/*
 * Support for Intel AES-NI instructions. This file contains glue
 * code, the real AES implementation is in intel-aes_asm.S.
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/fpu/api.h>
#include <asm/crypto/aes.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#ifdef CONFIG_X86_64
#include <asm/crypto/glue_helper.h>
#endif


#define AESNI_ALIGN        16
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
#define AES_BLOCK_MASK        (~(AES_BLOCK_SIZE - 1))
#define RFC4106_HASH_SUBKEY_SIZE 16
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)

/* This data is stored at the end of the crypto_tfm struct.
 * It's a type of per "session" data storage location.
 * This needs to be 16 byte aligned.
 */
struct aesni_rfc4106_gcm_ctx {
        u8 hash_subkey[16] AESNI_ALIGN_ATTR;
        struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
        u8 nonce[4];
};

struct generic_gcmaes_ctx {
        u8 hash_subkey[16] AESNI_ALIGN_ATTR;
        struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
};

struct aesni_xts_ctx {
        u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
        u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
};

#define GCM_BLOCK_LEN 16

struct gcm_context_data {
        /* init, update and finalize context data */
        u8 aad_hash[GCM_BLOCK_LEN];
        u64 aad_length;
        u64 in_length;
        u8 partial_block_enc_key[GCM_BLOCK_LEN];
        u8 orig_IV[GCM_BLOCK_LEN];
        u8 current_counter[GCM_BLOCK_LEN];
        u64 partial_block_len;
        u64 unused;
        u8 hash_keys[GCM_BLOCK_LEN * 8];
};

asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
                             unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
                          const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
                          const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len, u8 *iv);

#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096

#ifdef CONFIG_X86_64

static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len, u8 *iv);

asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
                                 const u8 *in, bool enc, u8 *iv);

/* asmlinkage void aesni_gcm_enc()
 * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
 * struct gcm_context_data.  May be uninitialized.
 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
 * const u8 *in, Plaintext input
 * unsigned long plaintext_len, Length of data in bytes for encryption.
 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
 *         16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes.
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
 *          Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_enc(void *ctx,
                        struct gcm_context_data *gdata, u8 *out,
                        const u8 *in, unsigned long plaintext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

/* asmlinkage void aesni_gcm_dec()
 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
 * struct gcm_context_data.  May be uninitialized.
 * u8 *out, Plaintext output. Decrypt in-place is allowed.
 * const u8 *in, Ciphertext input
 * unsigned long ciphertext_len, Length of data in bytes for decryption.
 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
 *         16-byte aligned pointer.
 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
 * const u8 *aad, Additional Authentication Data (AAD)
 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
 * to be 8 or 12 bytes
 * u8 *auth_tag, Authenticated Tag output.
 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
 * Valid values are 16 (most likely), 12 or 8.
 */
asmlinkage void aesni_gcm_dec(void *ctx,
                        struct gcm_context_data *gdata, u8 *out,
                        const u8 *in, unsigned long ciphertext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

/* Scatter / Gather routines, with args similar to above */
asmlinkage void aesni_gcm_init(void *ctx,
                               struct gcm_context_data *gdata,
                               u8 *iv,
                               u8 *hash_subkey, const u8 *aad,
                               unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update(void *ctx,
                                     struct gcm_context_data *gdata, u8 *out,
                                     const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update(void *ctx,
                                     struct gcm_context_data *gdata, u8 *out,
                                     const u8 *in,
                                     unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize(void *ctx,
                                   struct gcm_context_data *gdata,
                                   u8 *auth_tag, unsigned long auth_tag_len);

#ifdef CONFIG_AS_AVX
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
                void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
                void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
                void *keys, u8 *out, unsigned int num_bytes);
/*
 * asmlinkage void aesni_gcm_precomp_avx_gen2()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);

asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
                        const u8 *in, unsigned long plaintext_len, u8 *iv,
                        const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
                        const u8 *in, unsigned long ciphertext_len, u8 *iv,
                        const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

static void aesni_gcm_enc_avx(void *ctx,
                        struct gcm_context_data *data, u8 *out,
                        const u8 *in, unsigned long plaintext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len)
{
        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
        if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
                aesni_gcm_enc(ctx, data, out, in,
                        plaintext_len, iv, hash_subkey, aad,
                        aad_len, auth_tag, auth_tag_len);
        } else {
                aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
                aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        }
}

static void aesni_gcm_dec_avx(void *ctx,
                        struct gcm_context_data *data, u8 *out,
                        const u8 *in, unsigned long ciphertext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len)
{
        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
        if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
                aesni_gcm_dec(ctx, data, out, in,
                        ciphertext_len, iv, hash_subkey, aad,
                        aad_len, auth_tag, auth_tag_len);
        } else {
                aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
                aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        }
}
#endif

#ifdef CONFIG_AS_AVX2
/*
 * asmlinkage void aesni_gcm_precomp_avx_gen4()
 * gcm_data *my_ctx_data, context data
 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 */
asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);

asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
                        const u8 *in, unsigned long plaintext_len, u8 *iv,
                        const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
                        const u8 *in, unsigned long ciphertext_len, u8 *iv,
                        const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len);

static void aesni_gcm_enc_avx2(void *ctx,
                        struct gcm_context_data *data, u8 *out,
                        const u8 *in, unsigned long plaintext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len)
{
       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
        if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
                aesni_gcm_enc(ctx, data, out, in,
                              plaintext_len, iv, hash_subkey, aad,
                              aad_len, auth_tag, auth_tag_len);
        } else if (plaintext_len < AVX_GEN4_OPTSIZE) {
                aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
                aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        } else {
                aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
                aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        }
}

static void aesni_gcm_dec_avx2(void *ctx,
        struct gcm_context_data *data, u8 *out,
                        const u8 *in, unsigned long ciphertext_len, u8 *iv,
                        u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
                        u8 *auth_tag, unsigned long auth_tag_len)
{
       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
        if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
                aesni_gcm_dec(ctx, data, out, in,
                              ciphertext_len, iv, hash_subkey,
                              aad, aad_len, auth_tag, auth_tag_len);
        } else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
                aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
                aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        } else {
                aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
                aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
                                        aad_len, auth_tag, auth_tag_len);
        }
}
#endif

static void (*aesni_gcm_enc_tfm)(void *ctx,
                                 struct gcm_context_data *data, u8 *out,
                                 const u8 *in, unsigned long plaintext_len,
                                 u8 *iv, u8 *hash_subkey, const u8 *aad,
                                 unsigned long aad_len, u8 *auth_tag,
                                 unsigned long auth_tag_len);

static void (*aesni_gcm_dec_tfm)(void *ctx,
                                 struct gcm_context_data *data, u8 *out,
                                 const u8 *in, unsigned long ciphertext_len,
                                 u8 *iv, u8 *hash_subkey, const u8 *aad,
                                 unsigned long aad_len, u8 *auth_tag,
                                 unsigned long auth_tag_len);

static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
        unsigned long align = AESNI_ALIGN;

        if (align <= crypto_tfm_ctx_alignment())
                align = 1;
        return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}

static inline struct
generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
{
        unsigned long align = AESNI_ALIGN;

        if (align <= crypto_tfm_ctx_alignment())
                align = 1;
        return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
#endif

static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
        unsigned long addr = (unsigned long)raw_ctx; /*covered*/
        unsigned long align = AESNI_ALIGN;

        if (align <= crypto_tfm_ctx_alignment())
                align = 1;
        return (struct crypto_aes_ctx *)ALIGN(addr, align);
}

static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
                              const u8 *in_key, unsigned int key_len)
{
        struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx); /*covered*/
        u32 *flags = &tfm->crt_flags;
        int err;

        if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
            key_len != AES_KEYSIZE_256) {
                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
                return -EINVAL;
        }

        if (!irq_fpu_usable()) /*covered*/
                err = crypto_aes_expand_key(ctx, in_key, key_len);
        else {
                kernel_fpu_begin(); /*covered*/
                err = aesni_set_key(ctx, in_key, key_len);
                kernel_fpu_end(); /*covered*/
        }

        return err;
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
                       unsigned int key_len)
{
        return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len); /*covered*/
}

static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

        if (!irq_fpu_usable())
                crypto_aes_encrypt_x86(ctx, dst, src);
        else {
                kernel_fpu_begin();
                aesni_enc(ctx, dst, src);
                kernel_fpu_end();
        }
}

static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

        if (!irq_fpu_usable())
                crypto_aes_decrypt_x86(ctx, dst, src);
        else {
                kernel_fpu_begin();
                aesni_dec(ctx, dst, src);
                kernel_fpu_end();
        }
}

static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

        aesni_enc(ctx, dst, src);
}

static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));

        aesni_dec(ctx, dst, src);
}

static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
                                 unsigned int len)
{
        return aes_set_key_common(crypto_skcipher_tfm(tfm),
                                  crypto_skcipher_ctx(tfm), key, len);
}

static int ecb_encrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
        struct skcipher_walk walk;
        unsigned int nbytes;
        int err;

        err = skcipher_walk_virt(&walk, req, true);

        kernel_fpu_begin();
        while ((nbytes = walk.nbytes)) {
                aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
                              nbytes & AES_BLOCK_MASK);
                nbytes &= AES_BLOCK_SIZE - 1;
                err = skcipher_walk_done(&walk, nbytes);
        }
        kernel_fpu_end();

        return err;
}

static int ecb_decrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
        struct skcipher_walk walk;
        unsigned int nbytes;
        int err;

        err = skcipher_walk_virt(&walk, req, true);

        kernel_fpu_begin();
        while ((nbytes = walk.nbytes)) {
                aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
                              nbytes & AES_BLOCK_MASK);
                nbytes &= AES_BLOCK_SIZE - 1;
                err = skcipher_walk_done(&walk, nbytes);
        }
        kernel_fpu_end();

        return err;
}

static int cbc_encrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
        struct skcipher_walk walk;
        unsigned int nbytes;
        int err;

        err = skcipher_walk_virt(&walk, req, true);

        kernel_fpu_begin();
        while ((nbytes = walk.nbytes)) {
                aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
                              nbytes & AES_BLOCK_MASK, walk.iv);
                nbytes &= AES_BLOCK_SIZE - 1;
                err = skcipher_walk_done(&walk, nbytes);
        }
        kernel_fpu_end();

        return err;
}

static int cbc_decrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
        struct skcipher_walk walk;
        unsigned int nbytes;
        int err;

        err = skcipher_walk_virt(&walk, req, true);

        kernel_fpu_begin();
        while ((nbytes = walk.nbytes)) {
                aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
                              nbytes & AES_BLOCK_MASK, walk.iv);
                nbytes &= AES_BLOCK_SIZE - 1;
                err = skcipher_walk_done(&walk, nbytes);
        }
        kernel_fpu_end();

        return err;
}

#ifdef CONFIG_X86_64
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
                            struct skcipher_walk *walk)
{
        u8 *ctrblk = walk->iv;
        u8 keystream[AES_BLOCK_SIZE];
        u8 *src = walk->src.virt.addr;
        u8 *dst = walk->dst.virt.addr;
        unsigned int nbytes = walk->nbytes;

        aesni_enc(ctx, keystream, ctrblk);
        crypto_xor_cpy(dst, keystream, src, nbytes);

        crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

#ifdef CONFIG_AS_AVX
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
                              const u8 *in, unsigned int len, u8 *iv)
{
        /*
         * based on key length, override with the by8 version
         * of ctr mode encryption/decryption for improved performance
         * aes_set_key_common() ensures that key length is one of
         * {128,192,256}
         */
        if (ctx->key_length == AES_KEYSIZE_128)
                aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
        else if (ctx->key_length == AES_KEYSIZE_192)
                aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
        else
                aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}
#endif

static int ctr_crypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
        struct skcipher_walk walk;
        unsigned int nbytes;
        int err;

        err = skcipher_walk_virt(&walk, req, true);

        kernel_fpu_begin();
        while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
                aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
                                      nbytes & AES_BLOCK_MASK, walk.iv);
                nbytes &= AES_BLOCK_SIZE - 1;
                err = skcipher_walk_done(&walk, nbytes);
        }
        if (walk.nbytes) {
                ctr_crypt_final(ctx, &walk);
                err = skcipher_walk_done(&walk, 0);
        }
        kernel_fpu_end();

        return err;
}

static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
                            unsigned int keylen)
{
        struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
        int err;

        err = xts_verify_key(tfm, key, keylen);
        if (err)
                return err;

        keylen /= 2;

        /* first half of xts-key is for crypt */
        err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
                                 key, keylen);
        if (err)
                return err;

        /* second half of xts-key is for tweak */
        return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
                                  key + keylen, keylen);
}


static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
{
        aesni_enc(ctx, out, in);
}

static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
        glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
}

static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
        glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
}

static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
        aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
}

static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
        aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
}

static const struct common_glue_ctx aesni_enc_xts = {
        .num_funcs = 2,
        .fpu_blocks_limit = 1,

        .funcs = { {
                .num_blocks = 8,
                .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
        }, {
                .num_blocks = 1,
                .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
        } }
};

static const struct common_glue_ctx aesni_dec_xts = {
        .num_funcs = 2,
        .fpu_blocks_limit = 1,

        .funcs = { {
                .num_blocks = 8,
                .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
        }, {
                .num_blocks = 1,
                .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
        } }
};

static int xts_encrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);

        return glue_xts_req_128bit(&aesni_enc_xts, req,
                                   XTS_TWEAK_CAST(aesni_xts_tweak),
                                   aes_ctx(ctx->raw_tweak_ctx),
                                   aes_ctx(ctx->raw_crypt_ctx));
}

static int xts_decrypt(struct skcipher_request *req)
{
        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
        struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);

        return glue_xts_req_128bit(&aesni_dec_xts, req,
                                   XTS_TWEAK_CAST(aesni_xts_tweak),
                                   aes_ctx(ctx->raw_tweak_ctx),
                                   aes_ctx(ctx->raw_crypt_ctx));
}

static int rfc4106_init(struct crypto_aead *aead)
{
        struct cryptd_aead *cryptd_tfm;
        struct cryptd_aead **ctx = crypto_aead_ctx(aead);

        cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
                                       CRYPTO_ALG_INTERNAL,
                                       CRYPTO_ALG_INTERNAL);
        if (IS_ERR(cryptd_tfm))
                return PTR_ERR(cryptd_tfm);

        *ctx = cryptd_tfm;
        crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
        return 0;
}

static void rfc4106_exit(struct crypto_aead *aead)
{
        struct cryptd_aead **ctx = crypto_aead_ctx(aead);

        cryptd_free_aead(*ctx);
}

static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
        struct crypto_cipher *tfm;
        int ret;

        tfm = crypto_alloc_cipher("aes", 0, 0);
        if (IS_ERR(tfm))
                return PTR_ERR(tfm);

        ret = crypto_cipher_setkey(tfm, key, key_len);
        if (ret)
                goto out_free_cipher;

        /* Clear the data in the hash sub key container to zero.*/
        /* We want to cipher all zeros to create the hash sub key. */
        memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);

        crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);

out_free_cipher:
        crypto_free_cipher(tfm);
        return ret;
}

static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
                                  unsigned int key_len)
{
        struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);

        if (key_len < 4) {
                crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
                return -EINVAL;
        }
        /*Account for 4 byte nonce at the end.*/
        key_len -= 4;

        memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));

        return aes_set_key_common(crypto_aead_tfm(aead),
                                  &ctx->aes_key_expanded, key, key_len) ?:
               rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

static int gcmaes_wrapper_set_key(struct crypto_aead *parent, const u8 *key,
                                  unsigned int key_len)
{
        struct cryptd_aead **ctx = crypto_aead_ctx(parent);
        struct cryptd_aead *cryptd_tfm = *ctx;

        return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
}

static int common_rfc4106_set_authsize(struct crypto_aead *aead,
                                       unsigned int authsize)
{
        switch (authsize) {
        case 8:
        case 12:
        case 16:
                break;
        default:
                return -EINVAL;
        }

        return 0;
}

/* This is the Integrity Check Value (aka the authentication tag length and can
 * be 8, 12 or 16 bytes long. */
static int gcmaes_wrapper_set_authsize(struct crypto_aead *parent,
                                       unsigned int authsize)
{
        struct cryptd_aead **ctx = crypto_aead_ctx(parent);
        struct cryptd_aead *cryptd_tfm = *ctx;

        return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}

static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
                                       unsigned int authsize)
{
        switch (authsize) {
        case 4:
        case 8:
        case 12:
        case 13:
        case 14:
        case 15:
        case 16:
                break;
        default:
                return -EINVAL;
        }

        return 0;
}

static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
                              unsigned int assoclen, u8 *hash_subkey,
                              u8 *iv, void *aes_ctx)
{
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        unsigned long auth_tag_len = crypto_aead_authsize(tfm);
        struct gcm_context_data data AESNI_ALIGN_ATTR;
        struct scatter_walk dst_sg_walk = {};
        unsigned long left = req->cryptlen;
        unsigned long len, srclen, dstlen;
        struct scatter_walk assoc_sg_walk;
        struct scatter_walk src_sg_walk;
        struct scatterlist src_start[2];
        struct scatterlist dst_start[2];
        struct scatterlist *src_sg;
        struct scatterlist *dst_sg;
        u8 *src, *dst, *assoc;
        u8 *assocmem = NULL;
        u8 authTag[16];

        if (!enc)
                left -= auth_tag_len;

        /* Linearize assoc, if not already linear */
        if (req->src->length >= assoclen && req->src->length &&
                (!PageHighMem(sg_page(req->src)) ||
                        req->src->offset + req->src->length <= PAGE_SIZE)) {
                scatterwalk_start(&assoc_sg_walk, req->src);
                assoc = scatterwalk_map(&assoc_sg_walk);
        } else {
                /* assoc can be any length, so must be on heap */
                assocmem = kmalloc(assoclen, GFP_ATOMIC);
                if (unlikely(!assocmem))
                        return -ENOMEM;
                assoc = assocmem;

                scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
        }

        src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
        scatterwalk_start(&src_sg_walk, src_sg);
        if (req->src != req->dst) {
                dst_sg = scatterwalk_ffwd(dst_start, req->dst, req->assoclen);
                scatterwalk_start(&dst_sg_walk, dst_sg);
        }

        kernel_fpu_begin();
        aesni_gcm_init(aes_ctx, &data, iv,
                hash_subkey, assoc, assoclen);
        if (req->src != req->dst) {
                while (left) {
                        src = scatterwalk_map(&src_sg_walk);
                        dst = scatterwalk_map(&dst_sg_walk);
                        srclen = scatterwalk_clamp(&src_sg_walk, left);
                        dstlen = scatterwalk_clamp(&dst_sg_walk, left);
                        len = min(srclen, dstlen);
                        if (len) {
                                if (enc)
                                        aesni_gcm_enc_update(aes_ctx, &data,
                                                             dst, src, len);
                                else
                                        aesni_gcm_dec_update(aes_ctx, &data,
                                                             dst, src, len);
                        }
                        left -= len;

                        scatterwalk_unmap(src);
                        scatterwalk_unmap(dst);
                        scatterwalk_advance(&src_sg_walk, len);
                        scatterwalk_advance(&dst_sg_walk, len);
                        scatterwalk_done(&src_sg_walk, 0, left);
                        scatterwalk_done(&dst_sg_walk, 1, left);
                }
        } else {
                while (left) {
                        dst = src = scatterwalk_map(&src_sg_walk);
                        len = scatterwalk_clamp(&src_sg_walk, left);
                        if (len) {
                                if (enc)
                                        aesni_gcm_enc_update(aes_ctx, &data,
                                                             src, src, len);
                                else
                                        aesni_gcm_dec_update(aes_ctx, &data,
                                                             src, src, len);
                        }
                        left -= len;
                        scatterwalk_unmap(src);
                        scatterwalk_advance(&src_sg_walk, len);
                        scatterwalk_done(&src_sg_walk, 1, left);
                }
        }
        aesni_gcm_finalize(aes_ctx, &data, authTag, auth_tag_len);
        kernel_fpu_end();

        if (!assocmem)
                scatterwalk_unmap(assoc);
        else
                kfree(assocmem);

        if (!enc) {
                u8 authTagMsg[16];

                /* Copy out original authTag */
                scatterwalk_map_and_copy(authTagMsg, req->src,
                                         req->assoclen + req->cryptlen -
                                         auth_tag_len,
                                         auth_tag_len, 0);

                /* Compare generated tag with passed in tag. */
                return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
                        -EBADMSG : 0;
        }

        /* Copy in the authTag */
        scatterwalk_map_and_copy(authTag, req->dst,
                                 req->assoclen + req->cryptlen,
                                 auth_tag_len, 1);

        return 0;
}

static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
                          u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
        u8 one_entry_in_sg = 0;
        u8 *src, *dst, *assoc;
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        unsigned long auth_tag_len = crypto_aead_authsize(tfm);
        struct scatter_walk src_sg_walk;
        struct scatter_walk dst_sg_walk = {};
        struct gcm_context_data data AESNI_ALIGN_ATTR;

        if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
                aesni_gcm_enc_tfm == aesni_gcm_enc ||
                req->cryptlen < AVX_GEN2_OPTSIZE) {
                return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
                                          aes_ctx);
        }
        if (sg_is_last(req->src) &&
            (!PageHighMem(sg_page(req->src)) ||
            req->src->offset + req->src->length <= PAGE_SIZE) &&
            sg_is_last(req->dst) &&
            (!PageHighMem(sg_page(req->dst)) ||
            req->dst->offset + req->dst->length <= PAGE_SIZE)) {
                one_entry_in_sg = 1;
                scatterwalk_start(&src_sg_walk, req->src);
                assoc = scatterwalk_map(&src_sg_walk);
                src = assoc + req->assoclen;
                dst = src;
                if (unlikely(req->src != req->dst)) {
                        scatterwalk_start(&dst_sg_walk, req->dst);
                        dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
                }
        } else {
                /* Allocate memory for src, dst, assoc */
                assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
                        GFP_ATOMIC);
                if (unlikely(!assoc))
                        return -ENOMEM;
                scatterwalk_map_and_copy(assoc, req->src, 0,
                                         req->assoclen + req->cryptlen, 0);
                src = assoc + req->assoclen;
                dst = src;
        }

        kernel_fpu_begin();
        aesni_gcm_enc_tfm(aes_ctx, &data, dst, src, req->cryptlen, iv,
                          hash_subkey, assoc, assoclen,
                          dst + req->cryptlen, auth_tag_len);
        kernel_fpu_end();

        /* The authTag (aka the Integrity Check Value) needs to be written
         * back to the packet. */
        if (one_entry_in_sg) {
                if (unlikely(req->src != req->dst)) {
                        scatterwalk_unmap(dst - req->assoclen);
                        scatterwalk_advance(&dst_sg_walk, req->dst->length);
                        scatterwalk_done(&dst_sg_walk, 1, 0);
                }
                scatterwalk_unmap(assoc);
                scatterwalk_advance(&src_sg_walk, req->src->length);
                scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
        } else {
                scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
                                         req->cryptlen + auth_tag_len, 1);
                kfree(assoc);
        }
        return 0;
}

static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
                          u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
        u8 one_entry_in_sg = 0;
        u8 *src, *dst, *assoc;
        unsigned long tempCipherLen = 0;
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        unsigned long auth_tag_len = crypto_aead_authsize(tfm);
        u8 authTag[16];
        struct scatter_walk src_sg_walk;
        struct scatter_walk dst_sg_walk = {};
        struct gcm_context_data data AESNI_ALIGN_ATTR;
        int retval = 0;

        if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
                aesni_gcm_enc_tfm == aesni_gcm_enc ||
                req->cryptlen < AVX_GEN2_OPTSIZE) {
                return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
                                          aes_ctx);
        }
        tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);

        if (sg_is_last(req->src) &&
            (!PageHighMem(sg_page(req->src)) ||
            req->src->offset + req->src->length <= PAGE_SIZE) &&
            sg_is_last(req->dst) && req->dst->length &&
            (!PageHighMem(sg_page(req->dst)) ||
            req->dst->offset + req->dst->length <= PAGE_SIZE)) {
                one_entry_in_sg = 1;
                scatterwalk_start(&src_sg_walk, req->src);
                assoc = scatterwalk_map(&src_sg_walk);
                src = assoc + req->assoclen;
                dst = src;
                if (unlikely(req->src != req->dst)) {
                        scatterwalk_start(&dst_sg_walk, req->dst);
                        dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
                }
        } else {
                /* Allocate memory for src, dst, assoc */
                assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
                if (!assoc)
                        return -ENOMEM;
                scatterwalk_map_and_copy(assoc, req->src, 0,
                                         req->assoclen + req->cryptlen, 0);
                src = assoc + req->assoclen;
                dst = src;
        }


        kernel_fpu_begin();
        aesni_gcm_dec_tfm(aes_ctx, &data, dst, src, tempCipherLen, iv,
                          hash_subkey, assoc, assoclen,
                          authTag, auth_tag_len);
        kernel_fpu_end();

        /* Compare generated tag with passed in tag. */
        retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
                -EBADMSG : 0;

        if (one_entry_in_sg) {
                if (unlikely(req->src != req->dst)) {
                        scatterwalk_unmap(dst - req->assoclen);
                        scatterwalk_advance(&dst_sg_walk, req->dst->length);
                        scatterwalk_done(&dst_sg_walk, 1, 0);
                }
                scatterwalk_unmap(assoc);
                scatterwalk_advance(&src_sg_walk, req->src->length);
                scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
        } else {
                scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
                                         tempCipherLen, 1);
                kfree(assoc);
        }
        return retval;

}

static int helper_rfc4106_encrypt(struct aead_request *req)
{
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
        void *aes_ctx = &(ctx->aes_key_expanded);
        u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
        unsigned int i;
        __be32 counter = cpu_to_be32(1);

        /* Assuming we are supporting rfc4106 64-bit extended */
        /* sequence numbers We need to have the AAD length equal */
        /* to 16 or 20 bytes */
        if (unlikely(req->assoclen != 16 && req->assoclen != 20))
                return -EINVAL;

        /* IV below built */
        for (i = 0; i < 4; i++)
                *(iv+i) = ctx->nonce[i];
        for (i = 0; i < 8; i++)
                *(iv+4+i) = req->iv[i];
        *((__be32 *)(iv+12)) = counter;

        return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
                              aes_ctx);
}

static int helper_rfc4106_decrypt(struct aead_request *req)
{
        __be32 counter = cpu_to_be32(1);
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
        void *aes_ctx = &(ctx->aes_key_expanded);
        u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
        unsigned int i;

        if (unlikely(req->assoclen != 16 && req->assoclen != 20))
                return -EINVAL;

        /* Assuming we are supporting rfc4106 64-bit extended */
        /* sequence numbers We need to have the AAD length */
        /* equal to 16 or 20 bytes */

        /* IV below built */
        for (i = 0; i < 4; i++)
                *(iv+i) = ctx->nonce[i];
        for (i = 0; i < 8; i++)
                *(iv+4+i) = req->iv[i];
        *((__be32 *)(iv+12)) = counter;

        return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
                              aes_ctx);
}

static int gcmaes_wrapper_encrypt(struct aead_request *req)
{
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
        struct cryptd_aead *cryptd_tfm = *ctx;

        tfm = &cryptd_tfm->base;
        if (irq_fpu_usable() && (!in_atomic() ||
                                 !cryptd_aead_queued(cryptd_tfm)))
                tfm = cryptd_aead_child(cryptd_tfm);

        aead_request_set_tfm(req, tfm);

        return crypto_aead_encrypt(req);
}

static int gcmaes_wrapper_decrypt(struct aead_request *req)
{
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
        struct cryptd_aead *cryptd_tfm = *ctx;

        tfm = &cryptd_tfm->base;
        if (irq_fpu_usable() && (!in_atomic() ||
                                 !cryptd_aead_queued(cryptd_tfm)))
                tfm = cryptd_aead_child(cryptd_tfm);

        aead_request_set_tfm(req, tfm);

        return crypto_aead_decrypt(req);
}
#endif

static struct crypto_alg aesni_algs[] = { {
        .cra_name                = "aes",
        .cra_driver_name        = "aes-aesni",
        .cra_priority                = 300,
        .cra_flags                = CRYPTO_ALG_TYPE_CIPHER,
        .cra_blocksize                = AES_BLOCK_SIZE,
        .cra_ctxsize                = CRYPTO_AES_CTX_SIZE,
        .cra_module                = THIS_MODULE,
        .cra_u        = {
                .cipher        = {
                        .cia_min_keysize        = AES_MIN_KEY_SIZE,
                        .cia_max_keysize        = AES_MAX_KEY_SIZE,
                        .cia_setkey                = aes_set_key,
                        .cia_encrypt                = aes_encrypt,
                        .cia_decrypt                = aes_decrypt
                }
        }
}, {
        .cra_name                = "__aes",
        .cra_driver_name        = "__aes-aesni",
        .cra_priority                = 300,
        .cra_flags                = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
        .cra_blocksize                = AES_BLOCK_SIZE,
        .cra_ctxsize                = CRYPTO_AES_CTX_SIZE,
        .cra_module                = THIS_MODULE,
        .cra_u        = {
                .cipher        = {
                        .cia_min_keysize        = AES_MIN_KEY_SIZE,
                        .cia_max_keysize        = AES_MAX_KEY_SIZE,
                        .cia_setkey                = aes_set_key,
                        .cia_encrypt                = __aes_encrypt,
                        .cia_decrypt                = __aes_decrypt
                }
        }
} };

static struct skcipher_alg aesni_skciphers[] = {
        {
                .base = {
                        .cra_name                = "__ecb(aes)",
                        .cra_driver_name        = "__ecb-aes-aesni",
                        .cra_priority                = 400,
                        .cra_flags                = CRYPTO_ALG_INTERNAL,
                        .cra_blocksize                = AES_BLOCK_SIZE,
                        .cra_ctxsize                = CRYPTO_AES_CTX_SIZE,
                        .cra_module                = THIS_MODULE,
                },
                .min_keysize        = AES_MIN_KEY_SIZE,
                .max_keysize        = AES_MAX_KEY_SIZE,
                .setkey                = aesni_skcipher_setkey,
                .encrypt        = ecb_encrypt,
                .decrypt        = ecb_decrypt,
        }, {
                .base = {
                        .cra_name                = "__cbc(aes)",
                        .cra_driver_name        = "__cbc-aes-aesni",
                        .cra_priority                = 400,
                        .cra_flags                = CRYPTO_ALG_INTERNAL,
                        .cra_blocksize                = AES_BLOCK_SIZE,
                        .cra_ctxsize                = CRYPTO_AES_CTX_SIZE,
                        .cra_module                = THIS_MODULE,
                },
                .min_keysize        = AES_MIN_KEY_SIZE,
                .max_keysize        = AES_MAX_KEY_SIZE,
                .ivsize                = AES_BLOCK_SIZE,
                .setkey                = aesni_skcipher_setkey,
                .encrypt        = cbc_encrypt,
                .decrypt        = cbc_decrypt,
#ifdef CONFIG_X86_64
        }, {
                .base = {
                        .cra_name                = "__ctr(aes)",
                        .cra_driver_name        = "__ctr-aes-aesni",
                        .cra_priority                = 400,
                        .cra_flags                = CRYPTO_ALG_INTERNAL,
                        .cra_blocksize                = 1,
                        .cra_ctxsize                = CRYPTO_AES_CTX_SIZE,
                        .cra_module                = THIS_MODULE,
                },
                .min_keysize        = AES_MIN_KEY_SIZE,
                .max_keysize        = AES_MAX_KEY_SIZE,
                .ivsize                = AES_BLOCK_SIZE,
                .chunksize        = AES_BLOCK_SIZE,
                .setkey                = aesni_skcipher_setkey,
                .encrypt        = ctr_crypt,
                .decrypt        = ctr_crypt,
        }, {
                .base = {
                        .cra_name                = "__xts(aes)",
                        .cra_driver_name        = "__xts-aes-aesni",
                        .cra_priority                = 401,
                        .cra_flags                = CRYPTO_ALG_INTERNAL,
                        .cra_blocksize                = AES_BLOCK_SIZE,
                        .cra_ctxsize                = XTS_AES_CTX_SIZE,
                        .cra_module                = THIS_MODULE,
                },
                .min_keysize        = 2 * AES_MIN_KEY_SIZE,
                .max_keysize        = 2 * AES_MAX_KEY_SIZE,
                .ivsize                = AES_BLOCK_SIZE,
                .setkey                = xts_aesni_setkey,
                .encrypt        = xts_encrypt,
                .decrypt        = xts_decrypt,
#endif
        }
};

static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];

#ifdef CONFIG_X86_64
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
                                  unsigned int key_len)
{
        struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);

        return aes_set_key_common(crypto_aead_tfm(aead),
                                  &ctx->aes_key_expanded, key, key_len) ?:
               rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}

static int generic_gcmaes_encrypt(struct aead_request *req)
{
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
        void *aes_ctx = &(ctx->aes_key_expanded);
        u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
        __be32 counter = cpu_to_be32(1);

        memcpy(iv, req->iv, 12);
        *((__be32 *)(iv+12)) = counter;

        return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
                              aes_ctx);
}

static int generic_gcmaes_decrypt(struct aead_request *req)
{
        __be32 counter = cpu_to_be32(1);
        struct crypto_aead *tfm = crypto_aead_reqtfm(req);
        struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
        void *aes_ctx = &(ctx->aes_key_expanded);
        u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));

        memcpy(iv, req->iv, 12);
        *((__be32 *)(iv+12)) = counter;

        return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
                              aes_ctx);
}

static int generic_gcmaes_init(struct crypto_aead *aead)
{
        struct cryptd_aead *cryptd_tfm;
        struct cryptd_aead **ctx = crypto_aead_ctx(aead);

        cryptd_tfm = cryptd_alloc_aead("__driver-generic-gcm-aes-aesni",
                                       CRYPTO_ALG_INTERNAL,
                                       CRYPTO_ALG_INTERNAL);
        if (IS_ERR(cryptd_tfm))
                return PTR_ERR(cryptd_tfm);

        *ctx = cryptd_tfm;
        crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));

        return 0;
}

static void generic_gcmaes_exit(struct crypto_aead *aead)
{
        struct cryptd_aead **ctx = crypto_aead_ctx(aead);

        cryptd_free_aead(*ctx);
}

static struct aead_alg aesni_aead_algs[] = { {
        .setkey                        = common_rfc4106_set_key,
        .setauthsize                = common_rfc4106_set_authsize,
        .encrypt                = helper_rfc4106_encrypt,
        .decrypt                = helper_rfc4106_decrypt,
        .ivsize                        = GCM_RFC4106_IV_SIZE,
        .maxauthsize                = 16,
        .base = {
                .cra_name                = "__gcm-aes-aesni",
                .cra_driver_name        = "__driver-gcm-aes-aesni",
                .cra_flags                = CRYPTO_ALG_INTERNAL,
                .cra_blocksize                = 1,
                .cra_ctxsize                = sizeof(struct aesni_rfc4106_gcm_ctx),
                .cra_alignmask                = AESNI_ALIGN - 1,
                .cra_module                = THIS_MODULE,
        },
}, {
        .init                        = rfc4106_init,
        .exit                        = rfc4106_exit,
        .setkey                        = gcmaes_wrapper_set_key,
        .setauthsize                = gcmaes_wrapper_set_authsize,
        .encrypt                = gcmaes_wrapper_encrypt,
        .decrypt                = gcmaes_wrapper_decrypt,
        .ivsize                        = GCM_RFC4106_IV_SIZE,
        .maxauthsize                = 16,
        .base = {
                .cra_name                = "rfc4106(gcm(aes))",
                .cra_driver_name        = "rfc4106-gcm-aesni",
                .cra_priority                = 400,
                .cra_flags                = CRYPTO_ALG_ASYNC,
                .cra_blocksize                = 1,
                .cra_ctxsize                = sizeof(struct cryptd_aead *),
                .cra_module                = THIS_MODULE,
        },
}, {
        .setkey                        = generic_gcmaes_set_key,
        .setauthsize                = generic_gcmaes_set_authsize,
        .encrypt                = generic_gcmaes_encrypt,
        .decrypt                = generic_gcmaes_decrypt,
        .ivsize                        = GCM_AES_IV_SIZE,
        .maxauthsize                = 16,
        .base = {
                .cra_name                = "__generic-gcm-aes-aesni",
                .cra_driver_name        = "__driver-generic-gcm-aes-aesni",
                .cra_priority                = 0,
                .cra_flags                = CRYPTO_ALG_INTERNAL,
                .cra_blocksize                = 1,
                .cra_ctxsize                = sizeof(struct generic_gcmaes_ctx),
                .cra_alignmask                = AESNI_ALIGN - 1,
                .cra_module                = THIS_MODULE,
        },
}, {
        .init                        = generic_gcmaes_init,
        .exit                        = generic_gcmaes_exit,
        .setkey                        = gcmaes_wrapper_set_key,
        .setauthsize                = gcmaes_wrapper_set_authsize,
        .encrypt                = gcmaes_wrapper_encrypt,
        .decrypt                = gcmaes_wrapper_decrypt,
        .ivsize                        = GCM_AES_IV_SIZE,
        .maxauthsize                = 16,
        .base = {
                .cra_name                = "gcm(aes)",
                .cra_driver_name        = "generic-gcm-aesni",
                .cra_priority                = 400,
                .cra_flags                = CRYPTO_ALG_ASYNC,
                .cra_blocksize                = 1,
                .cra_ctxsize                = sizeof(struct cryptd_aead *),
                .cra_module                = THIS_MODULE,
        },
} };
#else
static struct aead_alg aesni_aead_algs[0];
#endif


static const struct x86_cpu_id aesni_cpu_id[] = {
        X86_FEATURE_MATCH(X86_FEATURE_AES),
        {}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);

static void aesni_free_simds(void)
{
        int i;

        for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) &&
                    aesni_simd_skciphers[i]; i++)
                simd_skcipher_free(aesni_simd_skciphers[i]);
}

static int __init aesni_init(void)
{
        struct simd_skcipher_alg *simd;
        const char *basename;
        const char *algname;
        const char *drvname;
        int err;
        int i;

        if (!x86_match_cpu(aesni_cpu_id))
                return -ENODEV;
#ifdef CONFIG_X86_64
#ifdef CONFIG_AS_AVX2
        if (boot_cpu_has(X86_FEATURE_AVX2)) {
                pr_info("AVX2 version of gcm_enc/dec engaged.\n");
                aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
                aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
        } else
#endif
#ifdef CONFIG_AS_AVX
        if (boot_cpu_has(X86_FEATURE_AVX)) {
                pr_info("AVX version of gcm_enc/dec engaged.\n");
                aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
                aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
        } else
#endif
        {
                pr_info("SSE version of gcm_enc/dec engaged.\n");
                aesni_gcm_enc_tfm = aesni_gcm_enc;
                aesni_gcm_dec_tfm = aesni_gcm_dec;
        }
        aesni_ctr_enc_tfm = aesni_ctr_enc;
#ifdef CONFIG_AS_AVX
        if (boot_cpu_has(X86_FEATURE_AVX)) {
                /* optimize performance of ctr mode encryption transform */
                aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
                pr_info("AES CTR mode by8 optimization enabled\n");
        }
#endif
#endif

        err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
        if (err)
                return err;

        err = crypto_register_skciphers(aesni_skciphers,
                                        ARRAY_SIZE(aesni_skciphers));
        if (err)
                goto unregister_algs;

        err = crypto_register_aeads(aesni_aead_algs,
                                    ARRAY_SIZE(aesni_aead_algs));
        if (err)
                goto unregister_skciphers;

        for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) {
                algname = aesni_skciphers[i].base.cra_name + 2;
                drvname = aesni_skciphers[i].base.cra_driver_name + 2;
                basename = aesni_skciphers[i].base.cra_driver_name;
                simd = simd_skcipher_create_compat(algname, drvname, basename);
                err = PTR_ERR(simd);
                if (IS_ERR(simd))
                        goto unregister_simds;

                aesni_simd_skciphers[i] = simd;
        }

        return 0;

unregister_simds:
        aesni_free_simds();
        crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
unregister_skciphers:
        crypto_unregister_skciphers(aesni_skciphers,
                                    ARRAY_SIZE(aesni_skciphers));
unregister_algs:
        crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
        return err;
}

static void __exit aesni_exit(void)
{
        aesni_free_simds();
        crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
        crypto_unregister_skciphers(aesni_skciphers,
                                    ARRAY_SIZE(aesni_skciphers));
        crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
}

late_initcall(aesni_init);
module_exit(aesni_exit);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");