/*
 * Multi buffer SHA1 algorithm Glue Code
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 *  Copyright(c) 2014 Intel Corporation.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of version 2 of the GNU General Public License as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  Contact Information:
 *        Tim Chen <tim.c.chen@linux.intel.com>
 *
 *  BSD LICENSE
 *
 *  Copyright(c) 2014 Intel Corporation.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define pr_fmt(fmt)        KBUILD_MODNAME ": " fmt

#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <linux/list.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include <crypto/mcryptd.h>
#include <crypto/crypto_wq.h>
#include <asm/byteorder.h>
#include <linux/hardirq.h>
#include <asm/fpu/api.h>
#include "sha1_mb_ctx.h"

#define FLUSH_INTERVAL 1000 /* in usec */

static struct mcryptd_alg_state sha1_mb_alg_state;

struct sha1_mb_ctx {
        struct mcryptd_ahash *mcryptd_tfm;
};

static inline struct mcryptd_hash_request_ctx
                *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
{
        struct ahash_request *areq;

        areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
        return container_of(areq, struct mcryptd_hash_request_ctx, areq);
}

static inline struct ahash_request
                *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
{
        return container_of((void *) ctx, struct ahash_request, __ctx);
}

static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
                                struct ahash_request *areq)
{
        rctx->flag = HASH_UPDATE;
}

static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)
                        (struct sha1_mb_mgr *state, struct job_sha1 *job);
static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)
                                                (struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)
                                                (struct sha1_mb_mgr *state);

static inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
                         uint64_t total_len)
{
        uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);

        memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
        padblock[i] = 0x80;

        i += ((SHA1_BLOCK_SIZE - 1) &
              (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
             + 1 + SHA1_PADLENGTHFIELD_SIZE;

#if SHA1_PADLENGTHFIELD_SIZE == 16
        *((uint64_t *) &padblock[i - 16]) = 0;
#endif

        *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);

        /* Number of extra blocks to hash */
        return i >> SHA1_LOG2_BLOCK_SIZE;
}

static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr,
                                                struct sha1_hash_ctx *ctx)
{
        while (ctx) {
                if (ctx->status & HASH_CTX_STS_COMPLETE) {
                        /* Clear PROCESSING bit */
                        ctx->status = HASH_CTX_STS_COMPLETE;
                        return ctx;
                }

                /*
                 * If the extra blocks are empty, begin hashing what remains
                 * in the user's buffer.
                 */
                if (ctx->partial_block_buffer_length == 0 &&
                    ctx->incoming_buffer_length) {

                        const void *buffer = ctx->incoming_buffer;
                        uint32_t len = ctx->incoming_buffer_length;
                        uint32_t copy_len;

                        /*
                         * Only entire blocks can be hashed.
                         * Copy remainder to extra blocks buffer.
                         */
                        copy_len = len & (SHA1_BLOCK_SIZE-1);

                        if (copy_len) {
                                len -= copy_len;
                                memcpy(ctx->partial_block_buffer,
                                       ((const char *) buffer + len),
                                       copy_len);
                                ctx->partial_block_buffer_length = copy_len;
                        }

                        ctx->incoming_buffer_length = 0;

                        /* len should be a multiple of the block size now */
                        assert((len % SHA1_BLOCK_SIZE) == 0);

                        /* Set len to the number of blocks to be hashed */
                        len >>= SHA1_LOG2_BLOCK_SIZE;

                        if (len) {

                                ctx->job.buffer = (uint8_t *) buffer;
                                ctx->job.len = len;
                                ctx = (struct sha1_hash_ctx *)sha1_job_mgr_submit(&mgr->mgr,
                                                                                &ctx->job);
                                continue;
                        }
                }

                /*
                 * If the extra blocks are not empty, then we are
                 * either on the last block(s) or we need more
                 * user input before continuing.
                 */
                if (ctx->status & HASH_CTX_STS_LAST) {

                        uint8_t *buf = ctx->partial_block_buffer;
                        uint32_t n_extra_blocks =
                                        sha1_pad(buf, ctx->total_length);

                        ctx->status = (HASH_CTX_STS_PROCESSING |
                                       HASH_CTX_STS_COMPLETE);
                        ctx->job.buffer = buf;
                        ctx->job.len = (uint32_t) n_extra_blocks;
                        ctx = (struct sha1_hash_ctx *)
                                sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
                        continue;
                }

                ctx->status = HASH_CTX_STS_IDLE;
                return ctx;
        }

        return NULL;
}

static struct sha1_hash_ctx
                        *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
{
        /*
         * If get_comp_job returns NULL, there are no jobs complete.
         * If get_comp_job returns a job, verify that it is safe to return to
         * the user.
         * If it is not ready, resubmit the job to finish processing.
         * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
         * Otherwise, all jobs currently being managed by the hash_ctx_mgr
         * still need processing.
         */
        struct sha1_hash_ctx *ctx;

        ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
        return sha1_ctx_mgr_resubmit(mgr, ctx);
}

static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
{
        sha1_job_mgr_init(&mgr->mgr);
}

static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
                                          struct sha1_hash_ctx *ctx,
                                          const void *buffer,
                                          uint32_t len,
                                          int flags)
{
        if (flags & ~(HASH_UPDATE | HASH_LAST)) {
                /* User should not pass anything other than UPDATE or LAST */
                ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
                return ctx;
        }

        if (ctx->status & HASH_CTX_STS_PROCESSING) {
                /* Cannot submit to a currently processing job. */
                ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
                return ctx;
        }

        if (ctx->status & HASH_CTX_STS_COMPLETE) {
                /* Cannot update a finished job. */
                ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
                return ctx;
        }

        /*
         * If we made it here, there were no errors during this call to
         * submit
         */
        ctx->error = HASH_CTX_ERROR_NONE;

        /* Store buffer ptr info from user */
        ctx->incoming_buffer = buffer;
        ctx->incoming_buffer_length = len;

        /*
         * Store the user's request flags and mark this ctx as currently
         * being processed.
         */
        ctx->status = (flags & HASH_LAST) ?
                        (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
                        HASH_CTX_STS_PROCESSING;

        /* Advance byte counter */
        ctx->total_length += len;

        /*
         * If there is anything currently buffered in the extra blocks,
         * append to it until it contains a whole block.
         * Or if the user's buffer contains less than a whole block,
         * append as much as possible to the extra block.
         */
        if (ctx->partial_block_buffer_length || len < SHA1_BLOCK_SIZE) {
                /*
                 * Compute how many bytes to copy from user buffer into
                 * extra block
                 */
                uint32_t copy_len = SHA1_BLOCK_SIZE -
                                        ctx->partial_block_buffer_length;
                if (len < copy_len)
                        copy_len = len;

                if (copy_len) {
                        /* Copy and update relevant pointers and counters */
                        memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
                                buffer, copy_len);

                        ctx->partial_block_buffer_length += copy_len;
                        ctx->incoming_buffer = (const void *)
                                        ((const char *)buffer + copy_len);
                        ctx->incoming_buffer_length = len - copy_len;
                }

                /*
                 * The extra block should never contain more than 1 block
                 * here
                 */
                assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);

                /*
                 * If the extra block buffer contains exactly 1 block, it can
                 * be hashed.
                 */
                if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
                        ctx->partial_block_buffer_length = 0;

                        ctx->job.buffer = ctx->partial_block_buffer;
                        ctx->job.len = 1;
                        ctx = (struct sha1_hash_ctx *)
                                sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
                }
        }

        return sha1_ctx_mgr_resubmit(mgr, ctx);
}

static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
{
        struct sha1_hash_ctx *ctx;

        while (1) {
                ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);

                /* If flush returned 0, there are no more jobs in flight. */
                if (!ctx)
                        return NULL;

                /*
                 * If flush returned a job, resubmit the job to finish
                 * processing.
                 */
                ctx = sha1_ctx_mgr_resubmit(mgr, ctx);

                /*
                 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be
                 * returned. Otherwise, all jobs currently being managed by the
                 * sha1_ctx_mgr still need processing. Loop.
                 */
                if (ctx)
                        return ctx;
        }
}

static int sha1_mb_init(struct ahash_request *areq)
{
        struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);

        hash_ctx_init(sctx);
        sctx->job.result_digest[0] = SHA1_H0;
        sctx->job.result_digest[1] = SHA1_H1;
        sctx->job.result_digest[2] = SHA1_H2;
        sctx->job.result_digest[3] = SHA1_H3;
        sctx->job.result_digest[4] = SHA1_H4;
        sctx->total_length = 0;
        sctx->partial_block_buffer_length = 0;
        sctx->status = HASH_CTX_STS_IDLE;

        return 0;
}

static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
{
        int        i;
        struct        sha1_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
        __be32        *dst = (__be32 *) rctx->out;

        for (i = 0; i < 5; ++i)
                dst[i] = cpu_to_be32(sctx->job.result_digest[i]);

        return 0;
}

static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
                        struct mcryptd_alg_cstate *cstate, bool flush)
{
        int        flag = HASH_UPDATE;
        int        nbytes, err = 0;
        struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
        struct sha1_hash_ctx *sha_ctx;

        /* more work ? */
        while (!(rctx->flag & HASH_DONE)) {
                nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
                if (nbytes < 0) {
                        err = nbytes;
                        goto out;
                }
                /* check if the walk is done */
                if (crypto_ahash_walk_last(&rctx->walk)) {
                        rctx->flag |= HASH_DONE;
                        if (rctx->flag & HASH_FINAL)
                                flag |= HASH_LAST;

                }
                sha_ctx = (struct sha1_hash_ctx *)
                                                ahash_request_ctx(&rctx->areq);
                kernel_fpu_begin();
                sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx,
                                                rctx->walk.data, nbytes, flag);
                if (!sha_ctx) {
                        if (flush)
                                sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
                }
                kernel_fpu_end();
                if (sha_ctx)
                        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
                else {
                        rctx = NULL;
                        goto out;
                }
        }

        /* copy the results */
        if (rctx->flag & HASH_FINAL)
                sha1_mb_set_results(rctx);

out:
        *ret_rctx = rctx;
        return err;
}

static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
                            struct mcryptd_alg_cstate *cstate,
                            int err)
{
        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
        struct sha1_hash_ctx *sha_ctx;
        struct mcryptd_hash_request_ctx *req_ctx;
        int ret;

        /* remove from work list */
        spin_lock(&cstate->work_lock);
        list_del(&rctx->waiter);
        spin_unlock(&cstate->work_lock);

        if (irqs_disabled())
                rctx->complete(&req->base, err);
        else {
                local_bh_disable();
                rctx->complete(&req->base, err);
                local_bh_enable();
        }

        /* check to see if there are other jobs that are done */
        sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
        while (sha_ctx) {
                req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
                ret = sha_finish_walk(&req_ctx, cstate, false);
                if (req_ctx) {
                        spin_lock(&cstate->work_lock);
                        list_del(&req_ctx->waiter);
                        spin_unlock(&cstate->work_lock);

                        req = cast_mcryptd_ctx_to_req(req_ctx);
                        if (irqs_disabled())
                                req_ctx->complete(&req->base, ret);
                        else {
                                local_bh_disable();
                                req_ctx->complete(&req->base, ret);
                                local_bh_enable();
                        }
                }
                sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
        }

        return 0;
}

static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
                             struct mcryptd_alg_cstate *cstate)
{
        unsigned long next_flush;
        unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);

        /* initialize tag */
        rctx->tag.arrival = jiffies;    /* tag the arrival time */
        rctx->tag.seq_num = cstate->next_seq_num++;
        next_flush = rctx->tag.arrival + delay;
        rctx->tag.expire = next_flush;

        spin_lock(&cstate->work_lock);
        list_add_tail(&rctx->waiter, &cstate->work_list);
        spin_unlock(&cstate->work_lock);

        mcryptd_arm_flusher(cstate, delay);
}

static int sha1_mb_update(struct ahash_request *areq)
{
        struct mcryptd_hash_request_ctx *rctx =
                container_of(areq, struct mcryptd_hash_request_ctx, areq);
        struct mcryptd_alg_cstate *cstate =
                                this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
        struct sha1_hash_ctx *sha_ctx;
        int ret = 0, nbytes;


        /* sanity check */
        if (rctx->tag.cpu != smp_processor_id()) {
                pr_err("mcryptd error: cpu clash\n");
                goto done;
        }

        /* need to init context */
        req_ctx_init(rctx, areq);

        nbytes = crypto_ahash_walk_first(req, &rctx->walk);

        if (nbytes < 0) {
                ret = nbytes;
                goto done;
        }

        if (crypto_ahash_walk_last(&rctx->walk))
                rctx->flag |= HASH_DONE;

        /* submit */
        sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
        sha1_mb_add_list(rctx, cstate);
        kernel_fpu_begin();
        sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
                                                        nbytes, HASH_UPDATE);
        kernel_fpu_end();

        /* check if anything is returned */
        if (!sha_ctx)
                return -EINPROGRESS;

        if (sha_ctx->error) {
                ret = sha_ctx->error;
                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
                goto done;
        }

        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
        ret = sha_finish_walk(&rctx, cstate, false);

        if (!rctx)
                return -EINPROGRESS;
done:
        sha_complete_job(rctx, cstate, ret);
        return ret;
}

static int sha1_mb_finup(struct ahash_request *areq)
{
        struct mcryptd_hash_request_ctx *rctx =
                container_of(areq, struct mcryptd_hash_request_ctx, areq);
        struct mcryptd_alg_cstate *cstate =
                                this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
        struct sha1_hash_ctx *sha_ctx;
        int ret = 0, flag = HASH_UPDATE, nbytes;

        /* sanity check */
        if (rctx->tag.cpu != smp_processor_id()) {
                pr_err("mcryptd error: cpu clash\n");
                goto done;
        }

        /* need to init context */
        req_ctx_init(rctx, areq);

        nbytes = crypto_ahash_walk_first(req, &rctx->walk);

        if (nbytes < 0) {
                ret = nbytes;
                goto done;
        }

        if (crypto_ahash_walk_last(&rctx->walk)) {
                rctx->flag |= HASH_DONE;
                flag = HASH_LAST;
        }

        /* submit */
        rctx->flag |= HASH_FINAL;
        sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
        sha1_mb_add_list(rctx, cstate);

        kernel_fpu_begin();
        sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
                                                                nbytes, flag);
        kernel_fpu_end();

        /* check if anything is returned */
        if (!sha_ctx)
                return -EINPROGRESS;

        if (sha_ctx->error) {
                ret = sha_ctx->error;
                goto done;
        }

        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
        ret = sha_finish_walk(&rctx, cstate, false);
        if (!rctx)
                return -EINPROGRESS;
done:
        sha_complete_job(rctx, cstate, ret);
        return ret;
}

static int sha1_mb_final(struct ahash_request *areq)
{
        struct mcryptd_hash_request_ctx *rctx =
                container_of(areq, struct mcryptd_hash_request_ctx, areq);
        struct mcryptd_alg_cstate *cstate =
                                this_cpu_ptr(sha1_mb_alg_state.alg_cstate);

        struct sha1_hash_ctx *sha_ctx;
        int ret = 0;
        u8 data;

        /* sanity check */
        if (rctx->tag.cpu != smp_processor_id()) {
                pr_err("mcryptd error: cpu clash\n");
                goto done;
        }

        /* need to init context */
        req_ctx_init(rctx, areq);

        rctx->flag |= HASH_DONE | HASH_FINAL;

        sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
        /* flag HASH_FINAL and 0 data size */
        sha1_mb_add_list(rctx, cstate);
        kernel_fpu_begin();
        sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0,
                                                                HASH_LAST);
        kernel_fpu_end();

        /* check if anything is returned */
        if (!sha_ctx)
                return -EINPROGRESS;

        if (sha_ctx->error) {
                ret = sha_ctx->error;
                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
                goto done;
        }

        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
        ret = sha_finish_walk(&rctx, cstate, false);
        if (!rctx)
                return -EINPROGRESS;
done:
        sha_complete_job(rctx, cstate, ret);
        return ret;
}

static int sha1_mb_export(struct ahash_request *areq, void *out)
{ /*covered*/
        struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);

        memcpy(out, sctx, sizeof(*sctx));

        return 0;
}

static int sha1_mb_import(struct ahash_request *areq, const void *in)
{ /*covered*/
        struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);

        memcpy(sctx, in, sizeof(*sctx));

        return 0;
}

static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
{ /*covered*/
        struct mcryptd_ahash *mcryptd_tfm;
        struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm); /*covered*/
        struct mcryptd_hash_ctx *mctx;

        mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
                                                CRYPTO_ALG_INTERNAL,
                                                CRYPTO_ALG_INTERNAL);
        if (IS_ERR(mcryptd_tfm))
                return PTR_ERR(mcryptd_tfm);
        mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
        mctx->alg_state = &sha1_mb_alg_state;
        ctx->mcryptd_tfm = mcryptd_tfm;
        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
                                sizeof(struct ahash_request) +
                                crypto_ahash_reqsize(&mcryptd_tfm->base));

        return 0;
}

static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
{ /*covered*/
        struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);

        mcryptd_free_ahash(ctx->mcryptd_tfm);
}

static int sha1_mb_areq_init_tfm(struct crypto_tfm *tfm)
{ /*covered*/
        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
                                sizeof(struct ahash_request) +
                                sizeof(struct sha1_hash_ctx));

        return 0;
}

static void sha1_mb_areq_exit_tfm(struct crypto_tfm *tfm)
{ /*covered*/
        struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);

        mcryptd_free_ahash(ctx->mcryptd_tfm);
}

static struct ahash_alg sha1_mb_areq_alg = {
        .init                =        sha1_mb_init,
        .update                =        sha1_mb_update,
        .final                =        sha1_mb_final,
        .finup                =        sha1_mb_finup,
        .export                =        sha1_mb_export,
        .import                =        sha1_mb_import,
        .halg                =        {
                .digestsize        =        SHA1_DIGEST_SIZE,
                .statesize        =        sizeof(struct sha1_hash_ctx),
                .base                =        {
                        .cra_name         = "__sha1-mb",
                        .cra_driver_name = "__intel_sha1-mb",
                        .cra_priority         = 100,
                        /*
                         * use ASYNC flag as some buffers in multi-buffer
                         * algo may not have completed before hashing thread
                         * sleep
                         */
                        .cra_flags        = CRYPTO_ALG_ASYNC |
                                          CRYPTO_ALG_INTERNAL,
                        .cra_blocksize        = SHA1_BLOCK_SIZE,
                        .cra_module        = THIS_MODULE,
                        .cra_list        = LIST_HEAD_INIT
                                        (sha1_mb_areq_alg.halg.base.cra_list),
                        .cra_init        = sha1_mb_areq_init_tfm,
                        .cra_exit        = sha1_mb_areq_exit_tfm,
                        .cra_ctxsize        = sizeof(struct sha1_hash_ctx),
                }
        }
};

static int sha1_mb_async_init(struct ahash_request *req)
{ /*covered*/
        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct ahash_request *mcryptd_req = ahash_request_ctx(req); /*covered*/
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_init(mcryptd_req);
}

static int sha1_mb_async_update(struct ahash_request *req)
{ /*covered*/
        struct ahash_request *mcryptd_req = ahash_request_ctx(req);

        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_update(mcryptd_req);
}

static int sha1_mb_async_finup(struct ahash_request *req)
{
        struct ahash_request *mcryptd_req = ahash_request_ctx(req);

        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_finup(mcryptd_req);
}

static int sha1_mb_async_final(struct ahash_request *req)
{ /*covered*/
        struct ahash_request *mcryptd_req = ahash_request_ctx(req);

        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_final(mcryptd_req);
}

static int sha1_mb_async_digest(struct ahash_request *req)
{ /*covered*/
        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_digest(mcryptd_req);
}

static int sha1_mb_async_export(struct ahash_request *req, void *out)
{ /*covered*/
        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        return crypto_ahash_export(mcryptd_req, out);
}

static int sha1_mb_async_import(struct ahash_request *req, const void *in)
{ /*covered*/
        struct ahash_request *mcryptd_req = ahash_request_ctx(req); /*covered*/
        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
        struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
        struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
        struct mcryptd_hash_request_ctx *rctx;
        struct ahash_request *areq;

        memcpy(mcryptd_req, req, sizeof(*req));
        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
        rctx = ahash_request_ctx(mcryptd_req);
        areq = &rctx->areq;

        ahash_request_set_tfm(areq, child);
        ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
                                        rctx->complete, req);

        return crypto_ahash_import(mcryptd_req, in);
}

static struct ahash_alg sha1_mb_async_alg = {
        .init           = sha1_mb_async_init,
        .update         = sha1_mb_async_update,
        .final          = sha1_mb_async_final,
        .finup          = sha1_mb_async_finup,
        .digest         = sha1_mb_async_digest,
        .export                = sha1_mb_async_export,
        .import                = sha1_mb_async_import,
        .halg = {
                .digestsize     = SHA1_DIGEST_SIZE,
                .statesize        = sizeof(struct sha1_hash_ctx),
                .base = {
                        .cra_name               = "sha1",
                        .cra_driver_name        = "sha1_mb",
                        /*
                         * Low priority, since with few concurrent hash requests
                         * this is extremely slow due to the flush delay.  Users
                         * whose workloads would benefit from this can request
                         * it explicitly by driver name, or can increase its
                         * priority at runtime using NETLINK_CRYPTO.
                         */
                        .cra_priority           = 50,
                        .cra_flags              = CRYPTO_ALG_ASYNC,
                        .cra_blocksize          = SHA1_BLOCK_SIZE,
                        .cra_module             = THIS_MODULE,
                        .cra_list               = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
                        .cra_init               = sha1_mb_async_init_tfm,
                        .cra_exit               = sha1_mb_async_exit_tfm,
                        .cra_ctxsize                = sizeof(struct sha1_mb_ctx),
                        .cra_alignmask                = 0,
                },
        },
};

static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
{
        struct mcryptd_hash_request_ctx *rctx;
        unsigned long cur_time;
        unsigned long next_flush = 0;
        struct sha1_hash_ctx *sha_ctx;


        cur_time = jiffies;

        while (!list_empty(&cstate->work_list)) {
                rctx = list_entry(cstate->work_list.next,
                                struct mcryptd_hash_request_ctx, waiter);
                if (time_before(cur_time, rctx->tag.expire))
                        break;
                kernel_fpu_begin();
                sha_ctx = (struct sha1_hash_ctx *)
                                        sha1_ctx_mgr_flush(cstate->mgr);
                kernel_fpu_end();
                if (!sha_ctx) {
                        pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
                        break;
                }
                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
                sha_finish_walk(&rctx, cstate, true);
                sha_complete_job(rctx, cstate, 0);
        }

        if (!list_empty(&cstate->work_list)) {
                rctx = list_entry(cstate->work_list.next,
                                struct mcryptd_hash_request_ctx, waiter);
                /* get the hash context and then flush time */
                next_flush = rctx->tag.expire;
                mcryptd_arm_flusher(cstate, get_delay(next_flush));
        }
        return next_flush;
}

static int __init sha1_mb_mod_init(void)
{

        int cpu;
        int err;
        struct mcryptd_alg_cstate *cpu_state;

        /* check for dependent cpu features */
        if (!boot_cpu_has(X86_FEATURE_AVX2) ||
            !boot_cpu_has(X86_FEATURE_BMI2))
                return -ENODEV;

        /* initialize multibuffer structures */
        sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);

        sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
        sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
        sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
        sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;

        if (!sha1_mb_alg_state.alg_cstate)
                return -ENOMEM;
        for_each_possible_cpu(cpu) {
                cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
                cpu_state->next_flush = 0;
                cpu_state->next_seq_num = 0;
                cpu_state->flusher_engaged = false;
                INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
                cpu_state->cpu = cpu;
                cpu_state->alg_state = &sha1_mb_alg_state;
                cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
                                        GFP_KERNEL);
                if (!cpu_state->mgr)
                        goto err2;
                sha1_ctx_mgr_init(cpu_state->mgr);
                INIT_LIST_HEAD(&cpu_state->work_list);
                spin_lock_init(&cpu_state->work_lock);
        }
        sha1_mb_alg_state.flusher = &sha1_mb_flusher;

        err = crypto_register_ahash(&sha1_mb_areq_alg);
        if (err)
                goto err2;
        err = crypto_register_ahash(&sha1_mb_async_alg);
        if (err)
                goto err1;


        return 0;
err1:
        crypto_unregister_ahash(&sha1_mb_areq_alg);
err2:
        for_each_possible_cpu(cpu) {
                cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
                kfree(cpu_state->mgr);
        }
        free_percpu(sha1_mb_alg_state.alg_cstate);
        return -ENODEV;
}

static void __exit sha1_mb_mod_fini(void)
{
        int cpu;
        struct mcryptd_alg_cstate *cpu_state;

        crypto_unregister_ahash(&sha1_mb_async_alg);
        crypto_unregister_ahash(&sha1_mb_areq_alg);
        for_each_possible_cpu(cpu) {
                cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
                kfree(cpu_state->mgr);
        }
        free_percpu(sha1_mb_alg_state.alg_cstate);
}

module_init(sha1_mb_mod_init);
module_exit(sha1_mb_mod_fini);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");

MODULE_ALIAS_CRYPTO("sha1");