audit_hash_ino((u32)n->ino); struct list_head *list = &audit_inode_hash[h]; return __audit_filter_op(tsk, ctx, list, n, ctx->major); } /* At syscall exit time, this filter is called if any audit_names have been * collected during syscall processing. We only check rules in sublists at hash * buckets applicable to the inode numbers in audit_names. * Regarding audit_state, same rules apply as for audit_filter_syscall(). */ void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) { struct audit_names *n; if (auditd_test_task(tsk)) return; rcu_read_lock(); list_for_each_entry(n, &ctx->names_list, list) { if (audit_filter_inode_name(tsk, n, ctx)) break; } rcu_read_unlock(); } static inline void audit_proctitle_free(struct audit_context *context) { kfree(context->proctitle.value); context->proctitle.value = NULL; context->proctitle.len = 0; } static inline void audit_free_module(struct audit_context *context) { if (context->type == AUDIT_KERN_MODULE) { kfree(context->module.name); context->module.name = NULL; } } static inline void audit_free_names(struct audit_context *context) { struct audit_names *n, *next; list_for_each_entry_safe(n, next, &context->names_list, list) { list_del(&n->list); if (n->name) putname(n->name); if (n->should_free) kfree(n); } context->name_count = 0; path_put(&context->pwd); context->pwd.dentry = NULL; context->pwd.mnt = NULL; } static inline void audit_free_aux(struct audit_context *context) { struct audit_aux_data *aux; while ((aux = context->aux)) { context->aux = aux->next; kfree(aux); } context->aux = NULL; while ((aux = context->aux_pids)) { context->aux_pids = aux->next; kfree(aux); } context->aux_pids = NULL; } /** * audit_reset_context - reset a audit_context structure * @ctx: the audit_context to reset * * All fields in the audit_context will be reset to an initial state, all * references held by fields will be dropped, and private memory will be * released. When this function returns the audit_context will be suitable * for reuse, so long as the passed context is not NULL or a dummy context. */ static void audit_reset_context(struct audit_context *ctx) { if (!ctx) return; /* if ctx is non-null, reset the "ctx->context" regardless */ ctx->context = AUDIT_CTX_UNUSED; if (ctx->dummy) return; /* * NOTE: It shouldn't matter in what order we release the fields, so * release them in the order in which they appear in the struct; * this gives us some hope of quickly making sure we are * resetting the audit_context properly. * * Other things worth mentioning: * - we don't reset "dummy" * - we don't reset "state", we do reset "current_state" * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD * - much of this is likely overkill, but play it safe for now * - we really need to work on improving the audit_context struct */ ctx->current_state = ctx->state; ctx->serial = 0; ctx->major = 0; ctx->uring_op = 0; ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; memset(ctx->argv, 0, sizeof(ctx->argv)); ctx->return_code = 0; ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); ctx->return_valid = AUDITSC_INVALID; audit_free_names(ctx); if (ctx->state != AUDIT_STATE_RECORD) { kfree(ctx->filterkey); ctx->filterkey = NULL; } audit_free_aux(ctx); kfree(ctx->sockaddr); ctx->sockaddr = NULL; ctx->sockaddr_len = 0; ctx->ppid = 0; ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); ctx->personality = 0; ctx->arch = 0; ctx->target_pid = 0; ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); ctx->target_sessionid = 0; lsmprop_init(&ctx->target_ref); ctx->target_comm[0] = '\0'; unroll_tree_refs(ctx, NULL, 0); WARN_ON(!list_empty(&ctx->killed_trees)); audit_free_module(ctx); ctx->fds[0] = -1; ctx->type = 0; /* reset last for audit_free_*() */ } static inline struct audit_context *audit_alloc_context(enum audit_state state) { struct audit_context *context; context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return NULL; context->context = AUDIT_CTX_UNUSED; context->state = state; context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; INIT_LIST_HEAD(&context->killed_trees); INIT_LIST_HEAD(&context->names_list); context->fds[0] = -1; context->return_valid = AUDITSC_INVALID; return context; } /** * audit_alloc - allocate an audit context block for a task * @tsk: task * * Filter on the task information and allocate a per-task audit context * if necessary. Doing so turns on system call auditing for the * specified task. This is called from copy_process, so no lock is * needed. */ int audit_alloc(struct task_struct *tsk) { struct audit_context *context; enum audit_state state; char *key = NULL; if (likely(!audit_ever_enabled)) return 0; state = audit_filter_task(tsk, &key); if (state == AUDIT_STATE_DISABLED) { clear_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } context = audit_alloc_context(state); if (!context) { kfree(key); audit_log_lost("out of memory in audit_alloc"); return -ENOMEM; } context->filterkey = key; audit_set_context(tsk, context); set_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } static inline void audit_free_context(struct audit_context *context) { /* resetting is extra work, but it is likely just noise */ audit_reset_context(context); audit_proctitle_free(context); free_tree_refs(context); kfree(context->filterkey); kfree(context); } static int audit_log_pid_context(struct audit_context *context, pid_t pid, kuid_t auid, kuid_t uid, unsigned int sessionid, struct lsm_prop *prop, char *comm) { struct audit_buffer *ab; struct lsm_context ctx; int rc = 0; ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); if (!ab) return rc; audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), sessionid); if (lsmprop_is_set(prop)) { if (security_lsmprop_to_secctx(prop, &ctx) < 0) { audit_log_format(ab, " obj=(none)"); rc = 1; } else { audit_log_format(ab, " obj=%s", ctx.context); security_release_secctx(&ctx); } } audit_log_format(ab, " ocomm="); audit_log_untrustedstring(ab, comm); audit_log_end(ab); return rc; } static void audit_log_execve_info(struct audit_context *context, struct audit_buffer **ab) { long len_max; long len_rem; long len_full; long len_buf; long len_abuf = 0; long len_tmp; bool require_data; bool encode; unsigned int iter; unsigned int arg; char *buf_head; char *buf; const char __user *p = (const char __user *)current->mm->arg_start; /* NOTE: this buffer needs to be large enough to hold all the non-arg * data we put in the audit record for this argument (see the * code below) ... at this point in time 96 is plenty */ char abuf[96]; /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the * current value of 7500 is not as important as the fact that it * is less than 8k, a setting of 7500 gives us plenty of wiggle * room if we go over a little bit in the logging below */ WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); len_max = MAX_EXECVE_AUDIT_LEN; /* scratch buffer to hold the userspace args */ buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); if (!buf_head) { audit_panic("out of memory for argv string"); return; } buf = buf_head; audit_log_format(*ab, "argc=%d", context->execve.argc); len_rem = len_max; len_buf = 0; len_full = 0; require_data = true; encode = false; iter = 0; arg = 0; do { /* NOTE: we don't ever want to trust this value for anything * serious, but the audit record format insists we * provide an argument length for really long arguments, * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but * to use strncpy_from_user() to obtain this value for * recording in the log, although we don't use it * anywhere here to avoid a double-fetch problem */ if (len_full == 0) len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; /* read more data from userspace */ if (require_data) { /* can we make more room in the buffer? */ if (buf != buf_head) { memmove(buf_head, buf, len_buf); buf = buf_head; } /* fetch as much as we can of the argument */ len_tmp = strncpy_from_user(&buf_head[len_buf], p, len_max - len_buf); if (len_tmp == -EFAULT) { /* unable to copy from userspace */ send_sig(SIGKILL, current, 0); goto out; } else if (len_tmp == (len_max - len_buf)) { /* buffer is not large enough */ require_data = true; /* NOTE: if we are going to span multiple * buffers force the encoding so we stand * a chance at a sane len_full value and * consistent record encoding */ encode = true; len_full = len_full * 2; p += len_tmp; } else { require_data = false; if (!encode) encode = audit_string_contains_control( buf, len_tmp); /* try to use a trusted value for len_full */ if (len_full < len_max) len_full = (encode ? len_tmp * 2 : len_tmp); p += len_tmp + 1; } len_buf += len_tmp; buf_head[len_buf] = '\0'; /* length of the buffer in the audit record? */ len_abuf = (encode ? len_buf * 2 : len_buf + 2); } /* write as much as we can to the audit log */ if (len_buf >= 0) { /* NOTE: some magic numbers here - basically if we * can't fit a reasonable amount of data into the * existing audit buffer, flush it and start with * a new buffer */ if ((sizeof(abuf) + 8) > len_rem) { len_rem = len_max; audit_log_end(*ab); *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); if (!*ab) goto out; } /* create the non-arg portion of the arg record */ len_tmp = 0; if (require_data || (iter > 0) || ((len_abuf + sizeof(abuf)) > len_rem)) { if (iter == 0) { len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d_len=%lu", arg, len_full); } len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d[%d]=", arg, iter++); } else len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d=", arg); WARN_ON(len_tmp >= sizeof(abuf)); abuf[sizeof(abuf) - 1] = '\0'; /* log the arg in the audit record */ audit_log_format(*ab, "%s", abuf); len_rem -= len_tmp; len_tmp = len_buf; if (encode) { if (len_abuf > len_rem) len_tmp = len_rem / 2; /* encoding */ audit_log_n_hex(*ab, buf, len_tmp); len_rem -= len_tmp * 2; len_abuf -= len_tmp * 2; } else { if (len_abuf > len_rem) len_tmp = len_rem - 2; /* quotes */ audit_log_n_string(*ab, buf, len_tmp); len_rem -= len_tmp + 2; /* don't subtract the "2" because we still need * to add quotes to the remaining string */ len_abuf -= len_tmp; } len_buf -= len_tmp; buf += len_tmp; } /* ready to move to the next argument? */ if ((len_buf == 0) && !require_data) { arg++; iter = 0; len_full = 0; require_data = true; encode = false; } } while (arg < context->execve.argc); /* NOTE: the caller handles the final audit_log_end() call */ out: kfree(buf_head); } static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) { if (cap_isclear(*cap)) { audit_log_format(ab, " %s=0", prefix); return; } audit_log_format(ab, " %s=%016llx", prefix, cap->val); } static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) { if (name->fcap_ver == -1) { audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); return; } audit_log_cap(ab, "cap_fp", &name->fcap.permitted); audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", name->fcap.fE, name->fcap_ver, from_kuid(&init_user_ns, name->fcap.rootid)); } static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) { const struct audit_ntp_data *ntp = &context->time.ntp_data; const struct timespec64 *tk = &context->time.tk_injoffset; static const char * const ntp_name[] = { "offset", "freq", "status", "tai", "tick", "adjust", }; int type; if (context->type == AUDIT_TIME_ADJNTPVAL) { for (type = 0; type < AUDIT_NTP_NVALS; type++) { if (ntp->vals[type].newval != ntp->vals[type].oldval) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_ADJNTPVAL); if (!*ab) return; } audit_log_format(*ab, "op=%s old=%lli new=%lli", ntp_name[type], ntp->vals[type].oldval, ntp->vals[type].newval); audit_log_end(*ab); *ab = NULL; } } } if (tk->tv_sec != 0 || tk->tv_nsec != 0) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_INJOFFSET); if (!*ab) return; } audit_log_format(*ab, "sec=%lli nsec=%li", (long long)tk->tv_sec, tk->tv_nsec); audit_log_end(*ab); *ab = NULL; } } static void show_special(struct audit_context *context, int *call_panic) { struct audit_buffer *ab; int i; ab = audit_log_start(context, GFP_KERNEL, context->type); if (!ab) return; switch (context->type) { case AUDIT_SOCKETCALL: { int nargs = context->socketcall.nargs; audit_log_format(ab, "nargs=%d", nargs); for (i = 0; i < nargs; i++) audit_log_format(ab, " a%d=%lx", i, context->socketcall.args[i]); break; } case AUDIT_IPC: audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", from_kuid(&init_user_ns, context->ipc.uid), from_kgid(&init_user_ns, context->ipc.gid), context->ipc.mode); if (lsmprop_is_set(&context->ipc.oprop)) { struct lsm_context lsmctx; if (security_lsmprop_to_secctx(&context->ipc.oprop, &lsmctx) < 0) { *call_panic = 1; } else { audit_log_format(ab, " obj=%s", lsmctx.context); security_release_secctx(&lsmctx); } } if (context->ipc.has_perm) { audit_log_end(ab); ab = audit_log_start(context, GFP_KERNEL, AUDIT_IPC_SET_PERM); if (unlikely(!ab)) return; audit_log_format(ab, "qbytes=%lx ouid=%u ogid=%u mode=%#ho", context->ipc.qbytes, context->ipc.perm_uid, context->ipc.perm_gid, context->ipc.perm_mode); } break; case AUDIT_MQ_OPEN: audit_log_format(ab, "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " "mq_msgsize=%ld mq_curmsgs=%ld", context->mq_open.oflag, context->mq_open.mode, context->mq_open.attr.mq_flags, context->mq_open.attr.mq_maxmsg, context->mq_open.attr.mq_msgsize, context->mq_open.attr.mq_curmsgs); break; case AUDIT_MQ_SENDRECV: audit_log_format(ab, "mqdes=%d msg_len=%zd msg_prio=%u " "abs_timeout_sec=%lld abs_timeout_nsec=%ld", context->mq_sendrecv.mqdes, context->mq_sendrecv.msg_len, context->mq_sendrecv.msg_prio, (long long) context->mq_sendrecv.abs_timeout.tv_sec, context->mq_sendrecv.abs_timeout.tv_nsec); break; case AUDIT_MQ_NOTIFY: audit_log_format(ab, "mqdes=%d sigev_signo=%d", context->mq_notify.mqdes, context->mq_notify.sigev_signo); break; case AUDIT_MQ_GETSETATTR: { struct mq_attr *attr = &context->mq_getsetattr.mqstat; audit_log_format(ab, "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " "mq_curmsgs=%ld ", context->mq_getsetattr.mqdes, attr->mq_flags, attr->mq_maxmsg, attr->mq_msgsize, attr->mq_curmsgs); break; } case AUDIT_CAPSET: audit_log_format(ab, "pid=%d", context->capset.pid); audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); break; case AUDIT_MMAP: audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, context->mmap.flags); break; case AUDIT_OPENAT2: audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", context->openat2.flags, context->openat2.mode, context->openat2.resolve); break; case AUDIT_EXECVE: audit_log_execve_info(context, &ab); break; case AUDIT_KERN_MODULE: audit_log_format(ab, "name="); if (context->module.name) { audit_log_untrustedstring(ab, context->module.name); } else audit_log_format(ab, "(null)"); break; case AUDIT_TIME_ADJNTPVAL: case AUDIT_TIME_INJOFFSET: /* this call deviates from the rest, eating the buffer */ audit_log_time(context, &ab); break; } audit_log_end(ab); } static inline int audit_proctitle_rtrim(char *proctitle, int len) { char *end = proctitle + len - 1; while (end > proctitle && !isprint(*end)) end--; /* catch the case where proctitle is only 1 non-print character */ len = end - proctitle + 1; len -= isprint(proctitle[len-1]) == 0; return len; } /* * audit_log_name - produce AUDIT_PATH record from struct audit_names * @context: audit_context for the task * @n: audit_names structure with reportable details * @path: optional path to report instead of audit_names->name * @record_num: record number to report when handling a list of names * @call_panic: optional pointer to int that will be updated if secid fails */ static void audit_log_name(struct audit_context *context, struct audit_names *n, const struct path *path, int record_num, int *call_panic) { struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); if (!ab) return; audit_log_format(ab, "item=%d", record_num); if (path) audit_log_d_path(ab, " name=", path); else if (n->name) { switch (n->name_len) { case AUDIT_NAME_FULL: /* log the full path */ audit_log_format(ab, " name="); audit_log_untrustedstring(ab, n->name->name); break; case 0: /* name was specified as a relative path and the * directory component is the cwd */ if (context->pwd.dentry && context->pwd.mnt) audit_log_d_path(ab, " name=", &context->pwd); else audit_log_format(ab, " name=(null)"); break; default: /* log the name's directory component */ audit_log_format(ab, " name="); audit_log_n_untrustedstring(ab, n->name->name, n->name_len); } } else audit_log_format(ab, " name=(null)"); if (n->ino != AUDIT_INO_UNSET) audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", n->ino, MAJOR(n->dev), MINOR(n->dev), n->mode, from_kuid(&init_user_ns, n->uid), from_kgid(&init_user_ns, n->gid), MAJOR(n->rdev), MINOR(n->rdev)); if (lsmprop_is_set(&n->oprop)) { struct lsm_context ctx; if (security_lsmprop_to_secctx(&n->oprop, &ctx) < 0) { if (call_panic) *call_panic = 2; } else { audit_log_format(ab, " obj=%s", ctx.context); security_release_secctx(&ctx); } } /* log the audit_names record type */ switch (n->type) { case AUDIT_TYPE_NORMAL: audit_log_format(ab, " nametype=NORMAL"); break; case AUDIT_TYPE_PARENT: audit_log_format(ab, " nametype=PARENT"); break; case AUDIT_TYPE_CHILD_DELETE: audit_log_format(ab, " nametype=DELETE"); break; case AUDIT_TYPE_CHILD_CREATE: audit_log_format(ab, " nametype=CREATE"); break; default: audit_log_format(ab, " nametype=UNKNOWN"); break; } audit_log_fcaps(ab, n); audit_log_end(ab); } static void audit_log_proctitle(void) { int res; char *buf; char *msg = "(null)"; int len = strlen(msg); struct audit_context *context = audit_context(); struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); if (!ab) return; /* audit_panic or being filtered */ audit_log_format(ab, "proctitle="); /* Not cached */ if (!context->proctitle.value) { buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); if (!buf) goto out; /* Historically called this from procfs naming */ res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); if (res == 0) { kfree(buf); goto out; } res = audit_proctitle_rtrim(buf, res); if (res == 0) { kfree(buf); goto out; } context->proctitle.value = buf; context->proctitle.len = res; } msg = context->proctitle.value; len = context->proctitle.len; out: audit_log_n_untrustedstring(ab, msg, len); audit_log_end(ab); } /** * audit_log_uring - generate a AUDIT_URINGOP record * @ctx: the audit context */ static void audit_log_uring(struct audit_context *ctx) { struct audit_buffer *ab; const struct cred *cred; ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); if (!ab) return; cred = current_cred(); audit_log_format(ab, "uring_op=%d", ctx->uring_op); if (ctx->return_valid != AUDITSC_INVALID) audit_log_format(ab, " success=%s exit=%ld", str_yes_no(ctx->return_valid == AUDITSC_SUCCESS), ctx->return_code); audit_log_format(ab, " items=%d" " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" " fsuid=%u egid=%u sgid=%u fsgid=%u", ctx->name_count, task_ppid_nr(current), task_tgid_nr(current), from_kuid(&init_user_ns, cred->uid), from_kgid(&init_user_ns, cred->gid), from_kuid(&init_user_ns, cred->euid), from_kuid(&init_user_ns, cred->suid), from_kuid(&init_user_ns, cred->fsuid), from_kgid(&init_user_ns, cred->egid), from_kgid(&init_user_ns, cred->sgid), from_kgid(&init_user_ns, cred->fsgid)); audit_log_task_context(ab); audit_log_key(ab, ctx->filterkey); audit_log_end(ab); } static void audit_log_exit(void) { int i, call_panic = 0; struct audit_context *context = audit_context(); struct audit_buffer *ab; struct audit_aux_data *aux; struct audit_names *n; context->personality = current->personality; switch (context->context) { case AUDIT_CTX_SYSCALL: ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); if (!ab) return; audit_log_format(ab, "arch=%x syscall=%d", context->arch, context->major); if (context->personality != PER_LINUX) audit_log_format(ab, " per=%lx", context->personality); if (context->return_valid != AUDITSC_INVALID) audit_log_format(ab, " success=%s exit=%ld", str_yes_no(context->return_valid == AUDITSC_SUCCESS), context->return_code); audit_log_format(ab, " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", context->argv[0], context->argv[1], context->argv[2], context->argv[3], context->name_count); audit_log_task_info(ab); audit_log_key(ab, context->filterkey); audit_log_end(ab); break; case AUDIT_CTX_URING: audit_log_uring(context); break; default: BUG(); break; } for (aux = context->aux; aux; aux = aux->next) { ab = audit_log_start(context, GFP_KERNEL, aux->type); if (!ab) continue; /* audit_panic has been called */ switch (aux->type) { case AUDIT_BPRM_FCAPS: { struct audit_aux_data_bprm_fcaps *axs = (void *)aux; audit_log_format(ab, "fver=%x", axs->fcap_ver); audit_log_cap(ab, "fp", &axs->fcap.permitted); audit_log_cap(ab, "fi", &axs->fcap.inheritable); audit_log_format(ab, " fe=%d", axs->fcap.fE); audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); audit_log_cap(ab, "pp", &axs->new_pcap.permitted); audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); audit_log_cap(ab, "pe", &axs->new_pcap.effective); audit_log_cap(ab, "pa", &axs->new_pcap.ambient); audit_log_format(ab, " frootid=%d", from_kuid(&init_user_ns, axs->fcap.rootid)); break; } } audit_log_end(ab); } if (context->type) show_special(context, &call_panic); if (context->fds[0] >= 0) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); if (ab) { audit_log_format(ab, "fd0=%d fd1=%d", context->fds[0], context->fds[1]); audit_log_end(ab); } } if (context->sockaddr_len) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); if (ab) { audit_log_format(ab, "saddr="); audit_log_n_hex(ab, (void *)context->sockaddr, context->sockaddr_len); audit_log_end(ab); } } for (aux = context->aux_pids; aux; aux = aux->next) { struct audit_aux_data_pids *axs = (void *)aux; for (i = 0; i < axs->pid_count; i++) if (audit_log_pid_context(context, axs->target_pid[i], axs->target_auid[i], axs->target_uid[i], axs->target_sessionid[i], &axs->target_ref[i], axs->target_comm[i])) call_panic = 1; } if (context->target_pid && audit_log_pid_context(context, context->target_pid, context->target_auid, context->target_uid, context->target_sessionid, &context->target_ref, context->target_comm)) call_panic = 1; if (context->pwd.dentry && context->pwd.mnt) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); if (ab) { audit_log_d_path(ab, "cwd=", &context->pwd); audit_log_end(ab); } } i = 0; list_for_each_entry(n, &context->names_list, list) { if (n->hidden) continue; audit_log_name(context, n, NULL, i++, &call_panic); } if (context->context == AUDIT_CTX_SYSCALL) audit_log_proctitle(); /* Send end of event record to help user space know we are finished */ ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); if (ab) audit_log_end(ab); if (call_panic) audit_panic("error in audit_log_exit()"); } /** * __audit_free - free a per-task audit context * @tsk: task whose audit context block to free * * Called from copy_process, do_exit, and the io_uring code */ void __audit_free(struct task_struct *tsk) { struct audit_context *context = tsk->audit_context; if (!context) return; /* this may generate CONFIG_CHANGE records */ if (!list_empty(&context->killed_trees)) audit_kill_trees(context); /* We are called either by do_exit() or the fork() error handling code; * in the former case tsk == current and in the latter tsk is a * random task_struct that doesn't have any meaningful data we * need to log via audit_log_exit(). */ if (tsk == current && !context->dummy) { context->return_valid = AUDITSC_INVALID; context->return_code = 0; if (context->context == AUDIT_CTX_SYSCALL) { audit_filter_syscall(tsk, context); audit_filter_inodes(tsk, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_exit(); } else if (context->context == AUDIT_CTX_URING) { /* TODO: verify this case is real and valid */ audit_filter_uring(tsk, context); audit_filter_inodes(tsk, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_uring(context); } } audit_set_context(tsk, NULL); audit_free_context(context); } /** * audit_return_fixup - fixup the return codes in the audit_context * @ctx: the audit_context * @success: true/false value to indicate if the operation succeeded or not * @code: operation return code * * We need to fixup the return code in the audit logs if the actual return * codes are later going to be fixed by the arch specific signal handlers. */ static void audit_return_fixup(struct audit_context *ctx, int success, long code) { /* * This is actually a test for: * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) * * but is faster than a bunch of || */ if (unlikely(code <= -ERESTARTSYS) && (code >= -ERESTART_RESTARTBLOCK) && (code != -ENOIOCTLCMD)) ctx->return_code = -EINTR; else ctx->return_code = code; ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); } /** * __audit_uring_entry - prepare the kernel task's audit context for io_uring * @op: the io_uring opcode * * This is similar to audit_syscall_entry() but is intended for use by io_uring * operations. This function should only ever be called from * audit_uring_entry() as we rely on the audit context checking present in that * function. */ void __audit_uring_entry(u8 op) { struct audit_context *ctx = audit_context(); if (ctx->state == AUDIT_STATE_DISABLED) return; /* * NOTE: It's possible that we can be called from the process' context * before it returns to userspace, and before audit_syscall_exit() * is called. In this case there is not much to do, just record * the io_uring details and return. */ ctx->uring_op = op; if (ctx->context == AUDIT_CTX_SYSCALL) return; ctx->dummy = !audit_n_rules; if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) ctx->prio = 0; ctx->context = AUDIT_CTX_URING; ctx->current_state = ctx->state; ktime_get_coarse_real_ts64(&ctx->ctime); } /** * __audit_uring_exit - wrap up the kernel task's audit context after io_uring * @success: true/false value to indicate if the operation succeeded or not * @code: operation return code * * This is similar to audit_syscall_exit() but is intended for use by io_uring * operations. This function should only ever be called from * audit_uring_exit() as we rely on the audit context checking present in that * function. */ void __audit_uring_exit(int success, long code) { struct audit_context *ctx = audit_context(); if (ctx->dummy) { if (ctx->context != AUDIT_CTX_URING) return; goto out; } audit_return_fixup(ctx, success, code); if (ctx->context == AUDIT_CTX_SYSCALL) { /* * NOTE: See the note in __audit_uring_entry() about the case * where we may be called from process context before we * return to userspace via audit_syscall_exit(). In this * case we simply emit a URINGOP record and bail, the * normal syscall exit handling will take care of * everything else. * It is also worth mentioning that when we are called, * the current process creds may differ from the creds * used during the normal syscall processing; keep that * in mind if/when we move the record generation code. */ /* * We need to filter on the syscall info here to decide if we * should emit a URINGOP record. I know it seems odd but this * solves the problem where users have a filter to block *all* * syscall records in the "exit" filter; we want to preserve * the behavior here. */ audit_filter_syscall(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) audit_filter_uring(current, ctx); audit_filter_inodes(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) return; audit_log_uring(ctx); return; } /* this may generate CONFIG_CHANGE records */ if (!list_empty(&ctx->killed_trees)) audit_kill_trees(ctx); /* run through both filters to ensure we set the filterkey properly */ audit_filter_uring(current, ctx); audit_filter_inodes(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) goto out; audit_log_exit(); out: audit_reset_context(ctx); } /** * __audit_syscall_entry - fill in an audit record at syscall entry * @major: major syscall type (function) * @a1: additional syscall register 1 * @a2: additional syscall register 2 * @a3: additional syscall register 3 * @a4: additional syscall register 4 * * Fill in audit context at syscall entry. This only happens if the * audit context was created when the task was created and the state or * filters demand the audit context be built. If the state from the * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, * then the record will be written at syscall exit time (otherwise, it * will only be written if another part of the kernel requests that it * be written). */ void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4) { struct audit_context *context = audit_context(); enum audit_state state; if (!audit_enabled || !context) return; WARN_ON(context->context != AUDIT_CTX_UNUSED); WARN_ON(context->name_count); if (context->context != AUDIT_CTX_UNUSED || context->name_count) { audit_panic("unrecoverable error in audit_syscall_entry()"); return; } state = context->state; if (state == AUDIT_STATE_DISABLED) return; context->dummy = !audit_n_rules; if (!context->dummy && state == AUDIT_STATE_BUILD) { context->prio = 0; if (auditd_test_task(current)) return; } context->arch = syscall_get_arch(current); context->major = major; context->argv[0] = a1; context->argv[1] = a2; context->argv[2] = a3; context->argv[3] = a4; context->context = AUDIT_CTX_SYSCALL; context->current_state = state; ktime_get_coarse_real_ts64(&context->ctime); } /** * __audit_syscall_exit - deallocate audit context after a system call * @success: success value of the syscall * @return_code: return value of the syscall * * Tear down after system call. If the audit context has been marked as * auditable (either because of the AUDIT_STATE_RECORD state from * filtering, or because some other part of the kernel wrote an audit * message), then write out the syscall information. In call cases, * free the names stored from getname(). */ void __audit_syscall_exit(int success, long return_code) { struct audit_context *context = audit_context(); if (!context || context->dummy || context->context != AUDIT_CTX_SYSCALL) goto out; /* this may generate CONFIG_CHANGE records */ if (!list_empty(&context->killed_trees)) audit_kill_trees(context); audit_return_fixup(context, success, return_code); /* run through both filters to ensure we set the filterkey properly */ audit_filter_syscall(current, context); audit_filter_inodes(current, context); if (context->current_state != AUDIT_STATE_RECORD) goto out; audit_log_exit(); out: audit_reset_context(context); } static inline void handle_one(const struct inode *inode) { struct audit_context *context; struct audit_tree_refs *p; struct audit_chunk *chunk; int count; if (likely(!inode->i_fsnotify_marks)) return; context = audit_context(); p = context->trees; count = context->tree_count; rcu_read_lock(); chunk = audit_tree_lookup(inode); rcu_read_unlock(); if (!chunk) return; if (likely(put_tree_ref(context, chunk))) return; if (unlikely(!grow_tree_refs(context))) { pr_warn("out of memory, audit has lost a tree reference\n"); audit_set_auditable(context); audit_put_chunk(chunk); unroll_tree_refs(context, p, count); return; } put_tree_ref(context, chunk); } static void handle_path(const struct dentry *dentry) { struct audit_context *context; struct audit_tree_refs *p; const struct dentry *d, *parent; struct audit_chunk *drop; unsigned long seq; int count; context = audit_context(); p = context->trees; count = context->tree_count; retry: drop = NULL; d = dentry; rcu_read_lock(); seq = read_seqbegin(&rename_lock); for (;;) { struct inode *inode = d_backing_inode(d); if (inode && unlikely(inode->i_fsnotify_marks)) { struct audit_chunk *chunk; chunk = audit_tree_lookup(inode); if (chunk) { if (unlikely(!put_tree_ref(context, chunk))) { drop = chunk; break; } } } parent = d->d_parent; if (parent == d) break; d = parent; } if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ rcu_read_unlock(); if (!drop) { /* just a race with rename */ unroll_tree_refs(context, p, count); goto retry; } audit_put_chunk(drop); if (grow_tree_refs(context)) { /* OK, got more space */ unroll_tree_refs(context, p, count); goto retry; } /* too bad */ pr_warn("out of memory, audit has lost a tree reference\n"); unroll_tree_refs(context, p, count); audit_set_auditable(context); return; } rcu_read_unlock(); } static struct audit_names *audit_alloc_name(struct audit_context *context, unsigned char type) { struct audit_names *aname; if (context->name_count < AUDIT_NAMES) { aname = &context->preallocated_names[context->name_count]; memset(aname, 0, sizeof(*aname)); } else { aname = kzalloc(sizeof(*aname), GFP_NOFS); if (!aname) return NULL; aname->should_free = true; } aname->ino = AUDIT_INO_UNSET; aname->type = type; list_add_tail(&aname->list, &context->names_list); context->name_count++; if (!context->pwd.dentry) get_fs_pwd(current->fs, &context->pwd); return aname; } /** * __audit_reusename - fill out filename with info from existing entry * @uptr: userland ptr to pathname * * Search the audit_names list for the current audit context. If there is an * existing entry with a matching "uptr" then return the filename * associated with that audit_name. If not, return NULL. */ struct filename * __audit_reusename(const __user char *uptr) { struct audit_context *context = audit_context(); struct audit_names *n; list_for_each_entry(n, &context->names_list, list) { if (!n->name) continue; if (n->name->uptr == uptr) { atomic_inc(&n->name->refcnt); return n->name; } } return NULL; } /** * __audit_getname - add a name to the list * @name: name to add * * Add a name to the list of audit names for this context. * Called from fs/namei.c:getname(). */ void __audit_getname(struct filename *name) { struct audit_context *context = audit_context(); struct audit_names *n; if (context->context == AUDIT_CTX_UNUSED) return; n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; n->name = name; n->name_len = AUDIT_NAME_FULL; name->aname = n; atomic_inc(&name->refcnt); } static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) { struct cpu_vfs_cap_data caps; int rc; if (!dentry) return 0; rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); if (rc) return rc; name->fcap.permitted = caps.permitted; name->fcap.inheritable = caps.inheritable; name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); name->fcap.rootid = caps.rootid; name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; return 0; } /* Copy inode data into an audit_names. */ static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, struct inode *inode, unsigned int flags) { name->ino = inode->i_ino; name->dev = inode->i_sb->s_dev; name->mode = inode->i_mode; name->uid = inode->i_uid; name->gid = inode->i_gid; name->rdev = inode->i_rdev; security_inode_getlsmprop(inode, &name->oprop); if (flags & AUDIT_INODE_NOEVAL) { name->fcap_ver = -1; return; } audit_copy_fcaps(name, dentry); } /** * __audit_inode - store the inode and device from a lookup * @name: name being audited * @dentry: dentry being audited * @flags: attributes for this particular entry */ void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); struct audit_names *n; bool parent = flags & AUDIT_INODE_PARENT; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (context->context == AUDIT_CTX_UNUSED) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(inode->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (!name) goto out_alloc; /* * If we have a pointer to an audit_names entry already, then we can * just use it directly if the type is correct. */ n = name->aname; if (n) { if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } list_for_each_entry_reverse(n, &context->names_list, list) { if (n->ino) { /* valid inode number, use that for the comparison */ if (n->ino != inode->i_ino || n->dev != inode->i_sb->s_dev) continue; } else if (n->name) { /* inode number has not been set, check the name */ if (strcmp(n->name->name, name->name)) continue; } else /* no inode and no name (?!) ... this is odd ... */ continue; /* match the correct record type */ if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } out_alloc: /* unable to find an entry with both a matching name and type */ n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; if (name) { n->name = name; atomic_inc(&name->refcnt); } out: if (parent) { n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; n->type = AUDIT_TYPE_PARENT; if (flags & AUDIT_INODE_HIDDEN) n->hidden = true; } else { n->name_len = AUDIT_NAME_FULL; n->type = AUDIT_TYPE_NORMAL; } handle_path(dentry); audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); } void __audit_file(const struct file *file) { __audit_inode(NULL, file->f_path.dentry, 0); } /** * __audit_inode_child - collect inode info for created/removed objects * @parent: inode of dentry parent * @dentry: dentry being audited * @type: AUDIT_TYPE_* value that we're looking for * * For syscalls that create or remove filesystem objects, audit_inode * can only collect information for the filesystem object's parent. * This call updates the audit context with the child's information. * Syscalls that create a new filesystem object must be hooked after * the object is created. Syscalls that remove a filesystem object * must be hooked prior, in order to capture the target inode during * unsuccessful attempts. */ void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); const struct qstr *dname = &dentry->d_name; struct audit_names *n, *found_parent = NULL, *found_child = NULL; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (context->context == AUDIT_CTX_UNUSED) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(parent->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (inode) handle_one(inode); /* look for a parent entry first */ list_for_each_entry(n, &context->names_list, list) { if (!n->name || (n->type != AUDIT_TYPE_PARENT && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && !audit_compare_dname_path(dname, n->name->name, n->name_len)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = AUDIT_TYPE_PARENT; found_parent = n; break; } } cond_resched(); /* is there a matching child entry? */ list_for_each_entry(n, &context->names_list, list) { /* can only match entries that have a name */ if (!n->name || (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (!strcmp(dname->name, n->name->name) || !audit_compare_dname_path(dname, n->name->name, found_parent ? found_parent->name_len : AUDIT_NAME_FULL)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = type; found_child = n; break; } } if (!found_parent) { /* create a new, "anonymous" parent record */ n = audit_alloc_name(context, AUDIT_TYPE_PARENT); if (!n) return; audit_copy_inode(n, NULL, parent, 0); } if (!found_child) { found_child = audit_alloc_name(context, type); if (!found_child) return; /* Re-use the name belonging to the slot for a matching parent * directory. All names for this context are relinquished in * audit_free_names() */ if (found_parent) { found_child->name = found_parent->name; found_child->name_len = AUDIT_NAME_FULL; atomic_inc(&found_child->name->refcnt); } } if (inode) audit_copy_inode(found_child, dentry, inode, 0); else found_child->ino = AUDIT_INO_UNSET; } EXPORT_SYMBOL_GPL(__audit_inode_child); /** * auditsc_get_stamp - get local copies of audit_context values * @ctx: audit_context for the task * @t: timespec64 to store time recorded in the audit_context * @serial: serial value that is recorded in the audit_context * * Also sets the context as auditable. */ int auditsc_get_stamp(struct audit_context *ctx, struct timespec64 *t, unsigned int *serial) { if (ctx->context == AUDIT_CTX_UNUSED) return 0; if (!ctx->serial) ctx->serial = audit_serial(); t->tv_sec = ctx->ctime.tv_sec; t->tv_nsec = ctx->ctime.tv_nsec; *serial = ctx->serial; if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } return 1; } /** * __audit_mq_open - record audit data for a POSIX MQ open * @oflag: open flag * @mode: mode bits * @attr: queue attributes * */ void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { struct audit_context *context = audit_context(); if (attr) memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); else memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); context->mq_open.oflag = oflag; context->mq_open.mode = mode; context->type = AUDIT_MQ_OPEN; } /** * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive * @mqdes: MQ descriptor * @msg_len: Message length * @msg_prio: Message priority * @abs_timeout: Message timeout in absolute time * */ void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { struct audit_context *context = audit_context(); struct timespec64 *p = &context->mq_sendrecv.abs_timeout; if (abs_timeout) memcpy(p, abs_timeout, sizeof(*p)); else memset(p, 0, sizeof(*p)); context->mq_sendrecv.mqdes = mqdes; context->mq_sendrecv.msg_len = msg_len; context->mq_sendrecv.msg_prio = msg_prio; context->type = AUDIT_MQ_SENDRECV; } /** * __audit_mq_notify - record audit data for a POSIX MQ notify * @mqdes: MQ descriptor * @notification: Notification event * */ void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { struct audit_context *context = audit_context(); if (notification) context->mq_notify.sigev_signo = notification->sigev_signo; else context->mq_notify.sigev_signo = 0; context->mq_notify.mqdes = mqdes; context->type = AUDIT_MQ_NOTIFY; } /** * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute * @mqdes: MQ descriptor * @mqstat: MQ flags * */ void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { struct audit_context *context = audit_context(); context->mq_getsetattr.mqdes = mqdes; context->mq_getsetattr.mqstat = *mqstat; context->type = AUDIT_MQ_GETSETATTR; } /** * __audit_ipc_obj - record audit data for ipc object * @ipcp: ipc permissions * */ void __audit_ipc_obj(struct kern_ipc_perm *ipcp) { struct audit_context *context = audit_context(); context->ipc.uid = ipcp->uid; context->ipc.gid = ipcp->gid; context->ipc.mode = ipcp->mode; context->ipc.has_perm = 0; security_ipc_getlsmprop(ipcp, &context->ipc.oprop); context->type = AUDIT_IPC; } /** * __audit_ipc_set_perm - record audit data for new ipc permissions * @qbytes: msgq bytes * @uid: msgq user id * @gid: msgq group id * @mode: msgq mode (permissions) * * Called only after audit_ipc_obj(). */ void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { struct audit_context *context = audit_context(); context->ipc.qbytes = qbytes; context->ipc.perm_uid = uid; context->ipc.perm_gid = gid; context->ipc.perm_mode = mode; context->ipc.has_perm = 1; } void __audit_bprm(struct linux_binprm *bprm) { struct audit_context *context = audit_context(); context->type = AUDIT_EXECVE; context->execve.argc = bprm->argc; } /** * __audit_socketcall - record audit data for sys_socketcall * @nargs: number of args, which should not be more than AUDITSC_ARGS. * @args: args array * */ int __audit_socketcall(int nargs, unsigned long *args) { struct audit_context *context = audit_context(); if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) return -EINVAL; context->type = AUDIT_SOCKETCALL; context->socketcall.nargs = nargs; memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); return 0; } /** * __audit_fd_pair - record audit data for pipe and socketpair * @fd1: the first file descriptor * @fd2: the second file descriptor * */ void __audit_fd_pair(int fd1, int fd2) { struct audit_context *context = audit_context(); context->fds[0] = fd1; context->fds[1] = fd2; } /** * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto * @len: data length in user space * @a: data address in kernel space * * Returns 0 for success or NULL context or < 0 on error. */ int __audit_sockaddr(int len, void *a) { struct audit_context *context = audit_context(); if (!context->sockaddr) { void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); if (!p) return -ENOMEM; context->sockaddr = p; } context->sockaddr_len = len; memcpy(context->sockaddr, a, len); return 0; } void __audit_ptrace(struct task_struct *t) { struct audit_context *context = audit_context(); context->target_pid = task_tgid_nr(t); context->target_auid = audit_get_loginuid(t); context->target_uid = task_uid(t); context->target_sessionid = audit_get_sessionid(t); strscpy(context->target_comm, t->comm); security_task_getlsmprop_obj(t, &context->target_ref); } /** * audit_signal_info_syscall - record signal info for syscalls * @t: task being signaled * * If the audit subsystem is being terminated, record the task (pid) * and uid that is doing that. */ int audit_signal_info_syscall(struct task_struct *t) { struct audit_aux_data_pids *axp; struct audit_context *ctx = audit_context(); kuid_t t_uid = task_uid(t); if (!audit_signals || audit_dummy_context()) return 0; /* optimize the common case by putting first signal recipient directly * in audit_context */ if (!ctx->target_pid) { ctx->target_pid = task_tgid_nr(t); ctx->target_auid = audit_get_loginuid(t); ctx->target_uid = t_uid; ctx->target_sessionid = audit_get_sessionid(t); strscpy(ctx->target_comm, t->comm); security_task_getlsmprop_obj(t, &ctx->target_ref); return 0; } axp = (void *)ctx->aux_pids; if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { axp = kzalloc(sizeof(*axp), GFP_ATOMIC); if (!axp) return -ENOMEM; axp->d.type = AUDIT_OBJ_PID; axp->d.next = ctx->aux_pids; ctx->aux_pids = (void *)axp; } BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); axp->target_pid[axp->pid_count] = task_tgid_nr(t); axp->target_auid[axp->pid_count] = audit_get_loginuid(t); axp->target_uid[axp->pid_count] = t_uid; axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]); strscpy(axp->target_comm[axp->pid_count], t->comm); axp->pid_count++; return 0; } /** * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps * @bprm: pointer to the bprm being processed * @new: the proposed new credentials * @old: the old credentials * * Simply check if the proc already has the caps given by the file and if not * store the priv escalation info for later auditing at the end of the syscall * * -Eric */ int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { struct audit_aux_data_bprm_fcaps *ax; struct audit_context *context = audit_context(); struct cpu_vfs_cap_data vcaps; ax = kmalloc(sizeof(*ax), GFP_KERNEL); if (!ax) return -ENOMEM; ax->d.type = AUDIT_BPRM_FCAPS; ax->d.next = context->aux; context->aux = (void *)ax; get_vfs_caps_from_disk(&nop_mnt_idmap, bprm->file->f_path.dentry, &vcaps); ax->fcap.permitted = vcaps.permitted; ax->fcap.inheritable = vcaps.inheritable; ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); ax->fcap.rootid = vcaps.rootid; ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; ax->old_pcap.permitted = old->cap_permitted; ax->old_pcap.inheritable = old->cap_inheritable; ax->old_pcap.effective = old->cap_effective; ax->old_pcap.ambient = old->cap_ambient; ax->new_pcap.permitted = new->cap_permitted; ax->new_pcap.inheritable = new->cap_inheritable; ax->new_pcap.effective = new->cap_effective; ax->new_pcap.ambient = new->cap_ambient; return 0; } /** * __audit_log_capset - store information about the arguments to the capset syscall * @new: the new credentials * @old: the old (current) credentials * * Record the arguments userspace sent to sys_capset for later printing by the * audit system if applicable */ void __audit_log_capset(const struct cred *new, const struct cred *old) { struct audit_context *context = audit_context(); context->capset.pid = task_tgid_nr(current); context->capset.cap.effective = new->cap_effective; context->capset.cap.inheritable = new->cap_effective; context->capset.cap.permitted = new->cap_permitted; context->capset.cap.ambient = new->cap_ambient; context->type = AUDIT_CAPSET; } void __audit_mmap_fd(int fd, int flags) { struct audit_context *context = audit_context(); context->mmap.fd = fd; context->mmap.flags = flags; context->type = AUDIT_MMAP; } void __audit_openat2_how(struct open_how *how) { struct audit_context *context = audit_context(); context->openat2.flags = how->flags; context->openat2.mode = how->mode; context->openat2.resolve = how->resolve; context->type = AUDIT_OPENAT2; } void __audit_log_kern_module(char *name) { struct audit_context *context = audit_context(); context->module.name = kstrdup(name, GFP_KERNEL); if (!context->module.name) audit_log_lost("out of memory in __audit_log_kern_module"); context->type = AUDIT_KERN_MODULE; } void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) { /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ switch (friar->hdr.type) { case FAN_RESPONSE_INFO_NONE: audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", response, FAN_RESPONSE_INFO_NONE); break; case FAN_RESPONSE_INFO_AUDIT_RULE: audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", response, friar->hdr.type, friar->rule_number, friar->subj_trust, friar->obj_trust); } } void __audit_tk_injoffset(struct timespec64 offset) { struct audit_context *context = audit_context(); /* only set type if not already set by NTP */ if (!context->type) context->type = AUDIT_TIME_INJOFFSET; memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); } void __audit_ntp_log(const struct audit_ntp_data *ad) { struct audit_context *context = audit_context(); int type; for (type = 0; type < AUDIT_NTP_NVALS; type++) if (ad->vals[type].newval != ad->vals[type].oldval) { /* unconditionally set type, overwriting TK */ context->type = AUDIT_TIME_ADJNTPVAL; memcpy(&context->time.ntp_data, ad, sizeof(*ad)); break; } } void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { struct audit_buffer *ab; char comm[sizeof(current->comm)]; ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); if (!ab) return; audit_log_format(ab, "table=%s family=%u entries=%u op=%s", name, af, nentries, audit_nfcfgs[op].s); audit_log_format(ab, " pid=%u", task_tgid_nr(current)); audit_log_task_context(ab); /* subj= */ audit_log_format(ab, " comm="); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_end(ab); } EXPORT_SYMBOL_GPL(__audit_log_nfcfg); static void audit_log_task(struct audit_buffer *ab) { kuid_t auid, uid; kgid_t gid; unsigned int sessionid; char comm[sizeof(current->comm)]; auid = audit_get_loginuid(current); sessionid = audit_get_sessionid(current); current_uid_gid(&uid, &gid); audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), from_kgid(&init_user_ns, gid), sessionid); audit_log_task_context(ab); audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_d_path_exe(ab, current->mm); } /** * audit_core_dumps - record information about processes that end abnormally * @signr: signal value * * If a process ends with a core dump, something fishy is going on and we * should record the event for investigation. */ void audit_core_dumps(long signr) { struct audit_buffer *ab; if (!audit_enabled) return; if (signr == SIGQUIT) /* don't care for those */ return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld res=1", signr); audit_log_end(ab); } /** * audit_seccomp - record information about a seccomp action * @syscall: syscall number * @signr: signal value * @code: the seccomp action * * Record the information associated with a seccomp action. Event filtering for * seccomp actions that are not to be logged is done in seccomp_log(). * Therefore, this function forces auditing independent of the audit_enabled * and dummy context state because seccomp actions should be logged even when * audit is not in use. */ void audit_seccomp(unsigned long syscall, long signr, int code) { struct audit_buffer *ab; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", signr, syscall_get_arch(current), syscall, in_compat_syscall(), KSTK_EIP(current), code); audit_log_end(ab); } void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { struct audit_buffer *ab; if (!audit_enabled) return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); if (unlikely(!ab)) return; audit_log_format(ab, "op=seccomp-logging actions=%s old-actions=%s res=%d", names, old_names, res); audit_log_end(ab); } struct list_head *audit_killed_trees(void) { struct audit_context *ctx = audit_context(); if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) return NULL; return &ctx->killed_trees; } |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ u16 num_closed_socks; /* closed elements in socks */ u16 incoming_cpu; /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[] __counted_by(max_socks); }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); void reuseport_stop_listen_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); struct sock *reuseport_migrate_sock(struct sock *sk, struct sock *migrating_sk, struct sk_buff *skb); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse && reuse->has_conns) ret = true; rcu_read_unlock(); return ret; } void reuseport_has_conns_set(struct sock *sk); void reuseport_update_incoming_cpu(struct sock *sk, int val); #endif /* _SOCK_REUSEPORT_H */ |
| 22 71 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mptcp #if !defined(_TRACE_MPTCP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MPTCP_H #include <linux/tracepoint.h> #define show_mapping_status(status) \ __print_symbolic(status, \ { 0, "MAPPING_OK" }, \ { 1, "MAPPING_INVALID" }, \ { 2, "MAPPING_EMPTY" }, \ { 3, "MAPPING_DATA_FIN" }, \ { 4, "MAPPING_DUMMY" }) TRACE_EVENT(mptcp_subflow_get_send, TP_PROTO(struct mptcp_subflow_context *subflow), TP_ARGS(subflow), TP_STRUCT__entry( __field(bool, active) __field(bool, free) __field(u32, snd_wnd) __field(u32, pace) __field(u8, backup) __field(u64, ratio) ), TP_fast_assign( struct sock *ssk; __entry->active = mptcp_subflow_active(subflow); __entry->backup = subflow->backup || subflow->request_bkup; if (subflow->tcp_sock && sk_fullsock(subflow->tcp_sock)) __entry->free = sk_stream_memory_free(subflow->tcp_sock); else __entry->free = 0; ssk = mptcp_subflow_tcp_sock(subflow); if (ssk && sk_fullsock(ssk)) { __entry->snd_wnd = tcp_sk(ssk)->snd_wnd; __entry->pace = READ_ONCE(ssk->sk_pacing_rate); } else { __entry->snd_wnd = 0; __entry->pace = 0; } if (ssk && sk_fullsock(ssk) && __entry->pace) __entry->ratio = div_u64((u64)ssk->sk_wmem_queued << 32, __entry->pace); else __entry->ratio = 0; ), TP_printk("active=%d free=%d snd_wnd=%u pace=%u backup=%u ratio=%llu", __entry->active, __entry->free, __entry->snd_wnd, __entry->pace, __entry->backup, __entry->ratio) ); DECLARE_EVENT_CLASS(mptcp_dump_mpext, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext), TP_STRUCT__entry( __field(u64, data_ack) __field(u64, data_seq) __field(u32, subflow_seq) __field(u16, data_len) __field(u16, csum) __field(u8, use_map) __field(u8, dsn64) __field(u8, data_fin) __field(u8, use_ack) __field(u8, ack64) __field(u8, mpc_map) __field(u8, frozen) __field(u8, reset_transient) __field(u8, reset_reason) __field(u8, csum_reqd) __field(u8, infinite_map) ), TP_fast_assign( __entry->data_ack = mpext->ack64 ? mpext->data_ack : mpext->data_ack32; __entry->data_seq = mpext->data_seq; __entry->subflow_seq = mpext->subflow_seq; __entry->data_len = mpext->data_len; __entry->csum = (__force u16)mpext->csum; __entry->use_map = mpext->use_map; __entry->dsn64 = mpext->dsn64; __entry->data_fin = mpext->data_fin; __entry->use_ack = mpext->use_ack; __entry->ack64 = mpext->ack64; __entry->mpc_map = mpext->mpc_map; __entry->frozen = mpext->frozen; __entry->reset_transient = mpext->reset_transient; __entry->reset_reason = mpext->reset_reason; __entry->csum_reqd = mpext->csum_reqd; __entry->infinite_map = mpext->infinite_map; ), TP_printk("data_ack=%llu data_seq=%llu subflow_seq=%u data_len=%u csum=%x use_map=%u dsn64=%u data_fin=%u use_ack=%u ack64=%u mpc_map=%u frozen=%u reset_transient=%u reset_reason=%u csum_reqd=%u infinite_map=%u", __entry->data_ack, __entry->data_seq, __entry->subflow_seq, __entry->data_len, __entry->csum, __entry->use_map, __entry->dsn64, __entry->data_fin, __entry->use_ack, __entry->ack64, __entry->mpc_map, __entry->frozen, __entry->reset_transient, __entry->reset_reason, __entry->csum_reqd, __entry->infinite_map) ); DEFINE_EVENT(mptcp_dump_mpext, mptcp_sendmsg_frag, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext)); DEFINE_EVENT(mptcp_dump_mpext, get_mapping_status, TP_PROTO(struct mptcp_ext *mpext), TP_ARGS(mpext)); TRACE_EVENT(ack_update_msk, TP_PROTO(u64 data_ack, u64 old_snd_una, u64 new_snd_una, u64 new_wnd_end, u64 msk_wnd_end), TP_ARGS(data_ack, old_snd_una, new_snd_una, new_wnd_end, msk_wnd_end), TP_STRUCT__entry( __field(u64, data_ack) __field(u64, old_snd_una) __field(u64, new_snd_una) __field(u64, new_wnd_end) __field(u64, msk_wnd_end) ), TP_fast_assign( __entry->data_ack = data_ack; __entry->old_snd_una = old_snd_una; __entry->new_snd_una = new_snd_una; __entry->new_wnd_end = new_wnd_end; __entry->msk_wnd_end = msk_wnd_end; ), TP_printk("data_ack=%llu old_snd_una=%llu new_snd_una=%llu new_wnd_end=%llu msk_wnd_end=%llu", __entry->data_ack, __entry->old_snd_una, __entry->new_snd_una, __entry->new_wnd_end, __entry->msk_wnd_end) ); TRACE_EVENT(subflow_check_data_avail, TP_PROTO(__u8 status, struct sk_buff *skb), TP_ARGS(status, skb), TP_STRUCT__entry( __field(u8, status) __field(const void *, skb) ), TP_fast_assign( __entry->status = status; __entry->skb = skb; ), TP_printk("mapping_status=%s, skb=%p", show_mapping_status(__entry->status), __entry->skb) ); #endif /* _TRACE_MPTCP_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 224 224 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 | // SPDX-License-Identifier: GPL-2.0 /* * linux/mm/swap_state.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie * * Rewritten to use page cache, (C) 1998 Stephen Tweedie */ #include <linux/mm.h> #include <linux/gfp.h> #include <linux/kernel_stat.h> #include <linux/mempolicy.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/pagevec.h> #include <linux/backing-dev.h> #include <linux/blkdev.h> #include <linux/migrate.h> #include <linux/vmalloc.h> #include <linux/swap_slots.h> #include <linux/huge_mm.h> #include <linux/shmem_fs.h> #include "internal.h" #include "swap.h" /* * swapper_space is a fiction, retained to simplify the path through * vmscan's shrink_folio_list. */ static const struct address_space_operations swap_aops = { .writepage = swap_writepage, .dirty_folio = noop_dirty_folio, #ifdef CONFIG_MIGRATION .migrate_folio = migrate_folio, #endif }; struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; static bool enable_vma_readahead __read_mostly = true; #define SWAP_RA_ORDER_CEILING 5 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) #define SWAP_RA_VAL(addr, win, hits) \ (((addr) & PAGE_MASK) | \ (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ ((hits) & SWAP_RA_HITS_MASK)) /* Initial readahead hits is 4 to start up with a small window */ #define GET_SWAP_RA_VAL(vma) \ (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); void show_swap_cache_info(void) { printk("%lu pages in swap cache\n", total_swapcache_pages()); printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); printk("Total swap = %lukB\n", K(total_swap_pages)); } void *get_shadow_from_swap_cache(swp_entry_t entry) { struct address_space *address_space = swap_address_space(entry); pgoff_t idx = swap_cache_index(entry); void *shadow; shadow = xa_load(&address_space->i_pages, idx); if (xa_is_value(shadow)) return shadow; return NULL; } /* * add_to_swap_cache resembles filemap_add_folio on swapper_space, * but sets SwapCache flag and private instead of mapping and index. */ int add_to_swap_cache(struct folio *folio, swp_entry_t entry, gfp_t gfp, void **shadowp) { struct address_space *address_space = swap_address_space(entry); pgoff_t idx = swap_cache_index(entry); XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); unsigned long i, nr = folio_nr_pages(folio); void *old; xas_set_update(&xas, workingset_update_node); VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); folio_ref_add(folio, nr); folio_set_swapcache(folio); folio->swap = entry; do { xas_lock_irq(&xas); xas_create_range(&xas); if (xas_error(&xas)) goto unlock; for (i = 0; i < nr; i++) { VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); if (shadowp) { old = xas_load(&xas); if (xa_is_value(old)) *shadowp = old; } xas_store(&xas, folio); xas_next(&xas); } address_space->nrpages += nr; __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); unlock: xas_unlock_irq(&xas); } while (xas_nomem(&xas, gfp)); if (!xas_error(&xas)) return 0; folio_clear_swapcache(folio); folio_ref_sub(folio, nr); return xas_error(&xas); } /* * This must be called only on folios that have * been verified to be in the swap cache. */ void __delete_from_swap_cache(struct folio *folio, swp_entry_t entry, void *shadow) { struct address_space *address_space = swap_address_space(entry); int i; long nr = folio_nr_pages(folio); pgoff_t idx = swap_cache_index(entry); XA_STATE(xas, &address_space->i_pages, idx); xas_set_update(&xas, workingset_update_node); VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); for (i = 0; i < nr; i++) { void *entry = xas_store(&xas, shadow); VM_BUG_ON_PAGE(entry != folio, entry); xas_next(&xas); } folio->swap.val = 0; folio_clear_swapcache(folio); address_space->nrpages -= nr; __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); } /** * add_to_swap - allocate swap space for a folio * @folio: folio we want to move to swap * * Allocate swap space for the folio and add the folio to the * swap cache. * * Context: Caller needs to hold the folio lock. * Return: Whether the folio was added to the swap cache. */ bool add_to_swap(struct folio *folio) { swp_entry_t entry; int err; VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); entry = folio_alloc_swap(folio); if (!entry.val) return false; /* * XArray node allocations from PF_MEMALLOC contexts could * completely exhaust the page allocator. __GFP_NOMEMALLOC * stops emergency reserves from being allocated. * * TODO: this could cause a theoretical memory reclaim * deadlock in the swap out path. */ /* * Add it to the swap cache. */ err = add_to_swap_cache(folio, entry, __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); if (err) /* * add_to_swap_cache() doesn't return -EEXIST, so we can safely * clear SWAP_HAS_CACHE flag. */ goto fail; /* * Normally the folio will be dirtied in unmap because its * pte should be dirty. A special case is MADV_FREE page. The * page's pte could have dirty bit cleared but the folio's * SwapBacked flag is still set because clearing the dirty bit * and SwapBacked flag has no lock protected. For such folio, * unmap will not set dirty bit for it, so folio reclaim will * not write the folio out. This can cause data corruption when * the folio is swapped in later. Always setting the dirty flag * for the folio solves the problem. */ folio_mark_dirty(folio); return true; fail: put_swap_folio(folio, entry); return false; } /* * This must be called only on folios that have * been verified to be in the swap cache and locked. * It will never put the folio into the free list, * the caller has a reference on the folio. */ void delete_from_swap_cache(struct folio *folio) { swp_entry_t entry = folio->swap; struct address_space *address_space = swap_address_space(entry); xa_lock_irq(&address_space->i_pages); __delete_from_swap_cache(folio, entry, NULL); xa_unlock_irq(&address_space->i_pages); put_swap_folio(folio, entry); folio_ref_sub(folio, folio_nr_pages(folio)); } void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { unsigned long curr = begin; void *old; for (;;) { swp_entry_t entry = swp_entry(type, curr); unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK; struct address_space *address_space = swap_address_space(entry); XA_STATE(xas, &address_space->i_pages, index); xas_set_update(&xas, workingset_update_node); xa_lock_irq(&address_space->i_pages); xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) { if (!xa_is_value(old)) continue; xas_store(&xas, NULL); } xa_unlock_irq(&address_space->i_pages); /* search the next swapcache until we meet end */ curr >>= SWAP_ADDRESS_SPACE_SHIFT; curr++; curr <<= SWAP_ADDRESS_SPACE_SHIFT; if (curr > end) break; } } /* * If we are the only user, then try to free up the swap cache. * * Its ok to check the swapcache flag without the folio lock * here because we are going to recheck again inside * folio_free_swap() _with_ the lock. * - Marcelo */ void free_swap_cache(struct folio *folio) { if (folio_test_swapcache(folio) && !folio_mapped(folio) && folio_trylock(folio)) { folio_free_swap(folio); folio_unlock(folio); } } /* * Perform a free_page(), also freeing any swap cache associated with * this page if it is the last user of the page. */ void free_page_and_swap_cache(struct page *page) { struct folio *folio = page_folio(page); free_swap_cache(folio); if (!is_huge_zero_folio(folio)) folio_put(folio); } /* * Passed an array of pages, drop them all from swapcache and then release * them. They are removed from the LRU and freed if this is their last use. */ void free_pages_and_swap_cache(struct encoded_page **pages, int nr) { struct folio_batch folios; unsigned int refs[PAGEVEC_SIZE]; lru_add_drain(); folio_batch_init(&folios); for (int i = 0; i < nr; i++) { struct folio *folio = page_folio(encoded_page_ptr(pages[i])); free_swap_cache(folio); refs[folios.nr] = 1; if (unlikely(encoded_page_flags(pages[i]) & ENCODED_PAGE_BIT_NR_PAGES_NEXT)) refs[folios.nr] = encoded_nr_pages(pages[++i]); if (folio_batch_add(&folios, folio) == 0) folios_put_refs(&folios, refs); } if (folios.nr) folios_put_refs(&folios, refs); } static inline bool swap_use_vma_readahead(void) { return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); } /* * Lookup a swap entry in the swap cache. A found folio will be returned * unlocked and with its refcount incremented - we rely on the kernel * lock getting page table operations atomic even if we drop the folio * lock before returning. * * Caller must lock the swap device or hold a reference to keep it valid. */ struct folio *swap_cache_get_folio(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr) { struct folio *folio; folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); if (!IS_ERR(folio)) { bool vma_ra = swap_use_vma_readahead(); bool readahead; /* * At the moment, we don't support PG_readahead for anon THP * so let's bail out rather than confusing the readahead stat. */ if (unlikely(folio_test_large(folio))) return folio; readahead = folio_test_clear_readahead(folio); if (vma && vma_ra) { unsigned long ra_val; int win, hits; ra_val = GET_SWAP_RA_VAL(vma); win = SWAP_RA_WIN(ra_val); hits = SWAP_RA_HITS(ra_val); if (readahead) hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(addr, win, hits)); } if (readahead) { count_vm_event(SWAP_RA_HIT); if (!vma || !vma_ra) atomic_inc(&swapin_readahead_hits); } } else { folio = NULL; } return folio; } /** * filemap_get_incore_folio - Find and get a folio from the page or swap caches. * @mapping: The address_space to search. * @index: The page cache index. * * This differs from filemap_get_folio() in that it will also look for the * folio in the swap cache. * * Return: The found folio or %NULL. */ struct folio *filemap_get_incore_folio(struct address_space *mapping, pgoff_t index) { swp_entry_t swp; struct swap_info_struct *si; struct folio *folio = filemap_get_entry(mapping, index); if (!folio) return ERR_PTR(-ENOENT); if (!xa_is_value(folio)) return folio; if (!shmem_mapping(mapping)) return ERR_PTR(-ENOENT); swp = radix_to_swp_entry(folio); /* There might be swapin error entries in shmem mapping. */ if (non_swap_entry(swp)) return ERR_PTR(-ENOENT); /* Prevent swapoff from happening to us */ si = get_swap_device(swp); if (!si) return ERR_PTR(-ENOENT); index = swap_cache_index(swp); folio = filemap_get_folio(swap_address_space(swp), index); put_swap_device(si); return folio; } struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, bool skip_if_exists) { struct swap_info_struct *si; struct folio *folio; struct folio *new_folio = NULL; struct folio *result = NULL; void *shadow = NULL; *new_page_allocated = false; si = get_swap_device(entry); if (!si) return NULL; for (;;) { int err; /* * First check the swap cache. Since this is normally * called after swap_cache_get_folio() failed, re-calling * that would confuse statistics. */ folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); if (!IS_ERR(folio)) goto got_folio; /* * Just skip read ahead for unused swap slot. * During swap_off when swap_slot_cache is disabled, * we have to handle the race between putting * swap entry in swap cache and marking swap slot * as SWAP_HAS_CACHE. That's done in later part of code or * else swap_off will be aborted if we return NULL. */ if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) goto put_and_return; /* * Get a new folio to read into from swap. Allocate it now if * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, * when -EEXIST will cause any racers to loop around until we * add it to cache. */ if (!new_folio) { new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); if (!new_folio) goto put_and_return; } /* * Swap entry may have been freed since our caller observed it. */ err = swapcache_prepare(entry, 1); if (!err) break; else if (err != -EEXIST) goto put_and_return; /* * Protect against a recursive call to __read_swap_cache_async() * on the same entry waiting forever here because SWAP_HAS_CACHE * is set but the folio is not the swap cache yet. This can * happen today if mem_cgroup_swapin_charge_folio() below * triggers reclaim through zswap, which may call * __read_swap_cache_async() in the writeback path. */ if (skip_if_exists) goto put_and_return; /* * We might race against __delete_from_swap_cache(), and * stumble across a swap_map entry whose SWAP_HAS_CACHE * has not yet been cleared. Or race against another * __read_swap_cache_async(), which has set SWAP_HAS_CACHE * in swap_map, but not yet added its folio to swap cache. */ schedule_timeout_uninterruptible(1); } /* * The swap entry is ours to swap in. Prepare the new folio. */ __folio_set_locked(new_folio); __folio_set_swapbacked(new_folio); if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) goto fail_unlock; /* May fail (-ENOMEM) if XArray node allocation failed. */ if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) goto fail_unlock; mem_cgroup_swapin_uncharge_swap(entry, 1); if (shadow) workingset_refault(new_folio, shadow); /* Caller will initiate read into locked new_folio */ folio_add_lru(new_folio); *new_page_allocated = true; folio = new_folio; got_folio: result = folio; goto put_and_return; fail_unlock: put_swap_folio(new_folio, entry); folio_unlock(new_folio); put_and_return: put_swap_device(si); if (!(*new_page_allocated) && new_folio) folio_put(new_folio); return result; } /* * Locate a page of swap in physical memory, reserving swap cache space * and reading the disk if it is not already cached. * A failure return means that either the page allocation failed or that * the swap entry is no longer in use. * * get/put_swap_device() aren't needed to call this function, because * __read_swap_cache_async() call them and swap_read_folio() holds the * swap cache folio lock. */ struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr, struct swap_iocb **plug) { bool page_allocated; struct mempolicy *mpol; pgoff_t ilx; struct folio *folio; mpol = get_vma_policy(vma, addr, 0, &ilx); folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, &page_allocated, false); mpol_cond_put(mpol); if (page_allocated) swap_read_folio(folio, plug); return folio; } static unsigned int __swapin_nr_pages(unsigned long prev_offset, unsigned long offset, int hits, int max_pages, int prev_win) { unsigned int pages, last_ra; /* * This heuristic has been found to work well on both sequential and * random loads, swapping to hard disk or to SSD: please don't ask * what the "+ 2" means, it just happens to work well, that's all. */ pages = hits + 2; if (pages == 2) { /* * We can have no readahead hits to judge by: but must not get * stuck here forever, so check for an adjacent offset instead * (and don't even bother to check whether swap type is same). */ if (offset != prev_offset + 1 && offset != prev_offset - 1) pages = 1; } else { unsigned int roundup = 4; while (roundup < pages) roundup <<= 1; pages = roundup; } if (pages > max_pages) pages = max_pages; /* Don't shrink readahead too fast */ last_ra = prev_win / 2; if (pages < last_ra) pages = last_ra; return pages; } static unsigned long swapin_nr_pages(unsigned long offset) { static unsigned long prev_offset; unsigned int hits, pages, max_pages; static atomic_t last_readahead_pages; max_pages = 1 << READ_ONCE(page_cluster); if (max_pages <= 1) return 1; hits = atomic_xchg(&swapin_readahead_hits, 0); pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, max_pages, atomic_read(&last_readahead_pages)); if (!hits) WRITE_ONCE(prev_offset, offset); atomic_set(&last_readahead_pages, pages); return pages; } /** * swap_cluster_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory * @gfp_mask: memory allocation flags * @mpol: NUMA memory allocation policy to be applied * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE * * Returns the struct folio for entry and addr, after queueing swapin. * * Primitive swap readahead code. We simply read an aligned block of * (1 << page_cluster) entries in the swap area. This method is chosen * because it doesn't cost us any seek time. We also make sure to queue * the 'original' request together with the readahead ones... * * Note: it is intentional that the same NUMA policy and interleave index * are used for every page of the readahead: neighbouring pages on swap * are fairly likely to have been swapped out from the same node. */ struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct mempolicy *mpol, pgoff_t ilx) { struct folio *folio; unsigned long entry_offset = swp_offset(entry); unsigned long offset = entry_offset; unsigned long start_offset, end_offset; unsigned long mask; struct swap_info_struct *si = swp_swap_info(entry); struct blk_plug plug; struct swap_iocb *splug = NULL; bool page_allocated; mask = swapin_nr_pages(offset) - 1; if (!mask) goto skip; /* Read a page_cluster sized and aligned cluster around offset. */ start_offset = offset & ~mask; end_offset = offset | mask; if (!start_offset) /* First page is swap header. */ start_offset++; if (end_offset >= si->max) end_offset = si->max - 1; blk_start_plug(&plug); for (offset = start_offset; offset <= end_offset ; offset++) { /* Ok, do the async read-ahead now */ folio = __read_swap_cache_async( swp_entry(swp_type(entry), offset), gfp_mask, mpol, ilx, &page_allocated, false); if (!folio) continue; if (page_allocated) { swap_read_folio(folio, &splug); if (offset != entry_offset) { folio_set_readahead(folio); count_vm_event(SWAP_RA); } } folio_put(folio); } blk_finish_plug(&plug); swap_read_unplug(splug); lru_add_drain(); /* Push any new pages onto the LRU now */ skip: /* The page was likely read above, so no need for plugging here */ folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, &page_allocated, false); if (unlikely(page_allocated)) swap_read_folio(folio, NULL); return folio; } int init_swap_address_space(unsigned int type, unsigned long nr_pages) { struct address_space *spaces, *space; unsigned int i, nr; nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); if (!spaces) return -ENOMEM; for (i = 0; i < nr; i++) { space = spaces + i; xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); atomic_set(&space->i_mmap_writable, 0); space->a_ops = &swap_aops; /* swap cache doesn't use writeback related tags */ mapping_set_no_writeback_tags(space); } nr_swapper_spaces[type] = nr; swapper_spaces[type] = spaces; return 0; } void exit_swap_address_space(unsigned int type) { int i; struct address_space *spaces = swapper_spaces[type]; for (i = 0; i < nr_swapper_spaces[type]; i++) VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); kvfree(spaces); nr_swapper_spaces[type] = 0; swapper_spaces[type] = NULL; } static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, unsigned long *end) { struct vm_area_struct *vma = vmf->vma; unsigned long ra_val; unsigned long faddr, prev_faddr, left, right; unsigned int max_win, hits, prev_win, win; max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); if (max_win == 1) return 1; faddr = vmf->address; ra_val = GET_SWAP_RA_VAL(vma); prev_faddr = SWAP_RA_ADDR(ra_val); prev_win = SWAP_RA_WIN(ra_val); hits = SWAP_RA_HITS(ra_val); win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, max_win, prev_win); atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); if (win == 1) return 1; if (faddr == prev_faddr + PAGE_SIZE) left = faddr; else if (prev_faddr == faddr + PAGE_SIZE) left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; else left = faddr - (((win - 1) / 2) << PAGE_SHIFT); right = left + (win << PAGE_SHIFT); if ((long)left < 0) left = 0; *start = max3(left, vma->vm_start, faddr & PMD_MASK); *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); return win; } /** * swap_vma_readahead - swap in pages in hope we need them soon * @targ_entry: swap entry of the targeted memory * @gfp_mask: memory allocation flags * @mpol: NUMA memory allocation policy to be applied * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE * @vmf: fault information * * Returns the struct folio for entry and addr, after queueing swapin. * * Primitive swap readahead code. We simply read in a few pages whose * virtual addresses are around the fault address in the same vma. * * Caller must hold read mmap_lock if vmf->vma is not NULL. * */ static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) { struct blk_plug plug; struct swap_iocb *splug = NULL; struct folio *folio; pte_t *pte = NULL, pentry; int win; unsigned long start, end, addr; swp_entry_t entry; pgoff_t ilx; bool page_allocated; win = swap_vma_ra_win(vmf, &start, &end); if (win == 1) goto skip; ilx = targ_ilx - PFN_DOWN(vmf->address - start); blk_start_plug(&plug); for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { if (!pte++) { pte = pte_offset_map(vmf->pmd, addr); if (!pte) break; } pentry = ptep_get_lockless(pte); if (!is_swap_pte(pentry)) continue; entry = pte_to_swp_entry(pentry); if (unlikely(non_swap_entry(entry))) continue; pte_unmap(pte); pte = NULL; folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, &page_allocated, false); if (!folio) continue; if (page_allocated) { swap_read_folio(folio, &splug); if (addr != vmf->address) { folio_set_readahead(folio); count_vm_event(SWAP_RA); } } folio_put(folio); } if (pte) pte_unmap(pte); blk_finish_plug(&plug); swap_read_unplug(splug); lru_add_drain(); skip: /* The folio was likely read above, so no need for plugging here */ folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, &page_allocated, false); if (unlikely(page_allocated)) swap_read_folio(folio, NULL); return folio; } /** * swapin_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory * @gfp_mask: memory allocation flags * @vmf: fault information * * Returns the struct folio for entry and addr, after queueing swapin. * * It's a main entry function for swap readahead. By the configuration, * it will read ahead blocks by cluster-based(ie, physical disk based) * or vma-based(ie, virtual address based on faulty address) readahead. */ struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { struct mempolicy *mpol; pgoff_t ilx; struct folio *folio; mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); folio = swap_use_vma_readahead() ? swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : swap_cluster_readahead(entry, gfp_mask, mpol, ilx); mpol_cond_put(mpol); return folio; } #ifdef CONFIG_SYSFS static ssize_t vma_ra_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); } static ssize_t vma_ra_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { ssize_t ret; ret = kstrtobool(buf, &enable_vma_readahead); if (ret) return ret; return count; } static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); static struct attribute *swap_attrs[] = { &vma_ra_enabled_attr.attr, NULL, }; static const struct attribute_group swap_attr_group = { .attrs = swap_attrs, }; static int __init swap_init_sysfs(void) { int err; struct kobject *swap_kobj; swap_kobj = kobject_create_and_add("swap", mm_kobj); if (!swap_kobj) { pr_err("failed to create swap kobject\n"); return -ENOMEM; } err = sysfs_create_group(swap_kobj, &swap_attr_group); if (err) { pr_err("failed to register swap group\n"); goto delete_obj; } return 0; delete_obj: kobject_put(swap_kobj); return err; } subsys_initcall(swap_init_sysfs); #endif |
| 102 102 3 3 74 74 106 107 106 106 64 63 57 57 2 2 233 228 6 90 258 259 99 99 3 3 4 4 4 4 4 2 2 1 1 3 3 3 3 3 3 3 3 3 3 2 2 2 6 6 4 4 5 5 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 | /* * net/tipc/node.c: TIPC node management routines * * Copyright (c) 2000-2006, 2012-2016, Ericsson AB * Copyright (c) 2005-2006, 2010-2014, Wind River Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "link.h" #include "node.h" #include "name_distr.h" #include "socket.h" #include "bcast.h" #include "monitor.h" #include "discover.h" #include "netlink.h" #include "trace.h" #include "crypto.h" #define INVALID_NODE_SIG 0x10000 #define NODE_CLEANUP_AFTER 300000 /* Flags used to take different actions according to flag type * TIPC_NOTIFY_NODE_DOWN: notify node is down * TIPC_NOTIFY_NODE_UP: notify node is up * TIPC_DISTRIBUTE_NAME: publish or withdraw link state name type */ enum { TIPC_NOTIFY_NODE_DOWN = (1 << 3), TIPC_NOTIFY_NODE_UP = (1 << 4), TIPC_NOTIFY_LINK_UP = (1 << 6), TIPC_NOTIFY_LINK_DOWN = (1 << 7) }; struct tipc_link_entry { struct tipc_link *link; spinlock_t lock; /* per link */ u32 mtu; struct sk_buff_head inputq; struct tipc_media_addr maddr; }; struct tipc_bclink_entry { struct tipc_link *link; struct sk_buff_head inputq1; struct sk_buff_head arrvq; struct sk_buff_head inputq2; struct sk_buff_head namedq; u16 named_rcv_nxt; bool named_open; }; /** * struct tipc_node - TIPC node structure * @addr: network address of node * @kref: reference counter to node object * @lock: rwlock governing access to structure * @net: the applicable net namespace * @hash: links to adjacent nodes in unsorted hash chain * @active_links: bearer ids of active links, used as index into links[] array * @links: array containing references to all links to node * @bc_entry: broadcast link entry * @action_flags: bit mask of different types of node actions * @state: connectivity state vs peer node * @preliminary: a preliminary node or not * @failover_sent: failover sent or not * @sync_point: sequence number where synch/failover is finished * @list: links to adjacent nodes in sorted list of cluster's nodes * @working_links: number of working links to node (both active and standby) * @link_cnt: number of links to node * @capabilities: bitmap, indicating peer node's functional capabilities * @signature: node instance identifier * @link_id: local and remote bearer ids of changing link, if any * @peer_id: 128-bit ID of peer * @peer_id_string: ID string of peer * @publ_list: list of publications * @conn_sks: list of connections (FIXME) * @timer: node's keepalive timer * @keepalive_intv: keepalive interval in milliseconds * @rcu: rcu struct for tipc_node * @delete_at: indicates the time for deleting a down node * @peer_net: peer's net namespace * @peer_hash_mix: hash for this peer (FIXME) * @crypto_rx: RX crypto handler */ struct tipc_node { u32 addr; struct kref kref; rwlock_t lock; struct net *net; struct hlist_node hash; int active_links[2]; struct tipc_link_entry links[MAX_BEARERS]; struct tipc_bclink_entry bc_entry; int action_flags; struct list_head list; int state; bool preliminary; bool failover_sent; u16 sync_point; int link_cnt; u16 working_links; u16 capabilities; u32 signature; u32 link_id; u8 peer_id[16]; char peer_id_string[NODE_ID_STR_LEN]; struct list_head publ_list; struct list_head conn_sks; unsigned long keepalive_intv; struct timer_list timer; struct rcu_head rcu; unsigned long delete_at; struct net *peer_net; u32 peer_hash_mix; #ifdef CONFIG_TIPC_CRYPTO struct tipc_crypto *crypto_rx; #endif }; /* Node FSM states and events: */ enum { SELF_DOWN_PEER_DOWN = 0xdd, SELF_UP_PEER_UP = 0xaa, SELF_DOWN_PEER_LEAVING = 0xd1, SELF_UP_PEER_COMING = 0xac, SELF_COMING_PEER_UP = 0xca, SELF_LEAVING_PEER_DOWN = 0x1d, NODE_FAILINGOVER = 0xf0, NODE_SYNCHING = 0xcc }; enum { SELF_ESTABL_CONTACT_EVT = 0xece, SELF_LOST_CONTACT_EVT = 0x1ce, PEER_ESTABL_CONTACT_EVT = 0x9ece, PEER_LOST_CONTACT_EVT = 0x91ce, NODE_FAILOVER_BEGIN_EVT = 0xfbe, NODE_FAILOVER_END_EVT = 0xfee, NODE_SYNCH_BEGIN_EVT = 0xcbe, NODE_SYNCH_END_EVT = 0xcee }; static void __tipc_node_link_down(struct tipc_node *n, int *bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr **maddr); static void tipc_node_link_down(struct tipc_node *n, int bearer_id, bool delete); static void node_lost_contact(struct tipc_node *n, struct sk_buff_head *inputq); static void tipc_node_delete(struct tipc_node *node); static void tipc_node_timeout(struct timer_list *t); static void tipc_node_fsm_evt(struct tipc_node *n, int evt); static struct tipc_node *tipc_node_find(struct net *net, u32 addr); static struct tipc_node *tipc_node_find_by_id(struct net *net, u8 *id); static bool node_is_up(struct tipc_node *n); static void tipc_node_delete_from_list(struct tipc_node *node); struct tipc_sock_conn { u32 port; u32 peer_port; u32 peer_node; struct list_head list; }; static struct tipc_link *node_active_link(struct tipc_node *n, int sel) { int bearer_id = n->active_links[sel & 1]; if (unlikely(bearer_id == INVALID_BEARER_ID)) return NULL; return n->links[bearer_id].link; } int tipc_node_get_mtu(struct net *net, u32 addr, u32 sel, bool connected) { struct tipc_node *n; int bearer_id; unsigned int mtu = MAX_MSG_SIZE; n = tipc_node_find(net, addr); if (unlikely(!n)) return mtu; /* Allow MAX_MSG_SIZE when building connection oriented message * if they are in the same core network */ if (n->peer_net && connected) { tipc_node_put(n); return mtu; } bearer_id = n->active_links[sel & 1]; if (likely(bearer_id != INVALID_BEARER_ID)) mtu = n->links[bearer_id].mtu; tipc_node_put(n); return mtu; } bool tipc_node_get_id(struct net *net, u32 addr, u8 *id) { u8 *own_id = tipc_own_id(net); struct tipc_node *n; if (!own_id) return true; if (addr == tipc_own_addr(net)) { memcpy(id, own_id, TIPC_NODEID_LEN); return true; } n = tipc_node_find(net, addr); if (!n) return false; memcpy(id, &n->peer_id, TIPC_NODEID_LEN); tipc_node_put(n); return true; } u16 tipc_node_get_capabilities(struct net *net, u32 addr) { struct tipc_node *n; u16 caps; n = tipc_node_find(net, addr); if (unlikely(!n)) return TIPC_NODE_CAPABILITIES; caps = n->capabilities; tipc_node_put(n); return caps; } u32 tipc_node_get_addr(struct tipc_node *node) { return (node) ? node->addr : 0; } char *tipc_node_get_id_str(struct tipc_node *node) { return node->peer_id_string; } #ifdef CONFIG_TIPC_CRYPTO /** * tipc_node_crypto_rx - Retrieve crypto RX handle from node * @__n: target tipc_node * Note: node ref counter must be held first! */ struct tipc_crypto *tipc_node_crypto_rx(struct tipc_node *__n) { return (__n) ? __n->crypto_rx : NULL; } struct tipc_crypto *tipc_node_crypto_rx_by_list(struct list_head *pos) { return container_of(pos, struct tipc_node, list)->crypto_rx; } struct tipc_crypto *tipc_node_crypto_rx_by_addr(struct net *net, u32 addr) { struct tipc_node *n; n = tipc_node_find(net, addr); return (n) ? n->crypto_rx : NULL; } #endif static void tipc_node_free(struct rcu_head *rp) { struct tipc_node *n = container_of(rp, struct tipc_node, rcu); #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_stop(&n->crypto_rx); #endif kfree(n); } static void tipc_node_kref_release(struct kref *kref) { struct tipc_node *n = container_of(kref, struct tipc_node, kref); kfree(n->bc_entry.link); call_rcu(&n->rcu, tipc_node_free); } void tipc_node_put(struct tipc_node *node) { kref_put(&node->kref, tipc_node_kref_release); } void tipc_node_get(struct tipc_node *node) { kref_get(&node->kref); } /* * tipc_node_find - locate specified node object, if it exists */ static struct tipc_node *tipc_node_find(struct net *net, u32 addr) { struct tipc_net *tn = tipc_net(net); struct tipc_node *node; unsigned int thash = tipc_hashfn(addr); rcu_read_lock(); hlist_for_each_entry_rcu(node, &tn->node_htable[thash], hash) { if (node->addr != addr || node->preliminary) continue; if (!kref_get_unless_zero(&node->kref)) node = NULL; break; } rcu_read_unlock(); return node; } /* tipc_node_find_by_id - locate specified node object by its 128-bit id * Note: this function is called only when a discovery request failed * to find the node by its 32-bit id, and is not time critical */ static struct tipc_node *tipc_node_find_by_id(struct net *net, u8 *id) { struct tipc_net *tn = tipc_net(net); struct tipc_node *n; bool found = false; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { read_lock_bh(&n->lock); if (!memcmp(id, n->peer_id, 16) && kref_get_unless_zero(&n->kref)) found = true; read_unlock_bh(&n->lock); if (found) break; } rcu_read_unlock(); return found ? n : NULL; } static void tipc_node_read_lock(struct tipc_node *n) __acquires(n->lock) { read_lock_bh(&n->lock); } static void tipc_node_read_unlock(struct tipc_node *n) __releases(n->lock) { read_unlock_bh(&n->lock); } static void tipc_node_write_lock(struct tipc_node *n) __acquires(n->lock) { write_lock_bh(&n->lock); } static void tipc_node_write_unlock_fast(struct tipc_node *n) __releases(n->lock) { write_unlock_bh(&n->lock); } static void tipc_node_write_unlock(struct tipc_node *n) __releases(n->lock) { struct tipc_socket_addr sk; struct net *net = n->net; u32 flags = n->action_flags; struct list_head *publ_list; struct tipc_uaddr ua; u32 bearer_id, node; if (likely(!flags)) { write_unlock_bh(&n->lock); return; } tipc_uaddr(&ua, TIPC_SERVICE_RANGE, TIPC_NODE_SCOPE, TIPC_LINK_STATE, n->addr, n->addr); sk.ref = n->link_id; sk.node = tipc_own_addr(net); node = n->addr; bearer_id = n->link_id & 0xffff; publ_list = &n->publ_list; n->action_flags &= ~(TIPC_NOTIFY_NODE_DOWN | TIPC_NOTIFY_NODE_UP | TIPC_NOTIFY_LINK_DOWN | TIPC_NOTIFY_LINK_UP); write_unlock_bh(&n->lock); if (flags & TIPC_NOTIFY_NODE_DOWN) tipc_publ_notify(net, publ_list, node, n->capabilities); if (flags & TIPC_NOTIFY_NODE_UP) tipc_named_node_up(net, node, n->capabilities); if (flags & TIPC_NOTIFY_LINK_UP) { tipc_mon_peer_up(net, node, bearer_id); tipc_nametbl_publish(net, &ua, &sk, sk.ref); } if (flags & TIPC_NOTIFY_LINK_DOWN) { tipc_mon_peer_down(net, node, bearer_id); tipc_nametbl_withdraw(net, &ua, &sk, sk.ref); } } static void tipc_node_assign_peer_net(struct tipc_node *n, u32 hash_mixes) { int net_id = tipc_netid(n->net); struct tipc_net *tn_peer; struct net *tmp; u32 hash_chk; if (n->peer_net) return; for_each_net_rcu(tmp) { tn_peer = tipc_net(tmp); if (!tn_peer) continue; /* Integrity checking whether node exists in namespace or not */ if (tn_peer->net_id != net_id) continue; if (memcmp(n->peer_id, tn_peer->node_id, NODE_ID_LEN)) continue; hash_chk = tipc_net_hash_mixes(tmp, tn_peer->random); if (hash_mixes ^ hash_chk) continue; n->peer_net = tmp; n->peer_hash_mix = hash_mixes; break; } } struct tipc_node *tipc_node_create(struct net *net, u32 addr, u8 *peer_id, u16 capabilities, u32 hash_mixes, bool preliminary) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_link *l, *snd_l = tipc_bc_sndlink(net); struct tipc_node *n, *temp_node; unsigned long intv; int bearer_id; int i; spin_lock_bh(&tn->node_list_lock); n = tipc_node_find(net, addr) ?: tipc_node_find_by_id(net, peer_id); if (n) { if (!n->preliminary) goto update; if (preliminary) goto exit; /* A preliminary node becomes "real" now, refresh its data */ tipc_node_write_lock(n); if (!tipc_link_bc_create(net, tipc_own_addr(net), addr, peer_id, U16_MAX, tipc_link_min_win(snd_l), tipc_link_max_win(snd_l), n->capabilities, &n->bc_entry.inputq1, &n->bc_entry.namedq, snd_l, &n->bc_entry.link)) { pr_warn("Broadcast rcv link refresh failed, no memory\n"); tipc_node_write_unlock_fast(n); tipc_node_put(n); n = NULL; goto exit; } n->preliminary = false; n->addr = addr; hlist_del_rcu(&n->hash); hlist_add_head_rcu(&n->hash, &tn->node_htable[tipc_hashfn(addr)]); list_del_rcu(&n->list); list_for_each_entry_rcu(temp_node, &tn->node_list, list) { if (n->addr < temp_node->addr) break; } list_add_tail_rcu(&n->list, &temp_node->list); tipc_node_write_unlock_fast(n); update: if (n->peer_hash_mix ^ hash_mixes) tipc_node_assign_peer_net(n, hash_mixes); if (n->capabilities == capabilities) goto exit; /* Same node may come back with new capabilities */ tipc_node_write_lock(n); n->capabilities = capabilities; for (bearer_id = 0; bearer_id < MAX_BEARERS; bearer_id++) { l = n->links[bearer_id].link; if (l) tipc_link_update_caps(l, capabilities); } tipc_node_write_unlock_fast(n); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); goto exit; } n = kzalloc(sizeof(*n), GFP_ATOMIC); if (!n) { pr_warn("Node creation failed, no memory\n"); goto exit; } tipc_nodeid2string(n->peer_id_string, peer_id); #ifdef CONFIG_TIPC_CRYPTO if (unlikely(tipc_crypto_start(&n->crypto_rx, net, n))) { pr_warn("Failed to start crypto RX(%s)!\n", n->peer_id_string); kfree(n); n = NULL; goto exit; } #endif n->addr = addr; n->preliminary = preliminary; memcpy(&n->peer_id, peer_id, 16); n->net = net; n->peer_net = NULL; n->peer_hash_mix = 0; /* Assign kernel local namespace if exists */ tipc_node_assign_peer_net(n, hash_mixes); n->capabilities = capabilities; kref_init(&n->kref); rwlock_init(&n->lock); INIT_HLIST_NODE(&n->hash); INIT_LIST_HEAD(&n->list); INIT_LIST_HEAD(&n->publ_list); INIT_LIST_HEAD(&n->conn_sks); skb_queue_head_init(&n->bc_entry.namedq); skb_queue_head_init(&n->bc_entry.inputq1); __skb_queue_head_init(&n->bc_entry.arrvq); skb_queue_head_init(&n->bc_entry.inputq2); for (i = 0; i < MAX_BEARERS; i++) spin_lock_init(&n->links[i].lock); n->state = SELF_DOWN_PEER_LEAVING; n->delete_at = jiffies + msecs_to_jiffies(NODE_CLEANUP_AFTER); n->signature = INVALID_NODE_SIG; n->active_links[0] = INVALID_BEARER_ID; n->active_links[1] = INVALID_BEARER_ID; if (!preliminary && !tipc_link_bc_create(net, tipc_own_addr(net), addr, peer_id, U16_MAX, tipc_link_min_win(snd_l), tipc_link_max_win(snd_l), n->capabilities, &n->bc_entry.inputq1, &n->bc_entry.namedq, snd_l, &n->bc_entry.link)) { pr_warn("Broadcast rcv link creation failed, no memory\n"); tipc_node_put(n); n = NULL; goto exit; } tipc_node_get(n); timer_setup(&n->timer, tipc_node_timeout, 0); /* Start a slow timer anyway, crypto needs it */ n->keepalive_intv = 10000; intv = jiffies + msecs_to_jiffies(n->keepalive_intv); if (!mod_timer(&n->timer, intv)) tipc_node_get(n); hlist_add_head_rcu(&n->hash, &tn->node_htable[tipc_hashfn(addr)]); list_for_each_entry_rcu(temp_node, &tn->node_list, list) { if (n->addr < temp_node->addr) break; } list_add_tail_rcu(&n->list, &temp_node->list); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); trace_tipc_node_create(n, true, " "); exit: spin_unlock_bh(&tn->node_list_lock); return n; } static void tipc_node_calculate_timer(struct tipc_node *n, struct tipc_link *l) { unsigned long tol = tipc_link_tolerance(l); unsigned long intv = ((tol / 4) > 500) ? 500 : tol / 4; /* Link with lowest tolerance determines timer interval */ if (intv < n->keepalive_intv) n->keepalive_intv = intv; /* Ensure link's abort limit corresponds to current tolerance */ tipc_link_set_abort_limit(l, tol / n->keepalive_intv); } static void tipc_node_delete_from_list(struct tipc_node *node) { #ifdef CONFIG_TIPC_CRYPTO tipc_crypto_key_flush(node->crypto_rx); #endif list_del_rcu(&node->list); hlist_del_rcu(&node->hash); tipc_node_put(node); } static void tipc_node_delete(struct tipc_node *node) { trace_tipc_node_delete(node, true, " "); tipc_node_delete_from_list(node); del_timer_sync(&node->timer); tipc_node_put(node); } void tipc_node_stop(struct net *net) { struct tipc_net *tn = tipc_net(net); struct tipc_node *node, *t_node; spin_lock_bh(&tn->node_list_lock); list_for_each_entry_safe(node, t_node, &tn->node_list, list) tipc_node_delete(node); spin_unlock_bh(&tn->node_list_lock); } void tipc_node_subscribe(struct net *net, struct list_head *subscr, u32 addr) { struct tipc_node *n; if (in_own_node(net, addr)) return; n = tipc_node_find(net, addr); if (!n) { pr_warn("Node subscribe rejected, unknown node 0x%x\n", addr); return; } tipc_node_write_lock(n); list_add_tail(subscr, &n->publ_list); tipc_node_write_unlock_fast(n); tipc_node_put(n); } void tipc_node_unsubscribe(struct net *net, struct list_head *subscr, u32 addr) { struct tipc_node *n; if (in_own_node(net, addr)) return; n = tipc_node_find(net, addr); if (!n) { pr_warn("Node unsubscribe rejected, unknown node 0x%x\n", addr); return; } tipc_node_write_lock(n); list_del_init(subscr); tipc_node_write_unlock_fast(n); tipc_node_put(n); } int tipc_node_add_conn(struct net *net, u32 dnode, u32 port, u32 peer_port) { struct tipc_node *node; struct tipc_sock_conn *conn; int err = 0; if (in_own_node(net, dnode)) return 0; node = tipc_node_find(net, dnode); if (!node) { pr_warn("Connecting sock to node 0x%x failed\n", dnode); return -EHOSTUNREACH; } conn = kmalloc(sizeof(*conn), GFP_ATOMIC); if (!conn) { err = -EHOSTUNREACH; goto exit; } conn->peer_node = dnode; conn->port = port; conn->peer_port = peer_port; tipc_node_write_lock(node); list_add_tail(&conn->list, &node->conn_sks); tipc_node_write_unlock(node); exit: tipc_node_put(node); return err; } void tipc_node_remove_conn(struct net *net, u32 dnode, u32 port) { struct tipc_node *node; struct tipc_sock_conn *conn, *safe; if (in_own_node(net, dnode)) return; node = tipc_node_find(net, dnode); if (!node) return; tipc_node_write_lock(node); list_for_each_entry_safe(conn, safe, &node->conn_sks, list) { if (port != conn->port) continue; list_del(&conn->list); kfree(conn); } tipc_node_write_unlock(node); tipc_node_put(node); } static void tipc_node_clear_links(struct tipc_node *node) { int i; for (i = 0; i < MAX_BEARERS; i++) { struct tipc_link_entry *le = &node->links[i]; if (le->link) { kfree(le->link); le->link = NULL; node->link_cnt--; } } } /* tipc_node_cleanup - delete nodes that does not * have active links for NODE_CLEANUP_AFTER time */ static bool tipc_node_cleanup(struct tipc_node *peer) { struct tipc_node *temp_node; struct tipc_net *tn = tipc_net(peer->net); bool deleted = false; /* If lock held by tipc_node_stop() the node will be deleted anyway */ if (!spin_trylock_bh(&tn->node_list_lock)) return false; tipc_node_write_lock(peer); if (!node_is_up(peer) && time_after(jiffies, peer->delete_at)) { tipc_node_clear_links(peer); tipc_node_delete_from_list(peer); deleted = true; } tipc_node_write_unlock(peer); if (!deleted) { spin_unlock_bh(&tn->node_list_lock); return deleted; } /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(peer->net, (tn->capabilities & TIPC_BCAST_RCAST)); spin_unlock_bh(&tn->node_list_lock); return deleted; } /* tipc_node_timeout - handle expiration of node timer */ static void tipc_node_timeout(struct timer_list *t) { struct tipc_node *n = from_timer(n, t, timer); struct tipc_link_entry *le; struct sk_buff_head xmitq; int remains = n->link_cnt; int bearer_id; int rc = 0; trace_tipc_node_timeout(n, false, " "); if (!node_is_up(n) && tipc_node_cleanup(n)) { /*Removing the reference of Timer*/ tipc_node_put(n); return; } #ifdef CONFIG_TIPC_CRYPTO /* Take any crypto key related actions first */ tipc_crypto_timeout(n->crypto_rx); #endif __skb_queue_head_init(&xmitq); /* Initial node interval to value larger (10 seconds), then it will be * recalculated with link lowest tolerance */ tipc_node_read_lock(n); n->keepalive_intv = 10000; tipc_node_read_unlock(n); for (bearer_id = 0; remains && (bearer_id < MAX_BEARERS); bearer_id++) { tipc_node_read_lock(n); le = &n->links[bearer_id]; if (le->link) { spin_lock_bh(&le->lock); /* Link tolerance may change asynchronously: */ tipc_node_calculate_timer(n, le->link); rc = tipc_link_timeout(le->link, &xmitq); spin_unlock_bh(&le->lock); remains--; } tipc_node_read_unlock(n); tipc_bearer_xmit(n->net, bearer_id, &xmitq, &le->maddr, n); if (rc & TIPC_LINK_DOWN_EVT) tipc_node_link_down(n, bearer_id, false); } mod_timer(&n->timer, jiffies + msecs_to_jiffies(n->keepalive_intv)); } /** * __tipc_node_link_up - handle addition of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * Node lock must be held by caller * Link becomes active (alone or shared) or standby, depending on its priority. */ static void __tipc_node_link_up(struct tipc_node *n, int bearer_id, struct sk_buff_head *xmitq) { int *slot0 = &n->active_links[0]; int *slot1 = &n->active_links[1]; struct tipc_link *ol = node_active_link(n, 0); struct tipc_link *nl = n->links[bearer_id].link; if (!nl || tipc_link_is_up(nl)) return; tipc_link_fsm_evt(nl, LINK_ESTABLISH_EVT); if (!tipc_link_is_up(nl)) return; n->working_links++; n->action_flags |= TIPC_NOTIFY_LINK_UP; n->link_id = tipc_link_id(nl); /* Leave room for tunnel header when returning 'mtu' to users: */ n->links[bearer_id].mtu = tipc_link_mss(nl); tipc_bearer_add_dest(n->net, bearer_id, n->addr); tipc_bcast_inc_bearer_dst_cnt(n->net, bearer_id); pr_debug("Established link <%s> on network plane %c\n", tipc_link_name(nl), tipc_link_plane(nl)); trace_tipc_node_link_up(n, true, " "); /* Ensure that a STATE message goes first */ tipc_link_build_state_msg(nl, xmitq); /* First link? => give it both slots */ if (!ol) { *slot0 = bearer_id; *slot1 = bearer_id; tipc_node_fsm_evt(n, SELF_ESTABL_CONTACT_EVT); n->action_flags |= TIPC_NOTIFY_NODE_UP; tipc_link_set_active(nl, true); tipc_bcast_add_peer(n->net, nl, xmitq); return; } /* Second link => redistribute slots */ if (tipc_link_prio(nl) > tipc_link_prio(ol)) { pr_debug("Old link <%s> becomes standby\n", tipc_link_name(ol)); *slot0 = bearer_id; *slot1 = bearer_id; tipc_link_set_active(nl, true); tipc_link_set_active(ol, false); } else if (tipc_link_prio(nl) == tipc_link_prio(ol)) { tipc_link_set_active(nl, true); *slot1 = bearer_id; } else { pr_debug("New link <%s> is standby\n", tipc_link_name(nl)); } /* Prepare synchronization with first link */ tipc_link_tnl_prepare(ol, nl, SYNCH_MSG, xmitq); } /** * tipc_node_link_up - handle addition of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * * Link becomes active (alone or shared) or standby, depending on its priority. */ static void tipc_node_link_up(struct tipc_node *n, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_media_addr *maddr; tipc_node_write_lock(n); __tipc_node_link_up(n, bearer_id, xmitq); maddr = &n->links[bearer_id].maddr; tipc_bearer_xmit(n->net, bearer_id, xmitq, maddr, n); tipc_node_write_unlock(n); } /** * tipc_node_link_failover() - start failover in case "half-failover" * * This function is only called in a very special situation where link * failover can be already started on peer node but not on this node. * This can happen when e.g.:: * * 1. Both links <1A-2A>, <1B-2B> down * 2. Link endpoint 2A up, but 1A still down (e.g. due to network * disturbance, wrong session, etc.) * 3. Link <1B-2B> up * 4. Link endpoint 2A down (e.g. due to link tolerance timeout) * 5. Node 2 starts failover onto link <1B-2B> * * ==> Node 1 does never start link/node failover! * * @n: tipc node structure * @l: link peer endpoint failingover (- can be NULL) * @tnl: tunnel link * @xmitq: queue for messages to be xmited on tnl link later */ static void tipc_node_link_failover(struct tipc_node *n, struct tipc_link *l, struct tipc_link *tnl, struct sk_buff_head *xmitq) { /* Avoid to be "self-failover" that can never end */ if (!tipc_link_is_up(tnl)) return; /* Don't rush, failure link may be in the process of resetting */ if (l && !tipc_link_is_reset(l)) return; tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); n->sync_point = tipc_link_rcv_nxt(tnl) + (U16_MAX / 2 - 1); tipc_link_failover_prepare(l, tnl, xmitq); if (l) tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_FAILOVER_BEGIN_EVT); } /** * __tipc_node_link_down - handle loss of link * @n: target tipc_node * @bearer_id: id of the bearer * @xmitq: queue for messages to be xmited on * @maddr: output media address of the bearer */ static void __tipc_node_link_down(struct tipc_node *n, int *bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr **maddr) { struct tipc_link_entry *le = &n->links[*bearer_id]; int *slot0 = &n->active_links[0]; int *slot1 = &n->active_links[1]; int i, highest = 0, prio; struct tipc_link *l, *_l, *tnl; l = n->links[*bearer_id].link; if (!l || tipc_link_is_reset(l)) return; n->working_links--; n->action_flags |= TIPC_NOTIFY_LINK_DOWN; n->link_id = tipc_link_id(l); tipc_bearer_remove_dest(n->net, *bearer_id, n->addr); pr_debug("Lost link <%s> on network plane %c\n", tipc_link_name(l), tipc_link_plane(l)); /* Select new active link if any available */ *slot0 = INVALID_BEARER_ID; *slot1 = INVALID_BEARER_ID; for (i = 0; i < MAX_BEARERS; i++) { _l = n->links[i].link; if (!_l || !tipc_link_is_up(_l)) continue; if (_l == l) continue; prio = tipc_link_prio(_l); if (prio < highest) continue; if (prio > highest) { highest = prio; *slot0 = i; *slot1 = i; continue; } *slot1 = i; } if (!node_is_up(n)) { if (tipc_link_peer_is_down(l)) tipc_node_fsm_evt(n, PEER_LOST_CONTACT_EVT); tipc_node_fsm_evt(n, SELF_LOST_CONTACT_EVT); trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link down!"); tipc_link_fsm_evt(l, LINK_RESET_EVT); tipc_link_reset(l); tipc_link_build_reset_msg(l, xmitq); *maddr = &n->links[*bearer_id].maddr; node_lost_contact(n, &le->inputq); tipc_bcast_dec_bearer_dst_cnt(n->net, *bearer_id); return; } tipc_bcast_dec_bearer_dst_cnt(n->net, *bearer_id); /* There is still a working link => initiate failover */ *bearer_id = n->active_links[0]; tnl = n->links[*bearer_id].link; tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); n->sync_point = tipc_link_rcv_nxt(tnl) + (U16_MAX / 2 - 1); tipc_link_tnl_prepare(l, tnl, FAILOVER_MSG, xmitq); trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link down -> failover!"); tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_FAILOVER_BEGIN_EVT); *maddr = &n->links[*bearer_id].maddr; } static void tipc_node_link_down(struct tipc_node *n, int bearer_id, bool delete) { struct tipc_link_entry *le = &n->links[bearer_id]; struct tipc_media_addr *maddr = NULL; struct tipc_link *l = le->link; int old_bearer_id = bearer_id; struct sk_buff_head xmitq; if (!l) return; __skb_queue_head_init(&xmitq); tipc_node_write_lock(n); if (!tipc_link_is_establishing(l)) { __tipc_node_link_down(n, &bearer_id, &xmitq, &maddr); } else { /* Defuse pending tipc_node_link_up() */ tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); } if (delete) { kfree(l); le->link = NULL; n->link_cnt--; } trace_tipc_node_link_down(n, true, "node link down or deleted!"); tipc_node_write_unlock(n); if (delete) tipc_mon_remove_peer(n->net, n->addr, old_bearer_id); if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(n->net, bearer_id, &xmitq, maddr, n); tipc_sk_rcv(n->net, &le->inputq); } static bool node_is_up(struct tipc_node *n) { return n->active_links[0] != INVALID_BEARER_ID; } bool tipc_node_is_up(struct net *net, u32 addr) { struct tipc_node *n; bool retval = false; if (in_own_node(net, addr)) return true; n = tipc_node_find(net, addr); if (!n) return false; retval = node_is_up(n); tipc_node_put(n); return retval; } static u32 tipc_node_suggest_addr(struct net *net, u32 addr) { struct tipc_node *n; addr ^= tipc_net(net)->random; while ((n = tipc_node_find(net, addr))) { tipc_node_put(n); addr++; } return addr; } /* tipc_node_try_addr(): Check if addr can be used by peer, suggest other if not * Returns suggested address if any, otherwise 0 */ u32 tipc_node_try_addr(struct net *net, u8 *id, u32 addr) { struct tipc_net *tn = tipc_net(net); struct tipc_node *n; bool preliminary; u32 sugg_addr; /* Suggest new address if some other peer is using this one */ n = tipc_node_find(net, addr); if (n) { if (!memcmp(n->peer_id, id, NODE_ID_LEN)) addr = 0; tipc_node_put(n); if (!addr) return 0; return tipc_node_suggest_addr(net, addr); } /* Suggest previously used address if peer is known */ n = tipc_node_find_by_id(net, id); if (n) { sugg_addr = n->addr; preliminary = n->preliminary; tipc_node_put(n); if (!preliminary) return sugg_addr; } /* Even this node may be in conflict */ if (tn->trial_addr == addr) return tipc_node_suggest_addr(net, addr); return 0; } void tipc_node_check_dest(struct net *net, u32 addr, u8 *peer_id, struct tipc_bearer *b, u16 capabilities, u32 signature, u32 hash_mixes, struct tipc_media_addr *maddr, bool *respond, bool *dupl_addr) { struct tipc_node *n; struct tipc_link *l; struct tipc_link_entry *le; bool addr_match = false; bool sign_match = false; bool link_up = false; bool link_is_reset = false; bool accept_addr = false; bool reset = false; char *if_name; unsigned long intv; u16 session; *dupl_addr = false; *respond = false; n = tipc_node_create(net, addr, peer_id, capabilities, hash_mixes, false); if (!n) return; tipc_node_write_lock(n); le = &n->links[b->identity]; /* Prepare to validate requesting node's signature and media address */ l = le->link; link_up = l && tipc_link_is_up(l); link_is_reset = l && tipc_link_is_reset(l); addr_match = l && !memcmp(&le->maddr, maddr, sizeof(*maddr)); sign_match = (signature == n->signature); /* These three flags give us eight permutations: */ if (sign_match && addr_match && link_up) { /* All is fine. Ignore requests. */ /* Peer node is not a container/local namespace */ if (!n->peer_hash_mix) n->peer_hash_mix = hash_mixes; } else if (sign_match && addr_match && !link_up) { /* Respond. The link will come up in due time */ *respond = true; } else if (sign_match && !addr_match && link_up) { /* Peer has changed i/f address without rebooting. * If so, the link will reset soon, and the next * discovery will be accepted. So we can ignore it. * It may also be a cloned or malicious peer having * chosen the same node address and signature as an * existing one. * Ignore requests until the link goes down, if ever. */ *dupl_addr = true; } else if (sign_match && !addr_match && !link_up) { /* Peer link has changed i/f address without rebooting. * It may also be a cloned or malicious peer; we can't * distinguish between the two. * The signature is correct, so we must accept. */ accept_addr = true; *respond = true; reset = true; } else if (!sign_match && addr_match && link_up) { /* Peer node rebooted. Two possibilities: * - Delayed re-discovery; this link endpoint has already * reset and re-established contact with the peer, before * receiving a discovery message from that node. * (The peer happened to receive one from this node first). * - The peer came back so fast that our side has not * discovered it yet. Probing from this side will soon * reset the link, since there can be no working link * endpoint at the peer end, and the link will re-establish. * Accept the signature, since it comes from a known peer. */ n->signature = signature; } else if (!sign_match && addr_match && !link_up) { /* The peer node has rebooted. * Accept signature, since it is a known peer. */ n->signature = signature; *respond = true; } else if (!sign_match && !addr_match && link_up) { /* Peer rebooted with new address, or a new/duplicate peer. * Ignore until the link goes down, if ever. */ *dupl_addr = true; } else if (!sign_match && !addr_match && !link_up) { /* Peer rebooted with new address, or it is a new peer. * Accept signature and address. */ n->signature = signature; accept_addr = true; *respond = true; reset = true; } if (!accept_addr) goto exit; /* Now create new link if not already existing */ if (!l) { if (n->link_cnt == 2) goto exit; if_name = strchr(b->name, ':') + 1; get_random_bytes(&session, sizeof(u16)); if (!tipc_link_create(net, if_name, b->identity, b->tolerance, b->net_plane, b->mtu, b->priority, b->min_win, b->max_win, session, tipc_own_addr(net), addr, peer_id, n->capabilities, tipc_bc_sndlink(n->net), n->bc_entry.link, &le->inputq, &n->bc_entry.namedq, &l)) { *respond = false; goto exit; } trace_tipc_link_reset(l, TIPC_DUMP_ALL, "link created!"); tipc_link_reset(l); tipc_link_fsm_evt(l, LINK_RESET_EVT); if (n->state == NODE_FAILINGOVER) tipc_link_fsm_evt(l, LINK_FAILOVER_BEGIN_EVT); link_is_reset = tipc_link_is_reset(l); le->link = l; n->link_cnt++; tipc_node_calculate_timer(n, l); if (n->link_cnt == 1) { intv = jiffies + msecs_to_jiffies(n->keepalive_intv); if (!mod_timer(&n->timer, intv)) tipc_node_get(n); } } memcpy(&le->maddr, maddr, sizeof(*maddr)); exit: tipc_node_write_unlock(n); if (reset && !link_is_reset) tipc_node_link_down(n, b->identity, false); tipc_node_put(n); } void tipc_node_delete_links(struct net *net, int bearer_id) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_node *n; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_link_down(n, bearer_id, true); } rcu_read_unlock(); } static void tipc_node_reset_links(struct tipc_node *n) { int i; pr_warn("Resetting all links to %x\n", n->addr); trace_tipc_node_reset_links(n, true, " "); for (i = 0; i < MAX_BEARERS; i++) { tipc_node_link_down(n, i, false); } } /* tipc_node_fsm_evt - node finite state machine * Determines when contact is allowed with peer node */ static void tipc_node_fsm_evt(struct tipc_node *n, int evt) { int state = n->state; switch (state) { case SELF_DOWN_PEER_DOWN: switch (evt) { case SELF_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_COMING; break; case PEER_ESTABL_CONTACT_EVT: state = SELF_COMING_PEER_UP; break; case SELF_LOST_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_UP_PEER_UP: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_SYNCH_BEGIN_EVT: state = NODE_SYNCHING; break; case NODE_FAILOVER_BEGIN_EVT: state = NODE_FAILINGOVER; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case NODE_SYNCH_END_EVT: case NODE_FAILOVER_END_EVT: break; default: goto illegal_evt; } break; case SELF_DOWN_PEER_LEAVING: switch (evt) { case PEER_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case SELF_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_UP_PEER_COMING: switch (evt) { case PEER_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_UP; break; case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: case NODE_SYNCH_END_EVT: case NODE_FAILOVER_BEGIN_EVT: break; case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_COMING_PEER_UP: switch (evt) { case SELF_ESTABL_CONTACT_EVT: state = SELF_UP_PEER_UP; break; case PEER_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_LOST_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case SELF_LEAVING_PEER_DOWN: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_DOWN; break; case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: case PEER_LOST_CONTACT_EVT: break; case NODE_SYNCH_END_EVT: case NODE_SYNCH_BEGIN_EVT: case NODE_FAILOVER_BEGIN_EVT: case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; case NODE_FAILINGOVER: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_FAILOVER_END_EVT: state = SELF_UP_PEER_UP; break; case NODE_FAILOVER_BEGIN_EVT: case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_SYNCH_BEGIN_EVT: case NODE_SYNCH_END_EVT: default: goto illegal_evt; } break; case NODE_SYNCHING: switch (evt) { case SELF_LOST_CONTACT_EVT: state = SELF_DOWN_PEER_LEAVING; break; case PEER_LOST_CONTACT_EVT: state = SELF_LEAVING_PEER_DOWN; break; case NODE_SYNCH_END_EVT: state = SELF_UP_PEER_UP; break; case NODE_FAILOVER_BEGIN_EVT: state = NODE_FAILINGOVER; break; case NODE_SYNCH_BEGIN_EVT: case SELF_ESTABL_CONTACT_EVT: case PEER_ESTABL_CONTACT_EVT: break; case NODE_FAILOVER_END_EVT: default: goto illegal_evt; } break; default: pr_err("Unknown node fsm state %x\n", state); break; } trace_tipc_node_fsm(n->peer_id, n->state, state, evt); n->state = state; return; illegal_evt: pr_err("Illegal node fsm evt %x in state %x\n", evt, state); trace_tipc_node_fsm(n->peer_id, n->state, state, evt); } static void node_lost_contact(struct tipc_node *n, struct sk_buff_head *inputq) { struct tipc_sock_conn *conn, *safe; struct tipc_link *l; struct list_head *conns = &n->conn_sks; struct sk_buff *skb; uint i; pr_debug("Lost contact with %x\n", n->addr); n->delete_at = jiffies + msecs_to_jiffies(NODE_CLEANUP_AFTER); trace_tipc_node_lost_contact(n, true, " "); /* Clean up broadcast state */ tipc_bcast_remove_peer(n->net, n->bc_entry.link); skb_queue_purge(&n->bc_entry.namedq); /* Abort any ongoing link failover */ for (i = 0; i < MAX_BEARERS; i++) { l = n->links[i].link; if (l) tipc_link_fsm_evt(l, LINK_FAILOVER_END_EVT); } /* Notify publications from this node */ n->action_flags |= TIPC_NOTIFY_NODE_DOWN; n->peer_net = NULL; n->peer_hash_mix = 0; /* Notify sockets connected to node */ list_for_each_entry_safe(conn, safe, conns, list) { skb = tipc_msg_create(TIPC_CRITICAL_IMPORTANCE, TIPC_CONN_MSG, SHORT_H_SIZE, 0, tipc_own_addr(n->net), conn->peer_node, conn->port, conn->peer_port, TIPC_ERR_NO_NODE); if (likely(skb)) skb_queue_tail(inputq, skb); list_del(&conn->list); kfree(conn); } } /** * tipc_node_get_linkname - get the name of a link * * @net: the applicable net namespace * @bearer_id: id of the bearer * @addr: peer node address * @linkname: link name output buffer * @len: size of @linkname output buffer * * Return: 0 on success */ int tipc_node_get_linkname(struct net *net, u32 bearer_id, u32 addr, char *linkname, size_t len) { struct tipc_link *link; int err = -EINVAL; struct tipc_node *node = tipc_node_find(net, addr); if (!node) return err; if (bearer_id >= MAX_BEARERS) goto exit; tipc_node_read_lock(node); link = node->links[bearer_id].link; if (link) { strncpy(linkname, tipc_link_name(link), len); err = 0; } tipc_node_read_unlock(node); exit: tipc_node_put(node); return err; } /* Caller should hold node lock for the passed node */ static int __tipc_nl_add_node(struct tipc_nl_msg *msg, struct tipc_node *node) { void *hdr; struct nlattr *attrs; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_NODE_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_NODE); if (!attrs) goto msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_NODE_ADDR, node->addr)) goto attr_msg_full; if (node_is_up(node)) if (nla_put_flag(msg->skb, TIPC_NLA_NODE_UP)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } static void tipc_lxc_xmit(struct net *peer_net, struct sk_buff_head *list) { struct tipc_msg *hdr = buf_msg(skb_peek(list)); struct sk_buff_head inputq; switch (msg_user(hdr)) { case TIPC_LOW_IMPORTANCE: case TIPC_MEDIUM_IMPORTANCE: case TIPC_HIGH_IMPORTANCE: case TIPC_CRITICAL_IMPORTANCE: if (msg_connected(hdr) || msg_named(hdr) || msg_direct(hdr)) { tipc_loopback_trace(peer_net, list); spin_lock_init(&list->lock); tipc_sk_rcv(peer_net, list); return; } if (msg_mcast(hdr)) { tipc_loopback_trace(peer_net, list); skb_queue_head_init(&inputq); tipc_sk_mcast_rcv(peer_net, list, &inputq); __skb_queue_purge(list); skb_queue_purge(&inputq); return; } return; case MSG_FRAGMENTER: if (tipc_msg_assemble(list)) { tipc_loopback_trace(peer_net, list); skb_queue_head_init(&inputq); tipc_sk_mcast_rcv(peer_net, list, &inputq); __skb_queue_purge(list); skb_queue_purge(&inputq); } return; case GROUP_PROTOCOL: case CONN_MANAGER: tipc_loopback_trace(peer_net, list); spin_lock_init(&list->lock); tipc_sk_rcv(peer_net, list); return; case LINK_PROTOCOL: case NAME_DISTRIBUTOR: case TUNNEL_PROTOCOL: case BCAST_PROTOCOL: return; default: return; } } /** * tipc_node_xmit() - general link level function for message sending * @net: the applicable net namespace * @list: chain of buffers containing message * @dnode: address of destination node * @selector: a number used for deterministic link selection * Consumes the buffer chain. * Return: 0 if success, otherwise: -ELINKCONG,-EHOSTUNREACH,-EMSGSIZE,-ENOBUF */ int tipc_node_xmit(struct net *net, struct sk_buff_head *list, u32 dnode, int selector) { struct tipc_link_entry *le = NULL; struct tipc_node *n; struct sk_buff_head xmitq; bool node_up = false; struct net *peer_net; int bearer_id; int rc; if (in_own_node(net, dnode)) { tipc_loopback_trace(net, list); spin_lock_init(&list->lock); tipc_sk_rcv(net, list); return 0; } n = tipc_node_find(net, dnode); if (unlikely(!n)) { __skb_queue_purge(list); return -EHOSTUNREACH; } rcu_read_lock(); tipc_node_read_lock(n); node_up = node_is_up(n); peer_net = n->peer_net; tipc_node_read_unlock(n); if (node_up && peer_net && check_net(peer_net)) { /* xmit inner linux container */ tipc_lxc_xmit(peer_net, list); if (likely(skb_queue_empty(list))) { rcu_read_unlock(); tipc_node_put(n); return 0; } } rcu_read_unlock(); tipc_node_read_lock(n); bearer_id = n->active_links[selector & 1]; if (unlikely(bearer_id == INVALID_BEARER_ID)) { tipc_node_read_unlock(n); tipc_node_put(n); __skb_queue_purge(list); return -EHOSTUNREACH; } __skb_queue_head_init(&xmitq); le = &n->links[bearer_id]; spin_lock_bh(&le->lock); rc = tipc_link_xmit(le->link, list, &xmitq); spin_unlock_bh(&le->lock); tipc_node_read_unlock(n); if (unlikely(rc == -ENOBUFS)) tipc_node_link_down(n, bearer_id, false); else tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); tipc_node_put(n); return rc; } /* tipc_node_xmit_skb(): send single buffer to destination * Buffers sent via this function are generally TIPC_SYSTEM_IMPORTANCE * messages, which will not be rejected * The only exception is datagram messages rerouted after secondary * lookup, which are rare and safe to dispose of anyway. */ int tipc_node_xmit_skb(struct net *net, struct sk_buff *skb, u32 dnode, u32 selector) { struct sk_buff_head head; __skb_queue_head_init(&head); __skb_queue_tail(&head, skb); tipc_node_xmit(net, &head, dnode, selector); return 0; } /* tipc_node_distr_xmit(): send single buffer msgs to individual destinations * Note: this is only for SYSTEM_IMPORTANCE messages, which cannot be rejected */ int tipc_node_distr_xmit(struct net *net, struct sk_buff_head *xmitq) { struct sk_buff *skb; u32 selector, dnode; while ((skb = __skb_dequeue(xmitq))) { selector = msg_origport(buf_msg(skb)); dnode = msg_destnode(buf_msg(skb)); tipc_node_xmit_skb(net, skb, dnode, selector); } return 0; } void tipc_node_broadcast(struct net *net, struct sk_buff *skb, int rc_dests) { struct sk_buff_head xmitq; struct sk_buff *txskb; struct tipc_node *n; u16 dummy; u32 dst; /* Use broadcast if all nodes support it */ if (!rc_dests && tipc_bcast_get_mode(net) != BCLINK_MODE_RCAST) { __skb_queue_head_init(&xmitq); __skb_queue_tail(&xmitq, skb); tipc_bcast_xmit(net, &xmitq, &dummy); return; } /* Otherwise use legacy replicast method */ rcu_read_lock(); list_for_each_entry_rcu(n, tipc_nodes(net), list) { dst = n->addr; if (in_own_node(net, dst)) continue; if (!node_is_up(n)) continue; txskb = pskb_copy(skb, GFP_ATOMIC); if (!txskb) break; msg_set_destnode(buf_msg(txskb), dst); tipc_node_xmit_skb(net, txskb, dst, 0); } rcu_read_unlock(); kfree_skb(skb); } static void tipc_node_mcast_rcv(struct tipc_node *n) { struct tipc_bclink_entry *be = &n->bc_entry; /* 'arrvq' is under inputq2's lock protection */ spin_lock_bh(&be->inputq2.lock); spin_lock_bh(&be->inputq1.lock); skb_queue_splice_tail_init(&be->inputq1, &be->arrvq); spin_unlock_bh(&be->inputq1.lock); spin_unlock_bh(&be->inputq2.lock); tipc_sk_mcast_rcv(n->net, &be->arrvq, &be->inputq2); } static void tipc_node_bc_sync_rcv(struct tipc_node *n, struct tipc_msg *hdr, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_link *ucl; int rc; rc = tipc_bcast_sync_rcv(n->net, n->bc_entry.link, hdr, xmitq); if (rc & TIPC_LINK_DOWN_EVT) { tipc_node_reset_links(n); return; } if (!(rc & TIPC_LINK_SND_STATE)) return; /* If probe message, a STATE response will be sent anyway */ if (msg_probe(hdr)) return; /* Produce a STATE message carrying broadcast NACK */ tipc_node_read_lock(n); ucl = n->links[bearer_id].link; if (ucl) tipc_link_build_state_msg(ucl, xmitq); tipc_node_read_unlock(n); } /** * tipc_node_bc_rcv - process TIPC broadcast packet arriving from off-node * @net: the applicable net namespace * @skb: TIPC packet * @bearer_id: id of bearer message arrived on * * Invoked with no locks held. */ static void tipc_node_bc_rcv(struct net *net, struct sk_buff *skb, int bearer_id) { int rc; struct sk_buff_head xmitq; struct tipc_bclink_entry *be; struct tipc_link_entry *le; struct tipc_msg *hdr = buf_msg(skb); int usr = msg_user(hdr); u32 dnode = msg_destnode(hdr); struct tipc_node *n; __skb_queue_head_init(&xmitq); /* If NACK for other node, let rcv link for that node peek into it */ if ((usr == BCAST_PROTOCOL) && (dnode != tipc_own_addr(net))) n = tipc_node_find(net, dnode); else n = tipc_node_find(net, msg_prevnode(hdr)); if (!n) { kfree_skb(skb); return; } be = &n->bc_entry; le = &n->links[bearer_id]; rc = tipc_bcast_rcv(net, be->link, skb); /* Broadcast ACKs are sent on a unicast link */ if (rc & TIPC_LINK_SND_STATE) { tipc_node_read_lock(n); tipc_link_build_state_msg(le->link, &xmitq); tipc_node_read_unlock(n); } if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); if (!skb_queue_empty(&be->inputq1)) tipc_node_mcast_rcv(n); /* Handle NAME_DISTRIBUTOR messages sent from 1.7 nodes */ if (!skb_queue_empty(&n->bc_entry.namedq)) tipc_named_rcv(net, &n->bc_entry.namedq, &n->bc_entry.named_rcv_nxt, &n->bc_entry.named_open); /* If reassembly or retransmission failure => reset all links to peer */ if (rc & TIPC_LINK_DOWN_EVT) tipc_node_reset_links(n); tipc_node_put(n); } /** * tipc_node_check_state - check and if necessary update node state * @n: target tipc_node * @skb: TIPC packet * @bearer_id: identity of bearer delivering the packet * @xmitq: queue for messages to be xmited on * Return: true if state and msg are ok, otherwise false */ static bool tipc_node_check_state(struct tipc_node *n, struct sk_buff *skb, int bearer_id, struct sk_buff_head *xmitq) { struct tipc_msg *hdr = buf_msg(skb); int usr = msg_user(hdr); int mtyp = msg_type(hdr); u16 oseqno = msg_seqno(hdr); u16 exp_pkts = msg_msgcnt(hdr); u16 rcv_nxt, syncpt, dlv_nxt, inputq_len; int state = n->state; struct tipc_link *l, *tnl, *pl = NULL; struct tipc_media_addr *maddr; int pb_id; if (trace_tipc_node_check_state_enabled()) { trace_tipc_skb_dump(skb, false, "skb for node state check"); trace_tipc_node_check_state(n, true, " "); } l = n->links[bearer_id].link; if (!l) return false; rcv_nxt = tipc_link_rcv_nxt(l); if (likely((state == SELF_UP_PEER_UP) && (usr != TUNNEL_PROTOCOL))) return true; /* Find parallel link, if any */ for (pb_id = 0; pb_id < MAX_BEARERS; pb_id++) { if ((pb_id != bearer_id) && n->links[pb_id].link) { pl = n->links[pb_id].link; break; } } if (!tipc_link_validate_msg(l, hdr)) { trace_tipc_skb_dump(skb, false, "PROTO invalid (2)!"); trace_tipc_link_dump(l, TIPC_DUMP_NONE, "PROTO invalid (2)!"); return false; } /* Check and update node accesibility if applicable */ if (state == SELF_UP_PEER_COMING) { if (!tipc_link_is_up(l)) return true; if (!msg_peer_link_is_up(hdr)) return true; tipc_node_fsm_evt(n, PEER_ESTABL_CONTACT_EVT); } if (state == SELF_DOWN_PEER_LEAVING) { if (msg_peer_node_is_up(hdr)) return false; tipc_node_fsm_evt(n, PEER_LOST_CONTACT_EVT); return true; } if (state == SELF_LEAVING_PEER_DOWN) return false; /* Ignore duplicate packets */ if ((usr != LINK_PROTOCOL) && less(oseqno, rcv_nxt)) return true; /* Initiate or update failover mode if applicable */ if ((usr == TUNNEL_PROTOCOL) && (mtyp == FAILOVER_MSG)) { syncpt = oseqno + exp_pkts - 1; if (pl && !tipc_link_is_reset(pl)) { __tipc_node_link_down(n, &pb_id, xmitq, &maddr); trace_tipc_node_link_down(n, true, "node link down <- failover!"); tipc_skb_queue_splice_tail_init(tipc_link_inputq(pl), tipc_link_inputq(l)); } /* If parallel link was already down, and this happened before * the tunnel link came up, node failover was never started. * Ensure that a FAILOVER_MSG is sent to get peer out of * NODE_FAILINGOVER state, also this node must accept * TUNNEL_MSGs from peer. */ if (n->state != NODE_FAILINGOVER) tipc_node_link_failover(n, pl, l, xmitq); /* If pkts arrive out of order, use lowest calculated syncpt */ if (less(syncpt, n->sync_point)) n->sync_point = syncpt; } /* Open parallel link when tunnel link reaches synch point */ if ((n->state == NODE_FAILINGOVER) && tipc_link_is_up(l)) { if (!more(rcv_nxt, n->sync_point)) return true; tipc_node_fsm_evt(n, NODE_FAILOVER_END_EVT); if (pl) tipc_link_fsm_evt(pl, LINK_FAILOVER_END_EVT); return true; } /* No syncing needed if only one link */ if (!pl || !tipc_link_is_up(pl)) return true; /* Initiate synch mode if applicable */ if ((usr == TUNNEL_PROTOCOL) && (mtyp == SYNCH_MSG) && (oseqno == 1)) { if (n->capabilities & TIPC_TUNNEL_ENHANCED) syncpt = msg_syncpt(hdr); else syncpt = msg_seqno(msg_inner_hdr(hdr)) + exp_pkts - 1; if (!tipc_link_is_up(l)) __tipc_node_link_up(n, bearer_id, xmitq); if (n->state == SELF_UP_PEER_UP) { n->sync_point = syncpt; tipc_link_fsm_evt(l, LINK_SYNCH_BEGIN_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_BEGIN_EVT); } } /* Open tunnel link when parallel link reaches synch point */ if (n->state == NODE_SYNCHING) { if (tipc_link_is_synching(l)) { tnl = l; } else { tnl = pl; pl = l; } inputq_len = skb_queue_len(tipc_link_inputq(pl)); dlv_nxt = tipc_link_rcv_nxt(pl) - inputq_len; if (more(dlv_nxt, n->sync_point)) { tipc_link_fsm_evt(tnl, LINK_SYNCH_END_EVT); tipc_node_fsm_evt(n, NODE_SYNCH_END_EVT); return true; } if (l == pl) return true; if ((usr == TUNNEL_PROTOCOL) && (mtyp == SYNCH_MSG)) return true; if (usr == LINK_PROTOCOL) return true; return false; } return true; } /** * tipc_rcv - process TIPC packets/messages arriving from off-node * @net: the applicable net namespace * @skb: TIPC packet * @b: pointer to bearer message arrived on * * Invoked with no locks held. Bearer pointer must point to a valid bearer * structure (i.e. cannot be NULL), but bearer can be inactive. */ void tipc_rcv(struct net *net, struct sk_buff *skb, struct tipc_bearer *b) { struct sk_buff_head xmitq; struct tipc_link_entry *le; struct tipc_msg *hdr; struct tipc_node *n; int bearer_id = b->identity; u32 self = tipc_own_addr(net); int usr, rc = 0; u16 bc_ack; #ifdef CONFIG_TIPC_CRYPTO struct tipc_ehdr *ehdr; /* Check if message must be decrypted first */ if (TIPC_SKB_CB(skb)->decrypted || !tipc_ehdr_validate(skb)) goto rcv; ehdr = (struct tipc_ehdr *)skb->data; if (likely(ehdr->user != LINK_CONFIG)) { n = tipc_node_find(net, ntohl(ehdr->addr)); if (unlikely(!n)) goto discard; } else { n = tipc_node_find_by_id(net, ehdr->id); } skb_dst_force(skb); tipc_crypto_rcv(net, (n) ? n->crypto_rx : NULL, &skb, b); if (!skb) return; rcv: #endif /* Ensure message is well-formed before touching the header */ if (unlikely(!tipc_msg_validate(&skb))) goto discard; __skb_queue_head_init(&xmitq); hdr = buf_msg(skb); usr = msg_user(hdr); bc_ack = msg_bcast_ack(hdr); /* Handle arrival of discovery or broadcast packet */ if (unlikely(msg_non_seq(hdr))) { if (unlikely(usr == LINK_CONFIG)) return tipc_disc_rcv(net, skb, b); else return tipc_node_bc_rcv(net, skb, bearer_id); } /* Discard unicast link messages destined for another node */ if (unlikely(!msg_short(hdr) && (msg_destnode(hdr) != self))) goto discard; /* Locate neighboring node that sent packet */ n = tipc_node_find(net, msg_prevnode(hdr)); if (unlikely(!n)) goto discard; le = &n->links[bearer_id]; /* Ensure broadcast reception is in synch with peer's send state */ if (unlikely(usr == LINK_PROTOCOL)) { if (unlikely(skb_linearize(skb))) { tipc_node_put(n); goto discard; } hdr = buf_msg(skb); tipc_node_bc_sync_rcv(n, hdr, bearer_id, &xmitq); } else if (unlikely(tipc_link_acked(n->bc_entry.link) != bc_ack)) { tipc_bcast_ack_rcv(net, n->bc_entry.link, hdr); } /* Receive packet directly if conditions permit */ tipc_node_read_lock(n); if (likely((n->state == SELF_UP_PEER_UP) && (usr != TUNNEL_PROTOCOL))) { spin_lock_bh(&le->lock); if (le->link) { rc = tipc_link_rcv(le->link, skb, &xmitq); skb = NULL; } spin_unlock_bh(&le->lock); } tipc_node_read_unlock(n); /* Check/update node state before receiving */ if (unlikely(skb)) { if (unlikely(skb_linearize(skb))) goto out_node_put; tipc_node_write_lock(n); if (tipc_node_check_state(n, skb, bearer_id, &xmitq)) { if (le->link) { rc = tipc_link_rcv(le->link, skb, &xmitq); skb = NULL; } } tipc_node_write_unlock(n); } if (unlikely(rc & TIPC_LINK_UP_EVT)) tipc_node_link_up(n, bearer_id, &xmitq); if (unlikely(rc & TIPC_LINK_DOWN_EVT)) tipc_node_link_down(n, bearer_id, false); if (unlikely(!skb_queue_empty(&n->bc_entry.namedq))) tipc_named_rcv(net, &n->bc_entry.namedq, &n->bc_entry.named_rcv_nxt, &n->bc_entry.named_open); if (unlikely(!skb_queue_empty(&n->bc_entry.inputq1))) tipc_node_mcast_rcv(n); if (!skb_queue_empty(&le->inputq)) tipc_sk_rcv(net, &le->inputq); if (!skb_queue_empty(&xmitq)) tipc_bearer_xmit(net, bearer_id, &xmitq, &le->maddr, n); out_node_put: tipc_node_put(n); discard: kfree_skb(skb); } void tipc_node_apply_property(struct net *net, struct tipc_bearer *b, int prop) { struct tipc_net *tn = tipc_net(net); int bearer_id = b->identity; struct sk_buff_head xmitq; struct tipc_link_entry *e; struct tipc_node *n; __skb_queue_head_init(&xmitq); rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_write_lock(n); e = &n->links[bearer_id]; if (e->link) { if (prop == TIPC_NLA_PROP_TOL) tipc_link_set_tolerance(e->link, b->tolerance, &xmitq); else if (prop == TIPC_NLA_PROP_MTU) tipc_link_set_mtu(e->link, b->mtu); /* Update MTU for node link entry */ e->mtu = tipc_link_mss(e->link); } tipc_node_write_unlock(n); tipc_bearer_xmit(net, bearer_id, &xmitq, &e->maddr, NULL); } rcu_read_unlock(); } int tipc_nl_peer_rm(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_net *tn = net_generic(net, tipc_net_id); struct nlattr *attrs[TIPC_NLA_NET_MAX + 1]; struct tipc_node *peer, *temp_node; u8 node_id[NODE_ID_LEN]; u64 *w0 = (u64 *)&node_id[0]; u64 *w1 = (u64 *)&node_id[8]; u32 addr; int err; /* We identify the peer by its net */ if (!info->attrs[TIPC_NLA_NET]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_NET_MAX, info->attrs[TIPC_NLA_NET], tipc_nl_net_policy, info->extack); if (err) return err; /* attrs[TIPC_NLA_NET_NODEID] and attrs[TIPC_NLA_NET_ADDR] are * mutually exclusive cases */ if (attrs[TIPC_NLA_NET_ADDR]) { addr = nla_get_u32(attrs[TIPC_NLA_NET_ADDR]); if (!addr) return -EINVAL; } if (attrs[TIPC_NLA_NET_NODEID]) { if (!attrs[TIPC_NLA_NET_NODEID_W1]) return -EINVAL; *w0 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID]); *w1 = nla_get_u64(attrs[TIPC_NLA_NET_NODEID_W1]); addr = hash128to32(node_id); } if (in_own_node(net, addr)) return -ENOTSUPP; spin_lock_bh(&tn->node_list_lock); peer = tipc_node_find(net, addr); if (!peer) { spin_unlock_bh(&tn->node_list_lock); return -ENXIO; } tipc_node_write_lock(peer); if (peer->state != SELF_DOWN_PEER_DOWN && peer->state != SELF_DOWN_PEER_LEAVING) { tipc_node_write_unlock(peer); err = -EBUSY; goto err_out; } tipc_node_clear_links(peer); tipc_node_write_unlock(peer); tipc_node_delete(peer); /* Calculate cluster capabilities */ tn->capabilities = TIPC_NODE_CAPABILITIES; list_for_each_entry_rcu(temp_node, &tn->node_list, list) { tn->capabilities &= temp_node->capabilities; } tipc_bcast_toggle_rcast(net, (tn->capabilities & TIPC_BCAST_RCAST)); err = 0; err_out: tipc_node_put(peer); spin_unlock_bh(&tn->node_list_lock); return err; } int tipc_nl_node_dump(struct sk_buff *skb, struct netlink_callback *cb) { int err; struct net *net = sock_net(skb->sk); struct tipc_net *tn = net_generic(net, tipc_net_id); int done = cb->args[0]; int last_addr = cb->args[1]; struct tipc_node *node; struct tipc_nl_msg msg; if (done) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); if (last_addr) { node = tipc_node_find(net, last_addr); if (!node) { rcu_read_unlock(); /* We never set seq or call nl_dump_check_consistent() * this means that setting prev_seq here will cause the * consistence check to fail in the netlink callback * handler. Resulting in the NLMSG_DONE message having * the NLM_F_DUMP_INTR flag set if the node state * changed while we released the lock. */ cb->prev_seq = 1; return -EPIPE; } tipc_node_put(node); } list_for_each_entry_rcu(node, &tn->node_list, list) { if (node->preliminary) continue; if (last_addr) { if (node->addr == last_addr) last_addr = 0; else continue; } tipc_node_read_lock(node); err = __tipc_nl_add_node(&msg, node); if (err) { last_addr = node->addr; tipc_node_read_unlock(node); goto out; } tipc_node_read_unlock(node); } done = 1; out: cb->args[0] = done; cb->args[1] = last_addr; rcu_read_unlock(); return skb->len; } /* tipc_node_find_by_name - locate owner node of link by link's name * @net: the applicable net namespace * @name: pointer to link name string * @bearer_id: pointer to index in 'node->links' array where the link was found. * * Returns pointer to node owning the link, or 0 if no matching link is found. */ static struct tipc_node *tipc_node_find_by_name(struct net *net, const char *link_name, unsigned int *bearer_id) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_link *l; struct tipc_node *n; struct tipc_node *found_node = NULL; int i; *bearer_id = 0; rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) { tipc_node_read_lock(n); for (i = 0; i < MAX_BEARERS; i++) { l = n->links[i].link; if (l && !strcmp(tipc_link_name(l), link_name)) { *bearer_id = i; found_node = n; break; } } tipc_node_read_unlock(n); if (found_node) break; } rcu_read_unlock(); return found_node; } int tipc_nl_node_set_link(struct sk_buff *skb, struct genl_info *info) { int err; int res = 0; int bearer_id; char *name; struct tipc_link *link; struct tipc_node *node; struct sk_buff_head xmitq; struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct net *net = sock_net(skb->sk); __skb_queue_head_init(&xmitq); if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; name = nla_data(attrs[TIPC_NLA_LINK_NAME]); if (strcmp(name, tipc_bclink_name) == 0) return tipc_nl_bc_link_set(net, attrs); node = tipc_node_find_by_name(net, name, &bearer_id); if (!node) return -EINVAL; tipc_node_read_lock(node); link = node->links[bearer_id].link; if (!link) { res = -EINVAL; goto out; } if (attrs[TIPC_NLA_LINK_PROP]) { struct nlattr *props[TIPC_NLA_PROP_MAX + 1]; err = tipc_nl_parse_link_prop(attrs[TIPC_NLA_LINK_PROP], props); if (err) { res = err; goto out; } if (props[TIPC_NLA_PROP_TOL]) { u32 tol; tol = nla_get_u32(props[TIPC_NLA_PROP_TOL]); tipc_link_set_tolerance(link, tol, &xmitq); } if (props[TIPC_NLA_PROP_PRIO]) { u32 prio; prio = nla_get_u32(props[TIPC_NLA_PROP_PRIO]); tipc_link_set_prio(link, prio, &xmitq); } if (props[TIPC_NLA_PROP_WIN]) { u32 max_win; max_win = nla_get_u32(props[TIPC_NLA_PROP_WIN]); tipc_link_set_queue_limits(link, tipc_link_min_win(link), max_win); } } out: tipc_node_read_unlock(node); tipc_bearer_xmit(net, bearer_id, &xmitq, &node->links[bearer_id].maddr, NULL); return res; } int tipc_nl_node_get_link(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct tipc_nl_msg msg; char *name; int err; msg.portid = info->snd_portid; msg.seq = info->snd_seq; if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; name = nla_data(attrs[TIPC_NLA_LINK_NAME]); msg.skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!msg.skb) return -ENOMEM; if (strcmp(name, tipc_bclink_name) == 0) { err = tipc_nl_add_bc_link(net, &msg, tipc_net(net)->bcl); if (err) goto err_free; } else { int bearer_id; struct tipc_node *node; struct tipc_link *link; node = tipc_node_find_by_name(net, name, &bearer_id); if (!node) { err = -EINVAL; goto err_free; } tipc_node_read_lock(node); link = node->links[bearer_id].link; if (!link) { tipc_node_read_unlock(node); err = -EINVAL; goto err_free; } err = __tipc_nl_add_link(net, &msg, link, 0); tipc_node_read_unlock(node); if (err) goto err_free; } return genlmsg_reply(msg.skb, info); err_free: nlmsg_free(msg.skb); return err; } int tipc_nl_node_reset_link_stats(struct sk_buff *skb, struct genl_info *info) { int err; char *link_name; unsigned int bearer_id; struct tipc_link *link; struct tipc_node *node; struct nlattr *attrs[TIPC_NLA_LINK_MAX + 1]; struct net *net = sock_net(skb->sk); struct tipc_net *tn = tipc_net(net); struct tipc_link_entry *le; if (!info->attrs[TIPC_NLA_LINK]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_LINK_MAX, info->attrs[TIPC_NLA_LINK], tipc_nl_link_policy, info->extack); if (err) return err; if (!attrs[TIPC_NLA_LINK_NAME]) return -EINVAL; link_name = nla_data(attrs[TIPC_NLA_LINK_NAME]); err = -EINVAL; if (!strcmp(link_name, tipc_bclink_name)) { err = tipc_bclink_reset_stats(net, tipc_bc_sndlink(net)); if (err) return err; return 0; } else if (strstr(link_name, tipc_bclink_name)) { rcu_read_lock(); list_for_each_entry_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); link = node->bc_entry.link; if (link && !strcmp(link_name, tipc_link_name(link))) { err = tipc_bclink_reset_stats(net, link); tipc_node_read_unlock(node); break; } tipc_node_read_unlock(node); } rcu_read_unlock(); return err; } node = tipc_node_find_by_name(net, link_name, &bearer_id); if (!node) return -EINVAL; le = &node->links[bearer_id]; tipc_node_read_lock(node); spin_lock_bh(&le->lock); link = node->links[bearer_id].link; if (!link) { spin_unlock_bh(&le->lock); tipc_node_read_unlock(node); return -EINVAL; } tipc_link_reset_stats(link); spin_unlock_bh(&le->lock); tipc_node_read_unlock(node); return 0; } /* Caller should hold node lock */ static int __tipc_nl_add_node_links(struct net *net, struct tipc_nl_msg *msg, struct tipc_node *node, u32 *prev_link, bool bc_link) { u32 i; int err; for (i = *prev_link; i < MAX_BEARERS; i++) { *prev_link = i; if (!node->links[i].link) continue; err = __tipc_nl_add_link(net, msg, node->links[i].link, NLM_F_MULTI); if (err) return err; } if (bc_link) { *prev_link = i; err = tipc_nl_add_bc_link(net, msg, node->bc_entry.link); if (err) return err; } *prev_link = 0; return 0; } int tipc_nl_node_dump_link(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nlattr **attrs = genl_dumpit_info(cb)->info.attrs; struct nlattr *link[TIPC_NLA_LINK_MAX + 1]; struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_node *node; struct tipc_nl_msg msg; u32 prev_node = cb->args[0]; u32 prev_link = cb->args[1]; int done = cb->args[2]; bool bc_link = cb->args[3]; int err; if (done) return 0; if (!prev_node) { /* Check if broadcast-receiver links dumping is needed */ if (attrs && attrs[TIPC_NLA_LINK]) { err = nla_parse_nested_deprecated(link, TIPC_NLA_LINK_MAX, attrs[TIPC_NLA_LINK], tipc_nl_link_policy, NULL); if (unlikely(err)) return err; if (unlikely(!link[TIPC_NLA_LINK_BROADCAST])) return -EINVAL; bc_link = true; } } msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rcu_read_lock(); if (prev_node) { node = tipc_node_find(net, prev_node); if (!node) { /* We never set seq or call nl_dump_check_consistent() * this means that setting prev_seq here will cause the * consistence check to fail in the netlink callback * handler. Resulting in the last NLMSG_DONE message * having the NLM_F_DUMP_INTR flag set. */ cb->prev_seq = 1; goto out; } tipc_node_put(node); list_for_each_entry_continue_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); err = __tipc_nl_add_node_links(net, &msg, node, &prev_link, bc_link); tipc_node_read_unlock(node); if (err) goto out; prev_node = node->addr; } } else { err = tipc_nl_add_bc_link(net, &msg, tn->bcl); if (err) goto out; list_for_each_entry_rcu(node, &tn->node_list, list) { tipc_node_read_lock(node); err = __tipc_nl_add_node_links(net, &msg, node, &prev_link, bc_link); tipc_node_read_unlock(node); if (err) goto out; prev_node = node->addr; } } done = 1; out: rcu_read_unlock(); cb->args[0] = prev_node; cb->args[1] = prev_link; cb->args[2] = done; cb->args[3] = bc_link; return skb->len; } int tipc_nl_node_set_monitor(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[TIPC_NLA_MON_MAX + 1]; struct net *net = sock_net(skb->sk); int err; if (!info->attrs[TIPC_NLA_MON]) return -EINVAL; err = nla_parse_nested_deprecated(attrs, TIPC_NLA_MON_MAX, info->attrs[TIPC_NLA_MON], tipc_nl_monitor_policy, info->extack); if (err) return err; if (attrs[TIPC_NLA_MON_ACTIVATION_THRESHOLD]) { u32 val; val = nla_get_u32(attrs[TIPC_NLA_MON_ACTIVATION_THRESHOLD]); err = tipc_nl_monitor_set_threshold(net, val); if (err) return err; } return 0; } static int __tipc_nl_add_monitor_prop(struct net *net, struct tipc_nl_msg *msg) { struct nlattr *attrs; void *hdr; u32 val; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, 0, TIPC_NL_MON_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_MON); if (!attrs) goto msg_full; val = tipc_nl_monitor_get_threshold(net); if (nla_put_u32(msg->skb, TIPC_NLA_MON_ACTIVATION_THRESHOLD, val)) goto attr_msg_full; nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } int tipc_nl_node_get_monitor(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_nl_msg msg; int err; msg.skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!msg.skb) return -ENOMEM; msg.portid = info->snd_portid; msg.seq = info->snd_seq; err = __tipc_nl_add_monitor_prop(net, &msg); if (err) { nlmsg_free(msg.skb); return err; } return genlmsg_reply(msg.skb, info); } int tipc_nl_node_dump_monitor(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); u32 prev_bearer = cb->args[0]; struct tipc_nl_msg msg; int bearer_id; int err; if (prev_bearer == MAX_BEARERS) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rtnl_lock(); for (bearer_id = prev_bearer; bearer_id < MAX_BEARERS; bearer_id++) { err = __tipc_nl_add_monitor(net, &msg, bearer_id); if (err) break; } rtnl_unlock(); cb->args[0] = bearer_id; return skb->len; } int tipc_nl_node_dump_monitor_peer(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); u32 prev_node = cb->args[1]; u32 bearer_id = cb->args[2]; int done = cb->args[0]; struct tipc_nl_msg msg; int err; if (!prev_node) { struct nlattr **attrs = genl_dumpit_info(cb)->info.attrs; struct nlattr *mon[TIPC_NLA_MON_MAX + 1]; if (!attrs[TIPC_NLA_MON]) return -EINVAL; err = nla_parse_nested_deprecated(mon, TIPC_NLA_MON_MAX, attrs[TIPC_NLA_MON], tipc_nl_monitor_policy, NULL); if (err) return err; if (!mon[TIPC_NLA_MON_REF]) return -EINVAL; bearer_id = nla_get_u32(mon[TIPC_NLA_MON_REF]); if (bearer_id >= MAX_BEARERS) return -EINVAL; } if (done) return 0; msg.skb = skb; msg.portid = NETLINK_CB(cb->skb).portid; msg.seq = cb->nlh->nlmsg_seq; rtnl_lock(); err = tipc_nl_add_monitor_peer(net, &msg, bearer_id, &prev_node); if (!err) done = 1; rtnl_unlock(); cb->args[0] = done; cb->args[1] = prev_node; cb->args[2] = bearer_id; return skb->len; } #ifdef CONFIG_TIPC_CRYPTO static int tipc_nl_retrieve_key(struct nlattr **attrs, struct tipc_aead_key **pkey) { struct nlattr *attr = attrs[TIPC_NLA_NODE_KEY]; struct tipc_aead_key *key; if (!attr) return -ENODATA; if (nla_len(attr) < sizeof(*key)) return -EINVAL; key = (struct tipc_aead_key *)nla_data(attr); if (key->keylen > TIPC_AEAD_KEYLEN_MAX || nla_len(attr) < tipc_aead_key_size(key)) return -EINVAL; *pkey = key; return 0; } static int tipc_nl_retrieve_nodeid(struct nlattr **attrs, u8 **node_id) { struct nlattr *attr = attrs[TIPC_NLA_NODE_ID]; if (!attr) return -ENODATA; if (nla_len(attr) < TIPC_NODEID_LEN) return -EINVAL; *node_id = (u8 *)nla_data(attr); return 0; } static int tipc_nl_retrieve_rekeying(struct nlattr **attrs, u32 *intv) { struct nlattr *attr = attrs[TIPC_NLA_NODE_REKEYING]; if (!attr) return -ENODATA; *intv = nla_get_u32(attr); return 0; } static int __tipc_nl_node_set_key(struct sk_buff *skb, struct genl_info *info) { struct nlattr *attrs[TIPC_NLA_NODE_MAX + 1]; struct net *net = sock_net(skb->sk); struct tipc_crypto *tx = tipc_net(net)->crypto_tx, *c = tx; struct tipc_node *n = NULL; struct tipc_aead_key *ukey; bool rekeying = true, master_key = false; u8 *id, *own_id, mode; u32 intv = 0; int rc = 0; if (!info->attrs[TIPC_NLA_NODE]) return -EINVAL; rc = nla_parse_nested(attrs, TIPC_NLA_NODE_MAX, info->attrs[TIPC_NLA_NODE], tipc_nl_node_policy, info->extack); if (rc) return rc; own_id = tipc_own_id(net); if (!own_id) { GENL_SET_ERR_MSG(info, "not found own node identity (set id?)"); return -EPERM; } rc = tipc_nl_retrieve_rekeying(attrs, &intv); if (rc == -ENODATA) rekeying = false; rc = tipc_nl_retrieve_key(attrs, &ukey); if (rc == -ENODATA && rekeying) goto rekeying; else if (rc) return rc; rc = tipc_aead_key_validate(ukey, info); if (rc) return rc; rc = tipc_nl_retrieve_nodeid(attrs, &id); switch (rc) { case -ENODATA: mode = CLUSTER_KEY; master_key = !!(attrs[TIPC_NLA_NODE_KEY_MASTER]); break; case 0: mode = PER_NODE_KEY; if (memcmp(id, own_id, NODE_ID_LEN)) { n = tipc_node_find_by_id(net, id) ?: tipc_node_create(net, 0, id, 0xffffu, 0, true); if (unlikely(!n)) return -ENOMEM; c = n->crypto_rx; } break; default: return rc; } /* Initiate the TX/RX key */ rc = tipc_crypto_key_init(c, ukey, mode, master_key); if (n) tipc_node_put(n); if (unlikely(rc < 0)) { GENL_SET_ERR_MSG(info, "unable to initiate or attach new key"); return rc; } else if (c == tx) { /* Distribute TX key but not master one */ if (!master_key && tipc_crypto_key_distr(tx, rc, NULL)) GENL_SET_ERR_MSG(info, "failed to replicate new key"); rekeying: /* Schedule TX rekeying if needed */ tipc_crypto_rekeying_sched(tx, rekeying, intv); } return 0; } int tipc_nl_node_set_key(struct sk_buff *skb, struct genl_info *info) { int err; rtnl_lock(); err = __tipc_nl_node_set_key(skb, info); rtnl_unlock(); return err; } static int __tipc_nl_node_flush_key(struct sk_buff *skb, struct genl_info *info) { struct net *net = sock_net(skb->sk); struct tipc_net *tn = tipc_net(net); struct tipc_node *n; tipc_crypto_key_flush(tn->crypto_tx); rcu_read_lock(); list_for_each_entry_rcu(n, &tn->node_list, list) tipc_crypto_key_flush(n->crypto_rx); rcu_read_unlock(); return 0; } int tipc_nl_node_flush_key(struct sk_buff *skb, struct genl_info *info) { int err; rtnl_lock(); err = __tipc_nl_node_flush_key(skb, info); rtnl_unlock(); return err; } #endif /** * tipc_node_dump - dump TIPC node data * @n: tipc node to be dumped * @more: dump more? * - false: dump only tipc node data * - true: dump node link data as well * @buf: returned buffer of dump data in format */ int tipc_node_dump(struct tipc_node *n, bool more, char *buf) { int i = 0; size_t sz = (more) ? NODE_LMAX : NODE_LMIN; if (!n) { i += scnprintf(buf, sz, "node data: (null)\n"); return i; } i += scnprintf(buf, sz, "node data: %x", n->addr); i += scnprintf(buf + i, sz - i, " %x", n->state); i += scnprintf(buf + i, sz - i, " %d", n->active_links[0]); i += scnprintf(buf + i, sz - i, " %d", n->active_links[1]); i += scnprintf(buf + i, sz - i, " %x", n->action_flags); i += scnprintf(buf + i, sz - i, " %u", n->failover_sent); i += scnprintf(buf + i, sz - i, " %u", n->sync_point); i += scnprintf(buf + i, sz - i, " %d", n->link_cnt); i += scnprintf(buf + i, sz - i, " %u", n->working_links); i += scnprintf(buf + i, sz - i, " %x", n->capabilities); i += scnprintf(buf + i, sz - i, " %lu\n", n->keepalive_intv); if (!more) return i; i += scnprintf(buf + i, sz - i, "link_entry[0]:\n"); i += scnprintf(buf + i, sz - i, " mtu: %u\n", n->links[0].mtu); i += scnprintf(buf + i, sz - i, " media: "); i += tipc_media_addr_printf(buf + i, sz - i, &n->links[0].maddr); i += scnprintf(buf + i, sz - i, "\n"); i += tipc_link_dump(n->links[0].link, TIPC_DUMP_NONE, buf + i); i += scnprintf(buf + i, sz - i, " inputq: "); i += tipc_list_dump(&n->links[0].inputq, false, buf + i); i += scnprintf(buf + i, sz - i, "link_entry[1]:\n"); i += scnprintf(buf + i, sz - i, " mtu: %u\n", n->links[1].mtu); i += scnprintf(buf + i, sz - i, " media: "); i += tipc_media_addr_printf(buf + i, sz - i, &n->links[1].maddr); i += scnprintf(buf + i, sz - i, "\n"); i += tipc_link_dump(n->links[1].link, TIPC_DUMP_NONE, buf + i); i += scnprintf(buf + i, sz - i, " inputq: "); i += tipc_list_dump(&n->links[1].inputq, false, buf + i); i += scnprintf(buf + i, sz - i, "bclink:\n "); i += tipc_link_dump(n->bc_entry.link, TIPC_DUMP_NONE, buf + i); return i; } void tipc_node_pre_cleanup_net(struct net *exit_net) { struct tipc_node *n; struct tipc_net *tn; struct net *tmp; rcu_read_lock(); for_each_net_rcu(tmp) { if (tmp == exit_net) continue; tn = tipc_net(tmp); if (!tn) continue; spin_lock_bh(&tn->node_list_lock); list_for_each_entry_rcu(n, &tn->node_list, list) { if (!n->peer_net) continue; if (n->peer_net != exit_net) continue; tipc_node_write_lock(n); n->peer_net = NULL; n->peer_hash_mix = 0; tipc_node_write_unlock_fast(n); break; } spin_unlock_bh(&tn->node_list_lock); } rcu_read_unlock(); } |
| 104 1068 1069 1071 1072 513 1073 16 143 46 149 149 46 319 195 351 350 61 285 10 18 7 150 352 352 285 68 84 46 46 9 9 9 9 9 11 11 11 11 11 10 16 16 11 11 4 11 4 11 11 199 200 200 200 5 200 2 200 24 24 24 23 24 24 22 22 22 22 22 21 123 118 7 7 7 193 14 10 10 10 1 10 6 10 14 14 14 14 14 14 4 11 11 14 14 4 14 14 456 456 195 195 195 182 13 194 195 104 103 2 104 18 1079 18 1071 456 669 118 192 104 104 38 1 101 2 5 159 141 17 676 673 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner, Simon Wunderlich */ #include "hard-interface.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/compiler.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/gfp.h> #include <linux/if.h> #include <linux/if_arp.h> #include <linux/if_ether.h> #include <linux/kref.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/printk.h> #include <linux/rculist.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <net/net_namespace.h> #include <net/rtnetlink.h> #include <uapi/linux/batadv_packet.h> #include "bat_v.h" #include "bridge_loop_avoidance.h" #include "distributed-arp-table.h" #include "gateway_client.h" #include "log.h" #include "originator.h" #include "send.h" #include "soft-interface.h" #include "translation-table.h" /** * batadv_hardif_release() - release hard interface from lists and queue for * free after rcu grace period * @ref: kref pointer of the hard interface */ void batadv_hardif_release(struct kref *ref) { struct batadv_hard_iface *hard_iface; hard_iface = container_of(ref, struct batadv_hard_iface, refcount); dev_put(hard_iface->net_dev); kfree_rcu(hard_iface, rcu); } /** * batadv_hardif_get_by_netdev() - Get hard interface object of a net_device * @net_dev: net_device to search for * * Return: batadv_hard_iface of net_dev (with increased refcnt), NULL on errors */ struct batadv_hard_iface * batadv_hardif_get_by_netdev(const struct net_device *net_dev) { struct batadv_hard_iface *hard_iface; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->net_dev == net_dev && kref_get_unless_zero(&hard_iface->refcount)) goto out; } hard_iface = NULL; out: rcu_read_unlock(); return hard_iface; } /** * batadv_getlink_net() - return link net namespace (of use fallback) * @netdev: net_device to check * @fallback_net: return in case get_link_net is not available for @netdev * * Return: result of rtnl_link_ops->get_link_net or @fallback_net */ static struct net *batadv_getlink_net(const struct net_device *netdev, struct net *fallback_net) { if (!netdev->rtnl_link_ops) return fallback_net; if (!netdev->rtnl_link_ops->get_link_net) return fallback_net; return netdev->rtnl_link_ops->get_link_net(netdev); } /** * batadv_mutual_parents() - check if two devices are each others parent * @dev1: 1st net dev * @net1: 1st devices netns * @dev2: 2nd net dev * @net2: 2nd devices netns * * veth devices come in pairs and each is the parent of the other! * * Return: true if the devices are each others parent, otherwise false */ static bool batadv_mutual_parents(const struct net_device *dev1, struct net *net1, const struct net_device *dev2, struct net *net2) { int dev1_parent_iflink = dev_get_iflink(dev1); int dev2_parent_iflink = dev_get_iflink(dev2); const struct net *dev1_parent_net; const struct net *dev2_parent_net; dev1_parent_net = batadv_getlink_net(dev1, net1); dev2_parent_net = batadv_getlink_net(dev2, net2); if (!dev1_parent_iflink || !dev2_parent_iflink) return false; return (dev1_parent_iflink == dev2->ifindex) && (dev2_parent_iflink == dev1->ifindex) && net_eq(dev1_parent_net, net2) && net_eq(dev2_parent_net, net1); } /** * batadv_is_on_batman_iface() - check if a device is a batman iface descendant * @net_dev: the device to check * * If the user creates any virtual device on top of a batman-adv interface, it * is important to prevent this new interface from being used to create a new * mesh network (this behaviour would lead to a batman-over-batman * configuration). This function recursively checks all the fathers of the * device passed as argument looking for a batman-adv soft interface. * * Return: true if the device is descendant of a batman-adv mesh interface (or * if it is a batman-adv interface itself), false otherwise */ static bool batadv_is_on_batman_iface(const struct net_device *net_dev) { struct net *net = dev_net(net_dev); struct net_device *parent_dev; struct net *parent_net; int iflink; bool ret; /* check if this is a batman-adv mesh interface */ if (batadv_softif_is_valid(net_dev)) return true; iflink = dev_get_iflink(net_dev); if (iflink == 0) return false; parent_net = batadv_getlink_net(net_dev, net); /* iflink to itself, most likely physical device */ if (net == parent_net && iflink == net_dev->ifindex) return false; /* recurse over the parent device */ parent_dev = __dev_get_by_index((struct net *)parent_net, iflink); if (!parent_dev) { pr_warn("Cannot find parent device. Skipping batadv-on-batadv check for %s\n", net_dev->name); return false; } if (batadv_mutual_parents(net_dev, net, parent_dev, parent_net)) return false; ret = batadv_is_on_batman_iface(parent_dev); return ret; } static bool batadv_is_valid_iface(const struct net_device *net_dev) { if (net_dev->flags & IFF_LOOPBACK) return false; if (net_dev->type != ARPHRD_ETHER) return false; if (net_dev->addr_len != ETH_ALEN) return false; /* no batman over batman */ if (batadv_is_on_batman_iface(net_dev)) return false; return true; } /** * batadv_get_real_netdevice() - check if the given netdev struct is a virtual * interface on top of another 'real' interface * @netdev: the device to check * * Callers must hold the rtnl semaphore. You may want batadv_get_real_netdev() * instead of this. * * Return: the 'real' net device or the original net device and NULL in case * of an error. */ static struct net_device *batadv_get_real_netdevice(struct net_device *netdev) { struct batadv_hard_iface *hard_iface = NULL; struct net_device *real_netdev = NULL; struct net *real_net; struct net *net; int iflink; ASSERT_RTNL(); if (!netdev) return NULL; iflink = dev_get_iflink(netdev); if (iflink == 0) { dev_hold(netdev); return netdev; } hard_iface = batadv_hardif_get_by_netdev(netdev); if (!hard_iface || !hard_iface->soft_iface) goto out; net = dev_net(hard_iface->soft_iface); real_net = batadv_getlink_net(netdev, net); /* iflink to itself, most likely physical device */ if (net == real_net && netdev->ifindex == iflink) { real_netdev = netdev; dev_hold(real_netdev); goto out; } real_netdev = dev_get_by_index(real_net, iflink); out: batadv_hardif_put(hard_iface); return real_netdev; } /** * batadv_get_real_netdev() - check if the given net_device struct is a virtual * interface on top of another 'real' interface * @net_device: the device to check * * Return: the 'real' net device or the original net device and NULL in case * of an error. */ struct net_device *batadv_get_real_netdev(struct net_device *net_device) { struct net_device *real_netdev; rtnl_lock(); real_netdev = batadv_get_real_netdevice(net_device); rtnl_unlock(); return real_netdev; } /** * batadv_is_wext_netdev() - check if the given net_device struct is a * wext wifi interface * @net_device: the device to check * * Return: true if the net device is a wext wireless device, false * otherwise. */ static bool batadv_is_wext_netdev(struct net_device *net_device) { if (!net_device) return false; #ifdef CONFIG_WIRELESS_EXT /* pre-cfg80211 drivers have to implement WEXT, so it is possible to * check for wireless_handlers != NULL */ if (net_device->wireless_handlers) return true; #endif return false; } /** * batadv_is_cfg80211_netdev() - check if the given net_device struct is a * cfg80211 wifi interface * @net_device: the device to check * * Return: true if the net device is a cfg80211 wireless device, false * otherwise. */ static bool batadv_is_cfg80211_netdev(struct net_device *net_device) { if (!net_device) return false; #if IS_ENABLED(CONFIG_CFG80211) /* cfg80211 drivers have to set ieee80211_ptr */ if (net_device->ieee80211_ptr) return true; #endif return false; } /** * batadv_wifi_flags_evaluate() - calculate wifi flags for net_device * @net_device: the device to check * * Return: batadv_hard_iface_wifi_flags flags of the device */ static u32 batadv_wifi_flags_evaluate(struct net_device *net_device) { u32 wifi_flags = 0; struct net_device *real_netdev; if (batadv_is_wext_netdev(net_device)) wifi_flags |= BATADV_HARDIF_WIFI_WEXT_DIRECT; if (batadv_is_cfg80211_netdev(net_device)) wifi_flags |= BATADV_HARDIF_WIFI_CFG80211_DIRECT; real_netdev = batadv_get_real_netdevice(net_device); if (!real_netdev) return wifi_flags; if (real_netdev == net_device) goto out; if (batadv_is_wext_netdev(real_netdev)) wifi_flags |= BATADV_HARDIF_WIFI_WEXT_INDIRECT; if (batadv_is_cfg80211_netdev(real_netdev)) wifi_flags |= BATADV_HARDIF_WIFI_CFG80211_INDIRECT; out: dev_put(real_netdev); return wifi_flags; } /** * batadv_is_cfg80211_hardif() - check if the given hardif is a cfg80211 wifi * interface * @hard_iface: the device to check * * Return: true if the net device is a cfg80211 wireless device, false * otherwise. */ bool batadv_is_cfg80211_hardif(struct batadv_hard_iface *hard_iface) { u32 allowed_flags = 0; allowed_flags |= BATADV_HARDIF_WIFI_CFG80211_DIRECT; allowed_flags |= BATADV_HARDIF_WIFI_CFG80211_INDIRECT; return !!(hard_iface->wifi_flags & allowed_flags); } /** * batadv_is_wifi_hardif() - check if the given hardif is a wifi interface * @hard_iface: the device to check * * Return: true if the net device is a 802.11 wireless device, false otherwise. */ bool batadv_is_wifi_hardif(struct batadv_hard_iface *hard_iface) { if (!hard_iface) return false; return hard_iface->wifi_flags != 0; } /** * batadv_hardif_no_broadcast() - check whether (re)broadcast is necessary * @if_outgoing: the outgoing interface checked and considered for (re)broadcast * @orig_addr: the originator of this packet * @orig_neigh: originator address of the forwarder we just got the packet from * (NULL if we originated) * * Checks whether a packet needs to be (re)broadcasted on the given interface. * * Return: * BATADV_HARDIF_BCAST_NORECIPIENT: No neighbor on interface * BATADV_HARDIF_BCAST_DUPFWD: Just one neighbor, but it is the forwarder * BATADV_HARDIF_BCAST_DUPORIG: Just one neighbor, but it is the originator * BATADV_HARDIF_BCAST_OK: Several neighbors, must broadcast */ int batadv_hardif_no_broadcast(struct batadv_hard_iface *if_outgoing, u8 *orig_addr, u8 *orig_neigh) { struct batadv_hardif_neigh_node *hardif_neigh; struct hlist_node *first; int ret = BATADV_HARDIF_BCAST_OK; rcu_read_lock(); /* 0 neighbors -> no (re)broadcast */ first = rcu_dereference(hlist_first_rcu(&if_outgoing->neigh_list)); if (!first) { ret = BATADV_HARDIF_BCAST_NORECIPIENT; goto out; } /* >1 neighbors -> (re)broadcast */ if (rcu_dereference(hlist_next_rcu(first))) goto out; hardif_neigh = hlist_entry(first, struct batadv_hardif_neigh_node, list); /* 1 neighbor, is the originator -> no rebroadcast */ if (orig_addr && batadv_compare_eth(hardif_neigh->orig, orig_addr)) { ret = BATADV_HARDIF_BCAST_DUPORIG; /* 1 neighbor, is the one we received from -> no rebroadcast */ } else if (orig_neigh && batadv_compare_eth(hardif_neigh->orig, orig_neigh)) { ret = BATADV_HARDIF_BCAST_DUPFWD; } out: rcu_read_unlock(); return ret; } static struct batadv_hard_iface * batadv_hardif_get_active(const struct net_device *soft_iface) { struct batadv_hard_iface *hard_iface; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != soft_iface) continue; if (hard_iface->if_status == BATADV_IF_ACTIVE && kref_get_unless_zero(&hard_iface->refcount)) goto out; } hard_iface = NULL; out: rcu_read_unlock(); return hard_iface; } static void batadv_primary_if_update_addr(struct batadv_priv *bat_priv, struct batadv_hard_iface *oldif) { struct batadv_hard_iface *primary_if; primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) goto out; batadv_dat_init_own_addr(bat_priv, primary_if); batadv_bla_update_orig_address(bat_priv, primary_if, oldif); out: batadv_hardif_put(primary_if); } static void batadv_primary_if_select(struct batadv_priv *bat_priv, struct batadv_hard_iface *new_hard_iface) { struct batadv_hard_iface *curr_hard_iface; ASSERT_RTNL(); if (new_hard_iface) kref_get(&new_hard_iface->refcount); curr_hard_iface = rcu_replace_pointer(bat_priv->primary_if, new_hard_iface, 1); if (!new_hard_iface) goto out; bat_priv->algo_ops->iface.primary_set(new_hard_iface); batadv_primary_if_update_addr(bat_priv, curr_hard_iface); out: batadv_hardif_put(curr_hard_iface); } static bool batadv_hardif_is_iface_up(const struct batadv_hard_iface *hard_iface) { if (hard_iface->net_dev->flags & IFF_UP) return true; return false; } static void batadv_check_known_mac_addr(const struct net_device *net_dev) { const struct batadv_hard_iface *hard_iface; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE && hard_iface->if_status != BATADV_IF_TO_BE_ACTIVATED) continue; if (hard_iface->net_dev == net_dev) continue; if (!batadv_compare_eth(hard_iface->net_dev->dev_addr, net_dev->dev_addr)) continue; pr_warn("The newly added mac address (%pM) already exists on: %s\n", net_dev->dev_addr, hard_iface->net_dev->name); pr_warn("It is strongly recommended to keep mac addresses unique to avoid problems!\n"); } rcu_read_unlock(); } /** * batadv_hardif_recalc_extra_skbroom() - Recalculate skbuff extra head/tailroom * @soft_iface: netdev struct of the mesh interface */ static void batadv_hardif_recalc_extra_skbroom(struct net_device *soft_iface) { const struct batadv_hard_iface *hard_iface; unsigned short lower_header_len = ETH_HLEN; unsigned short lower_headroom = 0; unsigned short lower_tailroom = 0; unsigned short needed_headroom; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status == BATADV_IF_NOT_IN_USE) continue; if (hard_iface->soft_iface != soft_iface) continue; lower_header_len = max_t(unsigned short, lower_header_len, hard_iface->net_dev->hard_header_len); lower_headroom = max_t(unsigned short, lower_headroom, hard_iface->net_dev->needed_headroom); lower_tailroom = max_t(unsigned short, lower_tailroom, hard_iface->net_dev->needed_tailroom); } rcu_read_unlock(); needed_headroom = lower_headroom + (lower_header_len - ETH_HLEN); needed_headroom += batadv_max_header_len(); /* fragmentation headers don't strip the unicast/... header */ needed_headroom += sizeof(struct batadv_frag_packet); soft_iface->needed_headroom = needed_headroom; soft_iface->needed_tailroom = lower_tailroom; } /** * batadv_hardif_min_mtu() - Calculate maximum MTU for soft interface * @soft_iface: netdev struct of the soft interface * * Return: MTU for the soft-interface (limited by the minimal MTU of all active * slave interfaces) */ int batadv_hardif_min_mtu(struct net_device *soft_iface) { struct batadv_priv *bat_priv = netdev_priv(soft_iface); const struct batadv_hard_iface *hard_iface; int min_mtu = INT_MAX; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE && hard_iface->if_status != BATADV_IF_TO_BE_ACTIVATED) continue; if (hard_iface->soft_iface != soft_iface) continue; min_mtu = min_t(int, hard_iface->net_dev->mtu, min_mtu); } rcu_read_unlock(); if (atomic_read(&bat_priv->fragmentation) == 0) goto out; /* with fragmentation enabled the maximum size of internally generated * packets such as translation table exchanges or tvlv containers, etc * has to be calculated */ min_mtu = min_t(int, min_mtu, BATADV_FRAG_MAX_FRAG_SIZE); min_mtu -= sizeof(struct batadv_frag_packet); min_mtu *= BATADV_FRAG_MAX_FRAGMENTS; out: /* report to the other components the maximum amount of bytes that * batman-adv can send over the wire (without considering the payload * overhead). For example, this value is used by TT to compute the * maximum local table size */ atomic_set(&bat_priv->packet_size_max, min_mtu); /* the real soft-interface MTU is computed by removing the payload * overhead from the maximum amount of bytes that was just computed. * * However batman-adv does not support MTUs bigger than ETH_DATA_LEN */ return min_t(int, min_mtu - batadv_max_header_len(), ETH_DATA_LEN); } /** * batadv_update_min_mtu() - Adjusts the MTU if a new interface with a smaller * MTU appeared * @soft_iface: netdev struct of the soft interface */ void batadv_update_min_mtu(struct net_device *soft_iface) { struct batadv_priv *bat_priv = netdev_priv(soft_iface); int limit_mtu; int mtu; mtu = batadv_hardif_min_mtu(soft_iface); if (bat_priv->mtu_set_by_user) limit_mtu = bat_priv->mtu_set_by_user; else limit_mtu = ETH_DATA_LEN; mtu = min(mtu, limit_mtu); dev_set_mtu(soft_iface, mtu); /* Check if the local translate table should be cleaned up to match a * new (and smaller) MTU. */ batadv_tt_local_resize_to_mtu(soft_iface); } static void batadv_hardif_activate_interface(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv; struct batadv_hard_iface *primary_if = NULL; if (hard_iface->if_status != BATADV_IF_INACTIVE) goto out; bat_priv = netdev_priv(hard_iface->soft_iface); bat_priv->algo_ops->iface.update_mac(hard_iface); hard_iface->if_status = BATADV_IF_TO_BE_ACTIVATED; /* the first active interface becomes our primary interface or * the next active interface after the old primary interface was removed */ primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) batadv_primary_if_select(bat_priv, hard_iface); batadv_info(hard_iface->soft_iface, "Interface activated: %s\n", hard_iface->net_dev->name); batadv_update_min_mtu(hard_iface->soft_iface); if (bat_priv->algo_ops->iface.activate) bat_priv->algo_ops->iface.activate(hard_iface); out: batadv_hardif_put(primary_if); } static void batadv_hardif_deactivate_interface(struct batadv_hard_iface *hard_iface) { if (hard_iface->if_status != BATADV_IF_ACTIVE && hard_iface->if_status != BATADV_IF_TO_BE_ACTIVATED) return; hard_iface->if_status = BATADV_IF_INACTIVE; batadv_info(hard_iface->soft_iface, "Interface deactivated: %s\n", hard_iface->net_dev->name); batadv_update_min_mtu(hard_iface->soft_iface); } /** * batadv_hardif_enable_interface() - Enslave hard interface to soft interface * @hard_iface: hard interface to add to soft interface * @soft_iface: netdev struct of the mesh interface * * Return: 0 on success or negative error number in case of failure */ int batadv_hardif_enable_interface(struct batadv_hard_iface *hard_iface, struct net_device *soft_iface) { struct batadv_priv *bat_priv; __be16 ethertype = htons(ETH_P_BATMAN); int max_header_len = batadv_max_header_len(); unsigned int required_mtu; unsigned int hardif_mtu; int ret; hardif_mtu = READ_ONCE(hard_iface->net_dev->mtu); required_mtu = READ_ONCE(soft_iface->mtu) + max_header_len; if (hardif_mtu < ETH_MIN_MTU + max_header_len) return -EINVAL; if (hard_iface->if_status != BATADV_IF_NOT_IN_USE) goto out; kref_get(&hard_iface->refcount); dev_hold(soft_iface); hard_iface->soft_iface = soft_iface; bat_priv = netdev_priv(hard_iface->soft_iface); ret = netdev_master_upper_dev_link(hard_iface->net_dev, soft_iface, NULL, NULL, NULL); if (ret) goto err_dev; ret = bat_priv->algo_ops->iface.enable(hard_iface); if (ret < 0) goto err_upper; hard_iface->if_status = BATADV_IF_INACTIVE; kref_get(&hard_iface->refcount); hard_iface->batman_adv_ptype.type = ethertype; hard_iface->batman_adv_ptype.func = batadv_batman_skb_recv; hard_iface->batman_adv_ptype.dev = hard_iface->net_dev; dev_add_pack(&hard_iface->batman_adv_ptype); batadv_info(hard_iface->soft_iface, "Adding interface: %s\n", hard_iface->net_dev->name); if (atomic_read(&bat_priv->fragmentation) && hardif_mtu < required_mtu) batadv_info(hard_iface->soft_iface, "The MTU of interface %s is too small (%i) to handle the transport of batman-adv packets. Packets going over this interface will be fragmented on layer2 which could impact the performance. Setting the MTU to %i would solve the problem.\n", hard_iface->net_dev->name, hardif_mtu, required_mtu); if (!atomic_read(&bat_priv->fragmentation) && hardif_mtu < required_mtu) batadv_info(hard_iface->soft_iface, "The MTU of interface %s is too small (%i) to handle the transport of batman-adv packets. If you experience problems getting traffic through try increasing the MTU to %i.\n", hard_iface->net_dev->name, hardif_mtu, required_mtu); if (batadv_hardif_is_iface_up(hard_iface)) batadv_hardif_activate_interface(hard_iface); else batadv_err(hard_iface->soft_iface, "Not using interface %s (retrying later): interface not active\n", hard_iface->net_dev->name); batadv_hardif_recalc_extra_skbroom(soft_iface); if (bat_priv->algo_ops->iface.enabled) bat_priv->algo_ops->iface.enabled(hard_iface); out: return 0; err_upper: netdev_upper_dev_unlink(hard_iface->net_dev, soft_iface); err_dev: hard_iface->soft_iface = NULL; dev_put(soft_iface); batadv_hardif_put(hard_iface); return ret; } /** * batadv_hardif_cnt() - get number of interfaces enslaved to soft interface * @soft_iface: soft interface to check * * This function is only using RCU for locking - the result can therefore be * off when another function is modifying the list at the same time. The * caller can use the rtnl_lock to make sure that the count is accurate. * * Return: number of connected/enslaved hard interfaces */ static size_t batadv_hardif_cnt(const struct net_device *soft_iface) { struct batadv_hard_iface *hard_iface; size_t count = 0; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != soft_iface) continue; count++; } rcu_read_unlock(); return count; } /** * batadv_hardif_disable_interface() - Remove hard interface from soft interface * @hard_iface: hard interface to be removed */ void batadv_hardif_disable_interface(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); struct batadv_hard_iface *primary_if = NULL; batadv_hardif_deactivate_interface(hard_iface); if (hard_iface->if_status != BATADV_IF_INACTIVE) goto out; batadv_info(hard_iface->soft_iface, "Removing interface: %s\n", hard_iface->net_dev->name); dev_remove_pack(&hard_iface->batman_adv_ptype); batadv_hardif_put(hard_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (hard_iface == primary_if) { struct batadv_hard_iface *new_if; new_if = batadv_hardif_get_active(hard_iface->soft_iface); batadv_primary_if_select(bat_priv, new_if); batadv_hardif_put(new_if); } bat_priv->algo_ops->iface.disable(hard_iface); hard_iface->if_status = BATADV_IF_NOT_IN_USE; /* delete all references to this hard_iface */ batadv_purge_orig_ref(bat_priv); batadv_purge_outstanding_packets(bat_priv, hard_iface); dev_put(hard_iface->soft_iface); netdev_upper_dev_unlink(hard_iface->net_dev, hard_iface->soft_iface); batadv_hardif_recalc_extra_skbroom(hard_iface->soft_iface); /* nobody uses this interface anymore */ if (batadv_hardif_cnt(hard_iface->soft_iface) <= 1) batadv_gw_check_client_stop(bat_priv); hard_iface->soft_iface = NULL; batadv_hardif_put(hard_iface); out: batadv_hardif_put(primary_if); } static struct batadv_hard_iface * batadv_hardif_add_interface(struct net_device *net_dev) { struct batadv_hard_iface *hard_iface; ASSERT_RTNL(); if (!batadv_is_valid_iface(net_dev)) goto out; dev_hold(net_dev); hard_iface = kzalloc(sizeof(*hard_iface), GFP_ATOMIC); if (!hard_iface) goto release_dev; hard_iface->net_dev = net_dev; hard_iface->soft_iface = NULL; hard_iface->if_status = BATADV_IF_NOT_IN_USE; INIT_LIST_HEAD(&hard_iface->list); INIT_HLIST_HEAD(&hard_iface->neigh_list); mutex_init(&hard_iface->bat_iv.ogm_buff_mutex); spin_lock_init(&hard_iface->neigh_list_lock); kref_init(&hard_iface->refcount); hard_iface->num_bcasts = BATADV_NUM_BCASTS_DEFAULT; hard_iface->wifi_flags = batadv_wifi_flags_evaluate(net_dev); if (batadv_is_wifi_hardif(hard_iface)) hard_iface->num_bcasts = BATADV_NUM_BCASTS_WIRELESS; atomic_set(&hard_iface->hop_penalty, 0); batadv_v_hardif_init(hard_iface); batadv_check_known_mac_addr(hard_iface->net_dev); kref_get(&hard_iface->refcount); list_add_tail_rcu(&hard_iface->list, &batadv_hardif_list); batadv_hardif_generation++; return hard_iface; release_dev: dev_put(net_dev); out: return NULL; } static void batadv_hardif_remove_interface(struct batadv_hard_iface *hard_iface) { ASSERT_RTNL(); /* first deactivate interface */ if (hard_iface->if_status != BATADV_IF_NOT_IN_USE) batadv_hardif_disable_interface(hard_iface); if (hard_iface->if_status != BATADV_IF_NOT_IN_USE) return; hard_iface->if_status = BATADV_IF_TO_BE_REMOVED; batadv_hardif_put(hard_iface); } /** * batadv_hard_if_event_softif() - Handle events for soft interfaces * @event: NETDEV_* event to handle * @net_dev: net_device which generated an event * * Return: NOTIFY_* result */ static int batadv_hard_if_event_softif(unsigned long event, struct net_device *net_dev) { struct batadv_priv *bat_priv; switch (event) { case NETDEV_REGISTER: bat_priv = netdev_priv(net_dev); batadv_softif_create_vlan(bat_priv, BATADV_NO_FLAGS); break; } return NOTIFY_DONE; } static int batadv_hard_if_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); struct batadv_hard_iface *hard_iface; struct batadv_hard_iface *primary_if = NULL; struct batadv_priv *bat_priv; if (batadv_softif_is_valid(net_dev)) return batadv_hard_if_event_softif(event, net_dev); hard_iface = batadv_hardif_get_by_netdev(net_dev); if (!hard_iface && (event == NETDEV_REGISTER || event == NETDEV_POST_TYPE_CHANGE)) hard_iface = batadv_hardif_add_interface(net_dev); if (!hard_iface) goto out; switch (event) { case NETDEV_UP: batadv_hardif_activate_interface(hard_iface); break; case NETDEV_GOING_DOWN: case NETDEV_DOWN: batadv_hardif_deactivate_interface(hard_iface); break; case NETDEV_UNREGISTER: case NETDEV_PRE_TYPE_CHANGE: list_del_rcu(&hard_iface->list); batadv_hardif_generation++; batadv_hardif_remove_interface(hard_iface); break; case NETDEV_CHANGEMTU: if (hard_iface->soft_iface) batadv_update_min_mtu(hard_iface->soft_iface); break; case NETDEV_CHANGEADDR: if (hard_iface->if_status == BATADV_IF_NOT_IN_USE) goto hardif_put; batadv_check_known_mac_addr(hard_iface->net_dev); bat_priv = netdev_priv(hard_iface->soft_iface); bat_priv->algo_ops->iface.update_mac(hard_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) goto hardif_put; if (hard_iface == primary_if) batadv_primary_if_update_addr(bat_priv, NULL); break; case NETDEV_CHANGEUPPER: hard_iface->wifi_flags = batadv_wifi_flags_evaluate(net_dev); if (batadv_is_wifi_hardif(hard_iface)) hard_iface->num_bcasts = BATADV_NUM_BCASTS_WIRELESS; break; default: break; } hardif_put: batadv_hardif_put(hard_iface); out: batadv_hardif_put(primary_if); return NOTIFY_DONE; } struct notifier_block batadv_hard_if_notifier = { .notifier_call = batadv_hard_if_event, }; |
| 2808 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2005-2010 IBM Corporation * * Authors: * Mimi Zohar <zohar@us.ibm.com> * Kylene Hall <kjhall@us.ibm.com> * * File: evm.h */ #ifndef __INTEGRITY_EVM_H #define __INTEGRITY_EVM_H #include <linux/xattr.h> #include <linux/security.h> #include "../integrity.h" #define EVM_INIT_HMAC 0x0001 #define EVM_INIT_X509 0x0002 #define EVM_ALLOW_METADATA_WRITES 0x0004 #define EVM_SETUP_COMPLETE 0x80000000 /* userland has signaled key load */ #define EVM_KEY_MASK (EVM_INIT_HMAC | EVM_INIT_X509) #define EVM_INIT_MASK (EVM_INIT_HMAC | EVM_INIT_X509 | EVM_SETUP_COMPLETE | \ EVM_ALLOW_METADATA_WRITES) struct xattr_list { struct list_head list; char *name; bool enabled; }; #define EVM_NEW_FILE 0x00000001 #define EVM_IMMUTABLE_DIGSIG 0x00000002 /* EVM integrity metadata associated with an inode */ struct evm_iint_cache { unsigned long flags; enum integrity_status evm_status:4; struct integrity_inode_attributes metadata_inode; }; extern struct lsm_blob_sizes evm_blob_sizes; static inline struct evm_iint_cache *evm_iint_inode(const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + evm_blob_sizes.lbs_inode; } extern int evm_initialized; #define EVM_ATTR_FSUUID 0x0001 extern int evm_hmac_attrs; /* List of EVM protected security xattrs */ extern struct list_head evm_config_xattrnames; struct evm_digest { struct ima_digest_data_hdr hdr; char digest[IMA_MAX_DIGEST_SIZE]; } __packed; int evm_protected_xattr(const char *req_xattr_name); int evm_init_key(void); int evm_update_evmxattr(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len); int evm_calc_hmac(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len, struct evm_digest *data, struct evm_iint_cache *iint); int evm_calc_hash(struct dentry *dentry, const char *req_xattr_name, const char *req_xattr_value, size_t req_xattr_value_len, char type, struct evm_digest *data, struct evm_iint_cache *iint); int evm_init_hmac(struct inode *inode, const struct xattr *xattrs, char *hmac_val); int evm_init_secfs(void); #endif |
| 47 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/filter.h> #include <linux/bpf.h> #include <net/netlink.h> #include <net/sock.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <linux/tc_act/tc_bpf.h> #include <net/tc_act/tc_bpf.h> #include <net/tc_wrapper.h> #define ACT_BPF_NAME_LEN 256 struct tcf_bpf_cfg { struct bpf_prog *filter; struct sock_filter *bpf_ops; const char *bpf_name; u16 bpf_num_ops; bool is_ebpf; }; static struct tc_action_ops act_bpf_ops; TC_INDIRECT_SCOPE int tcf_bpf_act(struct sk_buff *skb, const struct tc_action *act, struct tcf_result *res) { bool at_ingress = skb_at_tc_ingress(skb); struct tcf_bpf *prog = to_bpf(act); struct bpf_prog *filter; int action, filter_res; tcf_lastuse_update(&prog->tcf_tm); bstats_update(this_cpu_ptr(prog->common.cpu_bstats), skb); filter = rcu_dereference(prog->filter); if (at_ingress) { __skb_push(skb, skb->mac_len); bpf_compute_data_pointers(skb); filter_res = bpf_prog_run(filter, skb); __skb_pull(skb, skb->mac_len); } else { bpf_compute_data_pointers(skb); filter_res = bpf_prog_run(filter, skb); } if (unlikely(!skb->tstamp && skb->tstamp_type)) skb->tstamp_type = SKB_CLOCK_REALTIME; if (skb_sk_is_prefetched(skb) && filter_res != TC_ACT_OK) skb_orphan(skb); /* A BPF program may overwrite the default action opcode. * Similarly as in cls_bpf, if filter_res == -1 we use the * default action specified from tc. * * In case a different well-known TC_ACT opcode has been * returned, it will overwrite the default one. * * For everything else that is unknown, TC_ACT_UNSPEC is * returned. */ switch (filter_res) { case TC_ACT_PIPE: case TC_ACT_RECLASSIFY: case TC_ACT_OK: case TC_ACT_REDIRECT: action = filter_res; break; case TC_ACT_SHOT: action = filter_res; qstats_drop_inc(this_cpu_ptr(prog->common.cpu_qstats)); break; case TC_ACT_UNSPEC: action = prog->tcf_action; break; default: action = TC_ACT_UNSPEC; break; } return action; } static bool tcf_bpf_is_ebpf(const struct tcf_bpf *prog) { return !prog->bpf_ops; } static int tcf_bpf_dump_bpf_info(const struct tcf_bpf *prog, struct sk_buff *skb) { struct nlattr *nla; if (nla_put_u16(skb, TCA_ACT_BPF_OPS_LEN, prog->bpf_num_ops)) return -EMSGSIZE; nla = nla_reserve(skb, TCA_ACT_BPF_OPS, prog->bpf_num_ops * sizeof(struct sock_filter)); if (nla == NULL) return -EMSGSIZE; memcpy(nla_data(nla), prog->bpf_ops, nla_len(nla)); return 0; } static int tcf_bpf_dump_ebpf_info(const struct tcf_bpf *prog, struct sk_buff *skb) { struct nlattr *nla; if (prog->bpf_name && nla_put_string(skb, TCA_ACT_BPF_NAME, prog->bpf_name)) return -EMSGSIZE; if (nla_put_u32(skb, TCA_ACT_BPF_ID, prog->filter->aux->id)) return -EMSGSIZE; nla = nla_reserve(skb, TCA_ACT_BPF_TAG, sizeof(prog->filter->tag)); if (nla == NULL) return -EMSGSIZE; memcpy(nla_data(nla), prog->filter->tag, nla_len(nla)); return 0; } static int tcf_bpf_dump(struct sk_buff *skb, struct tc_action *act, int bind, int ref) { unsigned char *tp = skb_tail_pointer(skb); struct tcf_bpf *prog = to_bpf(act); struct tc_act_bpf opt = { .index = prog->tcf_index, .refcnt = refcount_read(&prog->tcf_refcnt) - ref, .bindcnt = atomic_read(&prog->tcf_bindcnt) - bind, }; struct tcf_t tm; int ret; spin_lock_bh(&prog->tcf_lock); opt.action = prog->tcf_action; if (nla_put(skb, TCA_ACT_BPF_PARMS, sizeof(opt), &opt)) goto nla_put_failure; if (tcf_bpf_is_ebpf(prog)) ret = tcf_bpf_dump_ebpf_info(prog, skb); else ret = tcf_bpf_dump_bpf_info(prog, skb); if (ret) goto nla_put_failure; tcf_tm_dump(&tm, &prog->tcf_tm); if (nla_put_64bit(skb, TCA_ACT_BPF_TM, sizeof(tm), &tm, TCA_ACT_BPF_PAD)) goto nla_put_failure; spin_unlock_bh(&prog->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&prog->tcf_lock); nlmsg_trim(skb, tp); return -1; } static const struct nla_policy act_bpf_policy[TCA_ACT_BPF_MAX + 1] = { [TCA_ACT_BPF_PARMS] = { .len = sizeof(struct tc_act_bpf) }, [TCA_ACT_BPF_FD] = { .type = NLA_U32 }, [TCA_ACT_BPF_NAME] = { .type = NLA_NUL_STRING, .len = ACT_BPF_NAME_LEN }, [TCA_ACT_BPF_OPS_LEN] = { .type = NLA_U16 }, [TCA_ACT_BPF_OPS] = { .type = NLA_BINARY, .len = sizeof(struct sock_filter) * BPF_MAXINSNS }, }; static int tcf_bpf_init_from_ops(struct nlattr **tb, struct tcf_bpf_cfg *cfg) { struct sock_filter *bpf_ops; struct sock_fprog_kern fprog_tmp; struct bpf_prog *fp; u16 bpf_size, bpf_num_ops; int ret; bpf_num_ops = nla_get_u16(tb[TCA_ACT_BPF_OPS_LEN]); if (bpf_num_ops > BPF_MAXINSNS || bpf_num_ops == 0) return -EINVAL; bpf_size = bpf_num_ops * sizeof(*bpf_ops); if (bpf_size != nla_len(tb[TCA_ACT_BPF_OPS])) return -EINVAL; bpf_ops = kmemdup(nla_data(tb[TCA_ACT_BPF_OPS]), bpf_size, GFP_KERNEL); if (bpf_ops == NULL) return -ENOMEM; fprog_tmp.len = bpf_num_ops; fprog_tmp.filter = bpf_ops; ret = bpf_prog_create(&fp, &fprog_tmp); if (ret < 0) { kfree(bpf_ops); return ret; } cfg->bpf_ops = bpf_ops; cfg->bpf_num_ops = bpf_num_ops; cfg->filter = fp; cfg->is_ebpf = false; return 0; } static int tcf_bpf_init_from_efd(struct nlattr **tb, struct tcf_bpf_cfg *cfg) { struct bpf_prog *fp; char *name = NULL; u32 bpf_fd; bpf_fd = nla_get_u32(tb[TCA_ACT_BPF_FD]); fp = bpf_prog_get_type(bpf_fd, BPF_PROG_TYPE_SCHED_ACT); if (IS_ERR(fp)) return PTR_ERR(fp); if (tb[TCA_ACT_BPF_NAME]) { name = nla_memdup(tb[TCA_ACT_BPF_NAME], GFP_KERNEL); if (!name) { bpf_prog_put(fp); return -ENOMEM; } } cfg->bpf_name = name; cfg->filter = fp; cfg->is_ebpf = true; return 0; } static void tcf_bpf_cfg_cleanup(const struct tcf_bpf_cfg *cfg) { struct bpf_prog *filter = cfg->filter; if (filter) { if (cfg->is_ebpf) bpf_prog_put(filter); else bpf_prog_destroy(filter); } kfree(cfg->bpf_ops); kfree(cfg->bpf_name); } static void tcf_bpf_prog_fill_cfg(const struct tcf_bpf *prog, struct tcf_bpf_cfg *cfg) { cfg->is_ebpf = tcf_bpf_is_ebpf(prog); /* updates to prog->filter are prevented, since it's called either * with tcf lock or during final cleanup in rcu callback */ cfg->filter = rcu_dereference_protected(prog->filter, 1); cfg->bpf_ops = prog->bpf_ops; cfg->bpf_name = prog->bpf_name; } static int tcf_bpf_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **act, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_bpf_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_ACT_BPF_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tcf_bpf_cfg cfg, old; struct tc_act_bpf *parm; struct tcf_bpf *prog; bool is_bpf, is_ebpf; int ret, res = 0; u32 index; if (!nla) return -EINVAL; ret = nla_parse_nested_deprecated(tb, TCA_ACT_BPF_MAX, nla, act_bpf_policy, NULL); if (ret < 0) return ret; if (!tb[TCA_ACT_BPF_PARMS]) return -EINVAL; parm = nla_data(tb[TCA_ACT_BPF_PARMS]); index = parm->index; ret = tcf_idr_check_alloc(tn, &index, act, bind); if (!ret) { ret = tcf_idr_create(tn, index, est, act, &act_bpf_ops, bind, true, flags); if (ret < 0) { tcf_idr_cleanup(tn, index); return ret; } res = ACT_P_CREATED; } else if (ret > 0) { /* Don't override defaults. */ if (bind) return ACT_P_BOUND; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*act, bind); return -EEXIST; } } else { return ret; } ret = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (ret < 0) goto release_idr; is_bpf = tb[TCA_ACT_BPF_OPS_LEN] && tb[TCA_ACT_BPF_OPS]; is_ebpf = tb[TCA_ACT_BPF_FD]; if (is_bpf == is_ebpf) { ret = -EINVAL; goto put_chain; } memset(&cfg, 0, sizeof(cfg)); ret = is_bpf ? tcf_bpf_init_from_ops(tb, &cfg) : tcf_bpf_init_from_efd(tb, &cfg); if (ret < 0) goto put_chain; prog = to_bpf(*act); spin_lock_bh(&prog->tcf_lock); if (res != ACT_P_CREATED) tcf_bpf_prog_fill_cfg(prog, &old); prog->bpf_ops = cfg.bpf_ops; prog->bpf_name = cfg.bpf_name; if (cfg.bpf_num_ops) prog->bpf_num_ops = cfg.bpf_num_ops; goto_ch = tcf_action_set_ctrlact(*act, parm->action, goto_ch); rcu_assign_pointer(prog->filter, cfg.filter); spin_unlock_bh(&prog->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (res != ACT_P_CREATED) { /* make sure the program being replaced is no longer executing */ synchronize_rcu(); tcf_bpf_cfg_cleanup(&old); } return res; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*act, bind); return ret; } static void tcf_bpf_cleanup(struct tc_action *act) { struct tcf_bpf_cfg tmp; tcf_bpf_prog_fill_cfg(to_bpf(act), &tmp); tcf_bpf_cfg_cleanup(&tmp); } static struct tc_action_ops act_bpf_ops __read_mostly = { .kind = "bpf", .id = TCA_ID_BPF, .owner = THIS_MODULE, .act = tcf_bpf_act, .dump = tcf_bpf_dump, .cleanup = tcf_bpf_cleanup, .init = tcf_bpf_init, .size = sizeof(struct tcf_bpf), }; MODULE_ALIAS_NET_ACT("bpf"); static __net_init int bpf_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_bpf_ops.net_id); return tc_action_net_init(net, tn, &act_bpf_ops); } static void __net_exit bpf_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_bpf_ops.net_id); } static struct pernet_operations bpf_net_ops = { .init = bpf_init_net, .exit_batch = bpf_exit_net, .id = &act_bpf_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init bpf_init_module(void) { return tcf_register_action(&act_bpf_ops, &bpf_net_ops); } static void __exit bpf_cleanup_module(void) { tcf_unregister_action(&act_bpf_ops, &bpf_net_ops); } module_init(bpf_init_module); module_exit(bpf_cleanup_module); MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>"); MODULE_DESCRIPTION("TC BPF based action"); MODULE_LICENSE("GPL v2"); |
| 484 5 257 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | /* SPDX-License-Identifier: GPL-2.0 */ /* Freezer declarations */ #ifndef FREEZER_H_INCLUDED #define FREEZER_H_INCLUDED #include <linux/debug_locks.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/jump_label.h> #ifdef CONFIG_FREEZER DECLARE_STATIC_KEY_FALSE(freezer_active); extern bool pm_freezing; /* PM freezing in effect */ extern bool pm_nosig_freezing; /* PM nosig freezing in effect */ /* * Timeout for stopping processes */ extern unsigned int freeze_timeout_msecs; /* * Check if a process has been frozen */ extern bool frozen(struct task_struct *p); extern bool freezing_slow_path(struct task_struct *p); /* * Check if there is a request to freeze a process */ static inline bool freezing(struct task_struct *p) { if (static_branch_unlikely(&freezer_active)) return freezing_slow_path(p); return false; } /* Takes and releases task alloc lock using task_lock() */ extern void __thaw_task(struct task_struct *t); extern bool __refrigerator(bool check_kthr_stop); extern int freeze_processes(void); extern int freeze_kernel_threads(void); extern void thaw_processes(void); extern void thaw_kernel_threads(void); static inline bool try_to_freeze(void) { might_sleep(); if (likely(!freezing(current))) return false; if (!(current->flags & PF_NOFREEZE)) debug_check_no_locks_held(); return __refrigerator(false); } extern bool freeze_task(struct task_struct *p); extern bool set_freezable(void); #ifdef CONFIG_CGROUP_FREEZER extern bool cgroup_freezing(struct task_struct *task); #else /* !CONFIG_CGROUP_FREEZER */ static inline bool cgroup_freezing(struct task_struct *task) { return false; } #endif /* !CONFIG_CGROUP_FREEZER */ #else /* !CONFIG_FREEZER */ static inline bool frozen(struct task_struct *p) { return false; } static inline bool freezing(struct task_struct *p) { return false; } static inline void __thaw_task(struct task_struct *t) {} static inline bool __refrigerator(bool check_kthr_stop) { return false; } static inline int freeze_processes(void) { return -ENOSYS; } static inline int freeze_kernel_threads(void) { return -ENOSYS; } static inline void thaw_processes(void) {} static inline void thaw_kernel_threads(void) {} static inline bool try_to_freeze(void) { return false; } static inline void set_freezable(void) {} #endif /* !CONFIG_FREEZER */ #endif /* FREEZER_H_INCLUDED */ |
| 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | /* SPDX-License-Identifier: GPL-2.0 */ /* * This file define the new driver API for Wireless Extensions * * Version : 8 16.3.07 * * Authors : Jean Tourrilhes - HPL - <jt@hpl.hp.com> * Copyright (c) 2001-2007 Jean Tourrilhes, All Rights Reserved. */ #ifndef _IW_HANDLER_H #define _IW_HANDLER_H /************************** DOCUMENTATION **************************/ /* * Initial driver API (1996 -> onward) : * ----------------------------------- * The initial API just sends the IOCTL request received from user space * to the driver (via the driver ioctl handler). The driver has to * handle all the rest... * * The initial API also defines a specific handler in struct net_device * to handle wireless statistics. * * The initial APIs served us well and has proven a reasonably good design. * However, there are a few shortcomings : * o No events, everything is a request to the driver. * o Large ioctl function in driver with gigantic switch statement * (i.e. spaghetti code). * o Driver has to mess up with copy_to/from_user, and in many cases * does it unproperly. Common mistakes are : * * buffer overflows (no checks or off by one checks) * * call copy_to/from_user with irq disabled * o The user space interface is tied to ioctl because of the use * copy_to/from_user. * * New driver API (2002 -> onward) : * ------------------------------- * The new driver API is just a bunch of standard functions (handlers), * each handling a specific Wireless Extension. The driver just export * the list of handler it supports, and those will be called appropriately. * * I tried to keep the main advantage of the previous API (simplicity, * efficiency and light weight), and also I provide a good dose of backward * compatibility (most structures are the same, driver can use both API * simultaneously, ...). * Hopefully, I've also addressed the shortcoming of the initial API. * * The advantage of the new API are : * o Handling of Extensions in driver broken in small contained functions * o Tighter checks of ioctl before calling the driver * o Flexible commit strategy (at least, the start of it) * o Backward compatibility (can be mixed with old API) * o Driver doesn't have to worry about memory and user-space issues * The last point is important for the following reasons : * o You are now able to call the new driver API from any API you * want (including from within other parts of the kernel). * o Common mistakes are avoided (buffer overflow, user space copy * with irq disabled and so on). * * The Drawback of the new API are : * o bloat (especially kernel) * o need to migrate existing drivers to new API * My initial testing shows that the new API adds around 3kB to the kernel * and save between 0 and 5kB from a typical driver. * Also, as all structures and data types are unchanged, the migration is * quite straightforward (but tedious). * * --- * * The new driver API is defined below in this file. User space should * not be aware of what's happening down there... * * A new kernel wrapper is in charge of validating the IOCTLs and calling * the appropriate driver handler. This is implemented in : * # net/core/wireless.c * * The driver export the list of handlers in : * # include/linux/netdevice.h (one place) * * The new driver API is available for WIRELESS_EXT >= 13. * Good luck with migration to the new API ;-) */ /* ---------------------- THE IMPLEMENTATION ---------------------- */ /* * Some of the choice I've made are pretty controversial. Defining an * API is very much weighting compromises. This goes into some of the * details and the thinking behind the implementation. * * Implementation goals : * -------------------- * The implementation goals were as follow : * o Obvious : you should not need a PhD to understand what's happening, * the benefit is easier maintenance. * o Flexible : it should accommodate a wide variety of driver * implementations and be as flexible as the old API. * o Lean : it should be efficient memory wise to minimise the impact * on kernel footprint. * o Transparent to user space : the large number of user space * applications that use Wireless Extensions should not need * any modifications. * * Array of functions versus Struct of functions * --------------------------------------------- * 1) Having an array of functions allow the kernel code to access the * handler in a single lookup, which is much more efficient (think hash * table here). * 2) The only drawback is that driver writer may put their handler in * the wrong slot. This is trivial to test (I set the frequency, the * bitrate changes). Once the handler is in the proper slot, it will be * there forever, because the array is only extended at the end. * 3) Backward/forward compatibility : adding new handler just require * extending the array, so you can put newer driver in older kernel * without having to patch the kernel code (and vice versa). * * All handler are of the same generic type * ---------------------------------------- * That's a feature !!! * 1) Having a generic handler allow to have generic code, which is more * efficient. If each of the handler was individually typed I would need * to add a big switch in the kernel (== more bloat). This solution is * more scalable, adding new Wireless Extensions doesn't add new code. * 2) You can use the same handler in different slots of the array. For * hardware, it may be more efficient or logical to handle multiple * Wireless Extensions with a single function, and the API allow you to * do that. (An example would be a single record on the card to control * both bitrate and frequency, the handler would read the old record, * modify it according to info->cmd and rewrite it). * * Functions prototype uses union iwreq_data * ----------------------------------------- * Some would have preferred functions defined this way : * static int mydriver_ioctl_setrate(struct net_device *dev, * long rate, int auto) * 1) The kernel code doesn't "validate" the content of iwreq_data, and * can't do it (different hardware may have different notion of what a * valid frequency is), so we don't pretend that we do it. * 2) The above form is not extendable. If I want to add a flag (for * example to distinguish setting max rate and basic rate), I would * break the prototype. Using iwreq_data is more flexible. * 3) Also, the above form is not generic (see above). * 4) I don't expect driver developer using the wrong field of the * union (Doh !), so static typechecking doesn't add much value. * 5) Lastly, you can skip the union by doing : * static int mydriver_ioctl_setrate(struct net_device *dev, * struct iw_request_info *info, * struct iw_param *rrq, * char *extra) * And then adding the handler in the array like this : * (iw_handler) mydriver_ioctl_setrate, // SIOCSIWRATE * * Using functions and not a registry * ---------------------------------- * Another implementation option would have been for every instance to * define a registry (a struct containing all the Wireless Extensions) * and only have a function to commit the registry to the hardware. * 1) This approach can be emulated by the current code, but not * vice versa. * 2) Some drivers don't keep any configuration in the driver, for them * adding such a registry would be a significant bloat. * 3) The code to translate from Wireless Extension to native format is * needed anyway, so it would not reduce significantely the amount of code. * 4) The current approach only selectively translate Wireless Extensions * to native format and only selectively set, whereas the registry approach * would require to translate all WE and set all parameters for any single * change. * 5) For many Wireless Extensions, the GET operation return the current * dynamic value, not the value that was set. * * This header is <net/iw_handler.h> * --------------------------------- * 1) This header is kernel space only and should not be exported to * user space. Headers in "include/linux/" are exported, headers in * "include/net/" are not. * * Mixed 32/64 bit issues * ---------------------- * The Wireless Extensions are designed to be 64 bit clean, by using only * datatypes with explicit storage size. * There are some issues related to kernel and user space using different * memory model, and in particular 64bit kernel with 32bit user space. * The problem is related to struct iw_point, that contains a pointer * that *may* need to be translated. * This is quite messy. The new API doesn't solve this problem (it can't), * but is a step in the right direction : * 1) Meta data about each ioctl is easily available, so we know what type * of translation is needed. * 2) The move of data between kernel and user space is only done in a single * place in the kernel, so adding specific hooks in there is possible. * 3) In the long term, it allows to move away from using ioctl as the * user space API. * * So many comments and so few code * -------------------------------- * That's a feature. Comments won't bloat the resulting kernel binary. */ /***************************** INCLUDES *****************************/ #include <linux/wireless.h> /* IOCTL user space API */ #include <linux/if_ether.h> /***************************** VERSION *****************************/ /* * This constant is used to know which version of the driver API is * available. Hopefully, this will be pretty stable and no changes * will be needed... * I just plan to increment with each new version. */ #define IW_HANDLER_VERSION 8 /* * Changes : * * V2 to V3 * -------- * - Move event definition in <linux/wireless.h> * - Add Wireless Event support : * o wireless_send_event() prototype * o iwe_stream_add_event/point() inline functions * V3 to V4 * -------- * - Reshuffle IW_HEADER_TYPE_XXX to map IW_PRIV_TYPE_XXX changes * * V4 to V5 * -------- * - Add new spy support : struct iw_spy_data & prototypes * * V5 to V6 * -------- * - Change the way we get to spy_data method for added safety * - Remove spy #ifdef, they are always on -> cleaner code * - Add IW_DESCR_FLAG_NOMAX flag for very large requests * - Start migrating get_wireless_stats to struct iw_handler_def * * V6 to V7 * -------- * - Add struct ieee80211_device pointer in struct iw_public_data * - Remove (struct iw_point *)->pointer from events and streams * - Remove spy_offset from struct iw_handler_def * - Add "check" version of event macros for ieee802.11 stack * * V7 to V8 * ---------- * - Prevent leaking of kernel space in stream on 64 bits. */ /**************************** CONSTANTS ****************************/ /* Enhanced spy support available */ #define IW_WIRELESS_SPY #define IW_WIRELESS_THRSPY /* Special error message for the driver to indicate that we * should do a commit after return from the iw_handler */ #define EIWCOMMIT EINPROGRESS /* Flags available in struct iw_request_info */ #define IW_REQUEST_FLAG_COMPAT 0x0001 /* Compat ioctl call */ /* Type of headers we know about (basically union iwreq_data) */ #define IW_HEADER_TYPE_NULL 0 /* Not available */ #define IW_HEADER_TYPE_CHAR 2 /* char [IFNAMSIZ] */ #define IW_HEADER_TYPE_UINT 4 /* __u32 */ #define IW_HEADER_TYPE_FREQ 5 /* struct iw_freq */ #define IW_HEADER_TYPE_ADDR 6 /* struct sockaddr */ #define IW_HEADER_TYPE_POINT 8 /* struct iw_point */ #define IW_HEADER_TYPE_PARAM 9 /* struct iw_param */ #define IW_HEADER_TYPE_QUAL 10 /* struct iw_quality */ /* Handling flags */ /* Most are not implemented. I just use them as a reminder of some * cool features we might need one day ;-) */ #define IW_DESCR_FLAG_NONE 0x0000 /* Obvious */ /* Wrapper level flags */ #define IW_DESCR_FLAG_DUMP 0x0001 /* Not part of the dump command */ #define IW_DESCR_FLAG_EVENT 0x0002 /* Generate an event on SET */ #define IW_DESCR_FLAG_RESTRICT 0x0004 /* GET : request is ROOT only */ /* SET : Omit payload from generated iwevent */ #define IW_DESCR_FLAG_NOMAX 0x0008 /* GET : no limit on request size */ /****************************** TYPES ******************************/ /* ----------------------- WIRELESS HANDLER ----------------------- */ /* * A wireless handler is just a standard function, that looks like the * ioctl handler. * We also define there how a handler list look like... As the Wireless * Extension space is quite dense, we use a simple array, which is faster * (that's the perfect hash table ;-). */ /* * Meta data about the request passed to the iw_handler. * Most handlers can safely ignore what's in there. * The 'cmd' field might come handy if you want to use the same handler * for multiple command... * This struct is also my long term insurance. I can add new fields here * without breaking the prototype of iw_handler... */ struct iw_request_info { __u16 cmd; /* Wireless Extension command */ __u16 flags; /* More to come ;-) */ }; struct net_device; /* * This is how a function handling a Wireless Extension should look * like (both get and set, standard and private). */ typedef int (*iw_handler)(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra); /* * This define all the handler that the driver export. * As you need only one per driver type, please use a static const * shared by all driver instances... Same for the members... * This will be linked from net_device in <linux/netdevice.h> */ struct iw_handler_def { /* Array of handlers for standard ioctls * We will call dev->wireless_handlers->standard[ioctl - SIOCIWFIRST] */ const iw_handler * standard; /* Number of handlers defined (more precisely, index of the * last defined handler + 1) */ __u16 num_standard; #ifdef CONFIG_WEXT_PRIV __u16 num_private; /* Number of private arg description */ __u16 num_private_args; /* Array of handlers for private ioctls * Will call dev->wireless_handlers->private[ioctl - SIOCIWFIRSTPRIV] */ const iw_handler * private; /* Arguments of private handler. This one is just a list, so you * can put it in any order you want and should not leave holes... * We will automatically export that to user space... */ const struct iw_priv_args * private_args; #endif /* New location of get_wireless_stats, to de-bloat struct net_device. * The old pointer in struct net_device will be gradually phased * out, and drivers are encouraged to use this one... */ struct iw_statistics* (*get_wireless_stats)(struct net_device *dev); }; /* ---------------------- IOCTL DESCRIPTION ---------------------- */ /* * One of the main goal of the new interface is to deal entirely with * user space/kernel space memory move. * For that, we need to know : * o if iwreq is a pointer or contain the full data * o what is the size of the data to copy * * For private IOCTLs, we use the same rules as used by iwpriv and * defined in struct iw_priv_args. * * For standard IOCTLs, things are quite different and we need to * use the structures below. Actually, this struct is also more * efficient, but that's another story... */ /* * Describe how a standard IOCTL looks like. */ struct iw_ioctl_description { __u8 header_type; /* NULL, iw_point or other */ __u8 flags; /* Special handling of the request */ __u16 token_size; /* Granularity of payload */ __u16 min_tokens; /* Min acceptable token number */ __u16 max_tokens; /* Max acceptable token number */ }; /* Need to think of short header translation table. Later. */ /* --------------------- ENHANCED SPY SUPPORT --------------------- */ /* * In the old days, the driver was handling spy support all by itself. * Now, the driver can delegate this task to Wireless Extensions. * It needs to include this struct in its private part and use the * standard spy iw_handler. */ /* * Instance specific spy data, i.e. addresses spied and quality for them. */ struct iw_spy_data { /* --- Standard spy support --- */ int spy_number; u_char spy_address[IW_MAX_SPY][ETH_ALEN]; struct iw_quality spy_stat[IW_MAX_SPY]; /* --- Enhanced spy support (event) */ struct iw_quality spy_thr_low; /* Low threshold */ struct iw_quality spy_thr_high; /* High threshold */ u_char spy_thr_under[IW_MAX_SPY]; }; /**************************** PROTOTYPES ****************************/ /* * Functions part of the Wireless Extensions (defined in net/wireless/wext-core.c). * Those may be called by driver modules. */ /* Send a single event to user space */ void wireless_send_event(struct net_device *dev, unsigned int cmd, union iwreq_data *wrqu, const char *extra); #ifdef CONFIG_WEXT_CORE /* flush all previous wext events - if work is done from netdev notifiers */ void wireless_nlevent_flush(void); #else static inline void wireless_nlevent_flush(void) {} #endif /* We may need a function to send a stream of events to user space. * More on that later... */ /************************* INLINE FUNCTIONS *************************/ /* * Function that are so simple that it's more efficient inlining them */ static inline int iwe_stream_lcp_len(struct iw_request_info *info) { #ifdef CONFIG_COMPAT if (info->flags & IW_REQUEST_FLAG_COMPAT) return IW_EV_COMPAT_LCP_LEN; #endif return IW_EV_LCP_LEN; } static inline int iwe_stream_point_len(struct iw_request_info *info) { #ifdef CONFIG_COMPAT if (info->flags & IW_REQUEST_FLAG_COMPAT) return IW_EV_COMPAT_POINT_LEN; #endif return IW_EV_POINT_LEN; } static inline int iwe_stream_event_len_adjust(struct iw_request_info *info, int event_len) { #ifdef CONFIG_COMPAT if (info->flags & IW_REQUEST_FLAG_COMPAT) { event_len -= IW_EV_LCP_LEN; event_len += IW_EV_COMPAT_LCP_LEN; } #endif return event_len; } /*------------------------------------------------------------------*/ /* * Wrapper to add an Wireless Event to a stream of events. */ char *iwe_stream_add_event(struct iw_request_info *info, char *stream, char *ends, struct iw_event *iwe, int event_len); static inline char * iwe_stream_add_event_check(struct iw_request_info *info, char *stream, char *ends, struct iw_event *iwe, int event_len) { char *res = iwe_stream_add_event(info, stream, ends, iwe, event_len); if (res == stream) return ERR_PTR(-E2BIG); return res; } /*------------------------------------------------------------------*/ /* * Wrapper to add an short Wireless Event containing a pointer to a * stream of events. */ char *iwe_stream_add_point(struct iw_request_info *info, char *stream, char *ends, struct iw_event *iwe, char *extra); static inline char * iwe_stream_add_point_check(struct iw_request_info *info, char *stream, char *ends, struct iw_event *iwe, char *extra) { char *res = iwe_stream_add_point(info, stream, ends, iwe, extra); if (res == stream) return ERR_PTR(-E2BIG); return res; } /*------------------------------------------------------------------*/ /* * Wrapper to add a value to a Wireless Event in a stream of events. * Be careful, this one is tricky to use properly : * At the first run, you need to have (value = event + IW_EV_LCP_LEN). */ char *iwe_stream_add_value(struct iw_request_info *info, char *event, char *value, char *ends, struct iw_event *iwe, int event_len); #endif /* _IW_HANDLER_H */ |
| 219 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __CPUSET_INTERNAL_H #define __CPUSET_INTERNAL_H #include <linux/cgroup.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/cpuset.h> #include <linux/spinlock.h> #include <linux/union_find.h> /* See "Frequency meter" comments, below. */ struct fmeter { int cnt; /* unprocessed events count */ int val; /* most recent output value */ time64_t time; /* clock (secs) when val computed */ spinlock_t lock; /* guards read or write of above */ }; /* * Invalid partition error code */ enum prs_errcode { PERR_NONE = 0, PERR_INVCPUS, PERR_INVPARENT, PERR_NOTPART, PERR_NOTEXCL, PERR_NOCPUS, PERR_HOTPLUG, PERR_CPUSEMPTY, PERR_HKEEPING, PERR_ACCESS, }; /* bits in struct cpuset flags field */ typedef enum { CS_ONLINE, CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, CS_MEM_HARDWALL, CS_MEMORY_MIGRATE, CS_SCHED_LOAD_BALANCE, CS_SPREAD_PAGE, CS_SPREAD_SLAB, } cpuset_flagbits_t; /* The various types of files and directories in a cpuset file system */ typedef enum { FILE_MEMORY_MIGRATE, FILE_CPULIST, FILE_MEMLIST, FILE_EFFECTIVE_CPULIST, FILE_EFFECTIVE_MEMLIST, FILE_SUBPARTS_CPULIST, FILE_EXCLUSIVE_CPULIST, FILE_EFFECTIVE_XCPULIST, FILE_ISOLATED_CPULIST, FILE_CPU_EXCLUSIVE, FILE_MEM_EXCLUSIVE, FILE_MEM_HARDWALL, FILE_SCHED_LOAD_BALANCE, FILE_PARTITION_ROOT, FILE_SCHED_RELAX_DOMAIN_LEVEL, FILE_MEMORY_PRESSURE_ENABLED, FILE_MEMORY_PRESSURE, FILE_SPREAD_PAGE, FILE_SPREAD_SLAB, } cpuset_filetype_t; struct cpuset { struct cgroup_subsys_state css; unsigned long flags; /* "unsigned long" so bitops work */ /* * On default hierarchy: * * The user-configured masks can only be changed by writing to * cpuset.cpus and cpuset.mems, and won't be limited by the * parent masks. * * The effective masks is the real masks that apply to the tasks * in the cpuset. They may be changed if the configured masks are * changed or hotplug happens. * * effective_mask == configured_mask & parent's effective_mask, * and if it ends up empty, it will inherit the parent's mask. * * * On legacy hierarchy: * * The user-configured masks are always the same with effective masks. */ /* user-configured CPUs and Memory Nodes allow to tasks */ cpumask_var_t cpus_allowed; nodemask_t mems_allowed; /* effective CPUs and Memory Nodes allow to tasks */ cpumask_var_t effective_cpus; nodemask_t effective_mems; /* * Exclusive CPUs dedicated to current cgroup (default hierarchy only) * * The effective_cpus of a valid partition root comes solely from its * effective_xcpus and some of the effective_xcpus may be distributed * to sub-partitions below & hence excluded from its effective_cpus. * For a valid partition root, its effective_cpus have no relationship * with cpus_allowed unless its exclusive_cpus isn't set. * * This value will only be set if either exclusive_cpus is set or * when this cpuset becomes a local partition root. */ cpumask_var_t effective_xcpus; /* * Exclusive CPUs as requested by the user (default hierarchy only) * * Its value is independent of cpus_allowed and designates the set of * CPUs that can be granted to the current cpuset or its children when * it becomes a valid partition root. The effective set of exclusive * CPUs granted (effective_xcpus) depends on whether those exclusive * CPUs are passed down by its ancestors and not yet taken up by * another sibling partition root along the way. * * If its value isn't set, it defaults to cpus_allowed. */ cpumask_var_t exclusive_cpus; /* * This is old Memory Nodes tasks took on. * * - top_cpuset.old_mems_allowed is initialized to mems_allowed. * - A new cpuset's old_mems_allowed is initialized when some * task is moved into it. * - old_mems_allowed is used in cpuset_migrate_mm() when we change * cpuset.mems_allowed and have tasks' nodemask updated, and * then old_mems_allowed is updated to mems_allowed. */ nodemask_t old_mems_allowed; struct fmeter fmeter; /* memory_pressure filter */ /* * Tasks are being attached to this cpuset. Used to prevent * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). */ int attach_in_progress; /* for custom sched domain */ int relax_domain_level; /* number of valid local child partitions */ int nr_subparts; /* partition root state */ int partition_root_state; /* * number of SCHED_DEADLINE tasks attached to this cpuset, so that we * know when to rebuild associated root domain bandwidth information. */ int nr_deadline_tasks; int nr_migrate_dl_tasks; u64 sum_migrate_dl_bw; /* Invalid partition error code, not lock protected */ enum prs_errcode prs_err; /* Handle for cpuset.cpus.partition */ struct cgroup_file partition_file; /* Remote partition silbling list anchored at remote_children */ struct list_head remote_sibling; /* Used to merge intersecting subsets for generate_sched_domains */ struct uf_node node; }; static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cpuset, css) : NULL; } /* Retrieve the cpuset for a task */ static inline struct cpuset *task_cs(struct task_struct *task) { return css_cs(task_css(task, cpuset_cgrp_id)); } static inline struct cpuset *parent_cs(struct cpuset *cs) { return css_cs(cs->css.parent); } /* convenient tests for these bits */ static inline bool is_cpuset_online(struct cpuset *cs) { return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); } static inline int is_cpu_exclusive(const struct cpuset *cs) { return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); } static inline int is_mem_exclusive(const struct cpuset *cs) { return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); } static inline int is_mem_hardwall(const struct cpuset *cs) { return test_bit(CS_MEM_HARDWALL, &cs->flags); } static inline int is_sched_load_balance(const struct cpuset *cs) { return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); } static inline int is_memory_migrate(const struct cpuset *cs) { return test_bit(CS_MEMORY_MIGRATE, &cs->flags); } static inline int is_spread_page(const struct cpuset *cs) { return test_bit(CS_SPREAD_PAGE, &cs->flags); } static inline int is_spread_slab(const struct cpuset *cs) { return test_bit(CS_SPREAD_SLAB, &cs->flags); } /** * cpuset_for_each_child - traverse online children of a cpuset * @child_cs: loop cursor pointing to the current child * @pos_css: used for iteration * @parent_cs: target cpuset to walk children of * * Walk @child_cs through the online children of @parent_cs. Must be used * with RCU read locked. */ #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ css_for_each_child((pos_css), &(parent_cs)->css) \ if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) /** * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants * @des_cs: loop cursor pointing to the current descendant * @pos_css: used for iteration * @root_cs: target cpuset to walk ancestor of * * Walk @des_cs through the online descendants of @root_cs. Must be used * with RCU read locked. The caller may modify @pos_css by calling * css_rightmost_descendant() to skip subtree. @root_cs is included in the * iteration and the first node to be visited. */ #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) void rebuild_sched_domains_locked(void); void cpuset_callback_lock_irq(void); void cpuset_callback_unlock_irq(void); void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus); void cpuset_update_tasks_nodemask(struct cpuset *cs); int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on); ssize_t cpuset_write_resmask(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); int cpuset_common_seq_show(struct seq_file *sf, void *v); /* * cpuset-v1.c */ #ifdef CONFIG_CPUSETS_V1 extern struct cftype cpuset1_files[]; void fmeter_init(struct fmeter *fmp); void cpuset1_update_task_spread_flags(struct cpuset *cs, struct task_struct *tsk); void cpuset1_update_tasks_flags(struct cpuset *cs); void cpuset1_hotplug_update_tasks(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated); int cpuset1_validate_change(struct cpuset *cur, struct cpuset *trial); #else static inline void fmeter_init(struct fmeter *fmp) {} static inline void cpuset1_update_task_spread_flags(struct cpuset *cs, struct task_struct *tsk) {} static inline void cpuset1_update_tasks_flags(struct cpuset *cs) {} static inline void cpuset1_hotplug_update_tasks(struct cpuset *cs, struct cpumask *new_cpus, nodemask_t *new_mems, bool cpus_updated, bool mems_updated) {} static inline int cpuset1_validate_change(struct cpuset *cur, struct cpuset *trial) { return 0; } #endif /* CONFIG_CPUSETS_V1 */ #endif /* __CPUSET_INTERNAL_H */ |
| 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SEQ_BUF_H #define _LINUX_SEQ_BUF_H #include <linux/bug.h> #include <linux/minmax.h> #include <linux/seq_file.h> #include <linux/types.h> /* * Trace sequences are used to allow a function to call several other functions * to create a string of data to use. */ /** * struct seq_buf - seq buffer structure * @buffer: pointer to the buffer * @size: size of the buffer * @len: the amount of data inside the buffer */ struct seq_buf { char *buffer; size_t size; size_t len; }; #define DECLARE_SEQ_BUF(NAME, SIZE) \ struct seq_buf NAME = { \ .buffer = (char[SIZE]) { 0 }, \ .size = SIZE, \ } static inline void seq_buf_clear(struct seq_buf *s) { s->len = 0; if (s->size) s->buffer[0] = '\0'; } static inline void seq_buf_init(struct seq_buf *s, char *buf, unsigned int size) { s->buffer = buf; s->size = size; seq_buf_clear(s); } /* * seq_buf have a buffer that might overflow. When this happens * len is set to be greater than size. */ static inline bool seq_buf_has_overflowed(struct seq_buf *s) { return s->len > s->size; } static inline void seq_buf_set_overflow(struct seq_buf *s) { s->len = s->size + 1; } /* * How much buffer is left on the seq_buf? */ static inline unsigned int seq_buf_buffer_left(struct seq_buf *s) { if (seq_buf_has_overflowed(s)) return 0; return s->size - s->len; } /* How much buffer was written? */ static inline unsigned int seq_buf_used(struct seq_buf *s) { return min(s->len, s->size); } /** * seq_buf_str - get NUL-terminated C string from seq_buf * @s: the seq_buf handle * * This makes sure that the buffer in @s is NUL-terminated and * safe to read as a string. * * Note, if this is called when the buffer has overflowed, then * the last byte of the buffer is zeroed, and the len will still * point passed it. * * After this function is called, s->buffer is safe to use * in string operations. * * Returns: @s->buf after making sure it is terminated. */ static inline const char *seq_buf_str(struct seq_buf *s) { if (WARN_ON(s->size == 0)) return ""; if (seq_buf_buffer_left(s)) s->buffer[s->len] = 0; else s->buffer[s->size - 1] = 0; return s->buffer; } /** * seq_buf_get_buf - get buffer to write arbitrary data to * @s: the seq_buf handle * @bufp: the beginning of the buffer is stored here * * Returns: the number of bytes available in the buffer, or zero if * there's no space. */ static inline size_t seq_buf_get_buf(struct seq_buf *s, char **bufp) { WARN_ON(s->len > s->size + 1); if (s->len < s->size) { *bufp = s->buffer + s->len; return s->size - s->len; } *bufp = NULL; return 0; } /** * seq_buf_commit - commit data to the buffer * @s: the seq_buf handle * @num: the number of bytes to commit * * Commit @num bytes of data written to a buffer previously acquired * by seq_buf_get_buf(). To signal an error condition, or that the data * didn't fit in the available space, pass a negative @num value. */ static inline void seq_buf_commit(struct seq_buf *s, int num) { if (num < 0) { seq_buf_set_overflow(s); } else { /* num must be negative on overflow */ BUG_ON(s->len + num > s->size); s->len += num; } } extern __printf(2, 3) int seq_buf_printf(struct seq_buf *s, const char *fmt, ...); extern __printf(2, 0) int seq_buf_vprintf(struct seq_buf *s, const char *fmt, va_list args); extern int seq_buf_print_seq(struct seq_file *m, struct seq_buf *s); extern int seq_buf_to_user(struct seq_buf *s, char __user *ubuf, size_t start, int cnt); extern int seq_buf_puts(struct seq_buf *s, const char *str); extern int seq_buf_putc(struct seq_buf *s, unsigned char c); extern int seq_buf_putmem(struct seq_buf *s, const void *mem, unsigned int len); extern int seq_buf_putmem_hex(struct seq_buf *s, const void *mem, unsigned int len); extern int seq_buf_path(struct seq_buf *s, const struct path *path, const char *esc); extern int seq_buf_hex_dump(struct seq_buf *s, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #ifdef CONFIG_BINARY_PRINTF extern int seq_buf_bprintf(struct seq_buf *s, const char *fmt, const u32 *binary); #endif void seq_buf_do_printk(struct seq_buf *s, const char *lvl); #endif /* _LINUX_SEQ_BUF_H */ |
| 172 135 9 136 127 127 44 1 4 4 13 33 14 10 1 3 1 1 1 4 6 2 4 6 6 8 1 2 22 175 13 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | // SPDX-License-Identifier: GPL-2.0 #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/ktime.h> #include <linux/seq_file.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/nsfs.h> #include <linux/uaccess.h> #include <linux/mnt_namespace.h> #include "mount.h" #include "internal.h" static struct vfsmount *nsfs_mnt; static long ns_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); static const struct file_operations ns_file_operations = { .unlocked_ioctl = ns_ioctl, .compat_ioctl = compat_ptr_ioctl, }; static char *ns_dname(struct dentry *dentry, char *buffer, int buflen) { struct inode *inode = d_inode(dentry); struct ns_common *ns = inode->i_private; const struct proc_ns_operations *ns_ops = ns->ops; return dynamic_dname(buffer, buflen, "%s:[%lu]", ns_ops->name, inode->i_ino); } const struct dentry_operations ns_dentry_operations = { .d_delete = always_delete_dentry, .d_dname = ns_dname, .d_prune = stashed_dentry_prune, }; static void nsfs_evict(struct inode *inode) { struct ns_common *ns = inode->i_private; clear_inode(inode); ns->ops->put(ns); } int ns_get_path_cb(struct path *path, ns_get_path_helper_t *ns_get_cb, void *private_data) { struct ns_common *ns; ns = ns_get_cb(private_data); if (!ns) return -ENOENT; return path_from_stashed(&ns->stashed, nsfs_mnt, ns, path); } struct ns_get_path_task_args { const struct proc_ns_operations *ns_ops; struct task_struct *task; }; static struct ns_common *ns_get_path_task(void *private_data) { struct ns_get_path_task_args *args = private_data; return args->ns_ops->get(args->task); } int ns_get_path(struct path *path, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct ns_get_path_task_args args = { .ns_ops = ns_ops, .task = task, }; return ns_get_path_cb(path, ns_get_path_task, &args); } /** * open_namespace - open a namespace * @ns: the namespace to open * * This will consume a reference to @ns indendent of success or failure. * * Return: A file descriptor on success or a negative error code on failure. */ int open_namespace(struct ns_common *ns) { struct path path __free(path_put) = {}; struct file *f; int err; /* call first to consume reference */ err = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); if (err < 0) return err; CLASS(get_unused_fd, fd)(O_CLOEXEC); if (fd < 0) return fd; f = dentry_open(&path, O_RDONLY, current_cred()); if (IS_ERR(f)) return PTR_ERR(f); fd_install(fd, f); return take_fd(fd); } int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)) { struct ns_common *relative; relative = get_ns(ns); if (IS_ERR(relative)) return PTR_ERR(relative); return open_namespace(relative); } EXPORT_SYMBOL_GPL(open_related_ns); static int copy_ns_info_to_user(const struct mnt_namespace *mnt_ns, struct mnt_ns_info __user *uinfo, size_t usize, struct mnt_ns_info *kinfo) { /* * If userspace and the kernel have the same struct size it can just * be copied. If userspace provides an older struct, only the bits that * userspace knows about will be copied. If userspace provides a new * struct, only the bits that the kernel knows aobut will be copied and * the size value will be set to the size the kernel knows about. */ kinfo->size = min(usize, sizeof(*kinfo)); kinfo->mnt_ns_id = mnt_ns->seq; kinfo->nr_mounts = READ_ONCE(mnt_ns->nr_mounts); /* Subtract the root mount of the mount namespace. */ if (kinfo->nr_mounts) kinfo->nr_mounts--; if (copy_to_user(uinfo, kinfo, kinfo->size)) return -EFAULT; return 0; } static long ns_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct user_namespace *user_ns; struct pid_namespace *pid_ns; struct task_struct *tsk; struct ns_common *ns = get_proc_ns(file_inode(filp)); struct mnt_namespace *mnt_ns; bool previous = false; uid_t __user *argp; uid_t uid; int ret; switch (ioctl) { case NS_GET_USERNS: return open_related_ns(ns, ns_get_owner); case NS_GET_PARENT: if (!ns->ops->get_parent) return -EINVAL; return open_related_ns(ns, ns->ops->get_parent); case NS_GET_NSTYPE: return ns->ops->type; case NS_GET_OWNER_UID: if (ns->ops->type != CLONE_NEWUSER) return -EINVAL; user_ns = container_of(ns, struct user_namespace, ns); argp = (uid_t __user *) arg; uid = from_kuid_munged(current_user_ns(), user_ns->owner); return put_user(uid, argp); case NS_GET_MNTNS_ID: { __u64 __user *idp; __u64 id; if (ns->ops->type != CLONE_NEWNS) return -EINVAL; mnt_ns = container_of(ns, struct mnt_namespace, ns); idp = (__u64 __user *)arg; id = mnt_ns->seq; return put_user(id, idp); } case NS_GET_PID_FROM_PIDNS: fallthrough; case NS_GET_TGID_FROM_PIDNS: fallthrough; case NS_GET_PID_IN_PIDNS: fallthrough; case NS_GET_TGID_IN_PIDNS: { if (ns->ops->type != CLONE_NEWPID) return -EINVAL; ret = -ESRCH; pid_ns = container_of(ns, struct pid_namespace, ns); guard(rcu)(); if (ioctl == NS_GET_PID_IN_PIDNS || ioctl == NS_GET_TGID_IN_PIDNS) tsk = find_task_by_vpid(arg); else tsk = find_task_by_pid_ns(arg, pid_ns); if (!tsk) break; switch (ioctl) { case NS_GET_PID_FROM_PIDNS: ret = task_pid_vnr(tsk); break; case NS_GET_TGID_FROM_PIDNS: ret = task_tgid_vnr(tsk); break; case NS_GET_PID_IN_PIDNS: ret = task_pid_nr_ns(tsk, pid_ns); break; case NS_GET_TGID_IN_PIDNS: ret = task_tgid_nr_ns(tsk, pid_ns); break; default: ret = 0; break; } if (!ret) ret = -ESRCH; return ret; } } /* extensible ioctls */ switch (_IOC_NR(ioctl)) { case _IOC_NR(NS_MNT_GET_INFO): { struct mnt_ns_info kinfo = {}; struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; size_t usize = _IOC_SIZE(ioctl); if (ns->ops->type != CLONE_NEWNS) return -EINVAL; if (!uinfo) return -EINVAL; if (usize < MNT_NS_INFO_SIZE_VER0) return -EINVAL; return copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); } case _IOC_NR(NS_MNT_GET_PREV): previous = true; fallthrough; case _IOC_NR(NS_MNT_GET_NEXT): { struct mnt_ns_info kinfo = {}; struct mnt_ns_info __user *uinfo = (struct mnt_ns_info __user *)arg; struct path path __free(path_put) = {}; struct file *f __free(fput) = NULL; size_t usize = _IOC_SIZE(ioctl); if (ns->ops->type != CLONE_NEWNS) return -EINVAL; if (usize < MNT_NS_INFO_SIZE_VER0) return -EINVAL; mnt_ns = get_sequential_mnt_ns(to_mnt_ns(ns), previous); if (IS_ERR(mnt_ns)) return PTR_ERR(mnt_ns); ns = to_ns_common(mnt_ns); /* Transfer ownership of @mnt_ns reference to @path. */ ret = path_from_stashed(&ns->stashed, nsfs_mnt, ns, &path); if (ret) return ret; CLASS(get_unused_fd, fd)(O_CLOEXEC); if (fd < 0) return fd; f = dentry_open(&path, O_RDONLY, current_cred()); if (IS_ERR(f)) return PTR_ERR(f); if (uinfo) { /* * If @uinfo is passed return all information about the * mount namespace as well. */ ret = copy_ns_info_to_user(to_mnt_ns(ns), uinfo, usize, &kinfo); if (ret) return ret; } /* Transfer reference of @f to caller's fdtable. */ fd_install(fd, no_free_ptr(f)); /* File descriptor is live so hand it off to the caller. */ return take_fd(fd); } default: ret = -ENOTTY; } return ret; } int ns_get_name(char *buf, size_t size, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct ns_common *ns; int res = -ENOENT; const char *name; ns = ns_ops->get(task); if (ns) { name = ns_ops->real_ns_name ? : ns_ops->name; res = snprintf(buf, size, "%s:[%u]", name, ns->inum); ns_ops->put(ns); } return res; } bool proc_ns_file(const struct file *file) { return file->f_op == &ns_file_operations; } /** * ns_match() - Returns true if current namespace matches dev/ino provided. * @ns: current namespace * @dev: dev_t from nsfs that will be matched against current nsfs * @ino: ino_t from nsfs that will be matched against current nsfs * * Return: true if dev and ino matches the current nsfs. */ bool ns_match(const struct ns_common *ns, dev_t dev, ino_t ino) { return (ns->inum == ino) && (nsfs_mnt->mnt_sb->s_dev == dev); } static int nsfs_show_path(struct seq_file *seq, struct dentry *dentry) { struct inode *inode = d_inode(dentry); const struct ns_common *ns = inode->i_private; const struct proc_ns_operations *ns_ops = ns->ops; seq_printf(seq, "%s:[%lu]", ns_ops->name, inode->i_ino); return 0; } static const struct super_operations nsfs_ops = { .statfs = simple_statfs, .evict_inode = nsfs_evict, .show_path = nsfs_show_path, }; static int nsfs_init_inode(struct inode *inode, void *data) { struct ns_common *ns = data; inode->i_private = data; inode->i_mode |= S_IRUGO; inode->i_fop = &ns_file_operations; inode->i_ino = ns->inum; return 0; } static void nsfs_put_data(void *data) { struct ns_common *ns = data; ns->ops->put(ns); } static const struct stashed_operations nsfs_stashed_ops = { .init_inode = nsfs_init_inode, .put_data = nsfs_put_data, }; static int nsfs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, NSFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &nsfs_ops; ctx->dops = &ns_dentry_operations; fc->s_fs_info = (void *)&nsfs_stashed_ops; return 0; } static struct file_system_type nsfs = { .name = "nsfs", .init_fs_context = nsfs_init_fs_context, .kill_sb = kill_anon_super, }; void __init nsfs_init(void) { nsfs_mnt = kern_mount(&nsfs); if (IS_ERR(nsfs_mnt)) panic("can't set nsfs up\n"); nsfs_mnt->mnt_sb->s_flags &= ~SB_NOUSER; } |
| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM icmp #if !defined(_TRACE_ICMP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_ICMP_H #include <linux/icmp.h> #include <linux/tracepoint.h> TRACE_EVENT(icmp_send, TP_PROTO(const struct sk_buff *skb, int type, int code), TP_ARGS(skb, type, code), TP_STRUCT__entry( __field(const void *, skbaddr) __field(int, type) __field(int, code) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __field(__u16, sport) __field(__u16, dport) __field(unsigned short, ulen) ), TP_fast_assign( struct iphdr *iph = ip_hdr(skb); struct udphdr *uh = udp_hdr(skb); int proto_4 = iph->protocol; __be32 *p32; __entry->skbaddr = skb; __entry->type = type; __entry->code = code; if (proto_4 != IPPROTO_UDP || (u8 *)uh < skb->head || (u8 *)uh + sizeof(struct udphdr) > skb_tail_pointer(skb)) { __entry->sport = 0; __entry->dport = 0; __entry->ulen = 0; } else { __entry->sport = ntohs(uh->source); __entry->dport = ntohs(uh->dest); __entry->ulen = ntohs(uh->len); } p32 = (__be32 *) __entry->saddr; *p32 = iph->saddr; p32 = (__be32 *) __entry->daddr; *p32 = iph->daddr; ), TP_printk("icmp_send: type=%d, code=%d. From %pI4:%u to %pI4:%u ulen=%d skbaddr=%p", __entry->type, __entry->code, __entry->saddr, __entry->sport, __entry->daddr, __entry->dport, __entry->ulen, __entry->skbaddr) ); #endif /* _TRACE_ICMP_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
| 391 20 390 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 | /* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/mutex.h> #include <linux/inetdevice.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <net/arp.h> #include <net/neighbour.h> #include <net/route.h> #include <net/netevent.h> #include <net/ipv6_stubs.h> #include <net/ip6_route.h> #include <rdma/ib_addr.h> #include <rdma/ib_cache.h> #include <rdma/ib_sa.h> #include <rdma/ib.h> #include <rdma/rdma_netlink.h> #include <net/netlink.h> #include "core_priv.h" struct addr_req { struct list_head list; struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; struct rdma_dev_addr *addr; void *context; void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context); unsigned long timeout; struct delayed_work work; bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ int status; u32 seq; }; static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); static DEFINE_SPINLOCK(lock); static LIST_HEAD(req_list); static struct workqueue_struct *addr_wq; static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, .len = sizeof(struct rdma_nla_ls_gid), .validation_type = NLA_VALIDATE_MIN, .min = sizeof(struct rdma_nla_ls_gid)}, }; static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) { struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; int ret; if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) return false; ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), nlmsg_len(nlh), ib_nl_addr_policy, NULL); if (ret) return false; return true; } static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) { const struct nlattr *head, *curr; union ib_gid gid; struct addr_req *req; int len, rem; int found = 0; head = (const struct nlattr *)nlmsg_data(nlh); len = nlmsg_len(nlh); nla_for_each_attr(curr, head, len, rem) { if (curr->nla_type == LS_NLA_TYPE_DGID) memcpy(&gid, nla_data(curr), nla_len(curr)); } spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) { if (nlh->nlmsg_seq != req->seq) continue; /* We set the DGID part, the rest was set earlier */ rdma_addr_set_dgid(req->addr, &gid); req->status = 0; found = 1; break; } spin_unlock_bh(&lock); if (!found) pr_info("Couldn't find request waiting for DGID: %pI6\n", &gid); } int ib_nl_handle_ip_res_resp(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { if ((nlh->nlmsg_flags & NLM_F_REQUEST) || !(NETLINK_CB(skb).sk)) return -EPERM; if (ib_nl_is_good_ip_resp(nlh)) ib_nl_process_good_ip_rsep(nlh); return 0; } static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { struct sk_buff *skb = NULL; struct nlmsghdr *nlh; struct rdma_ls_ip_resolve_header *header; void *data; size_t size; int attrtype; int len; if (family == AF_INET) { size = sizeof(struct in_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; } else { size = sizeof(struct in6_addr); attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; } len = nla_total_size(sizeof(size)); len += NLMSG_ALIGN(sizeof(*header)); skb = nlmsg_new(len, GFP_KERNEL); if (!skb) return -ENOMEM; data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); if (!data) { nlmsg_free(skb); return -ENODATA; } /* Construct the family header first */ header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); header->ifindex = dev_addr->bound_dev_if; nla_put(skb, attrtype, size, daddr); /* Repair the nlmsg header length */ nlmsg_end(skb, nlh); rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); /* Make the request retry, so when we get the response from userspace * we will have something. */ return -ENODATA; } int rdma_addr_size(const struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_IB: return sizeof(struct sockaddr_ib); default: return 0; } } EXPORT_SYMBOL(rdma_addr_size); int rdma_addr_size_in6(struct sockaddr_in6 *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_in6); int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_kss); /** * rdma_copy_src_l2_addr - Copy netdevice source addresses * @dev_addr: Destination address pointer where to copy the addresses * @dev: Netdevice whose source addresses to copy * * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. * This includes unicast address, broadcast address, device type and * interface index. */ void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct net_device *dev) { dev_addr->dev_type = dev->type; memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); dev_addr->bound_dev_if = dev->ifindex; } EXPORT_SYMBOL(rdma_copy_src_l2_addr); static struct net_device * rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) { struct net_device *dev = NULL; int ret = -EADDRNOTAVAIL; switch (src_in->sa_family) { case AF_INET: dev = __ip_dev_find(net, ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, false); if (dev) ret = 0; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: for_each_netdev_rcu(net, dev) { if (ipv6_chk_addr(net, &((const struct sockaddr_in6 *)src_in)->sin6_addr, dev, 1)) { ret = 0; break; } } break; #endif } return ret ? ERR_PTR(ret) : dev; } int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { struct net_device *dev; if (dev_addr->bound_dev_if) { dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!dev) return -ENODEV; rdma_copy_src_l2_addr(dev_addr, dev); dev_put(dev); return 0; } rcu_read_lock(); dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); if (!IS_ERR(dev)) rdma_copy_src_l2_addr(dev_addr, dev); rcu_read_unlock(); return PTR_ERR_OR_ZERO(dev); } EXPORT_SYMBOL(rdma_translate_ip); static void set_timeout(struct addr_req *req, unsigned long time) { unsigned long delay; delay = time - jiffies; if ((long)delay < 0) delay = 0; mod_delayed_work(addr_wq, &req->work, delay); } static void queue_req(struct addr_req *req) { spin_lock_bh(&lock); list_add_tail(&req->list, &req_list); set_timeout(req, req->timeout); spin_unlock_bh(&lock); } static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, const void *daddr, u32 seq, u16 family) { if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) return -EADDRNOTAVAIL; return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); } static int dst_fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const void *daddr) { struct neighbour *n; int ret = 0; n = dst_neigh_lookup(dst, daddr); if (!n) return -ENODATA; if (!(n->nud_state & NUD_VALID)) { neigh_event_send(n, NULL); ret = -ENODATA; } else { neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); } neigh_release(n); return ret; } static bool has_gateway(const struct dst_entry *dst, sa_family_t family) { if (family == AF_INET) return dst_rtable(dst)->rt_uses_gateway; return dst_rt6_info(dst)->rt6i_flags & RTF_GATEWAY; } static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, u32 seq) { const struct sockaddr_in *dst_in4 = (const struct sockaddr_in *)dst_in; const struct sockaddr_in6 *dst_in6 = (const struct sockaddr_in6 *)dst_in; const void *daddr = (dst_in->sa_family == AF_INET) ? (const void *)&dst_in4->sin_addr.s_addr : (const void *)&dst_in6->sin6_addr; sa_family_t family = dst_in->sa_family; might_sleep(); /* If we have a gateway in IB mode then it must be an IB network */ if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) return ib_nl_fetch_ha(dev_addr, daddr, seq, family); else return dst_fetch_ha(dst, dev_addr, daddr); } static int addr4_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct rtable **prt) { struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; const struct sockaddr_in *dst_in = (const struct sockaddr_in *)dst_sock; __be32 src_ip = src_in->sin_addr.s_addr; __be32 dst_ip = dst_in->sin_addr.s_addr; struct rtable *rt; struct flowi4 fl4; int ret; memset(&fl4, 0, sizeof(fl4)); fl4.daddr = dst_ip; fl4.saddr = src_ip; fl4.flowi4_oif = addr->bound_dev_if; rt = ip_route_output_key(addr->net, &fl4); ret = PTR_ERR_OR_ZERO(rt); if (ret) return ret; src_in->sin_addr.s_addr = fl4.saddr; addr->hoplimit = ip4_dst_hoplimit(&rt->dst); *prt = rt; return 0; } #if IS_ENABLED(CONFIG_IPV6) static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; const struct sockaddr_in6 *dst_in = (const struct sockaddr_in6 *)dst_sock; struct flowi6 fl6; struct dst_entry *dst; memset(&fl6, 0, sizeof fl6); fl6.daddr = dst_in->sin6_addr; fl6.saddr = src_in->sin6_addr; fl6.flowi6_oif = addr->bound_dev_if; dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); if (IS_ERR(dst)) return PTR_ERR(dst); if (ipv6_addr_any(&src_in->sin6_addr)) src_in->sin6_addr = fl6.saddr; addr->hoplimit = ip6_dst_hoplimit(dst); *pdst = dst; return 0; } #else static int addr6_resolve(struct sockaddr *src_sock, const struct sockaddr *dst_sock, struct rdma_dev_addr *addr, struct dst_entry **pdst) { return -EADDRNOTAVAIL; } #endif static int addr_resolve_neigh(const struct dst_entry *dst, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, unsigned int ndev_flags, u32 seq) { int ret = 0; if (ndev_flags & IFF_LOOPBACK) { memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); } else { if (!(ndev_flags & IFF_NOARP)) { /* If the device doesn't do ARP internally */ ret = fetch_ha(dst, addr, dst_in, seq); } } return ret; } static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, const struct sockaddr *dst_in, const struct dst_entry *dst, const struct net_device *ndev) { int ret = 0; if (dst->dev->flags & IFF_LOOPBACK) ret = rdma_translate_ip(dst_in, dev_addr); else rdma_copy_src_l2_addr(dev_addr, dst->dev); /* * If there's a gateway and type of device not ARPHRD_INFINIBAND, * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the * network type accordingly. */ if (has_gateway(dst, dst_in->sa_family) && ndev->type != ARPHRD_INFINIBAND) dev_addr->network = dst_in->sa_family == AF_INET ? RDMA_NETWORK_IPV4 : RDMA_NETWORK_IPV6; else dev_addr->network = RDMA_NETWORK_IB; return ret; } static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, unsigned int *ndev_flags, const struct sockaddr *dst_in, const struct dst_entry *dst) { struct net_device *ndev = READ_ONCE(dst->dev); *ndev_flags = ndev->flags; /* A physical device must be the RDMA device to use */ if (ndev->flags & IFF_LOOPBACK) { /* * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or * loopback IP address. So if route is resolved to loopback * interface, translate that to a real ndev based on non * loopback IP address. */ ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); if (IS_ERR(ndev)) return -ENODEV; } return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); } static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) { struct net_device *ndev; ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); if (IS_ERR(ndev)) return PTR_ERR(ndev); /* * Since we are holding the rcu, reading net and ifindex * are safe without any additional reference; because * change_net_namespace() in net/core/dev.c does rcu sync * after it changes the state to IFF_DOWN and before * updating netdev fields {net, ifindex}. */ addr->net = dev_net(ndev); addr->bound_dev_if = ndev->ifindex; return 0; } static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) { addr->net = &init_net; addr->bound_dev_if = 0; } static int addr_resolve(struct sockaddr *src_in, const struct sockaddr *dst_in, struct rdma_dev_addr *addr, bool resolve_neigh, bool resolve_by_gid_attr, u32 seq) { struct dst_entry *dst = NULL; unsigned int ndev_flags = 0; struct rtable *rt = NULL; int ret; if (!addr->net) { pr_warn_ratelimited("%s: missing namespace\n", __func__); return -EINVAL; } rcu_read_lock(); if (resolve_by_gid_attr) { if (!addr->sgid_attr) { rcu_read_unlock(); pr_warn_ratelimited("%s: missing gid_attr\n", __func__); return -EINVAL; } /* * If the request is for a specific gid attribute of the * rdma_dev_addr, derive net from the netdevice of the * GID attribute. */ ret = set_addr_netns_by_gid_rcu(addr); if (ret) { rcu_read_unlock(); return ret; } } if (src_in->sa_family == AF_INET) { ret = addr4_resolve(src_in, dst_in, addr, &rt); dst = &rt->dst; } else { ret = addr6_resolve(src_in, dst_in, addr, &dst); } if (ret) { rcu_read_unlock(); goto done; } ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); rcu_read_unlock(); /* * Resolve neighbor destination address if requested and * only if src addr translation didn't fail. */ if (!ret && resolve_neigh) ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); if (src_in->sa_family == AF_INET) ip_rt_put(rt); else dst_release(dst); done: /* * Clear the addr net to go back to its original state, only if it was * derived from GID attribute in this context. */ if (resolve_by_gid_attr) rdma_addr_set_net_defaults(addr); return ret; } static void process_one_req(struct work_struct *_work) { struct addr_req *req; struct sockaddr *src_in, *dst_in; req = container_of(_work, struct addr_req, work.work); if (req->status == -ENODATA) { src_in = (struct sockaddr *)&req->src_addr; dst_in = (struct sockaddr *)&req->dst_addr; req->status = addr_resolve(src_in, dst_in, req->addr, true, req->resolve_by_gid_attr, req->seq); if (req->status && time_after_eq(jiffies, req->timeout)) { req->status = -ETIMEDOUT; } else if (req->status == -ENODATA) { /* requeue the work for retrying again */ spin_lock_bh(&lock); if (!list_empty(&req->list)) set_timeout(req, req->timeout); spin_unlock_bh(&lock); return; } } req->callback(req->status, (struct sockaddr *)&req->src_addr, req->addr, req->context); req->callback = NULL; spin_lock_bh(&lock); /* * Although the work will normally have been canceled by the workqueue, * it can still be requeued as long as it is on the req_list. */ cancel_delayed_work(&req->work); if (!list_empty(&req->list)) { list_del_init(&req->list); kfree(req); } spin_unlock_bh(&lock); } int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr, unsigned long timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), bool resolve_by_gid_attr, void *context) { struct sockaddr *src_in, *dst_in; struct addr_req *req; int ret = 0; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) { ret = -EINVAL; goto err; } memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); req->addr = addr; req->callback = callback; req->context = context; req->resolve_by_gid_attr = resolve_by_gid_attr; INIT_DELAYED_WORK(&req->work, process_one_req); req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); req->status = addr_resolve(src_in, dst_in, addr, true, req->resolve_by_gid_attr, req->seq); switch (req->status) { case 0: req->timeout = jiffies; queue_req(req); break; case -ENODATA: req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; queue_req(req); break; default: ret = req->status; goto err; } return ret; err: kfree(req); return ret; } EXPORT_SYMBOL(rdma_resolve_ip); int roce_resolve_route_from_path(struct sa_path_rec *rec, const struct ib_gid_attr *attr) { union { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid, dgid; struct rdma_dev_addr dev_addr = {}; int ret; might_sleep(); if (rec->roce.route_resolved) return 0; rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) return -EINVAL; if (!attr || !attr->ndev) return -EINVAL; dev_addr.net = &init_net; dev_addr.sgid_attr = attr; ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, &dev_addr, false, true, 0); if (ret) return ret; if ((dev_addr.network == RDMA_NETWORK_IPV4 || dev_addr.network == RDMA_NETWORK_IPV6) && rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) return -EINVAL; rec->roce.route_resolved = true; return 0; } /** * rdma_addr_cancel - Cancel resolve ip request * @addr: Pointer to address structure given previously * during rdma_resolve_ip(). * rdma_addr_cancel() is synchronous function which cancels any pending * request if there is any. */ void rdma_addr_cancel(struct rdma_dev_addr *addr) { struct addr_req *req, *temp_req; struct addr_req *found = NULL; spin_lock_bh(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->addr == addr) { /* * Removing from the list means we take ownership of * the req */ list_del_init(&req->list); found = req; break; } } spin_unlock_bh(&lock); if (!found) return; /* * sync canceling the work after removing it from the req_list * guarentees no work is running and none will be started. */ cancel_delayed_work_sync(&found->work); kfree(found); } EXPORT_SYMBOL(rdma_addr_cancel); struct resolve_cb_context { struct completion comp; int status; }; static void resolve_cb(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context) { ((struct resolve_cb_context *)context)->status = status; complete(&((struct resolve_cb_context *)context)->comp); } int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *dmac, const struct ib_gid_attr *sgid_attr, int *hoplimit) { struct rdma_dev_addr dev_addr; struct resolve_cb_context ctx; union { struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; } sgid_addr, dgid_addr; int ret; rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); memset(&dev_addr, 0, sizeof(dev_addr)); dev_addr.net = &init_net; dev_addr.sgid_attr = sgid_attr; init_completion(&ctx.comp); ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, (struct sockaddr *)&dgid_addr, &dev_addr, 1000, resolve_cb, true, &ctx); if (ret) return ret; wait_for_completion(&ctx.comp); ret = ctx.status; if (ret) return ret; memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); *hoplimit = dev_addr.hoplimit; return 0; } static int netevent_callback(struct notifier_block *self, unsigned long event, void *ctx) { struct addr_req *req; if (event == NETEVENT_NEIGH_UPDATE) { struct neighbour *neigh = ctx; if (neigh->nud_state & NUD_VALID) { spin_lock_bh(&lock); list_for_each_entry(req, &req_list, list) set_timeout(req, jiffies); spin_unlock_bh(&lock); } } return 0; } static struct notifier_block nb = { .notifier_call = netevent_callback }; int addr_init(void) { addr_wq = alloc_ordered_workqueue("ib_addr", 0); if (!addr_wq) return -ENOMEM; register_netevent_notifier(&nb); return 0; } void addr_cleanup(void) { unregister_netevent_notifier(&nb); destroy_workqueue(addr_wq); WARN_ON(!list_empty(&req_list)); } |
| 14542 9 474 14542 9 474 5619 14542 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static __always_inline void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static __always_inline void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } static __always_inline int native_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline unsigned long native_local_irq_save(void) { unsigned long flags = native_save_fl(); native_irq_disable(); return flags; } static __always_inline void native_local_irq_restore(unsigned long flags) { if (!native_irqs_disabled_flags(flags)) native_irq_enable(); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static __always_inline void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static __always_inline void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS pushfq; popq %rax #endif #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } static __always_inline void arch_local_irq_restore(unsigned long flags) { if (!arch_irqs_disabled_flags(flags)) arch_local_irq_enable(); } #endif /* !__ASSEMBLY__ */ #endif |
| 196 196 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 | // SPDX-License-Identifier: GPL-2.0 /* * linux/kernel/seccomp.c * * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> * * Copyright (C) 2012 Google, Inc. * Will Drewry <wad@chromium.org> * * This defines a simple but solid secure-computing facility. * * Mode 1 uses a fixed list of allowed system calls. * Mode 2 allows user-defined system call filters in the form * of Berkeley Packet Filters/Linux Socket Filters. */ #define pr_fmt(fmt) "seccomp: " fmt #include <linux/refcount.h> #include <linux/audit.h> #include <linux/compat.h> #include <linux/coredump.h> #include <linux/kmemleak.h> #include <linux/nospec.h> #include <linux/prctl.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/seccomp.h> #include <linux/slab.h> #include <linux/syscalls.h> #include <linux/sysctl.h> /* Not exposed in headers: strictly internal use only. */ #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1) #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER #include <asm/syscall.h> #endif #ifdef CONFIG_SECCOMP_FILTER #include <linux/file.h> #include <linux/filter.h> #include <linux/pid.h> #include <linux/ptrace.h> #include <linux/capability.h> #include <linux/uaccess.h> #include <linux/anon_inodes.h> #include <linux/lockdep.h> /* * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the * wrong direction flag in the ioctl number. This is the broken one, * which the kernel needs to keep supporting until all userspaces stop * using the wrong command number. */ #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) enum notify_state { SECCOMP_NOTIFY_INIT, SECCOMP_NOTIFY_SENT, SECCOMP_NOTIFY_REPLIED, }; struct seccomp_knotif { /* The struct pid of the task whose filter triggered the notification */ struct task_struct *task; /* The "cookie" for this request; this is unique for this filter. */ u64 id; /* * The seccomp data. This pointer is valid the entire time this * notification is active, since it comes from __seccomp_filter which * eclipses the entire lifecycle here. */ const struct seccomp_data *data; /* * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a * struct seccomp_knotif is created and starts out in INIT. Once the * handler reads the notification off of an FD, it transitions to SENT. * If a signal is received the state transitions back to INIT and * another message is sent. When the userspace handler replies, state * transitions to REPLIED. */ enum notify_state state; /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ int error; long val; u32 flags; /* * Signals when this has changed states, such as the listener * dying, a new seccomp addfd message, or changing to REPLIED */ struct completion ready; struct list_head list; /* outstanding addfd requests */ struct list_head addfd; }; /** * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages * * @file: A reference to the file to install in the other task * @fd: The fd number to install it at. If the fd number is -1, it means the * installing process should allocate the fd as normal. * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC * is allowed. * @ioctl_flags: The flags used for the seccomp_addfd ioctl. * @setfd: whether or not SECCOMP_ADDFD_FLAG_SETFD was set during notify_addfd * @ret: The return value of the installing process. It is set to the fd num * upon success (>= 0). * @completion: Indicates that the installing process has completed fd * installation, or gone away (either due to successful * reply, or signal) * @list: list_head for chaining seccomp_kaddfd together. * */ struct seccomp_kaddfd { struct file *file; int fd; unsigned int flags; __u32 ioctl_flags; union { bool setfd; /* To only be set on reply */ int ret; }; struct completion completion; struct list_head list; }; /** * struct notification - container for seccomp userspace notifications. Since * most seccomp filters will not have notification listeners attached and this * structure is fairly large, we store the notification-specific stuff in a * separate structure. * * @requests: A semaphore that users of this notification can wait on for * changes. Actual reads and writes are still controlled with * filter->notify_lock. * @flags: A set of SECCOMP_USER_NOTIF_FD_* flags. * @next_id: The id of the next request. * @notifications: A list of struct seccomp_knotif elements. */ struct notification { atomic_t requests; u32 flags; u64 next_id; struct list_head notifications; }; #ifdef SECCOMP_ARCH_NATIVE /** * struct action_cache - per-filter cache of seccomp actions per * arch/syscall pair * * @allow_native: A bitmap where each bit represents whether the * filter will always allow the syscall, for the * native architecture. * @allow_compat: A bitmap where each bit represents whether the * filter will always allow the syscall, for the * compat architecture. */ struct action_cache { DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); #ifdef SECCOMP_ARCH_COMPAT DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); #endif }; #else struct action_cache { }; static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, const struct seccomp_data *sd) { return false; } static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) { } #endif /* SECCOMP_ARCH_NATIVE */ /** * struct seccomp_filter - container for seccomp BPF programs * * @refs: Reference count to manage the object lifetime. * A filter's reference count is incremented for each directly * attached task, once for the dependent filter, and if * requested for the user notifier. When @refs reaches zero, * the filter can be freed. * @users: A filter's @users count is incremented for each directly * attached task (filter installation, fork(), thread_sync), * and once for the dependent filter (tracked in filter->prev). * When it reaches zero it indicates that no direct or indirect * users of that filter exist. No new tasks can get associated with * this filter after reaching 0. The @users count is always smaller * or equal to @refs. Hence, reaching 0 for @users does not mean * the filter can be freed. * @cache: cache of arch/syscall mappings to actions * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged * @wait_killable_recv: Put notifying process in killable state once the * notification is received by the userspace listener. * @prev: points to a previously installed, or inherited, filter * @prog: the BPF program to evaluate * @notif: the struct that holds all notification related information * @notify_lock: A lock for all notification-related accesses. * @wqh: A wait queue for poll if a notifier is in use. * * seccomp_filter objects are organized in a tree linked via the @prev * pointer. For any task, it appears to be a singly-linked list starting * with current->seccomp.filter, the most recently attached or inherited filter. * However, multiple filters may share a @prev node, by way of fork(), which * results in a unidirectional tree existing in memory. This is similar to * how namespaces work. * * seccomp_filter objects should never be modified after being attached * to a task_struct (other than @refs). */ struct seccomp_filter { refcount_t refs; refcount_t users; bool log; bool wait_killable_recv; struct action_cache cache; struct seccomp_filter *prev; struct bpf_prog *prog; struct notification *notif; struct mutex notify_lock; wait_queue_head_t wqh; }; /* Limit any path through the tree to 256KB worth of instructions. */ #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) /* * Endianness is explicitly ignored and left for BPF program authors to manage * as per the specific architecture. */ static void populate_seccomp_data(struct seccomp_data *sd) { /* * Instead of using current_pt_reg(), we're already doing the work * to safely fetch "current", so just use "task" everywhere below. */ struct task_struct *task = current; struct pt_regs *regs = task_pt_regs(task); unsigned long args[6]; sd->nr = syscall_get_nr(task, regs); sd->arch = syscall_get_arch(task); syscall_get_arguments(task, regs, args); sd->args[0] = args[0]; sd->args[1] = args[1]; sd->args[2] = args[2]; sd->args[3] = args[3]; sd->args[4] = args[4]; sd->args[5] = args[5]; sd->instruction_pointer = KSTK_EIP(task); } /** * seccomp_check_filter - verify seccomp filter code * @filter: filter to verify * @flen: length of filter * * Takes a previously checked filter (by bpf_check_classic) and * redirects all filter code that loads struct sk_buff data * and related data through seccomp_bpf_load. It also * enforces length and alignment checking of those loads. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) { int pc; for (pc = 0; pc < flen; pc++) { struct sock_filter *ftest = &filter[pc]; u16 code = ftest->code; u32 k = ftest->k; switch (code) { case BPF_LD | BPF_W | BPF_ABS: ftest->code = BPF_LDX | BPF_W | BPF_ABS; /* 32-bit aligned and not out of bounds. */ if (k >= sizeof(struct seccomp_data) || k & 3) return -EINVAL; continue; case BPF_LD | BPF_W | BPF_LEN: ftest->code = BPF_LD | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; case BPF_LDX | BPF_W | BPF_LEN: ftest->code = BPF_LDX | BPF_IMM; ftest->k = sizeof(struct seccomp_data); continue; /* Explicitly include allowed calls. */ case BPF_RET | BPF_K: case BPF_RET | BPF_A: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: case BPF_MISC | BPF_TAX: case BPF_MISC | BPF_TXA: case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: case BPF_JMP | BPF_JA: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: continue; default: return -EINVAL; } } return 0; } #ifdef SECCOMP_ARCH_NATIVE static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, size_t bitmap_size, int syscall_nr) { if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) return false; syscall_nr = array_index_nospec(syscall_nr, bitmap_size); return test_bit(syscall_nr, bitmap); } /** * seccomp_cache_check_allow - lookup seccomp cache * @sfilter: The seccomp filter * @sd: The seccomp data to lookup the cache with * * Returns true if the seccomp_data is cached and allowed. */ static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, const struct seccomp_data *sd) { int syscall_nr = sd->nr; const struct action_cache *cache = &sfilter->cache; #ifndef SECCOMP_ARCH_COMPAT /* A native-only architecture doesn't need to check sd->arch. */ return seccomp_cache_check_allow_bitmap(cache->allow_native, SECCOMP_ARCH_NATIVE_NR, syscall_nr); #else if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) return seccomp_cache_check_allow_bitmap(cache->allow_native, SECCOMP_ARCH_NATIVE_NR, syscall_nr); if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) return seccomp_cache_check_allow_bitmap(cache->allow_compat, SECCOMP_ARCH_COMPAT_NR, syscall_nr); #endif /* SECCOMP_ARCH_COMPAT */ WARN_ON_ONCE(true); return false; } #endif /* SECCOMP_ARCH_NATIVE */ #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) /** * seccomp_run_filters - evaluates all seccomp filters against @sd * @sd: optional seccomp data to be passed to filters * @match: stores struct seccomp_filter that resulted in the return value, * unless filter returned SECCOMP_RET_ALLOW, in which case it will * be unchanged. * * Returns valid seccomp BPF response codes. */ static u32 seccomp_run_filters(const struct seccomp_data *sd, struct seccomp_filter **match) { u32 ret = SECCOMP_RET_ALLOW; /* Make sure cross-thread synced filter points somewhere sane. */ struct seccomp_filter *f = READ_ONCE(current->seccomp.filter); /* Ensure unexpected behavior doesn't result in failing open. */ if (WARN_ON(f == NULL)) return SECCOMP_RET_KILL_PROCESS; if (seccomp_cache_check_allow(f, sd)) return SECCOMP_RET_ALLOW; /* * All filters in the list are evaluated and the lowest BPF return * value always takes priority (ignoring the DATA). */ for (; f; f = f->prev) { u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { ret = cur_ret; *match = f; } } return ret; } #endif /* CONFIG_SECCOMP_FILTER */ static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) { assert_spin_locked(¤t->sighand->siglock); if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) return false; return true; } void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } static inline void seccomp_assign_mode(struct task_struct *task, unsigned long seccomp_mode, unsigned long flags) { assert_spin_locked(&task->sighand->siglock); task->seccomp.mode = seccomp_mode; /* * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and * filter) is set. */ smp_mb__before_atomic(); /* Assume default seccomp processes want spec flaw mitigation. */ if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) arch_seccomp_spec_mitigate(task); set_task_syscall_work(task, SECCOMP); } #ifdef CONFIG_SECCOMP_FILTER /* Returns 1 if the parent is an ancestor of the child. */ static int is_ancestor(struct seccomp_filter *parent, struct seccomp_filter *child) { /* NULL is the root ancestor. */ if (parent == NULL) return 1; for (; child; child = child->prev) if (child == parent) return 1; return 0; } /** * seccomp_can_sync_threads: checks if all threads can be synchronized * * Expects sighand and cred_guard_mutex locks to be held. * * Returns 0 on success, -ve on error, or the pid of a thread which was * either not in the correct seccomp mode or did not have an ancestral * seccomp filter. */ static inline pid_t seccomp_can_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Validate all threads being eligible for synchronization. */ caller = current; for_each_thread(caller, thread) { pid_t failed; /* Skip current, since it is initiating the sync. */ if (thread == caller) continue; /* Skip exited threads. */ if (thread->flags & PF_EXITING) continue; if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || (thread->seccomp.mode == SECCOMP_MODE_FILTER && is_ancestor(thread->seccomp.filter, caller->seccomp.filter))) continue; /* Return the first thread that cannot be synchronized. */ failed = task_pid_vnr(thread); /* If the pid cannot be resolved, then return -ESRCH */ if (WARN_ON(failed == 0)) failed = -ESRCH; return failed; } return 0; } static inline void seccomp_filter_free(struct seccomp_filter *filter) { if (filter) { bpf_prog_destroy(filter->prog); kfree(filter); } } static void __seccomp_filter_orphan(struct seccomp_filter *orig) { while (orig && refcount_dec_and_test(&orig->users)) { if (waitqueue_active(&orig->wqh)) wake_up_poll(&orig->wqh, EPOLLHUP); orig = orig->prev; } } static void __put_seccomp_filter(struct seccomp_filter *orig) { /* Clean up single-reference branches iteratively. */ while (orig && refcount_dec_and_test(&orig->refs)) { struct seccomp_filter *freeme = orig; orig = orig->prev; seccomp_filter_free(freeme); } } static void __seccomp_filter_release(struct seccomp_filter *orig) { /* Notify about any unused filters in the task's former filter tree. */ __seccomp_filter_orphan(orig); /* Finally drop all references to the task's former tree. */ __put_seccomp_filter(orig); } /** * seccomp_filter_release - Detach the task from its filter tree, * drop its reference count, and notify * about unused filters * * @tsk: task the filter should be released from. * * This function should only be called when the task is exiting as * it detaches it from its filter tree. PF_EXITING has to be set * for the task. */ void seccomp_filter_release(struct task_struct *tsk) { struct seccomp_filter *orig; if (WARN_ON((tsk->flags & PF_EXITING) == 0)) return; spin_lock_irq(&tsk->sighand->siglock); orig = tsk->seccomp.filter; /* Detach task from its filter tree. */ tsk->seccomp.filter = NULL; spin_unlock_irq(&tsk->sighand->siglock); __seccomp_filter_release(orig); } /** * seccomp_sync_threads: sets all threads to use current's filter * * @flags: SECCOMP_FILTER_FLAG_* flags to set during sync. * * Expects sighand and cred_guard_mutex locks to be held, and for * seccomp_can_sync_threads() to have returned success already * without dropping the locks. * */ static inline void seccomp_sync_threads(unsigned long flags) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); /* Synchronize all threads. */ caller = current; for_each_thread(caller, thread) { /* Skip current, since it needs no changes. */ if (thread == caller) continue; /* * Skip exited threads. seccomp_filter_release could have * been already called for this task. */ if (thread->flags & PF_EXITING) continue; /* Get a task reference for the new leaf node. */ get_seccomp_filter(caller); /* * Drop the task reference to the shared ancestor since * current's path will hold a reference. (This also * allows a put before the assignment.) */ __seccomp_filter_release(thread->seccomp.filter); /* Make our new filter tree visible. */ smp_store_release(&thread->seccomp.filter, caller->seccomp.filter); atomic_set(&thread->seccomp.filter_count, atomic_read(&caller->seccomp.filter_count)); /* * Don't let an unprivileged task work around * the no_new_privs restriction by creating * a thread that sets it up, enters seccomp, * then dies. */ if (task_no_new_privs(caller)) task_set_no_new_privs(thread); /* * Opt the other thread into seccomp if needed. * As threads are considered to be trust-realm * equivalent (see ptrace_may_access), it is safe to * allow one thread to transition the other. */ if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, flags); } } /** * seccomp_prepare_filter: Prepares a seccomp filter for use. * @fprog: BPF program to install * * Returns filter on success or an ERR_PTR on failure. */ static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) { struct seccomp_filter *sfilter; int ret; const bool save_orig = #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) true; #else false; #endif if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) return ERR_PTR(-EINVAL); BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); /* * Installing a seccomp filter requires that the task has * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. * This avoids scenarios where unprivileged tasks can affect the * behavior of privileged children. */ if (!task_no_new_privs(current) && !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) return ERR_PTR(-EACCES); /* Allocate a new seccomp_filter */ sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); if (!sfilter) return ERR_PTR(-ENOMEM); mutex_init(&sfilter->notify_lock); ret = bpf_prog_create_from_user(&sfilter->prog, fprog, seccomp_check_filter, save_orig); if (ret < 0) { kfree(sfilter); return ERR_PTR(ret); } refcount_set(&sfilter->refs, 1); refcount_set(&sfilter->users, 1); init_waitqueue_head(&sfilter->wqh); return sfilter; } /** * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog * @user_filter: pointer to the user data containing a sock_fprog. * * Returns 0 on success and non-zero otherwise. */ static struct seccomp_filter * seccomp_prepare_user_filter(const char __user *user_filter) { struct sock_fprog fprog; struct seccomp_filter *filter = ERR_PTR(-EFAULT); #ifdef CONFIG_COMPAT if (in_compat_syscall()) { struct compat_sock_fprog fprog32; if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) goto out; fprog.len = fprog32.len; fprog.filter = compat_ptr(fprog32.filter); } else /* falls through to the if below. */ #endif if (copy_from_user(&fprog, user_filter, sizeof(fprog))) goto out; filter = seccomp_prepare_filter(&fprog); out: return filter; } #ifdef SECCOMP_ARCH_NATIVE /** * seccomp_is_const_allow - check if filter is constant allow with given data * @fprog: The BPF programs * @sd: The seccomp data to check against, only syscall number and arch * number are considered constant. */ static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, struct seccomp_data *sd) { unsigned int reg_value = 0; unsigned int pc; bool op_res; if (WARN_ON_ONCE(!fprog)) return false; for (pc = 0; pc < fprog->len; pc++) { struct sock_filter *insn = &fprog->filter[pc]; u16 code = insn->code; u32 k = insn->k; switch (code) { case BPF_LD | BPF_W | BPF_ABS: switch (k) { case offsetof(struct seccomp_data, nr): reg_value = sd->nr; break; case offsetof(struct seccomp_data, arch): reg_value = sd->arch; break; default: /* can't optimize (non-constant value load) */ return false; } break; case BPF_RET | BPF_K: /* reached return with constant values only, check allow */ return k == SECCOMP_RET_ALLOW; case BPF_JMP | BPF_JA: pc += insn->k; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: switch (BPF_OP(code)) { case BPF_JEQ: op_res = reg_value == k; break; case BPF_JGE: op_res = reg_value >= k; break; case BPF_JGT: op_res = reg_value > k; break; case BPF_JSET: op_res = !!(reg_value & k); break; default: /* can't optimize (unknown jump) */ return false; } pc += op_res ? insn->jt : insn->jf; break; case BPF_ALU | BPF_AND | BPF_K: reg_value &= k; break; default: /* can't optimize (unknown insn) */ return false; } } /* ran off the end of the filter?! */ WARN_ON(1); return false; } static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, void *bitmap, const void *bitmap_prev, size_t bitmap_size, int arch) { struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; struct seccomp_data sd; int nr; if (bitmap_prev) { /* The new filter must be as restrictive as the last. */ bitmap_copy(bitmap, bitmap_prev, bitmap_size); } else { /* Before any filters, all syscalls are always allowed. */ bitmap_fill(bitmap, bitmap_size); } for (nr = 0; nr < bitmap_size; nr++) { /* No bitmap change: not a cacheable action. */ if (!test_bit(nr, bitmap)) continue; sd.nr = nr; sd.arch = arch; /* No bitmap change: continue to always allow. */ if (seccomp_is_const_allow(fprog, &sd)) continue; /* * Not a cacheable action: always run filters. * atomic clear_bit() not needed, filter not visible yet. */ __clear_bit(nr, bitmap); } } /** * seccomp_cache_prepare - emulate the filter to find cacheable syscalls * @sfilter: The seccomp filter * * Returns 0 if successful or -errno if error occurred. */ static void seccomp_cache_prepare(struct seccomp_filter *sfilter) { struct action_cache *cache = &sfilter->cache; const struct action_cache *cache_prev = sfilter->prev ? &sfilter->prev->cache : NULL; seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, cache_prev ? cache_prev->allow_native : NULL, SECCOMP_ARCH_NATIVE_NR, SECCOMP_ARCH_NATIVE); #ifdef SECCOMP_ARCH_COMPAT seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, cache_prev ? cache_prev->allow_compat : NULL, SECCOMP_ARCH_COMPAT_NR, SECCOMP_ARCH_COMPAT); #endif /* SECCOMP_ARCH_COMPAT */ } #endif /* SECCOMP_ARCH_NATIVE */ /** * seccomp_attach_filter: validate and attach filter * @flags: flags to change filter behavior * @filter: seccomp filter to add to the current process * * Caller must be holding current->sighand->siglock lock. * * Returns 0 on success, -ve on error, or * - in TSYNC mode: the pid of a thread which was either not in the correct * seccomp mode or did not have an ancestral seccomp filter * - in NEW_LISTENER mode: the fd of the new listener */ static long seccomp_attach_filter(unsigned int flags, struct seccomp_filter *filter) { unsigned long total_insns; struct seccomp_filter *walker; assert_spin_locked(¤t->sighand->siglock); /* Validate resulting filter length. */ total_insns = filter->prog->len; for (walker = current->seccomp.filter; walker; walker = walker->prev) total_insns += walker->prog->len + 4; /* 4 instr penalty */ if (total_insns > MAX_INSNS_PER_PATH) return -ENOMEM; /* If thread sync has been requested, check that it is possible. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) { int ret; ret = seccomp_can_sync_threads(); if (ret) { if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) return -ESRCH; else return ret; } } /* Set log flag, if present. */ if (flags & SECCOMP_FILTER_FLAG_LOG) filter->log = true; /* Set wait killable flag, if present. */ if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) filter->wait_killable_recv = true; /* * If there is an existing filter, make it the prev and don't drop its * task reference. */ filter->prev = current->seccomp.filter; seccomp_cache_prepare(filter); current->seccomp.filter = filter; atomic_inc(¤t->seccomp.filter_count); /* Now that the new filter is in place, synchronize to all threads. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC) seccomp_sync_threads(flags); return 0; } static void __get_seccomp_filter(struct seccomp_filter *filter) { refcount_inc(&filter->refs); } /* get_seccomp_filter - increments the reference count of the filter on @tsk */ void get_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; if (!orig) return; __get_seccomp_filter(orig); refcount_inc(&orig->users); } #endif /* CONFIG_SECCOMP_FILTER */ /* For use with seccomp_actions_logged */ #define SECCOMP_LOG_KILL_PROCESS (1 << 0) #define SECCOMP_LOG_KILL_THREAD (1 << 1) #define SECCOMP_LOG_TRAP (1 << 2) #define SECCOMP_LOG_ERRNO (1 << 3) #define SECCOMP_LOG_TRACE (1 << 4) #define SECCOMP_LOG_LOG (1 << 5) #define SECCOMP_LOG_ALLOW (1 << 6) #define SECCOMP_LOG_USER_NOTIF (1 << 7) static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | SECCOMP_LOG_KILL_THREAD | SECCOMP_LOG_TRAP | SECCOMP_LOG_ERRNO | SECCOMP_LOG_USER_NOTIF | SECCOMP_LOG_TRACE | SECCOMP_LOG_LOG; static inline void seccomp_log(unsigned long syscall, long signr, u32 action, bool requested) { bool log = false; switch (action) { case SECCOMP_RET_ALLOW: break; case SECCOMP_RET_TRAP: log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; break; case SECCOMP_RET_ERRNO: log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; break; case SECCOMP_RET_TRACE: log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; break; case SECCOMP_RET_USER_NOTIF: log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; break; case SECCOMP_RET_LOG: log = seccomp_actions_logged & SECCOMP_LOG_LOG; break; case SECCOMP_RET_KILL_THREAD: log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; break; case SECCOMP_RET_KILL_PROCESS: default: log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; } /* * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the * FILTER_FLAG_LOG bit was set. The admin has the ability to silence * any action from being logged by removing the action name from the * seccomp_actions_logged sysctl. */ if (!log) return; audit_seccomp(syscall, signr, action); } /* * Secure computing mode 1 allows only read/write/exit/sigreturn. * To be fully secure this must be combined with rlimit * to limit the stack allocations too. */ static const int mode1_syscalls[] = { __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, -1, /* negative terminated */ }; static void __secure_computing_strict(int this_syscall) { const int *allowed_syscalls = mode1_syscalls; #ifdef CONFIG_COMPAT if (in_compat_syscall()) allowed_syscalls = get_compat_mode1_syscalls(); #endif do { if (*allowed_syscalls == this_syscall) return; } while (*++allowed_syscalls != -1); #ifdef SECCOMP_DEBUG dump_stack(); #endif current->seccomp.mode = SECCOMP_MODE_DEAD; seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); do_exit(SIGKILL); } #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER void secure_computing_strict(int this_syscall) { int mode = current->seccomp.mode; if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return; if (mode == SECCOMP_MODE_DISABLED) return; else if (mode == SECCOMP_MODE_STRICT) __secure_computing_strict(this_syscall); else BUG(); } #else #ifdef CONFIG_SECCOMP_FILTER static u64 seccomp_next_notify_id(struct seccomp_filter *filter) { /* * Note: overflow is ok here, the id just needs to be unique per * filter. */ lockdep_assert_held(&filter->notify_lock); return filter->notif->next_id++; } static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) { int fd; /* * Remove the notification, and reset the list pointers, indicating * that it has been handled. */ list_del_init(&addfd->list); if (!addfd->setfd) fd = receive_fd(addfd->file, NULL, addfd->flags); else fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); addfd->ret = fd; if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { /* If we fail reset and return an error to the notifier */ if (fd < 0) { n->state = SECCOMP_NOTIFY_SENT; } else { /* Return the FD we just added */ n->flags = 0; n->error = 0; n->val = fd; } } /* * Mark the notification as completed. From this point, addfd mem * might be invalidated and we can't safely read it anymore. */ complete(&addfd->completion); } static bool should_sleep_killable(struct seccomp_filter *match, struct seccomp_knotif *n) { return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT; } static int seccomp_do_user_notification(int this_syscall, struct seccomp_filter *match, const struct seccomp_data *sd) { int err; u32 flags = 0; long ret = 0; struct seccomp_knotif n = {}; struct seccomp_kaddfd *addfd, *tmp; mutex_lock(&match->notify_lock); err = -ENOSYS; if (!match->notif) goto out; n.task = current; n.state = SECCOMP_NOTIFY_INIT; n.data = sd; n.id = seccomp_next_notify_id(match); init_completion(&n.ready); list_add_tail(&n.list, &match->notif->notifications); INIT_LIST_HEAD(&n.addfd); atomic_inc(&match->notif->requests); if (match->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) wake_up_poll_on_current_cpu(&match->wqh, EPOLLIN | EPOLLRDNORM); else wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); /* * This is where we wait for a reply from userspace. */ do { bool wait_killable = should_sleep_killable(match, &n); mutex_unlock(&match->notify_lock); if (wait_killable) err = wait_for_completion_killable(&n.ready); else err = wait_for_completion_interruptible(&n.ready); mutex_lock(&match->notify_lock); if (err != 0) { /* * Check to see if the notifcation got picked up and * whether we should switch to wait killable. */ if (!wait_killable && should_sleep_killable(match, &n)) continue; goto interrupted; } addfd = list_first_entry_or_null(&n.addfd, struct seccomp_kaddfd, list); /* Check if we were woken up by a addfd message */ if (addfd) seccomp_handle_addfd(addfd, &n); } while (n.state != SECCOMP_NOTIFY_REPLIED); ret = n.val; err = n.error; flags = n.flags; interrupted: /* If there were any pending addfd calls, clear them out */ list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { /* The process went away before we got a chance to handle it */ addfd->ret = -ESRCH; list_del_init(&addfd->list); complete(&addfd->completion); } /* * Note that it's possible the listener died in between the time when * we were notified of a response (or a signal) and when we were able to * re-acquire the lock, so only delete from the list if the * notification actually exists. * * Also note that this test is only valid because there's no way to * *reattach* to a notifier right now. If one is added, we'll need to * keep track of the notif itself and make sure they match here. */ if (match->notif) list_del(&n.list); out: mutex_unlock(&match->notify_lock); /* Userspace requests to continue the syscall. */ if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) return 0; syscall_set_return_value(current, current_pt_regs(), err, ret); return -1; } static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, const bool recheck_after_trace) { u32 filter_ret, action; struct seccomp_filter *match = NULL; int data; struct seccomp_data sd_local; /* * Make sure that any changes to mode from another thread have * been seen after SYSCALL_WORK_SECCOMP was seen. */ smp_rmb(); if (!sd) { populate_seccomp_data(&sd_local); sd = &sd_local; } filter_ret = seccomp_run_filters(sd, &match); data = filter_ret & SECCOMP_RET_DATA; action = filter_ret & SECCOMP_RET_ACTION_FULL; switch (action) { case SECCOMP_RET_ERRNO: /* Set low-order bits as an errno, capped at MAX_ERRNO. */ if (data > MAX_ERRNO) data = MAX_ERRNO; syscall_set_return_value(current, current_pt_regs(), -data, 0); goto skip; case SECCOMP_RET_TRAP: /* Show the handler the original registers. */ syscall_rollback(current, current_pt_regs()); /* Let the filter pass back 16 bits of data. */ force_sig_seccomp(this_syscall, data, false); goto skip; case SECCOMP_RET_TRACE: /* We've been put in this state by the ptracer already. */ if (recheck_after_trace) return 0; /* ENOSYS these calls if there is no tracer attached. */ if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { syscall_set_return_value(current, current_pt_regs(), -ENOSYS, 0); goto skip; } /* Allow the BPF to provide the event message */ ptrace_event(PTRACE_EVENT_SECCOMP, data); /* * The delivery of a fatal signal during event * notification may silently skip tracer notification, * which could leave us with a potentially unmodified * syscall that the tracer would have liked to have * changed. Since the process is about to die, we just * force the syscall to be skipped and let the signal * kill the process and correctly handle any tracer exit * notifications. */ if (fatal_signal_pending(current)) goto skip; /* Check if the tracer forced the syscall to be skipped. */ this_syscall = syscall_get_nr(current, current_pt_regs()); if (this_syscall < 0) goto skip; /* * Recheck the syscall, since it may have changed. This * intentionally uses a NULL struct seccomp_data to force * a reload of all registers. This does not goto skip since * a skip would have already been reported. */ if (__seccomp_filter(this_syscall, NULL, true)) return -1; return 0; case SECCOMP_RET_USER_NOTIF: if (seccomp_do_user_notification(this_syscall, match, sd)) goto skip; return 0; case SECCOMP_RET_LOG: seccomp_log(this_syscall, 0, action, true); return 0; case SECCOMP_RET_ALLOW: /* * Note that the "match" filter will always be NULL for * this action since SECCOMP_RET_ALLOW is the starting * state in seccomp_run_filters(). */ return 0; case SECCOMP_RET_KILL_THREAD: case SECCOMP_RET_KILL_PROCESS: default: current->seccomp.mode = SECCOMP_MODE_DEAD; seccomp_log(this_syscall, SIGSYS, action, true); /* Dump core only if this is the last remaining thread. */ if (action != SECCOMP_RET_KILL_THREAD || (atomic_read(¤t->signal->live) == 1)) { /* Show the original registers in the dump. */ syscall_rollback(current, current_pt_regs()); /* Trigger a coredump with SIGSYS */ force_sig_seccomp(this_syscall, data, true); } else { do_exit(SIGSYS); } return -1; /* skip the syscall go directly to signal handling */ } unreachable(); skip: seccomp_log(this_syscall, 0, action, match ? match->log : false); return -1; } #else static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, const bool recheck_after_trace) { BUG(); return -1; } #endif int __secure_computing(const struct seccomp_data *sd) { int mode = current->seccomp.mode; int this_syscall; if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) return 0; this_syscall = sd ? sd->nr : syscall_get_nr(current, current_pt_regs()); switch (mode) { case SECCOMP_MODE_STRICT: __secure_computing_strict(this_syscall); /* may call do_exit */ return 0; case SECCOMP_MODE_FILTER: return __seccomp_filter(this_syscall, sd, false); /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */ case SECCOMP_MODE_DEAD: WARN_ON_ONCE(1); do_exit(SIGKILL); return -1; default: BUG(); } } #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ long prctl_get_seccomp(void) { return current->seccomp.mode; } /** * seccomp_set_mode_strict: internal function for setting strict seccomp * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_strict(void) { const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; long ret = -EINVAL; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; #ifdef TIF_NOTSC disable_TSC(); #endif seccomp_assign_mode(current, seccomp_mode, 0); ret = 0; out: spin_unlock_irq(¤t->sighand->siglock); return ret; } #ifdef CONFIG_SECCOMP_FILTER static void seccomp_notify_free(struct seccomp_filter *filter) { kfree(filter->notif); filter->notif = NULL; } static void seccomp_notify_detach(struct seccomp_filter *filter) { struct seccomp_knotif *knotif; if (!filter) return; mutex_lock(&filter->notify_lock); /* * If this file is being closed because e.g. the task who owned it * died, let's wake everyone up who was waiting on us. */ list_for_each_entry(knotif, &filter->notif->notifications, list) { if (knotif->state == SECCOMP_NOTIFY_REPLIED) continue; knotif->state = SECCOMP_NOTIFY_REPLIED; knotif->error = -ENOSYS; knotif->val = 0; /* * We do not need to wake up any pending addfd messages, as * the notifier will do that for us, as this just looks * like a standard reply. */ complete(&knotif->ready); } seccomp_notify_free(filter); mutex_unlock(&filter->notify_lock); } static int seccomp_notify_release(struct inode *inode, struct file *file) { struct seccomp_filter *filter = file->private_data; seccomp_notify_detach(filter); __put_seccomp_filter(filter); return 0; } /* must be called with notif_lock held */ static inline struct seccomp_knotif * find_notification(struct seccomp_filter *filter, u64 id) { struct seccomp_knotif *cur; lockdep_assert_held(&filter->notify_lock); list_for_each_entry(cur, &filter->notif->notifications, list) { if (cur->id == id) return cur; } return NULL; } static int recv_wake_function(wait_queue_entry_t *wait, unsigned int mode, int sync, void *key) { /* Avoid a wakeup if event not interesting for us. */ if (key && !(key_to_poll(key) & (EPOLLIN | EPOLLERR | EPOLLHUP))) return 0; return autoremove_wake_function(wait, mode, sync, key); } static int recv_wait_event(struct seccomp_filter *filter) { DEFINE_WAIT_FUNC(wait, recv_wake_function); int ret; if (refcount_read(&filter->users) == 0) return 0; if (atomic_dec_if_positive(&filter->notif->requests) >= 0) return 0; for (;;) { ret = prepare_to_wait_event(&filter->wqh, &wait, TASK_INTERRUPTIBLE); if (atomic_dec_if_positive(&filter->notif->requests) >= 0) break; if (refcount_read(&filter->users) == 0) break; if (ret) return ret; schedule(); } finish_wait(&filter->wqh, &wait); return 0; } static long seccomp_notify_recv(struct seccomp_filter *filter, void __user *buf) { struct seccomp_knotif *knotif = NULL, *cur; struct seccomp_notif unotif; ssize_t ret; /* Verify that we're not given garbage to keep struct extensible. */ ret = check_zeroed_user(buf, sizeof(unotif)); if (ret < 0) return ret; if (!ret) return -EINVAL; memset(&unotif, 0, sizeof(unotif)); ret = recv_wait_event(filter); if (ret < 0) return ret; mutex_lock(&filter->notify_lock); list_for_each_entry(cur, &filter->notif->notifications, list) { if (cur->state == SECCOMP_NOTIFY_INIT) { knotif = cur; break; } } /* * If we didn't find a notification, it could be that the task was * interrupted by a fatal signal between the time we were woken and * when we were able to acquire the rw lock. */ if (!knotif) { ret = -ENOENT; goto out; } unotif.id = knotif->id; unotif.pid = task_pid_vnr(knotif->task); unotif.data = *(knotif->data); knotif->state = SECCOMP_NOTIFY_SENT; wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); ret = 0; out: mutex_unlock(&filter->notify_lock); if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { ret = -EFAULT; /* * Userspace screwed up. To make sure that we keep this * notification alive, let's reset it back to INIT. It * may have died when we released the lock, so we need to make * sure it's still around. */ mutex_lock(&filter->notify_lock); knotif = find_notification(filter, unotif.id); if (knotif) { /* Reset the process to make sure it's not stuck */ if (should_sleep_killable(filter, knotif)) complete(&knotif->ready); knotif->state = SECCOMP_NOTIFY_INIT; atomic_inc(&filter->notif->requests); wake_up_poll(&filter->wqh, EPOLLIN | EPOLLRDNORM); } mutex_unlock(&filter->notify_lock); } return ret; } static long seccomp_notify_send(struct seccomp_filter *filter, void __user *buf) { struct seccomp_notif_resp resp = {}; struct seccomp_knotif *knotif; long ret; if (copy_from_user(&resp, buf, sizeof(resp))) return -EFAULT; if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) return -EINVAL; if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && (resp.error || resp.val)) return -EINVAL; ret = mutex_lock_interruptible(&filter->notify_lock); if (ret < 0) return ret; knotif = find_notification(filter, resp.id); if (!knotif) { ret = -ENOENT; goto out; } /* Allow exactly one reply. */ if (knotif->state != SECCOMP_NOTIFY_SENT) { ret = -EINPROGRESS; goto out; } ret = 0; knotif->state = SECCOMP_NOTIFY_REPLIED; knotif->error = resp.error; knotif->val = resp.val; knotif->flags = resp.flags; if (filter->notif->flags & SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) complete_on_current_cpu(&knotif->ready); else complete(&knotif->ready); out: mutex_unlock(&filter->notify_lock); return ret; } static long seccomp_notify_id_valid(struct seccomp_filter *filter, void __user *buf) { struct seccomp_knotif *knotif; u64 id; long ret; if (copy_from_user(&id, buf, sizeof(id))) return -EFAULT; ret = mutex_lock_interruptible(&filter->notify_lock); if (ret < 0) return ret; knotif = find_notification(filter, id); if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) ret = 0; else ret = -ENOENT; mutex_unlock(&filter->notify_lock); return ret; } static long seccomp_notify_set_flags(struct seccomp_filter *filter, unsigned long flags) { long ret; if (flags & ~SECCOMP_USER_NOTIF_FD_SYNC_WAKE_UP) return -EINVAL; ret = mutex_lock_interruptible(&filter->notify_lock); if (ret < 0) return ret; filter->notif->flags = flags; mutex_unlock(&filter->notify_lock); return 0; } static long seccomp_notify_addfd(struct seccomp_filter *filter, struct seccomp_notif_addfd __user *uaddfd, unsigned int size) { struct seccomp_notif_addfd addfd; struct seccomp_knotif *knotif; struct seccomp_kaddfd kaddfd; int ret; BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) return -EINVAL; ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); if (ret) return ret; if (addfd.newfd_flags & ~O_CLOEXEC) return -EINVAL; if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) return -EINVAL; if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) return -EINVAL; kaddfd.file = fget(addfd.srcfd); if (!kaddfd.file) return -EBADF; kaddfd.ioctl_flags = addfd.flags; kaddfd.flags = addfd.newfd_flags; kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; kaddfd.fd = addfd.newfd; init_completion(&kaddfd.completion); ret = mutex_lock_interruptible(&filter->notify_lock); if (ret < 0) goto out; knotif = find_notification(filter, addfd.id); if (!knotif) { ret = -ENOENT; goto out_unlock; } /* * We do not want to allow for FD injection to occur before the * notification has been picked up by a userspace handler, or after * the notification has been replied to. */ if (knotif->state != SECCOMP_NOTIFY_SENT) { ret = -EINPROGRESS; goto out_unlock; } if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { /* * Disallow queuing an atomic addfd + send reply while there are * some addfd requests still to process. * * There is no clear reason to support it and allows us to keep * the loop on the other side straight-forward. */ if (!list_empty(&knotif->addfd)) { ret = -EBUSY; goto out_unlock; } /* Allow exactly only one reply */ knotif->state = SECCOMP_NOTIFY_REPLIED; } list_add(&kaddfd.list, &knotif->addfd); complete(&knotif->ready); mutex_unlock(&filter->notify_lock); /* Now we wait for it to be processed or be interrupted */ ret = wait_for_completion_interruptible(&kaddfd.completion); if (ret == 0) { /* * We had a successful completion. The other side has already * removed us from the addfd queue, and * wait_for_completion_interruptible has a memory barrier upon * success that lets us read this value directly without * locking. */ ret = kaddfd.ret; goto out; } mutex_lock(&filter->notify_lock); /* * Even though we were woken up by a signal and not a successful * completion, a completion may have happened in the mean time. * * We need to check again if the addfd request has been handled, * and if not, we will remove it from the queue. */ if (list_empty(&kaddfd.list)) ret = kaddfd.ret; else list_del(&kaddfd.list); out_unlock: mutex_unlock(&filter->notify_lock); out: fput(kaddfd.file); return ret; } static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct seccomp_filter *filter = file->private_data; void __user *buf = (void __user *)arg; /* Fixed-size ioctls */ switch (cmd) { case SECCOMP_IOCTL_NOTIF_RECV: return seccomp_notify_recv(filter, buf); case SECCOMP_IOCTL_NOTIF_SEND: return seccomp_notify_send(filter, buf); case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: case SECCOMP_IOCTL_NOTIF_ID_VALID: return seccomp_notify_id_valid(filter, buf); case SECCOMP_IOCTL_NOTIF_SET_FLAGS: return seccomp_notify_set_flags(filter, arg); } /* Extensible Argument ioctls */ #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) switch (EA_IOCTL(cmd)) { case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); default: return -EINVAL; } } static __poll_t seccomp_notify_poll(struct file *file, struct poll_table_struct *poll_tab) { struct seccomp_filter *filter = file->private_data; __poll_t ret = 0; struct seccomp_knotif *cur; poll_wait(file, &filter->wqh, poll_tab); if (mutex_lock_interruptible(&filter->notify_lock) < 0) return EPOLLERR; list_for_each_entry(cur, &filter->notif->notifications, list) { if (cur->state == SECCOMP_NOTIFY_INIT) ret |= EPOLLIN | EPOLLRDNORM; if (cur->state == SECCOMP_NOTIFY_SENT) ret |= EPOLLOUT | EPOLLWRNORM; if ((ret & EPOLLIN) && (ret & EPOLLOUT)) break; } mutex_unlock(&filter->notify_lock); if (refcount_read(&filter->users) == 0) ret |= EPOLLHUP; return ret; } static const struct file_operations seccomp_notify_ops = { .poll = seccomp_notify_poll, .release = seccomp_notify_release, .unlocked_ioctl = seccomp_notify_ioctl, .compat_ioctl = seccomp_notify_ioctl, }; static struct file *init_listener(struct seccomp_filter *filter) { struct file *ret; ret = ERR_PTR(-ENOMEM); filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); if (!filter->notif) goto out; filter->notif->next_id = get_random_u64(); INIT_LIST_HEAD(&filter->notif->notifications); ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, filter, O_RDWR); if (IS_ERR(ret)) goto out_notif; /* The file has a reference to it now */ __get_seccomp_filter(filter); out_notif: if (IS_ERR(ret)) seccomp_notify_free(filter); out: return ret; } /* * Does @new_child have a listener while an ancestor also has a listener? * If so, we'll want to reject this filter. * This only has to be tested for the current process, even in the TSYNC case, * because TSYNC installs @child with the same parent on all threads. * Note that @new_child is not hooked up to its parent at this point yet, so * we use current->seccomp.filter. */ static bool has_duplicate_listener(struct seccomp_filter *new_child) { struct seccomp_filter *cur; /* must be protected against concurrent TSYNC */ lockdep_assert_held(¤t->sighand->siglock); if (!new_child->notif) return false; for (cur = current->seccomp.filter; cur; cur = cur->prev) { if (cur->notif) return true; } return false; } /** * seccomp_set_mode_filter: internal function for setting seccomp filter * @flags: flags to change filter behavior * @filter: struct sock_fprog containing filter * * This function may be called repeatedly to install additional filters. * Every filter successfully installed will be evaluated (in reverse order) * for each system call the task makes. * * Once current->seccomp.mode is non-zero, it may not be changed. * * Returns 0 on success or -EINVAL on failure. */ static long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; struct seccomp_filter *prepared = NULL; long ret = -EINVAL; int listener = -1; struct file *listener_f = NULL; /* Validate flags. */ if (flags & ~SECCOMP_FILTER_FLAG_MASK) return -EINVAL; /* * In the successful case, NEW_LISTENER returns the new listener fd. * But in the failure case, TSYNC returns the thread that died. If you * combine these two flags, there's no way to tell whether something * succeeded or failed. So, let's disallow this combination if the user * has not explicitly requested no errors from TSYNC. */ if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) return -EINVAL; /* * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag. */ if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) && ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0)) return -EINVAL; /* Prepare the new filter before holding any locks. */ prepared = seccomp_prepare_user_filter(filter); if (IS_ERR(prepared)) return PTR_ERR(prepared); if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { listener = get_unused_fd_flags(O_CLOEXEC); if (listener < 0) { ret = listener; goto out_free; } listener_f = init_listener(prepared); if (IS_ERR(listener_f)) { put_unused_fd(listener); ret = PTR_ERR(listener_f); goto out_free; } } /* * Make sure we cannot change seccomp or nnp state via TSYNC * while another thread is in the middle of calling exec. */ if (flags & SECCOMP_FILTER_FLAG_TSYNC && mutex_lock_killable(¤t->signal->cred_guard_mutex)) goto out_put_fd; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; if (has_duplicate_listener(prepared)) { ret = -EBUSY; goto out; } ret = seccomp_attach_filter(flags, prepared); if (ret) goto out; /* Do not free the successfully attached filter. */ prepared = NULL; seccomp_assign_mode(current, seccomp_mode, flags); out: spin_unlock_irq(¤t->sighand->siglock); if (flags & SECCOMP_FILTER_FLAG_TSYNC) mutex_unlock(¤t->signal->cred_guard_mutex); out_put_fd: if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { if (ret) { listener_f->private_data = NULL; fput(listener_f); put_unused_fd(listener); seccomp_notify_detach(prepared); } else { fd_install(listener, listener_f); ret = listener; } } out_free: seccomp_filter_free(prepared); return ret; } #else static inline long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { return -EINVAL; } #endif static long seccomp_get_action_avail(const char __user *uaction) { u32 action; if (copy_from_user(&action, uaction, sizeof(action))) return -EFAULT; switch (action) { case SECCOMP_RET_KILL_PROCESS: case SECCOMP_RET_KILL_THREAD: case SECCOMP_RET_TRAP: case SECCOMP_RET_ERRNO: case SECCOMP_RET_USER_NOTIF: case SECCOMP_RET_TRACE: case SECCOMP_RET_LOG: case SECCOMP_RET_ALLOW: break; default: return -EOPNOTSUPP; } return 0; } static long seccomp_get_notif_sizes(void __user *usizes) { struct seccomp_notif_sizes sizes = { .seccomp_notif = sizeof(struct seccomp_notif), .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), .seccomp_data = sizeof(struct seccomp_data), }; if (copy_to_user(usizes, &sizes, sizeof(sizes))) return -EFAULT; return 0; } /* Common entry point for both prctl and syscall. */ static long do_seccomp(unsigned int op, unsigned int flags, void __user *uargs) { switch (op) { case SECCOMP_SET_MODE_STRICT: if (flags != 0 || uargs != NULL) return -EINVAL; return seccomp_set_mode_strict(); case SECCOMP_SET_MODE_FILTER: return seccomp_set_mode_filter(flags, uargs); case SECCOMP_GET_ACTION_AVAIL: if (flags != 0) return -EINVAL; return seccomp_get_action_avail(uargs); case SECCOMP_GET_NOTIF_SIZES: if (flags != 0) return -EINVAL; return seccomp_get_notif_sizes(uargs); default: return -EINVAL; } } SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, void __user *, uargs) { return do_seccomp(op, flags, uargs); } /** * prctl_set_seccomp: configures current->seccomp.mode * @seccomp_mode: requested mode to use * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER * * Returns 0 on success or -EINVAL on failure. */ long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) { unsigned int op; void __user *uargs; switch (seccomp_mode) { case SECCOMP_MODE_STRICT: op = SECCOMP_SET_MODE_STRICT; /* * Setting strict mode through prctl always ignored filter, * so make sure it is always NULL here to pass the internal * check in do_seccomp(). */ uargs = NULL; break; case SECCOMP_MODE_FILTER: op = SECCOMP_SET_MODE_FILTER; uargs = filter; break; default: return -EINVAL; } /* prctl interface doesn't have flags, so they are always zero. */ return do_seccomp(op, 0, uargs); } #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) static struct seccomp_filter *get_nth_filter(struct task_struct *task, unsigned long filter_off) { struct seccomp_filter *orig, *filter; unsigned long count; /* * Note: this is only correct because the caller should be the (ptrace) * tracer of the task, otherwise lock_task_sighand is needed. */ spin_lock_irq(&task->sighand->siglock); if (task->seccomp.mode != SECCOMP_MODE_FILTER) { spin_unlock_irq(&task->sighand->siglock); return ERR_PTR(-EINVAL); } orig = task->seccomp.filter; __get_seccomp_filter(orig); spin_unlock_irq(&task->sighand->siglock); count = 0; for (filter = orig; filter; filter = filter->prev) count++; if (filter_off >= count) { filter = ERR_PTR(-ENOENT); goto out; } count -= filter_off; for (filter = orig; filter && count > 1; filter = filter->prev) count--; if (WARN_ON(count != 1 || !filter)) { filter = ERR_PTR(-ENOENT); goto out; } __get_seccomp_filter(filter); out: __put_seccomp_filter(orig); return filter; } long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, void __user *data) { struct seccomp_filter *filter; struct sock_fprog_kern *fprog; long ret; if (!capable(CAP_SYS_ADMIN) || current->seccomp.mode != SECCOMP_MODE_DISABLED) { return -EACCES; } filter = get_nth_filter(task, filter_off); if (IS_ERR(filter)) return PTR_ERR(filter); fprog = filter->prog->orig_prog; if (!fprog) { /* This must be a new non-cBPF filter, since we save * every cBPF filter's orig_prog above when * CONFIG_CHECKPOINT_RESTORE is enabled. */ ret = -EMEDIUMTYPE; goto out; } ret = fprog->len; if (!data) goto out; if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) ret = -EFAULT; out: __put_seccomp_filter(filter); return ret; } long seccomp_get_metadata(struct task_struct *task, unsigned long size, void __user *data) { long ret; struct seccomp_filter *filter; struct seccomp_metadata kmd = {}; if (!capable(CAP_SYS_ADMIN) || current->seccomp.mode != SECCOMP_MODE_DISABLED) { return -EACCES; } size = min_t(unsigned long, size, sizeof(kmd)); if (size < sizeof(kmd.filter_off)) return -EINVAL; if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) return -EFAULT; filter = get_nth_filter(task, kmd.filter_off); if (IS_ERR(filter)) return PTR_ERR(filter); if (filter->log) kmd.flags |= SECCOMP_FILTER_FLAG_LOG; ret = size; if (copy_to_user(data, &kmd, size)) ret = -EFAULT; __put_seccomp_filter(filter); return ret; } #endif #ifdef CONFIG_SYSCTL /* Human readable action names for friendly sysctl interaction */ #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" #define SECCOMP_RET_TRAP_NAME "trap" #define SECCOMP_RET_ERRNO_NAME "errno" #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" #define SECCOMP_RET_TRACE_NAME "trace" #define SECCOMP_RET_LOG_NAME "log" #define SECCOMP_RET_ALLOW_NAME "allow" static const char seccomp_actions_avail[] = SECCOMP_RET_KILL_PROCESS_NAME " " SECCOMP_RET_KILL_THREAD_NAME " " SECCOMP_RET_TRAP_NAME " " SECCOMP_RET_ERRNO_NAME " " SECCOMP_RET_USER_NOTIF_NAME " " SECCOMP_RET_TRACE_NAME " " SECCOMP_RET_LOG_NAME " " SECCOMP_RET_ALLOW_NAME; struct seccomp_log_name { u32 log; const char *name; }; static const struct seccomp_log_name seccomp_log_names[] = { { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, { } }; static bool seccomp_names_from_actions_logged(char *names, size_t size, u32 actions_logged, const char *sep) { const struct seccomp_log_name *cur; bool append_sep = false; for (cur = seccomp_log_names; cur->name && size; cur++) { ssize_t ret; if (!(actions_logged & cur->log)) continue; if (append_sep) { ret = strscpy(names, sep, size); if (ret < 0) return false; names += ret; size -= ret; } else append_sep = true; ret = strscpy(names, cur->name, size); if (ret < 0) return false; names += ret; size -= ret; } return true; } static bool seccomp_action_logged_from_name(u32 *action_logged, const char *name) { const struct seccomp_log_name *cur; for (cur = seccomp_log_names; cur->name; cur++) { if (!strcmp(cur->name, name)) { *action_logged = cur->log; return true; } } return false; } static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) { char *name; *actions_logged = 0; while ((name = strsep(&names, " ")) && *name) { u32 action_logged = 0; if (!seccomp_action_logged_from_name(&action_logged, name)) return false; *actions_logged |= action_logged; } return true; } static int read_actions_logged(const struct ctl_table *ro_table, void *buffer, size_t *lenp, loff_t *ppos) { char names[sizeof(seccomp_actions_avail)]; struct ctl_table table; memset(names, 0, sizeof(names)); if (!seccomp_names_from_actions_logged(names, sizeof(names), seccomp_actions_logged, " ")) return -EINVAL; table = *ro_table; table.data = names; table.maxlen = sizeof(names); return proc_dostring(&table, 0, buffer, lenp, ppos); } static int write_actions_logged(const struct ctl_table *ro_table, void *buffer, size_t *lenp, loff_t *ppos, u32 *actions_logged) { char names[sizeof(seccomp_actions_avail)]; struct ctl_table table; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; memset(names, 0, sizeof(names)); table = *ro_table; table.data = names; table.maxlen = sizeof(names); ret = proc_dostring(&table, 1, buffer, lenp, ppos); if (ret) return ret; if (!seccomp_actions_logged_from_names(actions_logged, table.data)) return -EINVAL; if (*actions_logged & SECCOMP_LOG_ALLOW) return -EINVAL; seccomp_actions_logged = *actions_logged; return 0; } static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, int ret) { char names[sizeof(seccomp_actions_avail)]; char old_names[sizeof(seccomp_actions_avail)]; const char *new = names; const char *old = old_names; if (!audit_enabled) return; memset(names, 0, sizeof(names)); memset(old_names, 0, sizeof(old_names)); if (ret) new = "?"; else if (!actions_logged) new = "(none)"; else if (!seccomp_names_from_actions_logged(names, sizeof(names), actions_logged, ",")) new = "?"; if (!old_actions_logged) old = "(none)"; else if (!seccomp_names_from_actions_logged(old_names, sizeof(old_names), old_actions_logged, ",")) old = "?"; return audit_seccomp_actions_logged(new, old, !ret); } static int seccomp_actions_logged_handler(const struct ctl_table *ro_table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; if (write) { u32 actions_logged = 0; u32 old_actions_logged = seccomp_actions_logged; ret = write_actions_logged(ro_table, buffer, lenp, ppos, &actions_logged); audit_actions_logged(actions_logged, old_actions_logged, ret); } else ret = read_actions_logged(ro_table, buffer, lenp, ppos); return ret; } static struct ctl_table seccomp_sysctl_table[] = { { .procname = "actions_avail", .data = (void *) &seccomp_actions_avail, .maxlen = sizeof(seccomp_actions_avail), .mode = 0444, .proc_handler = proc_dostring, }, { .procname = "actions_logged", .mode = 0644, .proc_handler = seccomp_actions_logged_handler, }, }; static int __init seccomp_sysctl_init(void) { register_sysctl_init("kernel/seccomp", seccomp_sysctl_table); return 0; } device_initcall(seccomp_sysctl_init) #endif /* CONFIG_SYSCTL */ #ifdef CONFIG_SECCOMP_CACHE_DEBUG /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, const void *bitmap, size_t bitmap_size) { int nr; for (nr = 0; nr < bitmap_size; nr++) { bool cached = test_bit(nr, bitmap); char *status = cached ? "ALLOW" : "FILTER"; seq_printf(m, "%s %d %s\n", name, nr, status); } } int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { struct seccomp_filter *f; unsigned long flags; /* * We don't want some sandboxed process to know what their seccomp * filters consist of. */ if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) return -EACCES; if (!lock_task_sighand(task, &flags)) return -ESRCH; f = READ_ONCE(task->seccomp.filter); if (!f) { unlock_task_sighand(task, &flags); return 0; } /* prevent filter from being freed while we are printing it */ __get_seccomp_filter(f); unlock_task_sighand(task, &flags); proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, f->cache.allow_native, SECCOMP_ARCH_NATIVE_NR); #ifdef SECCOMP_ARCH_COMPAT proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, f->cache.allow_compat, SECCOMP_ARCH_COMPAT_NR); #endif /* SECCOMP_ARCH_COMPAT */ __put_seccomp_filter(f); return 0; } #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ |
| 539 537 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 | // SPDX-License-Identifier: GPL-2.0 /* * property.c - Unified device property interface. * * Copyright (C) 2014, Intel Corporation * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> * Mika Westerberg <mika.westerberg@linux.intel.com> */ #include <linux/device.h> #include <linux/err.h> #include <linux/export.h> #include <linux/kconfig.h> #include <linux/of.h> #include <linux/property.h> #include <linux/phy.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/types.h> struct fwnode_handle *__dev_fwnode(struct device *dev) { return IS_ENABLED(CONFIG_OF) && dev->of_node ? of_fwnode_handle(dev->of_node) : dev->fwnode; } EXPORT_SYMBOL_GPL(__dev_fwnode); const struct fwnode_handle *__dev_fwnode_const(const struct device *dev) { return IS_ENABLED(CONFIG_OF) && dev->of_node ? of_fwnode_handle(dev->of_node) : dev->fwnode; } EXPORT_SYMBOL_GPL(__dev_fwnode_const); /** * device_property_present - check if a property of a device is present * @dev: Device whose property is being checked * @propname: Name of the property * * Check if property @propname is present in the device firmware description. * * Return: true if property @propname is present. Otherwise, returns false. */ bool device_property_present(const struct device *dev, const char *propname) { return fwnode_property_present(dev_fwnode(dev), propname); } EXPORT_SYMBOL_GPL(device_property_present); /** * fwnode_property_present - check if a property of a firmware node is present * @fwnode: Firmware node whose property to check * @propname: Name of the property * * Return: true if property @propname is present. Otherwise, returns false. */ bool fwnode_property_present(const struct fwnode_handle *fwnode, const char *propname) { bool ret; if (IS_ERR_OR_NULL(fwnode)) return false; ret = fwnode_call_bool_op(fwnode, property_present, propname); if (ret) return ret; return fwnode_call_bool_op(fwnode->secondary, property_present, propname); } EXPORT_SYMBOL_GPL(fwnode_property_present); /** * device_property_read_u8_array - return a u8 array property of a device * @dev: Device to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Function reads an array of u8 properties with @propname from the device * firmware description and stores them to @val if found. * * It's recommended to call device_property_count_u8() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_u8_array(const struct device *dev, const char *propname, u8 *val, size_t nval) { return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); } EXPORT_SYMBOL_GPL(device_property_read_u8_array); /** * device_property_read_u16_array - return a u16 array property of a device * @dev: Device to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Function reads an array of u16 properties with @propname from the device * firmware description and stores them to @val if found. * * It's recommended to call device_property_count_u16() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_u16_array(const struct device *dev, const char *propname, u16 *val, size_t nval) { return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); } EXPORT_SYMBOL_GPL(device_property_read_u16_array); /** * device_property_read_u32_array - return a u32 array property of a device * @dev: Device to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Function reads an array of u32 properties with @propname from the device * firmware description and stores them to @val if found. * * It's recommended to call device_property_count_u32() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_u32_array(const struct device *dev, const char *propname, u32 *val, size_t nval) { return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); } EXPORT_SYMBOL_GPL(device_property_read_u32_array); /** * device_property_read_u64_array - return a u64 array property of a device * @dev: Device to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Function reads an array of u64 properties with @propname from the device * firmware description and stores them to @val if found. * * It's recommended to call device_property_count_u64() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_u64_array(const struct device *dev, const char *propname, u64 *val, size_t nval) { return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); } EXPORT_SYMBOL_GPL(device_property_read_u64_array); /** * device_property_read_string_array - return a string array property of device * @dev: Device to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Function reads an array of string properties with @propname from the device * firmware description and stores them to @val if found. * * It's recommended to call device_property_string_array_count() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values read on success if @val is non-NULL, * number of values available on success if @val is NULL, * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO or %-EILSEQ if the property is not an array of strings, * %-EOVERFLOW if the size of the property is not as expected. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_string_array(const struct device *dev, const char *propname, const char **val, size_t nval) { return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); } EXPORT_SYMBOL_GPL(device_property_read_string_array); /** * device_property_read_string - return a string property of a device * @dev: Device to get the property of * @propname: Name of the property * @val: The value is stored here * * Function reads property @propname from the device firmware description and * stores the value into @val if found. The value is checked to be a string. * * Return: %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO or %-EILSEQ if the property type is not a string. * %-ENXIO if no suitable firmware interface is present. */ int device_property_read_string(const struct device *dev, const char *propname, const char **val) { return fwnode_property_read_string(dev_fwnode(dev), propname, val); } EXPORT_SYMBOL_GPL(device_property_read_string); /** * device_property_match_string - find a string in an array and return index * @dev: Device to get the property of * @propname: Name of the property holding the array * @string: String to look for * * Find a given string in a string array and if it is found return the * index back. * * Return: index, starting from %0, if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of strings, * %-ENXIO if no suitable firmware interface is present. */ int device_property_match_string(const struct device *dev, const char *propname, const char *string) { return fwnode_property_match_string(dev_fwnode(dev), propname, string); } EXPORT_SYMBOL_GPL(device_property_match_string); static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { int ret; if (IS_ERR_OR_NULL(fwnode)) return -EINVAL; ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, elem_size, val, nval); if (ret != -EINVAL) return ret; return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname, elem_size, val, nval); } /** * fwnode_property_read_u8_array - return a u8 array property of firmware node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Read an array of u8 properties with @propname from @fwnode and stores them to * @val if found. * * It's recommended to call fwnode_property_count_u8() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, const char *propname, u8 *val, size_t nval) { return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), val, nval); } EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); /** * fwnode_property_read_u16_array - return a u16 array property of firmware node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Read an array of u16 properties with @propname from @fwnode and store them to * @val if found. * * It's recommended to call fwnode_property_count_u16() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, const char *propname, u16 *val, size_t nval) { return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), val, nval); } EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); /** * fwnode_property_read_u32_array - return a u32 array property of firmware node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Read an array of u32 properties with @propname from @fwnode store them to * @val if found. * * It's recommended to call fwnode_property_count_u32() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, const char *propname, u32 *val, size_t nval) { return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), val, nval); } EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); /** * fwnode_property_read_u64_array - return a u64 array property firmware node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Read an array of u64 properties with @propname from @fwnode and store them to * @val if found. * * It's recommended to call fwnode_property_count_u64() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values if @val was %NULL, * %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of numbers, * %-EOVERFLOW if the size of the property is not as expected, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, const char *propname, u64 *val, size_t nval) { return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), val, nval); } EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); /** * fwnode_property_read_string_array - return string array property of a node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The values are stored here or %NULL to return the number of values * @nval: Size of the @val array * * Read an string list property @propname from the given firmware node and store * them to @val if found. * * It's recommended to call fwnode_property_string_array_count() instead of calling * this function with @val equals %NULL and @nval equals 0. * * Return: number of values read on success if @val is non-NULL, * number of values available on success if @val is NULL, * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO or %-EILSEQ if the property is not an array of strings, * %-EOVERFLOW if the size of the property is not as expected, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { int ret; if (IS_ERR_OR_NULL(fwnode)) return -EINVAL; ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, val, nval); if (ret != -EINVAL) return ret; return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname, val, nval); } EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); /** * fwnode_property_read_string - return a string property of a firmware node * @fwnode: Firmware node to get the property of * @propname: Name of the property * @val: The value is stored here * * Read property @propname from the given firmware node and store the value into * @val if found. The value is checked to be a string. * * Return: %0 if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO or %-EILSEQ if the property is not a string, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_read_string(const struct fwnode_handle *fwnode, const char *propname, const char **val) { int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); return ret < 0 ? ret : 0; } EXPORT_SYMBOL_GPL(fwnode_property_read_string); /** * fwnode_property_match_string - find a string in an array and return index * @fwnode: Firmware node to get the property of * @propname: Name of the property holding the array * @string: String to look for * * Find a given string in a string array and if it is found return the * index back. * * Return: index, starting from %0, if the property was found (success), * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO if the property is not an array of strings, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_match_string(const struct fwnode_handle *fwnode, const char *propname, const char *string) { const char **values; int nval, ret; nval = fwnode_property_string_array_count(fwnode, propname); if (nval < 0) return nval; if (nval == 0) return -ENODATA; values = kcalloc(nval, sizeof(*values), GFP_KERNEL); if (!values) return -ENOMEM; ret = fwnode_property_read_string_array(fwnode, propname, values, nval); if (ret < 0) goto out_free; ret = match_string(values, nval, string); if (ret < 0) ret = -ENODATA; out_free: kfree(values); return ret; } EXPORT_SYMBOL_GPL(fwnode_property_match_string); /** * fwnode_property_match_property_string - find a property string value in an array and return index * @fwnode: Firmware node to get the property of * @propname: Name of the property holding the string value * @array: String array to search in * @n: Size of the @array * * Find a property string value in a given @array and if it is found return * the index back. * * Return: index, starting from %0, if the string value was found in the @array (success), * %-ENOENT when the string value was not found in the @array, * %-EINVAL if given arguments are not valid, * %-ENODATA if the property does not have a value, * %-EPROTO or %-EILSEQ if the property is not a string, * %-ENXIO if no suitable firmware interface is present. */ int fwnode_property_match_property_string(const struct fwnode_handle *fwnode, const char *propname, const char * const *array, size_t n) { const char *string; int ret; ret = fwnode_property_read_string(fwnode, propname, &string); if (ret) return ret; ret = match_string(array, n, string); if (ret < 0) ret = -ENOENT; return ret; } EXPORT_SYMBOL_GPL(fwnode_property_match_property_string); /** * fwnode_property_get_reference_args() - Find a reference with arguments * @fwnode: Firmware node where to look for the reference * @prop: The name of the property * @nargs_prop: The name of the property telling the number of * arguments in the referred node. NULL if @nargs is known, * otherwise @nargs is ignored. Only relevant on OF. * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. * @index: Index of the reference, from zero onwards. * @args: Result structure with reference and integer arguments. * May be NULL. * * Obtain a reference based on a named property in an fwnode, with * integer arguments. * * The caller is responsible for calling fwnode_handle_put() on the returned * @args->fwnode pointer. * * Return: %0 on success * %-ENOENT when the index is out of bounds, the index has an empty * reference or the property was not found * %-EINVAL on parse error */ int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, const char *prop, const char *nargs_prop, unsigned int nargs, unsigned int index, struct fwnode_reference_args *args) { int ret; if (IS_ERR_OR_NULL(fwnode)) return -ENOENT; ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, nargs, index, args); if (ret == 0) return ret; if (IS_ERR_OR_NULL(fwnode->secondary)) return ret; return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop, nargs, index, args); } EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); /** * fwnode_find_reference - Find named reference to a fwnode_handle * @fwnode: Firmware node where to look for the reference * @name: The name of the reference * @index: Index of the reference * * @index can be used when the named reference holds a table of references. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: a pointer to the reference fwnode, when found. Otherwise, * returns an error pointer. */ struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, const char *name, unsigned int index) { struct fwnode_reference_args args; int ret; ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, &args); return ret ? ERR_PTR(ret) : args.fwnode; } EXPORT_SYMBOL_GPL(fwnode_find_reference); /** * fwnode_get_name - Return the name of a node * @fwnode: The firmware node * * Return: a pointer to the node name, or %NULL. */ const char *fwnode_get_name(const struct fwnode_handle *fwnode) { return fwnode_call_ptr_op(fwnode, get_name); } EXPORT_SYMBOL_GPL(fwnode_get_name); /** * fwnode_get_name_prefix - Return the prefix of node for printing purposes * @fwnode: The firmware node * * Return: the prefix of a node, intended to be printed right before the node. * The prefix works also as a separator between the nodes. */ const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) { return fwnode_call_ptr_op(fwnode, get_name_prefix); } /** * fwnode_name_eq - Return true if node name is equal * @fwnode: The firmware node * @name: The name to which to compare the node name * * Compare the name provided as an argument to the name of the node, stopping * the comparison at either NUL or '@' character, whichever comes first. This * function is generally used for comparing node names while ignoring the * possible unit address of the node. * * Return: true if the node name matches with the name provided in the @name * argument, false otherwise. */ bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name) { const char *node_name; ptrdiff_t len; node_name = fwnode_get_name(fwnode); if (!node_name) return false; len = strchrnul(node_name, '@') - node_name; return str_has_prefix(node_name, name) == len; } EXPORT_SYMBOL_GPL(fwnode_name_eq); /** * fwnode_get_parent - Return parent firwmare node * @fwnode: Firmware whose parent is retrieved * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: parent firmware node of the given node if possible or %NULL if no * parent was available. */ struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) { return fwnode_call_ptr_op(fwnode, get_parent); } EXPORT_SYMBOL_GPL(fwnode_get_parent); /** * fwnode_get_next_parent - Iterate to the node's parent * @fwnode: Firmware whose parent is retrieved * * This is like fwnode_get_parent() except that it drops the refcount * on the passed node, making it suitable for iterating through a * node's parents. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. Note that this function also puts a reference to @fwnode * unconditionally. * * Return: parent firmware node of the given node if possible or %NULL if no * parent was available. */ struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) { struct fwnode_handle *parent = fwnode_get_parent(fwnode); fwnode_handle_put(fwnode); return parent; } EXPORT_SYMBOL_GPL(fwnode_get_next_parent); /** * fwnode_count_parents - Return the number of parents a node has * @fwnode: The node the parents of which are to be counted * * Return: the number of parents a node has. */ unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) { struct fwnode_handle *parent; unsigned int count = 0; fwnode_for_each_parent_node(fwnode, parent) count++; return count; } EXPORT_SYMBOL_GPL(fwnode_count_parents); /** * fwnode_get_nth_parent - Return an nth parent of a node * @fwnode: The node the parent of which is requested * @depth: Distance of the parent from the node * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: the nth parent of a node. If there is no parent at the requested * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. */ struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, unsigned int depth) { struct fwnode_handle *parent; if (depth == 0) return fwnode_handle_get(fwnode); fwnode_for_each_parent_node(fwnode, parent) { if (--depth == 0) return parent; } return NULL; } EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); /** * fwnode_get_next_child_node - Return the next child node handle for a node * @fwnode: Firmware node to find the next child node for. * @child: Handle to one of the node's child nodes or a %NULL handle. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. Note that this function also puts a reference to @child * unconditionally. */ struct fwnode_handle * fwnode_get_next_child_node(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return fwnode_call_ptr_op(fwnode, get_next_child_node, child); } EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); /** * fwnode_get_next_available_child_node - Return the next available child node handle for a node * @fwnode: Firmware node to find the next child node for. * @child: Handle to one of the node's child nodes or a %NULL handle. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. Note that this function also puts a reference to @child * unconditionally. */ struct fwnode_handle * fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { struct fwnode_handle *next_child = child; if (IS_ERR_OR_NULL(fwnode)) return NULL; do { next_child = fwnode_get_next_child_node(fwnode, next_child); if (!next_child) return NULL; } while (!fwnode_device_is_available(next_child)); return next_child; } EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); /** * device_get_next_child_node - Return the next child node handle for a device * @dev: Device to find the next child node for. * @child: Handle to one of the device's child nodes or a %NULL handle. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. Note that this function also puts a reference to @child * unconditionally. */ struct fwnode_handle *device_get_next_child_node(const struct device *dev, struct fwnode_handle *child) { const struct fwnode_handle *fwnode = dev_fwnode(dev); struct fwnode_handle *next; if (IS_ERR_OR_NULL(fwnode)) return NULL; /* Try to find a child in primary fwnode */ next = fwnode_get_next_child_node(fwnode, child); if (next) return next; /* When no more children in primary, continue with secondary */ return fwnode_get_next_child_node(fwnode->secondary, child); } EXPORT_SYMBOL_GPL(device_get_next_child_node); /** * fwnode_get_named_child_node - Return first matching named child node handle * @fwnode: Firmware node to find the named child node for. * @childname: String to match child node name against. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. */ struct fwnode_handle * fwnode_get_named_child_node(const struct fwnode_handle *fwnode, const char *childname) { return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); } EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); /** * device_get_named_child_node - Return first matching named child node handle * @dev: Device to find the named child node for. * @childname: String to match child node name against. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. */ struct fwnode_handle *device_get_named_child_node(const struct device *dev, const char *childname) { return fwnode_get_named_child_node(dev_fwnode(dev), childname); } EXPORT_SYMBOL_GPL(device_get_named_child_node); /** * fwnode_handle_get - Obtain a reference to a device node * @fwnode: Pointer to the device node to obtain the reference to. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: the fwnode handle. */ struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) { if (!fwnode_has_op(fwnode, get)) return fwnode; return fwnode_call_ptr_op(fwnode, get); } EXPORT_SYMBOL_GPL(fwnode_handle_get); /** * fwnode_device_is_available - check if a device is available for use * @fwnode: Pointer to the fwnode of the device. * * Return: true if device is available for use. Otherwise, returns false. * * For fwnode node types that don't implement the .device_is_available() * operation, this function returns true. */ bool fwnode_device_is_available(const struct fwnode_handle *fwnode) { if (IS_ERR_OR_NULL(fwnode)) return false; if (!fwnode_has_op(fwnode, device_is_available)) return true; return fwnode_call_bool_op(fwnode, device_is_available); } EXPORT_SYMBOL_GPL(fwnode_device_is_available); /** * device_get_child_node_count - return the number of child nodes for device * @dev: Device to count the child nodes for * * Return: the number of child nodes for a given device. */ unsigned int device_get_child_node_count(const struct device *dev) { struct fwnode_handle *child; unsigned int count = 0; device_for_each_child_node(dev, child) count++; return count; } EXPORT_SYMBOL_GPL(device_get_child_node_count); bool device_dma_supported(const struct device *dev) { return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported); } EXPORT_SYMBOL_GPL(device_dma_supported); enum dev_dma_attr device_get_dma_attr(const struct device *dev) { if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr)) return DEV_DMA_NOT_SUPPORTED; return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr); } EXPORT_SYMBOL_GPL(device_get_dma_attr); /** * fwnode_get_phy_mode - Get phy mode for given firmware node * @fwnode: Pointer to the given node * * The function gets phy interface string from property 'phy-mode' or * 'phy-connection-type', and return its index in phy_modes table, or errno in * error case. */ int fwnode_get_phy_mode(const struct fwnode_handle *fwnode) { const char *pm; int err, i; err = fwnode_property_read_string(fwnode, "phy-mode", &pm); if (err < 0) err = fwnode_property_read_string(fwnode, "phy-connection-type", &pm); if (err < 0) return err; for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) if (!strcasecmp(pm, phy_modes(i))) return i; return -ENODEV; } EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); /** * device_get_phy_mode - Get phy mode for given device * @dev: Pointer to the given device * * The function gets phy interface string from property 'phy-mode' or * 'phy-connection-type', and return its index in phy_modes table, or errno in * error case. */ int device_get_phy_mode(struct device *dev) { return fwnode_get_phy_mode(dev_fwnode(dev)); } EXPORT_SYMBOL_GPL(device_get_phy_mode); /** * fwnode_iomap - Maps the memory mapped IO for a given fwnode * @fwnode: Pointer to the firmware node * @index: Index of the IO range * * Return: a pointer to the mapped memory. */ void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index) { return fwnode_call_ptr_op(fwnode, iomap, index); } EXPORT_SYMBOL(fwnode_iomap); /** * fwnode_irq_get - Get IRQ directly from a fwnode * @fwnode: Pointer to the firmware node * @index: Zero-based index of the IRQ * * Return: Linux IRQ number on success. Negative errno on failure. */ int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) { int ret; ret = fwnode_call_int_op(fwnode, irq_get, index); /* We treat mapping errors as invalid case */ if (ret == 0) return -EINVAL; return ret; } EXPORT_SYMBOL(fwnode_irq_get); /** * fwnode_irq_get_byname - Get IRQ from a fwnode using its name * @fwnode: Pointer to the firmware node * @name: IRQ name * * Description: * Find a match to the string @name in the 'interrupt-names' string array * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ * number of the IRQ resource corresponding to the index of the matched * string. * * Return: Linux IRQ number on success, or negative errno otherwise. */ int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name) { int index; if (!name) return -EINVAL; index = fwnode_property_match_string(fwnode, "interrupt-names", name); if (index < 0) return index; return fwnode_irq_get(fwnode, index); } EXPORT_SYMBOL(fwnode_irq_get_byname); /** * fwnode_graph_get_next_endpoint - Get next endpoint firmware node * @fwnode: Pointer to the parent firmware node * @prev: Previous endpoint node or %NULL to get the first * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. Note that this function also puts a reference to @prev * unconditionally. * * Return: an endpoint firmware node pointer or %NULL if no more endpoints * are available. */ struct fwnode_handle * fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { struct fwnode_handle *ep, *port_parent = NULL; const struct fwnode_handle *parent; /* * If this function is in a loop and the previous iteration returned * an endpoint from fwnode->secondary, then we need to use the secondary * as parent rather than @fwnode. */ if (prev) { port_parent = fwnode_graph_get_port_parent(prev); parent = port_parent; } else { parent = fwnode; } if (IS_ERR_OR_NULL(parent)) return NULL; ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev); if (ep) goto out_put_port_parent; ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL); out_put_port_parent: fwnode_handle_put(port_parent); return ep; } EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); /** * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint * @endpoint: Endpoint firmware node of the port * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: the firmware node of the device the @endpoint belongs to. */ struct fwnode_handle * fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) { struct fwnode_handle *port, *parent; port = fwnode_get_parent(endpoint); parent = fwnode_call_ptr_op(port, graph_get_port_parent); fwnode_handle_put(port); return parent; } EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); /** * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device * @fwnode: Endpoint firmware node pointing to the remote endpoint * * Extracts firmware node of a remote device the @fwnode points to. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. */ struct fwnode_handle * fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) { struct fwnode_handle *endpoint, *parent; endpoint = fwnode_graph_get_remote_endpoint(fwnode); parent = fwnode_graph_get_port_parent(endpoint); fwnode_handle_put(endpoint); return parent; } EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); /** * fwnode_graph_get_remote_port - Return fwnode of a remote port * @fwnode: Endpoint firmware node pointing to the remote endpoint * * Extracts firmware node of a remote port the @fwnode points to. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. */ struct fwnode_handle * fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) { return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); } EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); /** * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint * @fwnode: Endpoint firmware node pointing to the remote endpoint * * Extracts firmware node of a remote endpoint the @fwnode points to. * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. */ struct fwnode_handle * fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) { return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); } EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); static bool fwnode_graph_remote_available(struct fwnode_handle *ep) { struct fwnode_handle *dev_node; bool available; dev_node = fwnode_graph_get_remote_port_parent(ep); available = fwnode_device_is_available(dev_node); fwnode_handle_put(dev_node); return available; } /** * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers * @fwnode: parent fwnode_handle containing the graph * @port: identifier of the port node * @endpoint: identifier of the endpoint node under the port node * @flags: fwnode lookup flags * * The caller is responsible for calling fwnode_handle_put() on the returned * fwnode pointer. * * Return: the fwnode handle of the local endpoint corresponding the port and * endpoint IDs or %NULL if not found. * * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint * has not been found, look for the closest endpoint ID greater than the * specified one and return the endpoint that corresponds to it, if present. * * Does not return endpoints that belong to disabled devices or endpoints that * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. */ struct fwnode_handle * fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, u32 port, u32 endpoint, unsigned long flags) { struct fwnode_handle *ep, *best_ep = NULL; unsigned int best_ep_id = 0; bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); fwnode_graph_for_each_endpoint(fwnode, ep) { struct fwnode_endpoint fwnode_ep = { 0 }; int ret; if (enabled_only && !fwnode_graph_remote_available(ep)) continue; ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); if (ret < 0) continue; if (fwnode_ep.port != port) continue; if (fwnode_ep.id == endpoint) return ep; if (!endpoint_next) continue; /* * If the endpoint that has just been found is not the first * matching one and the ID of the one found previously is closer * to the requested endpoint ID, skip it. */ if (fwnode_ep.id < endpoint || (best_ep && best_ep_id < fwnode_ep.id)) continue; fwnode_handle_put(best_ep); best_ep = fwnode_handle_get(ep); best_ep_id = fwnode_ep.id; } return best_ep; } EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); /** * fwnode_graph_get_endpoint_count - Count endpoints on a device node * @fwnode: The node related to a device * @flags: fwnode lookup flags * Count endpoints in a device node. * * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints * and endpoints connected to disabled devices are counted. */ unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode, unsigned long flags) { struct fwnode_handle *ep; unsigned int count = 0; fwnode_graph_for_each_endpoint(fwnode, ep) { if (flags & FWNODE_GRAPH_DEVICE_DISABLED || fwnode_graph_remote_available(ep)) count++; } return count; } EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count); /** * fwnode_graph_parse_endpoint - parse common endpoint node properties * @fwnode: pointer to endpoint fwnode_handle * @endpoint: pointer to the fwnode endpoint data structure * * Parse @fwnode representing a graph endpoint node and store the * information in @endpoint. The caller must hold a reference to * @fwnode. */ int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { memset(endpoint, 0, sizeof(*endpoint)); return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); } EXPORT_SYMBOL(fwnode_graph_parse_endpoint); const void *device_get_match_data(const struct device *dev) { return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); } EXPORT_SYMBOL_GPL(device_get_match_data); static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match, void **matches, unsigned int matches_len) { struct fwnode_handle *node; struct fwnode_handle *ep; unsigned int count = 0; void *ret; fwnode_graph_for_each_endpoint(fwnode, ep) { if (matches && count >= matches_len) { fwnode_handle_put(ep); break; } node = fwnode_graph_get_remote_port_parent(ep); if (!fwnode_device_is_available(node)) { fwnode_handle_put(node); continue; } ret = match(node, con_id, data); fwnode_handle_put(node); if (ret) { if (matches) matches[count] = ret; count++; } } return count; } static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match, void **matches, unsigned int matches_len) { struct fwnode_handle *node; unsigned int count = 0; unsigned int i; void *ret; for (i = 0; ; i++) { if (matches && count >= matches_len) break; node = fwnode_find_reference(fwnode, con_id, i); if (IS_ERR(node)) break; ret = match(node, NULL, data); fwnode_handle_put(node); if (ret) { if (matches) matches[count] = ret; count++; } } return count; } /** * fwnode_connection_find_match - Find connection from a device node * @fwnode: Device node with the connection * @con_id: Identifier for the connection * @data: Data for the match function * @match: Function to check and convert the connection description * * Find a connection with unique identifier @con_id between @fwnode and another * device node. @match will be used to convert the connection description to * data the caller is expecting to be returned. */ void *fwnode_connection_find_match(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match) { unsigned int count; void *ret; if (!fwnode || !match) return NULL; count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1); if (count) return ret; count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1); return count ? ret : NULL; } EXPORT_SYMBOL_GPL(fwnode_connection_find_match); /** * fwnode_connection_find_matches - Find connections from a device node * @fwnode: Device node with the connection * @con_id: Identifier for the connection * @data: Data for the match function * @match: Function to check and convert the connection description * @matches: (Optional) array of pointers to fill with matches * @matches_len: Length of @matches * * Find up to @matches_len connections with unique identifier @con_id between * @fwnode and other device nodes. @match will be used to convert the * connection description to data the caller is expecting to be returned * through the @matches array. * * If @matches is %NULL @matches_len is ignored and the total number of resolved * matches is returned. * * Return: Number of matches resolved, or negative errno. */ int fwnode_connection_find_matches(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match, void **matches, unsigned int matches_len) { unsigned int count_graph; unsigned int count_ref; if (!fwnode || !match) return -EINVAL; count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match, matches, matches_len); if (matches) { matches += count_graph; matches_len -= count_graph; } count_ref = fwnode_devcon_matches(fwnode, con_id, data, match, matches, matches_len); return count_graph + count_ref; } EXPORT_SYMBOL_GPL(fwnode_connection_find_matches); |
| 7 3 18 954 951 3 16 16 15 15 8 1 14 14 1 13 14 10 6 4 4 4 4 4 4 4 4 2 2 17 17 15 2 17 2 25 18 2 2 2 2 2 17 6 12 23 23 23 37 18 23 34 17 17 34 55 21 34 34 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/fcntl.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/syscalls.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/sched/task.h> #include <linux/fs.h> #include <linux/filelock.h> #include <linux/file.h> #include <linux/capability.h> #include <linux/dnotify.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pipe_fs_i.h> #include <linux/security.h> #include <linux/ptrace.h> #include <linux/signal.h> #include <linux/rcupdate.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <linux/memfd.h> #include <linux/compat.h> #include <linux/mount.h> #include <linux/rw_hint.h> #include <linux/poll.h> #include <asm/siginfo.h> #include <linux/uaccess.h> #include "internal.h" #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) static int setfl(int fd, struct file * filp, unsigned int arg) { struct inode * inode = file_inode(filp); int error = 0; /* * O_APPEND cannot be cleared if the file is marked as append-only * and the file is open for write. */ if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) return -EPERM; /* O_NOATIME can only be set by the owner or superuser */ if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) return -EPERM; /* required for strict SunOS emulation */ if (O_NONBLOCK != O_NDELAY) if (arg & O_NDELAY) arg |= O_NONBLOCK; /* Pipe packetized mode is controlled by O_DIRECT flag */ if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT) && !(filp->f_mode & FMODE_CAN_ODIRECT)) return -EINVAL; if (filp->f_op->check_flags) error = filp->f_op->check_flags(arg); if (error) return error; /* * ->fasync() is responsible for setting the FASYNC bit. */ if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); if (error < 0) goto out; if (error > 0) error = 0; } spin_lock(&filp->f_lock); filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); filp->f_iocb_flags = iocb_flags(filp); spin_unlock(&filp->f_lock); out: return error; } /* * Allocate an file->f_owner struct if it doesn't exist, handling racing * allocations correctly. */ int file_f_owner_allocate(struct file *file) { struct fown_struct *f_owner; f_owner = file_f_owner(file); if (f_owner) return 0; f_owner = kzalloc(sizeof(struct fown_struct), GFP_KERNEL); if (!f_owner) return -ENOMEM; rwlock_init(&f_owner->lock); f_owner->file = file; /* If someone else raced us, drop our allocation. */ if (unlikely(cmpxchg(&file->f_owner, NULL, f_owner))) kfree(f_owner); return 0; } EXPORT_SYMBOL(file_f_owner_allocate); void file_f_owner_release(struct file *file) { struct fown_struct *f_owner; f_owner = file_f_owner(file); if (f_owner) { put_pid(f_owner->pid); kfree(f_owner); } } void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, int force) { struct fown_struct *f_owner; f_owner = file_f_owner(filp); if (WARN_ON_ONCE(!f_owner)) return; write_lock_irq(&f_owner->lock); if (force || !f_owner->pid) { put_pid(f_owner->pid); f_owner->pid = get_pid(pid); f_owner->pid_type = type; if (pid) { const struct cred *cred = current_cred(); security_file_set_fowner(filp); f_owner->uid = cred->uid; f_owner->euid = cred->euid; } } write_unlock_irq(&f_owner->lock); } EXPORT_SYMBOL(__f_setown); int f_setown(struct file *filp, int who, int force) { enum pid_type type; struct pid *pid = NULL; int ret = 0; might_sleep(); type = PIDTYPE_TGID; if (who < 0) { /* avoid overflow below */ if (who == INT_MIN) return -EINVAL; type = PIDTYPE_PGID; who = -who; } ret = file_f_owner_allocate(filp); if (ret) return ret; rcu_read_lock(); if (who) { pid = find_vpid(who); if (!pid) ret = -ESRCH; } if (!ret) __f_setown(filp, pid, type, force); rcu_read_unlock(); return ret; } EXPORT_SYMBOL(f_setown); void f_delown(struct file *filp) { __f_setown(filp, NULL, PIDTYPE_TGID, 1); } pid_t f_getown(struct file *filp) { pid_t pid = 0; struct fown_struct *f_owner; f_owner = file_f_owner(filp); if (!f_owner) return pid; read_lock_irq(&f_owner->lock); rcu_read_lock(); if (pid_task(f_owner->pid, f_owner->pid_type)) { pid = pid_vnr(f_owner->pid); if (f_owner->pid_type == PIDTYPE_PGID) pid = -pid; } rcu_read_unlock(); read_unlock_irq(&f_owner->lock); return pid; } static int f_setown_ex(struct file *filp, unsigned long arg) { struct f_owner_ex __user *owner_p = (void __user *)arg; struct f_owner_ex owner; struct pid *pid; int type; int ret; ret = copy_from_user(&owner, owner_p, sizeof(owner)); if (ret) return -EFAULT; switch (owner.type) { case F_OWNER_TID: type = PIDTYPE_PID; break; case F_OWNER_PID: type = PIDTYPE_TGID; break; case F_OWNER_PGRP: type = PIDTYPE_PGID; break; default: return -EINVAL; } ret = file_f_owner_allocate(filp); if (ret) return ret; rcu_read_lock(); pid = find_vpid(owner.pid); if (owner.pid && !pid) ret = -ESRCH; else __f_setown(filp, pid, type, 1); rcu_read_unlock(); return ret; } static int f_getown_ex(struct file *filp, unsigned long arg) { struct f_owner_ex __user *owner_p = (void __user *)arg; struct f_owner_ex owner = {}; int ret = 0; struct fown_struct *f_owner; enum pid_type pid_type = PIDTYPE_PID; f_owner = file_f_owner(filp); if (f_owner) { read_lock_irq(&f_owner->lock); rcu_read_lock(); if (pid_task(f_owner->pid, f_owner->pid_type)) owner.pid = pid_vnr(f_owner->pid); rcu_read_unlock(); pid_type = f_owner->pid_type; } switch (pid_type) { case PIDTYPE_PID: owner.type = F_OWNER_TID; break; case PIDTYPE_TGID: owner.type = F_OWNER_PID; break; case PIDTYPE_PGID: owner.type = F_OWNER_PGRP; break; default: WARN_ON(1); ret = -EINVAL; break; } if (f_owner) read_unlock_irq(&f_owner->lock); if (!ret) { ret = copy_to_user(owner_p, &owner, sizeof(owner)); if (ret) ret = -EFAULT; } return ret; } #ifdef CONFIG_CHECKPOINT_RESTORE static int f_getowner_uids(struct file *filp, unsigned long arg) { struct user_namespace *user_ns = current_user_ns(); struct fown_struct *f_owner; uid_t __user *dst = (void __user *)arg; uid_t src[2] = {0, 0}; int err; f_owner = file_f_owner(filp); if (f_owner) { read_lock_irq(&f_owner->lock); src[0] = from_kuid(user_ns, f_owner->uid); src[1] = from_kuid(user_ns, f_owner->euid); read_unlock_irq(&f_owner->lock); } err = put_user(src[0], &dst[0]); err |= put_user(src[1], &dst[1]); return err; } #else static int f_getowner_uids(struct file *filp, unsigned long arg) { return -EINVAL; } #endif static bool rw_hint_valid(u64 hint) { BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET); BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE); BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT); BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM); BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG); BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME); switch (hint) { case RWH_WRITE_LIFE_NOT_SET: case RWH_WRITE_LIFE_NONE: case RWH_WRITE_LIFE_SHORT: case RWH_WRITE_LIFE_MEDIUM: case RWH_WRITE_LIFE_LONG: case RWH_WRITE_LIFE_EXTREME: return true; default: return false; } } static long fcntl_get_rw_hint(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(file); u64 __user *argp = (u64 __user *)arg; u64 hint = READ_ONCE(inode->i_write_hint); if (copy_to_user(argp, &hint, sizeof(*argp))) return -EFAULT; return 0; } static long fcntl_set_rw_hint(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(file); u64 __user *argp = (u64 __user *)arg; u64 hint; if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) return -EPERM; if (copy_from_user(&hint, argp, sizeof(hint))) return -EFAULT; if (!rw_hint_valid(hint)) return -EINVAL; WRITE_ONCE(inode->i_write_hint, hint); /* * file->f_mapping->host may differ from inode. As an example, * blkdev_open() modifies file->f_mapping. */ if (file->f_mapping->host != inode) WRITE_ONCE(file->f_mapping->host->i_write_hint, hint); return 0; } /* Is the file descriptor a dup of the file? */ static long f_dupfd_query(int fd, struct file *filp) { CLASS(fd_raw, f)(fd); if (fd_empty(f)) return -EBADF; /* * We can do the 'fdput()' immediately, as the only thing that * matters is the pointer value which isn't changed by the fdput. * * Technically we didn't need a ref at all, and 'fdget()' was * overkill, but given our lockless file pointer lookup, the * alternatives are complicated. */ return fd_file(f) == filp; } /* Let the caller figure out whether a given file was just created. */ static long f_created_query(const struct file *filp) { return !!(filp->f_mode & FMODE_CREATED); } static int f_owner_sig(struct file *filp, int signum, bool setsig) { int ret = 0; struct fown_struct *f_owner; might_sleep(); if (setsig) { if (!valid_signal(signum)) return -EINVAL; ret = file_f_owner_allocate(filp); if (ret) return ret; } f_owner = file_f_owner(filp); if (setsig) f_owner->signum = signum; else if (f_owner) ret = f_owner->signum; return ret; } static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, struct file *filp) { void __user *argp = (void __user *)arg; int argi = (int)arg; struct flock flock; long err = -EINVAL; switch (cmd) { case F_CREATED_QUERY: err = f_created_query(filp); break; case F_DUPFD: err = f_dupfd(argi, filp, 0); break; case F_DUPFD_CLOEXEC: err = f_dupfd(argi, filp, O_CLOEXEC); break; case F_DUPFD_QUERY: err = f_dupfd_query(argi, filp); break; case F_GETFD: err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; break; case F_SETFD: err = 0; set_close_on_exec(fd, argi & FD_CLOEXEC); break; case F_GETFL: err = filp->f_flags; break; case F_SETFL: err = setfl(fd, filp, argi); break; #if BITS_PER_LONG != 32 /* 32-bit arches must use fcntl64() */ case F_OFD_GETLK: #endif case F_GETLK: if (copy_from_user(&flock, argp, sizeof(flock))) return -EFAULT; err = fcntl_getlk(filp, cmd, &flock); if (!err && copy_to_user(argp, &flock, sizeof(flock))) return -EFAULT; break; #if BITS_PER_LONG != 32 /* 32-bit arches must use fcntl64() */ case F_OFD_SETLK: case F_OFD_SETLKW: fallthrough; #endif case F_SETLK: case F_SETLKW: if (copy_from_user(&flock, argp, sizeof(flock))) return -EFAULT; err = fcntl_setlk(fd, filp, cmd, &flock); break; case F_GETOWN: /* * XXX If f_owner is a process group, the * negative return value will get converted * into an error. Oops. If we keep the * current syscall conventions, the only way * to fix this will be in libc. */ err = f_getown(filp); force_successful_syscall_return(); break; case F_SETOWN: err = f_setown(filp, argi, 1); break; case F_GETOWN_EX: err = f_getown_ex(filp, arg); break; case F_SETOWN_EX: err = f_setown_ex(filp, arg); break; case F_GETOWNER_UIDS: err = f_getowner_uids(filp, arg); break; case F_GETSIG: err = f_owner_sig(filp, 0, false); break; case F_SETSIG: err = f_owner_sig(filp, argi, true); break; case F_GETLEASE: err = fcntl_getlease(filp); break; case F_SETLEASE: err = fcntl_setlease(fd, filp, argi); break; case F_NOTIFY: err = fcntl_dirnotify(fd, filp, argi); break; case F_SETPIPE_SZ: case F_GETPIPE_SZ: err = pipe_fcntl(filp, cmd, argi); break; case F_ADD_SEALS: case F_GET_SEALS: err = memfd_fcntl(filp, cmd, argi); break; case F_GET_RW_HINT: err = fcntl_get_rw_hint(filp, cmd, arg); break; case F_SET_RW_HINT: err = fcntl_set_rw_hint(filp, cmd, arg); break; default: break; } return err; } static int check_fcntl_cmd(unsigned cmd) { switch (cmd) { case F_CREATED_QUERY: case F_DUPFD: case F_DUPFD_CLOEXEC: case F_DUPFD_QUERY: case F_GETFD: case F_SETFD: case F_GETFL: return 1; } return 0; } SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) { CLASS(fd_raw, f)(fd); long err; if (fd_empty(f)) return -EBADF; if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) return -EBADF; } err = security_file_fcntl(fd_file(f), cmd, arg); if (!err) err = do_fcntl(fd, cmd, arg, fd_file(f)); return err; } #if BITS_PER_LONG == 32 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, unsigned long, arg) { void __user *argp = (void __user *)arg; CLASS(fd_raw, f)(fd); struct flock64 flock; long err; if (fd_empty(f)) return -EBADF; if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) return -EBADF; } err = security_file_fcntl(fd_file(f), cmd, arg); if (err) return err; switch (cmd) { case F_GETLK64: case F_OFD_GETLK: err = -EFAULT; if (copy_from_user(&flock, argp, sizeof(flock))) break; err = fcntl_getlk64(fd_file(f), cmd, &flock); if (!err && copy_to_user(argp, &flock, sizeof(flock))) err = -EFAULT; break; case F_SETLK64: case F_SETLKW64: case F_OFD_SETLK: case F_OFD_SETLKW: err = -EFAULT; if (copy_from_user(&flock, argp, sizeof(flock))) break; err = fcntl_setlk64(fd, fd_file(f), cmd, &flock); break; default: err = do_fcntl(fd, cmd, arg, fd_file(f)); break; } return err; } #endif #ifdef CONFIG_COMPAT /* careful - don't use anywhere else */ #define copy_flock_fields(dst, src) \ (dst)->l_type = (src)->l_type; \ (dst)->l_whence = (src)->l_whence; \ (dst)->l_start = (src)->l_start; \ (dst)->l_len = (src)->l_len; \ (dst)->l_pid = (src)->l_pid; static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) { struct compat_flock fl; if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) return -EFAULT; copy_flock_fields(kfl, &fl); return 0; } static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) { struct compat_flock64 fl; if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) return -EFAULT; copy_flock_fields(kfl, &fl); return 0; } static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) { struct compat_flock fl; memset(&fl, 0, sizeof(struct compat_flock)); copy_flock_fields(&fl, kfl); if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) return -EFAULT; return 0; } static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) { struct compat_flock64 fl; BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); memset(&fl, 0, sizeof(struct compat_flock64)); copy_flock_fields(&fl, kfl); if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) return -EFAULT; return 0; } #undef copy_flock_fields static unsigned int convert_fcntl_cmd(unsigned int cmd) { switch (cmd) { case F_GETLK64: return F_GETLK; case F_SETLK64: return F_SETLK; case F_SETLKW64: return F_SETLKW; } return cmd; } /* * GETLK was successful and we need to return the data, but it needs to fit in * the compat structure. * l_start shouldn't be too big, unless the original start + end is greater than * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return * -EOVERFLOW in that case. l_len could be too big, in which case we just * truncate it, and only allow the app to see that part of the conflicting lock * that might make sense to it anyway */ static int fixup_compat_flock(struct flock *flock) { if (flock->l_start > COMPAT_OFF_T_MAX) return -EOVERFLOW; if (flock->l_len > COMPAT_OFF_T_MAX) flock->l_len = COMPAT_OFF_T_MAX; return 0; } static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg) { CLASS(fd_raw, f)(fd); struct flock flock; long err; if (fd_empty(f)) return -EBADF; if (unlikely(fd_file(f)->f_mode & FMODE_PATH)) { if (!check_fcntl_cmd(cmd)) return -EBADF; } err = security_file_fcntl(fd_file(f), cmd, arg); if (err) return err; switch (cmd) { case F_GETLK: err = get_compat_flock(&flock, compat_ptr(arg)); if (err) break; err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); if (err) break; err = fixup_compat_flock(&flock); if (!err) err = put_compat_flock(&flock, compat_ptr(arg)); break; case F_GETLK64: case F_OFD_GETLK: err = get_compat_flock64(&flock, compat_ptr(arg)); if (err) break; err = fcntl_getlk(fd_file(f), convert_fcntl_cmd(cmd), &flock); if (!err) err = put_compat_flock64(&flock, compat_ptr(arg)); break; case F_SETLK: case F_SETLKW: err = get_compat_flock(&flock, compat_ptr(arg)); if (err) break; err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); break; case F_SETLK64: case F_SETLKW64: case F_OFD_SETLK: case F_OFD_SETLKW: err = get_compat_flock64(&flock, compat_ptr(arg)); if (err) break; err = fcntl_setlk(fd, fd_file(f), convert_fcntl_cmd(cmd), &flock); break; default: err = do_fcntl(fd, cmd, arg, fd_file(f)); break; } return err; } COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, compat_ulong_t, arg) { return do_compat_fcntl64(fd, cmd, arg); } COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, compat_ulong_t, arg) { switch (cmd) { case F_GETLK64: case F_SETLK64: case F_SETLKW64: case F_OFD_GETLK: case F_OFD_SETLK: case F_OFD_SETLKW: return -EINVAL; } return do_compat_fcntl64(fd, cmd, arg); } #endif /* Table to convert sigio signal codes into poll band bitmaps */ static const __poll_t band_table[NSIGPOLL] = { EPOLLIN | EPOLLRDNORM, /* POLL_IN */ EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ EPOLLERR, /* POLL_ERR */ EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ EPOLLHUP | EPOLLERR /* POLL_HUP */ }; static inline int sigio_perm(struct task_struct *p, struct fown_struct *fown, int sig) { const struct cred *cred; int ret; rcu_read_lock(); cred = __task_cred(p); ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && !security_file_send_sigiotask(p, fown, sig)); rcu_read_unlock(); return ret; } static void send_sigio_to_task(struct task_struct *p, struct fown_struct *fown, int fd, int reason, enum pid_type type) { /* * F_SETSIG can change ->signum lockless in parallel, make * sure we read it once and use the same value throughout. */ int signum = READ_ONCE(fown->signum); if (!sigio_perm(p, fown, signum)) return; switch (signum) { default: { kernel_siginfo_t si; /* Queue a rt signal with the appropriate fd as its value. We use SI_SIGIO as the source, not SI_KERNEL, since kernel signals always get delivered even if we can't queue. Failure to queue in this case _should_ be reported; we fall back to SIGIO in that case. --sct */ clear_siginfo(&si); si.si_signo = signum; si.si_errno = 0; si.si_code = reason; /* * Posix definies POLL_IN and friends to be signal * specific si_codes for SIG_POLL. Linux extended * these si_codes to other signals in a way that is * ambiguous if other signals also have signal * specific si_codes. In that case use SI_SIGIO instead * to remove the ambiguity. */ if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) si.si_code = SI_SIGIO; /* Make sure we are called with one of the POLL_* reasons, otherwise we could leak kernel stack into userspace. */ BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); if (reason - POLL_IN >= NSIGPOLL) si.si_band = ~0L; else si.si_band = mangle_poll(band_table[reason - POLL_IN]); si.si_fd = fd; if (!do_send_sig_info(signum, &si, p, type)) break; } fallthrough; /* fall back on the old plain SIGIO signal */ case 0: do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); } } void send_sigio(struct fown_struct *fown, int fd, int band) { struct task_struct *p; enum pid_type type; unsigned long flags; struct pid *pid; read_lock_irqsave(&fown->lock, flags); type = fown->pid_type; pid = fown->pid; if (!pid) goto out_unlock_fown; if (type <= PIDTYPE_TGID) { rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (p) send_sigio_to_task(p, fown, fd, band, type); rcu_read_unlock(); } else { read_lock(&tasklist_lock); do_each_pid_task(pid, type, p) { send_sigio_to_task(p, fown, fd, band, type); } while_each_pid_task(pid, type, p); read_unlock(&tasklist_lock); } out_unlock_fown: read_unlock_irqrestore(&fown->lock, flags); } static void send_sigurg_to_task(struct task_struct *p, struct fown_struct *fown, enum pid_type type) { if (sigio_perm(p, fown, SIGURG)) do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); } int send_sigurg(struct file *file) { struct fown_struct *fown; struct task_struct *p; enum pid_type type; struct pid *pid; unsigned long flags; int ret = 0; fown = file_f_owner(file); if (!fown) return 0; read_lock_irqsave(&fown->lock, flags); type = fown->pid_type; pid = fown->pid; if (!pid) goto out_unlock_fown; ret = 1; if (type <= PIDTYPE_TGID) { rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (p) send_sigurg_to_task(p, fown, type); rcu_read_unlock(); } else { read_lock(&tasklist_lock); do_each_pid_task(pid, type, p) { send_sigurg_to_task(p, fown, type); } while_each_pid_task(pid, type, p); read_unlock(&tasklist_lock); } out_unlock_fown: read_unlock_irqrestore(&fown->lock, flags); return ret; } static DEFINE_SPINLOCK(fasync_lock); static struct kmem_cache *fasync_cache __ro_after_init; /* * Remove a fasync entry. If successfully removed, return * positive and clear the FASYNC flag. If no entry exists, * do nothing and return 0. * * NOTE! It is very important that the FASYNC flag always * match the state "is the filp on a fasync list". * */ int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) { struct fasync_struct *fa, **fp; int result = 0; spin_lock(&filp->f_lock); spin_lock(&fasync_lock); for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { if (fa->fa_file != filp) continue; write_lock_irq(&fa->fa_lock); fa->fa_file = NULL; write_unlock_irq(&fa->fa_lock); *fp = fa->fa_next; kfree_rcu(fa, fa_rcu); filp->f_flags &= ~FASYNC; result = 1; break; } spin_unlock(&fasync_lock); spin_unlock(&filp->f_lock); return result; } struct fasync_struct *fasync_alloc(void) { return kmem_cache_alloc(fasync_cache, GFP_KERNEL); } /* * NOTE! This can be used only for unused fasync entries: * entries that actually got inserted on the fasync list * need to be released by rcu - see fasync_remove_entry. */ void fasync_free(struct fasync_struct *new) { kmem_cache_free(fasync_cache, new); } /* * Insert a new entry into the fasync list. Return the pointer to the * old one if we didn't use the new one. * * NOTE! It is very important that the FASYNC flag always * match the state "is the filp on a fasync list". */ struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) { struct fasync_struct *fa, **fp; spin_lock(&filp->f_lock); spin_lock(&fasync_lock); for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { if (fa->fa_file != filp) continue; write_lock_irq(&fa->fa_lock); fa->fa_fd = fd; write_unlock_irq(&fa->fa_lock); goto out; } rwlock_init(&new->fa_lock); new->magic = FASYNC_MAGIC; new->fa_file = filp; new->fa_fd = fd; new->fa_next = *fapp; rcu_assign_pointer(*fapp, new); filp->f_flags |= FASYNC; out: spin_unlock(&fasync_lock); spin_unlock(&filp->f_lock); return fa; } /* * Add a fasync entry. Return negative on error, positive if * added, and zero if did nothing but change an existing one. */ static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) { struct fasync_struct *new; new = fasync_alloc(); if (!new) return -ENOMEM; /* * fasync_insert_entry() returns the old (update) entry if * it existed. * * So free the (unused) new entry and return 0 to let the * caller know that we didn't add any new fasync entries. */ if (fasync_insert_entry(fd, filp, fapp, new)) { fasync_free(new); return 0; } return 1; } /* * fasync_helper() is used by almost all character device drivers * to set up the fasync queue, and for regular files by the file * lease code. It returns negative on error, 0 if it did no changes * and positive if it added/deleted the entry. */ int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) { if (!on) return fasync_remove_entry(filp, fapp); return fasync_add_entry(fd, filp, fapp); } EXPORT_SYMBOL(fasync_helper); /* * rcu_read_lock() is held */ static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) { while (fa) { struct fown_struct *fown; unsigned long flags; if (fa->magic != FASYNC_MAGIC) { printk(KERN_ERR "kill_fasync: bad magic number in " "fasync_struct!\n"); return; } read_lock_irqsave(&fa->fa_lock, flags); if (fa->fa_file) { fown = file_f_owner(fa->fa_file); if (!fown) goto next; /* Don't send SIGURG to processes which have not set a queued signum: SIGURG has its own default signalling mechanism. */ if (!(sig == SIGURG && fown->signum == 0)) send_sigio(fown, fa->fa_fd, band); } next: read_unlock_irqrestore(&fa->fa_lock, flags); fa = rcu_dereference(fa->fa_next); } } void kill_fasync(struct fasync_struct **fp, int sig, int band) { /* First a quick test without locking: usually * the list is empty. */ if (*fp) { rcu_read_lock(); kill_fasync_rcu(rcu_dereference(*fp), sig, band); rcu_read_unlock(); } } EXPORT_SYMBOL(kill_fasync); static int __init fcntl_init(void) { /* * Please add new bits here to ensure allocation uniqueness. * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY * is defined as O_NONBLOCK on some platforms and not on others. */ BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | __FMODE_EXEC | __FMODE_NONOTIFY)); fasync_cache = kmem_cache_create("fasync_cache", sizeof(struct fasync_struct), 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); return 0; } module_init(fcntl_init) |
| 69 76 37 3 54 31 2 29 90 90 87 87 55 56 56 45 45 96 68 100 69 18 1 15 22 62 23 24 62 62 55 37 2 37 37 37 37 45 52 53 22 86 87 37 86 43 43 3 43 3 41 44 19 11 1 35 45 42 4 30 84 45 122 106 70 2 100 83 1 46 10 77 100 63 76 87 43 37 37 83 6 20 15 16 16 2 2 77 77 104 104 63 45 77 43 107 10 101 101 55 52 52 55 55 1 37 37 37 80 2 19 43 83 2 83 20 9 5 5 6 3 2 1 2 3 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 | /* * net/tipc/group.c: TIPC group messaging code * * Copyright (c) 2017, Ericsson AB * Copyright (c) 2020, Red Hat Inc * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "core.h" #include "addr.h" #include "group.h" #include "bcast.h" #include "topsrv.h" #include "msg.h" #include "socket.h" #include "node.h" #include "name_table.h" #include "subscr.h" #define ADV_UNIT (((MAX_MSG_SIZE + MAX_H_SIZE) / FLOWCTL_BLK_SZ) + 1) #define ADV_IDLE ADV_UNIT #define ADV_ACTIVE (ADV_UNIT * 12) enum mbr_state { MBR_JOINING, MBR_PUBLISHED, MBR_JOINED, MBR_PENDING, MBR_ACTIVE, MBR_RECLAIMING, MBR_REMITTED, MBR_LEAVING }; struct tipc_member { struct rb_node tree_node; struct list_head list; struct list_head small_win; struct sk_buff_head deferredq; struct tipc_group *group; u32 node; u32 port; u32 instance; enum mbr_state state; u16 advertised; u16 window; u16 bc_rcv_nxt; u16 bc_syncpt; u16 bc_acked; }; struct tipc_group { struct rb_root members; struct list_head small_win; struct list_head pending; struct list_head active; struct tipc_nlist dests; struct net *net; int subid; u32 type; u32 instance; u32 scope; u32 portid; u16 member_cnt; u16 active_cnt; u16 max_active; u16 bc_snd_nxt; u16 bc_ackers; bool *open; bool loopback; bool events; }; static void tipc_group_proto_xmit(struct tipc_group *grp, struct tipc_member *m, int mtyp, struct sk_buff_head *xmitq); static void tipc_group_open(struct tipc_member *m, bool *wakeup) { *wakeup = false; if (list_empty(&m->small_win)) return; list_del_init(&m->small_win); *m->group->open = true; *wakeup = true; } static void tipc_group_decr_active(struct tipc_group *grp, struct tipc_member *m) { if (m->state == MBR_ACTIVE || m->state == MBR_RECLAIMING || m->state == MBR_REMITTED) grp->active_cnt--; } static int tipc_group_rcvbuf_limit(struct tipc_group *grp) { int max_active, active_pool, idle_pool; int mcnt = grp->member_cnt + 1; /* Limit simultaneous reception from other members */ max_active = min(mcnt / 8, 64); max_active = max(max_active, 16); grp->max_active = max_active; /* Reserve blocks for active and idle members */ active_pool = max_active * ADV_ACTIVE; idle_pool = (mcnt - max_active) * ADV_IDLE; /* Scale to bytes, considering worst-case truesize/msgsize ratio */ return (active_pool + idle_pool) * FLOWCTL_BLK_SZ * 4; } u16 tipc_group_bc_snd_nxt(struct tipc_group *grp) { return grp->bc_snd_nxt; } static bool tipc_group_is_receiver(struct tipc_member *m) { return m && m->state != MBR_JOINING && m->state != MBR_LEAVING; } static bool tipc_group_is_sender(struct tipc_member *m) { return m && m->state != MBR_JOINING && m->state != MBR_PUBLISHED; } u32 tipc_group_exclude(struct tipc_group *grp) { if (!grp->loopback) return grp->portid; return 0; } struct tipc_group *tipc_group_create(struct net *net, u32 portid, struct tipc_group_req *mreq, bool *group_is_open) { u32 filter = TIPC_SUB_PORTS | TIPC_SUB_NO_STATUS; bool global = mreq->scope != TIPC_NODE_SCOPE; struct tipc_group *grp; u32 type = mreq->type; grp = kzalloc(sizeof(*grp), GFP_ATOMIC); if (!grp) return NULL; tipc_nlist_init(&grp->dests, tipc_own_addr(net)); INIT_LIST_HEAD(&grp->small_win); INIT_LIST_HEAD(&grp->active); INIT_LIST_HEAD(&grp->pending); grp->members = RB_ROOT; grp->net = net; grp->portid = portid; grp->type = type; grp->instance = mreq->instance; grp->scope = mreq->scope; grp->loopback = mreq->flags & TIPC_GROUP_LOOPBACK; grp->events = mreq->flags & TIPC_GROUP_MEMBER_EVTS; grp->open = group_is_open; *grp->open = false; filter |= global ? TIPC_SUB_CLUSTER_SCOPE : TIPC_SUB_NODE_SCOPE; if (tipc_topsrv_kern_subscr(net, portid, type, 0, ~0, filter, &grp->subid)) return grp; kfree(grp); return NULL; } void tipc_group_join(struct net *net, struct tipc_group *grp, int *sk_rcvbuf) { struct rb_root *tree = &grp->members; struct tipc_member *m, *tmp; struct sk_buff_head xmitq; __skb_queue_head_init(&xmitq); rbtree_postorder_for_each_entry_safe(m, tmp, tree, tree_node) { tipc_group_proto_xmit(grp, m, GRP_JOIN_MSG, &xmitq); tipc_group_update_member(m, 0); } tipc_node_distr_xmit(net, &xmitq); *sk_rcvbuf = tipc_group_rcvbuf_limit(grp); } void tipc_group_delete(struct net *net, struct tipc_group *grp) { struct rb_root *tree = &grp->members; struct tipc_member *m, *tmp; struct sk_buff_head xmitq; __skb_queue_head_init(&xmitq); rbtree_postorder_for_each_entry_safe(m, tmp, tree, tree_node) { tipc_group_proto_xmit(grp, m, GRP_LEAVE_MSG, &xmitq); __skb_queue_purge(&m->deferredq); list_del(&m->list); kfree(m); } tipc_node_distr_xmit(net, &xmitq); tipc_nlist_purge(&grp->dests); tipc_topsrv_kern_unsubscr(net, grp->subid); kfree(grp); } static struct tipc_member *tipc_group_find_member(struct tipc_group *grp, u32 node, u32 port) { struct rb_node *n = grp->members.rb_node; u64 nkey, key = (u64)node << 32 | port; struct tipc_member *m; while (n) { m = container_of(n, struct tipc_member, tree_node); nkey = (u64)m->node << 32 | m->port; if (key < nkey) n = n->rb_left; else if (key > nkey) n = n->rb_right; else return m; } return NULL; } static struct tipc_member *tipc_group_find_dest(struct tipc_group *grp, u32 node, u32 port) { struct tipc_member *m; m = tipc_group_find_member(grp, node, port); if (m && tipc_group_is_receiver(m)) return m; return NULL; } static struct tipc_member *tipc_group_find_node(struct tipc_group *grp, u32 node) { struct tipc_member *m; struct rb_node *n; for (n = rb_first(&grp->members); n; n = rb_next(n)) { m = container_of(n, struct tipc_member, tree_node); if (m->node == node) return m; } return NULL; } static int tipc_group_add_to_tree(struct tipc_group *grp, struct tipc_member *m) { u64 nkey, key = (u64)m->node << 32 | m->port; struct rb_node **n, *parent = NULL; struct tipc_member *tmp; n = &grp->members.rb_node; while (*n) { tmp = container_of(*n, struct tipc_member, tree_node); parent = *n; tmp = container_of(parent, struct tipc_member, tree_node); nkey = (u64)tmp->node << 32 | tmp->port; if (key < nkey) n = &(*n)->rb_left; else if (key > nkey) n = &(*n)->rb_right; else return -EEXIST; } rb_link_node(&m->tree_node, parent, n); rb_insert_color(&m->tree_node, &grp->members); return 0; } static struct tipc_member *tipc_group_create_member(struct tipc_group *grp, u32 node, u32 port, u32 instance, int state) { struct tipc_member *m; int ret; m = kzalloc(sizeof(*m), GFP_ATOMIC); if (!m) return NULL; INIT_LIST_HEAD(&m->list); INIT_LIST_HEAD(&m->small_win); __skb_queue_head_init(&m->deferredq); m->group = grp; m->node = node; m->port = port; m->instance = instance; m->bc_acked = grp->bc_snd_nxt - 1; ret = tipc_group_add_to_tree(grp, m); if (ret < 0) { kfree(m); return NULL; } grp->member_cnt++; tipc_nlist_add(&grp->dests, m->node); m->state = state; return m; } void tipc_group_add_member(struct tipc_group *grp, u32 node, u32 port, u32 instance) { tipc_group_create_member(grp, node, port, instance, MBR_PUBLISHED); } static void tipc_group_delete_member(struct tipc_group *grp, struct tipc_member *m) { rb_erase(&m->tree_node, &grp->members); grp->member_cnt--; /* Check if we were waiting for replicast ack from this member */ if (grp->bc_ackers && less(m->bc_acked, grp->bc_snd_nxt - 1)) grp->bc_ackers--; list_del_init(&m->list); list_del_init(&m->small_win); tipc_group_decr_active(grp, m); /* If last member on a node, remove node from dest list */ if (!tipc_group_find_node(grp, m->node)) tipc_nlist_del(&grp->dests, m->node); kfree(m); } struct tipc_nlist *tipc_group_dests(struct tipc_group *grp) { return &grp->dests; } void tipc_group_self(struct tipc_group *grp, struct tipc_service_range *seq, int *scope) { seq->type = grp->type; seq->lower = grp->instance; seq->upper = grp->instance; *scope = grp->scope; } void tipc_group_update_member(struct tipc_member *m, int len) { struct tipc_group *grp = m->group; struct tipc_member *_m, *tmp; if (!tipc_group_is_receiver(m)) return; m->window -= len; if (m->window >= ADV_IDLE) return; list_del_init(&m->small_win); /* Sort member into small_window members' list */ list_for_each_entry_safe(_m, tmp, &grp->small_win, small_win) { if (_m->window > m->window) break; } list_add_tail(&m->small_win, &_m->small_win); } void tipc_group_update_bc_members(struct tipc_group *grp, int len, bool ack) { u16 prev = grp->bc_snd_nxt - 1; struct tipc_member *m; struct rb_node *n; u16 ackers = 0; for (n = rb_first(&grp->members); n; n = rb_next(n)) { m = container_of(n, struct tipc_member, tree_node); if (tipc_group_is_receiver(m)) { tipc_group_update_member(m, len); m->bc_acked = prev; ackers++; } } /* Mark number of acknowledges to expect, if any */ if (ack) grp->bc_ackers = ackers; grp->bc_snd_nxt++; } bool tipc_group_cong(struct tipc_group *grp, u32 dnode, u32 dport, int len, struct tipc_member **mbr) { struct sk_buff_head xmitq; struct tipc_member *m; int adv, state; m = tipc_group_find_dest(grp, dnode, dport); if (!tipc_group_is_receiver(m)) { *mbr = NULL; return false; } *mbr = m; if (m->window >= len) return false; *grp->open = false; /* If not fully advertised, do it now to prevent mutual blocking */ adv = m->advertised; state = m->state; if (state == MBR_JOINED && adv == ADV_IDLE) return true; if (state == MBR_ACTIVE && adv == ADV_ACTIVE) return true; if (state == MBR_PENDING && adv == ADV_IDLE) return true; __skb_queue_head_init(&xmitq); tipc_group_proto_xmit(grp, m, GRP_ADV_MSG, &xmitq); tipc_node_distr_xmit(grp->net, &xmitq); return true; } bool tipc_group_bc_cong(struct tipc_group *grp, int len) { struct tipc_member *m = NULL; /* If prev bcast was replicast, reject until all receivers have acked */ if (grp->bc_ackers) { *grp->open = false; return true; } if (list_empty(&grp->small_win)) return false; m = list_first_entry(&grp->small_win, struct tipc_member, small_win); if (m->window >= len) return false; return tipc_group_cong(grp, m->node, m->port, len, &m); } /* tipc_group_sort_msg() - sort msg into queue by bcast sequence number */ static void tipc_group_sort_msg(struct sk_buff *skb, struct sk_buff_head *defq) { struct tipc_msg *_hdr, *hdr = buf_msg(skb); u16 bc_seqno = msg_grp_bc_seqno(hdr); struct sk_buff *_skb, *tmp; int mtyp = msg_type(hdr); /* Bcast/mcast may be bypassed by ucast or other bcast, - sort it in */ if (mtyp == TIPC_GRP_BCAST_MSG || mtyp == TIPC_GRP_MCAST_MSG) { skb_queue_walk_safe(defq, _skb, tmp) { _hdr = buf_msg(_skb); if (!less(bc_seqno, msg_grp_bc_seqno(_hdr))) continue; __skb_queue_before(defq, _skb, skb); return; } /* Bcast was not bypassed, - add to tail */ } /* Unicasts are never bypassed, - always add to tail */ __skb_queue_tail(defq, skb); } /* tipc_group_filter_msg() - determine if we should accept arriving message */ void tipc_group_filter_msg(struct tipc_group *grp, struct sk_buff_head *inputq, struct sk_buff_head *xmitq) { struct sk_buff *skb = __skb_dequeue(inputq); bool ack, deliver, update, leave = false; struct sk_buff_head *defq; struct tipc_member *m; struct tipc_msg *hdr; u32 node, port; int mtyp, blks; if (!skb) return; hdr = buf_msg(skb); node = msg_orignode(hdr); port = msg_origport(hdr); if (!msg_in_group(hdr)) goto drop; m = tipc_group_find_member(grp, node, port); if (!tipc_group_is_sender(m)) goto drop; if (less(msg_grp_bc_seqno(hdr), m->bc_rcv_nxt)) goto drop; TIPC_SKB_CB(skb)->orig_member = m->instance; defq = &m->deferredq; tipc_group_sort_msg(skb, defq); while ((skb = skb_peek(defq))) { hdr = buf_msg(skb); mtyp = msg_type(hdr); blks = msg_blocks(hdr); deliver = true; ack = false; update = false; if (more(msg_grp_bc_seqno(hdr), m->bc_rcv_nxt)) break; /* Decide what to do with message */ switch (mtyp) { case TIPC_GRP_MCAST_MSG: if (msg_nameinst(hdr) != grp->instance) { update = true; deliver = false; } fallthrough; case TIPC_GRP_BCAST_MSG: m->bc_rcv_nxt++; ack = msg_grp_bc_ack_req(hdr); break; case TIPC_GRP_UCAST_MSG: break; case TIPC_GRP_MEMBER_EVT: if (m->state == MBR_LEAVING) leave = true; if (!grp->events) deliver = false; break; default: break; } /* Execute decisions */ __skb_dequeue(defq); if (deliver) __skb_queue_tail(inputq, skb); else kfree_skb(skb); if (ack) tipc_group_proto_xmit(grp, m, GRP_ACK_MSG, xmitq); if (leave) { __skb_queue_purge(defq); tipc_group_delete_member(grp, m); break; } if (!update) continue; tipc_group_update_rcv_win(grp, blks, node, port, xmitq); } return; drop: kfree_skb(skb); } void tipc_group_update_rcv_win(struct tipc_group *grp, int blks, u32 node, u32 port, struct sk_buff_head *xmitq) { struct list_head *active = &grp->active; int max_active = grp->max_active; int reclaim_limit = max_active * 3 / 4; int active_cnt = grp->active_cnt; struct tipc_member *m, *rm, *pm; m = tipc_group_find_member(grp, node, port); if (!m) return; m->advertised -= blks; switch (m->state) { case MBR_JOINED: /* First, decide if member can go active */ if (active_cnt <= max_active) { m->state = MBR_ACTIVE; list_add_tail(&m->list, active); grp->active_cnt++; tipc_group_proto_xmit(grp, m, GRP_ADV_MSG, xmitq); } else { m->state = MBR_PENDING; list_add_tail(&m->list, &grp->pending); } if (active_cnt < reclaim_limit) break; /* Reclaim from oldest active member, if possible */ if (!list_empty(active)) { rm = list_first_entry(active, struct tipc_member, list); rm->state = MBR_RECLAIMING; list_del_init(&rm->list); tipc_group_proto_xmit(grp, rm, GRP_RECLAIM_MSG, xmitq); break; } /* Nobody to reclaim from; - revert oldest pending to JOINED */ pm = list_first_entry(&grp->pending, struct tipc_member, list); list_del_init(&pm->list); pm->state = MBR_JOINED; tipc_group_proto_xmit(grp, pm, GRP_ADV_MSG, xmitq); break; case MBR_ACTIVE: if (!list_is_last(&m->list, &grp->active)) list_move_tail(&m->list, &grp->active); if (m->advertised > (ADV_ACTIVE * 3 / 4)) break; tipc_group_proto_xmit(grp, m, GRP_ADV_MSG, xmitq); break; case MBR_REMITTED: if (m->advertised > ADV_IDLE) break; m->state = MBR_JOINED; grp->active_cnt--; if (m->advertised < ADV_IDLE) { pr_warn_ratelimited("Rcv unexpected msg after REMIT\n"); tipc_group_proto_xmit(grp, m, GRP_ADV_MSG, xmitq); } if (list_empty(&grp->pending)) return; /* Set oldest pending member to active and advertise */ pm = list_first_entry(&grp->pending, struct tipc_member, list); pm->state = MBR_ACTIVE; list_move_tail(&pm->list, &grp->active); grp->active_cnt++; tipc_group_proto_xmit(grp, pm, GRP_ADV_MSG, xmitq); break; case MBR_RECLAIMING: case MBR_JOINING: case MBR_LEAVING: default: break; } } static void tipc_group_create_event(struct tipc_group *grp, struct tipc_member *m, u32 event, u16 seqno, struct sk_buff_head *inputq) { u32 dnode = tipc_own_addr(grp->net); struct tipc_event evt; struct sk_buff *skb; struct tipc_msg *hdr; memset(&evt, 0, sizeof(evt)); evt.event = event; evt.found_lower = m->instance; evt.found_upper = m->instance; evt.port.ref = m->port; evt.port.node = m->node; evt.s.seq.type = grp->type; evt.s.seq.lower = m->instance; evt.s.seq.upper = m->instance; skb = tipc_msg_create(TIPC_CRITICAL_IMPORTANCE, TIPC_GRP_MEMBER_EVT, GROUP_H_SIZE, sizeof(evt), dnode, m->node, grp->portid, m->port, 0); if (!skb) return; hdr = buf_msg(skb); msg_set_nametype(hdr, grp->type); msg_set_grp_evt(hdr, event); msg_set_dest_droppable(hdr, true); msg_set_grp_bc_seqno(hdr, seqno); memcpy(msg_data(hdr), &evt, sizeof(evt)); TIPC_SKB_CB(skb)->orig_member = m->instance; __skb_queue_tail(inputq, skb); } static void tipc_group_proto_xmit(struct tipc_group *grp, struct tipc_member *m, int mtyp, struct sk_buff_head *xmitq) { struct tipc_msg *hdr; struct sk_buff *skb; int adv = 0; skb = tipc_msg_create(GROUP_PROTOCOL, mtyp, INT_H_SIZE, 0, m->node, tipc_own_addr(grp->net), m->port, grp->portid, 0); if (!skb) return; if (m->state == MBR_ACTIVE) adv = ADV_ACTIVE - m->advertised; else if (m->state == MBR_JOINED || m->state == MBR_PENDING) adv = ADV_IDLE - m->advertised; hdr = buf_msg(skb); if (mtyp == GRP_JOIN_MSG) { msg_set_grp_bc_syncpt(hdr, grp->bc_snd_nxt); msg_set_adv_win(hdr, adv); m->advertised += adv; } else if (mtyp == GRP_LEAVE_MSG) { msg_set_grp_bc_syncpt(hdr, grp->bc_snd_nxt); } else if (mtyp == GRP_ADV_MSG) { msg_set_adv_win(hdr, adv); m->advertised += adv; } else if (mtyp == GRP_ACK_MSG) { msg_set_grp_bc_acked(hdr, m->bc_rcv_nxt); } else if (mtyp == GRP_REMIT_MSG) { msg_set_grp_remitted(hdr, m->window); } msg_set_dest_droppable(hdr, true); __skb_queue_tail(xmitq, skb); } void tipc_group_proto_rcv(struct tipc_group *grp, bool *usr_wakeup, struct tipc_msg *hdr, struct sk_buff_head *inputq, struct sk_buff_head *xmitq) { u32 node = msg_orignode(hdr); u32 port = msg_origport(hdr); struct tipc_member *m, *pm; u16 remitted, in_flight; if (!grp) return; if (grp->scope == TIPC_NODE_SCOPE && node != tipc_own_addr(grp->net)) return; m = tipc_group_find_member(grp, node, port); switch (msg_type(hdr)) { case GRP_JOIN_MSG: if (!m) m = tipc_group_create_member(grp, node, port, 0, MBR_JOINING); if (!m) return; m->bc_syncpt = msg_grp_bc_syncpt(hdr); m->bc_rcv_nxt = m->bc_syncpt; m->window += msg_adv_win(hdr); /* Wait until PUBLISH event is received if necessary */ if (m->state != MBR_PUBLISHED) return; /* Member can be taken into service */ m->state = MBR_JOINED; tipc_group_open(m, usr_wakeup); tipc_group_update_member(m, 0); tipc_group_proto_xmit(grp, m, GRP_ADV_MSG, xmitq); tipc_group_create_event(grp, m, TIPC_PUBLISHED, m->bc_syncpt, inputq); return; case GRP_LEAVE_MSG: if (!m) return; m->bc_syncpt = msg_grp_bc_syncpt(hdr); list_del_init(&m->list); tipc_group_open(m, usr_wakeup); tipc_group_decr_active(grp, m); m->state = MBR_LEAVING; tipc_group_create_event(grp, m, TIPC_WITHDRAWN, m->bc_syncpt, inputq); return; case GRP_ADV_MSG: if (!m) return; m->window += msg_adv_win(hdr); tipc_group_open(m, usr_wakeup); return; case GRP_ACK_MSG: if (!m) return; m->bc_acked = msg_grp_bc_acked(hdr); if (--grp->bc_ackers) return; list_del_init(&m->small_win); *m->group->open = true; *usr_wakeup = true; tipc_group_update_member(m, 0); return; case GRP_RECLAIM_MSG: if (!m) return; tipc_group_proto_xmit(grp, m, GRP_REMIT_MSG, xmitq); m->window = ADV_IDLE; tipc_group_open(m, usr_wakeup); return; case GRP_REMIT_MSG: if (!m || m->state != MBR_RECLAIMING) return; remitted = msg_grp_remitted(hdr); /* Messages preceding the REMIT still in receive queue */ if (m->advertised > remitted) { m->state = MBR_REMITTED; in_flight = m->advertised - remitted; m->advertised = ADV_IDLE + in_flight; return; } /* This should never happen */ if (m->advertised < remitted) pr_warn_ratelimited("Unexpected REMIT msg\n"); /* All messages preceding the REMIT have been read */ m->state = MBR_JOINED; grp->active_cnt--; m->advertised = ADV_IDLE; /* Set oldest pending member to active and advertise */ if (list_empty(&grp->pending)) return; pm = list_first_entry(&grp->pending, struct tipc_member, list); pm->state = MBR_ACTIVE; list_move_tail(&pm->list, &grp->active); grp->active_cnt++; if (pm->advertised <= (ADV_ACTIVE * 3 / 4)) tipc_group_proto_xmit(grp, pm, GRP_ADV_MSG, xmitq); return; default: pr_warn("Received unknown GROUP_PROTO message\n"); } } /* tipc_group_member_evt() - receive and handle a member up/down event */ void tipc_group_member_evt(struct tipc_group *grp, bool *usr_wakeup, int *sk_rcvbuf, struct tipc_msg *hdr, struct sk_buff_head *inputq, struct sk_buff_head *xmitq) { struct tipc_event *evt = (void *)msg_data(hdr); u32 instance = evt->found_lower; u32 node = evt->port.node; u32 port = evt->port.ref; int event = evt->event; struct tipc_member *m; struct net *net; u32 self; if (!grp) return; net = grp->net; self = tipc_own_addr(net); if (!grp->loopback && node == self && port == grp->portid) return; m = tipc_group_find_member(grp, node, port); switch (event) { case TIPC_PUBLISHED: /* Send and wait for arrival of JOIN message if necessary */ if (!m) { m = tipc_group_create_member(grp, node, port, instance, MBR_PUBLISHED); if (!m) break; tipc_group_update_member(m, 0); tipc_group_proto_xmit(grp, m, GRP_JOIN_MSG, xmitq); break; } if (m->state != MBR_JOINING) break; /* Member can be taken into service */ m->instance = instance; m->state = MBR_JOINED; tipc_group_open(m, usr_wakeup); tipc_group_update_member(m, 0); tipc_group_proto_xmit(grp, m, GRP_JOIN_MSG, xmitq); tipc_group_create_event(grp, m, TIPC_PUBLISHED, m->bc_syncpt, inputq); break; case TIPC_WITHDRAWN: if (!m) break; tipc_group_decr_active(grp, m); m->state = MBR_LEAVING; list_del_init(&m->list); tipc_group_open(m, usr_wakeup); /* Only send event if no LEAVE message can be expected */ if (!tipc_node_is_up(net, node)) tipc_group_create_event(grp, m, TIPC_WITHDRAWN, m->bc_rcv_nxt, inputq); break; default: break; } *sk_rcvbuf = tipc_group_rcvbuf_limit(grp); } int tipc_group_fill_sock_diag(struct tipc_group *grp, struct sk_buff *skb) { struct nlattr *group = nla_nest_start_noflag(skb, TIPC_NLA_SOCK_GROUP); if (!group) return -EMSGSIZE; if (nla_put_u32(skb, TIPC_NLA_SOCK_GROUP_ID, grp->type) || nla_put_u32(skb, TIPC_NLA_SOCK_GROUP_INSTANCE, grp->instance) || nla_put_u32(skb, TIPC_NLA_SOCK_GROUP_BC_SEND_NEXT, grp->bc_snd_nxt)) goto group_msg_cancel; if (grp->scope == TIPC_NODE_SCOPE) if (nla_put_flag(skb, TIPC_NLA_SOCK_GROUP_NODE_SCOPE)) goto group_msg_cancel; if (grp->scope == TIPC_CLUSTER_SCOPE) if (nla_put_flag(skb, TIPC_NLA_SOCK_GROUP_CLUSTER_SCOPE)) goto group_msg_cancel; if (*grp->open) if (nla_put_flag(skb, TIPC_NLA_SOCK_GROUP_OPEN)) goto group_msg_cancel; nla_nest_end(skb, group); return 0; group_msg_cancel: nla_nest_cancel(skb, group); return -1; } |
| 232 231 204 9 18 233 141 141 141 92 92 92 25 90 92 92 92 92 85 91 85 92 92 92 92 324 4 318 318 319 320 320 17 2 296 2 37 114 150 239 15 46 5 292 226 213 18 230 40 169 28 140 92 92 92 154 155 155 63 85 92 92 63 91 186 184 186 184 186 86 111 112 112 112 92 20 121 64 185 46 137 3 186 185 186 185 31 31 31 31 31 31 30 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 input * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Ian P. Morris <I.P.Morris@soton.ac.uk> * * Based in linux/net/ipv4/ip_input.c */ /* Changes * * Mitsuru KANDA @USAGI and * YOSHIFUJI Hideaki @USAGI: Remove ipv6_parse_exthdrs(). */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/icmpv6.h> #include <linux/mroute6.h> #include <linux/slab.h> #include <linux/indirect_call_wrapper.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/udp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/xfrm.h> #include <net/inet_ecn.h> #include <net/dst_metadata.h> static void ip6_rcv_finish_core(struct net *net, struct sock *sk, struct sk_buff *skb) { if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) && !skb_dst(skb) && !skb->sk) { switch (ipv6_hdr(skb)->nexthdr) { case IPPROTO_TCP: if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) tcp_v6_early_demux(skb); break; case IPPROTO_UDP: if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) udp_v6_early_demux(skb); break; } } if (!skb_valid_dst(skb)) ip6_route_input(skb); } int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) return NET_RX_SUCCESS; ip6_rcv_finish_core(net, sk, skb); return dst_input(skb); } static void ip6_sublist_rcv_finish(struct list_head *head) { struct sk_buff *skb, *next; list_for_each_entry_safe(skb, next, head, list) { skb_list_del_init(skb); dst_input(skb); } } static bool ip6_can_use_hint(const struct sk_buff *skb, const struct sk_buff *hint) { return hint && !skb_dst(skb) && ipv6_addr_equal(&ipv6_hdr(hint)->daddr, &ipv6_hdr(skb)->daddr); } static struct sk_buff *ip6_extract_route_hint(const struct net *net, struct sk_buff *skb) { if (fib6_routes_require_src(net) || fib6_has_custom_rules(net) || IP6CB(skb)->flags & IP6SKB_MULTIPATH) return NULL; return skb; } static void ip6_list_rcv_finish(struct net *net, struct sock *sk, struct list_head *head) { struct sk_buff *skb, *next, *hint = NULL; struct dst_entry *curr_dst = NULL; LIST_HEAD(sublist); list_for_each_entry_safe(skb, next, head, list) { struct dst_entry *dst; skb_list_del_init(skb); /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) continue; if (ip6_can_use_hint(skb, hint)) skb_dst_copy(skb, hint); else ip6_rcv_finish_core(net, sk, skb); dst = skb_dst(skb); if (curr_dst != dst) { hint = ip6_extract_route_hint(net, skb); /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv_finish(&sublist); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dst = dst; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ ip6_sublist_rcv_finish(&sublist); } static struct sk_buff *ip6_rcv_core(struct sk_buff *skb, struct net_device *dev, struct net *net) { enum skb_drop_reason reason; const struct ipv6hdr *hdr; u32 pkt_len; struct inet6_dev *idev; if (skb->pkt_type == PACKET_OTHERHOST) { dev_core_stats_rx_otherhost_dropped_inc(skb->dev); kfree_skb_reason(skb, SKB_DROP_REASON_OTHERHOST); return NULL; } rcu_read_lock(); idev = __in6_dev_get(skb->dev); __IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_IN, skb->len); SKB_DR_SET(reason, NOT_SPECIFIED); if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL || !idev || unlikely(READ_ONCE(idev->cnf.disable_ipv6))) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); if (idev && unlikely(READ_ONCE(idev->cnf.disable_ipv6))) SKB_DR_SET(reason, IPV6DISABLED); goto drop; } memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); /* * Store incoming device index. When the packet will * be queued, we cannot refer to skb->dev anymore. * * BTW, when we send a packet for our own local address on a * non-loopback interface (e.g. ethX), it is being delivered * via the loopback interface (lo) here; skb->dev = loopback_dev. * It, however, should be considered as if it is being * arrived via the sending interface (ethX), because of the * nature of scoping architecture. --yoshfuji */ IP6CB(skb)->iif = skb_valid_dst(skb) ? ip6_dst_idev(skb_dst(skb))->dev->ifindex : dev->ifindex; if (unlikely(!pskb_may_pull(skb, sizeof(*hdr)))) goto err; hdr = ipv6_hdr(skb); if (hdr->version != 6) { SKB_DR_SET(reason, UNHANDLED_PROTO); goto err; } __IP6_ADD_STATS(net, idev, IPSTATS_MIB_NOECTPKTS + (ipv6_get_dsfield(hdr) & INET_ECN_MASK), max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs)); /* * RFC4291 2.5.3 * The loopback address must not be used as the source address in IPv6 * packets that are sent outside of a single node. [..] * A packet received on an interface with a destination address * of loopback must be dropped. */ if ((ipv6_addr_loopback(&hdr->saddr) || ipv6_addr_loopback(&hdr->daddr)) && !(dev->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev)) goto err; /* RFC4291 Errata ID: 3480 * Interface-Local scope spans only a single interface on a * node and is useful only for loopback transmission of * multicast. Packets with interface-local scope received * from another node must be discarded. */ if (!(skb->pkt_type == PACKET_LOOPBACK || dev->flags & IFF_LOOPBACK) && ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 1) goto err; /* If enabled, drop unicast packets that were encapsulated in link-layer * multicast or broadcast to protected against the so-called "hole-196" * attack in 802.11 wireless. */ if (!ipv6_addr_is_multicast(&hdr->daddr) && (skb->pkt_type == PACKET_BROADCAST || skb->pkt_type == PACKET_MULTICAST) && READ_ONCE(idev->cnf.drop_unicast_in_l2_multicast)) { SKB_DR_SET(reason, UNICAST_IN_L2_MULTICAST); goto err; } /* RFC4291 2.7 * Nodes must not originate a packet to a multicast address whose scope * field contains the reserved value 0; if such a packet is received, it * must be silently dropped. */ if (ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 0) goto err; /* * RFC4291 2.7 * Multicast addresses must not be used as source addresses in IPv6 * packets or appear in any Routing header. */ if (ipv6_addr_is_multicast(&hdr->saddr)) goto err; skb->transport_header = skb->network_header + sizeof(*hdr); IP6CB(skb)->nhoff = offsetof(struct ipv6hdr, nexthdr); pkt_len = ntohs(hdr->payload_len); /* pkt_len may be zero if Jumbo payload option is present */ if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) { if (pkt_len + sizeof(struct ipv6hdr) > skb->len) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTRUNCATEDPKTS); SKB_DR_SET(reason, PKT_TOO_SMALL); goto drop; } if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr))) goto err; hdr = ipv6_hdr(skb); } if (hdr->nexthdr == NEXTHDR_HOP) { if (ipv6_parse_hopopts(skb) < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); rcu_read_unlock(); return NULL; } } rcu_read_unlock(); /* Must drop socket now because of tproxy. */ if (!skb_sk_is_prefetched(skb)) skb_orphan(skb); return skb; err: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); SKB_DR_OR(reason, IP_INHDR); drop: rcu_read_unlock(); kfree_skb_reason(skb, reason); return NULL; } int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct net *net = dev_net(skb->dev); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) return NET_RX_DROP; return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, skb, dev, NULL, ip6_rcv_finish); } static void ip6_sublist_rcv(struct list_head *head, struct net_device *dev, struct net *net) { NF_HOOK_LIST(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, head, dev, NULL, ip6_rcv_finish); ip6_list_rcv_finish(net, NULL, head); } /* Receive a list of IPv6 packets */ void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev) { struct net_device *curr_dev = NULL; struct net *curr_net = NULL; struct sk_buff *skb, *next; LIST_HEAD(sublist); list_for_each_entry_safe(skb, next, head, list) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); skb_list_del_init(skb); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) continue; if (curr_dev != dev || curr_net != net) { /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dev = dev; curr_net = net; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); } INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *)); /* * Deliver the packet to the host */ void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, bool have_final) { const struct inet6_protocol *ipprot; struct inet6_dev *idev; unsigned int nhoff; SKB_DR(reason); bool raw; /* * Parse extension headers */ resubmit: idev = ip6_dst_idev(skb_dst(skb)); nhoff = IP6CB(skb)->nhoff; if (!have_final) { if (!pskb_pull(skb, skb_transport_offset(skb))) goto discard; nexthdr = skb_network_header(skb)[nhoff]; } resubmit_final: raw = raw6_local_deliver(skb, nexthdr); ipprot = rcu_dereference(inet6_protos[nexthdr]); if (ipprot) { int ret; if (have_final) { if (!(ipprot->flags & INET6_PROTO_FINAL)) { /* Once we've seen a final protocol don't * allow encapsulation on any non-final * ones. This allows foo in UDP encapsulation * to work. */ goto discard; } } else if (ipprot->flags & INET6_PROTO_FINAL) { const struct ipv6hdr *hdr; int sdif = inet6_sdif(skb); struct net_device *dev; /* Only do this once for first final protocol */ have_final = true; skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); hdr = ipv6_hdr(skb); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { dev = dev_get_by_index_rcu(net, sdif); if (!dev) goto discard; } else { dev = skb->dev; } if (ipv6_addr_is_multicast(&hdr->daddr) && !ipv6_chk_mcast_addr(dev, &hdr->daddr, &hdr->saddr) && !ipv6_is_mld(skb, nexthdr, skb_network_header_len(skb))) { SKB_DR_SET(reason, IP_INADDRERRORS); goto discard; } } if (!(ipprot->flags & INET6_PROTO_NOPOLICY)) { if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { SKB_DR_SET(reason, XFRM_POLICY); goto discard; } nf_reset_ct(skb); } ret = INDIRECT_CALL_2(ipprot->handler, tcp_v6_rcv, udpv6_rcv, skb); if (ret > 0) { if (ipprot->flags & INET6_PROTO_FINAL) { /* Not an extension header, most likely UDP * encapsulation. Use return value as nexthdr * protocol not nhoff (which presumably is * not set by handler). */ nexthdr = ret; goto resubmit_final; } else { goto resubmit; } } else if (ret == 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); } } else { if (!raw) { if (xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INUNKNOWNPROTOS); icmpv6_send(skb, ICMPV6_PARAMPROB, ICMPV6_UNK_NEXTHDR, nhoff); SKB_DR_SET(reason, IP_NOPROTO); } else { SKB_DR_SET(reason, XFRM_POLICY); } kfree_skb_reason(skb, reason); } else { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); consume_skb(skb); } } return; discard: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); kfree_skb_reason(skb, reason); } static int ip6_input_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_clear_delivery_time(skb); rcu_read_lock(); ip6_protocol_deliver_rcu(net, skb, 0, false); rcu_read_unlock(); return 0; } int ip6_input(struct sk_buff *skb) { return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_IN, dev_net(skb->dev), NULL, skb, skb->dev, NULL, ip6_input_finish); } EXPORT_SYMBOL_GPL(ip6_input); int ip6_mc_input(struct sk_buff *skb) { int sdif = inet6_sdif(skb); const struct ipv6hdr *hdr; struct net_device *dev; bool deliver; __IP6_UPD_PO_STATS(dev_net(skb_dst(skb)->dev), __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INMCAST, skb->len); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { rcu_read_lock(); dev = dev_get_by_index_rcu(dev_net(skb->dev), sdif); if (!dev) { rcu_read_unlock(); kfree_skb(skb); return -ENODEV; } } else { dev = skb->dev; } hdr = ipv6_hdr(skb); deliver = ipv6_chk_mcast_addr(dev, &hdr->daddr, NULL); if (sdif) rcu_read_unlock(); #ifdef CONFIG_IPV6_MROUTE /* * IPv6 multicast router mode is now supported ;) */ if (atomic_read(&dev_net(skb->dev)->ipv6.devconf_all->mc_forwarding) && !(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)) && likely(!(IP6CB(skb)->flags & IP6SKB_FORWARDED))) { /* * Okay, we try to forward - split and duplicate * packets. */ struct sk_buff *skb2; struct inet6_skb_parm *opt = IP6CB(skb); /* Check for MLD */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { /* Check if this is a mld message */ u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; /* Check if the value of Router Alert * is for MLD (0x0000). */ if (opt->ra == htons(IPV6_OPT_ROUTERALERT_MLD)) { deliver = false; if (!ipv6_ext_hdr(nexthdr)) { /* BUG */ goto out; } offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) goto out; if (ipv6_is_mld(skb, nexthdr, offset)) deliver = true; goto out; } /* unknown RA - process it normally */ } if (deliver) skb2 = skb_clone(skb, GFP_ATOMIC); else { skb2 = skb; skb = NULL; } if (skb2) { ip6_mr_input(skb2); } } out: #endif if (likely(deliver)) ip6_input(skb); else { /* discard */ kfree_skb(skb); } return 0; } |
| 46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | // SPDX-License-Identifier: GPL-2.0 #include <net/genetlink.h> #include <net/netns/generic.h> #include <uapi/linux/genetlink.h> #include "ila.h" static const struct nla_policy ila_nl_policy[ILA_ATTR_MAX + 1] = { [ILA_ATTR_LOCATOR] = { .type = NLA_U64, }, [ILA_ATTR_LOCATOR_MATCH] = { .type = NLA_U64, }, [ILA_ATTR_IFINDEX] = { .type = NLA_U32, }, [ILA_ATTR_CSUM_MODE] = { .type = NLA_U8, }, [ILA_ATTR_IDENT_TYPE] = { .type = NLA_U8, }, }; static const struct genl_ops ila_nl_ops[] = { { .cmd = ILA_CMD_ADD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_add_mapping, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_del_mapping, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_FLUSH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_flush, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_get_mapping, .start = ila_xlat_nl_dump_start, .dumpit = ila_xlat_nl_dump, .done = ila_xlat_nl_dump_done, }, }; unsigned int ila_net_id; struct genl_family ila_nl_family __ro_after_init = { .hdrsize = 0, .name = ILA_GENL_NAME, .version = ILA_GENL_VERSION, .maxattr = ILA_ATTR_MAX, .policy = ila_nl_policy, .netnsok = true, .parallel_ops = true, .module = THIS_MODULE, .ops = ila_nl_ops, .n_ops = ARRAY_SIZE(ila_nl_ops), .resv_start_op = ILA_CMD_FLUSH + 1, }; static __net_init int ila_init_net(struct net *net) { int err; err = ila_xlat_init_net(net); if (err) goto ila_xlat_init_fail; return 0; ila_xlat_init_fail: return err; } static __net_exit void ila_pre_exit_net(struct net *net) { ila_xlat_pre_exit_net(net); } static __net_exit void ila_exit_net(struct net *net) { ila_xlat_exit_net(net); } static struct pernet_operations ila_net_ops = { .init = ila_init_net, .pre_exit = ila_pre_exit_net, .exit = ila_exit_net, .id = &ila_net_id, .size = sizeof(struct ila_net), }; static int __init ila_init(void) { int ret; ret = register_pernet_device(&ila_net_ops); if (ret) goto register_device_fail; ret = genl_register_family(&ila_nl_family); if (ret) goto register_family_fail; ret = ila_lwt_init(); if (ret) goto fail_lwt; return 0; fail_lwt: genl_unregister_family(&ila_nl_family); register_family_fail: unregister_pernet_device(&ila_net_ops); register_device_fail: return ret; } static void __exit ila_fini(void) { ila_lwt_fini(); genl_unregister_family(&ila_nl_family); unregister_pernet_device(&ila_net_ops); } module_init(ila_init); module_exit(ila_fini); MODULE_AUTHOR("Tom Herbert <tom@herbertland.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IPv6: Identifier Locator Addressing (ILA)"); |
| 1078 1076 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 | /* Copyright (c) 2018, Mellanox Technologies All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <crypto/aead.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/netdevice.h> #include <net/dst.h> #include <net/inet_connection_sock.h> #include <net/tcp.h> #include <net/tls.h> #include <linux/skbuff_ref.h> #include "tls.h" #include "trace.h" /* device_offload_lock is used to synchronize tls_dev_add * against NETDEV_DOWN notifications. */ static DECLARE_RWSEM(device_offload_lock); static struct workqueue_struct *destruct_wq __read_mostly; static LIST_HEAD(tls_device_list); static LIST_HEAD(tls_device_down_list); static DEFINE_SPINLOCK(tls_device_lock); static struct page *dummy_page; static void tls_device_free_ctx(struct tls_context *ctx) { if (ctx->tx_conf == TLS_HW) kfree(tls_offload_ctx_tx(ctx)); if (ctx->rx_conf == TLS_HW) kfree(tls_offload_ctx_rx(ctx)); tls_ctx_free(NULL, ctx); } static void tls_device_tx_del_task(struct work_struct *work) { struct tls_offload_context_tx *offload_ctx = container_of(work, struct tls_offload_context_tx, destruct_work); struct tls_context *ctx = offload_ctx->ctx; struct net_device *netdev; /* Safe, because this is the destroy flow, refcount is 0, so * tls_device_down can't store this field in parallel. */ netdev = rcu_dereference_protected(ctx->netdev, !refcount_read(&ctx->refcount)); netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); dev_put(netdev); ctx->netdev = NULL; tls_device_free_ctx(ctx); } static void tls_device_queue_ctx_destruction(struct tls_context *ctx) { struct net_device *netdev; unsigned long flags; bool async_cleanup; spin_lock_irqsave(&tls_device_lock, flags); if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { spin_unlock_irqrestore(&tls_device_lock, flags); return; } list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ /* Safe, because this is the destroy flow, refcount is 0, so * tls_device_down can't store this field in parallel. */ netdev = rcu_dereference_protected(ctx->netdev, !refcount_read(&ctx->refcount)); async_cleanup = netdev && ctx->tx_conf == TLS_HW; if (async_cleanup) { struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); /* queue_work inside the spinlock * to make sure tls_device_down waits for that work. */ queue_work(destruct_wq, &offload_ctx->destruct_work); } spin_unlock_irqrestore(&tls_device_lock, flags); if (!async_cleanup) tls_device_free_ctx(ctx); } /* We assume that the socket is already connected */ static struct net_device *get_netdev_for_sock(struct sock *sk) { struct dst_entry *dst = sk_dst_get(sk); struct net_device *netdev = NULL; if (likely(dst)) { netdev = netdev_sk_get_lowest_dev(dst->dev, sk); dev_hold(netdev); } dst_release(dst); return netdev; } static void destroy_record(struct tls_record_info *record) { int i; for (i = 0; i < record->num_frags; i++) __skb_frag_unref(&record->frags[i], false); kfree(record); } static void delete_all_records(struct tls_offload_context_tx *offload_ctx) { struct tls_record_info *info, *temp; list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { list_del(&info->list); destroy_record(info); } offload_ctx->retransmit_hint = NULL; } static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_record_info *info, *temp; struct tls_offload_context_tx *ctx; u64 deleted_records = 0; unsigned long flags; if (!tls_ctx) return; ctx = tls_offload_ctx_tx(tls_ctx); spin_lock_irqsave(&ctx->lock, flags); info = ctx->retransmit_hint; if (info && !before(acked_seq, info->end_seq)) ctx->retransmit_hint = NULL; list_for_each_entry_safe(info, temp, &ctx->records_list, list) { if (before(acked_seq, info->end_seq)) break; list_del(&info->list); destroy_record(info); deleted_records++; } ctx->unacked_record_sn += deleted_records; spin_unlock_irqrestore(&ctx->lock, flags); } /* At this point, there should be no references on this * socket and no in-flight SKBs associated with this * socket, so it is safe to free all the resources. */ void tls_device_sk_destruct(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); tls_ctx->sk_destruct(sk); if (tls_ctx->tx_conf == TLS_HW) { if (ctx->open_record) destroy_record(ctx->open_record); delete_all_records(ctx); crypto_free_aead(ctx->aead_send); clean_acked_data_disable(inet_csk(sk)); } tls_device_queue_ctx_destruction(tls_ctx); } EXPORT_SYMBOL_GPL(tls_device_sk_destruct); void tls_device_free_resources_tx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); tls_free_partial_record(sk, tls_ctx); } void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); } EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, u32 seq) { struct net_device *netdev; int err = 0; u8 *rcd_sn; tcp_write_collapse_fence(sk); rcd_sn = tls_ctx->tx.rec_seq; trace_tls_device_tx_resync_send(sk, seq, rcd_sn); down_read(&device_offload_lock); netdev = rcu_dereference_protected(tls_ctx->netdev, lockdep_is_held(&device_offload_lock)); if (netdev) err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, TLS_OFFLOAD_CTX_DIR_TX); up_read(&device_offload_lock); if (err) return; clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); } static void tls_append_frag(struct tls_record_info *record, struct page_frag *pfrag, int size) { skb_frag_t *frag; frag = &record->frags[record->num_frags - 1]; if (skb_frag_page(frag) == pfrag->page && skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { skb_frag_size_add(frag, size); } else { ++frag; skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, size); ++record->num_frags; get_page(pfrag->page); } pfrag->offset += size; record->len += size; } static int tls_push_record(struct sock *sk, struct tls_context *ctx, struct tls_offload_context_tx *offload_ctx, struct tls_record_info *record, int flags) { struct tls_prot_info *prot = &ctx->prot_info; struct tcp_sock *tp = tcp_sk(sk); skb_frag_t *frag; int i; record->end_seq = tp->write_seq + record->len; list_add_tail_rcu(&record->list, &offload_ctx->records_list); offload_ctx->open_record = NULL; if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) tls_device_resync_tx(sk, ctx, tp->write_seq); tls_advance_record_sn(sk, prot, &ctx->tx); for (i = 0; i < record->num_frags; i++) { frag = &record->frags[i]; sg_unmark_end(&offload_ctx->sg_tx_data[i]); sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), skb_frag_size(frag), skb_frag_off(frag)); sk_mem_charge(sk, skb_frag_size(frag)); get_page(skb_frag_page(frag)); } sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); /* all ready, send */ return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); } static void tls_device_record_close(struct sock *sk, struct tls_context *ctx, struct tls_record_info *record, struct page_frag *pfrag, unsigned char record_type) { struct tls_prot_info *prot = &ctx->prot_info; struct page_frag dummy_tag_frag; /* append tag * device will fill in the tag, we just need to append a placeholder * use socket memory to improve coalescing (re-using a single buffer * increases frag count) * if we can't allocate memory now use the dummy page */ if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { dummy_tag_frag.page = dummy_page; dummy_tag_frag.offset = 0; pfrag = &dummy_tag_frag; } tls_append_frag(record, pfrag, prot->tag_size); /* fill prepend */ tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), record->len - prot->overhead_size, record_type); } static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { struct tls_record_info *record; skb_frag_t *frag; record = kmalloc(sizeof(*record), GFP_KERNEL); if (!record) return -ENOMEM; frag = &record->frags[0]; skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset, prepend_size); get_page(pfrag->page); pfrag->offset += prepend_size; record->num_frags = 1; record->len = prepend_size; offload_ctx->open_record = record; return 0; } static int tls_do_allocation(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct page_frag *pfrag, size_t prepend_size) { int ret; if (!offload_ctx->open_record) { if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, sk->sk_allocation))) { READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return -ENOMEM; } ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); if (ret) return ret; if (pfrag->size > pfrag->offset) return 0; } if (!sk_page_frag_refill(sk, pfrag)) return -ENOMEM; return 0; } static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) { size_t pre_copy, nocache; pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); if (pre_copy) { pre_copy = min(pre_copy, bytes); if (copy_from_iter(addr, pre_copy, i) != pre_copy) return -EFAULT; bytes -= pre_copy; addr += pre_copy; } nocache = round_down(bytes, SMP_CACHE_BYTES); if (copy_from_iter_nocache(addr, nocache, i) != nocache) return -EFAULT; bytes -= nocache; addr += nocache; if (bytes && copy_from_iter(addr, bytes, i) != bytes) return -EFAULT; return 0; } static int tls_push_data(struct sock *sk, struct iov_iter *iter, size_t size, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); struct tls_record_info *record; int tls_push_record_flags; struct page_frag *pfrag; size_t orig_size = size; u32 max_open_record_len; bool more = false; bool done = false; int copy, rc = 0; long timeo; if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SPLICE_PAGES | MSG_EOR)) return -EOPNOTSUPP; if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR)) return -EINVAL; if (unlikely(sk->sk_err)) return -sk->sk_err; flags |= MSG_SENDPAGE_DECRYPTED; tls_push_record_flags = flags | MSG_MORE; timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); if (tls_is_partially_sent_record(tls_ctx)) { rc = tls_push_partial_record(sk, tls_ctx, flags); if (rc < 0) return rc; } pfrag = sk_page_frag(sk); /* TLS_HEADER_SIZE is not counted as part of the TLS record, and * we need to leave room for an authentication tag. */ max_open_record_len = TLS_MAX_PAYLOAD_SIZE + prot->prepend_size; do { rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); if (unlikely(rc)) { rc = sk_stream_wait_memory(sk, &timeo); if (!rc) continue; record = ctx->open_record; if (!record) break; handle_error: if (record_type != TLS_RECORD_TYPE_DATA) { /* avoid sending partial * record with type != * application_data */ size = orig_size; destroy_record(record); ctx->open_record = NULL; } else if (record->len > prot->prepend_size) { goto last_record; } break; } record = ctx->open_record; copy = min_t(size_t, size, max_open_record_len - record->len); if (copy && (flags & MSG_SPLICE_PAGES)) { struct page_frag zc_pfrag; struct page **pages = &zc_pfrag.page; size_t off; rc = iov_iter_extract_pages(iter, &pages, copy, 1, 0, &off); if (rc <= 0) { if (rc == 0) rc = -EIO; goto handle_error; } copy = rc; if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) { iov_iter_revert(iter, copy); rc = -EIO; goto handle_error; } zc_pfrag.offset = off; zc_pfrag.size = copy; tls_append_frag(record, &zc_pfrag, copy); } else if (copy) { copy = min_t(size_t, copy, pfrag->size - pfrag->offset); rc = tls_device_copy_data(page_address(pfrag->page) + pfrag->offset, copy, iter); if (rc) goto handle_error; tls_append_frag(record, pfrag, copy); } size -= copy; if (!size) { last_record: tls_push_record_flags = flags; if (flags & MSG_MORE) { more = true; break; } done = true; } if (done || record->len >= max_open_record_len || (record->num_frags >= MAX_SKB_FRAGS - 1)) { tls_device_record_close(sk, tls_ctx, record, pfrag, record_type); rc = tls_push_record(sk, tls_ctx, ctx, record, tls_push_record_flags); if (rc < 0) break; } } while (!done); tls_ctx->pending_open_record_frags = more; if (orig_size - size > 0) rc = orig_size - size; return rc; } int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { unsigned char record_type = TLS_RECORD_TYPE_DATA; struct tls_context *tls_ctx = tls_get_ctx(sk); int rc; if (!tls_ctx->zerocopy_sendfile) msg->msg_flags &= ~MSG_SPLICE_PAGES; mutex_lock(&tls_ctx->tx_lock); lock_sock(sk); if (unlikely(msg->msg_controllen)) { rc = tls_process_cmsg(sk, msg, &record_type); if (rc) goto out; } rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags, record_type); out: release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); return rc; } void tls_device_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct iov_iter iter = {}; if (!tls_is_partially_sent_record(tls_ctx)) return; mutex_lock(&tls_ctx->tx_lock); lock_sock(sk); if (tls_is_partially_sent_record(tls_ctx)) { iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0); tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA); } release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); } struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, u32 seq, u64 *p_record_sn) { u64 record_sn = context->hint_record_sn; struct tls_record_info *info, *last; info = context->retransmit_hint; if (!info || before(seq, info->end_seq - info->len)) { /* if retransmit_hint is irrelevant start * from the beginning of the list */ info = list_first_entry_or_null(&context->records_list, struct tls_record_info, list); if (!info) return NULL; /* send the start_marker record if seq number is before the * tls offload start marker sequence number. This record is * required to handle TCP packets which are before TLS offload * started. * And if it's not start marker, look if this seq number * belongs to the list. */ if (likely(!tls_record_is_start_marker(info))) { /* we have the first record, get the last record to see * if this seq number belongs to the list. */ last = list_last_entry(&context->records_list, struct tls_record_info, list); if (!between(seq, tls_record_start_seq(info), last->end_seq)) return NULL; } record_sn = context->unacked_record_sn; } /* We just need the _rcu for the READ_ONCE() */ rcu_read_lock(); list_for_each_entry_from_rcu(info, &context->records_list, list) { if (before(seq, info->end_seq)) { if (!context->retransmit_hint || after(info->end_seq, context->retransmit_hint->end_seq)) { context->hint_record_sn = record_sn; context->retransmit_hint = info; } *p_record_sn = record_sn; goto exit_rcu_unlock; } record_sn++; } info = NULL; exit_rcu_unlock: rcu_read_unlock(); return info; } EXPORT_SYMBOL(tls_get_record); static int tls_device_push_pending_record(struct sock *sk, int flags) { struct iov_iter iter; iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0); return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA); } void tls_device_write_space(struct sock *sk, struct tls_context *ctx) { if (tls_is_partially_sent_record(ctx)) { gfp_t sk_allocation = sk->sk_allocation; WARN_ON_ONCE(sk->sk_write_pending); sk->sk_allocation = GFP_ATOMIC; tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_DECRYPTED); sk->sk_allocation = sk_allocation; } } static void tls_device_resync_rx(struct tls_context *tls_ctx, struct sock *sk, u32 seq, u8 *rcd_sn) { struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); struct net_device *netdev; trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); rcu_read_lock(); netdev = rcu_dereference(tls_ctx->netdev); if (netdev) netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, TLS_OFFLOAD_CTX_DIR_RX); rcu_read_unlock(); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); } static bool tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, s64 resync_req, u32 *seq, u16 *rcd_delta) { u32 is_async = resync_req & RESYNC_REQ_ASYNC; u32 req_seq = resync_req >> 32; u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); u16 i; *rcd_delta = 0; if (is_async) { /* shouldn't get to wraparound: * too long in async stage, something bad happened */ if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) return false; /* asynchronous stage: log all headers seq such that * req_seq <= seq <= end_seq, and wait for real resync request */ if (before(*seq, req_seq)) return false; if (!after(*seq, req_end) && resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) resync_async->log[resync_async->loglen++] = *seq; resync_async->rcd_delta++; return false; } /* synchronous stage: check against the logged entries and * proceed to check the next entries if no match was found */ for (i = 0; i < resync_async->loglen; i++) if (req_seq == resync_async->log[i] && atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { *rcd_delta = resync_async->rcd_delta - i; *seq = req_seq; resync_async->loglen = 0; resync_async->rcd_delta = 0; return true; } resync_async->loglen = 0; resync_async->rcd_delta = 0; if (req_seq == *seq && atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) return true; return false; } void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_rx *rx_ctx; u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; u32 sock_data, is_req_pending; struct tls_prot_info *prot; s64 resync_req; u16 rcd_delta; u32 req_seq; if (tls_ctx->rx_conf != TLS_HW) return; if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) return; prot = &tls_ctx->prot_info; rx_ctx = tls_offload_ctx_rx(tls_ctx); memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); switch (rx_ctx->resync_type) { case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: resync_req = atomic64_read(&rx_ctx->resync_req); req_seq = resync_req >> 32; seq += TLS_HEADER_SIZE - 1; is_req_pending = resync_req; if (likely(!is_req_pending) || req_seq != seq || !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) return; break; case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: if (likely(!rx_ctx->resync_nh_do_now)) return; /* head of next rec is already in, note that the sock_inq will * include the currently parsed message when called from parser */ sock_data = tcp_inq(sk); if (sock_data > rcd_len) { trace_tls_device_rx_resync_nh_delay(sk, sock_data, rcd_len); return; } rx_ctx->resync_nh_do_now = 0; seq += rcd_len; tls_bigint_increment(rcd_sn, prot->rec_seq_size); break; case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: resync_req = atomic64_read(&rx_ctx->resync_async->req); is_req_pending = resync_req; if (likely(!is_req_pending)) return; if (!tls_device_rx_resync_async(rx_ctx->resync_async, resync_req, &seq, &rcd_delta)) return; tls_bigint_subtract(rcd_sn, rcd_delta); break; } tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); } static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, struct tls_offload_context_rx *ctx, struct sock *sk, struct sk_buff *skb) { struct strp_msg *rxm; /* device will request resyncs by itself based on stream scan */ if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) return; /* already scheduled */ if (ctx->resync_nh_do_now) return; /* seen decrypted fragments since last fully-failed record */ if (ctx->resync_nh_reset) { ctx->resync_nh_reset = 0; ctx->resync_nh.decrypted_failed = 1; ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; return; } if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) return; /* doing resync, bump the next target in case it fails */ if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) ctx->resync_nh.decrypted_tgt *= 2; else ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; rxm = strp_msg(skb); /* head of next rec is already in, parser will sync for us */ if (tcp_inq(sk) > rxm->full_len) { trace_tls_device_rx_resync_nh_schedule(sk); ctx->resync_nh_do_now = 1; } else { struct tls_prot_info *prot = &tls_ctx->prot_info; u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); tls_bigint_increment(rcd_sn, prot->rec_seq_size); tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, rcd_sn); } } static int tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) { struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); const struct tls_cipher_desc *cipher_desc; int err, offset, copy, data_len, pos; struct sk_buff *skb, *skb_iter; struct scatterlist sg[1]; struct strp_msg *rxm; char *orig_buf, *buf; cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type); DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable); rxm = strp_msg(tls_strp_msg(sw_ctx)); orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv, sk->sk_allocation); if (!orig_buf) return -ENOMEM; buf = orig_buf; err = tls_strp_msg_cow(sw_ctx); if (unlikely(err)) goto free_buf; skb = tls_strp_msg(sw_ctx); rxm = strp_msg(skb); offset = rxm->offset; sg_init_table(sg, 1); sg_set_buf(&sg[0], buf, rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv); err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv); if (err) goto free_buf; /* We are interested only in the decrypted data not the auth */ err = decrypt_skb(sk, sg); if (err != -EBADMSG) goto free_buf; else err = 0; data_len = rxm->full_len - cipher_desc->tag; if (skb_pagelen(skb) > offset) { copy = min_t(int, skb_pagelen(skb) - offset, data_len); if (skb->decrypted) { err = skb_store_bits(skb, offset, buf, copy); if (err) goto free_buf; } offset += copy; buf += copy; } pos = skb_pagelen(skb); skb_walk_frags(skb, skb_iter) { int frag_pos; /* Practically all frags must belong to msg if reencrypt * is needed with current strparser and coalescing logic, * but strparser may "get optimized", so let's be safe. */ if (pos + skb_iter->len <= offset) goto done_with_frag; if (pos >= data_len + rxm->offset) break; frag_pos = offset - pos; copy = min_t(int, skb_iter->len - frag_pos, data_len + rxm->offset - offset); if (skb_iter->decrypted) { err = skb_store_bits(skb_iter, frag_pos, buf, copy); if (err) goto free_buf; } offset += copy; buf += copy; done_with_frag: pos += skb_iter->len; } free_buf: kfree(orig_buf); return err; } int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) { struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); struct sk_buff *skb = tls_strp_msg(sw_ctx); struct strp_msg *rxm = strp_msg(skb); int is_decrypted, is_encrypted; if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { is_decrypted = skb->decrypted; is_encrypted = !is_decrypted; } else { is_decrypted = 0; is_encrypted = 0; } trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, tls_ctx->rx.rec_seq, rxm->full_len, is_encrypted, is_decrypted); if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { if (likely(is_encrypted || is_decrypted)) return is_decrypted; /* After tls_device_down disables the offload, the next SKB will * likely have initial fragments decrypted, and final ones not * decrypted. We need to reencrypt that single SKB. */ return tls_device_reencrypt(sk, tls_ctx); } /* Return immediately if the record is either entirely plaintext or * entirely ciphertext. Otherwise handle reencrypt partially decrypted * record. */ if (is_decrypted) { ctx->resync_nh_reset = 1; return is_decrypted; } if (is_encrypted) { tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); return 0; } ctx->resync_nh_reset = 1; return tls_device_reencrypt(sk, tls_ctx); } static void tls_device_attach(struct tls_context *ctx, struct sock *sk, struct net_device *netdev) { if (sk->sk_destruct != tls_device_sk_destruct) { refcount_set(&ctx->refcount, 1); dev_hold(netdev); RCU_INIT_POINTER(ctx->netdev, netdev); spin_lock_irq(&tls_device_lock); list_add_tail(&ctx->list, &tls_device_list); spin_unlock_irq(&tls_device_lock); ctx->sk_destruct = sk->sk_destruct; smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); } } static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx) { struct tls_offload_context_tx *offload_ctx; __be64 rcd_sn; offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL); if (!offload_ctx) return NULL; INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); INIT_LIST_HEAD(&offload_ctx->records_list); spin_lock_init(&offload_ctx->lock); sg_init_table(offload_ctx->sg_tx_data, ARRAY_SIZE(offload_ctx->sg_tx_data)); /* start at rec_seq - 1 to account for the start marker record */ memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; offload_ctx->ctx = ctx; return offload_ctx; } int tls_set_device_offload(struct sock *sk) { struct tls_record_info *start_marker_record; struct tls_offload_context_tx *offload_ctx; const struct tls_cipher_desc *cipher_desc; struct tls_crypto_info *crypto_info; struct tls_prot_info *prot; struct net_device *netdev; struct tls_context *ctx; char *iv, *rec_seq; int rc; ctx = tls_get_ctx(sk); prot = &ctx->prot_info; if (ctx->priv_ctx_tx) return -EEXIST; netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); return -EINVAL; } if (!(netdev->features & NETIF_F_HW_TLS_TX)) { rc = -EOPNOTSUPP; goto release_netdev; } crypto_info = &ctx->crypto_send.info; if (crypto_info->version != TLS_1_2_VERSION) { rc = -EOPNOTSUPP; goto release_netdev; } cipher_desc = get_cipher_desc(crypto_info->cipher_type); if (!cipher_desc || !cipher_desc->offloadable) { rc = -EINVAL; goto release_netdev; } rc = init_prot_info(prot, crypto_info, cipher_desc); if (rc) goto release_netdev; iv = crypto_info_iv(crypto_info, cipher_desc); rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv); memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq); start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); if (!start_marker_record) { rc = -ENOMEM; goto release_netdev; } offload_ctx = alloc_offload_ctx_tx(ctx); if (!offload_ctx) { rc = -ENOMEM; goto free_marker_record; } rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); if (rc) goto free_offload_ctx; start_marker_record->end_seq = tcp_sk(sk)->write_seq; start_marker_record->len = 0; start_marker_record->num_frags = 0; list_add_tail(&start_marker_record->list, &offload_ctx->records_list); clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); ctx->push_pending_record = tls_device_push_pending_record; /* TLS offload is greatly simplified if we don't send * SKBs where only part of the payload needs to be encrypted. * So mark the last skb in the write queue as end of record. */ tcp_write_collapse_fence(sk); /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event * * device_offload_lock is taken in tls_devices's NETDEV_DOWN * handler thus protecting from the device going down before * ctx was added to tls_device_list. */ down_read(&device_offload_lock); if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_lock; } ctx->priv_ctx_tx = offload_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, &ctx->crypto_send.info, tcp_sk(sk)->write_seq); trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, tcp_sk(sk)->write_seq, rec_seq, rc); if (rc) goto release_lock; tls_device_attach(ctx, sk, netdev); up_read(&device_offload_lock); /* following this assignment tls_is_skb_tx_device_offloaded * will return true and the context might be accessed * by the netdev's xmit function. */ smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); dev_put(netdev); return 0; release_lock: up_read(&device_offload_lock); clean_acked_data_disable(inet_csk(sk)); crypto_free_aead(offload_ctx->aead_send); free_offload_ctx: kfree(offload_ctx); ctx->priv_ctx_tx = NULL; free_marker_record: kfree(start_marker_record); release_netdev: dev_put(netdev); return rc; } int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) { struct tls12_crypto_info_aes_gcm_128 *info; struct tls_offload_context_rx *context; struct net_device *netdev; int rc = 0; if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) return -EOPNOTSUPP; netdev = get_netdev_for_sock(sk); if (!netdev) { pr_err_ratelimited("%s: netdev not found\n", __func__); return -EINVAL; } if (!(netdev->features & NETIF_F_HW_TLS_RX)) { rc = -EOPNOTSUPP; goto release_netdev; } /* Avoid offloading if the device is down * We don't want to offload new flows after * the NETDEV_DOWN event * * device_offload_lock is taken in tls_devices's NETDEV_DOWN * handler thus protecting from the device going down before * ctx was added to tls_device_list. */ down_read(&device_offload_lock); if (!(netdev->flags & IFF_UP)) { rc = -EINVAL; goto release_lock; } context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) { rc = -ENOMEM; goto release_lock; } context->resync_nh_reset = 1; ctx->priv_ctx_rx = context; rc = tls_set_sw_offload(sk, 0, NULL); if (rc) goto release_ctx; rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, &ctx->crypto_recv.info, tcp_sk(sk)->copied_seq); info = (void *)&ctx->crypto_recv.info; trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, tcp_sk(sk)->copied_seq, info->rec_seq, rc); if (rc) goto free_sw_resources; tls_device_attach(ctx, sk, netdev); up_read(&device_offload_lock); dev_put(netdev); return 0; free_sw_resources: up_read(&device_offload_lock); tls_sw_free_resources_rx(sk); down_read(&device_offload_lock); release_ctx: ctx->priv_ctx_rx = NULL; release_lock: up_read(&device_offload_lock); release_netdev: dev_put(netdev); return rc; } void tls_device_offload_cleanup_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct net_device *netdev; down_read(&device_offload_lock); netdev = rcu_dereference_protected(tls_ctx->netdev, lockdep_is_held(&device_offload_lock)); if (!netdev) goto out; netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, TLS_OFFLOAD_CTX_DIR_RX); if (tls_ctx->tx_conf != TLS_HW) { dev_put(netdev); rcu_assign_pointer(tls_ctx->netdev, NULL); } else { set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); } out: up_read(&device_offload_lock); tls_sw_release_resources_rx(sk); } static int tls_device_down(struct net_device *netdev) { struct tls_context *ctx, *tmp; unsigned long flags; LIST_HEAD(list); /* Request a write lock to block new offload attempts */ down_write(&device_offload_lock); spin_lock_irqsave(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { struct net_device *ctx_netdev = rcu_dereference_protected(ctx->netdev, lockdep_is_held(&device_offload_lock)); if (ctx_netdev != netdev || !refcount_inc_not_zero(&ctx->refcount)) continue; list_move(&ctx->list, &list); } spin_unlock_irqrestore(&tls_device_lock, flags); list_for_each_entry_safe(ctx, tmp, &list, list) { /* Stop offloaded TX and switch to the fallback. * tls_is_skb_tx_device_offloaded will return false. */ WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); /* Stop the RX and TX resync. * tls_dev_resync must not be called after tls_dev_del. */ rcu_assign_pointer(ctx->netdev, NULL); /* Start skipping the RX resync logic completely. */ set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); /* Sync with inflight packets. After this point: * TX: no non-encrypted packets will be passed to the driver. * RX: resync requests from the driver will be ignored. */ synchronize_net(); /* Release the offload context on the driver side. */ if (ctx->tx_conf == TLS_HW) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); if (ctx->rx_conf == TLS_HW && !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_RX); dev_put(netdev); /* Move the context to a separate list for two reasons: * 1. When the context is deallocated, list_del is called. * 2. It's no longer an offloaded context, so we don't want to * run offload-specific code on this context. */ spin_lock_irqsave(&tls_device_lock, flags); list_move_tail(&ctx->list, &tls_device_down_list); spin_unlock_irqrestore(&tls_device_lock, flags); /* Device contexts for RX and TX will be freed in on sk_destruct * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. * Now release the ref taken above. */ if (refcount_dec_and_test(&ctx->refcount)) { /* sk_destruct ran after tls_device_down took a ref, and * it returned early. Complete the destruction here. */ list_del(&ctx->list); tls_device_free_ctx(ctx); } } up_write(&device_offload_lock); flush_workqueue(destruct_wq); return NOTIFY_DONE; } static int tls_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (!dev->tlsdev_ops && !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: case NETDEV_FEAT_CHANGE: if (netif_is_bond_master(dev)) return NOTIFY_DONE; if ((dev->features & NETIF_F_HW_TLS_RX) && !dev->tlsdev_ops->tls_dev_resync) return NOTIFY_BAD; if (dev->tlsdev_ops && dev->tlsdev_ops->tls_dev_add && dev->tlsdev_ops->tls_dev_del) return NOTIFY_DONE; else return NOTIFY_BAD; case NETDEV_DOWN: return tls_device_down(dev); } return NOTIFY_DONE; } static struct notifier_block tls_dev_notifier = { .notifier_call = tls_dev_event, }; int __init tls_device_init(void) { int err; dummy_page = alloc_page(GFP_KERNEL); if (!dummy_page) return -ENOMEM; destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); if (!destruct_wq) { err = -ENOMEM; goto err_free_dummy; } err = register_netdevice_notifier(&tls_dev_notifier); if (err) goto err_destroy_wq; return 0; err_destroy_wq: destroy_workqueue(destruct_wq); err_free_dummy: put_page(dummy_page); return err; } void __exit tls_device_cleanup(void) { unregister_netdevice_notifier(&tls_dev_notifier); destroy_workqueue(destruct_wq); clean_acked_data_flush(); put_page(dummy_page); } |
| 257 27 14 13 4 6 18 1 17 6 6 1 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | // SPDX-License-Identifier: GPL-2.0 #include <net/ip.h> #include <net/udp.h> #include <net/udplite.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum) { int carry; __u32 ulen; __u32 uproto; __u32 sum = (__force u32)csum; sum += (__force u32)saddr->s6_addr32[0]; carry = (sum < (__force u32)saddr->s6_addr32[0]); sum += carry; sum += (__force u32)saddr->s6_addr32[1]; carry = (sum < (__force u32)saddr->s6_addr32[1]); sum += carry; sum += (__force u32)saddr->s6_addr32[2]; carry = (sum < (__force u32)saddr->s6_addr32[2]); sum += carry; sum += (__force u32)saddr->s6_addr32[3]; carry = (sum < (__force u32)saddr->s6_addr32[3]); sum += carry; sum += (__force u32)daddr->s6_addr32[0]; carry = (sum < (__force u32)daddr->s6_addr32[0]); sum += carry; sum += (__force u32)daddr->s6_addr32[1]; carry = (sum < (__force u32)daddr->s6_addr32[1]); sum += carry; sum += (__force u32)daddr->s6_addr32[2]; carry = (sum < (__force u32)daddr->s6_addr32[2]); sum += carry; sum += (__force u32)daddr->s6_addr32[3]; carry = (sum < (__force u32)daddr->s6_addr32[3]); sum += carry; ulen = (__force u32)htonl((__u32) len); sum += ulen; carry = (sum < ulen); sum += carry; uproto = (__force u32)htonl(proto); sum += uproto; carry = (sum < uproto); sum += carry; return csum_fold((__force __wsum)sum); } EXPORT_SYMBOL(csum_ipv6_magic); #endif int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto) { int err; UDP_SKB_CB(skb)->partial_cov = 0; UDP_SKB_CB(skb)->cscov = skb->len; if (proto == IPPROTO_UDPLITE) { err = udplite_checksum_init(skb, uh); if (err) return err; if (UDP_SKB_CB(skb)->partial_cov) { skb->csum = ip6_compute_pseudo(skb, proto); return 0; } } /* To support RFC 6936 (allow zero checksum in UDP/IPV6 for tunnels) * we accept a checksum of zero here. When we find the socket * for the UDP packet we'll check if that socket allows zero checksum * for IPv6 (set by socket option). * * Note, we are only interested in != 0 or == 0, thus the * force to int. */ err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, ip6_compute_pseudo); if (err) return err; if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { /* If SW calculated the value, we know it's bad */ if (skb->csum_complete_sw) return 1; /* HW says the value is bad. Let's validate that. * skb->csum is no longer the full packet checksum, * so don't treat is as such. */ skb_checksum_complete_unset(skb); } return 0; } EXPORT_SYMBOL(udp6_csum_init); /* Function to set UDP checksum for an IPv6 UDP packet. This is intended * for the simple case like when setting the checksum for a UDP tunnel. */ void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len) { struct udphdr *uh = udp_hdr(skb); if (nocheck) uh->check = 0; else if (skb_is_gso(skb)) uh->check = ~udp_v6_check(len, saddr, daddr, 0); else if (skb->ip_summed == CHECKSUM_PARTIAL) { uh->check = 0; uh->check = udp_v6_check(len, saddr, daddr, lco_csum(skb)); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); uh->check = ~udp_v6_check(len, saddr, daddr, 0); } } EXPORT_SYMBOL(udp6_set_csum); |
| 47 47 47 237 239 239 223 229 237 2 236 239 28 28 28 163 14 21 21 206 239 79 27 230 127 209 213 213 9 205 162 162 250 120 234 2 246 103 193 1 191 193 193 192 193 128 102 128 128 9 110 109 19 102 8 6 193 103 128 102 193 128 103 25 121 121 7 3 2 4 425 424 7 4 4 7 7 7 150 53 119 119 126 127 47 47 365 338 267 6 4 4 205 14 8 6 159 170 147 121 121 121 121 137 48 90 47 47 47 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 | // SPDX-License-Identifier: GPL-2.0-or-later
/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* Initialization/cleanup for SCTP protocol support.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <linux-sctp@vger.kernel.org>
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Daisy Chang <daisyc@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/route.h>
#include <net/sctp/sctp.h>
#include <net/addrconf.h>
#include <net/inet_common.h>
#include <net/inet_ecn.h>
#include <net/inet_sock.h>
#include <net/udp_tunnel.h>
#include <net/inet_dscp.h>
#define MAX_SCTP_PORT_HASH_ENTRIES (64 * 1024)
/* Global data structures. */
struct sctp_globals sctp_globals __read_mostly;
struct idr sctp_assocs_id;
DEFINE_SPINLOCK(sctp_assocs_id_lock);
static struct sctp_pf *sctp_pf_inet6_specific;
static struct sctp_pf *sctp_pf_inet_specific;
static struct sctp_af *sctp_af_v4_specific;
static struct sctp_af *sctp_af_v6_specific;
struct kmem_cache *sctp_chunk_cachep __read_mostly;
struct kmem_cache *sctp_bucket_cachep __read_mostly;
long sysctl_sctp_mem[3];
int sysctl_sctp_rmem[3];
int sysctl_sctp_wmem[3];
/* Private helper to extract ipv4 address and stash them in
* the protocol structure.
*/
static void sctp_v4_copy_addrlist(struct list_head *addrlist,
struct net_device *dev)
{
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct sctp_sockaddr_entry *addr;
rcu_read_lock();
if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
rcu_read_unlock();
return;
}
in_dev_for_each_ifa_rcu(ifa, in_dev) {
/* Add the address to the local list. */
addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
addr->valid = 1;
INIT_LIST_HEAD(&addr->list);
list_add_tail(&addr->list, addrlist);
}
}
rcu_read_unlock();
}
/* Extract our IP addresses from the system and stash them in the
* protocol structure.
*/
static void sctp_get_local_addr_list(struct net *net)
{
struct net_device *dev;
struct list_head *pos;
struct sctp_af *af;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
list_for_each(pos, &sctp_address_families) {
af = list_entry(pos, struct sctp_af, list);
af->copy_addrlist(&net->sctp.local_addr_list, dev);
}
}
rcu_read_unlock();
}
/* Free the existing local addresses. */
static void sctp_free_local_addr_list(struct net *net)
{
struct sctp_sockaddr_entry *addr;
struct list_head *pos, *temp;
list_for_each_safe(pos, temp, &net->sctp.local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
list_del(pos);
kfree(addr);
}
}
/* Copy the local addresses which are valid for 'scope' into 'bp'. */
int sctp_copy_local_addr_list(struct net *net, struct sctp_bind_addr *bp,
enum sctp_scope scope, gfp_t gfp, int copy_flags)
{
struct sctp_sockaddr_entry *addr;
union sctp_addr laddr;
int error = 0;
rcu_read_lock();
list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
if (!addr->valid)
continue;
if (!sctp_in_scope(net, &addr->a, scope))
continue;
/* Now that the address is in scope, check to see if
* the address type is really supported by the local
* sock as well as the remote peer.
*/
if (addr->a.sa.sa_family == AF_INET &&
(!(copy_flags & SCTP_ADDR4_ALLOWED) ||
!(copy_flags & SCTP_ADDR4_PEERSUPP)))
continue;
if (addr->a.sa.sa_family == AF_INET6 &&
(!(copy_flags & SCTP_ADDR6_ALLOWED) ||
!(copy_flags & SCTP_ADDR6_PEERSUPP)))
continue;
laddr = addr->a;
/* also works for setting ipv6 address port */
laddr.v4.sin_port = htons(bp->port);
if (sctp_bind_addr_state(bp, &laddr) != -1)
continue;
error = sctp_add_bind_addr(bp, &addr->a, sizeof(addr->a),
SCTP_ADDR_SRC, GFP_ATOMIC);
if (error)
break;
}
rcu_read_unlock();
return error;
}
/* Copy over any ip options */
static void sctp_v4_copy_ip_options(struct sock *sk, struct sock *newsk)
{
struct inet_sock *newinet, *inet = inet_sk(sk);
struct ip_options_rcu *inet_opt, *newopt = NULL;
newinet = inet_sk(newsk);
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
if (inet_opt) {
newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
inet_opt->opt.optlen, GFP_ATOMIC);
if (newopt)
memcpy(newopt, inet_opt, sizeof(*inet_opt) +
inet_opt->opt.optlen);
else
pr_err("%s: Failed to copy ip options\n", __func__);
}
RCU_INIT_POINTER(newinet->inet_opt, newopt);
rcu_read_unlock();
}
/* Account for the IP options */
static int sctp_v4_ip_options_len(struct sock *sk)
{
struct inet_sock *inet = inet_sk(sk);
struct ip_options_rcu *inet_opt;
int len = 0;
rcu_read_lock();
inet_opt = rcu_dereference(inet->inet_opt);
if (inet_opt)
len = inet_opt->opt.optlen;
rcu_read_unlock();
return len;
}
/* Initialize a sctp_addr from in incoming skb. */
static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb,
int is_saddr)
{
/* Always called on head skb, so this is safe */
struct sctphdr *sh = sctp_hdr(skb);
struct sockaddr_in *sa = &addr->v4;
addr->v4.sin_family = AF_INET;
if (is_saddr) {
sa->sin_port = sh->source;
sa->sin_addr.s_addr = ip_hdr(skb)->saddr;
} else {
sa->sin_port = sh->dest;
sa->sin_addr.s_addr = ip_hdr(skb)->daddr;
}
memset(sa->sin_zero, 0, sizeof(sa->sin_zero));
}
/* Initialize an sctp_addr from a socket. */
static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = 0;
addr->v4.sin_addr.s_addr = inet_sk(sk)->inet_rcv_saddr;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
}
/* Initialize sk->sk_rcv_saddr from sctp_addr. */
static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_rcv_saddr = addr->v4.sin_addr.s_addr;
}
/* Initialize sk->sk_daddr from sctp_addr. */
static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_daddr = addr->v4.sin_addr.s_addr;
}
/* Initialize a sctp_addr from an address parameter. */
static bool sctp_v4_from_addr_param(union sctp_addr *addr,
union sctp_addr_param *param,
__be16 port, int iif)
{
if (ntohs(param->v4.param_hdr.length) < sizeof(struct sctp_ipv4addr_param))
return false;
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = port;
addr->v4.sin_addr.s_addr = param->v4.addr.s_addr;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
return true;
}
/* Initialize an address parameter from a sctp_addr and return the length
* of the address parameter.
*/
static int sctp_v4_to_addr_param(const union sctp_addr *addr,
union sctp_addr_param *param)
{
int length = sizeof(struct sctp_ipv4addr_param);
param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS;
param->v4.param_hdr.length = htons(length);
param->v4.addr.s_addr = addr->v4.sin_addr.s_addr;
return length;
}
/* Initialize a sctp_addr from a dst_entry. */
static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct flowi4 *fl4,
__be16 port)
{
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_port = port;
saddr->v4.sin_addr.s_addr = fl4->saddr;
memset(saddr->v4.sin_zero, 0, sizeof(saddr->v4.sin_zero));
}
/* Compare two addresses exactly. */
static int sctp_v4_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2)
{
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (addr1->v4.sin_port != addr2->v4.sin_port)
return 0;
if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr)
return 0;
return 1;
}
/* Initialize addr struct to INADDR_ANY. */
static void sctp_v4_inaddr_any(union sctp_addr *addr, __be16 port)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_addr.s_addr = htonl(INADDR_ANY);
addr->v4.sin_port = port;
memset(addr->v4.sin_zero, 0, sizeof(addr->v4.sin_zero));
}
/* Is this a wildcard address? */
static int sctp_v4_is_any(const union sctp_addr *addr)
{
return htonl(INADDR_ANY) == addr->v4.sin_addr.s_addr;
}
/* This function checks if the address is a valid address to be used for
* SCTP binding.
*
* Output:
* Return 0 - If the address is a non-unicast or an illegal address.
* Return 1 - If the address is a unicast.
*/
static int sctp_v4_addr_valid(union sctp_addr *addr,
struct sctp_sock *sp,
const struct sk_buff *skb)
{
/* IPv4 addresses not allowed */
if (sp && ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
/* Is this a non-unicast address or a unusable SCTP address? */
if (IS_IPV4_UNUSABLE_ADDRESS(addr->v4.sin_addr.s_addr))
return 0;
/* Is this a broadcast address? */
if (skb && skb_rtable(skb)->rt_flags & RTCF_BROADCAST)
return 0;
return 1;
}
/* Should this be available for binding? */
static int sctp_v4_available(union sctp_addr *addr, struct sctp_sock *sp)
{
struct sock *sk = &sp->inet.sk;
struct net *net = sock_net(sk);
int tb_id = RT_TABLE_LOCAL;
int ret;
tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ?: tb_id;
ret = inet_addr_type_table(net, addr->v4.sin_addr.s_addr, tb_id);
if (addr->v4.sin_addr.s_addr != htonl(INADDR_ANY) &&
ret != RTN_LOCAL &&
!inet_test_bit(FREEBIND, sk) &&
!READ_ONCE(net->ipv4.sysctl_ip_nonlocal_bind))
return 0;
if (ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
return 1;
}
/* Checking the loopback, private and other address scopes as defined in
* RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4
* scoping <draft-stewart-tsvwg-sctp-ipv4-00.txt>.
*
* Level 0 - unusable SCTP addresses
* Level 1 - loopback address
* Level 2 - link-local addresses
* Level 3 - private addresses.
* Level 4 - global addresses
* For INIT and INIT-ACK address list, let L be the level of
* requested destination address, sender and receiver
* SHOULD include all of its addresses with level greater
* than or equal to L.
*
* IPv4 scoping can be controlled through sysctl option
* net.sctp.addr_scope_policy
*/
static enum sctp_scope sctp_v4_scope(union sctp_addr *addr)
|