37 37 37 37 37 36 41 41 41 41 41 41 41 41 39 36 35 35 39 39 39 39 39 40 41 41 40 40 39 40 39 41 41 39 41 41 40 40 41 3 3 8 8 1 1 38 37 2 2 2 2 37 37 37 37 37 37 37 37 37 160 160 160 160 140 47 47 47 160 160 41 160 160 47 140 140 140 140 140 47 140 47 160 161 161 161 161 161 161 48 140 140 161 39 41 41 41 41 41 39 40 2 2 8 8 8 1 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 /* $NetBSD: usbdi.c,v 1.243 2022/08/20 11:32:20 riastradh Exp $ */ /* * Copyright (c) 1998, 2012, 2015 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology, Matthew R. Green (mrg@eterna.com.au), * and Nick Hudson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: usbdi.c,v 1.243 2022/08/20 11:32:20 riastradh Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #include "opt_compat_netbsd.h" #include "usb_dma.h" #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/device.h> #include <sys/kmem.h> #include <sys/proc.h> #include <sys/bus.h> #include <sys/cpu.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #include <dev/usb/usbdivar.h> #include <dev/usb/usb_mem.h> #include <dev/usb/usb_quirks.h> #include <dev/usb/usb_sdt.h> #include <dev/usb/usbhist.h> /* UTF-8 encoding stuff */ #include <fs/unicode.h> SDT_PROBE_DEFINE5(usb, device, pipe, open, "struct usbd_interface *"/*iface*/, "uint8_t"/*address*/, "uint8_t"/*flags*/, "int"/*ival*/, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE7(usb, device, pipe, open__intr, "struct usbd_interface *"/*iface*/, "uint8_t"/*address*/, "uint8_t"/*flags*/, "int"/*ival*/, "usbd_callback"/*cb*/, "void *"/*cookie*/, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE2(usb, device, pipe, transfer__start, "struct usbd_pipe *"/*pipe*/, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE3(usb, device, pipe, transfer__done, "struct usbd_pipe *"/*pipe*/, "struct usbd_xfer *"/*xfer*/, "usbd_status"/*err*/); SDT_PROBE_DEFINE2(usb, device, pipe, start, "struct usbd_pipe *"/*pipe*/, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE1(usb, device, pipe, close, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE1(usb, device, pipe, abort__start, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE1(usb, device, pipe, abort__done, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE1(usb, device, pipe, clear__endpoint__stall, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE1(usb, device, pipe, clear__endpoint__toggle, "struct usbd_pipe *"/*pipe*/); SDT_PROBE_DEFINE5(usb, device, xfer, create, "struct usbd_xfer *"/*xfer*/, "struct usbd_pipe *"/*pipe*/, "size_t"/*len*/, "unsigned int"/*flags*/, "unsigned int"/*nframes*/); SDT_PROBE_DEFINE1(usb, device, xfer, start, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE1(usb, device, xfer, preabort, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE1(usb, device, xfer, abort, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE1(usb, device, xfer, timeout, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE2(usb, device, xfer, done, "struct usbd_xfer *"/*xfer*/, "usbd_status"/*status*/); SDT_PROBE_DEFINE1(usb, device, xfer, destroy, "struct usbd_xfer *"/*xfer*/); SDT_PROBE_DEFINE5(usb, device, request, start, "struct usbd_device *"/*dev*/, "usb_device_request_t *"/*req*/, "size_t"/*len*/, "int"/*flags*/, "uint32_t"/*timeout*/); SDT_PROBE_DEFINE7(usb, device, request, done, "struct usbd_device *"/*dev*/, "usb_device_request_t *"/*req*/, "size_t"/*actlen*/, "int"/*flags*/, "uint32_t"/*timeout*/, "void *"/*data*/, "usbd_status"/*status*/); Static void usbd_ar_pipe(struct usbd_pipe *); Static void usbd_start_next(struct usbd_pipe *); Static usbd_status usbd_open_pipe_ival (struct usbd_interface *, uint8_t, uint8_t, struct usbd_pipe **, int); static void *usbd_alloc_buffer(struct usbd_xfer *, uint32_t); static void usbd_free_buffer(struct usbd_xfer *); static struct usbd_xfer *usbd_alloc_xfer(struct usbd_device *, unsigned int); static void usbd_free_xfer(struct usbd_xfer *); static void usbd_xfer_timeout(void *); static void usbd_xfer_timeout_task(void *); static bool usbd_xfer_probe_timeout(struct usbd_xfer *); static void usbd_xfer_cancel_timeout_async(struct usbd_xfer *); #if defined(USB_DEBUG) void usbd_dump_iface(struct usbd_interface *iface) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "iface %#jx", (uintptr_t)iface, 0, 0, 0); if (iface == NULL) return; USBHIST_LOG(usbdebug, " device = %#jx idesc = %#jx index = %jd", (uintptr_t)iface->ui_dev, (uintptr_t)iface->ui_idesc, iface->ui_index, 0); USBHIST_LOG(usbdebug, " altindex=%jd", iface->ui_altindex, 0, 0, 0); } void usbd_dump_device(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "dev = %#jx", (uintptr_t)dev, 0, 0, 0); if (dev == NULL) return; USBHIST_LOG(usbdebug, " bus = %#jx default_pipe = %#jx", (uintptr_t)dev->ud_bus, (uintptr_t)dev->ud_pipe0, 0, 0); USBHIST_LOG(usbdebug, " address = %jd config = %jd depth = %jd ", dev->ud_addr, dev->ud_config, dev->ud_depth, 0); USBHIST_LOG(usbdebug, " speed = %jd self_powered = %jd " "power = %jd langid = %jd", dev->ud_speed, dev->ud_selfpowered, dev->ud_power, dev->ud_langid); } void usbd_dump_endpoint(struct usbd_endpoint *endp) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "endp = %#jx", (uintptr_t)endp, 0, 0, 0); if (endp == NULL) return; USBHIST_LOG(usbdebug, " edesc = %#jx refcnt = %jd", (uintptr_t)endp->ue_edesc, endp->ue_refcnt, 0, 0); if (endp->ue_edesc) USBHIST_LOG(usbdebug, " bEndpointAddress=0x%02jx", endp->ue_edesc->bEndpointAddress, 0, 0, 0); } void usbd_dump_queue(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0); SIMPLEQ_FOREACH(xfer, &pipe->up_queue, ux_next) { USBHIST_LOG(usbdebug, " xfer = %#jx", (uintptr_t)xfer, 0, 0, 0); } } void usbd_dump_pipe(struct usbd_pipe *pipe) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0); if (pipe == NULL) return; usbd_dump_iface(pipe->up_iface); usbd_dump_device(pipe->up_dev); usbd_dump_endpoint(pipe->up_endpoint); USBHIST_LOG(usbdebug, "(usbd_dump_pipe)", 0, 0, 0, 0); USBHIST_LOG(usbdebug, " running = %jd aborting = %jd", pipe->up_running, pipe->up_aborting, 0, 0); USBHIST_LOG(usbdebug, " intrxfer = %#jx, repeat = %jd, " "interval = %jd", (uintptr_t)pipe->up_intrxfer, pipe->up_repeat, pipe->up_interval, 0); } #endif usbd_status usbd_open_pipe(struct usbd_interface *iface, uint8_t address, uint8_t flags, struct usbd_pipe **pipe) { return (usbd_open_pipe_ival(iface, address, flags, pipe, USBD_DEFAULT_INTERVAL)); } usbd_status usbd_open_pipe_ival(struct usbd_interface *iface, uint8_t address, uint8_t flags, struct usbd_pipe **pipe, int ival) { struct usbd_pipe *p = NULL; struct usbd_endpoint *ep = NULL /* XXXGCC */; bool piperef = false; usbd_status err; int i; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "iface = %#jx address = %#jx flags = %#jx", (uintptr_t)iface, address, flags, 0); /* * Block usbd_set_interface so we have a snapshot of the * interface endpoints. They will remain stable until we drop * the reference in usbd_close_pipe (or on failure here). */ err = usbd_iface_piperef(iface); if (err) goto out; piperef = true; /* Find the endpoint at this address. */ for (i = 0; i < iface->ui_idesc->bNumEndpoints; i++) { ep = &iface->ui_endpoints[i]; if (ep->ue_edesc == NULL) { err = USBD_IOERROR; goto out; } if (ep->ue_edesc->bEndpointAddress == address) break; } if (i == iface->ui_idesc->bNumEndpoints) { err = USBD_BAD_ADDRESS; goto out; } /* Set up the pipe with this endpoint. */ err = usbd_setup_pipe_flags(iface->ui_dev, iface, ep, ival, &p, flags); if (err) goto out; /* Success! */ *pipe = p; p = NULL; /* handed off to caller */ piperef = false; /* handed off to pipe */ SDT_PROBE5(usb, device, pipe, open, iface, address, flags, ival, p); err = USBD_NORMAL_COMPLETION; out: if (p) usbd_close_pipe(p); if (piperef) usbd_iface_pipeunref(iface); return err; } usbd_status usbd_open_pipe_intr(struct usbd_interface *iface, uint8_t address, uint8_t flags, struct usbd_pipe **pipe, void *priv, void *buffer, uint32_t len, usbd_callback cb, int ival) { usbd_status err; struct usbd_xfer *xfer; struct usbd_pipe *ipipe; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "address = %#jx flags = %#jx len = %jd", address, flags, len, 0); err = usbd_open_pipe_ival(iface, address, USBD_EXCLUSIVE_USE | (flags & USBD_MPSAFE), &ipipe, ival); if (err) return err; err = usbd_create_xfer(ipipe, len, flags, 0, &xfer); if (err) goto bad1; usbd_setup_xfer(xfer, priv, buffer, len, flags, USBD_NO_TIMEOUT, cb); ipipe->up_intrxfer = xfer; ipipe->up_repeat = 1; err = usbd_transfer(xfer); *pipe = ipipe; if (err != USBD_IN_PROGRESS) goto bad3; SDT_PROBE7(usb, device, pipe, open__intr, iface, address, flags, ival, cb, priv, ipipe); return USBD_NORMAL_COMPLETION; bad3: ipipe->up_intrxfer = NULL; ipipe->up_repeat = 0; usbd_destroy_xfer(xfer); bad1: usbd_close_pipe(ipipe); return err; } void usbd_close_pipe(struct usbd_pipe *pipe) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(pipe != NULL); usbd_lock_pipe(pipe); SDT_PROBE1(usb, device, pipe, close, pipe); if (!SIMPLEQ_EMPTY(&pipe->up_queue)) { printf("WARNING: pipe closed with active xfers on addr %d\n", pipe->up_dev->ud_addr); usbd_ar_pipe(pipe); } KASSERT(SIMPLEQ_EMPTY(&pipe->up_queue)); pipe->up_methods->upm_close(pipe); usbd_unlock_pipe(pipe); cv_destroy(&pipe->up_callingcv); if (pipe->up_intrxfer) usbd_destroy_xfer(pipe->up_intrxfer); usb_rem_task_wait(pipe->up_dev, &pipe->up_async_task, USB_TASKQ_DRIVER, NULL); usbd_endpoint_release(pipe->up_dev, pipe->up_endpoint); if (pipe->up_iface) usbd_iface_pipeunref(pipe->up_iface); kmem_free(pipe, pipe->up_dev->ud_bus->ub_pipesize); } usbd_status usbd_transfer(struct usbd_xfer *xfer) { struct usbd_pipe *pipe = xfer->ux_pipe; usbd_status err; unsigned int size, flags; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "xfer = %#jx, flags = %#jx, pipe = %#jx, running = %jd", (uintptr_t)xfer, xfer->ux_flags, (uintptr_t)pipe, pipe->up_running); KASSERT(xfer->ux_status == USBD_NOT_STARTED); SDT_PROBE1(usb, device, xfer, start, xfer); #ifdef USB_DEBUG if (usbdebug > 5) usbd_dump_queue(pipe); #endif xfer->ux_done = 0; KASSERT(xfer->ux_length == 0 || xfer->ux_buf != NULL); size = xfer->ux_length; flags = xfer->ux_flags; if (size != 0) { /* * Use the xfer buffer if none specified in transfer setup. * isoc transfers always use the xfer buffer, i.e. * ux_buffer is always NULL for isoc. */ if (xfer->ux_buffer == NULL) { xfer->ux_buffer = xfer->ux_buf; } /* * If not using the xfer buffer copy data to the * xfer buffer for OUT transfers of >0 length */ if (xfer->ux_buffer != xfer->ux_buf) { KASSERT(xfer->ux_buf); if (!usbd_xfer_isread(xfer)) { memcpy(xfer->ux_buf, xfer->ux_buffer, size); } } } usbd_lock_pipe(pipe); if (pipe->up_aborting) { /* * XXX For synchronous transfers this is fine. What to * do for asynchronous transfers? The callback is * never run, not even with status USBD_CANCELLED. */ usbd_unlock_pipe(pipe); USBHIST_LOG(usbdebug, "<- done xfer %#jx, aborting", (uintptr_t)xfer, 0, 0, 0); SDT_PROBE2(usb, device, xfer, done, xfer, USBD_CANCELLED); return USBD_CANCELLED; } /* xfer is not valid after the transfer method unless synchronous */ SDT_PROBE2(usb, device, pipe, transfer__start, pipe, xfer); do { #ifdef DIAGNOSTIC xfer->ux_state = XFER_ONQU; #endif SIMPLEQ_INSERT_TAIL(&pipe->up_queue, xfer, ux_next); if (pipe->up_running && pipe->up_serialise) { err = USBD_IN_PROGRESS; } else { pipe->up_running = 1; err = USBD_NORMAL_COMPLETION; } if (err) break; err = pipe->up_methods->upm_transfer(xfer); } while (0); SDT_PROBE3(usb, device, pipe, transfer__done, pipe, xfer, err); usbd_unlock_pipe(pipe); if (err != USBD_IN_PROGRESS && err) { /* * The transfer made it onto the pipe queue, but didn't get * accepted by the HCD for some reason. It needs removing * from the pipe queue. */ USBHIST_LOG(usbdebug, "xfer failed: %jd, reinserting", err, 0, 0, 0); usbd_lock_pipe(pipe); SDT_PROBE1(usb, device, xfer, preabort, xfer); #ifdef DIAGNOSTIC xfer->ux_state = XFER_BUSY; #endif SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next); if (pipe->up_serialise) usbd_start_next(pipe); usbd_unlock_pipe(pipe); } if (!(flags & USBD_SYNCHRONOUS)) { USBHIST_LOG(usbdebug, "<- done xfer %#jx, not sync (err %jd)", (uintptr_t)xfer, err, 0, 0); KASSERTMSG(err != USBD_NORMAL_COMPLETION, "asynchronous xfer %p completed synchronously", xfer); return err; } if (err != USBD_IN_PROGRESS) { USBHIST_LOG(usbdebug, "<- done xfer %#jx, sync (err %jd)", (uintptr_t)xfer, err, 0, 0); SDT_PROBE2(usb, device, xfer, done, xfer, err); return err; } /* Sync transfer, wait for completion. */ usbd_lock_pipe(pipe); while (!xfer->ux_done) { if (pipe->up_dev->ud_bus->ub_usepolling) panic("usbd_transfer: not done"); USBHIST_LOG(usbdebug, "<- sleeping on xfer %#jx", (uintptr_t)xfer, 0, 0, 0); err = 0; if ((flags & USBD_SYNCHRONOUS_SIG) != 0) { err = cv_wait_sig(&xfer->ux_cv, pipe->up_dev->ud_bus->ub_lock); } else { cv_wait(&xfer->ux_cv, pipe->up_dev->ud_bus->ub_lock); } if (err) { if (!xfer->ux_done) { SDT_PROBE1(usb, device, xfer, abort, xfer); pipe->up_methods->upm_abort(xfer); } break; } } SDT_PROBE2(usb, device, xfer, done, xfer, xfer->ux_status); /* XXX Race to read xfer->ux_status? */ usbd_unlock_pipe(pipe); return xfer->ux_status; } /* Like usbd_transfer(), but waits for completion. */ usbd_status usbd_sync_transfer(struct usbd_xfer *xfer) { xfer->ux_flags |= USBD_SYNCHRONOUS; return usbd_transfer(xfer); } /* Like usbd_transfer(), but waits for completion and listens for signals. */ usbd_status usbd_sync_transfer_sig(struct usbd_xfer *xfer) { xfer->ux_flags |= USBD_SYNCHRONOUS | USBD_SYNCHRONOUS_SIG; return usbd_transfer(xfer); } static void * usbd_alloc_buffer(struct usbd_xfer *xfer, uint32_t size) { KASSERT(xfer->ux_buf == NULL); KASSERT(size != 0); xfer->ux_bufsize = 0; #if NUSB_DMA > 0 struct usbd_bus *bus = xfer->ux_bus; if (bus->ub_usedma) { usb_dma_t *dmap = &xfer->ux_dmabuf; KASSERT((bus->ub_dmaflags & USBMALLOC_COHERENT) == 0); int err = usb_allocmem(bus->ub_dmatag, size, 0, bus->ub_dmaflags, dmap); if (err) { return NULL; } xfer->ux_buf = KERNADDR(&xfer->ux_dmabuf, 0); xfer->ux_bufsize = size; return xfer->ux_buf; } #endif KASSERT(xfer->ux_bus->ub_usedma == false); xfer->ux_buf = kmem_alloc(size, KM_SLEEP); xfer->ux_bufsize = size; return xfer->ux_buf; } static void usbd_free_buffer(struct usbd_xfer *xfer) { KASSERT(xfer->ux_buf != NULL); KASSERT(xfer->ux_bufsize != 0); void *buf = xfer->ux_buf; uint32_t size = xfer->ux_bufsize; xfer->ux_buf = NULL; xfer->ux_bufsize = 0; #if NUSB_DMA > 0 struct usbd_bus *bus = xfer->ux_bus; if (bus->ub_usedma) { usb_dma_t *dmap = &xfer->ux_dmabuf; usb_freemem(dmap); return; } #endif KASSERT(xfer->ux_bus->ub_usedma == false); kmem_free(buf, size); } void * usbd_get_buffer(struct usbd_xfer *xfer) { return xfer->ux_buf; } struct usbd_pipe * usbd_get_pipe0(struct usbd_device *dev) { return dev->ud_pipe0; } static struct usbd_xfer * usbd_alloc_xfer(struct usbd_device *dev, unsigned int nframes) { struct usbd_xfer *xfer; USBHIST_FUNC(); ASSERT_SLEEPABLE(); xfer = dev->ud_bus->ub_methods->ubm_allocx(dev->ud_bus, nframes); if (xfer == NULL) goto out; xfer->ux_bus = dev->ud_bus; callout_init(&xfer->ux_callout, CALLOUT_MPSAFE); callout_setfunc(&xfer->ux_callout, usbd_xfer_timeout, xfer); cv_init(&xfer->ux_cv, "usbxfer"); usb_init_task(&xfer->ux_aborttask, usbd_xfer_timeout_task, xfer, USB_TASKQ_MPSAFE); out: USBHIST_CALLARGS(usbdebug, "returns %#jx", (uintptr_t)xfer, 0, 0, 0); return xfer; } static void usbd_free_xfer(struct usbd_xfer *xfer) { USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "%#jx", (uintptr_t)xfer, 0, 0, 0); if (xfer->ux_buf) { usbd_free_buffer(xfer); } /* Wait for any straggling timeout to complete. */ mutex_enter(xfer->ux_bus->ub_lock); xfer->ux_timeout_reset = false; /* do not resuscitate */ callout_halt(&xfer->ux_callout, xfer->ux_bus->ub_lock); usb_rem_task_wait(xfer->ux_pipe->up_dev, &xfer->ux_aborttask, USB_TASKQ_HC, xfer->ux_bus->ub_lock); mutex_exit(xfer->ux_bus->ub_lock); cv_destroy(&xfer->ux_cv); xfer->ux_bus->ub_methods->ubm_freex(xfer->ux_bus, xfer); } int usbd_create_xfer(struct usbd_pipe *pipe, size_t len, unsigned int flags, unsigned int nframes, struct usbd_xfer **xp) { KASSERT(xp != NULL); void *buf = NULL; struct usbd_xfer *xfer = usbd_alloc_xfer(pipe->up_dev, nframes); if (xfer == NULL) return ENOMEM; xfer->ux_pipe = pipe; xfer->ux_flags = flags; xfer->ux_nframes = nframes; xfer->ux_methods = pipe->up_methods; if (len) { buf = usbd_alloc_buffer(xfer, len); if (!buf) { usbd_free_xfer(xfer); return ENOMEM; } } if (xfer->ux_methods->upm_init) { int err = xfer->ux_methods->upm_init(xfer); if (err) { usbd_free_xfer(xfer); return err; } } *xp = xfer; SDT_PROBE5(usb, device, xfer, create, xfer, pipe, len, flags, nframes); return 0; } void usbd_destroy_xfer(struct usbd_xfer *xfer) { SDT_PROBE1(usb, device, xfer, destroy, xfer); if (xfer->ux_methods->upm_fini) xfer->ux_methods->upm_fini(xfer); usbd_free_xfer(xfer); } void usbd_setup_xfer(struct usbd_xfer *xfer, void *priv, void *buffer, uint32_t length, uint16_t flags, uint32_t timeout, usbd_callback callback) { KASSERT(xfer->ux_pipe); xfer->ux_priv = priv; xfer->ux_buffer = buffer; xfer->ux_length = length; xfer->ux_actlen = 0; xfer->ux_flags = flags; xfer->ux_timeout = timeout; xfer->ux_status = USBD_NOT_STARTED; xfer->ux_callback = callback; xfer->ux_rqflags &= ~URQ_REQUEST; xfer->ux_nframes = 0; } void usbd_setup_default_xfer(struct usbd_xfer *xfer, struct usbd_device *dev, void *priv, uint32_t timeout, usb_device_request_t *req, void *buffer, uint32_t length, uint16_t flags, usbd_callback callback) { KASSERT(xfer->ux_pipe == dev->ud_pipe0); xfer->ux_priv = priv; xfer->ux_buffer = buffer; xfer->ux_length = length; xfer->ux_actlen = 0; xfer->ux_flags = flags; xfer->ux_timeout = timeout; xfer->ux_status = USBD_NOT_STARTED; xfer->ux_callback = callback; xfer->ux_request = *req; xfer->ux_rqflags |= URQ_REQUEST; xfer->ux_nframes = 0; } void usbd_setup_isoc_xfer(struct usbd_xfer *xfer, void *priv, uint16_t *frlengths, uint32_t nframes, uint16_t flags, usbd_callback callback) { xfer->ux_priv = priv; xfer->ux_buffer = NULL; xfer->ux_length = 0; xfer->ux_actlen = 0; xfer->ux_flags = flags; xfer->ux_timeout = USBD_NO_TIMEOUT; xfer->ux_status = USBD_NOT_STARTED; xfer->ux_callback = callback; xfer->ux_rqflags &= ~URQ_REQUEST; xfer->ux_frlengths = frlengths; xfer->ux_nframes = nframes; for (size_t i = 0; i < xfer->ux_nframes; i++) xfer->ux_length += xfer->ux_frlengths[i]; } void usbd_get_xfer_status(struct usbd_xfer *xfer, void **priv, void **buffer, uint32_t *count, usbd_status *status) { if (priv != NULL) *priv = xfer->ux_priv; if (buffer != NULL) *buffer = xfer->ux_buffer; if (count != NULL) *count = xfer->ux_actlen; if (status != NULL) *status = xfer->ux_status; } usb_config_descriptor_t * usbd_get_config_descriptor(struct usbd_device *dev) { KASSERT(dev != NULL); return dev->ud_cdesc; } usb_interface_descriptor_t * usbd_get_interface_descriptor(struct usbd_interface *iface) { KASSERT(iface != NULL); return iface->ui_idesc; } usb_device_descriptor_t * usbd_get_device_descriptor(struct usbd_device *dev) { KASSERT(dev != NULL); return &dev->ud_ddesc; } usb_endpoint_descriptor_t * usbd_interface2endpoint_descriptor(struct usbd_interface *iface, uint8_t index) { if (index >= iface->ui_idesc->bNumEndpoints) return NULL; return iface->ui_endpoints[index].ue_edesc; } /* Some drivers may wish to abort requests on the default pipe, * * but there is no mechanism for getting a handle on it. */ void usbd_abort_default_pipe(struct usbd_device *device) { usbd_abort_pipe(device->ud_pipe0); } void usbd_abort_pipe(struct usbd_pipe *pipe) { usbd_suspend_pipe(pipe); usbd_resume_pipe(pipe); } void usbd_suspend_pipe(struct usbd_pipe *pipe) { usbd_lock_pipe(pipe); usbd_ar_pipe(pipe); usbd_unlock_pipe(pipe); } void usbd_resume_pipe(struct usbd_pipe *pipe) { usbd_lock_pipe(pipe); KASSERT(SIMPLEQ_EMPTY(&pipe->up_queue)); pipe->up_aborting = 0; usbd_unlock_pipe(pipe); } usbd_status usbd_clear_endpoint_stall(struct usbd_pipe *pipe) { struct usbd_device *dev = pipe->up_dev; usbd_status err; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); SDT_PROBE1(usb, device, pipe, clear__endpoint__stall, pipe); /* * Clearing en endpoint stall resets the endpoint toggle, so * do the same to the HC toggle. */ SDT_PROBE1(usb, device, pipe, clear__endpoint__toggle, pipe); pipe->up_methods->upm_cleartoggle(pipe); err = usbd_clear_endpoint_feature(dev, pipe->up_endpoint->ue_edesc->bEndpointAddress, UF_ENDPOINT_HALT); #if 0 XXX should we do this? if (!err) { pipe->state = USBD_PIPE_ACTIVE; /* XXX activate pipe */ } #endif return err; } void usbd_clear_endpoint_stall_task(void *arg) { struct usbd_pipe *pipe = arg; struct usbd_device *dev = pipe->up_dev; SDT_PROBE1(usb, device, pipe, clear__endpoint__stall, pipe); SDT_PROBE1(usb, device, pipe, clear__endpoint__toggle, pipe); pipe->up_methods->upm_cleartoggle(pipe); (void)usbd_clear_endpoint_feature(dev, pipe->up_endpoint->ue_edesc->bEndpointAddress, UF_ENDPOINT_HALT); } void usbd_clear_endpoint_stall_async(struct usbd_pipe *pipe) { usb_add_task(pipe->up_dev, &pipe->up_async_task, USB_TASKQ_DRIVER); } void usbd_clear_endpoint_toggle(struct usbd_pipe *pipe) { SDT_PROBE1(usb, device, pipe, clear__endpoint__toggle, pipe); pipe->up_methods->upm_cleartoggle(pipe); } usbd_status usbd_endpoint_count(struct usbd_interface *iface, uint8_t *count) { KASSERT(iface != NULL); KASSERT(iface->ui_idesc != NULL); *count = iface->ui_idesc->bNumEndpoints; return USBD_NORMAL_COMPLETION; } usbd_status usbd_interface_count(struct usbd_device *dev, uint8_t *count) { if (dev->ud_cdesc == NULL) return USBD_NOT_CONFIGURED; *count = dev->ud_cdesc->bNumInterface; return USBD_NORMAL_COMPLETION; } void usbd_interface2device_handle(struct usbd_interface *iface, struct usbd_device **dev) { *dev = iface->ui_dev; } usbd_status usbd_device2interface_handle(struct usbd_device *dev, uint8_t ifaceno, struct usbd_interface **iface) { if (dev->ud_cdesc == NULL) return USBD_NOT_CONFIGURED; if (ifaceno >= dev->ud_cdesc->bNumInterface) return USBD_INVAL; *iface = &dev->ud_ifaces[ifaceno]; return USBD_NORMAL_COMPLETION; } struct usbd_device * usbd_pipe2device_handle(struct usbd_pipe *pipe) { KASSERT(pipe != NULL); return pipe->up_dev; } /* XXXX use altno */ usbd_status usbd_set_interface(struct usbd_interface *iface, int altidx) { bool locked = false; usb_device_request_t req; usbd_status err; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "iface %#jx", (uintptr_t)iface, 0, 0, 0); err = usbd_iface_lock(iface); if (err) goto out; locked = true; err = usbd_fill_iface_data(iface->ui_dev, iface->ui_index, altidx); if (err) goto out; req.bmRequestType = UT_WRITE_INTERFACE; req.bRequest = UR_SET_INTERFACE; USETW(req.wValue, iface->ui_idesc->bAlternateSetting); USETW(req.wIndex, iface->ui_idesc->bInterfaceNumber); USETW(req.wLength, 0); err = usbd_do_request(iface->ui_dev, &req, 0); out: /* XXX back out iface data? */ if (locked) usbd_iface_unlock(iface); return err; } int usbd_get_no_alts(usb_config_descriptor_t *cdesc, int ifaceno) { char *p = (char *)cdesc; char *end = p + UGETW(cdesc->wTotalLength); usb_descriptor_t *desc; usb_interface_descriptor_t *idesc; int n; for (n = 0; end - p >= sizeof(*desc); p += desc->bLength) { desc = (usb_descriptor_t *)p; if (desc->bLength < sizeof(*desc) || desc->bLength > end - p) break; if (desc->bDescriptorType != UDESC_INTERFACE) continue; if (desc->bLength < sizeof(*idesc)) break; idesc = (usb_interface_descriptor_t *)desc; if (idesc->bInterfaceNumber == ifaceno) { n++; if (n == INT_MAX) break; } } return n; } int usbd_get_interface_altindex(struct usbd_interface *iface) { return iface->ui_altindex; } usbd_status usbd_get_interface(struct usbd_interface *iface, uint8_t *aiface) { usb_device_request_t req; req.bmRequestType = UT_READ_INTERFACE; req.bRequest = UR_GET_INTERFACE; USETW(req.wValue, 0); USETW(req.wIndex, iface->ui_idesc->bInterfaceNumber); USETW(req.wLength, 1); return usbd_do_request(iface->ui_dev, &req, aiface); } /*** Internal routines ***/ /* Dequeue all pipe operations, called with bus lock held. */ Static void usbd_ar_pipe(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "pipe = %#jx", (uintptr_t)pipe, 0, 0, 0); SDT_PROBE1(usb, device, pipe, abort__start, pipe); ASSERT_SLEEPABLE(); KASSERT(mutex_owned(pipe->up_dev->ud_bus->ub_lock)); /* * Allow only one thread at a time to abort the pipe, so we * don't get confused if upm_abort drops the lock in the middle * of the abort to wait for hardware completion softints to * stop using the xfer before returning. */ KASSERTMSG(pipe->up_abortlwp == NULL, "pipe->up_abortlwp=%p", pipe->up_abortlwp); pipe->up_abortlwp = curlwp; #ifdef USB_DEBUG if (usbdebug > 5) usbd_dump_queue(pipe); #endif pipe->up_repeat = 0; pipe->up_running = 0; pipe->up_aborting = 1; while ((xfer = SIMPLEQ_FIRST(&pipe->up_queue)) != NULL) { USBHIST_LOG(usbdebug, "pipe = %#jx xfer = %#jx " "(methods = %#jx)", (uintptr_t)pipe, (uintptr_t)xfer, (uintptr_t)pipe->up_methods, 0); if (xfer->ux_status == USBD_NOT_STARTED) { SDT_PROBE1(usb, device, xfer, preabort, xfer); #ifdef DIAGNOSTIC xfer->ux_state = XFER_BUSY; #endif SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next); } else { /* Make the HC abort it (and invoke the callback). */ SDT_PROBE1(usb, device, xfer, abort, xfer); pipe->up_methods->upm_abort(xfer); while (pipe->up_callingxfer == xfer) { USBHIST_LOG(usbdebug, "wait for callback" "pipe = %#jx xfer = %#jx", (uintptr_t)pipe, (uintptr_t)xfer, 0, 0); cv_wait(&pipe->up_callingcv, pipe->up_dev->ud_bus->ub_lock); } /* XXX only for non-0 usbd_clear_endpoint_stall(pipe); */ } } /* * There may be an xfer callback already in progress which was * taken off the queue before we got to it. We must wait for * the callback to finish before returning control to the * caller. */ while (pipe->up_callingxfer) { USBHIST_LOG(usbdebug, "wait for callback" "pipe = %#jx xfer = %#jx", (uintptr_t)pipe, (uintptr_t)pipe->up_callingxfer, 0, 0); cv_wait(&pipe->up_callingcv, pipe->up_dev->ud_bus->ub_lock); } KASSERT(mutex_owned(pipe->up_dev->ud_bus->ub_lock)); KASSERTMSG(pipe->up_abortlwp == curlwp, "pipe->up_abortlwp=%p", pipe->up_abortlwp); pipe->up_abortlwp = NULL; SDT_PROBE1(usb, device, pipe, abort__done, pipe); } /* Called with USB lock held. */ void usb_transfer_complete(struct usbd_xfer *xfer) { struct usbd_pipe *pipe = xfer->ux_pipe; struct usbd_bus *bus = pipe->up_dev->ud_bus; int sync = xfer->ux_flags & USBD_SYNCHRONOUS; int erred; int polling = bus->ub_usepolling; int repeat = pipe->up_repeat; USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "pipe = %#jx xfer = %#jx status = %jd " "actlen = %jd", (uintptr_t)pipe, (uintptr_t)xfer, xfer->ux_status, xfer->ux_actlen); KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock)); KASSERTMSG(xfer->ux_state == XFER_ONQU, "xfer %p state is %x", xfer, xfer->ux_state); KASSERT(pipe != NULL); /* * If device is known to miss out ack, then pretend that * output timeout is a success. Userland should handle * the logic to verify that the operation succeeded. */ if (pipe->up_dev->ud_quirks && pipe->up_dev->ud_quirks->uq_flags & UQ_MISS_OUT_ACK && xfer->ux_status == USBD_TIMEOUT && !usbd_xfer_isread(xfer)) { USBHIST_LOG(usbdebug, "Possible output ack miss for xfer %#jx: " "hiding write timeout to %jd.%jd for %ju bytes written", (uintptr_t)xfer, curlwp->l_proc->p_pid, curlwp->l_lid, xfer->ux_length); xfer->ux_status = USBD_NORMAL_COMPLETION; xfer->ux_actlen = xfer->ux_length; } erred = xfer->ux_status == USBD_CANCELLED || xfer->ux_status == USBD_TIMEOUT; if (!repeat) { /* Remove request from queue. */ KASSERTMSG(!SIMPLEQ_EMPTY(&pipe->up_queue), "pipe %p is empty, but xfer %p wants to complete", pipe, xfer); KASSERTMSG(xfer == SIMPLEQ_FIRST(&pipe->up_queue), "xfer %p is not start of queue (%p is at start)", xfer, SIMPLEQ_FIRST(&pipe->up_queue)); #ifdef DIAGNOSTIC xfer->ux_state = XFER_BUSY; #endif SIMPLEQ_REMOVE_HEAD(&pipe->up_queue, ux_next); } USBHIST_LOG(usbdebug, "xfer %#jx: repeat %jd new head = %#jx", (uintptr_t)xfer, repeat, (uintptr_t)SIMPLEQ_FIRST(&pipe->up_queue), 0); /* Count completed transfers. */ ++pipe->up_dev->ud_bus->ub_stats.uds_requests [pipe->up_endpoint->ue_edesc->bmAttributes & UE_XFERTYPE]; xfer->ux_done = 1; if (!xfer->ux_status && xfer->ux_actlen < xfer->ux_length && !(xfer->ux_flags & USBD_SHORT_XFER_OK)) { USBHIST_LOG(usbdebug, "short transfer %jd < %jd", xfer->ux_actlen, xfer->ux_length, 0, 0); xfer->ux_status = USBD_SHORT_XFER; } USBHIST_LOG(usbdebug, "xfer %#jx doing done %#jx", (uintptr_t)xfer, (uintptr_t)pipe->up_methods->upm_done, 0, 0); SDT_PROBE2(usb, device, xfer, done, xfer, xfer->ux_status); pipe->up_methods->upm_done(xfer); if (xfer->ux_length != 0 && xfer->ux_buffer != xfer->ux_buf) { KDASSERTMSG(xfer->ux_actlen <= xfer->ux_length, "actlen %d length %d",xfer->ux_actlen, xfer->ux_length); /* Only if IN transfer */ if (usbd_xfer_isread(xfer)) { memcpy(xfer->ux_buffer, xfer->ux_buf, xfer->ux_actlen); } } USBHIST_LOG(usbdebug, "xfer %#jx doing callback %#jx status %jd", (uintptr_t)xfer, (uintptr_t)xfer->ux_callback, xfer->ux_status, 0); if (xfer->ux_callback) { if (!polling) { KASSERT(pipe->up_callingxfer == NULL); pipe->up_callingxfer = xfer; mutex_exit(pipe->up_dev->ud_bus->ub_lock); if (!(pipe->up_flags & USBD_MPSAFE)) KERNEL_LOCK(1, curlwp); } xfer->ux_callback(xfer, xfer->ux_priv, xfer->ux_status); if (!polling) { if (!(pipe->up_flags & USBD_MPSAFE)) KERNEL_UNLOCK_ONE(curlwp); mutex_enter(pipe->up_dev->ud_bus->ub_lock); KASSERT(pipe->up_callingxfer == xfer); pipe->up_callingxfer = NULL; cv_broadcast(&pipe->up_callingcv); } } if (sync && !polling) { USBHIST_LOG(usbdebug, "<- done xfer %#jx, wakeup", (uintptr_t)xfer, 0, 0, 0); cv_broadcast(&xfer->ux_cv); } if (repeat) { xfer->ux_actlen = 0; xfer->ux_status = USBD_NOT_STARTED; } else { /* XXX should we stop the queue on all errors? */ if (erred && pipe->up_iface != NULL) /* not control pipe */ pipe->up_running = 0; } if (pipe->up_running && pipe->up_serialise) usbd_start_next(pipe); } /* Called with USB lock held. */ void usbd_start_next(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; usbd_status err; USBHIST_FUNC(); KASSERT(pipe != NULL); KASSERT(pipe->up_methods != NULL); KASSERT(pipe->up_methods->upm_start != NULL); KASSERT(pipe->up_serialise == true); int polling = pipe->up_dev->ud_bus->ub_usepolling; KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock)); /* Get next request in queue. */ xfer = SIMPLEQ_FIRST(&pipe->up_queue); USBHIST_CALLARGS(usbdebug, "pipe = %#jx, xfer = %#jx", (uintptr_t)pipe, (uintptr_t)xfer, 0, 0); if (xfer == NULL) { pipe->up_running = 0; } else { SDT_PROBE2(usb, device, pipe, start, pipe, xfer); err = pipe->up_methods->upm_start(xfer); if (err != USBD_IN_PROGRESS) { USBHIST_LOG(usbdebug, "error = %jd", err, 0, 0, 0); pipe->up_running = 0; /* XXX do what? */ } } KASSERT(polling || mutex_owned(pipe->up_dev->ud_bus->ub_lock)); } usbd_status usbd_do_request(struct usbd_device *dev, usb_device_request_t *req, void *data) { return usbd_do_request_flags(dev, req, data, 0, 0, USBD_DEFAULT_TIMEOUT); } usbd_status usbd_do_request_flags(struct usbd_device *dev, usb_device_request_t *req, void *data, uint16_t flags, int *actlen, uint32_t timeout) { size_t len = UGETW(req->wLength); return usbd_do_request_len(dev, req, len, data, flags, actlen, timeout); } usbd_status usbd_do_request_len(struct usbd_device *dev, usb_device_request_t *req, size_t len, void *data, uint16_t flags, int *actlen, uint32_t timeout) { struct usbd_xfer *xfer; usbd_status err; KASSERT(len >= UGETW(req->wLength)); USBHIST_FUNC(); USBHIST_CALLARGS(usbdebug, "dev=%#jx req=%jx flags=%jx len=%jx", (uintptr_t)dev, (uintptr_t)req, flags, len); ASSERT_SLEEPABLE(); SDT_PROBE5(usb, device, request, start, dev, req, len, flags, timeout); int error = usbd_create_xfer(dev->ud_pipe0, len, 0, 0, &xfer); if (error) { SDT_PROBE7(usb, device, request, done, dev, req, /*actlen*/0, flags, timeout, data, USBD_NOMEM); return USBD_NOMEM; } usbd_setup_default_xfer(xfer, dev, 0, timeout, req, data, UGETW(req->wLength), flags, NULL); KASSERT(xfer->ux_pipe == dev->ud_pipe0); err = usbd_sync_transfer(xfer); #if defined(USB_DEBUG) || defined(DIAGNOSTIC) if (xfer->ux_actlen > xfer->ux_length) { USBHIST_LOG(usbdebug, "overrun addr = %jd type = 0x%02jx", dev->ud_addr, xfer->ux_request.bmRequestType, 0, 0); USBHIST_LOG(usbdebug, " req = 0x%02jx val = %jd " "index = %jd", xfer->ux_request.bRequest, UGETW(xfer->ux_request.wValue), UGETW(xfer->ux_request.wIndex), 0); USBHIST_LOG(usbdebug, " rlen = %jd length = %jd " "actlen = %jd", UGETW(xfer->ux_request.wLength), xfer->ux_length, xfer->ux_actlen, 0); } #endif if (actlen != NULL) *actlen = xfer->ux_actlen; usbd_destroy_xfer(xfer); SDT_PROBE7(usb, device, request, done, dev, req, xfer->ux_actlen, flags, timeout, data, err); if (err) { USBHIST_LOG(usbdebug, "returning err = %jd", err, 0, 0, 0); } return err; } const struct usbd_quirks * usbd_get_quirks(struct usbd_device *dev) { #ifdef DIAGNOSTIC if (dev == NULL) { printf("usbd_get_quirks: dev == NULL\n"); return 0; } #endif return dev->ud_quirks; } /* XXX do periodic free() of free list */ /* * Called from keyboard driver when in polling mode. */ void usbd_dopoll(struct usbd_interface *iface) { iface->ui_dev->ud_bus->ub_methods->ubm_dopoll(iface->ui_dev->ud_bus); } /* * This is for keyboard driver as well, which only operates in polling * mode from the ask root, etc., prompt and from DDB. */ void usbd_set_polling(struct usbd_device *dev, int on) { if (on) dev->ud_bus->ub_usepolling++; else dev->ud_bus->ub_usepolling--; /* Kick the host controller when switching modes */ mutex_enter(dev->ud_bus->ub_lock); dev->ud_bus->ub_methods->ubm_softint(dev->ud_bus); mutex_exit(dev->ud_bus->ub_lock); } usb_endpoint_descriptor_t * usbd_get_endpoint_descriptor(struct usbd_interface *iface, uint8_t address) { struct usbd_endpoint *ep; int i; for (i = 0; i < iface->ui_idesc->bNumEndpoints; i++) { ep = &iface->ui_endpoints[i]; if (ep->ue_edesc->bEndpointAddress == address) return iface->ui_endpoints[i].ue_edesc; } return NULL; } /* * usbd_ratecheck() can limit the number of error messages that occurs. * When a device is unplugged it may take up to 0.25s for the hub driver * to notice it. If the driver continuously tries to do I/O operations * this can generate a large number of messages. */ int usbd_ratecheck(struct timeval *last) { static struct timeval errinterval = { 0, 250000 }; /* 0.25 s*/ return ratecheck(last, &errinterval); } /* * Search for a vendor/product pair in an array. The item size is * given as an argument. */ const struct usb_devno * usb_match_device(const struct usb_devno *tbl, u_int nentries, u_int sz, uint16_t vendor, uint16_t product) { while (nentries-- > 0) { uint16_t tproduct = tbl->ud_product; if (tbl->ud_vendor == vendor && (tproduct == product || tproduct == USB_PRODUCT_ANY)) return tbl; tbl = (const struct usb_devno *)((const char *)tbl + sz); } return NULL; } usbd_status usbd_get_string(struct usbd_device *dev, int si, char *buf) { return usbd_get_string0(dev, si, buf, 1); } usbd_status usbd_get_string0(struct usbd_device *dev, int si, char *buf, int unicode) { int swap = dev->ud_quirks->uq_flags & UQ_SWAP_UNICODE; usb_string_descriptor_t us; char *s; int i, n; uint16_t c; usbd_status err; int size; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); buf[0] = '\0'; if (si == 0) return USBD_INVAL; if (dev->ud_quirks->uq_flags & UQ_NO_STRINGS) return USBD_STALLED; if (dev->ud_langid == USBD_NOLANG) { /* Set up default language */ err = usbd_get_string_desc(dev, USB_LANGUAGE_TABLE, 0, &us, &size); if (err || size < 4) { USBHIST_LOG(usbdebug, "getting lang failed, using 0", 0, 0, 0, 0); dev->ud_langid = 0; /* Well, just pick something then */ } else { /* Pick the first language as the default. */ dev->ud_langid = UGETW(us.bString[0]); } } err = usbd_get_string_desc(dev, si, dev->ud_langid, &us, &size); if (err) return err; s = buf; n = size / 2 - 1; if (unicode) { for (i = 0; i < n; i++) { c = UGETW(us.bString[i]); if (swap) c = (c >> 8) | (c << 8); s += wput_utf8(s, 3, c); } *s++ = 0; } #ifdef COMPAT_30 else { for (i = 0; i < n; i++) { c = UGETW(us.bString[i]); if (swap) c = (c >> 8) | (c << 8); *s++ = (c < 0x80) ? c : '?'; } *s++ = 0; } #endif return USBD_NORMAL_COMPLETION; } /* * usbd_xfer_trycomplete(xfer) * * Try to claim xfer for completion. Return true if successful, * false if the xfer has been synchronously aborted or has timed * out. * * If this returns true, caller is responsible for setting * xfer->ux_status and calling usb_transfer_complete. To be used * in a host controller interrupt handler. * * Caller must either hold the bus lock or have the bus in polling * mode. If this succeeds, caller must proceed to call * usb_complete_transfer under the bus lock or with polling * enabled -- must not release and reacquire the bus lock in the * meantime. Failing to heed this rule may lead to catastrophe * with abort or timeout. */ bool usbd_xfer_trycomplete(struct usbd_xfer *xfer) { struct usbd_bus *bus __diagused = xfer->ux_bus; KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); /* * If software has completed it, either by synchronous abort or * by timeout, too late. */ if (xfer->ux_status != USBD_IN_PROGRESS) return false; /* * We are completing the xfer. Cancel the timeout if we can, * but only asynchronously. See usbd_xfer_cancel_timeout_async * for why we need not wait for the callout or task here. */ usbd_xfer_cancel_timeout_async(xfer); /* Success! Note: Caller must set xfer->ux_status afterwar. */ return true; } /* * usbd_xfer_abort(xfer) * * Try to claim xfer to abort. If successful, mark it completed * with USBD_CANCELLED and call the bus-specific method to abort * at the hardware level. * * To be called in thread context from struct * usbd_pipe_methods::upm_abort. * * Caller must hold the bus lock. */ void usbd_xfer_abort(struct usbd_xfer *xfer) { struct usbd_bus *bus = xfer->ux_bus; KASSERT(mutex_owned(bus->ub_lock)); /* * If host controller interrupt or timer interrupt has * completed it, too late. But the xfer cannot be * cancelled already -- only one caller can synchronously * abort. */ KASSERT(xfer->ux_status != USBD_CANCELLED); if (xfer->ux_status != USBD_IN_PROGRESS) return; /* * Cancel the timeout if we can, but only asynchronously; see * usbd_xfer_cancel_timeout_async for why we need not wait for * the callout or task here. */ usbd_xfer_cancel_timeout_async(xfer); /* * We beat everyone else. Claim the status as cancelled, do * the bus-specific dance to abort the hardware, and complete * the xfer. */ xfer->ux_status = USBD_CANCELLED; bus->ub_methods->ubm_abortx(xfer); usb_transfer_complete(xfer); } /* * usbd_xfer_timeout(xfer) * * Called at IPL_SOFTCLOCK when too much time has elapsed waiting * for xfer to complete. Since we can't abort the xfer at * IPL_SOFTCLOCK, defer to a usb_task to run it in thread context, * unless the xfer has completed or aborted concurrently -- and if * the xfer has also been resubmitted, take care of rescheduling * the callout. */ static void usbd_xfer_timeout(void *cookie) { struct usbd_xfer *xfer = cookie; struct usbd_bus *bus = xfer->ux_bus; struct usbd_device *dev = xfer->ux_pipe->up_dev; /* Acquire the lock so we can transition the timeout state. */ mutex_enter(bus->ub_lock); /* * Use usbd_xfer_probe_timeout to check whether the timeout is * still valid, or to reschedule the callout if necessary. If * it is still valid, schedule the task. */ if (usbd_xfer_probe_timeout(xfer)) usb_add_task(dev, &xfer->ux_aborttask, USB_TASKQ_HC); /* * Notify usbd_xfer_cancel_timeout_async that we may have * scheduled the task. This causes callout_invoking to return * false in usbd_xfer_cancel_timeout_async so that it can tell * which stage in the callout->task->abort process we're at. */ callout_ack(&xfer->ux_callout); /* All done -- release the lock. */ mutex_exit(bus->ub_lock); } /* * usbd_xfer_timeout_task(xfer) * * Called in thread context when too much time has elapsed waiting * for xfer to complete. Abort the xfer with USBD_TIMEOUT, unless * it has completed or aborted concurrently -- and if the xfer has * also been resubmitted, take care of rescheduling the callout. */ static void usbd_xfer_timeout_task(void *cookie) { struct usbd_xfer *xfer = cookie; struct usbd_bus *bus = xfer->ux_bus; /* Acquire the lock so we can transition the timeout state. */ mutex_enter(bus->ub_lock); /* * Use usbd_xfer_probe_timeout to check whether the timeout is * still valid, or to reschedule the callout if necessary. If * it is not valid -- the timeout has been asynchronously * cancelled, or the xfer has already been resubmitted -- then * we're done here. */ if (!usbd_xfer_probe_timeout(xfer)) goto out; /* * May have completed or been aborted, but we're the only one * who can time it out. If it has completed or been aborted, * no need to timeout. */ KASSERT(xfer->ux_status != USBD_TIMEOUT); if (xfer->ux_status != USBD_IN_PROGRESS) goto out; /* * We beat everyone else. Claim the status as timed out, do * the bus-specific dance to abort the hardware, and complete * the xfer. */ xfer->ux_status = USBD_TIMEOUT; bus->ub_methods->ubm_abortx(xfer); usb_transfer_complete(xfer); out: /* All done -- release the lock. */ mutex_exit(bus->ub_lock); } /* * usbd_xfer_probe_timeout(xfer) * * Probe the status of xfer's timeout. Acknowledge and process a * request to reschedule. Return true if the timeout is still * valid and the caller should take further action (queueing a * task or aborting the xfer), false if it must stop here. */ static bool usbd_xfer_probe_timeout(struct usbd_xfer *xfer) { struct usbd_bus *bus = xfer->ux_bus; bool valid; KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); /* The timeout must be set. */ KASSERT(xfer->ux_timeout_set); /* * Neither callout nor task may be pending; they execute * alternately in lock step. */ KASSERT(!callout_pending(&xfer->ux_callout)); KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask)); /* There are a few cases... */ if (bus->ub_methods->ubm_dying(bus)) { /* Host controller dying. Drop it all on the floor. */ xfer->ux_timeout_set = false; xfer->ux_timeout_reset = false; valid = false; } else if (xfer->ux_timeout_reset) { /* * The xfer completed _and_ got resubmitted while we * waited for the lock. Acknowledge the request to * reschedule, and reschedule it if there is a timeout * and the bus is not polling. */ xfer->ux_timeout_reset = false; if (xfer->ux_timeout && !bus->ub_usepolling) { KASSERT(xfer->ux_timeout_set); callout_schedule(&xfer->ux_callout, mstohz(xfer->ux_timeout)); } else { /* No more callout or task scheduled. */ xfer->ux_timeout_set = false; } valid = false; } else if (xfer->ux_status != USBD_IN_PROGRESS) { /* * The xfer has completed by hardware completion or by * software abort, and has not been resubmitted, so the * timeout must be unset, and is no longer valid for * the caller. */ xfer->ux_timeout_set = false; valid = false; } else { /* * The xfer has not yet completed, so the timeout is * valid. */ valid = true; } /* Any reset must have been processed. */ KASSERT(!xfer->ux_timeout_reset); /* * Either we claim the timeout is set, or the callout is idle. * If the timeout is still set, we may be handing off to the * task instead, so this is an if but not an iff. */ KASSERT(xfer->ux_timeout_set || !callout_pending(&xfer->ux_callout)); /* * The task must be idle now. * * - If the caller is the callout, _and_ the timeout is still * valid, the caller will schedule it, but it hasn't been * scheduled yet. (If the timeout is not valid, the task * should not be scheduled.) * * - If the caller is the task, it cannot be scheduled again * until the callout runs again, which won't happen until we * next release the lock. */ KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask)); KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); return valid; } /* * usbd_xfer_schedule_timeout(xfer) * * Ensure that xfer has a timeout. If the callout is already * queued or the task is already running, request that they * reschedule the callout. If not, and if we're not polling, * schedule the callout anew. * * To be called in thread context from struct * usbd_pipe_methods::upm_start. */ void usbd_xfer_schedule_timeout(struct usbd_xfer *xfer) { struct usbd_bus *bus = xfer->ux_bus; KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); if (xfer->ux_timeout_set) { /* * Callout or task has fired from a prior completed * xfer but has not yet noticed that the xfer is done. * Ask it to reschedule itself to ux_timeout. */ xfer->ux_timeout_reset = true; } else if (xfer->ux_timeout && !bus->ub_usepolling) { /* Callout is not scheduled. Schedule it. */ KASSERT(!callout_pending(&xfer->ux_callout)); callout_schedule(&xfer->ux_callout, mstohz(xfer->ux_timeout)); xfer->ux_timeout_set = true; } KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); } /* * usbd_xfer_cancel_timeout_async(xfer) * * Cancel the callout and the task of xfer, which have not yet run * to completion, but don't wait for the callout or task to finish * running. * * If they have already fired, at worst they are waiting for the * bus lock. They will see that the xfer is no longer in progress * and give up, or they will see that the xfer has been * resubmitted with a new timeout and reschedule the callout. * * If a resubmitted request completed so fast that the callout * didn't have time to process a timer reset, just cancel the * timer reset. */ static void usbd_xfer_cancel_timeout_async(struct usbd_xfer *xfer) { struct usbd_bus *bus __diagused = xfer->ux_bus; KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); /* * If the timer wasn't running anyway, forget about it. This * can happen if we are completing an isochronous transfer * which doesn't use the same timeout logic. */ if (!xfer->ux_timeout_set) return; xfer->ux_timeout_reset = false; if (!callout_stop(&xfer->ux_callout)) { /* * We stopped the callout before it ran. The timeout * is no longer set. */ xfer->ux_timeout_set = false; } else if (callout_invoking(&xfer->ux_callout)) { /* * The callout has begun to run but it has not yet * acquired the lock and called callout_ack. The task * cannot be queued yet, and the callout cannot have * been rescheduled yet. * * By the time the callout acquires the lock, we will * have transitioned from USBD_IN_PROGRESS to a * completed status, and possibly also resubmitted the * xfer and set xfer->ux_timeout_reset = true. In both * cases, the callout will DTRT, so no further action * is needed here. */ } else if (usb_rem_task(xfer->ux_pipe->up_dev, &xfer->ux_aborttask)) { /* * The callout had fired and scheduled the task, but we * stopped the task before it could run. The timeout * is therefore no longer set -- the next resubmission * of the xfer must schedule a new timeout. * * The callout should not be pending at this point: * it is scheduled only under the lock, and only when * xfer->ux_timeout_set is false, or by the callout or * task itself when xfer->ux_timeout_reset is true. */ xfer->ux_timeout_set = false; } /* * The callout cannot be scheduled and the task cannot be * queued at this point. Either we cancelled them, or they are * already running and waiting for the bus lock. */ KASSERT(!callout_pending(&xfer->ux_callout)); KASSERT(!usb_task_pending(xfer->ux_pipe->up_dev, &xfer->ux_aborttask)); KASSERT(bus->ub_usepolling || mutex_owned(bus->ub_lock)); }
97 215 210 368 368 37 9 31 1345 877 659 1614 2 1614 91 1614 184 159 4 22 159 143 143 134 1 1 2 4 6 6 1 136 24 71 18 37 125 1 4 27 1 30 19 11 28 105 129 1 15 15 15 15 22 3 19 6 1 1 24 23 23 23 23 13 13 2 10 12 9 9 9 9 9 8 5 4 2 138 138 138 137 1 138 138 138 138 134 13 2 1 11 11 11 10 38 38 35 35 35 35 2 37 71 71 2 1 56 65 2 54 9 56 10 65 3 62 561 561 561 539 41 538 40 46 45 53 53 46 42 5 5 2 13 3 10 26 2 2 2 2 2 2 2 2 1 2 2 2 1 63 479 466 13 479 347 347 347 338 9 346 2 340 340 115 114 1 41 102 115 1277 19 1260 29 29 29 29 2 28 2 20 12 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 /* $NetBSD: ufs_vnops.c,v 1.262 2022/03/27 16:24:59 christos Exp $ */ /*- * Copyright (c) 2008, 2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_vnops.c 8.28 (Berkeley) 7/31/95 */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: ufs_vnops.c,v 1.262 2022/03/27 16:24:59 christos Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #include "opt_uvmhist.h" #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/namei.h> #include <sys/resourcevar.h> #include <sys/kernel.h> #include <sys/file.h> #include <sys/stat.h> #include <sys/buf.h> #include <sys/proc.h> #include <sys/mount.h> #include <sys/vnode.h> #include <sys/fstrans.h> #include <sys/kmem.h> #include <sys/malloc.h> #include <sys/dirent.h> #include <sys/lockf.h> #include <sys/kauth.h> #include <sys/wapbl.h> #include <miscfs/specfs/specdev.h> #include <miscfs/fifofs/fifo.h> #include <miscfs/genfs/genfs.h> #include <ufs/ufs/acl.h> #include <ufs/ufs/inode.h> #include <ufs/ufs/dir.h> #include <ufs/ufs/ufsmount.h> #include <ufs/ufs/ufs_bswap.h> #include <ufs/ufs/ufs_extern.h> #include <ufs/ufs/ufs_wapbl.h> #ifdef UFS_DIRHASH #include <ufs/ufs/dirhash.h> #endif #include <ufs/ext2fs/ext2fs_extern.h> #include <ufs/ext2fs/ext2fs_dir.h> #include <ufs/ffs/ffs_extern.h> #include <ufs/lfs/lfs_extern.h> #include <ufs/lfs/lfs.h> #ifdef UVMHIST #include <uvm/uvm.h> #endif #include <uvm/uvm_extern.h> #include <uvm/uvm_stat.h> __CTASSERT(EXT2FS_MAXNAMLEN == FFS_MAXNAMLEN); __CTASSERT(LFS_MAXNAMLEN == FFS_MAXNAMLEN); static int ufs_chmod(struct vnode *, int, kauth_cred_t, struct lwp *); static int ufs_chown(struct vnode *, uid_t, gid_t, kauth_cred_t, struct lwp *); static int ufs_makeinode(struct vattr *, struct vnode *, const struct ufs_lookup_results *, struct vnode **, struct componentname *); /* * A virgin directory (no blushing please). */ static const struct dirtemplate mastertemplate = { 0, 12, DT_DIR, 1, ".", 0, UFS_DIRBLKSIZ - 12, DT_DIR, 2, ".." }; /* * Create a regular file */ int ufs_create(void *v) { struct vop_create_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; int error; struct vnode *dvp = ap->a_dvp; struct ufs_lookup_results *ulr; /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(dvp)); /* * UFS_WAPBL_BEGIN(dvp->v_mount) performed by successful * ufs_makeinode */ error = ufs_makeinode(ap->a_vap, dvp, ulr, ap->a_vpp, ap->a_cnp); if (error) { return (error); } UFS_WAPBL_END(dvp->v_mount); VOP_UNLOCK(*ap->a_vpp); return (0); } /* * Mknod vnode call */ /* ARGSUSED */ int ufs_mknod(void *v) { struct vop_mknod_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct vattr *vap; struct vnode **vpp; struct inode *ip; int error; struct ufs_lookup_results *ulr; vap = ap->a_vap; vpp = ap->a_vpp; /* XXX should handle this material another way */ ulr = &VTOI(ap->a_dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp)); /* * UFS_WAPBL_BEGIN(dvp->v_mount) performed by successful * ufs_makeinode */ if ((error = ufs_makeinode(vap, ap->a_dvp, ulr, vpp, ap->a_cnp)) != 0) goto out; ip = VTOI(*vpp); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; UFS_WAPBL_UPDATE(*vpp, NULL, NULL, 0); UFS_WAPBL_END(ap->a_dvp->v_mount); VOP_UNLOCK(*vpp); out: if (error != 0) { *vpp = NULL; return (error); } return (0); } /* * Open called. * * Nothing to do. */ /* ARGSUSED */ int ufs_open(void *v) { struct vop_open_args /* { struct vnode *a_vp; int a_mode; kauth_cred_t a_cred; } */ *ap = v; /* * Files marked append-only must be opened for appending. */ if ((VTOI(ap->a_vp)->i_flags & APPEND) && (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE) return (EPERM); return (0); } /* * Close called. * * Update the times on the inode. */ /* ARGSUSED */ int ufs_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; vp = ap->a_vp; if (vrefcnt(vp) > 1) UFS_ITIMES(vp, NULL, NULL, NULL); return (0); } static int ufs_check_possible(struct vnode *vp, struct inode *ip, accmode_t accmode, kauth_cred_t cred) { #if defined(QUOTA) || defined(QUOTA2) int error; #endif /* * Disallow write attempts on read-only file systems; * unless the file is a socket, fifo, or a block or * character device resident on the file system. */ if (accmode & VMODIFY_PERMS) { switch (vp->v_type) { case VDIR: case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; #if defined(QUOTA) || defined(QUOTA2) error = chkdq(ip, 0, cred, 0); if (error != 0) return error; #endif break; case VBAD: case VBLK: case VCHR: case VSOCK: case VFIFO: case VNON: default: break; } } /* If it is a snapshot, nobody gets access to it. */ if ((ip->i_flags & SF_SNAPSHOT)) return EPERM; /* * If immutable bit set, nobody gets to write it. "& ~VADMIN_PERMS" * permits the owner of the file to remove the IMMUTABLE flag. */ if ((accmode & (VMODIFY_PERMS & ~VADMIN_PERMS)) && (ip->i_flags & IMMUTABLE)) return EPERM; return 0; } static int ufs_check_permitted(struct vnode *vp, struct inode *ip, struct acl *acl, accmode_t accmode, kauth_cred_t cred, int (*func)(struct vnode *, kauth_cred_t, uid_t, gid_t, mode_t, struct acl *, accmode_t)) { return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(accmode, vp->v_type, ip->i_mode & ALLPERMS), vp, NULL, (*func)(vp, cred, ip->i_uid, ip->i_gid, ip->i_mode & ALLPERMS, acl, accmode)); } int ufs_accessx(void *v) { struct vop_accessx_args /* { struct vnode *a_vp; accmode_t a_accmode; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); accmode_t accmode = ap->a_accmode; int error; #ifdef UFS_ACL struct acl *acl; acl_type_t type; #endif error = ufs_check_possible(vp, ip, accmode, ap->a_cred); if (error) return error; #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & (MNT_POSIX1EACLS | MNT_NFS4ACLS)) != 0) { if (vp->v_mount->mnt_flag & MNT_NFS4ACLS) type = ACL_TYPE_NFS4; else type = ACL_TYPE_ACCESS; acl = acl_alloc(KM_SLEEP); if (type == ACL_TYPE_NFS4) error = ufs_getacl_nfs4_internal(vp, acl, curlwp); else error = VOP_GETACL(vp, type, acl, ap->a_cred); if (!error) { if (type == ACL_TYPE_NFS4) { error = ufs_check_permitted(vp, ip, acl, accmode, ap->a_cred, genfs_can_access_acl_nfs4); } else { error = vfs_unixify_accmode(&accmode); if (error == 0) error = ufs_check_permitted(vp, ip, acl, accmode, ap->a_cred, genfs_can_access_acl_posix1e); } acl_free(acl); return error; } if (error != EOPNOTSUPP) printf("%s: Error retrieving ACL: %d\n", __func__, error); /* * XXX: Fall back until debugged. Should * eventually possibly log an error, and return * EPERM for safety. */ acl_free(acl); } #endif /* !UFS_ACL */ error = vfs_unixify_accmode(&accmode); if (error) return error; return ufs_check_permitted(vp, ip, NULL, accmode, ap->a_cred, genfs_can_access); } /* ARGSUSED */ int ufs_getattr(void *v) { struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; struct inode *ip; struct vattr *vap; vp = ap->a_vp; ip = VTOI(vp); vap = ap->a_vap; UFS_ITIMES(vp, NULL, NULL, NULL); /* * Copy from inode table */ vap->va_fsid = ip->i_dev; vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ALLPERMS; vap->va_nlink = ip->i_nlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; vap->va_size = vp->v_size; if (ip->i_ump->um_fstype == UFS1) { switch (vp->v_type) { case VBLK: case VCHR: vap->va_rdev = (dev_t)ufs_rw32(ip->i_ffs1_rdev, UFS_MPNEEDSWAP(ip->i_ump)); break; default: vap->va_rdev = NODEV; break; } vap->va_atime.tv_sec = ip->i_ffs1_atime; vap->va_atime.tv_nsec = ip->i_ffs1_atimensec; vap->va_mtime.tv_sec = ip->i_ffs1_mtime; vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec; vap->va_ctime.tv_sec = ip->i_ffs1_ctime; vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec; vap->va_birthtime.tv_sec = 0; vap->va_birthtime.tv_nsec = 0; vap->va_bytes = dbtob((u_quad_t)ip->i_ffs1_blocks); } else { switch (vp->v_type) { case VBLK: case VCHR: vap->va_rdev = (dev_t)ufs_rw64(ip->i_ffs2_rdev, UFS_MPNEEDSWAP(ip->i_ump)); break; default: vap->va_rdev = NODEV; break; } vap->va_atime.tv_sec = ip->i_ffs2_atime; vap->va_atime.tv_nsec = ip->i_ffs2_atimensec; vap->va_mtime.tv_sec = ip->i_ffs2_mtime; vap->va_mtime.tv_nsec = ip->i_ffs2_mtimensec; vap->va_ctime.tv_sec = ip->i_ffs2_ctime; vap->va_ctime.tv_nsec = ip->i_ffs2_ctimensec; vap->va_birthtime.tv_sec = ip->i_ffs2_birthtime; vap->va_birthtime.tv_nsec = ip->i_ffs2_birthnsec; vap->va_bytes = dbtob(ip->i_ffs2_blocks); } vap->va_gen = ip->i_gen; vap->va_flags = ip->i_flags; /* this doesn't belong here */ if (vp->v_type == VBLK) vap->va_blocksize = BLKDEV_IOSIZE; else if (vp->v_type == VCHR) vap->va_blocksize = MAXBSIZE; else vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_type = vp->v_type; vap->va_filerev = ip->i_modrev; return (0); } /* * Set attribute vnode op. called from several syscalls */ int ufs_setattr(void *v) { struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vattr *vap; struct vnode *vp; struct inode *ip; kauth_cred_t cred; struct lwp *l; int error; kauth_action_t action; bool changing_sysflags; vap = ap->a_vap; vp = ap->a_vp; ip = VTOI(vp); cred = ap->a_cred; l = curlwp; action = KAUTH_VNODE_WRITE_FLAGS; changing_sysflags = false; /* * Check for unsettable attributes. */ if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_rdev != VNOVAL) || ((int)vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { return (EINVAL); } UFS_WAPBL_JUNLOCK_ASSERT(vp->v_mount); if (vap->va_flags != VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } /* Snapshot flag cannot be set or cleared */ if ((vap->va_flags & (SF_SNAPSHOT | SF_SNAPINVAL)) != (ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL))) { error = EPERM; goto out; } if (ip->i_flags & (SF_IMMUTABLE | SF_APPEND)) { action |= KAUTH_VNODE_HAS_SYSFLAGS; } if ((vap->va_flags & SF_SETTABLE) != (ip->i_flags & SF_SETTABLE)) { action |= KAUTH_VNODE_WRITE_SYSFLAGS; changing_sysflags = true; } error = kauth_authorize_vnode(cred, action, vp, NULL, genfs_can_chflags(vp, cred, ip->i_uid, changing_sysflags)); if (error) goto out; if (changing_sysflags) { error = UFS_WAPBL_BEGIN(vp->v_mount); if (error) goto out; ip->i_flags = vap->va_flags; DIP_ASSIGN(ip, flags, ip->i_flags); } else { error = UFS_WAPBL_BEGIN(vp->v_mount); if (error) goto out; ip->i_flags &= SF_SETTABLE; ip->i_flags |= (vap->va_flags & UF_SETTABLE); DIP_ASSIGN(ip, flags, ip->i_flags); } ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(vp, NULL, NULL, 0); UFS_WAPBL_END(vp->v_mount); if (vap->va_flags & (IMMUTABLE | APPEND)) { error = 0; goto out; } } if (ip->i_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out; } /* * Go through the fields and update iff not VNOVAL. */ if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } error = UFS_WAPBL_BEGIN(vp->v_mount); if (error) goto out; error = ufs_chown(vp, vap->va_uid, vap->va_gid, cred, l); UFS_WAPBL_END(vp->v_mount); if (error) goto out; } if (vap->va_size != VNOVAL) { /* * Disallow write attempts on read-only file systems; * unless the file is a socket, fifo, or a block or * character device resident on the file system. */ switch (vp->v_type) { case VDIR: error = EISDIR; goto out; case VCHR: case VBLK: case VFIFO: break; case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } if ((ip->i_flags & SF_SNAPSHOT) != 0) { error = EPERM; goto out; } error = ufs_truncate_retry(vp, 0, vap->va_size, cred); if (error) goto out; break; default: error = EOPNOTSUPP; goto out; } } ip = VTOI(vp); if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_birthtime.tv_sec != VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } if ((ip->i_flags & SF_SNAPSHOT) != 0) { error = EPERM; goto out; } error = kauth_authorize_vnode(cred, KAUTH_VNODE_WRITE_TIMES, vp, NULL, genfs_can_chtimes(vp, cred, ip->i_uid, vap->va_vaflags)); if (error) goto out; error = UFS_WAPBL_BEGIN(vp->v_mount); if (error) goto out; if (vap->va_atime.tv_sec != VNOVAL) if (!(vp->v_mount->mnt_flag & MNT_NOATIME)) ip->i_flag |= IN_ACCESS; if (vap->va_mtime.tv_sec != VNOVAL) { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (vp->v_mount->mnt_flag & MNT_RELATIME) ip->i_flag |= IN_ACCESS; } if (vap->va_birthtime.tv_sec != VNOVAL && ip->i_ump->um_fstype == UFS2) { ip->i_ffs2_birthtime = vap->va_birthtime.tv_sec; ip->i_ffs2_birthnsec = vap->va_birthtime.tv_nsec; } error = UFS_UPDATE(vp, &vap->va_atime, &vap->va_mtime, 0); UFS_WAPBL_END(vp->v_mount); if (error) goto out; } error = 0; if (vap->va_mode != (mode_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) { error = EROFS; goto out; } if ((ip->i_flags & SF_SNAPSHOT) != 0 && (vap->va_mode & (S_IXUSR | S_IWUSR | S_IXGRP | S_IWGRP | S_IXOTH | S_IWOTH))) { error = EPERM; goto out; } error = UFS_WAPBL_BEGIN(vp->v_mount); if (error) goto out; error = ufs_chmod(vp, (int)vap->va_mode, cred, l); UFS_WAPBL_END(vp->v_mount); } out: cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip)); return (error); } #ifdef UFS_ACL static int ufs_update_nfs4_acl_after_mode_change(struct vnode *vp, int mode, int file_owner_id, kauth_cred_t cred, struct lwp *l) { int error; struct acl *aclp; aclp = acl_alloc(KM_SLEEP); error = ufs_getacl_nfs4_internal(vp, aclp, l); /* * We don't have to handle EOPNOTSUPP here, as the filesystem claims * it supports ACLs. */ if (error) goto out; acl_nfs4_sync_acl_from_mode(aclp, mode, file_owner_id); error = ufs_setacl_nfs4_internal(vp, aclp, l, false); out: acl_free(aclp); return (error); } #endif /* UFS_ACL */ /* * Change the mode on a file. * Inode must be locked before calling. */ static int ufs_chmod(struct vnode *vp, int mode, kauth_cred_t cred, struct lwp *l) { struct inode *ip; int error; UFS_WAPBL_JLOCK_ASSERT(vp->v_mount); ip = VTOI(vp); #ifdef UFS_ACL /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESSX(vp, VWRITE_ACL, cred)) != 0) return error; #endif error = kauth_authorize_vnode(cred, KAUTH_VNODE_WRITE_SECURITY, vp, NULL, genfs_can_chmod(vp, cred, ip->i_uid, ip->i_gid, mode)); if (error) return (error); #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & MNT_NFS4ACLS) != 0) { error = ufs_update_nfs4_acl_after_mode_change(vp, mode, ip->i_uid, cred, l); if (error) return error; } #endif ip->i_mode &= ~ALLPERMS; ip->i_mode |= (mode & ALLPERMS); ip->i_flag |= IN_CHANGE; DIP_ASSIGN(ip, mode, ip->i_mode); UFS_WAPBL_UPDATE(vp, NULL, NULL, 0); cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip)); return (0); } /* * Perform chown operation on inode ip; * inode must be locked prior to call. */ static int ufs_chown(struct vnode *vp, uid_t uid, gid_t gid, kauth_cred_t cred, struct lwp *l) { struct inode *ip; int error = 0; #if defined(QUOTA) || defined(QUOTA2) uid_t ouid; gid_t ogid; int64_t change; #endif ip = VTOI(vp); error = 0; if (uid == (uid_t)VNOVAL) uid = ip->i_uid; if (gid == (gid_t)VNOVAL) gid = ip->i_gid; #ifdef UFS_ACL /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESSX(vp, VWRITE_OWNER, cred)) != 0) return error; #endif error = kauth_authorize_vnode(cred, KAUTH_VNODE_CHANGE_OWNERSHIP, vp, NULL, genfs_can_chown(vp, cred, ip->i_uid, ip->i_gid, uid, gid)); if (error) return (error); #if defined(QUOTA) || defined(QUOTA2) ogid = ip->i_gid; ouid = ip->i_uid; change = DIP(ip, blocks); (void) chkdq(ip, -change, cred, 0); (void) chkiq(ip, -1, cred, 0); #endif ip->i_gid = gid; DIP_ASSIGN(ip, gid, gid); ip->i_uid = uid; DIP_ASSIGN(ip, uid, uid); #if defined(QUOTA) || defined(QUOTA2) if ((error = chkdq(ip, change, cred, 0)) == 0) { if ((error = chkiq(ip, 1, cred, 0)) == 0) goto good; else (void) chkdq(ip, -change, cred, FORCE); } ip->i_gid = ogid; DIP_ASSIGN(ip, gid, ogid); ip->i_uid = ouid; DIP_ASSIGN(ip, uid, ouid); (void) chkdq(ip, change, cred, FORCE); (void) chkiq(ip, 1, cred, FORCE); return (error); good: #endif /* QUOTA || QUOTA2 */ ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(vp, NULL, NULL, 0); cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip)); return (0); } int ufs_remove(void *v) { struct vop_remove_v3_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; nlink_t ctx_vp_new_nlink; } */ *ap = v; struct vnode *vp, *dvp; struct inode *ip; struct mount *mp; int error; struct ufs_lookup_results *ulr; vp = ap->a_vp; dvp = ap->a_dvp; ip = VTOI(vp); mp = dvp->v_mount; KASSERT(mp == vp->v_mount); /* XXX Not stable without lock. */ #ifdef UFS_ACL #ifdef notyet /* We don't do this because if the filesystem is mounted without ACLs * this goes through vfs_unixify_accmode() and we get EPERM. */ error = VOP_ACCESSX(vp, VDELETE, ap->a_cnp->cn_cred); if (error) goto err; #endif #endif /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(dvp)); if (vp->v_type == VDIR || (ip->i_flags & (IMMUTABLE | APPEND)) || (VTOI(dvp)->i_flags & APPEND)) error = EPERM; else { error = UFS_WAPBL_BEGIN(mp); if (error == 0) { error = ufs_dirremove(dvp, ulr, ip, ap->a_cnp->cn_flags, 0); UFS_WAPBL_END(mp); if (error == 0) { ap->ctx_vp_new_nlink = ip->i_nlink; } } } #ifdef notyet err: #endif if (dvp == vp) vrele(vp); else vput(vp); return (error); } /* * ufs_link: create hard link. */ int ufs_link(void *v) { struct vop_link_v2_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *dvp = ap->a_dvp; struct vnode *vp = ap->a_vp; struct componentname *cnp = ap->a_cnp; struct mount *mp = dvp->v_mount; struct inode *ip; struct direct *newdir; int error, abrt = 1; struct ufs_lookup_results *ulr; KASSERT(dvp != vp); KASSERT(vp->v_type != VDIR); KASSERT(mp == vp->v_mount); /* XXX Not stable without lock. */ /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(dvp)); error = vn_lock(vp, LK_EXCLUSIVE); if (error) goto out2; ip = VTOI(vp); if ((nlink_t)ip->i_nlink >= LINK_MAX) { error = EMLINK; goto out1; } if (ip->i_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out1; } error = kauth_authorize_vnode(cnp->cn_cred, KAUTH_VNODE_ADD_LINK, vp, dvp, 0); if (error) goto out1; error = UFS_WAPBL_BEGIN(mp); if (error) goto out1; ip->i_nlink++; DIP_ASSIGN(ip, nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; abrt = 0; error = UFS_UPDATE(vp, NULL, NULL, UPDATE_DIROP); if (!error) { newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK); ufs_makedirentry(ip, cnp, newdir); error = ufs_direnter(dvp, ulr, vp, newdir, cnp, NULL); pool_cache_put(ufs_direct_cache, newdir); } if (error) { ip->i_nlink--; DIP_ASSIGN(ip, nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(vp, NULL, NULL, UPDATE_DIROP); } UFS_WAPBL_END(mp); out1: VOP_UNLOCK(vp); out2: if (abrt) VOP_ABORTOP(dvp, cnp); return (error); } /* * whiteout vnode call */ int ufs_whiteout(void *v) { struct vop_whiteout_args /* { struct vnode *a_dvp; struct componentname *a_cnp; int a_flags; } */ *ap = v; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct direct *newdir; int error; struct ufsmount *ump = VFSTOUFS(dvp->v_mount); struct ufs_lookup_results *ulr; /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(dvp)); error = 0; switch (ap->a_flags) { case LOOKUP: /* 4.4 format directories support whiteout operations */ if (ump->um_maxsymlinklen > 0) return (0); return (EOPNOTSUPP); case CREATE: /* create a new directory whiteout */ error = UFS_WAPBL_BEGIN(dvp->v_mount); if (error) break; KASSERTMSG((ump->um_maxsymlinklen > 0), "ufs_whiteout: old format filesystem"); newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK); newdir->d_ino = UFS_WINO; newdir->d_namlen = cnp->cn_namelen; memcpy(newdir->d_name, cnp->cn_nameptr, (size_t)cnp->cn_namelen); /* NUL terminate and zero out padding */ memset(&newdir->d_name[cnp->cn_namelen], 0, UFS_NAMEPAD(cnp->cn_namelen)); newdir->d_type = DT_WHT; error = ufs_direnter(dvp, ulr, NULL, newdir, cnp, NULL); pool_cache_put(ufs_direct_cache, newdir); break; case DELETE: /* remove an existing directory whiteout */ error = UFS_WAPBL_BEGIN(dvp->v_mount); if (error) break; KASSERTMSG((ump->um_maxsymlinklen > 0), "ufs_whiteout: old format filesystem"); cnp->cn_flags &= ~DOWHITEOUT; error = ufs_dirremove(dvp, ulr, NULL, cnp->cn_flags, 0); break; default: panic("ufs_whiteout: unknown op"); /* NOTREACHED */ } UFS_WAPBL_END(dvp->v_mount); return (error); } #ifdef UFS_ACL static int ufs_do_posix1e_acl_inheritance_dir(struct vnode *dvp, struct vnode *tvp, mode_t dmode, kauth_cred_t cred, struct lwp *l) { int error; struct inode *ip = VTOI(tvp); struct acl *dacl, *acl; acl = acl_alloc(KM_SLEEP); dacl = acl_alloc(KM_SLEEP); /* * Retrieve default ACL from parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. If the ACL is empty, fall through to * the "not defined or available" case. */ if (acl->acl_cnt != 0) { dmode = acl_posix1e_newfilemode(dmode, acl); ip->i_mode = dmode; DIP_ASSIGN(ip, mode, dmode); *dacl = *acl; ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = dmode; DIP_ASSIGN(ip, mode, dmode); error = 0; goto out; default: goto out; } /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ UFS_WAPBL_END(tvp->v_mount); error = ufs_setacl_posix1e(tvp, ACL_TYPE_ACCESS, acl, cred, l); if (error == 0) error = ufs_setacl_posix1e(tvp, ACL_TYPE_DEFAULT, dacl, cred, l); UFS_WAPBL_BEGIN(tvp->v_mount); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above * was supposed to free acl. */ printf("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()\n"); /* panic("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); acl_free(dacl); return (error); } static int ufs_do_posix1e_acl_inheritance_file(struct vnode *dvp, struct vnode *tvp, mode_t mode, kauth_cred_t cred, struct lwp *l) { int error; struct inode *ip = VTOI(tvp); struct acl *acl; acl = acl_alloc(KM_SLEEP); /* * Retrieve default ACL for parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. */ if (acl->acl_cnt != 0) { /* * Two possible ways for default ACL to not * be present. First, the EA can be * undefined, or second, the default ACL can * be blank. If it's blank, fall through to * the it's not defined case. */ mode = acl_posix1e_newfilemode(mode, acl); ip->i_mode = mode; DIP_ASSIGN(ip, mode, mode); ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = mode; DIP_ASSIGN(ip, mode, mode); error = 0; goto out; default: goto out; } UFS_WAPBL_END(tvp->v_mount); /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred); UFS_WAPBL_BEGIN(tvp->v_mount); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above was * supposed to free acl. */ printf("%s: VOP_GETACL() but no VOP_SETACL()\n", __func__); /* panic("%s: VOP_GETACL() but no VOP_SETACL()", __func__); */ break; default: goto out; } out: acl_free(acl); return (error); } static int ufs_do_nfs4_acl_inheritance(struct vnode *dvp, struct vnode *tvp, mode_t child_mode, kauth_cred_t cred, struct lwp *l) { int error; struct acl *parent_aclp, *child_aclp; parent_aclp = acl_alloc(KM_SLEEP); child_aclp = acl_alloc(KM_SLEEP); error = ufs_getacl_nfs4_internal(dvp, parent_aclp, l); if (error) goto out; acl_nfs4_compute_inherited_acl(parent_aclp, child_aclp, child_mode, VTOI(tvp)->i_uid, tvp->v_type == VDIR); error = ufs_setacl_nfs4_internal(tvp, child_aclp, l, false); if (error) goto out; out: acl_free(parent_aclp); acl_free(child_aclp); return (error); } #endif int ufs_mkdir(void *v) { struct vop_mkdir_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct vnode *dvp = ap->a_dvp, *tvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp = VTOI(dvp); struct buf *bp; struct dirtemplate dirtemplate; struct direct *newdir; int error; struct ufsmount *ump = dp->i_ump; int dirblksiz = ump->um_dirblksiz; struct ufs_lookup_results *ulr; /* XXX should handle this material another way */ ulr = &dp->i_crap; UFS_CHECK_CRAPCOUNTER(dp); KASSERT(vap->va_type == VDIR); if ((nlink_t)dp->i_nlink >= LINK_MAX) { error = EMLINK; goto out; } /* * Must simulate part of ufs_makeinode here to acquire the inode, * but not have it entered in the parent directory. The entry is * made later after writing "." and ".." entries. */ error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, ap->a_vpp); if (error) goto out; error = vn_lock(*ap->a_vpp, LK_EXCLUSIVE); if (error) { vrele(*ap->a_vpp); *ap->a_vpp = NULL; goto out; } error = UFS_WAPBL_BEGIN(ap->a_dvp->v_mount); if (error) { vput(*ap->a_vpp); goto out; } tvp = *ap->a_vpp; ip = VTOI(tvp); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_nlink = 2; DIP_ASSIGN(ip, nlink, 2); if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_ASSIGN(ip, flags, ip->i_flags); } /* * Bump link count in parent directory to reflect work done below. * Should be done before reference is created so cleanup is * possible if we crash. */ dp->i_nlink++; DIP_ASSIGN(dp, nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; if ((error = UFS_UPDATE(dvp, NULL, NULL, UPDATE_DIROP)) != 0) goto bad; #ifdef UFS_ACL mode_t dmode = (vap->va_mode & 0777) | IFDIR; struct lwp *l = curlwp; if (dvp->v_mount->mnt_flag & MNT_POSIX1EACLS) { error = ufs_do_posix1e_acl_inheritance_dir(dvp, tvp, dmode, cnp->cn_cred, l); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, dmode, cnp->cn_cred, l); if (error) goto bad; } #endif /* !UFS_ACL */ /* * Initialize directory with "." and ".." from static template. */ dirtemplate = mastertemplate; dirtemplate.dotdot_reclen = dirblksiz - dirtemplate.dot_reclen; dirtemplate.dot_ino = ufs_rw32(ip->i_number, UFS_MPNEEDSWAP(ump)); dirtemplate.dotdot_ino = ufs_rw32(dp->i_number, UFS_MPNEEDSWAP(ump)); dirtemplate.dot_reclen = ufs_rw16(dirtemplate.dot_reclen, UFS_MPNEEDSWAP(ump)); dirtemplate.dotdot_reclen = ufs_rw16(dirtemplate.dotdot_reclen, UFS_MPNEEDSWAP(ump)); if (ump->um_maxsymlinklen <= 0) { #if BYTE_ORDER == LITTLE_ENDIAN if (UFS_MPNEEDSWAP(ump) == 0) #else if (UFS_MPNEEDSWAP(ump) != 0) #endif { dirtemplate.dot_type = dirtemplate.dot_namlen; dirtemplate.dotdot_type = dirtemplate.dotdot_namlen; dirtemplate.dot_namlen = dirtemplate.dotdot_namlen = 0; } else dirtemplate.dot_type = dirtemplate.dotdot_type = 0; } if ((error = UFS_BALLOC(tvp, (off_t)0, dirblksiz, cnp->cn_cred, B_CLRBUF, &bp)) != 0) goto bad; ip->i_size = dirblksiz; DIP_ASSIGN(ip, size, dirblksiz); ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; uvm_vnp_setsize(tvp, ip->i_size); memcpy((void *)bp->b_data, (void *)&dirtemplate, sizeof dirtemplate); /* * Directory set up, now install its entry in the parent directory. * We must write out the buffer containing the new directory body * before entering the new name in the parent. */ if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) goto bad; if ((error = UFS_UPDATE(tvp, NULL, NULL, UPDATE_DIROP)) != 0) { goto bad; } newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK); ufs_makedirentry(ip, cnp, newdir); error = ufs_direnter(dvp, ulr, tvp, newdir, cnp, bp); pool_cache_put(ufs_direct_cache, newdir); bad: if (error == 0) { VOP_UNLOCK(tvp); UFS_WAPBL_END(dvp->v_mount); } else { dp->i_nlink--; DIP_ASSIGN(dp, nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(dvp, NULL, NULL, UPDATE_DIROP); /* * No need to do an explicit UFS_TRUNCATE here, vrele will * do this for us because we set the link count to 0. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(tvp, NULL, NULL, UPDATE_DIROP); UFS_WAPBL_END(dvp->v_mount); vput(tvp); } out: return (error); } int ufs_rmdir(void *v) { struct vop_rmdir_v2_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *vp, *dvp; struct componentname *cnp; struct inode *ip, *dp; int error; struct ufs_lookup_results *ulr; vp = ap->a_vp; dvp = ap->a_dvp; cnp = ap->a_cnp; ip = VTOI(vp); dp = VTOI(dvp); #ifdef UFS_ACL #ifdef notyet /* We don't do this because if the filesystem is mounted without ACLs * this goes through vfs_unixify_accmode() and we get EPERM. */ error = VOP_ACCESSX(vp, VDELETE, cnp->cn_cred); if (error) goto err; #endif #endif /* XXX should handle this material another way */ ulr = &dp->i_crap; UFS_CHECK_CRAPCOUNTER(dp); /* * No rmdir "." or of mounted directories please. */ if (dp == ip || vp->v_mountedhere != NULL) { error = EINVAL; goto err; } /* * Do not remove a directory that is in the process of being renamed. * Verify that the directory is empty (and valid). (Rmdir ".." won't * be valid since ".." will contain a reference to the current * directory and thus be non-empty.) */ error = 0; if (ip->i_nlink != 2 || !ufs_dirempty(ip, dp->i_number, cnp->cn_cred)) { error = ENOTEMPTY; goto out; } if ((dp->i_flags & APPEND) || (ip->i_flags & (IMMUTABLE | APPEND))) { error = EPERM; goto out; } error = UFS_WAPBL_BEGIN(dvp->v_mount); if (error) goto out; /* * Delete reference to directory before purging * inode. If we crash in between, the directory * will be reattached to lost+found, */ error = ufs_dirremove(dvp, ulr, ip, cnp->cn_flags, 1); if (error) { UFS_WAPBL_END(dvp->v_mount); goto out; } cache_purge(dvp); /* * Truncate inode. The only stuff left in the directory is "." and * "..". The "." reference is inconsequential since we're quashing * it. */ dp->i_nlink--; DIP_ASSIGN(dp, nlink, dp->i_nlink); dp->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(dvp, NULL, NULL, UPDATE_DIROP); ip->i_nlink--; DIP_ASSIGN(ip, nlink, ip->i_nlink); ip->i_flag |= IN_CHANGE; (void) UFS_TRUNCATE(vp, (off_t)0, IO_SYNC, cnp->cn_cred); cache_purge(vp); /* * Unlock the log while we still have reference to unlinked * directory vp so that it will not get locked for recycling */ UFS_WAPBL_END(dvp->v_mount); #ifdef UFS_DIRHASH if (ip->i_dirhash != NULL) ufsdirhash_free(ip); #endif out: vput(vp); return error; err: if (dp == ip) vrele(vp); else vput(vp); return error; } /* * symlink -- make a symbolic link */ int ufs_symlink(void *v) { struct vop_symlink_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap = v; struct vnode *vp, **vpp; struct inode *ip; int len, error; struct ufs_lookup_results *ulr; vpp = ap->a_vpp; /* XXX should handle this material another way */ ulr = &VTOI(ap->a_dvp)->i_crap; UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp)); /* * UFS_WAPBL_BEGIN(dvp->v_mount) performed by successful * ufs_makeinode */ KASSERT(ap->a_vap->va_type == VLNK); error = ufs_makeinode(ap->a_vap, ap->a_dvp, ulr, vpp, ap->a_cnp); if (error) goto out; vp = *vpp; len = strlen(ap->a_target); ip = VTOI(vp); /* * This test is off by one. um_maxsymlinklen contains the * number of bytes available, and we aren't storing a \0, so * the test should properly be <=. However, it cannot be * changed as this would break compatibility with existing fs * images -- see the way ufs_readlink() works. */ if (len < ip->i_ump->um_maxsymlinklen) { memcpy((char *)SHORTLINK(ip), ap->a_target, len); ip->i_size = len; DIP_ASSIGN(ip, size, len); uvm_vnp_setsize(vp, ip->i_size); ip->i_flag |= IN_CHANGE | IN_UPDATE; if (vp->v_mount->mnt_flag & MNT_RELATIME) ip->i_flag |= IN_ACCESS; UFS_WAPBL_UPDATE(vp, NULL, NULL, 0); } else error = ufs_bufio(UIO_WRITE, vp, ap->a_target, len, (off_t)0, IO_NODELOCKED | IO_JOURNALLOCKED, ap->a_cnp->cn_cred, NULL, NULL); UFS_WAPBL_END(ap->a_dvp->v_mount); VOP_UNLOCK(vp); if (error) vrele(vp); out: return (error); } /* * Vnode op for reading directories. * * This routine handles converting from the on-disk directory format * "struct direct" to the in-memory format "struct dirent" as well as * byte swapping the entries if necessary. */ int ufs_readdir(void *v) { struct vop_readdir_args /* { struct vnode *a_vp; struct uio *a_uio; kauth_cred_t a_cred; int *a_eofflag; off_t **a_cookies; int *a_ncookies; } */ *ap = v; /* vnode and fs */ struct vnode *vp = ap->a_vp; struct ufsmount *ump = VFSTOUFS(vp->v_mount); int nswap = UFS_MPNEEDSWAP(ump); #if BYTE_ORDER == LITTLE_ENDIAN int needswap = ump->um_maxsymlinklen <= 0 && nswap == 0; #else int needswap = ump->um_maxsymlinklen <= 0 && nswap != 0; #endif /* caller's buffer */ struct uio *calleruio = ap->a_uio; off_t startoffset, endoffset; size_t callerbytes; off_t curoffset; /* dirent production buffer */ char *direntbuf; size_t direntbufmax; struct dirent *dirent, *stopdirent; /* output cookies array */ off_t *cookies; size_t numcookies, maxcookies; /* disk buffer */ off_t physstart, physend; size_t skipstart, dropend; char *rawbuf; size_t rawbufmax, rawbytes; struct uio rawuio; struct iovec rawiov; struct direct *rawdp, *stoprawdp; /* general */ int error; KASSERT(VOP_ISLOCKED(vp)); /* * Figure out where the user wants us to read and how much. * * XXX: there should probably be an upper bound on callerbytes * to avoid silliness trying to do large kernel allocations. */ callerbytes = calleruio->uio_resid; startoffset = calleruio->uio_offset; endoffset = startoffset + callerbytes; if (callerbytes < _DIRENT_MINSIZE(dirent)) { /* no room for even one struct dirent */ return EINVAL; } /* * Now figure out where to actually start reading. Round the * start down to a block boundary: we need to start at the * beginning of a block in order to read the directory * correctly. * * We also want to always read a whole number of blocks so * that the copying code below doesn't have to worry about * partial entries. (It used to try at one point, and was a * horrible mess.) * * Furthermore, since blocks have to be scanned from the * beginning, if we go partially into another block now we'll * just have to rescan it on the next readdir call, which * doesn't really serve any useful purpose. * * So, round down the end as well. It's ok to underpopulate * the transfer buffer, as long as we send back at least one * dirent so as to avoid giving a bogus EOF indication. * * Note that because dirents are larger than ffs struct * directs, despite the rounding down we may not be able to * send all the entries in the blocks we read and may have to * rescan some of them on the next call anyway. Alternatively * if there's empty space on disk we might have actually been * able to fit the next block in, and so forth. None of this * actually matters that much in practice. * * XXX: what does ffs do if a directory block becomes * completely empty, and what happens if all the blocks we * read are completely empty even though we aren't at EOF? As * of this writing I (dholland) can't remember the details. */ physstart = rounddown2(startoffset, ump->um_dirblksiz); physend = rounddown2(endoffset, ump->um_dirblksiz); if (physstart >= physend) { /* Need at least one block */ return EINVAL; } /* * skipstart is the number of bytes we need to read in * (because we need to start at the beginning of a block) but * not transfer to the user. * * dropend is the number of bytes to ignore at the end of the * user's buffer. */ skipstart = startoffset - physstart; dropend = endoffset - physend; /* * Make a transfer buffer. * * Note: rawbufmax = physend - physstart. Proof: * * physend - physstart = physend - physstart * = physend - physstart + startoffset - startoffset * = physend + (startoffset - physstart) - startoffset * = physend + skipstart - startoffset * = physend + skipstart - startoffset + endoffset - endoffset * = skipstart - startoffset + endoffset - (endoffset - physend) * = skipstart - startoffset + endoffset - dropend * = skipstart - startoffset + (startoffset + callerbytes) - dropend * = skipstart + callerbytes - dropend * = rawbufmax * Qed. * * XXX: this should just use physend - physstart. * * XXX: this should be rewritten to read the directs straight * out of bufferio buffers instead of copying twice. This would * also let us adapt better to the user's buffer size. */ /* Base buffer space for CALLERBYTES of new data */ rawbufmax = callerbytes + skipstart; if (rawbufmax < callerbytes) return EINVAL; rawbufmax -= dropend; if (rawbufmax < _DIRENT_MINSIZE(rawdp)) { /* no room for even one struct direct */ return EINVAL; } /* read it */ rawbuf = kmem_alloc(rawbufmax, KM_SLEEP); rawiov.iov_base = rawbuf; rawiov.iov_len = rawbufmax; rawuio.uio_iov = &rawiov; rawuio.uio_iovcnt = 1; rawuio.uio_offset = physstart; rawuio.uio_resid = rawbufmax; UIO_SETUP_SYSSPACE(&rawuio); rawuio.uio_rw = UIO_READ; error = UFS_BUFRD(vp, &rawuio, 0, ap->a_cred); if (error != 0) { kmem_free(rawbuf, rawbufmax); return error; } rawbytes = rawbufmax - rawuio.uio_resid; /* the raw entries to iterate over */ rawdp = (struct direct *)(void *)rawbuf; stoprawdp = (struct direct *)(void *)&rawbuf[rawbytes]; /* allocate space to produce dirents into */ direntbufmax = callerbytes; direntbuf = kmem_alloc(direntbufmax, KM_SLEEP); /* the dirents to iterate over */ dirent = (struct dirent *)(void *)direntbuf; stopdirent = (struct dirent *)(void *)&direntbuf[direntbufmax]; /* the output "cookies" (seek positions of directory entries) */ if (ap->a_cookies) { numcookies = 0; maxcookies = rawbytes / _DIRENT_RECLEN(rawdp, 1); cookies = malloc(maxcookies * sizeof(*cookies), M_TEMP, M_WAITOK); } else { /* XXX: GCC */ maxcookies = 0; cookies = NULL; } /* now produce the dirents */ curoffset = calleruio->uio_offset; while (rawdp < stoprawdp) { rawdp->d_reclen = ufs_rw16(rawdp->d_reclen, nswap); if (skipstart > 0) { /* drain skipstart */ if (rawdp->d_reclen <= skipstart) { skipstart -= rawdp->d_reclen; rawdp = _DIRENT_NEXT(rawdp); continue; } /* caller's start position wasn't on an entry */ error = EINVAL; goto out; } if (rawdp->d_reclen == 0) { struct dirent *save = dirent; dirent->d_reclen = _DIRENT_MINSIZE(dirent); dirent = _DIRENT_NEXT(dirent); save->d_reclen = 0; rawdp = stoprawdp; break; } /* copy the header */ if (needswap) { dirent->d_type = rawdp->d_namlen; dirent->d_namlen = rawdp->d_type; } else { dirent->d_type = rawdp->d_type; dirent->d_namlen = rawdp->d_namlen; } dirent->d_reclen = _DIRENT_RECLEN(dirent, dirent->d_namlen); /* stop if there isn't room for the name AND another header */ if ((char *)(void *)dirent + dirent->d_reclen + _DIRENT_MINSIZE(dirent) > (char *)(void *)stopdirent) break; /* copy the name (and inode (XXX: why after the test?)) */ dirent->d_fileno = ufs_rw32(rawdp->d_ino, nswap); (void)memcpy(dirent->d_name, rawdp->d_name, dirent->d_namlen); memset(&dirent->d_name[dirent->d_namlen], 0, dirent->d_reclen - _DIRENT_NAMEOFF(dirent) - dirent->d_namlen); /* onward */ curoffset += rawdp->d_reclen; if (ap->a_cookies) { KASSERT(numcookies < maxcookies); cookies[numcookies++] = curoffset; } dirent = _DIRENT_NEXT(dirent); rawdp = _DIRENT_NEXT(rawdp); } /* transfer the dirents to the caller's buffer */ callerbytes = ((char *)(void *)dirent - direntbuf); error = uiomove(direntbuf, callerbytes, calleruio); out: calleruio->uio_offset = curoffset; if (ap->a_cookies) { if (error) { free(cookies, M_TEMP); *ap->a_cookies = NULL; *ap->a_ncookies = 0; } else { *ap->a_cookies = cookies; *ap->a_ncookies = numcookies; } } kmem_free(direntbuf, direntbufmax); kmem_free(rawbuf, rawbufmax); *ap->a_eofflag = VTOI(vp)->i_size <= calleruio->uio_offset; return error; } /* * Return target name of a symbolic link */ int ufs_readlink(void *v) { struct vop_readlink_args /* { struct vnode *a_vp; struct uio *a_uio; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct ufsmount *ump = VFSTOUFS(vp->v_mount); int isize; /* * The test against um_maxsymlinklen is off by one; it should * theoretically be <=, not <. However, it cannot be changed * as that would break compatibility with existing fs images. */ isize = ip->i_size; if (isize < ump->um_maxsymlinklen || (ump->um_maxsymlinklen == 0 && DIP(ip, blocks) == 0)) { uiomove((char *)SHORTLINK(ip), isize, ap->a_uio); return (0); } return (UFS_BUFRD(vp, ap->a_uio, 0, ap->a_cred)); } /* * Calculate the logical to physical mapping if not done already, * then call the device strategy routine. */ int ufs_strategy(void *v) { struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap = v; struct buf *bp; struct vnode *vp; struct inode *ip; struct mount *mp; int error; bp = ap->a_bp; vp = ap->a_vp; ip = VTOI(vp); if (vp->v_type == VBLK || vp->v_type == VCHR) panic("ufs_strategy: spec"); KASSERT(fstrans_held(vp->v_mount)); KASSERT(bp->b_bcount != 0); if (bp->b_blkno == bp->b_lblkno) { error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL); if (error) { bp->b_error = error; biodone(bp); return (error); } if (bp->b_blkno == -1) /* no valid data */ clrbuf(bp); } if (bp->b_blkno < 0) { /* block is not on disk */ biodone(bp); return (0); } vp = ip->i_devvp; error = VOP_STRATEGY(vp, bp); if (error) return error; if (!BUF_ISREAD(bp)) return 0; mp = wapbl_vptomp(vp); if (mp == NULL || mp->mnt_wapbl_replay == NULL || !WAPBL_REPLAY_ISOPEN(mp) || !WAPBL_REPLAY_CAN_READ(mp, bp->b_blkno, bp->b_bcount)) return 0; error = biowait(bp); if (error) return error; error = WAPBL_REPLAY_READ(mp, bp->b_data, bp->b_blkno, bp->b_bcount); if (error) { mutex_enter(&bufcache_lock); SET(bp->b_cflags, BC_INVAL); mutex_exit(&bufcache_lock); } return error; } /* * Print out the contents of an inode. */ int ufs_print(void *v) { struct vop_print_args /* { struct vnode *a_vp; } */ *ap = v; struct vnode *vp; struct inode *ip; vp = ap->a_vp; ip = VTOI(vp); printf("tag VT_UFS, ino %llu, on dev %llu, %llu", (unsigned long long)ip->i_number, (unsigned long long)major(ip->i_dev), (unsigned long long)minor(ip->i_dev)); printf(" flags 0x%x, nlink %d\n", ip->i_flag, ip->i_nlink); printf("\tmode 0%o, owner %d, group %d, size %qd", ip->i_mode, ip->i_uid, ip->i_gid, (long long)ip->i_size); if (vp->v_type == VFIFO) VOCALL(fifo_vnodeop_p, VOFFSET(vop_print), v); printf("\n"); return (0); } /* * Read wrapper for special devices. */ int ufsspec_read(void *v) { struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; kauth_cred_t a_cred; } */ *ap = v; /* * Set access flag. */ if ((ap->a_vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0) VTOI(ap->a_vp)->i_flag |= IN_ACCESS; return (VOCALL (spec_vnodeop_p, VOFFSET(vop_read), ap)); } /* * Write wrapper for special devices. */ int ufsspec_write(void *v) { struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; kauth_cred_t a_cred; } */ *ap = v; /* * Set update and change flags. */ if ((ap->a_vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0) VTOI(ap->a_vp)->i_flag |= IN_MODIFY; return (VOCALL (spec_vnodeop_p, VOFFSET(vop_write), ap)); } /* * Close wrapper for special devices. * * Update the times on the inode then do device close. */ int ufsspec_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; vp = ap->a_vp; if (vrefcnt(vp) > 1) UFS_ITIMES(vp, NULL, NULL, NULL); return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Read wrapper for fifo's */ int ufsfifo_read(void *v) { struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; kauth_cred_t a_cred; } */ *ap = v; /* * Set access flag. */ VTOI(ap->a_vp)->i_flag |= IN_ACCESS; return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_read), ap)); } /* * Write wrapper for fifo's. */ int ufsfifo_write(void *v) { struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; kauth_cred_t a_cred; } */ *ap = v; /* * Set update and change flags. */ VTOI(ap->a_vp)->i_flag |= IN_MODIFY; return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_write), ap)); } /* * Close wrapper for fifo's. * * Update the times on the inode then do device close. */ int ufsfifo_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; vp = ap->a_vp; if (vrefcnt(ap->a_vp) > 1) UFS_ITIMES(vp, NULL, NULL, NULL); return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Return POSIX pathconf information applicable to ufs filesystems. */ int ufs_pathconf(void *v) { struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; register_t *a_retval; } */ *ap = v; switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = LINK_MAX; return (0); case _PC_NAME_MAX: *ap->a_retval = FFS_MAXNAMLEN; return (0); case _PC_PATH_MAX: *ap->a_retval = PATH_MAX; return (0); case _PC_PIPE_BUF: *ap->a_retval = PIPE_BUF; return (0); case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; return (0); case _PC_NO_TRUNC: *ap->a_retval = 1; return (0); #ifdef UFS_ACL case _PC_ACL_EXTENDED: if (ap->a_vp->v_mount->mnt_flag & MNT_POSIX1EACLS) *ap->a_retval = 1; else *ap->a_retval = 0; return 0; case _PC_ACL_NFS4: if (ap->a_vp->v_mount->mnt_flag & MNT_NFS4ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; return 0; #endif case _PC_ACL_PATH_MAX: #ifdef UFS_ACL if (ap->a_vp->v_mount->mnt_flag & (MNT_POSIX1EACLS | MNT_NFS4ACLS)) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; #else *ap->a_retval = 3; #endif return 0; case _PC_SYNC_IO: *ap->a_retval = 1; return (0); case _PC_FILESIZEBITS: *ap->a_retval = 42; return (0); case _PC_SYMLINK_MAX: *ap->a_retval = MAXPATHLEN; return (0); case _PC_2_SYMLINKS: *ap->a_retval = 1; return (0); default: return (EINVAL); } /* NOTREACHED */ } /* * Advisory record locking support */ int ufs_advlock(void *v) { struct vop_advlock_args /* { struct vnode *a_vp; void * a_id; int a_op; struct flock *a_fl; int a_flags; } */ *ap = v; struct inode *ip; ip = VTOI(ap->a_vp); return lf_advlock(ap, &ip->i_lockf, ip->i_size); } /* * Initialize the vnode associated with a new inode, handle aliased * vnodes. */ void ufs_vinit(struct mount *mntp, int (**specops)(void *), int (**fifoops)(void *), struct vnode **vpp) { struct timeval tv; struct inode *ip; struct vnode *vp; dev_t rdev; struct ufsmount *ump; vp = *vpp; ip = VTOI(vp); switch(vp->v_type = IFTOVT(ip->i_mode)) { case VCHR: case VBLK: vp->v_op = specops; ump = ip->i_ump; if (ump->um_fstype == UFS1) rdev = (dev_t)ufs_rw32(ip->i_ffs1_rdev, UFS_MPNEEDSWAP(ump)); else rdev = (dev_t)ufs_rw64(ip->i_ffs2_rdev, UFS_MPNEEDSWAP(ump)); spec_node_init(vp, rdev); break; case VFIFO: vp->v_op = fifoops; break; case VNON: case VBAD: case VSOCK: case VLNK: case VDIR: case VREG: break; } if (ip->i_number == UFS_ROOTINO) vp->v_vflag |= VV_ROOT; /* * Initialize modrev times */ getmicrouptime(&tv); ip->i_modrev = (uint64_t)(uint)tv.tv_sec << 32 | tv.tv_usec * 4294u; *vpp = vp; } /* * Allocate a new inode. */ static int ufs_makeinode(struct vattr *vap, struct vnode *dvp, const struct ufs_lookup_results *ulr, struct vnode **vpp, struct componentname *cnp) { struct inode *ip; struct direct *newdir; struct vnode *tvp; int error; UFS_WAPBL_JUNLOCK_ASSERT(dvp->v_mount); error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, &tvp); if (error) return error; error = vn_lock(tvp, LK_EXCLUSIVE); if (error) { vrele(tvp); return error; } *vpp = tvp; ip = VTOI(tvp); error = UFS_WAPBL_BEGIN(dvp->v_mount); if (error) { vput(tvp); return (error); } ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_nlink = 1; DIP_ASSIGN(ip, nlink, 1); /* Authorize setting SGID if needed. */ if (ip->i_mode & ISGID) { error = kauth_authorize_vnode(cnp->cn_cred, KAUTH_VNODE_WRITE_SECURITY, tvp, NULL, genfs_can_chmod(tvp, cnp->cn_cred, ip->i_uid, ip->i_gid, MAKEIMODE(vap->va_type, vap->va_mode))); if (error) { ip->i_mode &= ~ISGID; DIP_ASSIGN(ip, mode, ip->i_mode); } } if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_ASSIGN(ip, flags, ip->i_flags); } /* * Make sure inode goes to disk before directory entry. */ if ((error = UFS_UPDATE(tvp, NULL, NULL, UPDATE_DIROP)) != 0) goto bad; #ifdef UFS_ACL struct lwp *l = curlwp; if (dvp->v_mount->mnt_flag & MNT_POSIX1EACLS) { error = ufs_do_posix1e_acl_inheritance_file(dvp, tvp, ip->i_mode, cnp->cn_cred, l); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, ip->i_mode, cnp->cn_cred, l); if (error) goto bad; } #endif /* !UFS_ACL */ newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK); ufs_makedirentry(ip, cnp, newdir); error = ufs_direnter(dvp, ulr, tvp, newdir, cnp, NULL); pool_cache_put(ufs_direct_cache, newdir); if (error) goto bad; *vpp = tvp; cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags); return (0); bad: /* * Write error occurred trying to update the inode * or the directory so must deallocate the inode. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); ip->i_flag |= IN_CHANGE; UFS_WAPBL_UPDATE(tvp, NULL, NULL, 0); UFS_WAPBL_END(dvp->v_mount); vput(tvp); return (error); } /* * Allocate len bytes at offset off. */ int ufs_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags, kauth_cred_t cred) { struct inode *ip = VTOI(vp); int error, delta, bshift, bsize; UVMHIST_FUNC("ufs_gop_alloc"); UVMHIST_CALLED(ubchist); error = 0; bshift = vp->v_mount->mnt_fs_bshift; bsize = 1 << bshift; delta = off & (bsize - 1); off -= delta; len += delta; while (len > 0) { bsize = MIN(bsize, len); error = UFS_BALLOC(vp, off, bsize, cred, flags, NULL); if (error) { goto out; } /* * increase file size now, UFS_BALLOC() requires that * EOF be up-to-date before each call. */ if (ip->i_size < off + bsize) { UVMHIST_LOG(ubchist, "vp %#jx old 0x%jx new 0x%x", (uintptr_t)vp, ip->i_size, off + bsize, 0); ip->i_size = off + bsize; DIP_ASSIGN(ip, size, ip->i_size); } off += bsize; len -= bsize; } out: UFS_WAPBL_UPDATE(vp, NULL, NULL, 0); return error; } void ufs_gop_markupdate(struct vnode *vp, int flags) { u_int32_t mask = 0; if ((flags & GOP_UPDATE_ACCESSED) != 0) { mask = IN_ACCESS; } if ((flags & GOP_UPDATE_MODIFIED) != 0) { if (vp->v_type == VREG) { mask |= IN_CHANGE | IN_UPDATE; } else { mask |= IN_MODIFY; } } if (mask) { struct inode *ip = VTOI(vp); ip->i_flag |= mask; } } int ufs_bufio(enum uio_rw rw, struct vnode *vp, void *buf, size_t len, off_t off, int ioflg, kauth_cred_t cred, size_t *aresid, struct lwp *l) { struct iovec iov; struct uio uio; int error; KASSERT(ISSET(ioflg, IO_NODELOCKED)); KASSERT(VOP_ISLOCKED(vp)); KASSERT(rw != UIO_WRITE || VOP_ISLOCKED(vp) == LK_EXCLUSIVE); KASSERT(rw != UIO_WRITE || vp->v_mount->mnt_wapbl == NULL || ISSET(ioflg, IO_JOURNALLOCKED)); iov.iov_base = buf; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_resid = len; uio.uio_offset = off; uio.uio_rw = rw; UIO_SETUP_SYSSPACE(&uio); switch (rw) { case UIO_READ: error = UFS_BUFRD(vp, &uio, ioflg, cred); break; case UIO_WRITE: error = UFS_BUFWR(vp, &uio, ioflg, cred); break; default: panic("invalid uio rw: %d", (int)rw); } if (aresid) *aresid = uio.uio_resid; else if (uio.uio_resid && error == 0) error = EIO; KASSERT(VOP_ISLOCKED(vp)); KASSERT(rw != UIO_WRITE || VOP_ISLOCKED(vp) == LK_EXCLUSIVE); return error; }
410 962 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 /* $NetBSD: pmap_private.h,v 1.2 2022/08/20 23:49:31 riastradh Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Frank van der Linden for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _X86_PMAP_PRIVATE_H_ #define _X86_PMAP_PRIVATE_H_ #ifndef _MACHINE_PMAP_PRIVATE_H_X86 #error Include machine/pmap_private.h, not x86/pmap_private.h. #endif #ifdef _KERNEL_OPT #include "opt_svs.h" #endif #include <sys/param.h> #include <sys/types.h> #include <sys/kcpuset.h> #include <sys/mutex.h> #include <sys/pool.h> #include <sys/queue.h> #include <sys/rwlock.h> #include <machine/pte.h> #include <machine/vmparam.h> #include <uvm/uvm_object.h> #include <uvm/uvm_pmap.h> struct pmap; #define SLAREA_USER 0 #define SLAREA_PTE 1 #define SLAREA_MAIN 2 #define SLAREA_PCPU 3 #define SLAREA_DMAP 4 #define SLAREA_HYPV 5 #define SLAREA_ASAN 6 #define SLAREA_MSAN 7 #define SLAREA_KERN 8 #define SLSPACE_NAREAS 9 struct slotspace { struct { size_t sslot; /* start slot */ size_t nslot; /* # of slots */ bool active; /* area is active */ } area[SLSPACE_NAREAS]; }; extern struct slotspace slotspace; #include <x86/gdt.h> struct pcpu_entry { uint8_t gdt[MAXGDTSIZ]; uint8_t ldt[MAX_USERLDT_SIZE]; uint8_t idt[PAGE_SIZE]; uint8_t tss[PAGE_SIZE]; uint8_t ist0[PAGE_SIZE]; uint8_t ist1[PAGE_SIZE]; uint8_t ist2[PAGE_SIZE]; uint8_t ist3[PAGE_SIZE]; uint8_t rsp0[2 * PAGE_SIZE]; } __packed; struct pcpu_area { #ifdef SVS uint8_t utls[PAGE_SIZE]; #endif uint8_t ldt[PAGE_SIZE]; struct pcpu_entry ent[MAXCPUS]; } __packed; extern struct pcpu_area *pcpuarea; #define PMAP_PCID_KERN 0 #define PMAP_PCID_USER 1 /* * pmap data structures: see pmap.c for details of locking. */ /* * we maintain a list of all non-kernel pmaps */ LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */ /* * linked list of all non-kernel pmaps */ extern struct pmap_head pmaps; extern kmutex_t pmaps_lock; /* protects pmaps */ /* * pool_cache(9) that pmaps are allocated from */ extern struct pool_cache pmap_cache; /* * the pmap structure * * note that the pm_obj contains the lock pointer, the reference count, * page list, and number of PTPs within the pmap. * * pm_lock is the same as the lock for vm object 0. Changes to * the other objects may only be made if that lock has been taken * (the other object locks are only used when uvm_pagealloc is called) */ struct pv_page; struct pmap { struct uvm_object pm_obj[PTP_LEVELS-1];/* objects for lvl >= 1) */ LIST_ENTRY(pmap) pm_list; /* list of all pmaps */ pd_entry_t *pm_pdir; /* VA of PD */ paddr_t pm_pdirpa[PDP_SIZE]; /* PA of PDs (read-only after create) */ struct vm_page *pm_ptphint[PTP_LEVELS-1]; /* pointer to a PTP in our pmap */ struct pmap_statistics pm_stats; /* pmap stats */ struct pv_entry *pm_pve; /* spare pv_entry */ LIST_HEAD(, pv_page) pm_pvp_part; LIST_HEAD(, pv_page) pm_pvp_empty; LIST_HEAD(, pv_page) pm_pvp_full; #if !defined(__x86_64__) vaddr_t pm_hiexec; /* highest executable mapping */ #endif /* !defined(__x86_64__) */ union descriptor *pm_ldt; /* user-set LDT */ size_t pm_ldt_len; /* XXX unused, remove */ int pm_ldt_sel; /* LDT selector */ kcpuset_t *pm_cpus; /* mask of CPUs using pmap */ kcpuset_t *pm_kernel_cpus; /* mask of CPUs using kernel part of pmap */ kcpuset_t *pm_xen_ptp_cpus; /* mask of CPUs which have this pmap's ptp mapped */ uint64_t pm_ncsw; /* for assertions */ LIST_HEAD(,vm_page) pm_gc_ptp; /* PTPs queued for free */ /* Used by NVMM and Xen */ int (*pm_enter)(struct pmap *, vaddr_t, paddr_t, vm_prot_t, u_int); bool (*pm_extract)(struct pmap *, vaddr_t, paddr_t *); void (*pm_remove)(struct pmap *, vaddr_t, vaddr_t); int (*pm_sync_pv)(struct vm_page *, vaddr_t, paddr_t, int, uint8_t *, pt_entry_t *); void (*pm_pp_remove_ent)(struct pmap *, struct vm_page *, pt_entry_t, vaddr_t); void (*pm_write_protect)(struct pmap *, vaddr_t, vaddr_t, vm_prot_t); void (*pm_unwire)(struct pmap *, vaddr_t); void (*pm_tlb_flush)(struct pmap *); void *pm_data; kmutex_t pm_lock /* locks for pm_objs */ __aligned(64); /* give lock own cache line */ krwlock_t pm_dummy_lock; /* ugly hack for abusing uvm_object */ }; /* macro to access pm_pdirpa slots */ #ifdef PAE #define pmap_pdirpa(pmap, index) \ ((pmap)->pm_pdirpa[l2tol3(index)] + l2tol2(index) * sizeof(pd_entry_t)) #else #define pmap_pdirpa(pmap, index) \ ((pmap)->pm_pdirpa[0] + (index) * sizeof(pd_entry_t)) #endif /* * global kernel variables */ /* * PDPpaddr is the physical address of the kernel's PDP. * - i386 non-PAE and amd64: PDPpaddr corresponds directly to the %cr3 * value associated to the kernel process, proc0. * - i386 PAE: it still represents the PA of the kernel's PDP (L2). Due to * the L3 PD, it cannot be considered as the equivalent of a %cr3 any more. * - Xen: it corresponds to the PFN of the kernel's PDP. */ extern u_long PDPpaddr; extern pd_entry_t pmap_pg_g; /* do we support PTE_G? */ extern pd_entry_t pmap_pg_nx; /* do we support PTE_NX? */ extern int pmap_largepages; extern long nkptp[PTP_LEVELS]; #define pmap_valid_entry(E) ((E) & PTE_P) /* is PDE or PTE valid? */ void pmap_map_ptes(struct pmap *, struct pmap **, pd_entry_t **, pd_entry_t * const **); void pmap_unmap_ptes(struct pmap *, struct pmap *); bool pmap_pdes_valid(vaddr_t, pd_entry_t * const *, pd_entry_t *, int *lastlvl); bool pmap_is_curpmap(struct pmap *); void pmap_ept_transform(struct pmap *); #ifndef __HAVE_DIRECT_MAP void pmap_vpage_cpu_init(struct cpu_info *); #endif vaddr_t slotspace_rand(int, size_t, size_t, size_t, vaddr_t); vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */ typedef enum tlbwhy { TLBSHOOT_REMOVE_ALL, TLBSHOOT_KENTER, TLBSHOOT_KREMOVE, TLBSHOOT_FREE_PTP, TLBSHOOT_REMOVE_PTE, TLBSHOOT_SYNC_PV, TLBSHOOT_WRITE_PROTECT, TLBSHOOT_ENTER, TLBSHOOT_NVMM, TLBSHOOT_BUS_DMA, TLBSHOOT_BUS_SPACE, TLBSHOOT__MAX, } tlbwhy_t; void pmap_tlb_init(void); void pmap_tlb_cpu_init(struct cpu_info *); void pmap_tlb_shootdown(pmap_t, vaddr_t, pt_entry_t, tlbwhy_t); void pmap_tlb_shootnow(void); void pmap_tlb_intr(void); /* * inline functions */ /* * pmap_update_pg: flush one page from the TLB (or flush the whole thing * if hardware doesn't support one-page flushing) */ __inline static void __unused pmap_update_pg(vaddr_t va) { invlpg(va); } /* * various address inlines * * vtopte: return a pointer to the PTE mapping a VA, works only for * user and PT addresses * * kvtopte: return a pointer to the PTE mapping a kernel VA */ #include <lib/libkern/libkern.h> static __inline pt_entry_t * __unused vtopte(vaddr_t va) { KASSERT(va < VM_MIN_KERNEL_ADDRESS); return (PTE_BASE + pl1_i(va)); } static __inline pt_entry_t * __unused kvtopte(vaddr_t va) { pd_entry_t *pde; KASSERT(va >= VM_MIN_KERNEL_ADDRESS); pde = L2_BASE + pl2_i(va); if (*pde & PTE_PS) return ((pt_entry_t *)pde); return (PTE_BASE + pl1_i(va)); } #ifdef XENPV #include <sys/bitops.h> #define XPTE_MASK L1_FRAME /* Selects the index of a PTE in (A)PTE_BASE */ #define XPTE_SHIFT (L1_SHIFT - ilog2(sizeof(pt_entry_t))) /* PTE access inline functions */ /* * Get the machine address of the pointed pte * We use hardware MMU to get value so works only for levels 1-3 */ static __inline paddr_t xpmap_ptetomach(pt_entry_t *pte) { pt_entry_t *up_pte; vaddr_t va = (vaddr_t) pte; va = ((va & XPTE_MASK) >> XPTE_SHIFT) | (vaddr_t) PTE_BASE; up_pte = (pt_entry_t *) va; return (paddr_t) (((*up_pte) & PTE_FRAME) + (((vaddr_t) pte) & (~PTE_FRAME & ~VA_SIGN_MASK))); } /* Xen helpers to change bits of a pte */ #define XPMAP_UPDATE_DIRECT 1 /* Update direct map entry flags too */ paddr_t vtomach(vaddr_t); #define vtomfn(va) (vtomach(va) >> PAGE_SHIFT) #endif /* XENPV */ #ifdef __HAVE_PCPU_AREA extern struct pcpu_area *pcpuarea; #define PDIR_SLOT_PCPU 510 #define PMAP_PCPU_BASE (VA_SIGN_NEG((PDIR_SLOT_PCPU * NBPD_L4))) #endif void svs_quad_copy(void *, void *, long); #endif /* _X86_PMAP_PRIVATE_H_ */
8 226 256 252 5 8 222 223 218 6 6 218 8 8 8 8 8 8 6 6 62 62 25 24 25 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 /* $NetBSD: kern_pax.c,v 1.62 2021/08/30 01:25:10 rin Exp $ */ /* * Copyright (c) 2015, 2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Maxime Villard. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2006 Elad Efrat <elad@NetBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: kern_pax.c,v 1.62 2021/08/30 01:25:10 rin Exp $"); #include "opt_pax.h" #include <sys/param.h> #include <sys/proc.h> #include <sys/exec.h> #include <sys/exec_elf.h> #include <sys/pax.h> #include <sys/sysctl.h> #include <sys/kmem.h> #include <sys/mman.h> #include <sys/syslog.h> #include <sys/vnode.h> #include <sys/queue.h> #include <sys/bitops.h> #include <sys/kauth.h> #include <sys/cprng.h> #ifdef PAX_ASLR_DEBUG #define PAX_DPRINTF(_fmt, args...) \ do if (pax_aslr_debug) uprintf("%s: " _fmt "\n", __func__, ##args); \ while (/*CONSTCOND*/0) #else #define PAX_DPRINTF(_fmt, args...) do {} while (/*CONSTCOND*/0) #endif #ifdef PAX_ASLR #include <sys/mman.h> int pax_aslr_enabled = 1; int pax_aslr_global = PAX_ASLR; #ifndef PAX_ASLR_DELTA_MMAP_LSB #define PAX_ASLR_DELTA_MMAP_LSB PGSHIFT #endif #ifndef PAX_ASLR_DELTA_MMAP_LEN #define PAX_ASLR_DELTA_MMAP_LEN ((sizeof(void *) * NBBY) / 2) #endif #ifndef PAX_ASLR_DELTA_MMAP_LEN32 #define PAX_ASLR_DELTA_MMAP_LEN32 ((sizeof(uint32_t) * NBBY) / 2) #endif #ifndef PAX_ASLR_DELTA_STACK_LSB #define PAX_ASLR_DELTA_STACK_LSB PGSHIFT #endif #ifndef PAX_ASLR_DELTA_STACK_LEN #define PAX_ASLR_DELTA_STACK_LEN ((sizeof(void *) * NBBY) / 4) #endif #ifndef PAX_ASLR_DELTA_STACK_LEN32 #define PAX_ASLR_DELTA_STACK_LEN32 ((sizeof(uint32_t) * NBBY) / 4) #endif #define PAX_ASLR_MAX_STACK_WASTE 8 #ifdef PAX_ASLR_DEBUG int pax_aslr_debug; /* flag set means disable */ int pax_aslr_flags; uint32_t pax_aslr_rand; #define PAX_ASLR_STACK 0x01 #define PAX_ASLR_STACK_GAP 0x02 #define PAX_ASLR_MMAP 0x04 #define PAX_ASLR_EXEC_OFFSET 0x08 #define PAX_ASLR_RTLD_OFFSET 0x10 #define PAX_ASLR_FIXED 0x20 #endif static bool pax_aslr_elf_flags_active(uint32_t); #endif /* PAX_ASLR */ #ifdef PAX_MPROTECT static int pax_mprotect_enabled = 1; static int pax_mprotect_global = PAX_MPROTECT; static int pax_mprotect_ptrace = 1; static bool pax_mprotect_elf_flags_active(uint32_t); #endif /* PAX_MPROTECT */ #ifdef PAX_MPROTECT_DEBUG int pax_mprotect_debug; #endif #ifdef PAX_SEGVGUARD #ifndef PAX_SEGVGUARD_EXPIRY #define PAX_SEGVGUARD_EXPIRY (2 * 60) #endif #ifndef PAX_SEGVGUARD_SUSPENSION #define PAX_SEGVGUARD_SUSPENSION (10 * 60) #endif #ifndef PAX_SEGVGUARD_MAXCRASHES #define PAX_SEGVGUARD_MAXCRASHES 5 #endif static int pax_segvguard_enabled = 1; static int pax_segvguard_global = PAX_SEGVGUARD; static int pax_segvguard_expiry = PAX_SEGVGUARD_EXPIRY; static int pax_segvguard_suspension = PAX_SEGVGUARD_SUSPENSION; static int pax_segvguard_maxcrashes = PAX_SEGVGUARD_MAXCRASHES; struct pax_segvguard_uid_entry { uid_t sue_uid; size_t sue_ncrashes; time_t sue_expiry; time_t sue_suspended; LIST_ENTRY(pax_segvguard_uid_entry) sue_list; }; struct pax_segvguard_entry { LIST_HEAD(, pax_segvguard_uid_entry) segv_uids; }; static bool pax_segvguard_elf_flags_active(uint32_t); #endif /* PAX_SEGVGUARD */ SYSCTL_SETUP(sysctl_security_pax_setup, "sysctl security.pax setup") { const struct sysctlnode *rnode = NULL, *cnode; sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "pax", SYSCTL_DESCR("PaX (exploit mitigation) features."), NULL, 0, NULL, 0, CTL_SECURITY, CTL_CREATE, CTL_EOL); cnode = rnode; #ifdef PAX_MPROTECT rnode = cnode; sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "mprotect", SYSCTL_DESCR("mprotect(2) W^X restrictions."), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enabled", SYSCTL_DESCR("Restrictions enabled."), NULL, 0, &pax_mprotect_enabled, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "global", SYSCTL_DESCR("When enabled, unless explicitly " "specified, apply restrictions to " "all processes."), NULL, 0, &pax_mprotect_global, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ptrace", SYSCTL_DESCR("When enabled, allow ptrace(2) to " "override mprotect permissions on traced " "processes"), NULL, 0, &pax_mprotect_ptrace, 0, CTL_CREATE, CTL_EOL); #ifdef PAX_MPROTECT_DEBUG sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("print mprotect changes."), NULL, 0, &pax_mprotect_debug, 0, CTL_CREATE, CTL_EOL); #endif #endif /* PAX_MPROTECT */ #ifdef PAX_SEGVGUARD rnode = cnode; sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "segvguard", SYSCTL_DESCR("PaX segvguard."), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enabled", SYSCTL_DESCR("segvguard enabled."), NULL, 0, &pax_segvguard_enabled, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "global", SYSCTL_DESCR("segvguard all programs."), NULL, 0, &pax_segvguard_global, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "expiry_timeout", SYSCTL_DESCR("Entry expiry timeout (in seconds)."), NULL, 0, &pax_segvguard_expiry, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "suspend_timeout", SYSCTL_DESCR("Entry suspension timeout (in seconds)."), NULL, 0, &pax_segvguard_suspension, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "max_crashes", SYSCTL_DESCR("Max number of crashes before expiry."), NULL, 0, &pax_segvguard_maxcrashes, 0, CTL_CREATE, CTL_EOL); #endif /* PAX_SEGVGUARD */ #ifdef PAX_ASLR rnode = cnode; sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "aslr", SYSCTL_DESCR("Address Space Layout Randomization."), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "enabled", SYSCTL_DESCR("Restrictions enabled."), NULL, 0, &pax_aslr_enabled, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "global", SYSCTL_DESCR("When enabled, unless explicitly " "specified, apply to all processes."), NULL, 0, &pax_aslr_global, 0, CTL_CREATE, CTL_EOL); #ifdef PAX_ASLR_DEBUG sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Print ASLR selected addresses."), NULL, 0, &pax_aslr_debug, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "flags", SYSCTL_DESCR("Disable/Enable select ASLR features."), NULL, 0, &pax_aslr_flags, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rand", SYSCTL_DESCR("Use the given fixed random value"), NULL, 0, &pax_aslr_rand, 0, CTL_CREATE, CTL_EOL); #endif sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "mmap_len", SYSCTL_DESCR("Number of bits randomized for " "mmap(2) calls."), NULL, PAX_ASLR_DELTA_MMAP_LEN, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "stack_len", SYSCTL_DESCR("Number of bits randomized for " "the stack."), NULL, PAX_ASLR_DELTA_STACK_LEN, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "exec_len", SYSCTL_DESCR("Number of bits randomized for " "the PIE exec base."), NULL, PAX_ASLR_DELTA_EXEC_LEN, NULL, 0, CTL_CREATE, CTL_EOL); #endif /* PAX_ASLR */ } /* * Initialize PaX. */ void pax_init(void) { #ifdef PAX_ASLR /* Adjust maximum stack by the size we can consume for ASLR */ extern rlim_t maxsmap; maxsmap = MAXSSIZ - (MAXSSIZ / PAX_ASLR_MAX_STACK_WASTE); // XXX: compat32 is not handled. #endif } void pax_set_flags(struct exec_package *epp, struct proc *p) { p->p_pax = epp->ep_pax_flags; #ifdef PAX_MPROTECT if (pax_mprotect_ptrace == 0) return; /* * If we are running under the debugger, turn off MPROTECT so * the debugger can insert/delete breakpoints */ if (p->p_slflag & PSL_TRACED) p->p_pax &= ~P_PAX_MPROTECT; #endif } void pax_setup_elf_flags(struct exec_package *epp, uint32_t elf_flags) { uint32_t flags = 0; #ifdef PAX_ASLR if (pax_aslr_elf_flags_active(elf_flags)) { flags |= P_PAX_ASLR; } #endif #ifdef PAX_MPROTECT if (pax_mprotect_elf_flags_active(elf_flags)) { flags |= P_PAX_MPROTECT; } #endif #ifdef PAX_SEGVGUARD if (pax_segvguard_elf_flags_active(elf_flags)) { flags |= P_PAX_GUARD; } #endif epp->ep_pax_flags = flags; } #if defined(PAX_MPROTECT) || defined(PAX_SEGVGUARD) || defined(PAX_ASLR) static inline bool pax_flags_active(uint32_t flags, uint32_t opt) { if (!(flags & opt)) return false; return true; } #endif /* PAX_MPROTECT || PAX_SEGVGUARD || PAX_ASLR */ #ifdef PAX_MPROTECT static bool pax_mprotect_elf_flags_active(uint32_t flags) { if (!pax_mprotect_enabled) return false; if (pax_mprotect_global && (flags & ELF_NOTE_PAX_NOMPROTECT) != 0) { /* Mprotect explicitly disabled */ return false; } if (!pax_mprotect_global && (flags & ELF_NOTE_PAX_MPROTECT) == 0) { /* Mprotect not requested */ return false; } return true; } vm_prot_t pax_mprotect_maxprotect( #ifdef PAX_MPROTECT_DEBUG const char *file, size_t line, #endif struct lwp *l, vm_prot_t active, vm_prot_t extra, vm_prot_t maxprot) { uint32_t flags; flags = l->l_proc->p_pax; if (!pax_flags_active(flags, P_PAX_MPROTECT)) return maxprot; return (active|extra) & maxprot; } int pax_mprotect_validate( #ifdef PAX_MPROTECT_DEBUG const char *file, size_t line, #endif struct lwp *l, vm_prot_t prot) { uint32_t flags; flags = l->l_proc->p_pax; if (!pax_flags_active(flags, P_PAX_MPROTECT)) return 0; if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) == (VM_PROT_WRITE|VM_PROT_EXECUTE)) { #ifdef PAX_MPROTECT_DEBUG struct proc *p = l->l_proc; if (pax_mprotect_debug) printf("%s: %s,%zu: %d.%d (%s): WX rejected\n", __func__, file, line, p->p_pid, l->l_lid, p->p_comm); #endif return EACCES; } return 0; } /* * Bypass MPROTECT for traced processes */ int pax_mprotect_prot(struct lwp *l) { uint32_t flags; flags = l->l_proc->p_pax; if (!pax_flags_active(flags, P_PAX_MPROTECT)) return 0; if (pax_mprotect_ptrace < 2) return 0; return UVM_EXTRACT_PROT_ALL; } #endif /* PAX_MPROTECT */ #ifdef PAX_ASLR static bool pax_aslr_elf_flags_active(uint32_t flags) { if (!pax_aslr_enabled) return false; if (pax_aslr_global && (flags & ELF_NOTE_PAX_NOASLR) != 0) { /* ASLR explicitly disabled */ return false; } if (!pax_aslr_global && (flags & ELF_NOTE_PAX_ASLR) == 0) { /* ASLR not requested */ return false; } return true; } static bool pax_aslr_epp_active(struct exec_package *epp) { if (__predict_false((epp->ep_flags & (EXEC_32|EXEC_TOPDOWN_VM)) == 0)) return false; return pax_flags_active(epp->ep_pax_flags, P_PAX_ASLR); } static bool pax_aslr_active(struct lwp *l) { return pax_flags_active(l->l_proc->p_pax, P_PAX_ASLR); } void pax_aslr_init_vm(struct lwp *l, struct vmspace *vm, struct exec_package *ep) { if (!pax_aslr_active(l)) return; if (__predict_false((ep->ep_flags & (EXEC_32|EXEC_TOPDOWN_VM)) == 0)) return; #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_MMAP) return; #endif uint32_t len = (ep->ep_flags & EXEC_32) ? PAX_ASLR_DELTA_MMAP_LEN32 : PAX_ASLR_DELTA_MMAP_LEN; uint32_t rand = cprng_fast32(); #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_FIXED) rand = pax_aslr_rand; #endif vm->vm_aslr_delta_mmap = PAX_ASLR_DELTA(rand, PAX_ASLR_DELTA_MMAP_LSB, len); PAX_DPRINTF("delta_mmap=%#jx/%u", (uintmax_t)vm->vm_aslr_delta_mmap, len); } void pax_aslr_mmap(struct lwp *l, vaddr_t *addr, vaddr_t orig_addr, int f) { if (!pax_aslr_active(l)) return; #ifdef PAX_ASLR_DEBUG char buf[256]; if (pax_aslr_flags & PAX_ASLR_MMAP) return; if (pax_aslr_debug) snprintb(buf, sizeof(buf), MAP_FMT, f); else buf[0] = '\0'; #endif if (!(f & MAP_FIXED) && ((orig_addr == 0) || !(f & MAP_ANON))) { PAX_DPRINTF("applying to %#jx orig_addr=%#jx f=%s", (uintmax_t)*addr, (uintmax_t)orig_addr, buf); if (!(l->l_proc->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN)) *addr += l->l_proc->p_vmspace->vm_aslr_delta_mmap; else *addr -= l->l_proc->p_vmspace->vm_aslr_delta_mmap; PAX_DPRINTF("result %#jx", (uintmax_t)*addr); } else { PAX_DPRINTF("not applying to %#jx orig_addr=%#jx f=%s", (uintmax_t)*addr, (uintmax_t)orig_addr, buf); } } static vaddr_t pax_aslr_offset(vaddr_t align) { size_t pax_align, l2, delta; uint32_t rand; vaddr_t offset; pax_align = align == 0 ? PAGE_SIZE : align; l2 = ilog2(pax_align); rand = cprng_fast32(); #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_FIXED) rand = pax_aslr_rand; #endif #define PAX_TRUNC(a, b) ((a) & ~((b) - 1)) delta = PAX_ASLR_DELTA(rand, l2, PAX_ASLR_DELTA_EXEC_LEN); offset = PAX_TRUNC(delta, pax_align); offset = MAX(offset, pax_align); PAX_DPRINTF("rand=%#x l2=%#zx pax_align=%#zx delta=%#zx offset=%#jx", rand, l2, pax_align, delta, (uintmax_t)offset); return offset; } vaddr_t pax_aslr_exec_offset(struct exec_package *epp, vaddr_t align) { if (!pax_aslr_epp_active(epp)) goto out; #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_EXEC_OFFSET) goto out; #endif return pax_aslr_offset(align); out: return MAX(align, PAGE_SIZE); } voff_t pax_aslr_rtld_offset(struct exec_package *epp, vaddr_t align, int use_topdown) { voff_t offset; if (!pax_aslr_epp_active(epp)) return 0; #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_RTLD_OFFSET) return 0; #endif offset = pax_aslr_offset(align); if (use_topdown) offset = -offset; return offset; } void pax_aslr_stack(struct exec_package *epp, vsize_t *max_stack_size) { if (!pax_aslr_epp_active(epp)) return; #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_STACK) return; #endif uint32_t len = (epp->ep_flags & EXEC_32) ? PAX_ASLR_DELTA_STACK_LEN32 : PAX_ASLR_DELTA_STACK_LEN; uint32_t rand = cprng_fast32(); #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_FIXED) rand = pax_aslr_rand; #endif u_long d = PAX_ASLR_DELTA(rand, PAX_ASLR_DELTA_STACK_LSB, len); d &= (*max_stack_size / PAX_ASLR_MAX_STACK_WASTE) - 1; u_long newminsaddr = (u_long)STACK_GROW(epp->ep_minsaddr, d); PAX_DPRINTF("old minsaddr=%#jx delta=%#lx new minsaddr=%#lx", (uintmax_t)epp->ep_minsaddr, d, newminsaddr); epp->ep_minsaddr = (vaddr_t)newminsaddr; *max_stack_size -= d; } uint32_t pax_aslr_stack_gap(struct exec_package *epp) { if (!pax_aslr_epp_active(epp)) return 0; #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_STACK_GAP) return 0; #endif uint32_t rand = cprng_fast32(); #ifdef PAX_ASLR_DEBUG if (pax_aslr_flags & PAX_ASLR_FIXED) rand = pax_aslr_rand; #endif rand %= PAGE_SIZE; PAX_DPRINTF("stack gap=%#x\n", rand); return rand; } #endif /* PAX_ASLR */ #ifdef PAX_SEGVGUARD static bool pax_segvguard_elf_flags_active(uint32_t flags) { if (!pax_segvguard_enabled) return false; if (pax_segvguard_global && (flags & ELF_NOTE_PAX_NOGUARD) != 0) { /* Segvguard explicitly disabled */ return false; } if (!pax_segvguard_global && (flags & ELF_NOTE_PAX_GUARD) == 0) { /* Segvguard not requested */ return false; } return true; } void pax_segvguard_cleanup(struct vnode *vp) { struct pax_segvguard_entry *p = vp->v_segvguard; struct pax_segvguard_uid_entry *up; if (__predict_true(p == NULL)) { return; } while ((up = LIST_FIRST(&p->segv_uids)) != NULL) { LIST_REMOVE(up, sue_list); kmem_free(up, sizeof(*up)); } kmem_free(p, sizeof(*p)); vp->v_segvguard = NULL; } /* * Called when a process of image vp generated a segfault. * * => exec_lock must be held by the caller * => if "crashed" is true, exec_lock must be held for write */ int pax_segvguard(struct lwp *l, struct vnode *vp, const char *name, bool crashed) { struct pax_segvguard_entry *p; struct pax_segvguard_uid_entry *up; struct timeval tv; uid_t uid; uint32_t flags; bool have_uid; KASSERT(rw_lock_held(&exec_lock)); KASSERT(!crashed || rw_write_held(&exec_lock)); flags = l->l_proc->p_pax; if (!pax_flags_active(flags, P_PAX_GUARD)) return 0; if (vp == NULL) return EFAULT; /* Fast-path if starting a program we don't know. */ if ((p = vp->v_segvguard) == NULL && !crashed) return 0; microtime(&tv); /* * If a program we don't know crashed, we need to create a new entry * for it. */ if (p == NULL) { p = kmem_alloc(sizeof(*p), KM_SLEEP); vp->v_segvguard = p; LIST_INIT(&p->segv_uids); /* * Initialize a new entry with "crashes so far" of 1. * The expiry time is when we purge the entry if it didn't * reach the limit. */ up = kmem_alloc(sizeof(*up), KM_SLEEP); up->sue_uid = kauth_cred_getuid(l->l_cred); up->sue_ncrashes = 1; up->sue_expiry = tv.tv_sec + pax_segvguard_expiry; up->sue_suspended = 0; LIST_INSERT_HEAD(&p->segv_uids, up, sue_list); return 0; } /* * A program we "know" either executed or crashed again. * See if it's a culprit we're familiar with. */ uid = kauth_cred_getuid(l->l_cred); have_uid = false; LIST_FOREACH(up, &p->segv_uids, sue_list) { if (up->sue_uid == uid) { have_uid = true; break; } } /* * It's someone else. Add an entry for him if we crashed. */ if (!have_uid) { if (crashed) { up = kmem_alloc(sizeof(*up), KM_SLEEP); up->sue_uid = uid; up->sue_ncrashes = 1; up->sue_expiry = tv.tv_sec + pax_segvguard_expiry; up->sue_suspended = 0; LIST_INSERT_HEAD(&p->segv_uids, up, sue_list); } return 0; } if (crashed) { /* Check if timer on previous crashes expired first. */ if (up->sue_expiry < tv.tv_sec) { log(LOG_INFO, "PaX Segvguard: [%s] Suspension" " expired.\n", name ? name : "unknown"); up->sue_ncrashes = 1; up->sue_expiry = tv.tv_sec + pax_segvguard_expiry; up->sue_suspended = 0; return 0; } up->sue_ncrashes++; if (up->sue_ncrashes >= pax_segvguard_maxcrashes) { log(LOG_ALERT, "PaX Segvguard: [%s] Suspending " "execution for %d seconds after %zu crashes.\n", name ? name : "unknown", pax_segvguard_suspension, up->sue_ncrashes); /* Suspend this program for a while. */ up->sue_suspended = tv.tv_sec + pax_segvguard_suspension; up->sue_ncrashes = 0; up->sue_expiry = 0; } } else { /* Are we supposed to be suspended? */ if (up->sue_suspended > tv.tv_sec) { log(LOG_ALERT, "PaX Segvguard: [%s] Preventing " "execution due to repeated segfaults.\n", name ? name : "unknown"); return EPERM; } } return 0; } #endif /* PAX_SEGVGUARD */
2 83 2 43 18 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 /* $NetBSD: in_var.h,v 1.102 2021/03/08 22:01:18 christos Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ #include <sys/queue.h> #define IN_IFF_TENTATIVE 0x01 /* tentative address */ #define IN_IFF_DUPLICATED 0x02 /* DAD detected duplicate */ #define IN_IFF_DETACHED 0x04 /* may be detached from the link */ #define IN_IFF_TRYTENTATIVE 0x08 /* intent to try DAD */ #define IN_IFFBITS \ "\020\1TENTATIVE\2DUPLICATED\3DETACHED\4TRYTENTATIVE" /* do not input/output */ #define IN_IFF_NOTREADY \ (IN_IFF_TRYTENTATIVE | IN_IFF_TENTATIVE | IN_IFF_DUPLICATED) /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_{,sub}net{,mask} in host order */ u_int32_t ia_net; /* network number of interface */ u_int32_t ia_netmask; /* mask of net part */ u_int32_t ia_subnet; /* subnet number, including net */ u_int32_t ia_subnetmask; /* mask of subnet part */ struct in_addr ia_netbroadcast; /* to recognize net broadcasts */ LIST_ENTRY(in_ifaddr) ia_hash; /* entry in bucket of inet addresses */ TAILQ_ENTRY(in_ifaddr) ia_list; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ LIST_HEAD(, in_multi) ia_multiaddrs; /* list of multicast addresses */ struct in_multi *ia_allhosts; /* multicast address record for the allhosts multicast group */ uint16_t ia_idsalt; /* ip_id salt for this ia */ int ia4_flags; /* address flags */ void (*ia_dad_start) (struct ifaddr *); /* DAD start function */ void (*ia_dad_stop) (struct ifaddr *); /* DAD stop function */ time_t ia_dad_defended; /* last time of DAD defence */ #ifdef _KERNEL struct pslist_entry ia_hash_pslist_entry; struct pslist_entry ia_pslist_entry; #endif }; struct in_nbrinfo { char ifname[IFNAMSIZ]; /* if name, e.g. "en0" */ struct in_addr addr; /* IPv4 address of the neighbor */ long asked; /* number of queries already sent for this addr */ int state; /* reachability state */ int expire; /* lifetime for NDP state transition */ }; #ifdef _KERNEL static __inline void ia4_acquire(struct in_ifaddr *ia, struct psref *psref) { KASSERT(ia != NULL); ifa_acquire(&ia->ia_ifa, psref); } static __inline void ia4_release(struct in_ifaddr *ia, struct psref *psref) { if (ia == NULL) return; ifa_release(&ia->ia_ifa, psref); } #endif struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_dstaddr; #define ifra_broadaddr ifra_dstaddr struct sockaddr_in ifra_mask; }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #ifdef _KERNEL /* Note: 61, 127, 251, 509, 1021, 2039 are good. */ #ifndef IN_IFADDR_HASH_SIZE #define IN_IFADDR_HASH_SIZE 509 #endif /* * This is a bit unconventional, and wastes a little bit of space, but * because we want a very even hash function we don't use & in_ifaddrhash * here, but rather % the hash size, which should obviously be prime. */ #define IN_IFADDR_HASH(x) in_ifaddrhashtbl[(u_long)(x) % IN_IFADDR_HASH_SIZE] LIST_HEAD(in_ifaddrhashhead, in_ifaddr); /* Type of the hash head */ TAILQ_HEAD(in_ifaddrhead, in_ifaddr); /* Type of the list head */ extern u_long in_ifaddrhash; /* size of hash table - 1 */ extern struct in_ifaddrhashhead *in_ifaddrhashtbl; /* Hash table head */ extern struct in_ifaddrhead in_ifaddrhead; /* List head (in ip_input) */ extern pserialize_t in_ifaddrhash_psz; extern struct pslist_head *in_ifaddrhashtbl_pslist; extern u_long in_ifaddrhash_pslist; extern struct pslist_head in_ifaddrhead_pslist; #define IN_IFADDR_HASH_PSLIST(x) \ in_ifaddrhashtbl_pslist[(u_long)(x) % IN_IFADDR_HASH_SIZE] #define IN_ADDRHASH_READER_FOREACH(__ia, __addr) \ PSLIST_READER_FOREACH((__ia), &IN_IFADDR_HASH_PSLIST(__addr), \ struct in_ifaddr, ia_hash_pslist_entry) #define IN_ADDRHASH_WRITER_INSERT_HEAD(__ia) \ PSLIST_WRITER_INSERT_HEAD( \ &IN_IFADDR_HASH_PSLIST((__ia)->ia_addr.sin_addr.s_addr), \ (__ia), ia_hash_pslist_entry) #define IN_ADDRHASH_WRITER_REMOVE(__ia) \ PSLIST_WRITER_REMOVE((__ia), ia_hash_pslist_entry) #define IN_ADDRHASH_ENTRY_INIT(__ia) \ PSLIST_ENTRY_INIT((__ia), ia_hash_pslist_entry); #define IN_ADDRHASH_ENTRY_DESTROY(__ia) \ PSLIST_ENTRY_DESTROY((__ia), ia_hash_pslist_entry); #define IN_ADDRHASH_READER_NEXT(__ia) \ PSLIST_READER_NEXT((__ia), struct in_ifaddr, ia_hash_pslist_entry) #define IN_ADDRLIST_ENTRY_INIT(__ia) \ PSLIST_ENTRY_INIT((__ia), ia_pslist_entry) #define IN_ADDRLIST_ENTRY_DESTROY(__ia) \ PSLIST_ENTRY_DESTROY((__ia), ia_pslist_entry); #define IN_ADDRLIST_READER_EMPTY() \ (PSLIST_READER_FIRST(&in_ifaddrhead_pslist, struct in_ifaddr, \ ia_pslist_entry) == NULL) #define IN_ADDRLIST_READER_FIRST() \ PSLIST_READER_FIRST(&in_ifaddrhead_pslist, struct in_ifaddr, \ ia_pslist_entry) #define IN_ADDRLIST_READER_NEXT(__ia) \ PSLIST_READER_NEXT((__ia), struct in_ifaddr, ia_pslist_entry) #define IN_ADDRLIST_READER_FOREACH(__ia) \ PSLIST_READER_FOREACH((__ia), &in_ifaddrhead_pslist, \ struct in_ifaddr, ia_pslist_entry) #define IN_ADDRLIST_WRITER_INSERT_HEAD(__ia) \ PSLIST_WRITER_INSERT_HEAD(&in_ifaddrhead_pslist, (__ia), \ ia_pslist_entry) #define IN_ADDRLIST_WRITER_REMOVE(__ia) \ PSLIST_WRITER_REMOVE((__ia), ia_pslist_entry) #define IN_ADDRLIST_WRITER_FOREACH(__ia) \ PSLIST_WRITER_FOREACH((__ia), &in_ifaddrhead_pslist, \ struct in_ifaddr, ia_pslist_entry) #define IN_ADDRLIST_WRITER_FIRST() \ PSLIST_WRITER_FIRST(&in_ifaddrhead_pslist, struct in_ifaddr, \ ia_pslist_entry) #define IN_ADDRLIST_WRITER_NEXT(__ia) \ PSLIST_WRITER_NEXT((__ia), struct in_ifaddr, ia_pslist_entry) #define IN_ADDRLIST_WRITER_INSERT_AFTER(__ia, __new) \ PSLIST_WRITER_INSERT_AFTER((__ia), (__new), ia_pslist_entry) #define IN_ADDRLIST_WRITER_EMPTY() \ (PSLIST_WRITER_FIRST(&in_ifaddrhead_pslist, struct in_ifaddr, \ ia_pslist_entry) == NULL) #define IN_ADDRLIST_WRITER_INSERT_TAIL(__new) \ do { \ if (IN_ADDRLIST_WRITER_EMPTY()) { \ IN_ADDRLIST_WRITER_INSERT_HEAD((__new)); \ } else { \ struct in_ifaddr *__ia; \ IN_ADDRLIST_WRITER_FOREACH(__ia) { \ if (IN_ADDRLIST_WRITER_NEXT(__ia) == NULL) { \ IN_ADDRLIST_WRITER_INSERT_AFTER(__ia,\ (__new)); \ break; \ } \ } \ } \ } while (0) extern const int inetctlerrmap[]; /* * Find whether an internet address (in_addr) belongs to one * of our interfaces (in_ifaddr). NULL if the address isn't ours. */ static __inline struct in_ifaddr * in_get_ia(struct in_addr addr) { struct in_ifaddr *ia; IN_ADDRHASH_READER_FOREACH(ia, addr.s_addr) { if (in_hosteq(ia->ia_addr.sin_addr, addr)) break; } return ia; } static __inline struct in_ifaddr * in_get_ia_psref(struct in_addr addr, struct psref *psref) { struct in_ifaddr *ia; int s; s = pserialize_read_enter(); ia = in_get_ia(addr); if (ia != NULL) ia4_acquire(ia, psref); pserialize_read_exit(s); return ia; } /* * Find whether an internet address (in_addr) belongs to a specified * interface. NULL if the address isn't ours. */ static __inline struct in_ifaddr * in_get_ia_on_iface(struct in_addr addr, struct ifnet *ifp) { struct in_ifaddr *ia; IN_ADDRHASH_READER_FOREACH(ia, addr.s_addr) { if (in_hosteq(ia->ia_addr.sin_addr, addr) && ia->ia_ifp == ifp) break; } return ia; } static __inline struct in_ifaddr * in_get_ia_on_iface_psref(struct in_addr addr, struct ifnet *ifp, struct psref *psref) { struct in_ifaddr *ia; int s; s = pserialize_read_enter(); ia = in_get_ia_on_iface(addr, ifp); if (ia != NULL) ia4_acquire(ia, psref); pserialize_read_exit(s); return ia; } /* * Find an internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ static __inline struct in_ifaddr * in_get_ia_from_ifp(struct ifnet *ifp) { struct ifaddr *ifa; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == AF_INET) break; } return ifatoia(ifa); } static __inline struct in_ifaddr * in_get_ia_from_ifp_psref(struct ifnet *ifp, struct psref *psref) { struct in_ifaddr *ia; int s; s = pserialize_read_enter(); ia = in_get_ia_from_ifp(ifp); if (ia != NULL) ia4_acquire(ia, psref); pserialize_read_exit(s); return ia; } #include <netinet/in_selsrc.h> /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct in_ifsysctl *ii_selsrc; }; #endif /* _KERNEL */ /* * Internet multicast address structure. There is one of these for each IP * multicast group to which this host belongs on a given network interface. * They are kept in a linked list, rooted in the interface's in_ifaddr * structure. */ struct router_info; struct in_multi { LIST_ENTRY(in_multi) inm_list; /* list of multicast addresses */ struct router_info *inm_rti; /* router version info */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct in_addr inm_addr; /* IP multicast address */ u_int inm_refcount; /* no. membership claims by sockets */ u_int inm_timer; /* IGMP membership report timer */ u_int inm_state; /* state of membership */ }; #ifdef _KERNEL #include <net/pktqueue.h> #include <sys/cprng.h> extern pktqueue_t *ip_pktq; extern int ip_dad_count; /* Duplicate Address Detection probes */ static inline bool ip_dad_enabled(void) { #if NARP > 0 return ip_dad_count > 0; #else return false; #endif } #if defined(INET) && NARP > 0 extern int arp_debug; #define ARPLOGADDR(a) IN_PRINT(_ipbuf, a) #define ARPLOG(level, fmt, args...) \ do { \ char _ipbuf[INET_ADDRSTRLEN]; \ (void)_ipbuf; \ if (arp_debug) \ log(level, "%s: " fmt, __func__, ##args); \ } while (/*CONSTCOND*/0) #else #define ARPLOG(level, fmt, args...) #endif /* * Structure used by functions below to remember position when stepping * through all of the in_multi records. */ struct in_multistep { int i_n; struct in_multi *i_inm; }; bool in_multi_group(struct in_addr, struct ifnet *, int); struct in_multi *in_first_multi(struct in_multistep *); struct in_multi *in_next_multi(struct in_multistep *); struct in_multi *in_lookup_multi(struct in_addr, struct ifnet *); struct in_multi *in_addmulti(struct in_addr *, struct ifnet *); void in_delmulti(struct in_multi *); void in_multi_lock(int); void in_multi_unlock(void); int in_multi_lock_held(void); struct ifaddr; int in_ifinit(struct ifnet *, struct in_ifaddr *, const struct sockaddr_in *, const struct sockaddr_in *, int); void in_savemkludge(struct in_ifaddr *); void in_restoremkludge(struct in_ifaddr *, struct ifnet *); void in_purgemkludge(struct ifnet *); void in_setmaxmtu(void); int in_control(struct socket *, u_long, void *, struct ifnet *); void in_purgeaddr(struct ifaddr *); void in_purgeif(struct ifnet *); void in_addrhash_insert(struct in_ifaddr *); void in_addrhash_remove(struct in_ifaddr *); int ipflow_fastforward(struct mbuf *); extern uint16_t ip_id; extern int ip_do_randomid; static __inline uint16_t ip_randomid(void) { uint16_t id = (uint16_t)cprng_fast32(); return id ? id : 1; } /* * ip_newid_range: "allocate" num contiguous IP IDs. * * => Return the first ID. */ static __inline uint16_t ip_newid_range(const struct in_ifaddr *ia, u_int num) { uint16_t id; if (ip_do_randomid) { /* XXX ignore num */ return ip_randomid(); } /* Never allow an IP ID of 0 (detect wrap). */ if ((uint16_t)(ip_id + num) < ip_id) { ip_id = 1; } id = htons(ip_id); ip_id += num; return id; } static __inline uint16_t ip_newid(const struct in_ifaddr *ia) { return ip_newid_range(ia, 1); } #ifdef SYSCTLFN_PROTO int sysctl_inpcblist(SYSCTLFN_PROTO); #endif #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt #endif /* !_KERNEL */ /* INET6 stuff */ #include <netinet6/in6_var.h> #endif /* !_NETINET_IN_VAR_H_ */
1817 1816 598 595 597 914 914 916 913 913 8 8 8 8 737 735 100 100 144 143 100 101 1336 1335 1152 382 382 17 382 382 381 367 2979 2982 2958 258 258 256 256 256 256 1187 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 /* $NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $ */ /*- * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Kernel condition variable implementation. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/lwp.h> #include <sys/condvar.h> #include <sys/sleepq.h> #include <sys/lockdebug.h> #include <sys/cpu.h> #include <sys/kernel.h> /* * Accessors for the private contents of the kcondvar_t data type. * * cv_opaque[0] sleepq_t * cv_opaque[1] description for ps(1) * * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue * and dequeue). * * cv_opaque[1] (the wmesg) is static and does not change throughout the life * of the CV. */ #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque) #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1]) #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v) #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug) #define CV_RA ((uintptr_t)__builtin_return_address(0)) static void cv_unsleep(lwp_t *, bool); static inline void cv_wakeup_one(kcondvar_t *); static inline void cv_wakeup_all(kcondvar_t *); syncobj_t cv_syncobj = { .sobj_flag = SOBJ_SLEEPQ_SORTED, .sobj_unsleep = cv_unsleep, .sobj_changepri = sleepq_changepri, .sobj_lendpri = sleepq_lendpri, .sobj_owner = syncobj_noowner, }; static const char deadcv[] = "deadcv"; /* * cv_init: * * Initialize a condition variable for use. */ void cv_init(kcondvar_t *cv, const char *wmesg) { KASSERT(wmesg != NULL); CV_SET_WMESG(cv, wmesg); sleepq_init(CV_SLEEPQ(cv)); } /* * cv_destroy: * * Tear down a condition variable. */ void cv_destroy(kcondvar_t *cv) { sleepq_destroy(CV_SLEEPQ(cv)); #ifdef DIAGNOSTIC KASSERT(cv_is_valid(cv)); KASSERT(!cv_has_waiters(cv)); CV_SET_WMESG(cv, deadcv); #endif } /* * cv_enter: * * Look up and lock the sleep queue corresponding to the given * condition variable, and increment the number of waiters. */ static inline void cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p) { sleepq_t *sq; kmutex_t *mp; KASSERT(cv_is_valid(cv)); KASSERT(!cpu_intr_p()); KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL); l->l_kpriority = true; mp = sleepq_hashlock(cv); sq = CV_SLEEPQ(cv); sleepq_enter(sq, l, mp); sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p); mutex_exit(mtx); KASSERT(cv_has_waiters(cv)); } /* * cv_unsleep: * * Remove an LWP from the condition variable and sleep queue. This * is called when the LWP has not been awoken normally but instead * interrupted: for example, when a signal is received. Must be * called with the LWP locked. Will unlock if "unlock" is true. */ static void cv_unsleep(lwp_t *l, bool unlock) { kcondvar_t *cv __diagused; cv = (kcondvar_t *)(uintptr_t)l->l_wchan; KASSERT(l->l_wchan == (wchan_t)cv); KASSERT(l->l_sleepq == CV_SLEEPQ(cv)); KASSERT(cv_is_valid(cv)); KASSERT(cv_has_waiters(cv)); sleepq_unsleep(l, unlock); } /* * cv_wait: * * Wait non-interruptably on a condition variable until awoken. */ void cv_wait(kcondvar_t *cv, kmutex_t *mtx) { lwp_t *l = curlwp; KASSERT(mutex_owned(mtx)); cv_enter(cv, mtx, l, false); (void)sleepq_block(0, false, &cv_syncobj); mutex_enter(mtx); } /* * cv_wait_sig: * * Wait on a condition variable until a awoken or a signal is received. * Will also return early if the process is exiting. Returns zero if * awoken normally, ERESTART if a signal was received and the system * call is restartable, or EINTR otherwise. */ int cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx) { lwp_t *l = curlwp; int error; KASSERT(mutex_owned(mtx)); cv_enter(cv, mtx, l, true); error = sleepq_block(0, true, &cv_syncobj); mutex_enter(mtx); return error; } /* * cv_timedwait: * * Wait on a condition variable until awoken or the specified timeout * expires. Returns zero if awoken normally or EWOULDBLOCK if the * timeout expired. * * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. */ int cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo) { lwp_t *l = curlwp; int error; KASSERT(mutex_owned(mtx)); cv_enter(cv, mtx, l, false); error = sleepq_block(timo, false, &cv_syncobj); mutex_enter(mtx); return error; } /* * cv_timedwait_sig: * * Wait on a condition variable until a timeout expires, awoken or a * signal is received. Will also return early if the process is * exiting. Returns zero if awoken normally, EWOULDBLOCK if the * timeout expires, ERESTART if a signal was received and the system * call is restartable, or EINTR otherwise. * * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. */ int cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo) { lwp_t *l = curlwp; int error; KASSERT(mutex_owned(mtx)); cv_enter(cv, mtx, l, true); error = sleepq_block(timo, true, &cv_syncobj); mutex_enter(mtx); return error; } /* * Given a number of seconds, sec, and 2^64ths of a second, frac, we * want a number of ticks for a timeout: * * timo = hz*(sec + frac/2^64) * = hz*sec + hz*frac/2^64 * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64 * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64, * * where frachi is the high 32 bits of frac and fraclo is the * low 32 bits. * * We assume hz < INT_MAX/2 < UINT32_MAX, so * * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1, * * since fraclo < 2^32. * * We clamp the result at INT_MAX/2 for a timeout in ticks, since we * can't represent timeouts higher than INT_MAX in cv_timedwait, and * spurious wakeup is OK. Moreover, we don't want to wrap around, * because we compute end - start in ticks in order to compute the * remaining timeout, and that difference cannot wrap around, so we use * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of * margin for paranoia and will exceed most waits in practice by far. */ static unsigned bintime2timo(const struct bintime *bt) { KASSERT(hz < INT_MAX/2); CTASSERT(INT_MAX/2 < UINT32_MAX); if (bt->sec > ((INT_MAX/2)/hz)) return INT_MAX/2; if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec)) return INT_MAX/2; return hz*bt->sec + (hz*(bt->frac >> 32) >> 32); } /* * timo is in units of ticks. We want units of seconds and 2^64ths of * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a * second), from which we can conclude 2^64 / hz = 1 (2^64th of a * second)/tick. So for the fractional part, we compute * * frac = rem * 2^64 / hz * = ((rem * 2^32) / hz) * 2^32 * * Using truncating integer division instead of real division will * leave us with only about 32 bits of precision, which means about * 1/4-nanosecond resolution, which is good enough for our purposes. */ static struct bintime timo2bintime(unsigned timo) { return (struct bintime) { .sec = timo / hz, .frac = (((uint64_t)(timo % hz) << 32)/hz << 32), }; } /* * cv_timedwaitbt: * * Wait on a condition variable until awoken or the specified * timeout expires. Returns zero if awoken normally or * EWOULDBLOCK if the timeout expires. * * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts * the time slept, so on exit, bt is the time remaining after * sleeping, possibly negative if the complete time has elapsed. * No infinite timeout; use cv_wait_sig instead. * * epsilon is a requested maximum error in timeout (excluding * spurious wakeups). Currently not used, will be used in the * future to choose between low- and high-resolution timers. * Actual wakeup time will be somewhere in [t, t + max(e, r) + s) * where r is the finest resolution of clock available and s is * scheduling delays for scheduler overhead and competing threads. * Time is measured by the interrupt source implementing the * timeout, not by another timecounter. */ int cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt, const struct bintime *epsilon __diagused) { struct bintime slept; unsigned start, end; int timo; int error; KASSERTMSG(bt->sec >= 0, "negative timeout"); KASSERTMSG(epsilon != NULL, "specify maximum requested delay"); /* If there's nothing left to wait, time out. */ if (bt->sec == 0 && bt->frac == 0) return EWOULDBLOCK; /* Convert to ticks, but clamp to be >=1. */ timo = bintime2timo(bt); KASSERTMSG(timo >= 0, "negative ticks: %d", timo); if (timo == 0) timo = 1; /* * getticks() is technically int, but nothing special * happens instead of overflow, so we assume two's-complement * wraparound and just treat it as unsigned. */ start = getticks(); error = cv_timedwait(cv, mtx, timo); end = getticks(); /* * Set it to the time left, or zero, whichever is larger. We * do not fail with EWOULDBLOCK here because this may have been * an explicit wakeup, so the caller needs to check before they * give up or else cv_signal would be lost. */ slept = timo2bintime(end - start); if (bintimecmp(bt, &slept, <=)) { bt->sec = 0; bt->frac = 0; } else { /* bt := bt - slept */ bintime_sub(bt, &slept); } return error; } /* * cv_timedwaitbt_sig: * * Wait on a condition variable until awoken, the specified * timeout expires, or interrupted by a signal. Returns zero if * awoken normally, EWOULDBLOCK if the timeout expires, or * EINTR/ERESTART if interrupted by a signal. * * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig * subtracts the time slept, so on exit, bt is the time remaining * after sleeping. No infinite timeout; use cv_wait instead. * * epsilon is a requested maximum error in timeout (excluding * spurious wakeups). Currently not used, will be used in the * future to choose between low- and high-resolution timers. */ int cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt, const struct bintime *epsilon __diagused) { struct bintime slept; unsigned start, end; int timo; int error; KASSERTMSG(bt->sec >= 0, "negative timeout"); KASSERTMSG(epsilon != NULL, "specify maximum requested delay"); /* If there's nothing left to wait, time out. */ if (bt->sec == 0 && bt->frac == 0) return EWOULDBLOCK; /* Convert to ticks, but clamp to be >=1. */ timo = bintime2timo(bt); KASSERTMSG(timo >= 0, "negative ticks: %d", timo); if (timo == 0) timo = 1; /* * getticks() is technically int, but nothing special * happens instead of overflow, so we assume two's-complement * wraparound and just treat it as unsigned. */ start = getticks(); error = cv_timedwait_sig(cv, mtx, timo); end = getticks(); /* * Set it to the time left, or zero, whichever is larger. We * do not fail with EWOULDBLOCK here because this may have been * an explicit wakeup, so the caller needs to check before they * give up or else cv_signal would be lost. */ slept = timo2bintime(end - start); if (bintimecmp(bt, &slept, <=)) { bt->sec = 0; bt->frac = 0; } else { /* bt := bt - slept */ bintime_sub(bt, &slept); } return error; } /* * cv_signal: * * Wake the highest priority LWP waiting on a condition variable. * Must be called with the interlocking mutex held. */ void cv_signal(kcondvar_t *cv) { KASSERT(cv_is_valid(cv)); if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) cv_wakeup_one(cv); } /* * cv_wakeup_one: * * Slow path for cv_signal(). Deliberately marked __noinline to * prevent the compiler pulling it in to cv_signal(), which adds * extra prologue and epilogue code. */ static __noinline void cv_wakeup_one(kcondvar_t *cv) { sleepq_t *sq; kmutex_t *mp; lwp_t *l; /* * Keep waking LWPs until a non-interruptable waiter is found. An * interruptable waiter could fail to do something useful with the * wakeup due to an error return from cv_[timed]wait_sig(), and the * caller of cv_signal() may not expect such a scenario. * * This isn't a problem for non-interruptable waits (untimed and * timed), because if such a waiter is woken here it will not return * an error. */ mp = sleepq_hashlock(cv); sq = CV_SLEEPQ(cv); while ((l = LIST_FIRST(sq)) != NULL) { KASSERT(l->l_sleepq == sq); KASSERT(l->l_mutex == mp); KASSERT(l->l_wchan == cv); if ((l->l_flag & LW_SINTR) == 0) { sleepq_remove(sq, l); break; } else sleepq_remove(sq, l); } mutex_spin_exit(mp); } /* * cv_broadcast: * * Wake all LWPs waiting on a condition variable. Must be called * with the interlocking mutex held. */ void cv_broadcast(kcondvar_t *cv) { KASSERT(cv_is_valid(cv)); if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) cv_wakeup_all(cv); } /* * cv_wakeup_all: * * Slow path for cv_broadcast(). Deliberately marked __noinline to * prevent the compiler pulling it in to cv_broadcast(), which adds * extra prologue and epilogue code. */ static __noinline void cv_wakeup_all(kcondvar_t *cv) { sleepq_t *sq; kmutex_t *mp; lwp_t *l; mp = sleepq_hashlock(cv); sq = CV_SLEEPQ(cv); while ((l = LIST_FIRST(sq)) != NULL) { KASSERT(l->l_sleepq == sq); KASSERT(l->l_mutex == mp); KASSERT(l->l_wchan == cv); sleepq_remove(sq, l); } mutex_spin_exit(mp); } /* * cv_has_waiters: * * For diagnostic assertions: return non-zero if a condition * variable has waiters. */ bool cv_has_waiters(kcondvar_t *cv) { return !LIST_EMPTY(CV_SLEEPQ(cv)); } /* * cv_is_valid: * * For diagnostic assertions: return non-zero if a condition * variable appears to be valid. No locks need be held. */ bool cv_is_valid(kcondvar_t *cv) { return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL; }
11 9 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* $NetBSD: if_media_80.c,v 1.5 2022/08/03 01:38:51 riastradh Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997 * Jonathan Stone and Jason R. Thorpe. All rights reserved. * * This software is derived from information provided by Matt Thomas. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jonathan Stone * and Jason R. Thorpe for the NetBSD Project. * 4. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: if_media_80.c,v 1.5 2022/08/03 01:38:51 riastradh Exp $"); #include <sys/param.h> #include <sys/kernel.h> #include <sys/syscallargs.h> #include <sys/errno.h> #include <sys/malloc.h> #include <sys/proc.h> #include <sys/compat_stub.h> #include <net/if.h> #include <net/if_media.h> #include <compat/sys/sockio.h> #include <compat/common/compat_mod.h> static void ifmword_n2o(int *oldwd, int *newwd) { if (IFM_SUBTYPE(*newwd) > IFM_OTHER) *oldwd = (*newwd & ~(_IFM_ETH_XTMASK | IFM_TMASK)) | IFM_OTHER; else *oldwd = *newwd; } /*ARGSUSED*/ static int compat_ifmediareq_pre(struct ifreq *ifr, u_long *cmd, bool *do_post) { struct ifmediareq *ifmr = (struct ifmediareq *)ifr; switch (*cmd) { case SIOCSIFMEDIA_80: *cmd = SIOCSIFMEDIA; /* Convert to new one */ if ((IFM_TYPE(ifr->ifr_media) == IFM_ETHER) && IFM_SUBTYPE(ifr->ifr_media) > IFM_OTHER) { /* Clear unused bits to not to change to wrong media */ ifr->ifr_media &= ~_IFM_ETH_XTMASK; } return 0; case SIOCGIFMEDIA_80: *cmd = SIOCGIFMEDIA; /* Convert to new one */ if (ifmr->ifm_count != 0) { /* * Tell the upper layer to try to convert each ifmedia * entry in the post process. */ *do_post = true; } return 0; default: return 0; } } /*ARGSUSED*/ static int compat_ifmediareq_post(struct ifreq *ifr, u_long cmd) { struct ifmediareq *ifmr = (struct ifmediareq *)ifr; size_t minwords; size_t count; int error, *kptr; switch (cmd) { case SIOCSIFMEDIA: return 0; case SIOCGIFMEDIA: if (ifmr->ifm_count < 0) return EINVAL; /* * ifmr->ifm_count was already ajusted in ifmedia_ioctl(), so * there is no problem to trust ifm_count. */ minwords = ifmr->ifm_count; kptr = malloc(minwords * sizeof(*kptr), M_TEMP, M_WAITOK|M_ZERO); if (kptr == NULL) return ENOMEM; /* * Convert ifm_current and ifm_active. * It's not required to convert ifm_mask. */ ifmword_n2o(&ifmr->ifm_current, &ifmr->ifm_current); ifmword_n2o(&ifmr->ifm_active, &ifmr->ifm_active); /* Convert ifm_ulist array */ for (count = 0; count < minwords; count++) { int oldmwd; error = ufetch_int(&ifmr->ifm_ulist[count], &oldmwd); if (error != 0) goto out; ifmword_n2o(&kptr[count], &oldmwd); } /* Copy to userland in old format */ error = copyout(kptr, ifmr->ifm_ulist, minwords * sizeof(*kptr)); out: free(kptr, M_TEMP); return error; default: return 0; } } void ifmedia_80_init(void) { MODULE_HOOK_SET(ifmedia_80_pre_hook, compat_ifmediareq_pre); MODULE_HOOK_SET(ifmedia_80_post_hook, compat_ifmediareq_post); } void ifmedia_80_fini(void) { MODULE_HOOK_UNSET(ifmedia_80_post_hook); MODULE_HOOK_UNSET(ifmedia_80_pre_hook); }
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 /* $NetBSD: rf_compat80.c,v 1.17 2022/06/28 03:13:27 oster Exp $ */ /* * Copyright (c) 2017 Matthew R. Green * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/types.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/module.h> #include <sys/compat_stub.h> #include <dev/raidframe/raidframeio.h> #include <dev/raidframe/raidframevar.h> #include "rf_raid.h" #include "rf_compat80.h" #include "rf_kintf.h" /* NetBSD 8.99.x removed the row, raidPtr and next members */ struct rf_recon_req80 { RF_RowCol_t row, col; RF_ReconReqFlags_t flags; void *raidPtr; /* used internally; need not be set at ioctl * time */ struct rf_recon_req *next; /* used internally; need not be set at * ioctl time */ }; /* NetBSD 8.99.x made this structure alignment neutral */ typedef struct RF_RaidDisk_s80 { char devname[56]; /* name of device file */ RF_DiskStatus_t status; /* whether it is up or down */ RF_RowCol_t spareRow; /* if in status "spared", this identifies the * spare disk */ RF_RowCol_t spareCol; /* if in status "spared", this identifies the * spare disk */ RF_SectorCount_t numBlocks; /* number of blocks, obtained via READ * CAPACITY */ int blockSize; RF_SectorCount_t partitionSize; /* The *actual* and *full* size of the partition, from the disklabel */ int auto_configured;/* 1 if this component was autoconfigured. 0 otherwise. */ dev_t dev; } RF_RaidDisk_t80; typedef struct RF_DeviceConfig_s80 { u_int rows; u_int cols; u_int maxqdepth; int ndevs; RF_RaidDisk_t80 devs[RF_MAX_DISKS]; int nspares; RF_RaidDisk_t80 spares[RF_MAX_DISKS]; } RF_DeviceConfig_t80; typedef struct RF_Config_s80 { RF_RowCol_t numRow, numCol, numSpare; /* number of rows, columns, * and spare disks */ dev_t devs[RF_MAXROW][RF_MAXCOL]; /* device numbers for disks * comprising array */ char devnames[RF_MAXROW][RF_MAXCOL][50]; /* device names */ dev_t spare_devs[RF_MAXSPARE]; /* device numbers for spare * disks */ char spare_names[RF_MAXSPARE][50]; /* device names */ RF_SectorNum_t sectPerSU; /* sectors per stripe unit */ RF_StripeNum_t SUsPerPU;/* stripe units per parity unit */ RF_StripeNum_t SUsPerRU;/* stripe units per reconstruction unit */ RF_ParityConfig_t parityConfig; /* identifies the RAID architecture to * be used */ RF_DiskQueueType_t diskQueueType; /* 'f' = fifo, 'c' = cvscan, * not used in kernel */ char maxOutstandingDiskReqs; /* # concurrent reqs to be sent to a * disk. not used in kernel. */ char debugVars[RF_MAXDBGV][50]; /* space for specifying debug * variables & their values */ unsigned int layoutSpecificSize; /* size in bytes of * layout-specific info */ void *layoutSpecific; /* a pointer to a layout-specific structure to * be copied in */ int force; /* if !0, ignore many fatal configuration conditions */ /* "force" is used to override cases where the component labels would indicate that configuration should not proceed without user intervention */ } RF_Config_t80; static int rf_check_recon_status_ext80(RF_Raid_t *raidPtr, void *data) { RF_ProgressInfo_t info, **infoPtr = data; rf_check_recon_status_ext(raidPtr, &info); return copyout(&info, *infoPtr, sizeof(info)); } static int rf_check_parityrewrite_status_ext80(RF_Raid_t *raidPtr, void *data) { RF_ProgressInfo_t info, **infoPtr = data; rf_check_parityrewrite_status_ext(raidPtr, &info); return copyout(&info, *infoPtr, sizeof(info)); } static int rf_check_copyback_status_ext80(RF_Raid_t *raidPtr, void *data) { RF_ProgressInfo_t info, **infoPtr = data; rf_check_copyback_status_ext(raidPtr, &info); return copyout(&info, *infoPtr, sizeof(info)); } static void rf_copy_raiddisk80(RF_RaidDisk_t *disk, RF_RaidDisk_t80 *disk80) { /* Be sure the padding areas don't have kernel memory. */ memset(disk80, 0, sizeof(*disk80)); memcpy(disk80->devname, disk->devname, sizeof(disk80->devname)); disk80->status = disk->status; disk80->spareRow = 0; disk80->spareCol = disk->spareCol; disk80->numBlocks = disk->numBlocks; disk80->blockSize = disk->blockSize; disk80->partitionSize = disk->partitionSize; disk80->auto_configured = disk->auto_configured; disk80->dev = disk->dev; } static int rf_get_info80(RF_Raid_t *raidPtr, void *data) { RF_DeviceConfig_t *config; RF_DeviceConfig_t80 *config80, **configPtr80 = data; int rv; config = RF_Malloc(sizeof(*config)); if (config == NULL) return ENOMEM; config80 = RF_Malloc(sizeof(*config80)); if (config80 == NULL) { RF_Free(config, sizeof(*config)); return ENOMEM; } rv = rf_get_info(raidPtr, config); if (rv == 0) { /* convert new to old */ config80->rows = 1; config80->cols = config->cols; config80->maxqdepth = config->maxqdepth; config80->ndevs = config->ndevs; config80->nspares = config->nspares; for (size_t i = 0; i < RF_MAX_DISKS; i++) { rf_copy_raiddisk80(&config->devs[i], &config80->devs[i]); rf_copy_raiddisk80(&config->spares[i], &config80->spares[i]); } rv = copyout(config80, *configPtr80, sizeof(*config80)); } RF_Free(config, sizeof(*config)); RF_Free(config80, sizeof(*config80)); return rv; } static int rf_get_component_label80(RF_Raid_t *raidPtr, void *data) { RF_ComponentLabel_t **clabel_ptr = (RF_ComponentLabel_t **)data; RF_ComponentLabel_t *clabel; int retcode; /* * Perhaps there should be an option to skip the in-core * copy and hit the disk, as with disklabel(8). */ clabel = RF_Malloc(sizeof(*clabel)); if (clabel == NULL) return ENOMEM; retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel)); if (retcode) { RF_Free(clabel, sizeof(*clabel)); return retcode; } rf_get_component_label(raidPtr, clabel); /* Fix-up for userland. */ if (clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) clabel->version = RF_COMPONENT_LABEL_VERSION; retcode = copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr)); RF_Free(clabel, sizeof(*clabel)); return retcode; } static int rf_config80(struct raid_softc *rs, void *data) { RF_Config_t80 *u80_cfg, *k80_cfg; RF_Config_t *k_cfg; RF_Raid_t *raidPtr = rf_get_raid(rs); size_t i, j; int error; if (raidPtr->valid) { /* There is a valid RAID set running on this unit! */ printf("raid%d: Device already configured!\n", rf_get_unit(rs)); return EINVAL; } /* copy-in the configuration information */ /* data points to a pointer to the configuration structure */ u80_cfg = *((RF_Config_t80 **) data); k80_cfg = RF_Malloc(sizeof(*k80_cfg)); if (k80_cfg == NULL) return ENOMEM; error = copyin(u80_cfg, k80_cfg, sizeof(*k80_cfg)); if (error) { RF_Free(k80_cfg, sizeof(*k80_cfg)); return error; } k_cfg = RF_Malloc(sizeof(*k_cfg)); if (k_cfg == NULL) { RF_Free(k80_cfg, sizeof(*k80_cfg)); return ENOMEM; } k_cfg->numCol = k80_cfg->numCol; k_cfg->numSpare = k80_cfg->numSpare; for (i = 0; i < RF_MAXROW; i++) for (j = 0; j < RF_MAXCOL; j++) k_cfg->devs[i][j] = k80_cfg->devs[i][j]; memcpy(k_cfg->devnames, k80_cfg->devnames, sizeof(k_cfg->devnames)); for (i = 0; i < RF_MAXSPARE; i++) k_cfg->spare_devs[i] = k80_cfg->spare_devs[i]; memcpy(k_cfg->spare_names, k80_cfg->spare_names, sizeof(k_cfg->spare_names)); k_cfg->sectPerSU = k80_cfg->sectPerSU; k_cfg->SUsPerPU = k80_cfg->SUsPerPU; k_cfg->SUsPerRU = k80_cfg->SUsPerRU; k_cfg->parityConfig = k80_cfg->parityConfig; memcpy(k_cfg->diskQueueType, k80_cfg->diskQueueType, sizeof(k_cfg->diskQueueType)); k_cfg->maxOutstandingDiskReqs = k80_cfg->maxOutstandingDiskReqs; memcpy(k_cfg->debugVars, k80_cfg->debugVars, sizeof(k_cfg->debugVars)); k_cfg->layoutSpecificSize = k80_cfg->layoutSpecificSize; k_cfg->layoutSpecific = k80_cfg->layoutSpecific; k_cfg->force = k80_cfg->force; RF_Free(k80_cfg, sizeof(*k80_cfg)); return rf_construct(rs, k_cfg); } static int rf_fail_disk80(RF_Raid_t *raidPtr, struct rf_recon_req80 *req80) { struct rf_recon_req req = { .col = req80->col, .flags = req80->flags, }; return rf_fail_disk(raidPtr, &req); } static int raidframe_ioctl_80(struct raid_softc *rs, u_long cmd, void *data) { RF_Raid_t *raidPtr = rf_get_raid(rs); switch (cmd) { case RAIDFRAME_CHECK_RECON_STATUS_EXT80: case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80: case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80: case RAIDFRAME_GET_INFO80: case RAIDFRAME_GET_COMPONENT_LABEL80: case RAIDFRAME_FAIL_DISK80: if (!rf_inited(rs)) return ENXIO; break; case RAIDFRAME_CONFIGURE80: break; default: return EPASSTHROUGH; } switch (cmd) { case RAIDFRAME_CHECK_RECON_STATUS_EXT80: return rf_check_recon_status_ext80(raidPtr, data); case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80: return rf_check_parityrewrite_status_ext80(raidPtr, data); case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80: return rf_check_copyback_status_ext80(raidPtr, data); case RAIDFRAME_GET_INFO80: return rf_get_info80(raidPtr, data); case RAIDFRAME_GET_COMPONENT_LABEL80: return rf_get_component_label80(raidPtr, data); case RAIDFRAME_CONFIGURE80: return rf_config80(rs, data); case RAIDFRAME_FAIL_DISK80: return rf_fail_disk80(raidPtr, data); default: /* abort really */ return EPASSTHROUGH; } } static void raidframe_80_init(void) { MODULE_HOOK_SET(raidframe_ioctl_80_hook, raidframe_ioctl_80); } static void raidframe_80_fini(void) { MODULE_HOOK_UNSET(raidframe_ioctl_80_hook); } MODULE(MODULE_CLASS_EXEC, compat_raid_80, "raid,compat_80"); static int compat_raid_80_modcmd(modcmd_t cmd, void *arg) { switch (cmd) { case MODULE_CMD_INIT: raidframe_80_init(); return 0; case MODULE_CMD_FINI: raidframe_80_fini(); return 0; default: return ENOTTY; } }
1 1 1 1 1 1 3 5 1 5 4 1 2 2 1 1 1 2 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 /* $NetBSD: wskbdutil.c,v 1.19 2017/11/03 19:20:27 maya Exp $ */ /*- * Copyright (c) 1997 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Juergen Hannken-Illjes. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: wskbdutil.c,v 1.19 2017/11/03 19:20:27 maya Exp $"); #include <sys/param.h> #include <sys/errno.h> #include <sys/systm.h> #include <sys/malloc.h> #include <dev/wscons/wsksymdef.h> #include <dev/wscons/wsksymvar.h> static struct compose_tab_s { keysym_t elem[2]; keysym_t result; } compose_tab[] = { { { KS_plus, KS_plus }, KS_numbersign }, { { KS_a, KS_a }, KS_at }, { { KS_parenleft, KS_parenleft }, KS_bracketleft }, { { KS_slash, KS_slash }, KS_backslash }, { { KS_parenright, KS_parenright }, KS_bracketright }, { { KS_parenleft, KS_minus }, KS_braceleft }, { { KS_slash, KS_minus }, KS_bar }, { { KS_parenright, KS_minus }, KS_braceright }, { { KS_exclam, KS_exclam }, KS_exclamdown }, { { KS_c, KS_slash }, KS_cent }, { { KS_l, KS_minus }, KS_sterling }, { { KS_y, KS_minus }, KS_yen }, { { KS_s, KS_o }, KS_section }, { { KS_x, KS_o }, KS_currency }, { { KS_c, KS_o }, KS_copyright }, { { KS_less, KS_less }, KS_guillemotleft }, { { KS_greater, KS_greater }, KS_guillemotright }, { { KS_question, KS_question }, KS_questiondown }, { { KS_dead_acute, KS_space }, KS_acute }, { { KS_dead_grave, KS_space }, KS_grave }, { { KS_dead_tilde, KS_space }, KS_asciitilde }, { { KS_dead_circumflex, KS_space }, KS_asciicircum }, { { KS_dead_circumflex, KS_A }, KS_Acircumflex }, { { KS_dead_diaeresis, KS_A }, KS_Adiaeresis }, { { KS_dead_grave, KS_A }, KS_Agrave }, { { KS_dead_abovering, KS_A }, KS_Aring }, { { KS_dead_tilde, KS_A }, KS_Atilde }, { { KS_dead_cedilla, KS_C }, KS_Ccedilla }, { { KS_dead_acute, KS_E }, KS_Eacute }, { { KS_dead_circumflex, KS_E }, KS_Ecircumflex }, { { KS_dead_diaeresis, KS_E }, KS_Ediaeresis }, { { KS_dead_grave, KS_E }, KS_Egrave }, { { KS_dead_acute, KS_I }, KS_Iacute }, { { KS_dead_circumflex, KS_I }, KS_Icircumflex }, { { KS_dead_diaeresis, KS_I }, KS_Idiaeresis }, { { KS_dead_grave, KS_I }, KS_Igrave }, { { KS_dead_tilde, KS_N }, KS_Ntilde }, { { KS_dead_acute, KS_O }, KS_Oacute }, { { KS_dead_circumflex, KS_O }, KS_Ocircumflex }, { { KS_dead_diaeresis, KS_O }, KS_Odiaeresis }, { { KS_dead_grave, KS_O }, KS_Ograve }, { { KS_dead_tilde, KS_O }, KS_Otilde }, { { KS_dead_acute, KS_U }, KS_Uacute }, { { KS_dead_circumflex, KS_U }, KS_Ucircumflex }, { { KS_dead_diaeresis, KS_U }, KS_Udiaeresis }, { { KS_dead_grave, KS_U }, KS_Ugrave }, { { KS_dead_acute, KS_Y }, KS_Yacute }, { { KS_dead_acute, KS_a }, KS_aacute }, { { KS_dead_circumflex, KS_a }, KS_acircumflex }, { { KS_dead_diaeresis, KS_a }, KS_adiaeresis }, { { KS_dead_grave, KS_a }, KS_agrave }, { { KS_dead_abovering, KS_a }, KS_aring }, { { KS_dead_tilde, KS_a }, KS_atilde }, { { KS_dead_cedilla, KS_c }, KS_ccedilla }, { { KS_dead_acute, KS_e }, KS_eacute }, { { KS_dead_circumflex, KS_e }, KS_ecircumflex }, { { KS_dead_diaeresis, KS_e }, KS_ediaeresis }, { { KS_dead_grave, KS_e }, KS_egrave }, { { KS_dead_acute, KS_i }, KS_iacute }, { { KS_dead_circumflex, KS_i }, KS_icircumflex }, { { KS_dead_diaeresis, KS_i }, KS_idiaeresis }, { { KS_dead_grave, KS_i }, KS_igrave }, { { KS_dead_tilde, KS_n }, KS_ntilde }, { { KS_dead_acute, KS_o }, KS_oacute }, { { KS_dead_circumflex, KS_o }, KS_ocircumflex }, { { KS_dead_diaeresis, KS_o }, KS_odiaeresis }, { { KS_dead_grave, KS_o }, KS_ograve }, { { KS_dead_tilde, KS_o }, KS_otilde }, { { KS_dead_acute, KS_u }, KS_uacute }, { { KS_dead_circumflex, KS_u }, KS_ucircumflex }, { { KS_dead_diaeresis, KS_u }, KS_udiaeresis }, { { KS_dead_grave, KS_u }, KS_ugrave }, { { KS_dead_acute, KS_y }, KS_yacute }, { { KS_dead_diaeresis, KS_y }, KS_ydiaeresis }, { { KS_quotedbl, KS_A }, KS_Adiaeresis }, { { KS_quotedbl, KS_E }, KS_Ediaeresis }, { { KS_quotedbl, KS_I }, KS_Idiaeresis }, { { KS_quotedbl, KS_O }, KS_Odiaeresis }, { { KS_quotedbl, KS_U }, KS_Udiaeresis }, { { KS_quotedbl, KS_a }, KS_adiaeresis }, { { KS_quotedbl, KS_e }, KS_ediaeresis }, { { KS_quotedbl, KS_i }, KS_idiaeresis }, { { KS_quotedbl, KS_o }, KS_odiaeresis }, { { KS_quotedbl, KS_u }, KS_udiaeresis }, { { KS_quotedbl, KS_y }, KS_ydiaeresis }, { { KS_acute, KS_A }, KS_Aacute }, { { KS_asciicircum, KS_A }, KS_Acircumflex }, { { KS_grave, KS_A }, KS_Agrave }, { { KS_asterisk, KS_A }, KS_Aring }, { { KS_asciitilde, KS_A }, KS_Atilde }, { { KS_cedilla, KS_C }, KS_Ccedilla }, { { KS_acute, KS_E }, KS_Eacute }, { { KS_asciicircum, KS_E }, KS_Ecircumflex }, { { KS_grave, KS_E }, KS_Egrave }, { { KS_acute, KS_I }, KS_Iacute }, { { KS_asciicircum, KS_I }, KS_Icircumflex }, { { KS_grave, KS_I }, KS_Igrave }, { { KS_asciitilde, KS_N }, KS_Ntilde }, { { KS_acute, KS_O }, KS_Oacute }, { { KS_asciicircum, KS_O }, KS_Ocircumflex }, { { KS_grave, KS_O }, KS_Ograve }, { { KS_asciitilde, KS_O }, KS_Otilde }, { { KS_acute, KS_U }, KS_Uacute }, { { KS_asciicircum, KS_U }, KS_Ucircumflex }, { { KS_grave, KS_U }, KS_Ugrave }, { { KS_acute, KS_Y }, KS_Yacute }, { { KS_acute, KS_a }, KS_aacute }, { { KS_asciicircum, KS_a }, KS_acircumflex }, { { KS_grave, KS_a }, KS_agrave }, { { KS_asterisk, KS_a }, KS_aring }, { { KS_asciitilde, KS_a }, KS_atilde }, { { KS_cedilla, KS_c }, KS_ccedilla }, { { KS_acute, KS_e }, KS_eacute }, { { KS_asciicircum, KS_e }, KS_ecircumflex }, { { KS_grave, KS_e }, KS_egrave }, { { KS_acute, KS_i }, KS_iacute }, { { KS_asciicircum, KS_i }, KS_icircumflex }, { { KS_grave, KS_i }, KS_igrave }, { { KS_asciitilde, KS_n }, KS_ntilde }, { { KS_acute, KS_o }, KS_oacute }, { { KS_asciicircum, KS_o }, KS_ocircumflex }, { { KS_grave, KS_o }, KS_ograve }, { { KS_asciitilde, KS_o }, KS_otilde }, { { KS_acute, KS_u }, KS_uacute }, { { KS_asciicircum, KS_u }, KS_ucircumflex }, { { KS_grave, KS_u }, KS_ugrave }, { { KS_acute, KS_y }, KS_yacute }, { { KS_dead_semi, KS_gr_A }, KS_gr_At }, { { KS_dead_semi, KS_gr_E }, KS_gr_Et }, { { KS_dead_semi, KS_gr_H }, KS_gr_Ht }, { { KS_dead_semi, KS_gr_I }, KS_gr_It }, { { KS_dead_semi, KS_gr_O }, KS_gr_Ot }, { { KS_dead_semi, KS_gr_Y }, KS_gr_Yt }, { { KS_dead_semi, KS_gr_V }, KS_gr_Vt }, { { KS_dead_colon, KS_gr_I }, KS_gr_Id }, { { KS_dead_colon, KS_gr_Y }, KS_gr_Yd }, { { KS_dead_semi, KS_gr_a }, KS_gr_at }, { { KS_dead_semi, KS_gr_e }, KS_gr_et }, { { KS_dead_semi, KS_gr_h }, KS_gr_ht }, { { KS_dead_semi, KS_gr_i }, KS_gr_it }, { { KS_dead_semi, KS_gr_o }, KS_gr_ot }, { { KS_dead_semi, KS_gr_y }, KS_gr_yt }, { { KS_dead_semi, KS_gr_v }, KS_gr_vt }, { { KS_dead_colon, KS_gr_i }, KS_gr_id }, { { KS_dead_colon, KS_gr_y }, KS_gr_yd }, /* Latin 2*/ { { KS_dead_acute, KS_S }, KS_Sacute }, { { KS_dead_acute, KS_Z }, KS_Zacute }, { { KS_dead_acute, KS_s }, KS_sacute }, { { KS_dead_acute, KS_z }, KS_zacute }, { { KS_dead_acute, KS_R }, KS_Racute }, { { KS_dead_acute, KS_A }, KS_Aacute }, { { KS_dead_acute, KS_L }, KS_Lacute }, { { KS_dead_acute, KS_C }, KS_Cacute }, { { KS_dead_acute, KS_E }, KS_Eacute }, { { KS_dead_acute, KS_I }, KS_Iacute }, { { KS_dead_acute, KS_N }, KS_Nacute }, { { KS_dead_acute, KS_O }, KS_Oacute }, { { KS_dead_acute, KS_U }, KS_Uacute }, { { KS_dead_acute, KS_Y }, KS_Yacute }, { { KS_dead_acute, KS_r }, KS_racute }, { { KS_dead_acute, KS_a }, KS_aacute }, { { KS_dead_acute, KS_l }, KS_lacute }, { { KS_dead_acute, KS_c }, KS_cacute }, { { KS_dead_acute, KS_e }, KS_eacute }, { { KS_dead_acute, KS_i }, KS_iacute }, { { KS_dead_acute, KS_n }, KS_nacute }, { { KS_dead_acute, KS_o }, KS_oacute }, { { KS_dead_acute, KS_u }, KS_uacute }, { { KS_dead_acute, KS_y }, KS_yacute }, { { KS_dead_breve, KS_A }, KS_Abreve }, { { KS_dead_breve, KS_a }, KS_abreve }, { { KS_dead_caron, KS_L }, KS_Lcaron }, { { KS_dead_caron, KS_S }, KS_Scaron }, { { KS_dead_caron, KS_T }, KS_Tcaron }, { { KS_dead_caron, KS_Z }, KS_Zcaron }, { { KS_dead_caron, KS_l }, KS_lcaron }, { { KS_dead_caron, KS_s }, KS_scaron }, { { KS_dead_caron, KS_t }, KS_tcaron }, { { KS_dead_caron, KS_z }, KS_zcaron }, { { KS_dead_caron, KS_C }, KS_Ccaron }, { { KS_dead_caron, KS_E }, KS_Ecaron }, { { KS_dead_caron, KS_D }, KS_Dcaron }, { { KS_dead_caron, KS_N }, KS_Ncaron }, { { KS_dead_caron, KS_R }, KS_Rcaron }, { { KS_dead_caron, KS_c }, KS_ccaron }, { { KS_dead_caron, KS_e }, KS_ecaron }, { { KS_dead_caron, KS_d }, KS_dcaron }, { { KS_dead_caron, KS_n }, KS_ncaron }, { { KS_dead_caron, KS_r }, KS_rcaron }, { { KS_dead_cedilla, KS_S }, KS_Scedilla }, { { KS_dead_cedilla, KS_s }, KS_scedilla }, { { KS_dead_cedilla, KS_C }, KS_Ccedilla }, { { KS_dead_cedilla, KS_T }, KS_Tcedilla }, { { KS_dead_cedilla, KS_c }, KS_ccedilla }, { { KS_dead_cedilla, KS_t }, KS_tcedilla }, { { KS_dead_circumflex, KS_A }, KS_Acircumflex }, { { KS_dead_circumflex, KS_I }, KS_Icircumflex }, { { KS_dead_circumflex, KS_O }, KS_Ocircumflex }, { { KS_dead_circumflex, KS_a }, KS_acircumflex }, { { KS_dead_circumflex, KS_i }, KS_icircumflex }, { { KS_dead_circumflex, KS_o }, KS_ocircumflex }, { { KS_dead_diaeresis, KS_A }, KS_Adiaeresis }, { { KS_dead_diaeresis, KS_E }, KS_Ediaeresis }, { { KS_dead_diaeresis, KS_O }, KS_Odiaeresis }, { { KS_dead_diaeresis, KS_U }, KS_Udiaeresis }, { { KS_dead_diaeresis, KS_a }, KS_adiaeresis }, { { KS_dead_diaeresis, KS_e }, KS_ediaeresis }, { { KS_dead_diaeresis, KS_o }, KS_odiaeresis }, { { KS_dead_diaeresis, KS_u }, KS_udiaeresis }, { { KS_dead_dotaccent, KS_Z }, KS_Zabovedot }, { { KS_dead_dotaccent, KS_z }, KS_zabovedot }, { { KS_dead_hungarumlaut, KS_O }, KS_Odoubleacute }, { { KS_dead_hungarumlaut, KS_U }, KS_Udoubleacute }, { { KS_dead_hungarumlaut, KS_o }, KS_odoubleacute }, { { KS_dead_hungarumlaut, KS_u }, KS_udoubleacute }, { { KS_dead_ogonek, KS_A }, KS_Aogonek }, { { KS_dead_ogonek, KS_a }, KS_aogonek }, { { KS_dead_ogonek, KS_E }, KS_Eogonek }, { { KS_dead_ogonek, KS_e }, KS_eogonek }, { { KS_dead_abovering, KS_U }, KS_Uabovering }, { { KS_dead_abovering, KS_u }, KS_uabovering }, { { KS_dead_slash, KS_L }, KS_Lstroke }, { { KS_dead_slash, KS_l }, KS_lstroke } }; #define COMPOSE_SIZE __arraycount(compose_tab) static int compose_tab_inorder = 0; static inline int compose_tab_cmp(struct compose_tab_s *, struct compose_tab_s *); static keysym_t ksym_upcase(keysym_t); static void fillmapentry(const keysym_t *, int, struct wscons_keymap *); static inline int compose_tab_cmp(struct compose_tab_s *i, struct compose_tab_s *j) { if (i->elem[0] == j->elem[0]) return(i->elem[1] - j->elem[1]); else return(i->elem[0] - j->elem[0]); } keysym_t wskbd_compose_value(keysym_t *compose_buf) { int i, j, r; struct compose_tab_s v; if (! compose_tab_inorder) { /* Insertion sort. */ for (i = 1; i < COMPOSE_SIZE; i++) { v = compose_tab[i]; /* find correct slot, moving others up */ for (j = i; --j >= 0 && compose_tab_cmp(& v, & compose_tab[j]) < 0; ) compose_tab[j + 1] = compose_tab[j]; compose_tab[j + 1] = v; } compose_tab_inorder = 1; } for (j = 0, i = COMPOSE_SIZE; i != 0; i /= 2) { if (compose_tab[j + i/2].elem[0] == compose_buf[0]) { if (compose_tab[j + i/2].elem[1] == compose_buf[1]) return(compose_tab[j + i/2].result); r = compose_tab[j + i/2].elem[1] < compose_buf[1]; } else r = compose_tab[j + i/2].elem[0] < compose_buf[0]; if (r) { j += i/2 + 1; i--; } } return(KS_voidSymbol); } static const u_char latin1_to_upper[256] = { /* 0 8 1 9 2 a 3 b 4 c 5 d 6 e 7 f */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 1 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 1 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 2 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 2 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 3 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 3 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 4 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 4 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 5 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 5 */ 0x00, 'A', 'B', 'C', 'D', 'E', 'F', 'G', /* 6 */ 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', /* 6 */ 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', /* 7 */ 'X', 'Y', 'Z', 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 9 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 9 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* c */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* d */ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, /* e */ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, /* e */ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0x00, /* f */ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0x00, /* f */ }; static keysym_t ksym_upcase(keysym_t ksym) { if (ksym >= KS_f1 && ksym <= KS_f20) return(KS_F1 - KS_f1 + ksym); if (KS_GROUP(ksym) == KS_GROUP_Plain && ksym <= 0xff && latin1_to_upper[ksym] != 0x00) return(latin1_to_upper[ksym]); return(ksym); } static void fillmapentry(const keysym_t *kp, int len, struct wscons_keymap *mapentry) { switch (len) { case 0: mapentry->group1[0] = KS_voidSymbol; mapentry->group1[1] = KS_voidSymbol; mapentry->group2[0] = KS_voidSymbol; mapentry->group2[1] = KS_voidSymbol; break; case 1: mapentry->group1[0] = kp[0]; mapentry->group1[1] = ksym_upcase(kp[0]); mapentry->group2[0] = mapentry->group1[0]; mapentry->group2[1] = mapentry->group1[1]; break; case 2: mapentry->group1[0] = kp[0]; mapentry->group1[1] = kp[1]; mapentry->group2[0] = mapentry->group1[0]; mapentry->group2[1] = mapentry->group1[1]; break; case 3: mapentry->group1[0] = kp[0]; mapentry->group1[1] = kp[1]; mapentry->group2[0] = kp[2]; mapentry->group2[1] = ksym_upcase(kp[2]); break; case 4: mapentry->group1[0] = kp[0]; mapentry->group1[1] = kp[1]; mapentry->group2[0] = kp[2]; mapentry->group2[1] = kp[3]; break; } } void wskbd_get_mapentry(const struct wskbd_mapdata *mapdata, int kc, struct wscons_keymap *mapentry) { kbd_t cur; const keysym_t *kp; const struct wscons_keydesc *mp; int l; mapentry->command = KS_voidSymbol; mapentry->group1[0] = KS_voidSymbol; mapentry->group1[1] = KS_voidSymbol; mapentry->group2[0] = KS_voidSymbol; mapentry->group2[1] = KS_voidSymbol; for (cur = mapdata->layout & ~KB_HANDLEDBYWSKBD; cur != 0; ) { mp = mapdata->keydesc; while (mp->map_size > 0) { if (mp->name == cur) break; mp++; } /* If map not found, return */ if (mp->map_size <= 0) return; for (kp = mp->map; kp < mp->map + mp->map_size; kp++) if (KS_GROUP(*kp) == KS_GROUP_Keycode && KS_VALUE(*kp) == kc) { /* First skip keycode and possible command */ kp++; if (KS_GROUP(*kp) == KS_GROUP_Command || *kp == KS_Cmd || *kp == KS_Cmd1 || *kp == KS_Cmd2) mapentry->command = *kp++; for (l = 0; kp + l < mp->map + mp->map_size; l++) if (KS_GROUP(kp[l]) == KS_GROUP_Keycode) break; if (l > 4) panic("wskbd_get_mapentry: %d(%d): bad entry", mp->name, *kp); fillmapentry(kp, l, mapentry); return; } cur = mp->base; } } void wskbd_init_keymap(int newlen, struct wscons_keymap **map, int *maplen) { int i; if (newlen != *maplen) { if (*maplen > 0) free(*map, M_TEMP); *maplen = newlen; *map = malloc(newlen*sizeof(struct wscons_keymap), M_TEMP, M_WAITOK); } for (i = 0; i < *maplen; i++) { (*map)[i].command = KS_voidSymbol; (*map)[i].group1[0] = KS_voidSymbol; (*map)[i].group1[1] = KS_voidSymbol; (*map)[i].group2[0] = KS_voidSymbol; (*map)[i].group2[1] = KS_voidSymbol; } } int wskbd_load_keymap(const struct wskbd_mapdata *mapdata, struct wscons_keymap **map, int *maplen) { int i, s, kc, stack_ptr; const keysym_t *kp; const struct wscons_keydesc *mp, *stack[10]; kbd_t cur; for (cur = mapdata->layout & ~KB_HANDLEDBYWSKBD, stack_ptr = 0; cur != 0; stack_ptr++) { mp = mapdata->keydesc; while (mp->map_size > 0) { if (cur == 0 || mp->name == cur) { break; } mp++; } if (stack_ptr == __arraycount(stack)) panic("wskbd_load_keymap: %d: recursion too deep", mapdata->layout); if (mp->map_size <= 0) return(EINVAL); stack[stack_ptr] = mp; cur = mp->base; } for (i = 0, s = stack_ptr - 1; s >= 0; s--) { mp = stack[s]; for (kp = mp->map; kp < mp->map + mp->map_size; kp++) if (KS_GROUP(*kp) == KS_GROUP_Keycode && KS_VALUE(*kp) > i) i = KS_VALUE(*kp); } wskbd_init_keymap(i + 1, map, maplen); for (s = stack_ptr - 1; s >= 0; s--) { mp = stack[s]; for (kp = mp->map; kp < mp->map + mp->map_size; ) { if (KS_GROUP(*kp) != KS_GROUP_Keycode) panic("wskbd_load_keymap: %d(%d): bad entry", mp->name, *kp); kc = KS_VALUE(*kp); kp++; if (KS_GROUP(*kp) == KS_GROUP_Command || *kp == KS_Cmd || *kp == KS_Cmd1 || *kp == KS_Cmd2) { (*map)[kc].command = *kp; kp++; } for (i = 0; kp + i < mp->map + mp->map_size; i++) if (KS_GROUP(kp[i]) == KS_GROUP_Keycode) break; if (i > 4) panic("wskbd_load_keymap: %d(%d): bad entry", mp->name, *kp); fillmapentry(kp, i, &(*map)[kc]); kp += i; } } return(0); }
8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 /* $NetBSD: if_urtwn.c,v 1.105 2022/07/31 12:59:26 mlelstv Exp $ */ /* $OpenBSD: if_urtwn.c,v 1.42 2015/02/10 23:25:46 mpi Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr> * Copyright (c) 2014 Kevin Lo <kevlo@FreeBSD.org> * Copyright (c) 2016 Nathanial Sloss <nathanialsloss@yahoo.com.au> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU * RTL8192EU. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.105 2022/07/31 12:59:26 mlelstv Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_usb.h" #endif #include <sys/param.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <sys/mbuf.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/systm.h> #include <sys/module.h> #include <sys/conf.h> #include <sys/device.h> #include <sys/rndsource.h> #include <sys/bus.h> #include <machine/endian.h> #include <sys/intr.h> #include <net/bpf.h> #include <net/if.h> #include <net/if_arp.h> #include <net/if_dl.h> #include <net/if_ether.h> #include <net/if_media.h> #include <net/if_types.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/in_var.h> #include <netinet/ip.h> #include <netinet/if_inarp.h> #include <net80211/ieee80211_netbsd.h> #include <net80211/ieee80211_var.h> #include <net80211/ieee80211_radiotap.h> #include <dev/firmload.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdivar.h> #include <dev/usb/usbdi_util.h> #include <dev/usb/usbdevs.h> #include <dev/usb/usbhist.h> #include <dev/ic/rtwnreg.h> #include <dev/ic/rtwn_data.h> #include <dev/usb/if_urtwnreg.h> #include <dev/usb/if_urtwnvar.h> /* * The sc_write_mtx locking is to prevent sequences of writes from * being intermingled with each other. I don't know if this is really * needed. I have added it just to be on the safe side. */ #ifdef URTWN_DEBUG #define DBG_INIT __BIT(0) #define DBG_FN __BIT(1) #define DBG_TX __BIT(2) #define DBG_RX __BIT(3) #define DBG_STM __BIT(4) #define DBG_RF __BIT(5) #define DBG_REG __BIT(6) #define DBG_ALL 0xffffffffU u_int urtwn_debug = 0; #define DPRINTFN(n, fmt, a, b, c, d) do { \ if (urtwn_debug & (n)) { \ KERNHIST_LOG(usbhist, fmt, a, b, c, d); \ } \ } while (/*CONSTCOND*/0) #define URTWNHIST_FUNC() USBHIST_FUNC() #define URTWNHIST_CALLED() do { \ if (urtwn_debug & DBG_FN) { \ KERNHIST_CALLED(usbhist); \ } \ } while(/*CONSTCOND*/0) #define URTWNHIST_CALLARGS(fmt, a, b, c, d) do { \ if (urtwn_debug & DBG_FN) { \ KERNHIST_CALLARGS(usbhist, fmt, a, b, c, d); \ } \ } while(/*CONSTCOND*/0) #else #define DPRINTFN(n, fmt, a, b, c, d) #define URTWNHIST_FUNC() #define URTWNHIST_CALLED() #define URTWNHIST_CALLARGS(fmt, a, b, c, d) #endif #define URTWN_DEV(v,p) { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, 0 } #define URTWN_RTL8188E_DEV(v,p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, FLAG_RTL8188E } #define URTWN_RTL8192EU_DEV(v,p) \ { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, FLAG_RTL8192E } static const struct urtwn_dev { struct usb_devno dev; uint32_t flags; #define FLAG_RTL8188E __BIT(0) #define FLAG_RTL8192E __BIT(1) } urtwn_devs[] = { URTWN_DEV(ABOCOM, RTL8188CU_1), URTWN_DEV(ABOCOM, RTL8188CU_2), URTWN_DEV(ABOCOM, RTL8192CU), URTWN_DEV(ASUSTEK, RTL8192CU), URTWN_DEV(ASUSTEK, RTL8192CU_3), URTWN_DEV(ASUSTEK, USBN10NANO), URTWN_DEV(ASUSTEK, RTL8192CU_3), URTWN_DEV(AZUREWAVE, RTL8188CE_1), URTWN_DEV(AZUREWAVE, RTL8188CE_2), URTWN_DEV(AZUREWAVE, RTL8188CU), URTWN_DEV(BELKIN, F7D2102), URTWN_DEV(BELKIN, RTL8188CU), URTWN_DEV(BELKIN, RTL8188CUS), URTWN_DEV(BELKIN, RTL8192CU), URTWN_DEV(BELKIN, RTL8192CU_1), URTWN_DEV(BELKIN, RTL8192CU_2), URTWN_DEV(CHICONY, RTL8188CUS_1), URTWN_DEV(CHICONY, RTL8188CUS_2), URTWN_DEV(CHICONY, RTL8188CUS_3), URTWN_DEV(CHICONY, RTL8188CUS_4), URTWN_DEV(CHICONY, RTL8188CUS_5), URTWN_DEV(CHICONY, RTL8188CUS_6), URTWN_DEV(COMPARE, RTL8192CU), URTWN_DEV(COREGA, RTL8192CU), URTWN_DEV(DLINK, DWA131B), URTWN_DEV(DLINK, RTL8188CU), URTWN_DEV(DLINK, RTL8192CU_1), URTWN_DEV(DLINK, RTL8192CU_2), URTWN_DEV(DLINK, RTL8192CU_3), URTWN_DEV(DLINK, RTL8192CU_4), URTWN_DEV(EDIMAX, RTL8188CU), URTWN_DEV(EDIMAX, RTL8192CU), URTWN_DEV(FEIXUN, RTL8188CU), URTWN_DEV(FEIXUN, RTL8192CU), URTWN_DEV(GUILLEMOT, HWNUP150), URTWN_DEV(GUILLEMOT, RTL8192CU), URTWN_DEV(HAWKING, RTL8192CU), URTWN_DEV(HAWKING, RTL8192CU_2), URTWN_DEV(HP3, RTL8188CU), URTWN_DEV(IODATA, WNG150UM), URTWN_DEV(IODATA, RTL8192CU), URTWN_DEV(NETGEAR, WNA1000M), URTWN_DEV(NETGEAR, RTL8192CU), URTWN_DEV(NETGEAR4, RTL8188CU), URTWN_DEV(NOVATECH, RTL8188CU), URTWN_DEV(PLANEX2, RTL8188CU_1), URTWN_DEV(PLANEX2, RTL8188CU_2), URTWN_DEV(PLANEX2, RTL8192CU), URTWN_DEV(PLANEX2, RTL8188CU_3), URTWN_DEV(PLANEX2, RTL8188CU_4), URTWN_DEV(PLANEX2, RTL8188CUS), URTWN_DEV(REALTEK, RTL8188CE_0), URTWN_DEV(REALTEK, RTL8188CE_1), URTWN_DEV(REALTEK, RTL8188CTV), URTWN_DEV(REALTEK, RTL8188CU_0), URTWN_DEV(REALTEK, RTL8188CU_1), URTWN_DEV(REALTEK, RTL8188CU_2), URTWN_DEV(REALTEK, RTL8188CU_3), URTWN_DEV(REALTEK, RTL8188CU_COMBO), URTWN_DEV(REALTEK, RTL8188CUS), URTWN_DEV(REALTEK, RTL8188RU), URTWN_DEV(REALTEK, RTL8188RU_2), URTWN_DEV(REALTEK, RTL8188RU_3), URTWN_DEV(REALTEK, RTL8191CU), URTWN_DEV(REALTEK, RTL8192CE), URTWN_DEV(REALTEK, RTL8192CU), URTWN_DEV(SITECOMEU, RTL8188CU), URTWN_DEV(SITECOMEU, RTL8188CU_2), URTWN_DEV(SITECOMEU, RTL8192CU), URTWN_DEV(SITECOMEU, RTL8192CUR2), URTWN_DEV(TPLINK, RTL8192CU), URTWN_DEV(TRENDNET, RTL8188CU), URTWN_DEV(TRENDNET, RTL8192CU), URTWN_DEV(TRENDNET, TEW648UBM), URTWN_DEV(ZYXEL, RTL8192CU), /* URTWN_RTL8188E */ URTWN_RTL8188E_DEV(DLINK, DWA125D1), URTWN_RTL8188E_DEV(ELECOM, WDC150SU2M), URTWN_RTL8188E_DEV(REALTEK, RTL8188ETV), URTWN_RTL8188E_DEV(REALTEK, RTL8188EU), URTWN_RTL8188E_DEV(ABOCOM, RTL8188EU), URTWN_RTL8188E_DEV(TPLINK, RTL8188EU), URTWN_RTL8188E_DEV(DLINK, DWA121B1), URTWN_RTL8188E_DEV(EDIMAX, EW7811UNV2), /* URTWN_RTL8192EU */ URTWN_RTL8192EU_DEV(DLINK, DWA131E), URTWN_RTL8192EU_DEV(REALTEK, RTL8192EU), URTWN_RTL8192EU_DEV(TPLINK, WN821NV5), URTWN_RTL8192EU_DEV(TPLINK, WN822NV4), URTWN_RTL8192EU_DEV(TPLINK, WN823NV2), }; #undef URTWN_DEV #undef URTWN_RTL8188E_DEV #undef URTWN_RTL8192EU_DEV static int urtwn_match(device_t, cfdata_t, void *); static void urtwn_attach(device_t, device_t, void *); static int urtwn_detach(device_t, int); static int urtwn_activate(device_t, enum devact); CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match, urtwn_attach, urtwn_detach, urtwn_activate); static int urtwn_open_pipes(struct urtwn_softc *); static void urtwn_close_pipes(struct urtwn_softc *); static int urtwn_alloc_rx_list(struct urtwn_softc *); static void urtwn_free_rx_list(struct urtwn_softc *); static int urtwn_alloc_tx_list(struct urtwn_softc *); static void urtwn_free_tx_list(struct urtwn_softc *); static void urtwn_task(void *); static void urtwn_do_async(struct urtwn_softc *, void (*)(struct urtwn_softc *, void *), void *, int); static void urtwn_wait_async(struct urtwn_softc *); static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t); static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t); static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t); static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *, int); static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t); static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t); static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t); static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int); static void urtwn_r92c_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static void urtwn_r88e_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static void urtwn_r92e_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t); static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t); static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t); static void urtwn_efuse_read(struct urtwn_softc *); static void urtwn_efuse_switch_power(struct urtwn_softc *); static int urtwn_read_chipid(struct urtwn_softc *); #ifdef URTWN_DEBUG static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *); #endif static void urtwn_read_rom(struct urtwn_softc *); static void urtwn_r88e_read_rom(struct urtwn_softc *); static int urtwn_media_change(struct ifnet *); static int urtwn_ra_init(struct urtwn_softc *); static int urtwn_get_nettype(struct urtwn_softc *); static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t); static void urtwn_tsf_sync_enable(struct urtwn_softc *); static void urtwn_set_led(struct urtwn_softc *, int, int); static void urtwn_calib_to(void *); static void urtwn_calib_to_cb(struct urtwn_softc *, void *); static void urtwn_next_scan(void *); static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state, int); static void urtwn_newstate_cb(struct urtwn_softc *, void *); static int urtwn_wme_update(struct ieee80211com *); static void urtwn_wme_update_cb(struct urtwn_softc *, void *); static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t); static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *); static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *); static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int); static void urtwn_rxeof(struct usbd_xfer *, void *, usbd_status); static void urtwn_txeof(struct usbd_xfer *, void *, usbd_status); static int urtwn_tx(struct urtwn_softc *, struct mbuf *, struct ieee80211_node *, struct urtwn_tx_data *); static struct urtwn_tx_data * urtwn_get_tx_data(struct urtwn_softc *, size_t); static void urtwn_start(struct ifnet *); static void urtwn_watchdog(struct ifnet *); static int urtwn_ioctl(struct ifnet *, u_long, void *); static int urtwn_r92c_power_on(struct urtwn_softc *); static int urtwn_r92e_power_on(struct urtwn_softc *); static int urtwn_r88e_power_on(struct urtwn_softc *); static int urtwn_llt_init(struct urtwn_softc *); static void urtwn_fw_reset(struct urtwn_softc *); static void urtwn_r88e_fw_reset(struct urtwn_softc *); static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int); static int urtwn_load_firmware(struct urtwn_softc *); static int urtwn_r92c_dma_init(struct urtwn_softc *); static int urtwn_r88e_dma_init(struct urtwn_softc *); static void urtwn_mac_init(struct urtwn_softc *); static void urtwn_bb_init(struct urtwn_softc *); static void urtwn_rf_init(struct urtwn_softc *); static void urtwn_cam_init(struct urtwn_softc *); static void urtwn_pa_bias_init(struct urtwn_softc *); static void urtwn_rxfilter_init(struct urtwn_softc *); static void urtwn_edca_init(struct urtwn_softc *); static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]); static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int, uint16_t[]); static void urtwn_r88e_get_txpower(struct urtwn_softc *, size_t, u_int, u_int, uint16_t[]); static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int); static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *, u_int); static void urtwn_iq_calib(struct urtwn_softc *, bool); static void urtwn_lc_calib(struct urtwn_softc *); static void urtwn_temp_calib(struct urtwn_softc *); static int urtwn_init(struct ifnet *); static void urtwn_stop(struct ifnet *, int); static int urtwn_reset(struct ifnet *); static void urtwn_chip_stop(struct urtwn_softc *); static void urtwn_newassoc(struct ieee80211_node *, int); static void urtwn_delay_ms(struct urtwn_softc *, int ms); /* Aliases. */ #define urtwn_bb_write urtwn_write_4 #define urtwn_bb_read urtwn_read_4 #define urtwn_lookup(d,v,p) ((const struct urtwn_dev *)usb_lookup(d,v,p)) static const uint16_t addaReg[] = { R92C_FPGA0_XCD_SWITCHCTL, R92C_BLUETOOTH, R92C_RX_WAIT_CCA, R92C_TX_CCK_RFON, R92C_TX_CCK_BBON, R92C_TX_OFDM_RFON, R92C_TX_OFDM_BBON, R92C_TX_TO_RX, R92C_TX_TO_TX, R92C_RX_CCK, R92C_RX_OFDM, R92C_RX_WAIT_RIFS, R92C_RX_TO_RX, R92C_STANDBY, R92C_SLEEP, R92C_PMPD_ANAEN }; static int urtwn_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return urtwn_lookup(urtwn_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } static void urtwn_attach(device_t parent, device_t self, void *aux) { struct urtwn_softc *sc = device_private(self); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct usb_attach_arg *uaa = aux; char *devinfop; const struct urtwn_dev *dev; usb_device_request_t req; size_t i; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); sc->sc_dev = self; sc->sc_udev = uaa->uaa_device; sc->chip = 0; dev = urtwn_lookup(urtwn_devs, uaa->uaa_vendor, uaa->uaa_product); if (dev != NULL && ISSET(dev->flags, FLAG_RTL8188E)) SET(sc->chip, URTWN_CHIP_88E); if (dev != NULL && ISSET(dev->flags, FLAG_RTL8192E)) SET(sc->chip, URTWN_CHIP_92EU); aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); req.bmRequestType = UT_WRITE_DEVICE; req.bRequest = UR_SET_FEATURE; USETW(req.wValue, UF_DEVICE_REMOTE_WAKEUP); USETW(req.wIndex, UHF_PORT_SUSPEND); USETW(req.wLength, 0); (void) usbd_do_request(sc->sc_udev, &req, 0); cv_init(&sc->sc_task_cv, "urtwntsk"); mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET); mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_rx_mtx, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE); usb_init_task(&sc->sc_task, urtwn_task, sc, 0); callout_init(&sc->sc_scan_to, 0); callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc); callout_init(&sc->sc_calib_to, 0); callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); error = usbd_set_config_no(sc->sc_udev, 1, 0); if (error != 0) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(error)); goto fail; } /* Get the first interface handle. */ error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface); if (error != 0) { aprint_error_dev(self, "could not get interface handle\n"); goto fail; } error = urtwn_read_chipid(sc); if (error != 0) { aprint_error_dev(self, "unsupported test chip\n"); goto fail; } /* Determine number of Tx/Rx chains. */ if (sc->chip & URTWN_CHIP_92C) { sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2; sc->nrxchains = 2; } else if (sc->chip & URTWN_CHIP_92EU) { sc->ntxchains = 2; sc->nrxchains = 2; } else { sc->ntxchains = 1; sc->nrxchains = 1; } if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) urtwn_r88e_read_rom(sc); else urtwn_read_rom(sc); aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n", (sc->chip & URTWN_CHIP_92EU) ? "8192EU" : (sc->chip & URTWN_CHIP_92C) ? "8192CU" : (sc->chip & URTWN_CHIP_88E) ? "8188EU" : (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" : (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" : "8188CUS", sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_myaddr)); error = urtwn_open_pipes(sc); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not open pipes\n"); goto fail; } aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n", sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "", sc->tx_npipe, sc->tx_npipe > 1 ? "s" : ""); /* * Setup the 802.11 device. */ ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */ ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_MONITOR | /* Monitor mode supported. */ IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_WME | /* 802.11e */ IEEE80211_C_WPA; /* 802.11i */ /* Set supported .11b and .11g rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* Set supported .11b and .11g channels (1 through 14). */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = urtwn_init; ifp->if_ioctl = urtwn_ioctl; ifp->if_start = urtwn_start; ifp->if_watchdog = urtwn_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); if_initialize(ifp); ieee80211_ifattach(ic); /* override default methods */ ic->ic_newassoc = urtwn_newassoc; ic->ic_reset = urtwn_reset; ic->ic_wme.wme_update = urtwn_wme_update; /* Override state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = urtwn_newstate; /* XXX media locking needs revisiting */ mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB); ieee80211_media_init_with_lock(ic, urtwn_media_change, ieee80211_media_status, &sc->sc_media_mtx); bpf_attach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT); ifp->if_percpuq = if_percpuq_create(ifp); if_register(ifp); ieee80211_announce(ic); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); SET(sc->sc_flags, URTWN_FLAG_ATTACHED); return; fail: sc->sc_dying = 1; aprint_error_dev(self, "attach failed\n"); } static int urtwn_detach(device_t self, int flags) { struct urtwn_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_if; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); pmf_device_deregister(self); s = splusb(); sc->sc_dying = 1; callout_halt(&sc->sc_scan_to, NULL); callout_halt(&sc->sc_calib_to, NULL); if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) { urtwn_stop(ifp, 0); usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); bpf_detach(ifp); ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); mutex_destroy(&sc->sc_media_mtx); /* Close Tx/Rx pipes. Abort done by urtwn_stop. */ urtwn_close_pipes(sc); } splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); rnd_detach_source(&sc->rnd_source); callout_destroy(&sc->sc_scan_to); callout_destroy(&sc->sc_calib_to); cv_destroy(&sc->sc_task_cv); mutex_destroy(&sc->sc_write_mtx); mutex_destroy(&sc->sc_fwcmd_mtx); mutex_destroy(&sc->sc_tx_mtx); mutex_destroy(&sc->sc_rx_mtx); mutex_destroy(&sc->sc_task_mtx); return 0; } static int urtwn_activate(device_t self, enum devact act) { struct urtwn_softc *sc = device_private(self); URTWNHIST_FUNC(); URTWNHIST_CALLED(); switch (act) { case DVACT_DEACTIVATE: if_deactivate(sc->sc_ic.ic_ifp); return 0; default: return EOPNOTSUPP; } } static int urtwn_open_pipes(struct urtwn_softc *sc) { /* Bulk-out endpoints addresses (from highest to lowest prio). */ static uint8_t epaddr[R92C_MAX_EPOUT]; static uint8_t rxepaddr[R92C_MAX_EPIN]; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; size_t i, ntx = 0, nrx = 0; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* Determine the number of bulk-out pipes. */ id = usbd_get_interface_descriptor(sc->sc_iface); for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK) { continue; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT) { if (ntx < sizeof(epaddr)) epaddr[ntx] = ed->bEndpointAddress; ntx++; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) { if (nrx < sizeof(rxepaddr)) rxepaddr[nrx] = ed->bEndpointAddress; nrx++; } } if (nrx == 0 || nrx > R92C_MAX_EPIN) { aprint_error_dev(sc->sc_dev, "%zd: invalid number of Rx bulk pipes\n", nrx); return EIO; } if (ntx == 0 || ntx > R92C_MAX_EPOUT) { aprint_error_dev(sc->sc_dev, "%zd: invalid number of Tx bulk pipes\n", ntx); return EIO; } DPRINTFN(DBG_INIT, "found %jd/%jd bulk-in/out pipes", nrx, ntx, 0, 0); sc->rx_npipe = nrx; sc->tx_npipe = ntx; /* Open bulk-in pipe at address 0x81. */ for (i = 0; i < nrx; i++) { error = usbd_open_pipe(sc->sc_iface, rxepaddr[i], USBD_EXCLUSIVE_USE, &sc->rx_pipe[i]); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe 0x%02x: %d\n", rxepaddr[i], error); goto fail; } } /* Open bulk-out pipes (up to 3). */ for (i = 0; i < ntx; i++) { error = usbd_open_pipe(sc->sc_iface, epaddr[i], USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not open Tx bulk pipe 0x%02x: %d\n", epaddr[i], error); goto fail; } } /* Map 802.11 access categories to USB pipes. */ sc->ac2idx[WME_AC_BK] = sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0); sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0; sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */ fail: if (error != 0) urtwn_close_pipes(sc); return error; } static void urtwn_close_pipes(struct urtwn_softc *sc) { struct usbd_pipe *pipe; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* Close Rx pipes. */ CTASSERT(sizeof(pipe) == sizeof(void *)); for (i = 0; i < sc->rx_npipe; i++) { pipe = atomic_swap_ptr(&sc->rx_pipe[i], NULL); if (pipe != NULL) { usbd_close_pipe(pipe); } } /* Close Tx pipes. */ for (i = 0; i < sc->tx_npipe; i++) { pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL); if (pipe != NULL) { usbd_close_pipe(pipe); } } } static int __noinline urtwn_alloc_rx_list(struct urtwn_softc *sc) { struct urtwn_rx_data *data; size_t i; int error = 0; URTWNHIST_FUNC(); URTWNHIST_CALLED(); for (size_t j = 0; j < sc->rx_npipe; j++) { TAILQ_INIT(&sc->rx_free_list[j]); for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { data = &sc->rx_data[j][i]; data->sc = sc; /* Backpointer for callbacks. */ error = usbd_create_xfer(sc->rx_pipe[j], URTWN_RXBUFSZ, 0, 0, &data->xfer); if (error) { aprint_error_dev(sc->sc_dev, "could not allocate xfer\n"); break; } data->buf = usbd_get_buffer(data->xfer); TAILQ_INSERT_TAIL(&sc->rx_free_list[j], data, next); } } if (error != 0) urtwn_free_rx_list(sc); return error; } static void urtwn_free_rx_list(struct urtwn_softc *sc) { struct usbd_xfer *xfer; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* NB: Caller must abort pipe first. */ for (size_t j = 0; j < sc->rx_npipe; j++) { for (i = 0; i < URTWN_RX_LIST_COUNT; i++) { CTASSERT(sizeof(xfer) == sizeof(void *)); xfer = atomic_swap_ptr(&sc->rx_data[j][i].xfer, NULL); if (xfer != NULL) usbd_destroy_xfer(xfer); } } } static int __noinline urtwn_alloc_tx_list(struct urtwn_softc *sc) { struct urtwn_tx_data *data; size_t i; int error = 0; URTWNHIST_FUNC(); URTWNHIST_CALLED(); mutex_enter(&sc->sc_tx_mtx); for (size_t j = 0; j < sc->tx_npipe; j++) { TAILQ_INIT(&sc->tx_free_list[j]); for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { data = &sc->tx_data[j][i]; data->sc = sc; /* Backpointer for callbacks. */ data->pidx = j; error = usbd_create_xfer(sc->tx_pipe[j], URTWN_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer); if (error) { aprint_error_dev(sc->sc_dev, "could not allocate xfer\n"); goto fail; } data->buf = usbd_get_buffer(data->xfer); /* Append this Tx buffer to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list[j], data, next); } } mutex_exit(&sc->sc_tx_mtx); return 0; fail: urtwn_free_tx_list(sc); mutex_exit(&sc->sc_tx_mtx); return error; } static void urtwn_free_tx_list(struct urtwn_softc *sc) { struct usbd_xfer *xfer; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* NB: Caller must abort pipe first. */ for (size_t j = 0; j < sc->tx_npipe; j++) { for (i = 0; i < URTWN_TX_LIST_COUNT; i++) { CTASSERT(sizeof(xfer) == sizeof(void *)); xfer = atomic_swap_ptr(&sc->tx_data[j][i].xfer, NULL); if (xfer != NULL) usbd_destroy_xfer(xfer); } } } static int urtwn_tx_beacon(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct urtwn_tx_data *data = urtwn_get_tx_data(sc, sc->ac2idx[WME_AC_VO]); if (data == NULL) return ENOBUFS; return urtwn_tx(sc, m, ni, data); } static void urtwn_task(void *arg) { struct urtwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct urtwn_host_cmd_ring *ring = &sc->cmdq; struct urtwn_host_cmd *cmd; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (ic->ic_state == IEEE80211_S_RUN && (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS)) { struct mbuf *m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo); if (m == NULL) { aprint_error_dev(sc->sc_dev, "could not allocate beacon"); } if (urtwn_tx_beacon(sc, m, ic->ic_bss) != 0) { aprint_error_dev(sc->sc_dev, "could not send beacon\n"); } /* beacon is no longer needed */ m_freem(m); } /* Process host commands. */ s = splusb(); mutex_spin_enter(&sc->sc_task_mtx); while (ring->next != ring->cur) { cmd = &ring->cmd[ring->next]; mutex_spin_exit(&sc->sc_task_mtx); splx(s); /* Invoke callback with kernel lock held. */ cmd->cb(sc, cmd->data); s = splusb(); mutex_spin_enter(&sc->sc_task_mtx); ring->queued--; ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT; } cv_broadcast(&sc->sc_task_cv); mutex_spin_exit(&sc->sc_task_mtx); splx(s); } static void urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *), void *arg, int len) { struct urtwn_host_cmd_ring *ring = &sc->cmdq; struct urtwn_host_cmd *cmd; int s; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("cb=%#jx, arg=%#jx, len=%jd", (uintptr_t)cb, (uintptr_t)arg, len, 0); s = splusb(); mutex_spin_enter(&sc->sc_task_mtx); cmd = &ring->cmd[ring->cur]; cmd->cb = cb; KASSERT(len <= sizeof(cmd->data)); memcpy(cmd->data, arg, len); ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT; /* If there is no pending command already, schedule a task. */ if (!sc->sc_dying && ++ring->queued == 1) { mutex_spin_exit(&sc->sc_task_mtx); usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); } else mutex_spin_exit(&sc->sc_task_mtx); splx(s); } static void urtwn_wait_async(struct urtwn_softc *sc) { URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* Wait for all queued asynchronous commands to complete. */ mutex_spin_enter(&sc->sc_task_mtx); while (sc->cmdq.queued > 0) cv_wait(&sc->sc_task_cv, &sc->sc_task_mtx); mutex_spin_exit(&sc->sc_task_mtx); } static int urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; usbd_status error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != USBD_NORMAL_COMPLETION) { DPRINTFN(DBG_REG, "error=%jd: addr=%#jx, len=%jd", error, addr, len, 0); } return error; } static void urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val) { URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); urtwn_write_region_1(sc, addr, &val, 1); } static void urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val) { uint8_t buf[2]; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); buf[0] = (uint8_t)val; buf[1] = (uint8_t)(val >> 8); urtwn_write_region_1(sc, addr, buf, 2); } static void urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val) { uint8_t buf[4]; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); buf[0] = (uint8_t)val; buf[1] = (uint8_t)(val >> 8); buf[2] = (uint8_t)(val >> 16); buf[3] = (uint8_t)(val >> 24); urtwn_write_region_1(sc, addr, buf, 4); } static int urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { URTWNHIST_FUNC(); URTWNHIST_CALLARGS("addr=%#jx, len=%#jx", addr, len, 0, 0); return urtwn_write_region_1(sc, addr, buf, len); } static int urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; usbd_status error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != USBD_NORMAL_COMPLETION) { DPRINTFN(DBG_REG, "error=%jd: addr=%#jx, len=%jd", error, addr, len, 0); } return error; } static uint8_t urtwn_read_1(struct urtwn_softc *sc, uint16_t addr) { uint8_t val; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION) return 0xff; DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); return val; } static uint16_t urtwn_read_2(struct urtwn_softc *sc, uint16_t addr) { uint8_t buf[2]; uint16_t val; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION) return 0xffff; val = LE_READ_2(&buf[0]); DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); return val; } static uint32_t urtwn_read_4(struct urtwn_softc *sc, uint16_t addr) { uint8_t buf[4]; uint32_t val; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION) return 0xffffffff; val = LE_READ_4(&buf[0]); DPRINTFN(DBG_REG, "addr=%#jx, val=%#jx", addr, val, 0, 0); return val; } static int urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len) { struct r92c_fw_cmd cmd; uint8_t *cp; int fwcur; int ntries; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_REG, "id=%jd, buf=%#jx, len=%jd", id, (uintptr_t)buf, len, 0); KASSERT(mutex_owned(&sc->sc_write_mtx)); mutex_enter(&sc->sc_fwcmd_mtx); fwcur = sc->fwcur; sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX; /* Wait for current FW box to be empty. */ for (ntries = 0; ntries < 100; ntries++) { if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur))) break; urtwn_delay_ms(sc, 2); } if (ntries == 100) { aprint_error_dev(sc->sc_dev, "could not send firmware command %d\n", id); mutex_exit(&sc->sc_fwcmd_mtx); return ETIMEDOUT; } memset(&cmd, 0, sizeof(cmd)); KASSERT(len <= sizeof(cmd.msg)); memcpy(cmd.msg, buf, len); /* Write the first word last since that will trigger the FW. */ cp = (uint8_t *)&cmd; cmd.id = id; if (len >= 4) { if (!ISSET(sc->chip, URTWN_CHIP_92EU)) { cmd.id |= R92C_CMD_FLAG_EXT; urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2); urtwn_write_4(sc, R92C_HMEBOX(fwcur), cp[0] + (cp[3] << 8) + (cp[4] << 16) + ((uint32_t)cp[5] << 24)); } else { urtwn_write_region(sc, R92E_HMEBOX_EXT(fwcur), &cp[4], 2); urtwn_write_4(sc, R92C_HMEBOX(fwcur), cp[0] + (cp[1] << 8) + (cp[2] << 16) + ((uint32_t)cp[3] << 24)); } } else { urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len); } mutex_exit(&sc->sc_fwcmd_mtx); return 0; } static __inline void urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { sc->sc_rf_write(sc, chain, addr, val); } static void urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static void urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static void urtwn_r92e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static uint32_t urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr) { uint32_t reg[R92C_MAX_CHAINS], val; reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)); if (chain != 0) { reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain)); } urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE); urtwn_delay_ms(sc, 1); urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain), RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) | R92C_HSSI_PARAM2_READ_EDGE); urtwn_delay_ms(sc, 1); urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] | R92C_HSSI_PARAM2_READ_EDGE); urtwn_delay_ms(sc, 1); if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) { val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain)); } else { val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain)); } return MS(val, R92C_LSSI_READBACK_DATA); } static int urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { int ntries; KASSERT(mutex_owned(&sc->sc_write_mtx)); urtwn_write_4(sc, R92C_LLT_INIT, SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | SM(R92C_LLT_INIT_ADDR, addr) | SM(R92C_LLT_INIT_DATA, data)); /* Wait for write operation to complete. */ for (ntries = 0; ntries < 20; ntries++) { if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == R92C_LLT_INIT_OP_NO_ACTIVE) { /* Done */ return 0; } DELAY(5); } return ETIMEDOUT; } static uint8_t urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr) { uint32_t reg; int ntries; KASSERT(mutex_owned(&sc->sc_write_mtx)); reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr); reg &= ~R92C_EFUSE_CTRL_VALID; urtwn_write_4(sc, R92C_EFUSE_CTRL, reg); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); if (reg & R92C_EFUSE_CTRL_VALID) { /* Done */ return MS(reg, R92C_EFUSE_CTRL_DATA); } DELAY(5); } aprint_error_dev(sc->sc_dev, "could not read efuse byte at address 0x%04x\n", addr); return 0xff; } static void urtwn_efuse_read(struct urtwn_softc *sc) { uint8_t *rom = (uint8_t *)&sc->rom; uint32_t reg; uint16_t addr = 0; uint8_t off, msk; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); urtwn_efuse_switch_power(sc); memset(&sc->rom, 0xff, sizeof(sc->rom)); while (addr < 512) { reg = urtwn_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1U << i)) continue; rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr); addr++; } } #ifdef URTWN_DEBUG /* Dump ROM content. */ for (i = 0; i < (int)sizeof(sc->rom); i++) DPRINTFN(DBG_INIT, "%04jx: %02jx", i, rom[i], 0, 0); #endif } static void urtwn_efuse_switch_power(struct urtwn_softc *sc) { uint32_t reg; reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL); if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) { urtwn_write_2(sc, R92C_SYS_ISO_CTRL, reg | R92C_SYS_ISO_CTRL_PWC_EV12V); } reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_ELDR)) { urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_ELDR); } reg = urtwn_read_2(sc, R92C_SYS_CLKR); if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) != (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) { urtwn_write_2(sc, R92C_SYS_CLKR, reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M); } } static int urtwn_read_chipid(struct urtwn_softc *sc) { uint32_t reg; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) return 0; reg = urtwn_read_4(sc, R92C_SYS_CFG); if (reg & R92C_SYS_CFG_TRP_VAUX_EN) { /* test chip, not supported */ return EIO; } if (reg & R92C_SYS_CFG_TYPE_92C) { sc->chip |= URTWN_CHIP_92C; /* Check if it is a castrated 8192C. */ if (MS(urtwn_read_4(sc, R92C_HPON_FSM), R92C_HPON_FSM_CHIP_BONDING_ID) == R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) { sc->chip |= URTWN_CHIP_92C_1T2R; } } if (reg & R92C_SYS_CFG_VENDOR_UMC) { sc->chip |= URTWN_CHIP_UMC; if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) { sc->chip |= URTWN_CHIP_UMC_A_CUT; } } return 0; } #ifdef URTWN_DEBUG static void urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp) { aprint_normal_dev(sc->sc_dev, "id 0x%04x, dbg_sel %#x, vid %#x, pid %#x\n", rp->id, rp->dbg_sel, rp->vid, rp->pid); aprint_normal_dev(sc->sc_dev, "usb_opt %#x, ep_setting %#x, usb_phy %#x\n", rp->usb_opt, rp->ep_setting, rp->usb_phy); aprint_normal_dev(sc->sc_dev, "macaddr %s\n", ether_sprintf(rp->macaddr)); aprint_normal_dev(sc->sc_dev, "string %s, subcustomer_id %#x\n", rp->string, rp->subcustomer_id); aprint_normal_dev(sc->sc_dev, "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n", rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2], rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]); aprint_normal_dev(sc->sc_dev, "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n", rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1], rp->ht40_1s_tx_pwr[0][2], rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1], rp->ht40_1s_tx_pwr[1][2]); aprint_normal_dev(sc->sc_dev, "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf, rp->ht40_2s_tx_pwr_diff[2] & 0xf, rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf, rp->ht40_2s_tx_pwr_diff[2] >> 4); aprint_normal_dev(sc->sc_dev, "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf, rp->ht20_tx_pwr_diff[2] & 0xf, rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4, rp->ht20_tx_pwr_diff[2] >> 4); aprint_normal_dev(sc->sc_dev, "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n", rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf, rp->ofdm_tx_pwr_diff[2] & 0xf, rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4, rp->ofdm_tx_pwr_diff[2] >> 4); aprint_normal_dev(sc->sc_dev, "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n", rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf, rp->ht40_max_pwr[2] & 0xf, rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4, rp->ht40_max_pwr[2] >> 4); aprint_normal_dev(sc->sc_dev, "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n", rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf, rp->ht20_max_pwr[2] & 0xf, rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4, rp->ht20_max_pwr[2] >> 4); aprint_normal_dev(sc->sc_dev, "xtal_calib %d, tssi %d %d, thermal %d\n", rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter); aprint_normal_dev(sc->sc_dev, "rf_opt1 %#x, rf_opt2 %#x, rf_opt3 %#x, rf_opt4 %#x\n", rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4); aprint_normal_dev(sc->sc_dev, "channnel_plan %d, version %d customer_id %#x\n", rp->channel_plan, rp->version, rp->curstomer_id); } #endif static void urtwn_read_rom(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct r92c_rom *rom = &sc->rom; URTWNHIST_FUNC(); URTWNHIST_CALLED(); mutex_enter(&sc->sc_write_mtx); /* Read full ROM image. */ urtwn_efuse_read(sc); #ifdef URTWN_DEBUG if (urtwn_debug & DBG_REG) urtwn_dump_rom(sc, rom); #endif /* XXX Weird but this is what the vendor driver does. */ sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa); sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE); sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY); DPRINTFN(DBG_INIT, "PA setting=%#jx, board=%#jx, regulatory=%jd", sc->pa_setting, sc->board_type, sc->regulatory, 0); IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr); sc->sc_rf_write = urtwn_r92c_rf_write; sc->sc_power_on = urtwn_r92c_power_on; sc->sc_dma_init = urtwn_r92c_dma_init; mutex_exit(&sc->sc_write_mtx); } static void urtwn_r88e_read_rom(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t *rom = sc->r88e_rom; uint32_t reg; uint16_t addr = 0; uint8_t off, msk, tmp; int i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); mutex_enter(&sc->sc_write_mtx); off = 0; urtwn_efuse_switch_power(sc); /* Read full ROM image. */ memset(&sc->r88e_rom, 0xff, sizeof(sc->r88e_rom)); while (addr < 4096) { reg = urtwn_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; if ((reg & 0x1f) == 0x0f) { tmp = (reg & 0xe0) >> 5; reg = urtwn_efuse_read_1(sc, addr); if ((reg & 0x0f) != 0x0f) off = ((reg & 0xf0) >> 1) | tmp; addr++; } else off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr); addr++; } } #ifdef URTWN_DEBUG if (urtwn_debug & DBG_REG) { } #endif addr = 0x10; for (i = 0; i < 6; i++) sc->cck_tx_pwr[i] = sc->r88e_rom[addr++]; for (i = 0; i < 5; i++) sc->ht40_tx_pwr[i] = sc->r88e_rom[addr++]; sc->bw20_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf0) >> 4; if (sc->bw20_tx_pwr_diff & 0x08) sc->bw20_tx_pwr_diff |= 0xf0; sc->ofdm_tx_pwr_diff = (sc->r88e_rom[addr] & 0xf); if (sc->ofdm_tx_pwr_diff & 0x08) sc->ofdm_tx_pwr_diff |= 0xf0; sc->regulatory = MS(sc->r88e_rom[0xc1], R92C_ROM_RF1_REGULATORY); IEEE80211_ADDR_COPY(ic->ic_myaddr, &sc->r88e_rom[0xd7]); if (ISSET(sc->chip, URTWN_CHIP_92EU)) { sc->sc_power_on = urtwn_r92e_power_on; sc->sc_rf_write = urtwn_r92e_rf_write; } else { sc->sc_power_on = urtwn_r88e_power_on; sc->sc_rf_write = urtwn_r88e_rf_write; } sc->sc_dma_init = urtwn_r88e_dma_init; mutex_exit(&sc->sc_write_mtx); } static int urtwn_media_change(struct ifnet *ifp) { int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if ((error = ieee80211_media_change(ifp)) != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { urtwn_init(ifp); } return 0; } /* * Initialize rate adaptation in firmware. */ static int __noinline urtwn_ra_init(struct urtwn_softc *sc) { static const uint8_t map[] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct ieee80211_rateset *rs = &ni->ni_rates; struct r92c_fw_cmd_macid_cfg cmd; uint32_t rates, basicrates; uint32_t rrsr_mask, rrsr_rate; uint8_t mode; size_t maxrate, maxbasicrate, i, j; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Get normal and basic rates mask. */ rates = basicrates = 1; maxrate = maxbasicrate = 0; for (i = 0; i < rs->rs_nrates; i++) { /* Convert 802.11 rate to HW rate index. */ for (j = 0; j < __arraycount(map); j++) { if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) { break; } } if (j == __arraycount(map)) { /* Unknown rate, skip. */ continue; } rates |= 1U << j; if (j > maxrate) { maxrate = j; } if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) { basicrates |= 1U << j; if (j > maxbasicrate) { maxbasicrate = j; } } } if (ic->ic_curmode == IEEE80211_MODE_11B) { mode = R92C_RAID_11B; } else { mode = R92C_RAID_11BG; } DPRINTFN(DBG_INIT, "mode=%#jx", mode, 0, 0, 0); DPRINTFN(DBG_INIT, "rates=%#jx, basicrates=%#jx, " "maxrate=%jx, maxbasicrate=%jx", rates, basicrates, maxrate, maxbasicrate); if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) { maxbasicrate |= R92C_RATE_SHORTGI; maxrate |= R92C_RATE_SHORTGI; } /* Set rates mask for group addressed frames. */ cmd.macid = RTWN_MACID_BC | RTWN_MACID_VALID; if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) cmd.macid |= RTWN_MACID_SHORTGI; cmd.mask = htole32((mode << 28) | basicrates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not add broadcast station\n"); return error; } /* Set initial MRR rate. */ DPRINTFN(DBG_INIT, "maxbasicrate=%jd", maxbasicrate, 0, 0, 0); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BC), maxbasicrate); /* Set rates mask for unicast frames. */ cmd.macid = RTWN_MACID_BSS | RTWN_MACID_VALID; if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) cmd.macid |= RTWN_MACID_SHORTGI; cmd.mask = htole32((mode << 28) | rates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not add BSS station\n"); return error; } /* Set initial MRR rate. */ DPRINTFN(DBG_INIT, "maxrate=%jd", maxrate, 0, 0, 0); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BSS), maxrate); rrsr_rate = ic->ic_fixed_rate; if (rrsr_rate == -1) rrsr_rate = 11; rrsr_mask = 0xffff >> (15 - rrsr_rate); urtwn_write_2(sc, R92C_RRSR, rrsr_mask); /* Indicate highest supported rate. */ ni->ni_txrate = rs->rs_nrates - 1; return 0; } static int urtwn_get_nettype(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int type; URTWNHIST_FUNC(); URTWNHIST_CALLED(); switch (ic->ic_opmode) { case IEEE80211_M_STA: type = R92C_CR_NETTYPE_INFRA; break; case IEEE80211_M_IBSS: type = R92C_CR_NETTYPE_ADHOC; break; default: type = R92C_CR_NETTYPE_NOLINK; break; } return type; } static void urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type) { uint8_t reg; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("type=%jd", type, 0, 0, 0); KASSERT(mutex_owned(&sc->sc_write_mtx)); reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c; urtwn_write_1(sc, R92C_CR + 2, reg | type); } static void urtwn_tsf_sync_enable(struct urtwn_softc *sc) { struct ieee80211_node *ni = sc->sc_ic.ic_bss; uint64_t tsf; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Enable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0); /* Correct TSF */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN); /* Set initial TSF. */ tsf = ni->ni_tstamp.tsf; tsf = le64toh(tsf); tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU)); tsf -= IEEE80211_DUR_TU; urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf); urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32)); urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN); } static void urtwn_set_led(struct urtwn_softc *sc, int led, int on) { uint8_t reg; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("led=%jd, on=%jd", led, on, 0, 0); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (led == URTWN_LED_LINK) { if (ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_write_1(sc, 0x64, urtwn_read_1(sc, 0x64) & 0xfe); reg = urtwn_read_1(sc, R92C_LEDCFG1) & R92E_LEDSON; urtwn_write_1(sc, R92C_LEDCFG1, reg | (R92C_LEDCFG0_DIS << 1)); if (on) { reg = urtwn_read_1(sc, R92C_LEDCFG1) & R92E_LEDSON; urtwn_write_1(sc, R92C_LEDCFG1, reg); } } else if (ISSET(sc->chip, URTWN_CHIP_88E)) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0; urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60); if (!on) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90; urtwn_write_1(sc, R92C_LEDCFG2, reg | R92C_LEDCFG0_DIS); reg = urtwn_read_1(sc, R92C_MAC_PINMUX_CFG); urtwn_write_1(sc, R92C_MAC_PINMUX_CFG, reg & 0xfe); } } else { reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70; if (!on) { reg |= R92C_LEDCFG0_DIS; } urtwn_write_1(sc, R92C_LEDCFG0, reg); } sc->ledlink = on; /* Save LED state. */ } } static void urtwn_calib_to(void *arg) { struct urtwn_softc *sc = arg; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (sc->sc_dying) return; /* Do it in a process context. */ urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0); } /* ARGSUSED */ static void urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg) { struct r92c_fw_cmd_rssi cmd; struct r92e_fw_cmd_rssi cmde; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (sc->sc_ic.ic_state != IEEE80211_S_RUN) goto restart_timer; mutex_enter(&sc->sc_write_mtx); if (sc->avg_pwdb != -1) { /* Indicate Rx signal strength to FW for rate adaptation. */ memset(&cmd, 0, sizeof(cmd)); memset(&cmde, 0, sizeof(cmde)); cmd.macid = 0; /* BSS. */ cmde.macid = 0; /* BSS. */ cmd.pwdb = sc->avg_pwdb; cmde.pwdb = sc->avg_pwdb; DPRINTFN(DBG_RF, "sending RSSI command avg=%jd", sc->avg_pwdb, 0, 0, 0); if (!ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd)); } else { urtwn_fw_cmd(sc, R92E_CMD_RSSI_REPORT, &cmde, sizeof(cmde)); } } /* Do temperature compensation. */ urtwn_temp_calib(sc); mutex_exit(&sc->sc_write_mtx); restart_timer: if (!sc->sc_dying) { /* Restart calibration timer. */ callout_schedule(&sc->sc_calib_to, hz); } } static void urtwn_next_scan(void *arg) { struct urtwn_softc *sc = arg; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if (sc->sc_dying) return; s = splnet(); if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic); splx(s); } static void urtwn_newassoc(struct ieee80211_node *ni, int isnew) { URTWNHIST_FUNC(); URTWNHIST_CALLARGS("new node %06jx%06jx", ni->ni_macaddr[0] << 2 | ni->ni_macaddr[1] << 1 | ni->ni_macaddr[2], ni->ni_macaddr[3] << 2 | ni->ni_macaddr[4] << 1 | ni->ni_macaddr[5], 0, 0); /* start with lowest Tx rate */ ni->ni_txrate = 0; } static int urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct urtwn_softc *sc = ic->ic_ifp->if_softc; struct urtwn_cmd_newstate cmd; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("nstate=%jd, arg=%jd", nstate, arg, 0, 0); callout_stop(&sc->sc_scan_to); callout_stop(&sc->sc_calib_to); /* Do it in a process context. */ cmd.state = nstate; cmd.arg = arg; urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd)); return 0; } static void urtwn_newstate_cb(struct urtwn_softc *sc, void *arg) { struct urtwn_cmd_newstate *cmd = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; enum ieee80211_state ostate = ic->ic_state; enum ieee80211_state nstate = cmd->state; uint32_t reg; uint8_t sifs_time, msr; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_STM, "%jd->%jd", ostate, nstate, 0, 0); s = splnet(); mutex_enter(&sc->sc_write_mtx); callout_stop(&sc->sc_scan_to); callout_stop(&sc->sc_calib_to); switch (ostate) { case IEEE80211_S_INIT: break; case IEEE80211_S_SCAN: if (nstate != IEEE80211_S_SCAN) { /* * End of scanning */ /* flush 4-AC Queue after site_survey */ urtwn_write_1(sc, R92C_TXPAUSE, 0x0); /* Allow Rx from our BSSID only. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) | R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN); } break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); /* Set media status to 'No Link'. */ urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); /* Stop Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0); /* Reset TSF. */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03); /* Disable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_DIS_TSF_UDT0); /* Back to 20MHz mode */ urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_HOSTAP) { /* Stop BCN */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) & ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT)); } /* Reset EDCA parameters. */ urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317); urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444); /* flush all cam entries */ urtwn_cam_init(sc); break; } switch (nstate) { case IEEE80211_S_INIT: /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); break; case IEEE80211_S_SCAN: if (ostate != IEEE80211_S_SCAN) { /* * Begin of scanning */ /* Set gain for scanning. */ reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); if (!ISSET(sc->chip, URTWN_CHIP_88E)) { reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); } /* Set media status to 'No Link'. */ urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); /* Allow Rx from any BSSID. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) & ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); /* Stop Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0); /* Disable update TSF */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_DIS_TSF_UDT0); } /* Make link LED blink during scan. */ urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink); /* Pause AC Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f); urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); /* Start periodic scan. */ if (!sc->sc_dying) callout_schedule(&sc->sc_scan_to, hz / 5); break; case IEEE80211_S_AUTH: /* Set initial gain under link. */ reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); if (!ISSET(sc->chip, URTWN_CHIP_88E)) { reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); } /* Set media status to 'No Link'. */ urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); /* Allow Rx from any BSSID. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) & ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); break; case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: ni = ic->ic_bss; /* XXX: Set 20MHz mode */ urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Back to 20MHz mode */ urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); /* Set media status to 'No Link'. */ urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK); /* Enable Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Allow Rx from any BSSID. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) & ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); /* Accept Rx data/control/management frames */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) | R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF); /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); break; } /* Set media status to 'Associated'. */ urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc)); /* Set BSSID. */ urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0])); urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4])); if (ic->ic_curmode == IEEE80211_MODE_11B) { urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0); } else { /* 802.11b/g */ urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3); } /* Enable Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Set beacon interval. */ urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval); msr = urtwn_read_1(sc, R92C_MSR); msr &= R92C_MSR_MASK; switch (ic->ic_opmode) { case IEEE80211_M_STA: /* Allow Rx from our BSSID only. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) | R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN); /* Enable TSF synchronization. */ urtwn_tsf_sync_enable(sc); msr |= R92C_MSR_INFRA; break; case IEEE80211_M_HOSTAP: urtwn_write_2(sc, R92C_BCNTCFG, 0x000f); /* Allow Rx from any BSSID. */ urtwn_write_4(sc, R92C_RCR, urtwn_read_4(sc, R92C_RCR) & ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN)); /* Reset TSF timer to zero. */ reg = urtwn_read_4(sc, R92C_TCR); reg &= ~0x01; urtwn_write_4(sc, R92C_TCR, reg); reg |= 0x01; urtwn_write_4(sc, R92C_TCR, reg); msr |= R92C_MSR_AP; break; default: msr |= R92C_MSR_ADHOC; break; } urtwn_write_1(sc, R92C_MSR, msr); sifs_time = 10; urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time); urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time); urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time); urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time); urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time); urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time); /* Initialize rate adaptation. */ if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) ni->ni_txrate = ni->ni_rates.rs_nrates - 1; else urtwn_ra_init(sc); /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); /* Reset average RSSI. */ sc->avg_pwdb = -1; /* Reset temperature calibration state machine. */ sc->thcal_state = 0; sc->thcal_lctemp = 0; /* Start periodic calibration. */ if (!sc->sc_dying) callout_schedule(&sc->sc_calib_to, hz); break; } (*sc->sc_newstate)(ic, nstate, cmd->arg); mutex_exit(&sc->sc_write_mtx); splx(s); } static int urtwn_wme_update(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_ifp->if_softc; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* don't override default WME values if WME is not actually enabled */ if (!(ic->ic_flags & IEEE80211_F_WME)) return 0; /* Do it in a process context. */ urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0); return 0; } static void urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg) { static const uint16_t ac2reg[WME_NUM_AC] = { R92C_EDCA_BE_PARAM, R92C_EDCA_BK_PARAM, R92C_EDCA_VI_PARAM, R92C_EDCA_VO_PARAM }; struct ieee80211com *ic = &sc->sc_ic; const struct wmeParams *wmep; int ac, aifs, slottime; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_STM, "called", 0, 0, 0, 0); s = splnet(); mutex_enter(&sc->sc_write_mtx); slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; for (ac = 0; ac < WME_NUM_AC; ac++) { wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ aifs = wmep->wmep_aifsn * slottime + 10; urtwn_write_4(sc, ac2reg[ac], SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) | SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) | SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) | SM(R92C_EDCA_PARAM_AIFS, aifs)); } mutex_exit(&sc->sc_write_mtx); splx(s); } static void urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi) { int pwdb; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("rate=%jd, rsst=%jd", rate, rssi, 0, 0); /* Convert antenna signal to percentage. */ if (rssi <= -100 || rssi >= 20) pwdb = 0; else if (rssi >= 0) pwdb = 100; else pwdb = 100 + rssi; if (!ISSET(sc->chip, URTWN_CHIP_88E)) { if (rate <= 3) { /* CCK gain is smaller than OFDM/MCS gain. */ pwdb += 6; if (pwdb > 100) pwdb = 100; if (pwdb <= 14) pwdb -= 4; else if (pwdb <= 26) pwdb -= 8; else if (pwdb <= 34) pwdb -= 6; else if (pwdb <= 42) pwdb -= 2; } } if (sc->avg_pwdb == -1) /* Init. */ sc->avg_pwdb = pwdb; else if (sc->avg_pwdb < pwdb) sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1; else sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20); DPRINTFN(DBG_RF, "rate=%jd rssi=%jd PWDB=%jd EMA=%jd", rate, rssi, pwdb, sc->avg_pwdb); } static int8_t urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 16, -12, -26, -46 }; struct r92c_rx_phystat *phy; struct r92c_rx_cck *cck; uint8_t rpt; int8_t rssi; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("rate=%jd", rate, 0, 0, 0); if (rate <= 3) { cck = (struct r92c_rx_cck *)physt; if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) { rpt = (cck->agc_rpt >> 5) & 0x3; rssi = (cck->agc_rpt & 0x1f) << 1; } else { rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; } rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return rssi; } static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { struct r92c_rx_phystat *phy; struct r88e_rx_cck *cck; uint8_t cck_agc_rpt, lna_idx, vga_idx; int8_t rssi; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("rate=%jd", rate, 0, 0, 0); rssi = 0; if (rate <= 3) { cck = (struct r88e_rx_cck *)physt; cck_agc_rpt = cck->agc_rpt; lna_idx = (cck_agc_rpt & 0xe0) >> 5; vga_idx = cck_agc_rpt & 0x1f; switch (lna_idx) { case 7: if (vga_idx <= 27) rssi = -100 + 2* (27 - vga_idx); else rssi = -100; break; case 6: rssi = -48 + 2 * (2 - vga_idx); break; case 5: rssi = -42 + 2 * (7 - vga_idx); break; case 4: rssi = -36 + 2 * (7 - vga_idx); break; case 3: rssi = -24 + 2 * (7 - vga_idx); break; case 2: rssi = -12 + 2 * (5 - vga_idx); break; case 1: rssi = 8 - (2 * vga_idx); break; case 0: rssi = 14 - (2 * vga_idx); break; } rssi += 6; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return rssi; } static void urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct r92c_rx_desc_usb *stat; uint32_t rxdw0, rxdw3; struct mbuf *m; uint8_t rate; int8_t rssi = 0; int s, infosz; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("buf=%jp, pktlen=%#jd", (uintptr_t)buf, pktlen, 0, 0); stat = (struct r92c_rx_desc_usb *)buf; rxdw0 = le32toh(stat->rxdw0); rxdw3 = le32toh(stat->rxdw3); if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) { /* * This should not happen since we setup our Rx filter * to not receive these frames. */ DPRINTFN(DBG_RX, "CRC error", 0, 0, 0, 0); if_statinc(ifp, if_ierrors); return; } /* * XXX: This will drop most control packets. Do we really * want this in IEEE80211_M_MONITOR mode? */ // if (__predict_false(pktlen < (int)sizeof(*wh))) { if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) { DPRINTFN(DBG_RX, "packet too short %jd", pktlen, 0, 0, 0); ic->ic_stats.is_rx_tooshort++; if_statinc(ifp, if_ierrors); return; } if (__predict_false(pktlen > MCLBYTES)) { DPRINTFN(DBG_RX, "packet too big %jd", pktlen, 0, 0, 0); if_statinc(ifp, if_ierrors); return; } rate = MS(rxdw3, R92C_RXDW3_RATE); infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { if (!ISSET(sc->chip, URTWN_CHIP_92C)) rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]); else rssi = urtwn_get_rssi(sc, rate, &stat[1]); /* Update our average RSSI. */ urtwn_update_avgrssi(sc, rate, rssi); } DPRINTFN(DBG_RX, "Rx frame len=%jd rate=%jd infosz=%jd rssi=%jd", pktlen, rate, infosz, rssi); MGETHDR(m, M_DONTWAIT, MT_DATA); if (__predict_false(m == NULL)) { aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n"); ic->ic_stats.is_rx_nobuf++; if_statinc(ifp, if_ierrors); return; } if (pktlen > (int)MHLEN) { MCLGET(m, M_DONTWAIT); if (__predict_false(!(m->m_flags & M_EXT))) { aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf cluster\n"); m_freem(m); ic->ic_stats.is_rx_nobuf++; if_statinc(ifp, if_ierrors); return; } } /* Finalize mbuf. */ m_set_rcvif(m, ifp); wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz); memcpy(mtod(m, uint8_t *), wh, pktlen); m->m_pkthdr.len = m->m_len = pktlen; s = splnet(); if (__predict_false(sc->sc_drvbpf != NULL)) { struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (!(rxdw3 & R92C_RXDW3_HT)) { switch (rate) { /* CCK. */ case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; /* OFDM. */ case 4: tap->wr_rate = 12; break; case 5: tap->wr_rate = 18; break; case 6: tap->wr_rate = 24; break; case 7: tap->wr_rate = 36; break; case 8: tap->wr_rate = 48; break; case 9: tap->wr_rate = 72; break; case 10: tap->wr_rate = 96; break; case 11: tap->wr_rate = 108; break; } } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } tap->wr_dbm_antsignal = rssi; tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); } ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* push the frame up to the 802.11 stack */ ieee80211_input(ic, m, ni, rssi, 0); /* Node is no longer needed. */ ieee80211_free_node(ni); splx(s); } static void urtwn_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct urtwn_rx_data *data = priv; struct urtwn_softc *sc = data->sc; struct r92c_rx_desc_usb *stat; size_t pidx = data->pidx; uint32_t rxdw0; uint8_t *buf; int len, totlen, pktlen, infosz, npkts; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_RX, "status=%jd", status, 0, 0, 0); mutex_enter(&sc->sc_rx_mtx); TAILQ_REMOVE(&sc->rx_free_list[pidx], data, next); TAILQ_INSERT_TAIL(&sc->rx_free_list[pidx], data, next); /* Put this Rx buffer back to our free list. */ mutex_exit(&sc->sc_rx_mtx); if (__predict_false(status != USBD_NORMAL_COMPLETION)) { if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->rx_pipe[pidx]); else if (status != USBD_CANCELLED) goto resubmit; return; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (__predict_false(len < (int)sizeof(*stat))) { DPRINTFN(DBG_RX, "xfer too short %jd", len, 0, 0, 0); goto resubmit; } buf = data->buf; /* Get the number of encapsulated frames. */ stat = (struct r92c_rx_desc_usb *)buf; if (ISSET(sc->chip, URTWN_CHIP_92EU)) npkts = MS(le32toh(stat->rxdw2), R92E_RXDW2_PKTCNT); else npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT); DPRINTFN(DBG_RX, "Rx %jd frames in one chunk", npkts, 0, 0, 0); if (npkts != 0) rnd_add_uint32(&sc->rnd_source, npkts); /* Process all of them. */ while (npkts-- > 0) { if (__predict_false(len < (int)sizeof(*stat))) { DPRINTFN(DBG_RX, "len(%jd) is short than header", len, 0, 0, 0); break; } stat = (struct r92c_rx_desc_usb *)buf; rxdw0 = le32toh(stat->rxdw0); pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (__predict_false(pktlen == 0)) { DPRINTFN(DBG_RX, "pktlen is 0 byte", 0, 0, 0, 0); break; } infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (__predict_false(totlen > len)) { DPRINTFN(DBG_RX, "pktlen (%jd+%jd+%jd) > %jd", (int)sizeof(*stat), infosz, pktlen, len); break; } /* Process 802.11 frame. */ urtwn_rx_frame(sc, buf, pktlen); /* Next chunk is 128-byte aligned. */ totlen = roundup2(totlen, 128); buf += totlen; len -= totlen; } resubmit: /* Setup a new transfer. */ usbd_setup_xfer(xfer, data, data->buf, URTWN_RXBUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, urtwn_rxeof); (void)usbd_transfer(xfer); } static void urtwn_put_tx_data(struct urtwn_softc *sc, struct urtwn_tx_data *data) { size_t pidx = data->pidx; mutex_enter(&sc->sc_tx_mtx); /* Put this Tx buffer back to our free list. */ TAILQ_INSERT_TAIL(&sc->tx_free_list[pidx], data, next); mutex_exit(&sc->sc_tx_mtx); } static void urtwn_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct urtwn_tx_data *data = priv; struct urtwn_softc *sc = data->sc; struct ifnet *ifp = &sc->sc_if; size_t pidx = data->pidx; int s; URTWNHIST_FUNC(); URTWNHIST_CALLED(); DPRINTFN(DBG_TX, "status=%jd", status, 0, 0, 0); urtwn_put_tx_data(sc, data); s = splnet(); sc->tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (__predict_false(status != USBD_NORMAL_COMPLETION)) { if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) { if (status == USBD_STALLED) { struct usbd_pipe *pipe = sc->tx_pipe[pidx]; usbd_clear_endpoint_stall_async(pipe); } device_printf(sc->sc_dev, "transmit failed, %s\n", usbd_errstr(status)); if_statinc(ifp, if_oerrors); } splx(s); return; } if_statinc(ifp, if_opackets); urtwn_start(ifp); splx(s); } static int urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, struct urtwn_tx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct r92c_tx_desc_usb *txd; size_t i, padsize, xferlen, txd_len; uint16_t seq, sum; uint8_t raid, type, tid; int s, hasqos, error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; txd_len = sizeof(*txd); if (!ISSET(sc->chip, URTWN_CHIP_92EU)) txd_len = 32; if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m); if (k == NULL) { urtwn_put_tx_data(sc, data); m_free(m); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m, struct ieee80211_frame *); } if (__predict_false(sc->sc_drvbpf != NULL)) { struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); if (wh->i_fc[1] & IEEE80211_FC1_WEP) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; /* XXX: set tap->wt_rate? */ bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); } /* non-qos data frames */ tid = R92C_TXDW1_QSEL_BE; if ((hasqos = ieee80211_has_qos(wh))) { /* data frames in 11n mode */ struct ieee80211_qosframe *qwh = (void *)wh; tid = qwh->i_qos[0] & IEEE80211_QOS_TID; } else if (type != IEEE80211_FC0_TYPE_DATA) { tid = R92C_TXDW1_QSEL_MGNT; } if (((txd_len + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */ padsize = 8; else padsize = 0; if (ISSET(sc->chip, URTWN_CHIP_92EU)) padsize = 0; /* Fill Tx descriptor. */ txd = (struct r92c_tx_desc_usb *)data->buf; memset(txd, 0, txd_len + padsize); txd->txdw0 |= htole32( SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) | SM(R92C_TXDW0_OFFSET, txd_len)); if (!ISSET(sc->chip, URTWN_CHIP_92EU)) { txd->txdw0 |= htole32( R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); } if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); /* fix pad field */ if (padsize > 0) { DPRINTFN(DBG_TX, "padding: size=%jd", padsize, 0, 0, 0); txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8))); } if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && type == IEEE80211_FC0_TYPE_DATA) { if (ic->ic_curmode == IEEE80211_MODE_11B) raid = R92C_RAID_11B; else raid = R92C_RAID_11BG; DPRINTFN(DBG_TX, "data packet: tid=%jd, raid=%jd", tid, raid, 0, 0); if (!ISSET(sc->chip, URTWN_CHIP_92C)) { txd->txdw1 |= htole32( SM(R88E_TXDW1_MACID, RTWN_MACID_BSS) | SM(R92C_TXDW1_QSEL, tid) | SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK); } else txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) | SM(R92C_TXDW1_QSEL, tid) | SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK); if (ISSET(sc->chip, URTWN_CHIP_88E)) txd->txdw2 |= htole32(R88E_TXDW2_AGGBK); if (ISSET(sc->chip, URTWN_CHIP_92EU)) txd->txdw3 |= htole32(R92E_TXDW3_AGGBK); if (hasqos) { txd->txdw4 |= htole32(R92C_TXDW4_QOS); } if (ic->ic_flags & IEEE80211_F_USEPROT) { /* for 11g */ if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF | R92C_TXDW4_HWRTSEN); } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { txd->txdw4 |= htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); } } /* Send RTS at OFDM24. */ txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8)); txd->txdw5 |= htole32(0x0001ff00); /* Send data at OFDM54. */ if (ISSET(sc->chip, URTWN_CHIP_88E)) txd->txdw5 |= htole32(0x13 & 0x3f); else txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11)); } else if (type == IEEE80211_FC0_TYPE_MGT) { DPRINTFN(DBG_TX, "mgmt packet", 0, 0, 0, 0); txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); /* Force CCK1. */ txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); /* Use 1Mbps */ txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); } else { /* broadcast or multicast packets */ DPRINTFN(DBG_TX, "bc or mc packet", 0, 0, 0, 0); txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, RTWN_MACID_BC) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); /* Force CCK1. */ txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); /* Use 1Mbps */ txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); } /* Set sequence number */ seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT; if (!ISSET(sc->chip, URTWN_CHIP_92EU)) { txd->txdseq |= htole16(seq); if (!hasqos) { /* Use HW sequence numbering for non-QoS frames. */ txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ); txd->txdseq |= htole16(R92C_HWSEQ_EN); } } else { txd->txdseq2 |= htole16((seq & R92E_HWSEQ_MASK) << R92E_HWSEQ_SHIFT); if (!hasqos) { /* Use HW sequence numbering for non-QoS frames. */ txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ); txd->txdw7 |= htole16(R92C_HWSEQ_EN); } } /* Compute Tx descriptor checksum. */ sum = 0; for (i = 0; i < R92C_TXDESC_SUMSIZE / 2; i++) sum ^= ((uint16_t *)txd)[i]; txd->txdsum = sum; /* NB: already little endian. */ xferlen = txd_len + m->m_pkthdr.len + padsize; m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[0] + txd_len + padsize); s = splnet(); usbd_setup_xfer(data->xfer, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER, URTWN_TX_TIMEOUT, urtwn_txeof); error = usbd_transfer(data->xfer); if (__predict_false(error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)) { splx(s); DPRINTFN(DBG_TX, "transfer failed %jd", error, 0, 0, 0); return error; } splx(s); return 0; } struct urtwn_tx_data * urtwn_get_tx_data(struct urtwn_softc *sc, size_t pidx) { struct urtwn_tx_data *data = NULL; mutex_enter(&sc->sc_tx_mtx); if (!TAILQ_EMPTY(&sc->tx_free_list[pidx])) { data = TAILQ_FIRST(&sc->tx_free_list[pidx]); TAILQ_REMOVE(&sc->tx_free_list[pidx], data, next); } mutex_exit(&sc->sc_tx_mtx); return data; } static void urtwn_start(struct ifnet *ifp) { struct urtwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct urtwn_tx_data *data; struct ether_header *eh; struct ieee80211_node *ni; struct mbuf *m; URTWNHIST_FUNC(); URTWNHIST_CALLED(); if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; data = NULL; for (;;) { /* Send pending management frames first. */ IF_POLL(&ic->ic_mgtq, m); if (m != NULL) { /* Use AC_VO for management frames. */ data = urtwn_get_tx_data(sc, sc->ac2idx[WME_AC_VO]); if (data == NULL) { ifp->if_flags |= IFF_OACTIVE; DPRINTFN(DBG_TX, "empty tx_free_list", 0, 0, 0, 0); return; } IF_DEQUEUE(&ic->ic_mgtq, m); ni = M_GETCTX(m, struct ieee80211_node *); M_CLEARCTX(m); goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* Encapsulate and send data frames. */ IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; uint8_t qid = WME_AC_BE; if (ieee80211_has_qos(wh)) { /* data frames in 11n mode */ struct ieee80211_qosframe *qwh = (void *)wh; uint8_t tid = qwh->i_qos[0] & IEEE80211_QOS_TID; qid = TID_TO_WME_AC(tid); } else if (type != IEEE80211_FC0_TYPE_DATA) { qid = WME_AC_VO; } data = urtwn_get_tx_data(sc, sc->ac2idx[qid]); if (data == NULL) { ifp->if_flags |= IFF_OACTIVE; DPRINTFN(DBG_TX, "empty tx_free_list", 0, 0, 0, 0); return; } IFQ_DEQUEUE(&ifp->if_snd, m); if (m->m_len < (int)sizeof(*eh) && (m = m_pullup(m, sizeof(*eh))) == NULL) { device_printf(sc->sc_dev, "m_pullup failed\n"); if_statinc(ifp, if_oerrors); urtwn_put_tx_data(sc, data); m_freem(m); continue; } eh = mtod(m, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { device_printf(sc->sc_dev, "unable to find transmit node\n"); if_statinc(ifp, if_oerrors); urtwn_put_tx_data(sc, data); m_freem(m); continue; } bpf_mtap(ifp, m, BPF_D_OUT); if ((m = ieee80211_encap(ic, m, ni)) == NULL) { ieee80211_free_node(ni); device_printf(sc->sc_dev, "unable to encapsulate packet\n"); if_statinc(ifp, if_oerrors); urtwn_put_tx_data(sc, data); m_freem(m); continue; } sendit: bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT); if (urtwn_tx(sc, m, ni, data) != 0) { m_freem(m); ieee80211_free_node(ni); device_printf(sc->sc_dev, "unable to transmit packet\n"); if_statinc(ifp, if_oerrors); continue; } m_freem(m); ieee80211_free_node(ni); sc->tx_timer = 5; ifp->if_timer = 1; } } static void urtwn_watchdog(struct ifnet *ifp) { struct urtwn_softc *sc = ifp->if_softc; URTWNHIST_FUNC(); URTWNHIST_CALLED(); ifp->if_timer = 0; if (sc->tx_timer > 0) { if (--sc->tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); /* urtwn_init(ifp); XXX needs a process context! */ if_statinc(ifp, if_oerrors); return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); } static int urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct urtwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s, error = 0; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("cmd=0x%08jx, data=%#jx", cmd, (uintptr_t)data, 0, 0); s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_UP | IFF_RUNNING: break; case IFF_UP: urtwn_init(ifp); break; case IFF_RUNNING: urtwn_stop(ifp, 1); break; case 0: break; } break; case SIOCADDMULTI: case SIOCDELMULTI: if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { /* setup multicast filter, etc */ error = 0; } break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ic, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE); error = 0; } break; default: error = ieee80211_ioctl(ic, cmd, data); break; } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING) && ic->ic_roaming != IEEE80211_ROAMING_MANUAL) { urtwn_init(ifp); } error = 0; } splx(s); return error; } static __inline int urtwn_power_on(struct urtwn_softc *sc) { return sc->sc_power_on(sc); } static int urtwn_r92c_power_on(struct urtwn_softc *sc) { uint32_t reg; int ntries; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Wait for autoload done bit. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) break; DELAY(5); } if (ntries == 1000) { aprint_error_dev(sc->sc_dev, "timeout waiting for chip autoload\n"); return ETIMEDOUT; } /* Unlock ISO/CLK/Power control register. */ urtwn_write_1(sc, R92C_RSV_CTRL, 0); DELAY(5); /* Move SPS into PWM mode. */ urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); DELAY(5); reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL); if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) { urtwn_write_1(sc, R92C_LDOV12D_CTRL, reg | R92C_LDOV12D_CTRL_LDV12_EN); DELAY(100); urtwn_write_1(sc, R92C_SYS_ISO_CTRL, urtwn_read_1(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_MD2PP); } /* Auto enable WLAN. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); for (ntries = 0; ntries < 1000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; DELAY(100); } if (ntries == 1000) { aprint_error_dev(sc->sc_dev, "timeout waiting for MAC auto ON\n"); return ETIMEDOUT; } /* Enable radio, GPIO and LED functions. */ KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN) == 0x0812); urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); /* Release RF digital isolation. */ urtwn_write_2(sc, R92C_SYS_ISO_CTRL, urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); /* Initialize MAC. */ urtwn_write_1(sc, R92C_APSD_CTRL, urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); for (ntries = 0; ntries < 200; ntries++) { if (!(urtwn_read_1(sc, R92C_APSD_CTRL) & R92C_APSD_CTRL_OFF_STATUS)) break; DELAY(5); } if (ntries == 200) { aprint_error_dev(sc->sc_dev, "timeout waiting for MAC initialization\n"); return ETIMEDOUT; } /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC; urtwn_write_2(sc, R92C_CR, reg); urtwn_write_1(sc, 0xfe10, 0x19); urtwn_delay_ms(sc, 1); return 0; } static int urtwn_r92e_power_on(struct urtwn_softc *sc) { uint32_t reg; uint32_t val; int ntries; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Enable radio, GPIO and LED functions. */ KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN) == 0x0812); urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); if (urtwn_read_4(sc, R92E_SYS_CFG1_8192E) & R92E_SPSLDO_SEL){ /* LDO. */ urtwn_write_1(sc, R92E_LDO_SWR_CTRL, 0xc3); } else { urtwn_write_2(sc, R92C_SYS_SWR_CTRL2, urtwn_read_2(sc, R92C_SYS_SWR_CTRL2) & 0xffff); urtwn_write_1(sc, R92E_LDO_SWR_CTRL, 0x83); } for (ntries = 0; ntries < 2; ntries++) { urtwn_write_1(sc, R92C_AFE_PLL_CTRL, urtwn_read_1(sc, R92C_AFE_PLL_CTRL)); urtwn_write_2(sc, R92C_AFE_CTRL4, urtwn_read_2(sc, R92C_AFE_CTRL4)); } /* Reset BB. */ urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST)); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80); /* Disable HWPDN. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN); /* Disable WL suspend. */ urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~(R92C_APS_FSMCO_AFSM_PCIE | R92C_APS_FSMCO_AFSM_HSUS)); urtwn_write_4(sc, R92C_APS_FSMCO, urtwn_read_4(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_RDY_MACON); urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); for (ntries = 0; ntries < 10000; ntries++) { val = urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC; if (val == 0x0) break; DELAY(10); } if (ntries == 10000) { aprint_error_dev(sc->sc_dev, "timeout waiting for chip power up\n"); return ETIMEDOUT; } urtwn_write_2(sc, R92C_CR, 0x00); reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC; urtwn_write_2(sc, R92C_CR, reg); return 0; } static int urtwn_r88e_power_on(struct urtwn_softc *sc) { uint32_t reg; uint8_t val; int ntries; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Wait for power ready bit. */ for (ntries = 0; ntries < 5000; ntries++) { val = urtwn_read_1(sc, 0x6) & 0x2; if (val == 0x2) break; DELAY(10); } if (ntries == 5000) { aprint_error_dev(sc->sc_dev, "timeout waiting for chip power up\n"); return ETIMEDOUT; } /* Reset BB. */ urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST)); urtwn_write_1(sc, 0x26, urtwn_read_1(sc, 0x26) | 0x80); /* Disable HWPDN. */ urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x80); /* Disable WL suspend. */ urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) & ~0x18); urtwn_write_1(sc, 0x5, urtwn_read_1(sc, 0x5) | 0x1); for (ntries = 0; ntries < 5000; ntries++) { if (!(urtwn_read_1(sc, 0x5) & 0x1)) break; DELAY(10); } if (ntries == 5000) return ETIMEDOUT; /* Enable LDO normal mode. */ urtwn_write_1(sc, 0x23, urtwn_read_1(sc, 0x23) & ~0x10); /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ urtwn_write_2(sc, R92C_CR, 0); reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN; urtwn_write_2(sc, R92C_CR, reg); return 0; } static int __noinline urtwn_llt_init(struct urtwn_softc *sc) { size_t i, page_count, pktbuf_count; uint32_t val; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (sc->chip & URTWN_CHIP_88E) page_count = R88E_TX_PAGE_COUNT; else if (sc->chip & URTWN_CHIP_92EU) page_count = R92E_TX_PAGE_COUNT; else page_count = R92C_TX_PAGE_COUNT; if (sc->chip & URTWN_CHIP_88E) pktbuf_count = R88E_TXPKTBUF_COUNT; else if (sc->chip & URTWN_CHIP_92EU) pktbuf_count = R88E_TXPKTBUF_COUNT; else pktbuf_count = R92C_TXPKTBUF_COUNT; if (sc->chip & URTWN_CHIP_92EU) { val = urtwn_read_4(sc, R92E_AUTO_LLT) | R92E_AUTO_LLT_EN; urtwn_write_4(sc, R92E_AUTO_LLT, val); DELAY(100); val = urtwn_read_4(sc, R92E_AUTO_LLT); if (val & R92E_AUTO_LLT_EN) return EIO; return 0; } /* Reserve pages [0; page_count]. */ for (i = 0; i < page_count; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return error; } /* NB: 0xff indicates end-of-list. */ if ((error = urtwn_llt_write(sc, i, 0xff)) != 0) return error; /* * Use pages [page_count + 1; pktbuf_count - 1] * as ring buffer. */ for (++i; i < pktbuf_count - 1; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return error; } /* Make the last page point to the beginning of the ring buffer. */ error = urtwn_llt_write(sc, i, pktbuf_count + 1); return error; } static void urtwn_fw_reset(struct urtwn_softc *sc) { uint16_t reg; int ntries; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Tell 8051 to reset itself. */ mutex_enter(&sc->sc_fwcmd_mtx); urtwn_write_1(sc, R92C_HMETFR + 3, 0x20); sc->fwcur = 0; mutex_exit(&sc->sc_fwcmd_mtx); /* Wait until 8051 resets by itself. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_CPUEN)) return; DELAY(50); } /* Force 8051 reset. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) & ~R92C_SYS_FUNC_EN_CPUEN); } static void urtwn_r88e_fw_reset(struct urtwn_softc *sc) { uint16_t reg; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (ISSET(sc->chip, URTWN_CHIP_92EU)) { reg = urtwn_read_2(sc, R92C_RSV_CTRL) & ~R92E_RSV_MIO_EN; urtwn_write_2(sc,R92C_RSV_CTRL, reg); } DELAY(50); reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); DELAY(50); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN); DELAY(50); if (ISSET(sc->chip, URTWN_CHIP_92EU)) { reg = urtwn_read_2(sc, R92C_RSV_CTRL) | R92E_RSV_MIO_EN; urtwn_write_2(sc,R92C_RSV_CTRL, reg); } DELAY(50); mutex_enter(&sc->sc_fwcmd_mtx); /* Init firmware commands ring. */ sc->fwcur = 0; mutex_exit(&sc->sc_fwcmd_mtx); } static int urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len) { uint32_t reg; int off, mlen, error = 0; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("page=%jd, buf=%#jx, len=%jd", page, (uintptr_t)buf, len, 0); reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = RW(reg, R92C_MCUFWDL_PAGE, page); urtwn_write_4(sc, R92C_MCUFWDL, reg); off = R92C_FW_START_ADDR; while (len > 0) { if (len > 196) mlen = 196; else if (len > 4) mlen = 4; else mlen = 1; error = urtwn_write_region(sc, off, buf, mlen); if (error != 0) break; off += mlen; buf += mlen; len -= mlen; } return error; } static int __noinline urtwn_load_firmware(struct urtwn_softc *sc) { firmware_handle_t fwh; const struct r92c_fw_hdr *hdr; const char *name; u_char *fw, *ptr; size_t len; uint32_t reg; int mlen, ntries, page, error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Read firmware image from the filesystem. */ if (ISSET(sc->chip, URTWN_CHIP_88E)) name = "rtl8188eufw.bin"; else if (ISSET(sc->chip, URTWN_CHIP_92EU)) name = "rtl8192eefw.bin"; else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) name = "rtl8192cfwU.bin"; else name = "rtl8192cfw.bin"; if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) { aprint_error_dev(sc->sc_dev, "failed load firmware of file %s (error %d)\n", name, error); return error; } const size_t fwlen = len = firmware_get_size(fwh); fw = firmware_malloc(len); if (fw == NULL) { aprint_error_dev(sc->sc_dev, "failed to allocate firmware memory\n"); firmware_close(fwh); return ENOMEM; } error = firmware_read(fwh, 0, fw, len); firmware_close(fwh); if (error != 0) { aprint_error_dev(sc->sc_dev, "failed to read firmware (error %d)\n", error); firmware_free(fw, fwlen); return error; } len = fwlen; ptr = fw; hdr = (const struct r92c_fw_hdr *)ptr; /* Check if there is a valid FW header and skip it. */ if ((le16toh(hdr->signature) >> 4) == 0x88c || (le16toh(hdr->signature) >> 4) == 0x88e || (le16toh(hdr->signature) >> 4) == 0x92e || (le16toh(hdr->signature) >> 4) == 0x92c) { DPRINTFN(DBG_INIT, "FW V%jd.%jd", le16toh(hdr->version), le16toh(hdr->subversion), 0, 0); DPRINTFN(DBG_INIT, "%02jd-%02jd %02jd:%02jd", hdr->month, hdr->date, hdr->hour, hdr->minute); ptr += sizeof(*hdr); len -= sizeof(*hdr); } if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) { /* Reset MCU ready status */ urtwn_write_1(sc, R92C_MCUFWDL, 0); if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) urtwn_r88e_fw_reset(sc); else urtwn_fw_reset(sc); } if (!ISSET(sc->chip, URTWN_CHIP_88E) && !ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN); } /* download enabled */ urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 2, urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08); /* Reset the FWDL checksum. */ urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT); DELAY(50); /* download firmware */ for (page = 0; len > 0; page++) { mlen = MIN(len, R92C_FW_PAGE_SIZE); error = urtwn_fw_loadpage(sc, page, ptr, mlen); if (error != 0) { aprint_error_dev(sc->sc_dev, "could not load firmware page %d\n", page); goto fail; } ptr += mlen; len -= mlen; } /* download disable */ urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 1, 0); /* Wait for checksum report. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT) break; DELAY(5); } if (ntries == 1000) { aprint_error_dev(sc->sc_dev, "timeout waiting for checksum report\n"); error = ETIMEDOUT; goto fail; } /* Wait for firmware readiness. */ reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY; urtwn_write_4(sc, R92C_MCUFWDL, reg); if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) urtwn_r88e_fw_reset(sc); for (ntries = 0; ntries < 6000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY) break; DELAY(5); } if (ntries == 6000) { aprint_error_dev(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_free(fw, fwlen); return error; } static __inline int urtwn_dma_init(struct urtwn_softc *sc) { return sc->sc_dma_init(sc); } static int urtwn_r92c_dma_init(struct urtwn_softc *sc) { int hashq, hasnq, haslq, nqueues, nqpages, nrempages; uint32_t reg; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Initialize LLT table. */ error = urtwn_llt_init(sc); if (error != 0) return error; /* Get Tx queues to USB endpoints mapping. */ hashq = hasnq = haslq = 0; reg = urtwn_read_2(sc, R92C_USB_EP + 1); DPRINTFN(DBG_INIT, "USB endpoints mapping %#jx", reg, 0, 0, 0); if (MS(reg, R92C_USB_EP_HQ) != 0) hashq = 1; if (MS(reg, R92C_USB_EP_NQ) != 0) hasnq = 1; if (MS(reg, R92C_USB_EP_LQ) != 0) haslq = 1; nqueues = hashq + hasnq + haslq; if (nqueues == 0) return EIO; /* Get the number of pages for each queue. */ nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues; /* The remaining pages are assigned to the high priority queue. */ nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues; /* Set number of pages for normal priority queue. */ urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0); urtwn_write_4(sc, R92C_RQPN, /* Set number of pages for public queue. */ SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) | /* Set number of pages for high priority queue. */ SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) | /* Set number of pages for low priority queue. */ SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) | /* Load values. */ R92C_RQPN_LD); urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY); /* Set queue to USB pipe mapping. */ reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; if (nqueues == 1) { if (hashq) { reg |= R92C_TRXDMA_CTRL_QMAP_HQ; } else if (hasnq) { reg |= R92C_TRXDMA_CTRL_QMAP_NQ; } else { reg |= R92C_TRXDMA_CTRL_QMAP_LQ; } } else if (nqueues == 2) { /* All 2-endpoints configs have a high priority queue. */ if (!hashq) { return EIO; } if (hasnq) { reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; } else { reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ; } } else { reg |= R92C_TRXDMA_CTRL_QMAP_3EP; } urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); /* Set Tx/Rx transfer page boundary. */ urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff); /* Set Tx/Rx transfer page size. */ urtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); return 0; } static int urtwn_r88e_dma_init(struct urtwn_softc *sc) { usb_interface_descriptor_t *id; uint32_t reg; int nqueues; int error; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Initialize LLT table. */ error = urtwn_llt_init(sc); if (error != 0) return error; /* Get Tx queues to USB endpoints mapping. */ id = usbd_get_interface_descriptor(sc->sc_iface); nqueues = id->bNumEndpoints - 1; if (nqueues == 0) return EIO; /* Set number of pages for normal priority queue. */ urtwn_write_2(sc, R92C_RQPN_NPQ, 0); urtwn_write_2(sc, R92C_RQPN_NPQ, 0x000d); urtwn_write_4(sc, R92C_RQPN, 0x808e000d); urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R88E_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R88E_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R88E_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TRXFF_BNDY, R88E_TX_PAGE_BOUNDARY); urtwn_write_1(sc, R92C_TDECTRL + 1, R88E_TX_PAGE_BOUNDARY); /* Set queue to USB pipe mapping. */ reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; if (nqueues == 1) reg |= R92C_TRXDMA_CTRL_QMAP_LQ; else if (nqueues == 2) reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; else reg |= R92C_TRXDMA_CTRL_QMAP_3EP; urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); /* Set Tx/Rx transfer page boundary. */ urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x23ff); /* Set Tx/Rx transfer page size. */ urtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); return 0; } static void __noinline urtwn_mac_init(struct urtwn_softc *sc) { size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Write MAC initialization values. */ if (ISSET(sc->chip, URTWN_CHIP_88E)) { for (i = 0; i < __arraycount(rtl8188eu_mac); i++) urtwn_write_1(sc, rtl8188eu_mac[i].reg, rtl8188eu_mac[i].val); } else if (ISSET(sc->chip, URTWN_CHIP_92EU)) { for (i = 0; i < __arraycount(rtl8192eu_mac); i++) urtwn_write_1(sc, rtl8192eu_mac[i].reg, rtl8192eu_mac[i].val); } else { for (i = 0; i < __arraycount(rtl8192cu_mac); i++) urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val); } } static void __noinline urtwn_bb_init(struct urtwn_softc *sc) { const struct rtwn_bb_prog *prog; uint32_t reg; uint8_t crystalcap; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Enable BB and RF. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_DIO_RF); if (!ISSET(sc->chip, URTWN_CHIP_88E) && !ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83); urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb); } urtwn_write_1(sc, R92C_RF_CTRL, R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); if (!ISSET(sc->chip, URTWN_CHIP_88E) && !ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f); urtwn_write_1(sc, 0x15, 0xe9); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); } /* Select BB programming based on board type. */ if (ISSET(sc->chip, URTWN_CHIP_88E)) prog = &rtl8188eu_bb_prog; else if (ISSET(sc->chip, URTWN_CHIP_92EU)) prog = &rtl8192eu_bb_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { prog = &rtl8188ce_bb_prog; } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { prog = &rtl8188ru_bb_prog; } else { prog = &rtl8188cu_bb_prog; } } else { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { prog = &rtl8192ce_bb_prog; } else { prog = &rtl8192cu_bb_prog; } } /* Write BB initialization values. */ for (i = 0; i < prog->count; i++) { /* additional delay depend on registers */ switch (prog->regs[i]) { case 0xfe: urtwn_delay_ms(sc, 50); break; case 0xfd: urtwn_delay_ms(sc, 5); break; case 0xfc: urtwn_delay_ms(sc, 1); break; case 0xfb: DELAY(50); break; case 0xfa: DELAY(5); break; case 0xf9: DELAY(1); break; } urtwn_bb_write(sc, prog->regs[i], prog->vals[i]); DELAY(1); } if (sc->chip & URTWN_CHIP_92C_1T2R) { /* 8192C 1T only configuration. */ reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO); reg = (reg & ~0x00000003) | 0x2; urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO); reg = (reg & ~0x00300033) | 0x00200022; urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING); reg = (reg & ~0xff000000) | (0x45 << 24); urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg = (reg & ~0x000000ff) | 0x23; urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); reg = (reg & ~0x00000030) | (1 << 4); urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); reg = urtwn_bb_read(sc, 0xe74); reg = (reg & ~0x0c000000) | (2 << 26); urtwn_bb_write(sc, 0xe74, reg); reg = urtwn_bb_read(sc, 0xe78); reg = (reg & ~0x0c000000) | (2 << 26); urtwn_bb_write(sc, 0xe78, reg); reg = urtwn_bb_read(sc, 0xe7c); reg = (reg & ~0x0c000000) | (2 << 26); urtwn_bb_write(sc, 0xe7c, reg); reg = urtwn_bb_read(sc, 0xe80); reg = (reg & ~0x0c000000) | (2 << 26); urtwn_bb_write(sc, 0xe80, reg); reg = urtwn_bb_read(sc, 0xe88); reg = (reg & ~0x0c000000) | (2 << 26); urtwn_bb_write(sc, 0xe88, reg); } /* Write AGC values. */ for (i = 0; i < prog->agccount; i++) { urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); DELAY(1); } if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422); DELAY(1); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420); DELAY(1); } if (ISSET(sc->chip, URTWN_CHIP_92EU)) { crystalcap = sc->r88e_rom[0xb9]; if (crystalcap == 0x00) crystalcap = 0x20; crystalcap &= 0x3f; reg = urtwn_bb_read(sc, R92C_AFE_CTRL3); urtwn_bb_write(sc, R92C_AFE_CTRL3, RW(reg, R92C_AFE_XTAL_CTRL_ADDR, crystalcap | crystalcap << 6)); urtwn_write_4(sc, R92C_AFE_XTAL_CTRL, 0xf81fb); } else if (ISSET(sc->chip, URTWN_CHIP_88E)) { crystalcap = sc->r88e_rom[0xb9]; if (crystalcap == 0xff) crystalcap = 0x20; crystalcap &= 0x3f; reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL); urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL, RW(reg, R92C_AFE_XTAL_CTRL_ADDR, crystalcap | crystalcap << 6)); } else { if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR) { SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR); } } } static void __noinline urtwn_rf_init(struct urtwn_softc *sc) { const struct rtwn_rf_prog *prog; uint32_t reg, mask, saved; size_t i, j, idx; URTWNHIST_FUNC(); URTWNHIST_CALLED(); /* Select RF programming based on board type. */ if (ISSET(sc->chip, URTWN_CHIP_88E)) prog = rtl8188eu_rf_prog; else if (ISSET(sc->chip, URTWN_CHIP_92EU)) prog = rtl8192eu_rf_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) { prog = rtl8188ce_rf_prog; } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { prog = rtl8188ru_rf_prog; } else { prog = rtl8188cu_rf_prog; } } else { prog = rtl8192ce_rf_prog; } for (i = 0; i < sc->nrxchains; i++) { /* Save RF_ENV control type. */ idx = i / 2; mask = 0xffffU << ((i % 2) * 16); saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask; /* Set RF_ENV enable. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x100000; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); DELAY(50); /* Set RF_ENV output high. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x10; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); DELAY(50); /* Set address and data lengths of RF registers. */ reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); DELAY(50); reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); DELAY(50); /* Write RF initialization values for this chain. */ for (j = 0; j < prog[i].count; j++) { if (prog[i].regs[j] >= 0xf9 && prog[i].regs[j] <= 0xfe) { /* * These are fake RF registers offsets that * indicate a delay is required. */ urtwn_delay_ms(sc, 50); continue; } urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]); DELAY(5); } /* Restore RF_ENV control type. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask; urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved); } if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) { urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255); urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00); } /* Cache RF register CHNLBW. */ for (i = 0; i < 2; i++) { sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW); } } static void __noinline urtwn_cam_init(struct urtwn_softc *sc) { uint32_t content, command; uint8_t idx; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (ISSET(sc->chip, URTWN_CHIP_92EU)) return; for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) { content = (idx & 3) | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S) | R92C_CAM_VALID; command = R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE | R92C_CAM_CTL0(idx); urtwn_write_4(sc, R92C_CAMWRITE, content); urtwn_write_4(sc, R92C_CAMCMD, command); } for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) { for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) { if (i == 0) { content = (idx & 3) | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S) | R92C_CAM_VALID; } else { content = 0; } command = R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE | R92C_CAM_CTL0(idx) | i; urtwn_write_4(sc, R92C_CAMWRITE, content); urtwn_write_4(sc, R92C_CAMCMD, command); } } /* Invalidate all CAM entries. */ urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR); } static void __noinline urtwn_pa_bias_init(struct urtwn_softc *sc) { uint8_t reg; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); for (i = 0; i < sc->nrxchains; i++) { if (sc->pa_setting & (1U << i)) continue; urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406); } if (!(sc->pa_setting & 0x10)) { reg = urtwn_read_1(sc, 0x16); reg = (reg & ~0xf0) | 0x90; urtwn_write_1(sc, 0x16, reg); } } static void __noinline urtwn_rxfilter_init(struct urtwn_softc *sc) { URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* Initialize Rx filter. */ /* TODO: use better filter for monitor mode. */ urtwn_write_4(sc, R92C_RCR, R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL | R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS); /* Accept all multicast frames. */ urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff); urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff); /* Accept all management frames. */ urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff); /* Reject all control frames. */ urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000); /* Accept all data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); } static void __noinline urtwn_edca_init(struct urtwn_softc *sc) { URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); /* set spec SIFS (used in NAV) */ urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a); urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a); /* set SIFS CCK/OFDM */ urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a); urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a); /* TXOP */ urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324); urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226); } static void urtwn_write_txpower(struct urtwn_softc *sc, int chain, uint16_t power[URTWN_RIDX_COUNT]) { uint32_t reg; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("chain=%jd", chain, 0, 0, 0); /* Write per-CCK rate Tx power. */ if (chain == 0) { reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32); reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]); urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]); reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } else { reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32); reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]); reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } /* Write per-OFDM rate Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain), SM(R92C_TXAGC_RATE06, power[ 4]) | SM(R92C_TXAGC_RATE09, power[ 5]) | SM(R92C_TXAGC_RATE12, power[ 6]) | SM(R92C_TXAGC_RATE18, power[ 7])); urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain), SM(R92C_TXAGC_RATE24, power[ 8]) | SM(R92C_TXAGC_RATE36, power[ 9]) | SM(R92C_TXAGC_RATE48, power[10]) | SM(R92C_TXAGC_RATE54, power[11])); /* Write per-MCS Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain), SM(R92C_TXAGC_MCS00, power[12]) | SM(R92C_TXAGC_MCS01, power[13]) | SM(R92C_TXAGC_MCS02, power[14]) | SM(R92C_TXAGC_MCS03, power[15])); urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain), SM(R92C_TXAGC_MCS04, power[16]) | SM(R92C_TXAGC_MCS05, power[17]) | SM(R92C_TXAGC_MCS06, power[18]) | SM(R92C_TXAGC_MCS07, power[19])); urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain), SM(R92C_TXAGC_MCS08, power[20]) | SM(R92C_TXAGC_MCS09, power[21]) | SM(R92C_TXAGC_MCS10, power[22]) | SM(R92C_TXAGC_MCS11, power[23])); urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain), SM(R92C_TXAGC_MCS12, power[24]) | SM(R92C_TXAGC_MCS13, power[25]) | SM(R92C_TXAGC_MCS14, power[26]) | SM(R92C_TXAGC_MCS15, power[27])); } static void urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m, uint16_t power[URTWN_RIDX_COUNT]) { struct r92c_rom *rom = &sc->rom; uint16_t cckpow, ofdmpow, htpow, diff, maxpow; const struct rtwn_txpwr *base; int ridx, group; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("chain=%jd, chan=%jd", chain, chan, 0, 0); /* Determine channel group. */ if (chan <= 3) { group = 0; } else if (chan <= 9) { group = 1; } else { group = 2; } /* Get original Tx power based on board type and RF chain. */ if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) { base = &rtl8188ru_txagc[chain]; } else { base = &rtl8192cu_txagc[chain]; } } else { base = &rtl8192cu_txagc[chain]; } memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = 0; ridx <= 3; ridx++) { power[ridx] = base->pwr[0][ridx]; } } for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) { power[ridx] = base->pwr[0][ridx]; /* Apply vendor limits. */ if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) { maxpow = rom->ht40_max_pwr[group]; } else { maxpow = rom->ht20_max_pwr[group]; } maxpow = (maxpow >> (chain * 4)) & 0xf; if (power[ridx] > maxpow) { power[ridx] = maxpow; } } else if (sc->regulatory == 1) { if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) { power[ridx] = base->pwr[group][ridx]; } } else if (sc->regulatory != 2) { power[ridx] = base->pwr[0][ridx]; } } /* Compute per-CCK rate Tx power. */ cckpow = rom->cck_tx_pwr[chain][group]; for (ridx = 0; ridx <= 3; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) { power[ridx] = R92C_MAX_TX_PWR; } } htpow = rom->ht40_1s_tx_pwr[chain][group]; if (sc->ntxchains > 1) { /* Apply reduction for 2 spatial streams. */ diff = rom->ht40_2s_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow = (htpow > diff) ? htpow - diff : 0; } /* Compute per-OFDM rate Tx power. */ diff = rom->ofdm_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; ofdmpow = htpow + diff; /* HT->OFDM correction. */ for (ridx = 4; ridx <= 11; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) { power[ridx] = R92C_MAX_TX_PWR; } } /* Compute per-MCS Tx power. */ if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) { diff = rom->ht20_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow += diff; /* HT40->HT20 correction. */ } for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) { power[ridx] += htpow; if (power[ridx] > R92C_MAX_TX_PWR) { power[ridx] = R92C_MAX_TX_PWR; } } #ifdef URTWN_DEBUG if (urtwn_debug & DBG_RF) { /* Dump per-rate Tx power values. */ DPRINTFN(DBG_RF, "Tx power for chain %jd:", chain, 0, 0, 0); for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) DPRINTFN(DBG_RF, "Rate %jd = %ju", ridx, power[ridx], 0, 0); } #endif } void urtwn_r88e_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m, uint16_t power[URTWN_RIDX_COUNT]) { uint16_t cckpow, ofdmpow, bw20pow, htpow; const struct rtwn_r88e_txpwr *base; int ridx, group; URTWNHIST_FUNC(); URTWNHIST_CALLARGS("chain=%jd, chan=%jd", chain, chan, 0, 0); /* Determine channel group. */ if (chan <= 2) group = 0; else if (chan <= 5) group = 1; else if (chan <= 8) group = 2; else if (chan <= 11) group = 3; else if (chan <= 13) group = 4; else group = 5; /* Get original Tx power based on board type and RF chain. */ base = &rtl8188eu_txagc[chain]; memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = 0; ridx <= 3; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) power[ridx] = base->pwr[0][ridx]; else if (sc->regulatory == 1) { if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = sc->cck_tx_pwr[group]; for (ridx = 0; ridx <= 3; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = sc->ht40_tx_pwr[group]; /* Compute per-OFDM rate Tx power. */ ofdmpow = htpow + sc->ofdm_tx_pwr_diff; for (ridx = 4; ridx <= 11; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } bw20pow = htpow + sc->bw20_tx_pwr_diff; for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += bw20pow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } } static void urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m) { uint16_t power[URTWN_RIDX_COUNT]; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); for (i = 0; i < sc->ntxchains; i++) { /* Compute per-rate Tx power values. */ if (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU)) urtwn_r88e_get_txpower(sc, i, chan, ht40m, power); else urtwn_get_txpower(sc, i, chan, ht40m, power); /* Write per-rate Tx power values to hardware. */ urtwn_write_txpower(sc, i, power); } } static void __noinline urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m) { struct ieee80211com *ic = &sc->sc_ic; u_int chan; size_t i; chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ URTWNHIST_FUNC(); URTWNHIST_CALLARGS("chan=%jd", chan, 0, 0, 0); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) { chan += 2; } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){ chan -= 2; } /* Set Tx power for this new channel. */ urtwn_set_txpower(sc, chan, ht40m); for (i = 0; i < sc->nrxchains; i++) { urtwn_rf_write(sc, i, R92C_RF_CHNLBW, RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan)); } if (ht40m) { /* Is secondary channel below or above primary? */ int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE); uint32_t reg; urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ); reg = urtwn_read_1(sc, R92C_RRSR + 2); reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5; urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ); /* Set CCK side band. */ reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM); reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4; urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg); reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF); reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10; urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg); urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) & ~R92C_FPGA0_ANAPARAM2_CBW20); reg = urtwn_bb_read(sc, 0x818); reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26; urtwn_bb_write(sc, 0x818, reg); /* Select 40MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan); } else { urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ); if (!ISSET(sc->chip, URTWN_CHIP_88E) && !ISSET(sc->chip, URTWN_CHIP_92EU)) { urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) | R92C_FPGA0_ANAPARAM2_CBW20); } /* Select 20MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan | (ISSET(sc->chip, URTWN_CHIP_88E) || ISSET(sc->chip, URTWN_CHIP_92EU) ? R88E_RF_CHNLBW_BW20 : R92C_RF_CHNLBW_BW20)); } } static void __noinline urtwn_iq_calib(struct urtwn_softc *sc, bool inited) { URTWNHIST_FUNC(); URTWNHIST_CALLARGS("inited=%jd", inited, 0, 0, 0); uint32_t addaBackup[16], iqkBackup[4], piMode; #ifdef notyet uint32_t odfm0_agccore_regs[3]; uint32_t ant_regs[3]; uint32_t rf_regs[8]; #endif uint32_t reg0, reg1, reg2; int i, attempt; #ifdef notyet urtwn_write_1(sc, R92E_STBC_SETTING + 2, urtwn_read_1(sc, R92E_STBC_SETTING + 2)); urtwn_write_1(sc, R92C_ACLK_MON, 0); /* Save AGCCORE regs. */ for (i = 0; i < sc->nrxchains; i++) { odfm0_agccore_regs[i] = urtwn_read_4(sc, R92C_OFDM0_AGCCORE1(i)); } #endif /* Save BB regs. */ reg0 = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg1 = urtwn_bb_read(sc, R92C_OFDM0_TRMUXPAR); reg2 = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(1)); /* Save adda regs to be restored when finished. */ for (i = 0; i < __arraycount(addaReg); i++) addaBackup[i] = urtwn_bb_read(sc, addaReg[i]); /* Save mac regs. */ iqkBackup[0] = urtwn_read_1(sc, R92C_TXPAUSE); iqkBackup[1] = urtwn_read_1(sc, R92C_BCN_CTRL); iqkBackup[2] = urtwn_read_1(sc, R92C_BCN_CTRL1); iqkBackup[3] = urtwn_read_4(sc, R92C_GPIO_MUXCFG); #ifdef notyet ant_regs[0] = urtwn_read_4(sc, R92C_CONFIG_ANT_A); ant_regs[1] = urtwn_read_4(sc, R92C_CONFIG_ANT_B); rf_regs[0] = urtwn_read_4(sc, R92C_FPGA0_RFIFACESW(0)); for (i = 0; i < sc->nrxchains; i++) rf_regs[i+1] = urtwn_read_4(sc, R92C_FPGA0_RFIFACEOE(i)); reg4 = urtwn_read_4(sc, R92C_CCK0_AFESETTING); #endif piMode = (urtwn_bb_read(sc, R92C_HSSI_PARAM1(0)) & R92C_HSSI_PARAM1_PI); if (piMode == 0) { urtwn_bb_write(sc, R92C_HSSI_PARAM1(0), urtwn_bb_read(sc, R92C_HSSI_PARAM1(0))| R92C_HSSI_PARAM1_PI); urtwn_bb_write(sc, R92C_HSSI_PARAM1(1), urtwn_bb_read(sc, R92C_HSSI_PARAM1(1))| R92C_HSSI_PARAM1_PI); } attempt = 1; next_attempt: /* Set mac regs for calibration. */ for (i = 0; i < __arraycount(addaReg); i++) { urtwn_bb_write(sc, addaReg[i], addaReg[__arraycount(addaReg) - 1]); } urtwn_write_2(sc, R92C_CCK0_AFESETTING, urtwn_read_2(sc, R92C_CCK0_AFESETTING)); urtwn_write_2(sc, R92C_OFDM0_TRXPATHENA, R92C_IQK_TRXPATHENA); urtwn_write_2(sc, R92C_OFDM0_TRMUXPAR, R92C_IQK_TRMUXPAR); urtwn_write_2(sc, R92C_FPGA0_RFIFACESW(1), R92C_IQK_RFIFACESW1); urtwn_write_4(sc, R92C_LSSI_PARAM(0), R92C_IQK_LSSI_PARAM); if (sc->ntxchains > 1) urtwn_bb_write(sc, R92C_LSSI_PARAM(1), R92C_IQK_LSSI_PARAM); urtwn_write_1(sc, R92C_TXPAUSE, (~R92C_TXPAUSE_BCN) & R92C_TXPAUSE_ALL); urtwn_write_1(sc, R92C_BCN_CTRL, (iqkBackup[1] & ~R92C_BCN_CTRL_EN_BCN)); urtwn_write_1(sc, R92C_BCN_CTRL1, (iqkBackup[2] & ~R92C_BCN_CTRL_EN_BCN)); urtwn_write_1(sc, R92C_GPIO_MUXCFG, (iqkBackup[3] & ~R92C_GPIO_MUXCFG_ENBT)); urtwn_bb_write(sc, R92C_CONFIG_ANT_A, R92C_IQK_CONFIG_ANT); if (sc->ntxchains > 1) urtwn_bb_write(sc, R92C_CONFIG_ANT_B, R92C_IQK_CONFIG_ANT); urtwn_bb_write(sc, R92C_FPGA0_IQK, R92C_FPGA0_IQK_SETTING); urtwn_bb_write(sc, R92C_TX_IQK, R92C_TX_IQK_SETTING); urtwn_bb_write(sc, R92C_RX_IQK, R92C_RX_IQK_SETTING); /* Restore BB regs. */ urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg0); urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), reg2); urtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR, reg1); urtwn_bb_write(sc, R92C_FPGA0_IQK, 0x0); urtwn_bb_write(sc, R92C_LSSI_PARAM(0), R92C_IQK_LSSI_RESTORE); if (sc->nrxchains > 1) urtwn_bb_write(sc, R92C_LSSI_PARAM(1), R92C_IQK_LSSI_RESTORE); if (attempt-- > 0) goto next_attempt; /* Restore mode. */ if (piMode == 0) { urtwn_bb_write(sc, R92C_HSSI_PARAM1(0), urtwn_bb_read(sc, R92C_HSSI_PARAM1(0)) & ~R92C_HSSI_PARAM1_PI); urtwn_bb_write(sc, R92C_HSSI_PARAM1(1), urtwn_bb_read(sc, R92C_HSSI_PARAM1(1)) & ~R92C_HSSI_PARAM1_PI); } #ifdef notyet for (i = 0; i < sc->nrxchains; i++) { urtwn_write_4(sc, R92C_OFDM0_AGCCORE1(i), odfm0_agccore_regs[i]); } #endif /* Restore adda regs. */ for (i = 0; i < __arraycount(addaReg); i++) urtwn_bb_write(sc, addaReg[i], addaBackup[i]); /* Restore mac regs. */ urtwn_write_1(sc, R92C_TXPAUSE, iqkBackup[0]); urtwn_write_1(sc, R92C_BCN_CTRL, iqkBackup[1]); urtwn_write_1(sc, R92C_USTIME_TSF, iqkBackup[2]); urtwn_write_4(sc, R92C_GPIO_MUXCFG, iqkBackup[3]); #ifdef notyet urtwn_write_4(sc, R92C_CONFIG_ANT_A, ant_regs[0]); urtwn_write_4(sc, R92C_CONFIG_ANT_B, ant_regs[1]); urtwn_write_4(sc, R92C_FPGA0_RFIFACESW(0), rf_regs[0]); for (i = 0; i < sc->nrxchains; i++) urtwn_write_4(sc, R92C_FPGA0_RFIFACEOE(i), rf_regs[i+1]); urtwn_write_4(sc, R92C_CCK0_AFESETTING, reg4); #endif } static void urtwn_lc_calib(struct urtwn_softc *sc) { uint32_t rf_ac[2]; uint8_t txmode; size_t i; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3); if ((txmode & 0x70) != 0) { /* Disable all continuous Tx. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70); /* Set RF mode to standby mode. */ for (i = 0; i < sc->nrxchains; i++) { rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC); urtwn_rf_write(sc, i, R92C_RF_AC, RW(rf_ac[i], R92C_RF_AC_MODE, R92C_RF_AC_MODE_STANDBY)); } } else { /* Block all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0xff); } /* Start calibration. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART); /* Give calibration the time to complete. */ urtwn_delay_ms(sc, 100); /* Restore configuration. */ if ((txmode & 0x70) != 0) { /* Restore Tx mode. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode); /* Restore RF mode. */ for (i = 0; i < sc->nrxchains; i++) { urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]); } } else { /* Unblock all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0x00); } } static void urtwn_temp_calib(struct urtwn_softc *sc) { int temp, t_meter_reg; URTWNHIST_FUNC(); URTWNHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_write_mtx)); if (!ISSET(sc->chip, URTWN_CHIP_92EU)) t_meter_reg = R92C_RF_T_METER; else t_meter_reg = R92E_RF_T_METER; if (sc->thcal_state == 0) { /* Start measuring temperature. */ DPRINTFN(DBG_RF, "start measuring temperature", 0, 0, 0, 0); urtwn_rf_write(sc, 0, t_meter_reg, 0x60); sc->thcal_state = 1; return; } sc->thcal_state = 0; /* Read measured temperature. */ temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f; DPRINTFN(DBG_RF, "temperature=%jd", temp, 0, 0, 0); if (temp == 0) /* Read failed, skip. */ return; /* * Redo LC calibration if temperature changed significantly since * last calibration. */ if (sc->thcal_lctemp == 0) { /* First LC calibration is performed in urtwn_init(). */ sc->thcal_lctemp = temp; } else if (abs(temp - sc->thcal_lctemp) > 1) { DPRINTFN(DBG_RF, "LC calib triggered by temp: %jd -> %jd", sc->thcal_lctemp,