67 67 275 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/nfs/inode.c * * Copyright (C) 1992 Rick Sladkey * * nfs inode and superblock handling functions * * Modularised by Alan Cox <alan@lxorguk.ukuu.org.uk>, while hacking some * experimental NFS changes. Modularisation taken straight from SYS5 fs. * * Change to nfs_read_super() to permit NFS mounts to multi-homed hosts. * J.S.Peatfield@damtp.cam.ac.uk * */ #include <linux/module.h> #include <linux/init.h> #include <linux/sched/signal.h> #include <linux/time.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/metrics.h> #include <linux/nfs_fs.h> #include <linux/nfs_mount.h> #include <linux/nfs4_mount.h> #include <linux/lockd/bind.h> #include <linux/seq_file.h> #include <linux/mount.h> #include <linux/vfs.h> #include <linux/inet.h> #include <linux/nfs_xdr.h> #include <linux/slab.h> #include <linux/compat.h> #include <linux/freezer.h> #include <linux/uaccess.h> #include <linux/iversion.h> #include "nfs4_fs.h" #include "callback.h" #include "delegation.h" #include "iostat.h" #include "internal.h" #include "fscache.h" #include "pnfs.h" #include "nfs.h" #include "netns.h" #include "sysfs.h" #include "nfstrace.h" #define NFSDBG_FACILITY NFSDBG_VFS #define NFS_64_BIT_INODE_NUMBERS_ENABLED 1 /* Default is to see 64-bit inode numbers */ static bool enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED; static int nfs_update_inode(struct inode *, struct nfs_fattr *); static struct kmem_cache * nfs_inode_cachep; static inline unsigned long nfs_fattr_to_ino_t(struct nfs_fattr *fattr) { return nfs_fileid_to_ino_t(fattr->fileid); } static int nfs_wait_killable(int mode) { freezable_schedule_unsafe(); if (signal_pending_state(mode, current)) return -ERESTARTSYS; return 0; } int nfs_wait_bit_killable(struct wait_bit_key *key, int mode) { return nfs_wait_killable(mode); } EXPORT_SYMBOL_GPL(nfs_wait_bit_killable); /** * nfs_compat_user_ino64 - returns the user-visible inode number * @fileid: 64-bit fileid * * This function returns a 32-bit inode number if the boot parameter * nfs.enable_ino64 is zero. */ u64 nfs_compat_user_ino64(u64 fileid) { #ifdef CONFIG_COMPAT compat_ulong_t ino; #else unsigned long ino; #endif if (enable_ino64) return fileid; ino = fileid; if (sizeof(ino) < sizeof(fileid)) ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8; return ino; } int nfs_drop_inode(struct inode *inode) { return NFS_STALE(inode) || generic_drop_inode(inode); } EXPORT_SYMBOL_GPL(nfs_drop_inode); void nfs_clear_inode(struct inode *inode) { /* * The following should never happen... */ WARN_ON_ONCE(nfs_have_writebacks(inode)); WARN_ON_ONCE(!list_empty(&NFS_I(inode)->open_files)); nfs_zap_acl_cache(inode); nfs_access_zap_cache(inode); nfs_fscache_clear_inode(inode); } EXPORT_SYMBOL_GPL(nfs_clear_inode); void nfs_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); nfs_clear_inode(inode); } int nfs_sync_inode(struct inode *inode) { inode_dio_wait(inode); return nfs_wb_all(inode); } EXPORT_SYMBOL_GPL(nfs_sync_inode); /** * nfs_sync_mapping - helper to flush all mmapped dirty data to disk * @mapping: pointer to struct address_space */ int nfs_sync_mapping(struct address_space *mapping) { int ret = 0; if (mapping->nrpages != 0) { unmap_mapping_range(mapping, 0, 0, 0); ret = nfs_wb_all(mapping->host); } return ret; } static int nfs_attribute_timeout(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); return !time_in_range_open(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo); } static bool nfs_check_cache_flags_invalid(struct inode *inode, unsigned long flags) { unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); return (cache_validity & flags) != 0; } bool nfs_check_cache_invalid(struct inode *inode, unsigned long flags) { if (nfs_check_cache_flags_invalid(inode, flags)) return true; return nfs_attribute_cache_expired(inode); } EXPORT_SYMBOL_GPL(nfs_check_cache_invalid); #ifdef CONFIG_NFS_V4_2 static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi) { return nfsi->xattr_cache != NULL; } #else static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi) { return false; } #endif void nfs_set_cache_invalid(struct inode *inode, unsigned long flags) { struct nfs_inode *nfsi = NFS_I(inode); bool have_delegation = NFS_PROTO(inode)->have_delegation(inode, FMODE_READ); if (have_delegation) { if (!(flags & NFS_INO_REVAL_FORCED)) flags &= ~(NFS_INO_INVALID_MODE | NFS_INO_INVALID_OTHER | NFS_INO_INVALID_XATTR); flags &= ~(NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE); } else if (flags & NFS_INO_REVAL_PAGECACHE) flags |= NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE; if (!nfs_has_xattr_cache(nfsi)) flags &= ~NFS_INO_INVALID_XATTR; if (flags & NFS_INO_INVALID_DATA) nfs_fscache_invalidate(inode); if (inode->i_mapping->nrpages == 0) flags &= ~(NFS_INO_INVALID_DATA|NFS_INO_DATA_INVAL_DEFER); flags &= ~(NFS_INO_REVAL_PAGECACHE | NFS_INO_REVAL_FORCED); nfsi->cache_validity |= flags; } EXPORT_SYMBOL_GPL(nfs_set_cache_invalid); /* * Invalidate the local caches */ static void nfs_zap_caches_locked(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); int mode = inode->i_mode; nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = jiffies; if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) { nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR | NFS_INO_INVALID_DATA | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR | NFS_INO_REVAL_PAGECACHE); } else nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR | NFS_INO_REVAL_PAGECACHE); nfs_zap_label_cache_locked(nfsi); } void nfs_zap_caches(struct inode *inode) { spin_lock(&inode->i_lock); nfs_zap_caches_locked(inode); spin_unlock(&inode->i_lock); } void nfs_zap_mapping(struct inode *inode, struct address_space *mapping) { if (mapping->nrpages != 0) { spin_lock(&inode->i_lock); nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA); spin_unlock(&inode->i_lock); } } void nfs_zap_acl_cache(struct inode *inode) { void (*clear_acl_cache)(struct inode *); clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache; if (clear_acl_cache != NULL) clear_acl_cache(inode); spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL; spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_zap_acl_cache); void nfs_invalidate_atime(struct inode *inode) { spin_lock(&inode->i_lock); nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_invalidate_atime); /* * Invalidate, but do not unhash, the inode. * NB: must be called with inode->i_lock held! */ static void nfs_set_inode_stale_locked(struct inode *inode) { set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); nfs_zap_caches_locked(inode); trace_nfs_set_inode_stale(inode); } void nfs_set_inode_stale(struct inode *inode) { spin_lock(&inode->i_lock); nfs_set_inode_stale_locked(inode); spin_unlock(&inode->i_lock); } struct nfs_find_desc { struct nfs_fh *fh; struct nfs_fattr *fattr; }; /* * In NFSv3 we can have 64bit inode numbers. In order to support * this, and re-exported directories (also seen in NFSv2) * we are forced to allow 2 different inodes to have the same * i_ino. */ static int nfs_find_actor(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; struct nfs_fh *fh = desc->fh; struct nfs_fattr *fattr = desc->fattr; if (NFS_FILEID(inode) != fattr->fileid) return 0; if (inode_wrong_type(inode, fattr->mode)) return 0; if (nfs_compare_fh(NFS_FH(inode), fh)) return 0; if (is_bad_inode(inode) || NFS_STALE(inode)) return 0; return 1; } static int nfs_init_locked(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque; struct nfs_fattr *fattr = desc->fattr; set_nfs_fileid(inode, fattr->fileid); inode->i_mode = fattr->mode; nfs_copy_fh(NFS_FH(inode), desc->fh); return 0; } #ifdef CONFIG_NFS_V4_SECURITY_LABEL static void nfs_clear_label_invalid(struct inode *inode) { spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_LABEL; spin_unlock(&inode->i_lock); } void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr, struct nfs4_label *label) { int error; if (label == NULL) return; if ((fattr->valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL) && inode->i_security) { error = security_inode_notifysecctx(inode, label->label, label->len); if (error) printk(KERN_ERR "%s() %s %d " "security_inode_notifysecctx() %d\n", __func__, (char *)label->label, label->len, error); nfs_clear_label_invalid(inode); } } struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { struct nfs4_label *label = NULL; int minor_version = server->nfs_client->cl_minorversion; if (minor_version < 2) return label; if (!(server->caps & NFS_CAP_SECURITY_LABEL)) return label; label = kzalloc(sizeof(struct nfs4_label), flags); if (label == NULL) return ERR_PTR(-ENOMEM); label->label = kzalloc(NFS4_MAXLABELLEN, flags); if (label->label == NULL) { kfree(label); return ERR_PTR(-ENOMEM); } label->len = NFS4_MAXLABELLEN; return label; } EXPORT_SYMBOL_GPL(nfs4_label_alloc); #else void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr, struct nfs4_label *label) { } #endif EXPORT_SYMBOL_GPL(nfs_setsecurity); /* Search for inode identified by fh, fileid and i_mode in inode cache. */ struct inode * nfs_ilookup(struct super_block *sb, struct nfs_fattr *fattr, struct nfs_fh *fh) { struct nfs_find_desc desc = { .fh = fh, .fattr = fattr, }; struct inode *inode; unsigned long hash; if (!(fattr->valid & NFS_ATTR_FATTR_FILEID) || !(fattr->valid & NFS_ATTR_FATTR_TYPE)) return NULL; hash = nfs_fattr_to_ino_t(fattr); inode = ilookup5(sb, hash, nfs_find_actor, &desc); dprintk("%s: returning %p\n", __func__, inode); return inode; } /* * This is our front-end to iget that looks up inodes by file handle * instead of inode number. */ struct inode * nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs_find_desc desc = { .fh = fh, .fattr = fattr }; struct inode *inode = ERR_PTR(-ENOENT); u64 fattr_supported = NFS_SB(sb)->fattr_valid; unsigned long hash; nfs_attr_check_mountpoint(sb, fattr); if (nfs_attr_use_mounted_on_fileid(fattr)) fattr->fileid = fattr->mounted_on_fileid; else if ((fattr->valid & NFS_ATTR_FATTR_FILEID) == 0) goto out_no_inode; if ((fattr->valid & NFS_ATTR_FATTR_TYPE) == 0) goto out_no_inode; hash = nfs_fattr_to_ino_t(fattr); inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc); if (inode == NULL) { inode = ERR_PTR(-ENOMEM); goto out_no_inode; } if (inode->i_state & I_NEW) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long now = jiffies; /* We set i_ino for the few things that still rely on it, * such as stat(2) */ inode->i_ino = hash; /* We can't support update_atime(), since the server will reset it */ inode->i_flags |= S_NOATIME|S_NOCMTIME; inode->i_mode = fattr->mode; nfsi->cache_validity = 0; if ((fattr->valid & NFS_ATTR_FATTR_MODE) == 0 && (fattr_supported & NFS_ATTR_FATTR_MODE)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE); /* Why so? Because we want revalidate for devices/FIFOs, and * that's precisely what we have in nfs_file_inode_operations. */ inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops; if (S_ISREG(inode->i_mode)) { inode->i_fop = NFS_SB(sb)->nfs_client->rpc_ops->file_ops; inode->i_data.a_ops = &nfs_file_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops; inode->i_fop = &nfs_dir_operations; inode->i_data.a_ops = &nfs_dir_aops; /* Deal with crossing mountpoints */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT || fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) { if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) inode->i_op = &nfs_referral_inode_operations; else inode->i_op = &nfs_mountpoint_inode_operations; inode->i_fop = NULL; inode->i_flags |= S_AUTOMOUNT; } } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &nfs_symlink_inode_operations; inode_nohighmem(inode); } else init_special_inode(inode, inode->i_mode, fattr->rdev); memset(&inode->i_atime, 0, sizeof(inode->i_atime)); memset(&inode->i_mtime, 0, sizeof(inode->i_mtime)); memset(&inode->i_ctime, 0, sizeof(inode->i_ctime)); inode_set_iversion_raw(inode, 0); inode->i_size = 0; clear_nlink(inode); inode->i_uid = make_kuid(&init_user_ns, -2); inode->i_gid = make_kgid(&init_user_ns, -2); inode->i_blocks = 0; memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); nfsi->write_io = 0; nfsi->read_io = 0; nfsi->read_cache_jiffies = fattr->time_start; nfsi->attr_gencount = fattr->gencount; if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (fattr_supported & NFS_ATTR_FATTR_ATIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (fattr_supported & NFS_ATTR_FATTR_MTIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else if (fattr_supported & NFS_ATTR_FATTR_CTIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_CHANGE) inode_set_iversion_raw(inode, fattr->change_attr); else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); if (fattr->valid & NFS_ATTR_FATTR_SIZE) inode->i_size = nfs_size_to_loff_t(fattr->size); else nfs_set_cache_invalid(inode, NFS_INO_INVALID_SIZE); if (fattr->valid & NFS_ATTR_FATTR_NLINK) set_nlink(inode, fattr->nlink); else if (fattr_supported & NFS_ATTR_FATTR_NLINK) nfs_set_cache_invalid(inode, NFS_INO_INVALID_NLINK); if (fattr->valid & NFS_ATTR_FATTR_OWNER) inode->i_uid = fattr->uid; else if (fattr_supported & NFS_ATTR_FATTR_OWNER) nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER); if (fattr->valid & NFS_ATTR_FATTR_GROUP) inode->i_gid = fattr->gid; else if (fattr_supported & NFS_ATTR_FATTR_GROUP) nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER); if (nfs_server_capable(inode, NFS_CAP_XATTR)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_XATTR); if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED) inode->i_blocks = fattr->du.nfs2.blocks; else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED && fattr->size != 0) nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS); if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED && fattr->size != 0) nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS); nfs_setsecurity(inode, fattr, label); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; nfsi->access_cache = RB_ROOT; nfs_fscache_init_inode(inode); unlock_new_inode(inode); } else { int err = nfs_refresh_inode(inode, fattr); if (err < 0) { iput(inode); inode = ERR_PTR(err); goto out_no_inode; } } dprintk("NFS: nfs_fhget(%s/%Lu fh_crc=0x%08x ct=%d)\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), nfs_display_fhandle_hash(fh), atomic_read(&inode->i_count)); out: return inode; out_no_inode: dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode)); goto out; } EXPORT_SYMBOL_GPL(nfs_fhget); #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE|ATTR_OPEN) int nfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct nfs_fattr *fattr; int error = 0; nfs_inc_stats(inode, NFSIOS_VFSSETATTR); /* skip mode change if it's just for clearing setuid/setgid */ if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID)) attr->ia_valid &= ~ATTR_MODE; if (attr->ia_valid & ATTR_SIZE) { BUG_ON(!S_ISREG(inode->i_mode)); error = inode_newsize_ok(inode, attr->ia_size); if (error) return error; if (attr->ia_size == i_size_read(inode)) attr->ia_valid &= ~ATTR_SIZE; } /* Optimization: if the end result is no change, don't RPC */ if (((attr->ia_valid & NFS_VALID_ATTRS) & ~(ATTR_FILE|ATTR_OPEN)) == 0) return 0; trace_nfs_setattr_enter(inode); /* Write all dirty data */ if (S_ISREG(inode->i_mode)) nfs_sync_inode(inode); fattr = nfs_alloc_fattr(); if (fattr == NULL) { error = -ENOMEM; goto out; } error = NFS_PROTO(inode)->setattr(dentry, fattr, attr); if (error == 0) error = nfs_refresh_inode(inode, fattr); nfs_free_fattr(fattr); out: trace_nfs_setattr_exit(inode, error); return error; } EXPORT_SYMBOL_GPL(nfs_setattr); /** * nfs_vmtruncate - unmap mappings "freed" by truncate() syscall * @inode: inode of the file used * @offset: file offset to start truncating * * This is a copy of the common vmtruncate, but with the locking * corrected to take into account the fact that NFS requires * inode->i_size to be updated under the inode->i_lock. * Note: must be called with inode->i_lock held! */ static int nfs_vmtruncate(struct inode * inode, loff_t offset) { int err; err = inode_newsize_ok(inode, offset); if (err) goto out; i_size_write(inode, offset); /* Optimisation */ if (offset == 0) NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_DATA | NFS_INO_DATA_INVAL_DEFER); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; spin_unlock(&inode->i_lock); truncate_pagecache(inode, offset); spin_lock(&inode->i_lock); out: return err; } /** * nfs_setattr_update_inode - Update inode metadata after a setattr call. * @inode: pointer to struct inode * @attr: pointer to struct iattr * @fattr: pointer to struct nfs_fattr * * Note: we do this in the *proc.c in order to ensure that * it works for things like exclusive creates too. */ void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr, struct nfs_fattr *fattr) { /* Barrier: bump the attribute generation count. */ nfs_fattr_set_barrier(fattr); spin_lock(&inode->i_lock); NFS_I(inode)->attr_gencount = fattr->gencount; if ((attr->ia_valid & ATTR_SIZE) != 0) { nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME | NFS_INO_INVALID_BLOCKS); nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC); nfs_vmtruncate(inode, attr->ia_size); } if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) { NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_CTIME; if ((attr->ia_valid & ATTR_KILL_SUID) != 0 && inode->i_mode & S_ISUID) inode->i_mode &= ~S_ISUID; if ((attr->ia_valid & ATTR_KILL_SGID) != 0 && (inode->i_mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) inode->i_mode &= ~S_ISGID; if ((attr->ia_valid & ATTR_MODE) != 0) { int mode = attr->ia_mode & S_IALLUGO; mode |= inode->i_mode & ~S_IALLUGO; inode->i_mode = mode; } if ((attr->ia_valid & ATTR_UID) != 0) inode->i_uid = attr->ia_uid; if ((attr->ia_valid & ATTR_GID) != 0) inode->i_gid = attr->ia_gid; if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); nfs_set_cache_invalid(inode, NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL); } if (attr->ia_valid & (ATTR_ATIME_SET|ATTR_ATIME)) { NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_ATIME | NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (attr->ia_valid & ATTR_ATIME_SET) inode->i_atime = attr->ia_atime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); } if (attr->ia_valid & (ATTR_MTIME_SET|ATTR_MTIME)) { NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_MTIME | NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (attr->ia_valid & ATTR_MTIME_SET) inode->i_mtime = attr->ia_mtime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); } if (fattr->valid) nfs_update_inode(inode, fattr); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_setattr_update_inode); static void nfs_readdirplus_parent_cache_miss(struct dentry *dentry) { struct dentry *parent; if (!nfs_server_capable(d_inode(dentry), NFS_CAP_READDIRPLUS)) return; parent = dget_parent(dentry); nfs_force_use_readdirplus(d_inode(parent)); dput(parent); } static void nfs_readdirplus_parent_cache_hit(struct dentry *dentry) { struct dentry *parent; if (!nfs_server_capable(d_inode(dentry), NFS_CAP_READDIRPLUS)) return; parent = dget_parent(dentry); nfs_advise_use_readdirplus(d_inode(parent)); dput(parent); } static u32 nfs_get_valid_attrmask(struct inode *inode) { unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); u32 reply_mask = STATX_INO | STATX_TYPE; if (!(cache_validity & NFS_INO_INVALID_ATIME)) reply_mask |= STATX_ATIME; if (!(cache_validity & NFS_INO_INVALID_CTIME)) reply_mask |= STATX_CTIME; if (!(cache_validity & NFS_INO_INVALID_MTIME)) reply_mask |= STATX_MTIME; if (!(cache_validity & NFS_INO_INVALID_SIZE)) reply_mask |= STATX_SIZE; if (!(cache_validity & NFS_INO_INVALID_NLINK)) reply_mask |= STATX_NLINK; if (!(cache_validity & NFS_INO_INVALID_MODE)) reply_mask |= STATX_MODE; if (!(cache_validity & NFS_INO_INVALID_OTHER)) reply_mask |= STATX_UID | STATX_GID; if (!(cache_validity & NFS_INO_INVALID_BLOCKS)) reply_mask |= STATX_BLOCKS; return reply_mask; } int nfs_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct nfs_server *server = NFS_SERVER(inode); unsigned long cache_validity; int err = 0; bool force_sync = query_flags & AT_STATX_FORCE_SYNC; bool do_update = false; trace_nfs_getattr_enter(inode); request_mask &= STATX_TYPE | STATX_MODE | STATX_NLINK | STATX_UID | STATX_GID | STATX_ATIME | STATX_MTIME | STATX_CTIME | STATX_INO | STATX_SIZE | STATX_BLOCKS; if ((query_flags & AT_STATX_DONT_SYNC) && !force_sync) { nfs_readdirplus_parent_cache_hit(path->dentry); goto out_no_revalidate; } /* Flush out writes to the server in order to update c/mtime. */ if ((request_mask & (STATX_CTIME|STATX_MTIME)) && S_ISREG(inode->i_mode)) { err = filemap_write_and_wait(inode->i_mapping); if (err) goto out; } /* * We may force a getattr if the user cares about atime. * * Note that we only have to check the vfsmount flags here: * - NFS always sets S_NOATIME by so checking it would give a * bogus result * - NFS never sets SB_NOATIME or SB_NODIRATIME so there is * no point in checking those. */ if ((path->mnt->mnt_flags & MNT_NOATIME) || ((path->mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) request_mask &= ~STATX_ATIME; /* Is the user requesting attributes that might need revalidation? */ if (!(request_mask & (STATX_MODE|STATX_NLINK|STATX_ATIME|STATX_CTIME| STATX_MTIME|STATX_UID|STATX_GID| STATX_SIZE|STATX_BLOCKS))) goto out_no_revalidate; /* Check whether the cached attributes are stale */ do_update |= force_sync || nfs_attribute_cache_expired(inode); cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); do_update |= cache_validity & NFS_INO_INVALID_CHANGE; if (request_mask & STATX_ATIME) do_update |= cache_validity & NFS_INO_INVALID_ATIME; if (request_mask & STATX_CTIME) do_update |= cache_validity & NFS_INO_INVALID_CTIME; if (request_mask & STATX_MTIME) do_update |= cache_validity & NFS_INO_INVALID_MTIME; if (request_mask & STATX_SIZE) do_update |= cache_validity & NFS_INO_INVALID_SIZE; if (request_mask & STATX_NLINK) do_update |= cache_validity & NFS_INO_INVALID_NLINK; if (request_mask & STATX_MODE) do_update |= cache_validity & NFS_INO_INVALID_MODE; if (request_mask & (STATX_UID | STATX_GID)) do_update |= cache_validity & NFS_INO_INVALID_OTHER; if (request_mask & STATX_BLOCKS) do_update |= cache_validity & NFS_INO_INVALID_BLOCKS; if (do_update) { /* Update the attribute cache */ if (!(server->flags & NFS_MOUNT_NOAC)) nfs_readdirplus_parent_cache_miss(path->dentry); else nfs_readdirplus_parent_cache_hit(path->dentry); err = __nfs_revalidate_inode(server, inode); if (err) goto out; } else nfs_readdirplus_parent_cache_hit(path->dentry); out_no_revalidate: /* Only return attributes that were revalidated. */ stat->result_mask = nfs_get_valid_attrmask(inode) | request_mask; generic_fillattr(&init_user_ns, inode, stat); stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode)); if (S_ISDIR(inode->i_mode)) stat->blksize = NFS_SERVER(inode)->dtsize; out: trace_nfs_getattr_exit(inode, err); return err; } EXPORT_SYMBOL_GPL(nfs_getattr); static void nfs_init_lock_context(struct nfs_lock_context *l_ctx) { refcount_set(&l_ctx->count, 1); l_ctx->lockowner = current->files; INIT_LIST_HEAD(&l_ctx->list); atomic_set(&l_ctx->io_count, 0); } static struct nfs_lock_context *__nfs_find_lock_context(struct nfs_open_context *ctx) { struct nfs_lock_context *pos; list_for_each_entry_rcu(pos, &ctx->lock_context.list, list) { if (pos->lockowner != current->files) continue; if (refcount_inc_not_zero(&pos->count)) return pos; } return NULL; } struct nfs_lock_context *nfs_get_lock_context(struct nfs_open_context *ctx) { struct nfs_lock_context *res, *new = NULL; struct inode *inode = d_inode(ctx->dentry); rcu_read_lock(); res = __nfs_find_lock_context(ctx); rcu_read_unlock(); if (res == NULL) { new = kmalloc(sizeof(*new), GFP_KERNEL); if (new == NULL) return ERR_PTR(-ENOMEM); nfs_init_lock_context(new); spin_lock(&inode->i_lock); res = __nfs_find_lock_context(ctx); if (res == NULL) { new->open_context = get_nfs_open_context(ctx); if (new->open_context) { list_add_tail_rcu(&new->list, &ctx->lock_context.list); res = new; new = NULL; } else res = ERR_PTR(-EBADF); } spin_unlock(&inode->i_lock); kfree(new); } return res; } EXPORT_SYMBOL_GPL(nfs_get_lock_context); void nfs_put_lock_context(struct nfs_lock_context *l_ctx) { struct nfs_open_context *ctx = l_ctx->open_context; struct inode *inode = d_inode(ctx->dentry); if (!refcount_dec_and_lock(&l_ctx->count, &inode->i_lock)) return; list_del_rcu(&l_ctx->list); spin_unlock(&inode->i_lock); put_nfs_open_context(ctx); kfree_rcu(l_ctx, rcu_head); } EXPORT_SYMBOL_GPL(nfs_put_lock_context); /** * nfs_close_context - Common close_context() routine NFSv2/v3 * @ctx: pointer to context * @is_sync: is this a synchronous close * * Ensure that the attributes are up to date if we're mounted * with close-to-open semantics and we have cached data that will * need to be revalidated on open. */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync) { struct nfs_inode *nfsi; struct inode *inode; if (!(ctx->mode & FMODE_WRITE)) return; if (!is_sync) return; inode = d_inode(ctx->dentry); if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) return; nfsi = NFS_I(inode); if (inode->i_mapping->nrpages == 0) return; if (nfsi->cache_validity & NFS_INO_INVALID_DATA) return; if (!list_empty(&nfsi->open_files)) return; if (NFS_SERVER(inode)->flags & NFS_MOUNT_NOCTO) return; nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE); } EXPORT_SYMBOL_GPL(nfs_close_context); struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry, fmode_t f_mode, struct file *filp) { struct nfs_open_context *ctx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); nfs_sb_active(dentry->d_sb); ctx->dentry = dget(dentry); if (filp) ctx->cred = get_cred(filp->f_cred); else ctx->cred = get_current_cred(); ctx->ll_cred = NULL; ctx->state = NULL; ctx->mode = f_mode; ctx->flags = 0; ctx->error = 0; ctx->flock_owner = (fl_owner_t)filp; nfs_init_lock_context(&ctx->lock_context); ctx->lock_context.open_context = ctx; INIT_LIST_HEAD(&ctx->list); ctx->mdsthreshold = NULL; return ctx; } EXPORT_SYMBOL_GPL(alloc_nfs_open_context); struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx) { if (ctx != NULL && refcount_inc_not_zero(&ctx->lock_context.count)) return ctx; return NULL; } EXPORT_SYMBOL_GPL(get_nfs_open_context); static void __put_nfs_open_context(struct nfs_open_context *ctx, int is_sync) { struct inode *inode = d_inode(ctx->dentry); struct super_block *sb = ctx->dentry->d_sb; if (!refcount_dec_and_test(&ctx->lock_context.count)) return; if (!list_empty(&ctx->list)) { spin_lock(&inode->i_lock); list_del_rcu(&ctx->list); spin_unlock(&inode->i_lock); } if (inode != NULL) NFS_PROTO(inode)->close_context(ctx, is_sync); put_cred(ctx->cred); dput(ctx->dentry); nfs_sb_deactive(sb); put_rpccred(ctx->ll_cred); kfree(ctx->mdsthreshold); kfree_rcu(ctx, rcu_head); } void put_nfs_open_context(struct nfs_open_context *ctx) { __put_nfs_open_context(ctx, 0); } EXPORT_SYMBOL_GPL(put_nfs_open_context); static void put_nfs_open_context_sync(struct nfs_open_context *ctx) { __put_nfs_open_context(ctx, 1); } /* * Ensure that mmap has a recent RPC credential for use when writing out * shared pages */ void nfs_inode_attach_open_context(struct nfs_open_context *ctx) { struct inode *inode = d_inode(ctx->dentry); struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); if (list_empty(&nfsi->open_files) && (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA | NFS_INO_REVAL_FORCED); list_add_tail_rcu(&ctx->list, &nfsi->open_files); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_inode_attach_open_context); void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx) { filp->private_data = get_nfs_open_context(ctx); set_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags); if (list_empty(&ctx->list)) nfs_inode_attach_open_context(ctx); } EXPORT_SYMBOL_GPL(nfs_file_set_open_context); /* * Given an inode, search for an open context with the desired characteristics */ struct nfs_open_context *nfs_find_open_context(struct inode *inode, const struct cred *cred, fmode_t mode) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs_open_context *pos, *ctx = NULL; rcu_read_lock(); list_for_each_entry_rcu(pos, &nfsi->open_files, list) { if (cred != NULL && cred_fscmp(pos->cred, cred) != 0) continue; if ((pos->mode & (FMODE_READ|FMODE_WRITE)) != mode) continue; if (!test_bit(NFS_CONTEXT_FILE_OPEN, &pos->flags)) continue; ctx = get_nfs_open_context(pos); if (ctx) break; } rcu_read_unlock(); return ctx; } void nfs_file_clear_open_context(struct file *filp) { struct nfs_open_context *ctx = nfs_file_open_context(filp); if (ctx) { struct inode *inode = d_inode(ctx->dentry); clear_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags); /* * We fatal error on write before. Try to writeback * every page again. */ if (ctx->error < 0) invalidate_inode_pages2(inode->i_mapping); filp->private_data = NULL; put_nfs_open_context_sync(ctx); } } /* * These allocate and release file read/write context information. */ int nfs_open(struct inode *inode, struct file *filp) { struct nfs_open_context *ctx; ctx = alloc_nfs_open_context(file_dentry(filp), filp->f_mode, filp); if (IS_ERR(ctx)) return PTR_ERR(ctx); nfs_file_set_open_context(filp, ctx); put_nfs_open_context(ctx); nfs_fscache_open_file(inode, filp); return 0; } EXPORT_SYMBOL_GPL(nfs_open); /* * This function is called whenever some part of NFS notices that * the cached attributes have to be refreshed. */ int __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) { int status = -ESTALE; struct nfs4_label *label = NULL; struct nfs_fattr *fattr = NULL; struct nfs_inode *nfsi = NFS_I(inode); dfprintk(PAGECACHE, "NFS: revalidating (%s/%Lu)\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); trace_nfs_revalidate_inode_enter(inode); if (is_bad_inode(inode)) goto out; if (NFS_STALE(inode)) goto out; /* pNFS: Attributes aren't updated until we layoutcommit */ if (S_ISREG(inode->i_mode)) { status = pnfs_sync_inode(inode, false); if (status) goto out; } status = -ENOMEM; fattr = nfs_alloc_fattr(); if (fattr == NULL) goto out; nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE); label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); if (IS_ERR(label)) { status = PTR_ERR(label); goto out; } status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), fattr, label, inode); if (status != 0) { dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) getattr failed, error=%d\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), status); switch (status) { case -ETIMEDOUT: /* A soft timeout occurred. Use cached information? */ if (server->flags & NFS_MOUNT_SOFTREVAL) status = 0; break; case -ESTALE: if (!S_ISDIR(inode->i_mode)) nfs_set_inode_stale(inode); else nfs_zap_caches(inode); } goto err_out; } status = nfs_refresh_inode(inode, fattr); if (status) { dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) refresh failed, error=%d\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), status); goto err_out; } if (nfsi->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); nfs_setsecurity(inode, fattr, label); dfprintk(PAGECACHE, "NFS: (%s/%Lu) revalidation complete\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); err_out: nfs4_label_free(label); out: nfs_free_fattr(fattr); trace_nfs_revalidate_inode_exit(inode, status); return status; } int nfs_attribute_cache_expired(struct inode *inode) { if (nfs_have_delegated_attributes(inode)) return 0; return nfs_attribute_timeout(inode); } /** * nfs_revalidate_inode - Revalidate the inode attributes * @inode: pointer to inode struct * @flags: cache flags to check * * Updates inode attribute information by retrieving the data from the server. */ int nfs_revalidate_inode(struct inode *inode, unsigned long flags) { if (!nfs_check_cache_invalid(inode, flags)) return NFS_STALE(inode) ? -ESTALE : 0; return __nfs_revalidate_inode(NFS_SERVER(inode), inode); } EXPORT_SYMBOL_GPL(nfs_revalidate_inode); static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping) { int ret; if (mapping->nrpages != 0) { if (S_ISREG(inode->i_mode)) { ret = nfs_sync_mapping(mapping); if (ret < 0) return ret; } ret = invalidate_inode_pages2(mapping); if (ret < 0) return ret; } nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE); nfs_fscache_wait_on_invalidate(inode); dfprintk(PAGECACHE, "NFS: (%s/%Lu) data cache invalidated\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); return 0; } /** * nfs_clear_invalid_mapping - Conditionally clear a mapping * @mapping: pointer to mapping * * If the NFS_INO_INVALID_DATA inode flag is set, clear the mapping. */ int nfs_clear_invalid_mapping(struct address_space *mapping) { struct inode *inode = mapping->host; struct nfs_inode *nfsi = NFS_I(inode); unsigned long *bitlock = &nfsi->flags; int ret = 0; /* * We must clear NFS_INO_INVALID_DATA first to ensure that * invalidations that come in while we're shooting down the mappings * are respected. But, that leaves a race window where one revalidator * can clear the flag, and then another checks it before the mapping * gets invalidated. Fix that by serializing access to this part of * the function. * * At the same time, we need to allow other tasks to see whether we * might be in the middle of invalidating the pages, so we only set * the bit lock here if it looks like we're going to be doing that. */ for (;;) { ret = wait_on_bit_action(bitlock, NFS_INO_INVALIDATING, nfs_wait_bit_killable, TASK_KILLABLE); if (ret) goto out; spin_lock(&inode->i_lock); if (test_bit(NFS_INO_INVALIDATING, bitlock)) { spin_unlock(&inode->i_lock); continue; } if (nfsi->cache_validity & NFS_INO_INVALID_DATA) break; spin_unlock(&inode->i_lock); goto out; } set_bit(NFS_INO_INVALIDATING, bitlock); smp_wmb(); nfsi->cache_validity &= ~(NFS_INO_INVALID_DATA | NFS_INO_DATA_INVAL_DEFER); spin_unlock(&inode->i_lock); trace_nfs_invalidate_mapping_enter(inode); ret = nfs_invalidate_mapping(inode, mapping); trace_nfs_invalidate_mapping_exit(inode, ret); clear_bit_unlock(NFS_INO_INVALIDATING, bitlock); smp_mb__after_atomic(); wake_up_bit(bitlock, NFS_INO_INVALIDATING); out: return ret; } bool nfs_mapping_need_revalidate_inode(struct inode *inode) { return nfs_check_cache_invalid(inode, NFS_INO_INVALID_CHANGE) || NFS_STALE(inode); } int nfs_revalidate_mapping_rcu(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long *bitlock = &nfsi->flags; int ret = 0; if (IS_SWAPFILE(inode)) goto out; if (nfs_mapping_need_revalidate_inode(inode)) { ret = -ECHILD; goto out; } spin_lock(&inode->i_lock); if (test_bit(NFS_INO_INVALIDATING, bitlock) || (nfsi->cache_validity & NFS_INO_INVALID_DATA)) ret = -ECHILD; spin_unlock(&inode->i_lock); out: return ret; } /** * nfs_revalidate_mapping - Revalidate the pagecache * @inode: pointer to host inode * @mapping: pointer to mapping */ int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping) { /* swapfiles are not supposed to be shared. */ if (IS_SWAPFILE(inode)) return 0; if (nfs_mapping_need_revalidate_inode(inode)) { int ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); if (ret < 0) return ret; } return nfs_clear_invalid_mapping(mapping); } static bool nfs_file_has_writers(struct nfs_inode *nfsi) { struct inode *inode = &nfsi->vfs_inode; if (!S_ISREG(inode->i_mode)) return false; if (list_empty(&nfsi->open_files)) return false; return inode_is_open_for_write(inode); } static bool nfs_file_has_buffered_writers(struct nfs_inode *nfsi) { return nfs_file_has_writers(nfsi) && nfs_file_io_is_buffered(nfsi); } static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct timespec64 ts; if ((fattr->valid & NFS_ATTR_FATTR_PRECHANGE) && (fattr->valid & NFS_ATTR_FATTR_CHANGE) && inode_eq_iversion_raw(inode, fattr->pre_change_attr)) { inode_set_iversion_raw(inode, fattr->change_attr); if (S_ISDIR(inode->i_mode)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA); else if (nfs_server_capable(inode, NFS_CAP_XATTR)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_XATTR); } /* If we have atomic WCC data, we may update some attributes */ ts = inode->i_ctime; if ((fattr->valid & NFS_ATTR_FATTR_PRECTIME) && (fattr->valid & NFS_ATTR_FATTR_CTIME) && timespec64_equal(&ts, &fattr->pre_ctime)) { inode->i_ctime = fattr->ctime; } ts = inode->i_mtime; if ((fattr->valid & NFS_ATTR_FATTR_PREMTIME) && (fattr->valid & NFS_ATTR_FATTR_MTIME) && timespec64_equal(&ts, &fattr->pre_mtime)) { inode->i_mtime = fattr->mtime; if (S_ISDIR(inode->i_mode)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA); } if ((fattr->valid & NFS_ATTR_FATTR_PRESIZE) && (fattr->valid & NFS_ATTR_FATTR_SIZE) && i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) && !nfs_have_writebacks(inode)) { i_size_write(inode, nfs_size_to_loff_t(fattr->size)); } } /** * nfs_check_inode_attributes - verify consistency of the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * Verifies the attribute cache. If we have just changed the attributes, * so that fattr carries weak cache consistency data, then it may * also update the ctime/mtime/change_attribute. */ static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_size, new_isize; unsigned long invalid = 0; struct timespec64 ts; if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) return 0; if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) { /* Only a mounted-on-fileid? Just exit */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) return 0; /* Has the inode gone and changed behind our back? */ } else if (nfsi->fileid != fattr->fileid) { /* Is this perhaps the mounted-on fileid? */ if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) && nfsi->fileid == fattr->mounted_on_fileid) return 0; return -ESTALE; } if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode)) return -ESTALE; if (!nfs_file_has_buffered_writers(nfsi)) { /* Verify a few of the more important attributes */ if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && !inode_eq_iversion_raw(inode, fattr->change_attr)) invalid |= NFS_INO_INVALID_CHANGE; ts = inode->i_mtime; if ((fattr->valid & NFS_ATTR_FATTR_MTIME) && !timespec64_equal(&ts, &fattr->mtime)) invalid |= NFS_INO_INVALID_MTIME; ts = inode->i_ctime; if ((fattr->valid & NFS_ATTR_FATTR_CTIME) && !timespec64_equal(&ts, &fattr->ctime)) invalid |= NFS_INO_INVALID_CTIME; if (fattr->valid & NFS_ATTR_FATTR_SIZE) { cur_size = i_size_read(inode); new_isize = nfs_size_to_loff_t(fattr->size); if (cur_size != new_isize) invalid |= NFS_INO_INVALID_SIZE; } } /* Have any file permissions changed? */ if ((fattr->valid & NFS_ATTR_FATTR_MODE) && (inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) invalid |= NFS_INO_INVALID_MODE; if ((fattr->valid & NFS_ATTR_FATTR_OWNER) && !uid_eq(inode->i_uid, fattr->uid)) invalid |= NFS_INO_INVALID_OTHER; if ((fattr->valid & NFS_ATTR_FATTR_GROUP) && !gid_eq(inode->i_gid, fattr->gid)) invalid |= NFS_INO_INVALID_OTHER; /* Has the link count changed? */ if ((fattr->valid & NFS_ATTR_FATTR_NLINK) && inode->i_nlink != fattr->nlink) invalid |= NFS_INO_INVALID_NLINK; ts = inode->i_atime; if ((fattr->valid & NFS_ATTR_FATTR_ATIME) && !timespec64_equal(&ts, &fattr->atime)) invalid |= NFS_INO_INVALID_ATIME; if (invalid != 0) nfs_set_cache_invalid(inode, invalid); nfsi->read_cache_jiffies = fattr->time_start; return 0; } static atomic_long_t nfs_attr_generation_counter; static unsigned long nfs_read_attr_generation_counter(void) { return atomic_long_read(&nfs_attr_generation_counter); } unsigned long nfs_inc_attr_generation_counter(void) { return atomic_long_inc_return(&nfs_attr_generation_counter); } EXPORT_SYMBOL_GPL(nfs_inc_attr_generation_counter); void nfs_fattr_init(struct nfs_fattr *fattr) { fattr->valid = 0; fattr->time_start = jiffies; fattr->gencount = nfs_inc_attr_generation_counter(); fattr->owner_name = NULL; fattr->group_name = NULL; } EXPORT_SYMBOL_GPL(nfs_fattr_init); /** * nfs_fattr_set_barrier * @fattr: attributes * * Used to set a barrier after an attribute was updated. This * barrier ensures that older attributes from RPC calls that may * have raced with our update cannot clobber these new values. * Note that you are still responsible for ensuring that other * operations which change the attribute on the server do not * collide. */ void nfs_fattr_set_barrier(struct nfs_fattr *fattr) { fattr->gencount = nfs_inc_attr_generation_counter(); } struct nfs_fattr *nfs_alloc_fattr(void) { struct nfs_fattr *fattr; fattr = kmalloc(sizeof(*fattr), GFP_NOFS); if (fattr != NULL) nfs_fattr_init(fattr); return fattr; } EXPORT_SYMBOL_GPL(nfs_alloc_fattr); struct nfs_fh *nfs_alloc_fhandle(void) { struct nfs_fh *fh; fh = kmalloc(sizeof(struct nfs_fh), GFP_NOFS); if (fh != NULL) fh->size = 0; return fh; } EXPORT_SYMBOL_GPL(nfs_alloc_fhandle); #ifdef NFS_DEBUG /* * _nfs_display_fhandle_hash - calculate the crc32 hash for the filehandle * in the same way that wireshark does * * @fh: file handle * * For debugging only. */ u32 _nfs_display_fhandle_hash(const struct nfs_fh *fh) { /* wireshark uses 32-bit AUTODIN crc and does a bitwise * not on the result */ return nfs_fhandle_hash(fh); } EXPORT_SYMBOL_GPL(_nfs_display_fhandle_hash); /* * _nfs_display_fhandle - display an NFS file handle on the console * * @fh: file handle to display * @caption: display caption * * For debugging only. */ void _nfs_display_fhandle(const struct nfs_fh *fh, const char *caption) { unsigned short i; if (fh == NULL || fh->size == 0) { printk(KERN_DEFAULT "%s at %p is empty\n", caption, fh); return; } printk(KERN_DEFAULT "%s at %p is %u bytes, crc: 0x%08x:\n", caption, fh, fh->size, _nfs_display_fhandle_hash(fh)); for (i = 0; i < fh->size; i += 16) { __be32 *pos = (__be32 *)&fh->data[i]; switch ((fh->size - i - 1) >> 2) { case 0: printk(KERN_DEFAULT " %08x\n", be32_to_cpup(pos)); break; case 1: printk(KERN_DEFAULT " %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1)); break; case 2: printk(KERN_DEFAULT " %08x %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1), be32_to_cpup(pos + 2)); break; default: printk(KERN_DEFAULT " %08x %08x %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1), be32_to_cpup(pos + 2), be32_to_cpup(pos + 3)); } } } EXPORT_SYMBOL_GPL(_nfs_display_fhandle); #endif /** * nfs_inode_attrs_cmp_generic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * Note also the check for wraparound of 'attr_gencount' * * The function returns '1' if it thinks the attributes in @fattr are * more recent than the ones cached in @inode. Otherwise it returns * the value '0'. */ static int nfs_inode_attrs_cmp_generic(const struct nfs_fattr *fattr, const struct inode *inode) { unsigned long attr_gencount = NFS_I(inode)->attr_gencount; return (long)(fattr->gencount - attr_gencount) > 0 || (long)(attr_gencount - nfs_read_attr_generation_counter()) > 0; } /** * nfs_inode_attrs_cmp_monotonic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * * We assume that the server observes monotonic semantics for * the change attribute, so a larger value means that the attributes in * @fattr are more recent, in which case the function returns the * value '1'. * A return value of '0' indicates no measurable change * A return value of '-1' means that the attributes in @inode are * more recent. */ static int nfs_inode_attrs_cmp_monotonic(const struct nfs_fattr *fattr, const struct inode *inode) { s64 diff = fattr->change_attr - inode_peek_iversion_raw(inode); if (diff > 0) return 1; return diff == 0 ? 0 : -1; } /** * nfs_inode_attrs_cmp_strict_monotonic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * * We assume that the server observes strictly monotonic semantics for * the change attribute, so a larger value means that the attributes in * @fattr are more recent, in which case the function returns the * value '1'. * A return value of '-1' means that the attributes in @inode are * more recent or unchanged. */ static int nfs_inode_attrs_cmp_strict_monotonic(const struct nfs_fattr *fattr, const struct inode *inode) { return nfs_inode_attrs_cmp_monotonic(fattr, inode) > 0 ? 1 : -1; } /** * nfs_inode_attrs_cmp - compare attributes * @fattr: attributes * @inode: pointer to inode * * This function returns '1' if it thinks the attributes in @fattr are * more recent than the ones cached in @inode. It returns '-1' if * the attributes in @inode are more recent than the ones in @fattr, * and it returns 0 if not sure. */ static int nfs_inode_attrs_cmp(const struct nfs_fattr *fattr, const struct inode *inode) { if (nfs_inode_attrs_cmp_generic(fattr, inode) > 0) return 1; switch (NFS_SERVER(inode)->change_attr_type) { case NFS4_CHANGE_TYPE_IS_UNDEFINED: break; case NFS4_CHANGE_TYPE_IS_TIME_METADATA: if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE)) break; return nfs_inode_attrs_cmp_monotonic(fattr, inode); default: if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE)) break; return nfs_inode_attrs_cmp_strict_monotonic(fattr, inode); } return 0; } /** * nfs_inode_finish_partial_attr_update - complete a previous inode update * @fattr: attributes * @inode: pointer to inode * * Returns '1' if the last attribute update left the inode cached * attributes in a partially unrevalidated state, and @fattr * matches the change attribute of that partial update. * Otherwise returns '0'. */ static int nfs_inode_finish_partial_attr_update(const struct nfs_fattr *fattr, const struct inode *inode) { const unsigned long check_valid = NFS_INO_INVALID_ATIME | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_OTHER | NFS_INO_INVALID_NLINK; unsigned long cache_validity = NFS_I(inode)->cache_validity; if (!(cache_validity & NFS_INO_INVALID_CHANGE) && (cache_validity & check_valid) != 0 && (fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && nfs_inode_attrs_cmp_monotonic(fattr, inode) == 0) return 1; return 0; } static int nfs_refresh_inode_locked(struct inode *inode, struct nfs_fattr *fattr) { int attr_cmp = nfs_inode_attrs_cmp(fattr, inode); int ret = 0; trace_nfs_refresh_inode_enter(inode); if (attr_cmp > 0 || nfs_inode_finish_partial_attr_update(fattr, inode)) ret = nfs_update_inode(inode, fattr); else if (attr_cmp == 0) ret = nfs_check_inode_attributes(inode, fattr); trace_nfs_refresh_inode_exit(inode, ret); return ret; } /** * nfs_refresh_inode - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * Check that an RPC call that returned attributes has not overlapped with * other recent updates of the inode metadata, then decide whether it is * safe to do a full update of the inode attributes, or whether just to * call nfs_check_inode_attributes. */ int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr) { int status; if ((fattr->valid & NFS_ATTR_FATTR) == 0) return 0; spin_lock(&inode->i_lock); status = nfs_refresh_inode_locked(inode, fattr); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_refresh_inode); static int nfs_post_op_update_inode_locked(struct inode *inode, struct nfs_fattr *fattr, unsigned int invalid) { if (S_ISDIR(inode->i_mode)) invalid |= NFS_INO_INVALID_DATA; nfs_set_cache_invalid(inode, invalid); if ((fattr->valid & NFS_ATTR_FATTR) == 0) return 0; return nfs_refresh_inode_locked(inode, fattr); } /** * nfs_post_op_update_inode - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. * * NB: if the server didn't return any post op attributes, this * function will force the retrieval of attributes before the next * NFS request. Thus it should be used only for operations that * are expected to change one or more attributes, to avoid * unnecessary NFS requests and trips through nfs_update_inode(). */ int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr) { int status; spin_lock(&inode->i_lock); nfs_fattr_set_barrier(fattr); status = nfs_post_op_update_inode_locked(inode, fattr, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_REVAL_FORCED); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_post_op_update_inode); /** * nfs_post_op_update_inode_force_wcc_locked - update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. Fake up * weak cache consistency data, if none exist. * * This function is mainly designed to be used by the ->write_done() functions. */ int nfs_post_op_update_inode_force_wcc_locked(struct inode *inode, struct nfs_fattr *fattr) { int attr_cmp = nfs_inode_attrs_cmp(fattr, inode); int status; /* Don't do a WCC update if these attributes are already stale */ if (attr_cmp < 0) return 0; if ((fattr->valid & NFS_ATTR_FATTR) == 0 || !attr_cmp) { fattr->valid &= ~(NFS_ATTR_FATTR_PRECHANGE | NFS_ATTR_FATTR_PRESIZE | NFS_ATTR_FATTR_PREMTIME | NFS_ATTR_FATTR_PRECTIME); goto out_noforce; } if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRECHANGE) == 0) { fattr->pre_change_attr = inode_peek_iversion_raw(inode); fattr->valid |= NFS_ATTR_FATTR_PRECHANGE; } if ((fattr->valid & NFS_ATTR_FATTR_CTIME) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRECTIME) == 0) { fattr->pre_ctime = inode->i_ctime; fattr->valid |= NFS_ATTR_FATTR_PRECTIME; } if ((fattr->valid & NFS_ATTR_FATTR_MTIME) != 0 && (fattr->valid & NFS_ATTR_FATTR_PREMTIME) == 0) { fattr->pre_mtime = inode->i_mtime; fattr->valid |= NFS_ATTR_FATTR_PREMTIME; } if ((fattr->valid & NFS_ATTR_FATTR_SIZE) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRESIZE) == 0) { fattr->pre_size = i_size_read(inode); fattr->valid |= NFS_ATTR_FATTR_PRESIZE; } out_noforce: status = nfs_post_op_update_inode_locked(inode, fattr, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_BLOCKS); return status; } /** * nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. Fake up * weak cache consistency data, if none exist. * * This function is mainly designed to be used by the ->write_done() functions. */ int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr) { int status; spin_lock(&inode->i_lock); nfs_fattr_set_barrier(fattr); status = nfs_post_op_update_inode_force_wcc_locked(inode, fattr); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_post_op_update_inode_force_wcc); /* * Many nfs protocol calls return the new file attributes after * an operation. Here we update the inode to reflect the state * of the server's inode. * * This is a bit tricky because we have to make sure all dirty pages * have been sent off to the server before calling invalidate_inode_pages. * To make sure no other process adds more write requests while we try * our best to flush them, we make them sleep during the attribute refresh. * * A very similar scenario holds for the dir cache. */ static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_isize, new_isize; u64 fattr_supported = server->fattr_valid; unsigned long invalid = 0; unsigned long now = jiffies; unsigned long save_cache_validity; bool have_writers = nfs_file_has_buffered_writers(nfsi); bool cache_revalidated = true; bool attr_changed = false; bool have_delegation; dfprintk(VFS, "NFS: %s(%s/%lu fh_crc=0x%08x ct=%d info=0x%x)\n", __func__, inode->i_sb->s_id, inode->i_ino, nfs_display_fhandle_hash(NFS_FH(inode)), atomic_read(&inode->i_count), fattr->valid); if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) { /* Only a mounted-on-fileid? Just exit */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) return 0; /* Has the inode gone and changed behind our back? */ } else if (nfsi->fileid != fattr->fileid) { /* Is this perhaps the mounted-on fileid? */ if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) && nfsi->fileid == fattr->mounted_on_fileid) return 0; printk(KERN_ERR "NFS: server %s error: fileid changed\n" "fsid %s: expected fileid 0x%Lx, got 0x%Lx\n", NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id, (long long)nfsi->fileid, (long long)fattr->fileid); goto out_err; } /* * Make sure the inode's type hasn't changed. */ if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode)) { /* * Big trouble! The inode has become a different object. */ printk(KERN_DEBUG "NFS: %s: inode %lu mode changed, %07o to %07o\n", __func__, inode->i_ino, inode->i_mode, fattr->mode); goto out_err; } /* Update the fsid? */ if (S_ISDIR(inode->i_mode) && (fattr->valid & NFS_ATTR_FATTR_FSID) && !nfs_fsid_equal(&server->fsid, &fattr->fsid) && !IS_AUTOMOUNT(inode)) server->fsid = fattr->fsid; /* Save the delegation state before clearing cache_validity */ have_delegation = nfs_have_delegated_attributes(inode); /* * Update the read time so we don't revalidate too often. */ nfsi->read_cache_jiffies = fattr->time_start; save_cache_validity = nfsi->cache_validity; nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME | NFS_INO_REVAL_FORCED | NFS_INO_INVALID_BLOCKS); /* Do atomic weak cache consistency updates */ nfs_wcc_update_inode(inode, fattr); if (pnfs_layoutcommit_outstanding(inode)) { nfsi->cache_validity |= save_cache_validity & (NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS); cache_revalidated = false; } /* More cache consistency checks */ if (fattr->valid & NFS_ATTR_FATTR_CHANGE) { if (!inode_eq_iversion_raw(inode, fattr->change_attr)) { /* Could it be a race with writeback? */ if (!(have_writers || have_delegation)) { invalid |= NFS_INO_INVALID_DATA | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR; /* Force revalidate of all attributes */ save_cache_validity |= NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_NLINK | NFS_INO_INVALID_MODE | NFS_INO_INVALID_OTHER; if (S_ISDIR(inode->i_mode)) nfs_force_lookup_revalidate(inode); attr_changed = true; dprintk("NFS: change_attr change on server for file %s/%ld\n", inode->i_sb->s_id, inode->i_ino); } else if (!have_delegation) nfsi->cache_validity |= NFS_INO_DATA_INVAL_DEFER; inode_set_iversion_raw(inode, fattr->change_attr); } } else { nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_CHANGE; if (!have_delegation || (nfsi->cache_validity & NFS_INO_INVALID_CHANGE) != 0) cache_revalidated = false; } if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (fattr_supported & NFS_ATTR_FATTR_MTIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_MTIME; if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else if (fattr_supported & NFS_ATTR_FATTR_CTIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_CTIME; /* Check if our cached file size is stale */ if (fattr->valid & NFS_ATTR_FATTR_SIZE) { new_isize = nfs_size_to_loff_t(fattr->size); cur_isize = i_size_read(inode); if (new_isize != cur_isize && !have_delegation) { /* Do we perhaps have any outstanding writes, or has * the file grown beyond our last write? */ if (!nfs_have_writebacks(inode) || new_isize > cur_isize) { i_size_write(inode, new_isize); if (!have_writers) invalid |= NFS_INO_INVALID_DATA; } dprintk("NFS: isize change on server for file %s/%ld " "(%Ld to %Ld)\n", inode->i_sb->s_id, inode->i_ino, (long long)cur_isize, (long long)new_isize); } if (new_isize == 0 && !(fattr->valid & (NFS_ATTR_FATTR_SPACE_USED | NFS_ATTR_FATTR_BLOCKS_USED))) { fattr->du.nfs3.used = 0; fattr->valid |= NFS_ATTR_FATTR_SPACE_USED; } } else nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_SIZE; if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (fattr_supported & NFS_ATTR_FATTR_ATIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_ATIME; if (fattr->valid & NFS_ATTR_FATTR_MODE) { if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) { umode_t newmode = inode->i_mode & S_IFMT; newmode |= fattr->mode & S_IALLUGO; inode->i_mode = newmode; invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; } } else if (fattr_supported & NFS_ATTR_FATTR_MODE) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_MODE; if (fattr->valid & NFS_ATTR_FATTR_OWNER) { if (!uid_eq(inode->i_uid, fattr->uid)) { invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; inode->i_uid = fattr->uid; } } else if (fattr_supported & NFS_ATTR_FATTR_OWNER) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_OTHER; if (fattr->valid & NFS_ATTR_FATTR_GROUP) { if (!gid_eq(inode->i_gid, fattr->gid)) { invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; inode->i_gid = fattr->gid; } } else if (fattr_supported & NFS_ATTR_FATTR_GROUP) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_OTHER; if (fattr->valid & NFS_ATTR_FATTR_NLINK) { if (inode->i_nlink != fattr->nlink) { if (S_ISDIR(inode->i_mode)) invalid |= NFS_INO_INVALID_DATA; set_nlink(inode, fattr->nlink); } } else if (fattr_supported & NFS_ATTR_FATTR_NLINK) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_NLINK; if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_BLOCKS; if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED) inode->i_blocks = fattr->du.nfs2.blocks; else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_BLOCKS; /* Update attrtimeo value if we're out of the unstable period */ if (attr_changed) { nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; /* Set barrier to be more recent than all outstanding updates */ nfsi->attr_gencount = nfs_inc_attr_generation_counter(); } else { if (cache_revalidated) { if (!time_in_range_open(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) { nfsi->attrtimeo <<= 1; if (nfsi->attrtimeo > NFS_MAXATTRTIMEO(inode)) nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode); } nfsi->attrtimeo_timestamp = now; } /* Set the barrier to be more recent than this fattr */ if ((long)(fattr->gencount - nfsi->attr_gencount) > 0) nfsi->attr_gencount = fattr->gencount; } /* Don't invalidate the data if we were to blame */ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) invalid &= ~NFS_INO_INVALID_DATA; nfs_set_cache_invalid(inode, invalid); return 0; out_err: /* * No need to worry about unhashing the dentry, as the * lookup validation will know that the inode is bad. * (But we fall through to invalidate the caches.) */ nfs_set_inode_stale_locked(inode); return -ESTALE; } struct inode *nfs_alloc_inode(struct super_block *sb) { struct nfs_inode *nfsi; nfsi = kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL); if (!nfsi) return NULL; nfsi->flags = 0UL; nfsi->cache_validity = 0UL; #if IS_ENABLED(CONFIG_NFS_V4) nfsi->nfs4_acl = NULL; #endif /* CONFIG_NFS_V4 */ #ifdef CONFIG_NFS_V4_2 nfsi->xattr_cache = NULL; #endif return &nfsi->vfs_inode; } EXPORT_SYMBOL_GPL(nfs_alloc_inode); void nfs_free_inode(struct inode *inode) { kmem_cache_free(nfs_inode_cachep, NFS_I(inode)); } EXPORT_SYMBOL_GPL(nfs_free_inode); static inline void nfs4_init_once(struct nfs_inode *nfsi) { #if IS_ENABLED(CONFIG_NFS_V4) INIT_LIST_HEAD(&nfsi->open_states); nfsi->delegation = NULL; init_rwsem(&nfsi->rwsem); nfsi->layout = NULL; #endif } static void init_once(void *foo) { struct nfs_inode *nfsi = (struct nfs_inode *) foo; inode_init_once(&nfsi->vfs_inode); INIT_LIST_HEAD(&nfsi->open_files); INIT_LIST_HEAD(&nfsi->access_cache_entry_lru); INIT_LIST_HEAD(&nfsi->access_cache_inode_lru); INIT_LIST_HEAD(&nfsi->commit_info.list); atomic_long_set(&nfsi->nrequests, 0); atomic_long_set(&nfsi->commit_info.ncommit, 0); atomic_set(&nfsi->commit_info.rpcs_out, 0); init_rwsem(&nfsi->rmdir_sem); mutex_init(&nfsi->commit_mutex); nfs4_init_once(nfsi); nfsi->cache_change_attribute = 0; } static int __init nfs_init_inodecache(void) { nfs_inode_cachep = kmem_cache_create("nfs_inode_cache", sizeof(struct nfs_inode), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT), init_once); if (nfs_inode_cachep == NULL) return -ENOMEM; return 0; } static void nfs_destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(nfs_inode_cachep); } struct workqueue_struct *nfsiod_workqueue; EXPORT_SYMBOL_GPL(nfsiod_workqueue); /* * start up the nfsiod workqueue */ static int nfsiod_start(void) { struct workqueue_struct *wq; dprintk("RPC: creating workqueue nfsiod\n"); wq = alloc_workqueue("nfsiod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); if (wq == NULL) return -ENOMEM; nfsiod_workqueue = wq; return 0; } /* * Destroy the nfsiod workqueue */ static void nfsiod_stop(void) { struct workqueue_struct *wq; wq = nfsiod_workqueue; if (wq == NULL) return; nfsiod_workqueue = NULL; destroy_workqueue(wq); } unsigned int nfs_net_id; EXPORT_SYMBOL_GPL(nfs_net_id); static int nfs_net_init(struct net *net) { nfs_clients_init(net); return nfs_fs_proc_net_init(net); } static void nfs_net_exit(struct net *net) { nfs_fs_proc_net_exit(net); nfs_clients_exit(net); } static struct pernet_operations nfs_net_ops = { .init = nfs_net_init, .exit = nfs_net_exit, .id = &nfs_net_id, .size = sizeof(struct nfs_net), }; /* * Initialize NFS */ static int __init init_nfs_fs(void) { int err; err = nfs_sysfs_init(); if (err < 0) goto out10; err = register_pernet_subsys(&nfs_net_ops); if (err < 0) goto out9; err = nfs_fscache_register(); if (err < 0) goto out8; err = nfsiod_start(); if (err) goto out7; err = nfs_fs_proc_init(); if (err) goto out6; err = nfs_init_nfspagecache(); if (err) goto out5; err = nfs_init_inodecache(); if (err) goto out4; err = nfs_init_readpagecache(); if (err) goto out3; err = nfs_init_writepagecache(); if (err) goto out2; err = nfs_init_directcache(); if (err) goto out1; rpc_proc_register(&init_net, &nfs_rpcstat); err = register_nfs_fs(); if (err) goto out0; return 0; out0: rpc_proc_unregister(&init_net, "nfs"); nfs_destroy_directcache(); out1: nfs_destroy_writepagecache(); out2: nfs_destroy_readpagecache(); out3: nfs_destroy_inodecache(); out4: nfs_destroy_nfspagecache(); out5: nfs_fs_proc_exit(); out6: nfsiod_stop(); out7: nfs_fscache_unregister(); out8: unregister_pernet_subsys(&nfs_net_ops); out9: nfs_sysfs_exit(); out10: return err; } static void __exit exit_nfs_fs(void) { nfs_destroy_directcache(); nfs_destroy_writepagecache(); nfs_destroy_readpagecache(); nfs_destroy_inodecache(); nfs_destroy_nfspagecache(); nfs_fscache_unregister(); unregister_pernet_subsys(&nfs_net_ops); rpc_proc_unregister(&init_net, "nfs"); unregister_nfs_fs(); nfs_fs_proc_exit(); nfsiod_stop(); nfs_sysfs_exit(); } /* Not quite true; I just maintain it */ MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_LICENSE("GPL"); module_param(enable_ino64, bool, 0644); module_init(init_nfs_fs) module_exit(exit_nfs_fs)
826 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 // SPDX-License-Identifier: GPL-2.0 /* * Implement the default iomap interfaces * * (C) Copyright 2004 Linus Torvalds */ #include <linux/pci.h> #include <linux/io.h> #include <linux/export.h> /* * Read/write from/to an (offsettable) iomem cookie. It might be a PIO * access or a MMIO access, these functions don't care. The info is * encoded in the hardware mapping set up by the mapping functions * (or the cookie itself, depending on implementation and hw). * * The generic routines don't assume any hardware mappings, and just * encode the PIO/MMIO as part of the cookie. They coldly assume that * the MMIO IO mappings are not in the low address range. * * Architectures for which this is not true can't use this generic * implementation and should do their own copy. */ #ifndef HAVE_ARCH_PIO_SIZE /* * We encode the physical PIO addresses (0-0xffff) into the * pointer by offsetting them with a constant (0x10000) and * assuming that all the low addresses are always PIO. That means * we can do some sanity checks on the low bits, and don't * need to just take things for granted. */ #define PIO_OFFSET 0x10000UL #define PIO_MASK 0x0ffffUL #define PIO_RESERVED 0x40000UL #endif static void bad_io_access(unsigned long port, const char *access) { static int count = 10; if (count) { count--; WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access); } } /* * Ugly macros are a way of life. */ #define IO_COND(addr, is_pio, is_mmio) do { \ unsigned long port = (unsigned long __force)addr; \ if (port >= PIO_RESERVED) { \ is_mmio; \ } else if (port > PIO_OFFSET) { \ port &= PIO_MASK; \ is_pio; \ } else \ bad_io_access(port, #is_pio ); \ } while (0) #ifndef pio_read16be #define pio_read16be(port) swab16(inw(port)) #define pio_read32be(port) swab32(inl(port)) #endif #ifndef mmio_read16be #define mmio_read16be(addr) swab16(readw(addr)) #define mmio_read32be(addr) swab32(readl(addr)) #define mmio_read64be(addr) swab64(readq(addr)) #endif unsigned int ioread8(const void __iomem *addr) { IO_COND(addr, return inb(port), return readb(addr)); return 0xff; } unsigned int ioread16(const void __iomem *addr) { IO_COND(addr, return inw(port), return readw(addr)); return 0xffff; } unsigned int ioread16be(const void __iomem *addr) { IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); return 0xffff; } unsigned int ioread32(const void __iomem *addr) { IO_COND(addr, return inl(port), return readl(addr)); return 0xffffffff; } unsigned int ioread32be(const void __iomem *addr) { IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); return 0xffffffff; } EXPORT_SYMBOL(ioread8); EXPORT_SYMBOL(ioread16); EXPORT_SYMBOL(ioread16be); EXPORT_SYMBOL(ioread32); EXPORT_SYMBOL(ioread32be); #ifdef readq static u64 pio_read64_lo_hi(unsigned long port) { u64 lo, hi; lo = inl(port); hi = inl(port + sizeof(u32)); return lo | (hi << 32); } static u64 pio_read64_hi_lo(unsigned long port) { u64 lo, hi; hi = inl(port + sizeof(u32)); lo = inl(port); return lo | (hi << 32); } static u64 pio_read64be_lo_hi(unsigned long port) { u64 lo, hi; lo = pio_read32be(port + sizeof(u32)); hi = pio_read32be(port); return lo | (hi << 32); } static u64 pio_read64be_hi_lo(unsigned long port) { u64 lo, hi; hi = pio_read32be(port); lo = pio_read32be(port + sizeof(u32)); return lo | (hi << 32); } u64 ioread64_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64_lo_hi(port), return readq(addr)); return 0xffffffffffffffffULL; } u64 ioread64_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64_hi_lo(port), return readq(addr)); return 0xffffffffffffffffULL; } u64 ioread64be_lo_hi(const void __iomem *addr) { IO_COND(addr, return pio_read64be_lo_hi(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } u64 ioread64be_hi_lo(const void __iomem *addr) { IO_COND(addr, return pio_read64be_hi_lo(port), return mmio_read64be(addr)); return 0xffffffffffffffffULL; } EXPORT_SYMBOL(ioread64_lo_hi); EXPORT_SYMBOL(ioread64_hi_lo); EXPORT_SYMBOL(ioread64be_lo_hi); EXPORT_SYMBOL(ioread64be_hi_lo); #endif /* readq */ #ifndef pio_write16be #define pio_write16be(val,port) outw(swab16(val),port) #define pio_write32be(val,port) outl(swab32(val),port) #endif #ifndef mmio_write16be #define mmio_write16be(val,port) writew(swab16(val),port) #define mmio_write32be(val,port) writel(swab32(val),port) #define mmio_write64be(val,port) writeq(swab64(val),port) #endif void iowrite8(u8 val, void __iomem *addr) { IO_COND(addr, outb(val,port), writeb(val, addr)); } void iowrite16(u16 val, void __iomem *addr) { IO_COND(addr, outw(val,port), writew(val, addr)); } void iowrite16be(u16 val, void __iomem *addr) { IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); } void iowrite32(u32 val, void __iomem *addr) { IO_COND(addr, outl(val,port), writel(val, addr)); } void iowrite32be(u32 val, void __iomem *addr) { IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); } EXPORT_SYMBOL(iowrite8); EXPORT_SYMBOL(iowrite16); EXPORT_SYMBOL(iowrite16be); EXPORT_SYMBOL(iowrite32); EXPORT_SYMBOL(iowrite32be); #ifdef writeq static void pio_write64_lo_hi(u64 val, unsigned long port) { outl(val, port); outl(val >> 32, port + sizeof(u32)); } static void pio_write64_hi_lo(u64 val, unsigned long port) { outl(val >> 32, port + sizeof(u32)); outl(val, port); } static void pio_write64be_lo_hi(u64 val, unsigned long port) { pio_write32be(val, port + sizeof(u32)); pio_write32be(val >> 32, port); } static void pio_write64be_hi_lo(u64 val, unsigned long port) { pio_write32be(val >> 32, port); pio_write32be(val, port + sizeof(u32)); } void iowrite64_lo_hi(u64 val, void __iomem *addr) { IO_COND(addr, pio_write64_lo_hi(val, port), writeq(val, addr)); } void iowrite64_hi_lo(u64 val, void __iomem *addr) { IO_COND(addr, pio_write64_hi_lo(val, port), writeq(val, addr)); } void iowrite64be_lo_hi(u64 val, void __iomem *addr) { IO_COND(addr, pio_write64be_lo_hi(val, port), mmio_write64be(val, addr)); } void iowrite64be_hi_lo(u64 val, void __iomem *addr) { IO_COND(addr, pio_write64be_hi_lo(val, port), mmio_write64be(val, addr)); } EXPORT_SYMBOL(iowrite64_lo_hi); EXPORT_SYMBOL(iowrite64_hi_lo); EXPORT_SYMBOL(iowrite64be_lo_hi); EXPORT_SYMBOL(iowrite64be_hi_lo); #endif /* readq */ /* * These are the "repeat MMIO read/write" functions. * Note the "__raw" accesses, since we don't want to * convert to CPU byte order. We write in "IO byte * order" (we also don't have IO barriers). */ #ifndef mmio_insb static inline void mmio_insb(const void __iomem *addr, u8 *dst, int count) { while (--count >= 0) { u8 data = __raw_readb(addr); *dst = data; dst++; } } static inline void mmio_insw(const void __iomem *addr, u16 *dst, int count) { while (--count >= 0) { u16 data = __raw_readw(addr); *dst = data; dst++; } } static inline void mmio_insl(const void __iomem *addr, u32 *dst, int count) { while (--count >= 0) { u32 data = __raw_readl(addr); *dst = data; dst++; } } #endif #ifndef mmio_outsb static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) { while (--count >= 0) { __raw_writeb(*src, addr); src++; } } static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) { while (--count >= 0) { __raw_writew(*src, addr); src++; } } static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) { while (--count >= 0) { __raw_writel(*src, addr); src++; } } #endif void ioread8_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); } void ioread16_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); } void ioread32_rep(const void __iomem *addr, void *dst, unsigned long count) { IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); } EXPORT_SYMBOL(ioread8_rep); EXPORT_SYMBOL(ioread16_rep); EXPORT_SYMBOL(ioread32_rep); void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); } void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); } void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); } EXPORT_SYMBOL(iowrite8_rep); EXPORT_SYMBOL(iowrite16_rep); EXPORT_SYMBOL(iowrite32_rep); #ifdef CONFIG_HAS_IOPORT_MAP /* Create a virtual mapping cookie for an IO port range */ void __iomem *ioport_map(unsigned long port, unsigned int nr) { if (port > PIO_MASK) return NULL; return (void __iomem *) (unsigned long) (port + PIO_OFFSET); } void ioport_unmap(void __iomem *addr) { /* Nothing to do */ } EXPORT_SYMBOL(ioport_map); EXPORT_SYMBOL(ioport_unmap); #endif /* CONFIG_HAS_IOPORT_MAP */ #ifdef CONFIG_PCI /* Hide the details if this is a MMIO or PIO address space and just do what * you expect in the correct way. */ void pci_iounmap(struct pci_dev *dev, void __iomem * addr) { IO_COND(addr, /* nothing */, iounmap(addr)); } EXPORT_SYMBOL(pci_iounmap); #endif /* CONFIG_PCI */
4166 638 2668 2928 445 1 4143 1589 6 4142 515 233 485 30 30 30 1020 285 901 30 165 1799 4137 4135 1805 506 2446 18 1050 4116 59 4130 3799 485 3872 1346 1347 1343 1339 1345 814 662 1203 623 749 716 658 659 582 76 77 126 548 547 547 548 548 546 548 547 546 548 546 485 485 485 484 608 608 1001 126 871 354 354 355 355 286 126 119 12 149 112 233 233 233 233 233 233 233 233 233 233 232 232 233 233 233 233 233 187 46 233 232 46 187 233 233 233 233 46 233 233 232 485 485 485 485 6 6 6 6 485 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 // SPDX-License-Identifier: GPL-2.0-only /* * kernel/workqueue.c - generic async execution with shared worker pool * * Copyright (C) 2002 Ingo Molnar * * Derived from the taskqueue/keventd code by: * David Woodhouse <dwmw2@infradead.org> * Andrew Morton * Kai Petzke <wpp@marie.physik.tu-berlin.de> * Theodore Ts'o <tytso@mit.edu> * * Made to use alloc_percpu by Christoph Lameter. * * Copyright (C) 2010 SUSE Linux Products GmbH * Copyright (C) 2010 Tejun Heo <tj@kernel.org> * * This is the generic async execution mechanism. Work items as are * executed in process context. The worker pool is shared and * automatically managed. There are two worker pools for each CPU (one for * normal work items and the other for high priority ones) and some extra * pools for workqueues which are not bound to any specific CPU - the * number of these backing pools is dynamic. * * Please read Documentation/core-api/workqueue.rst for details. */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/kthread.h> #include <linux/hardirq.h> #include <linux/mempolicy.h> #include <linux/freezer.h> #include <linux/debug_locks.h> #include <linux/lockdep.h> #include <linux/idr.h> #include <linux/jhash.h> #include <linux/hashtable.h> #include <linux/rculist.h> #include <linux/nodemask.h> #include <linux/moduleparam.h> #include <linux/uaccess.h> #include <linux/sched/isolation.h> #include <linux/nmi.h> #include <linux/kvm_para.h> #include "workqueue_internal.h" enum { /* * worker_pool flags * * A bound pool is either associated or disassociated with its CPU. * While associated (!DISASSOCIATED), all workers are bound to the * CPU and none has %WORKER_UNBOUND set and concurrency management * is in effect. * * While DISASSOCIATED, the cpu may be offline and all workers have * %WORKER_UNBOUND set and concurrency management disabled, and may * be executing on any CPU. The pool behaves as an unbound one. * * Note that DISASSOCIATED should be flipped only while holding * wq_pool_attach_mutex to avoid changing binding state while * worker_attach_to_pool() is in progress. */ POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ /* worker flags */ WORKER_DIE = 1 << 1, /* die die die */ WORKER_IDLE = 1 << 2, /* is idle */ WORKER_PREP = 1 << 3, /* preparing to run works */ WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ WORKER_UNBOUND = 1 << 7, /* worker is unbound */ WORKER_REBOUND = 1 << 8, /* worker was rebound */ WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | WORKER_UNBOUND | WORKER_REBOUND, NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, /* call for help after 10ms (min two ticks) */ MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ CREATE_COOLDOWN = HZ, /* time to breath after fail */ /* * Rescue workers are used only on emergencies and shared by * all cpus. Give MIN_NICE. */ RESCUER_NICE_LEVEL = MIN_NICE, HIGHPRI_NICE_LEVEL = MIN_NICE, WQ_NAME_LEN = 24, }; /* * Structure fields follow one of the following exclusion rules. * * I: Modifiable by initialization/destruction paths and read-only for * everyone else. * * P: Preemption protected. Disabling preemption is enough and should * only be modified and accessed from the local cpu. * * L: pool->lock protected. Access with pool->lock held. * * X: During normal operation, modification requires pool->lock and should * be done only from local cpu. Either disabling preemption on local * cpu or grabbing pool->lock is enough for read access. If * POOL_DISASSOCIATED is set, it's identical to L. * * A: wq_pool_attach_mutex protected. * * PL: wq_pool_mutex protected. * * PR: wq_pool_mutex protected for writes. RCU protected for reads. * * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. * * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or * RCU for reads. * * WQ: wq->mutex protected. * * WR: wq->mutex protected for writes. RCU protected for reads. * * MD: wq_mayday_lock protected. */ /* struct worker is defined in workqueue_internal.h */ struct worker_pool { raw_spinlock_t lock; /* the pool lock */ int cpu; /* I: the associated cpu */ int node; /* I: the associated node ID */ int id; /* I: pool ID */ unsigned int flags; /* X: flags */ unsigned long watchdog_ts; /* L: watchdog timestamp */ struct list_head worklist; /* L: list of pending works */ int nr_workers; /* L: total number of workers */ int nr_idle; /* L: currently idle workers */ struct list_head idle_list; /* X: list of idle workers */ struct timer_list idle_timer; /* L: worker idle timeout */ struct timer_list mayday_timer; /* L: SOS timer for workers */ /* a workers is either on busy_hash or idle_list, or the manager */ DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); /* L: hash of busy workers */ struct worker *manager; /* L: purely informational */ struct list_head workers; /* A: attached workers */ struct completion *detach_completion; /* all workers detached */ struct ida worker_ida; /* worker IDs for task name */ struct workqueue_attrs *attrs; /* I: worker attributes */ struct hlist_node hash_node; /* PL: unbound_pool_hash node */ int refcnt; /* PL: refcnt for unbound pools */ /* * The current concurrency level. As it's likely to be accessed * from other CPUs during try_to_wake_up(), put it in a separate * cacheline. */ atomic_t nr_running ____cacheline_aligned_in_smp; /* * Destruction of pool is RCU protected to allow dereferences * from get_work_pool(). */ struct rcu_head rcu; } ____cacheline_aligned_in_smp; /* * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS * of work_struct->data are used for flags and the remaining high bits * point to the pwq; thus, pwqs need to be aligned at two's power of the * number of flag bits. */ struct pool_workqueue { struct worker_pool *pool; /* I: the associated pool */ struct workqueue_struct *wq; /* I: the owning workqueue */ int work_color; /* L: current color */ int flush_color; /* L: flushing color */ int refcnt; /* L: reference count */ int nr_in_flight[WORK_NR_COLORS]; /* L: nr of in_flight works */ /* * nr_active management and WORK_STRUCT_INACTIVE: * * When pwq->nr_active >= max_active, new work item is queued to * pwq->inactive_works instead of pool->worklist and marked with * WORK_STRUCT_INACTIVE. * * All work items marked with WORK_STRUCT_INACTIVE do not participate * in pwq->nr_active and all work items in pwq->inactive_works are * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE * work items are in pwq->inactive_works. Some of them are ready to * run in pool->worklist or worker->scheduled. Those work itmes are * only struct wq_barrier which is used for flush_work() and should * not participate in pwq->nr_active. For non-barrier work item, it * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. */ int nr_active; /* L: nr of active works */ int max_active; /* L: max active works */ struct list_head inactive_works; /* L: inactive works */ struct list_head pwqs_node; /* WR: node on wq->pwqs */ struct list_head mayday_node; /* MD: node on wq->maydays */ /* * Release of unbound pwq is punted to system_wq. See put_pwq() * and pwq_unbound_release_workfn() for details. pool_workqueue * itself is also RCU protected so that the first pwq can be * determined without grabbing wq->mutex. */ struct work_struct unbound_release_work; struct rcu_head rcu; } __aligned(1 << WORK_STRUCT_FLAG_BITS); /* * Structure used to wait for workqueue flush. */ struct wq_flusher { struct list_head list; /* WQ: list of flushers */ int flush_color; /* WQ: flush color waiting for */ struct completion done; /* flush completion */ }; struct wq_device; /* * The externally visible workqueue. It relays the issued work items to * the appropriate worker_pool through its pool_workqueues. */ struct workqueue_struct { struct list_head pwqs; /* WR: all pwqs of this wq */ struct list_head list; /* PR: list of all workqueues */ struct mutex mutex; /* protects this wq */ int work_color; /* WQ: current work color */ int flush_color; /* WQ: current flush color */ atomic_t nr_pwqs_to_flush; /* flush in progress */ struct wq_flusher *first_flusher; /* WQ: first flusher */ struct list_head flusher_queue; /* WQ: flush waiters */ struct list_head flusher_overflow; /* WQ: flush overflow list */ struct list_head maydays; /* MD: pwqs requesting rescue */ struct worker *rescuer; /* MD: rescue worker */ int nr_drainers; /* WQ: drain in progress */ int saved_max_active; /* WQ: saved pwq max_active */ struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ #ifdef CONFIG_SYSFS struct wq_device *wq_dev; /* I: for sysfs interface */ #endif #ifdef CONFIG_LOCKDEP char *lock_name; struct lock_class_key key; struct lockdep_map lockdep_map; #endif char name[WQ_NAME_LEN]; /* I: workqueue name */ /* * Destruction of workqueue_struct is RCU protected to allow walking * the workqueues list without grabbing wq_pool_mutex. * This is used to dump all workqueues from sysrq. */ struct rcu_head rcu; /* hot fields used during command issue, aligned to cacheline */ unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ }; static struct kmem_cache *pwq_cache; static cpumask_var_t *wq_numa_possible_cpumask; /* possible CPUs of each node */ static bool wq_disable_numa; module_param_named(disable_numa, wq_disable_numa, bool, 0444); /* see the comment above the definition of WQ_POWER_EFFICIENT */ static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); module_param_named(power_efficient, wq_power_efficient, bool, 0444); static bool wq_online; /* can kworkers be created yet? */ static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ /* wait for manager to go away */ static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); static LIST_HEAD(workqueues); /* PR: list of all workqueues */ static bool workqueue_freezing; /* PL: have wqs started freezing? */ /* PL: allowable cpus for unbound wqs and work items */ static cpumask_var_t wq_unbound_cpumask; /* CPU where unbound work was last round robin scheduled from this CPU */ static DEFINE_PER_CPU(int, wq_rr_cpu_last); /* * Local execution of unbound work items is no longer guaranteed. The * following always forces round-robin CPU selection on unbound work items * to uncover usages which depend on it. */ #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU static bool wq_debug_force_rr_cpu = true; #else static bool wq_debug_force_rr_cpu = false; #endif module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); /* the per-cpu worker pools */ static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ /* PL: hash of all unbound pools keyed by pool->attrs */ static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); /* I: attributes used when instantiating standard unbound pools on demand */ static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; /* I: attributes used when instantiating ordered pools on demand */ static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; struct workqueue_struct *system_wq __read_mostly; EXPORT_SYMBOL(system_wq); struct workqueue_struct *system_highpri_wq __read_mostly; EXPORT_SYMBOL_GPL(system_highpri_wq); struct workqueue_struct *system_long_wq __read_mostly; EXPORT_SYMBOL_GPL(system_long_wq); struct workqueue_struct *system_unbound_wq __read_mostly; EXPORT_SYMBOL_GPL(system_unbound_wq); struct workqueue_struct *system_freezable_wq __read_mostly; EXPORT_SYMBOL_GPL(system_freezable_wq); struct workqueue_struct *system_power_efficient_wq __read_mostly; EXPORT_SYMBOL_GPL(system_power_efficient_wq); struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); static int worker_thread(void *__worker); static void workqueue_sysfs_unregister(struct workqueue_struct *wq); static void show_pwq(struct pool_workqueue *pwq); #define CREATE_TRACE_POINTS #include <trace/events/workqueue.h> #define assert_rcu_or_pool_mutex() \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&wq_pool_mutex), \ "RCU or wq_pool_mutex should be held") #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&wq->mutex) && \ !lockdep_is_held(&wq_pool_mutex), \ "RCU, wq->mutex or wq_pool_mutex should be held") #define for_each_cpu_worker_pool(pool, cpu) \ for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ (pool)++) /** * for_each_pool - iterate through all worker_pools in the system * @pool: iteration cursor * @pi: integer used for iteration * * This must be called either with wq_pool_mutex held or RCU read * locked. If the pool needs to be used beyond the locking in effect, the * caller is responsible for guaranteeing that the pool stays online. * * The if/else clause exists only for the lockdep assertion and can be * ignored. */ #define for_each_pool(pool, pi) \ idr_for_each_entry(&worker_pool_idr, pool, pi) \ if (({ assert_rcu_or_pool_mutex(); false; })) { } \ else /** * for_each_pool_worker - iterate through all workers of a worker_pool * @worker: iteration cursor * @pool: worker_pool to iterate workers of * * This must be called with wq_pool_attach_mutex. * * The if/else clause exists only for the lockdep assertion and can be * ignored. */ #define for_each_pool_worker(worker, pool) \ list_for_each_entry((worker), &(pool)->workers, node) \ if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ else /** * for_each_pwq - iterate through all pool_workqueues of the specified workqueue * @pwq: iteration cursor * @wq: the target workqueue * * This must be called either with wq->mutex held or RCU read locked. * If the pwq needs to be used beyond the locking in effect, the caller is * responsible for guaranteeing that the pwq stays online. * * The if/else clause exists only for the lockdep assertion and can be * ignored. */ #define for_each_pwq(pwq, wq) \ list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ lockdep_is_held(&(wq->mutex))) #ifdef CONFIG_DEBUG_OBJECTS_WORK static const struct debug_obj_descr work_debug_descr; static void *work_debug_hint(void *addr) { return ((struct work_struct *) addr)->func; } static bool work_is_static_object(void *addr) { struct work_struct *work = addr; return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); } /* * fixup_init is called when: * - an active object is initialized */ static bool work_fixup_init(void *addr, enum debug_obj_state state) { struct work_struct *work = addr; switch (state) { case ODEBUG_STATE_ACTIVE: cancel_work_sync(work); debug_object_init(work, &work_debug_descr); return true; default: return false; } } /* * fixup_free is called when: * - an active object is freed */ static bool work_fixup_free(void *addr, enum debug_obj_state state) { struct work_struct *work = addr; switch (state) { case ODEBUG_STATE_ACTIVE: cancel_work_sync(work); debug_object_free(work, &work_debug_descr); return true; default: return false; } } static const struct debug_obj_descr work_debug_descr = { .name = "work_struct", .debug_hint = work_debug_hint, .is_static_object = work_is_static_object, .fixup_init = work_fixup_init, .fixup_free = work_fixup_free, }; static inline void debug_work_activate(struct work_struct *work) { debug_object_activate(work, &work_debug_descr); } static inline void debug_work_deactivate(struct work_struct *work) { debug_object_deactivate(work, &work_debug_descr); } void __init_work(struct work_struct *work, int onstack) { if (onstack) debug_object_init_on_stack(work, &work_debug_descr); else debug_object_init(work, &work_debug_descr); } EXPORT_SYMBOL_GPL(__init_work); void destroy_work_on_stack(struct work_struct *work) { debug_object_free(work, &work_debug_descr); } EXPORT_SYMBOL_GPL(destroy_work_on_stack); void destroy_delayed_work_on_stack(struct delayed_work *work) { destroy_timer_on_stack(&work->timer); debug_object_free(&work->work, &work_debug_descr); } EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); #else static inline void debug_work_activate(struct work_struct *work) { } static inline void debug_work_deactivate(struct work_struct *work) { } #endif /** * worker_pool_assign_id - allocate ID and assign it to @pool * @pool: the pool pointer of interest * * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned * successfully, -errno on failure. */ static int worker_pool_assign_id(struct worker_pool *pool) { int ret; lockdep_assert_held(&wq_pool_mutex); ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, GFP_KERNEL); if (ret >= 0) { pool->id = ret; return 0; } return ret; } /** * unbound_pwq_by_node - return the unbound pool_workqueue for the given node * @wq: the target workqueue * @node: the node ID * * This must be called with any of wq_pool_mutex, wq->mutex or RCU * read locked. * If the pwq needs to be used beyond the locking in effect, the caller is * responsible for guaranteeing that the pwq stays online. * * Return: The unbound pool_workqueue for @node. */ static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, int node) { assert_rcu_or_wq_mutex_or_pool_mutex(wq); /* * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a * delayed item is pending. The plan is to keep CPU -> NODE * mapping valid and stable across CPU on/offlines. Once that * happens, this workaround can be removed. */ if (unlikely(node == NUMA_NO_NODE)) return wq->dfl_pwq; return rcu_dereference_raw(wq->numa_pwq_tbl[node]); } static unsigned int work_color_to_flags(int color) { return color << WORK_STRUCT_COLOR_SHIFT; } static int get_work_color(unsigned long work_data) { return (work_data >> WORK_STRUCT_COLOR_SHIFT) & ((1 << WORK_STRUCT_COLOR_BITS) - 1); } static int work_next_color(int color) { return (color + 1) % WORK_NR_COLORS; } /* * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data * contain the pointer to the queued pwq. Once execution starts, the flag * is cleared and the high bits contain OFFQ flags and pool ID. * * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() * and clear_work_data() can be used to set the pwq, pool or clear * work->data. These functions should only be called while the work is * owned - ie. while the PENDING bit is set. * * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq * corresponding to a work. Pool is available once the work has been * queued anywhere after initialization until it is sync canceled. pwq is * available only while the work item is queued. * * %WORK_OFFQ_CANCELING is used to mark a work item which is being * canceled. While being canceled, a work item may have its PENDING set * but stay off timer and worklist for arbitrarily long and nobody should * try to steal the PENDING bit. */ static inline void set_work_data(struct work_struct *work, unsigned long data, unsigned long flags) { WARN_ON_ONCE(!work_pending(work)); atomic_long_set(&work->data, data | flags | work_static(work)); } static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, unsigned long extra_flags) { set_work_data(work, (unsigned long)pwq, WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); } static void set_work_pool_and_keep_pending(struct work_struct *work, int pool_id) { set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, WORK_STRUCT_PENDING); } static void set_work_pool_and_clear_pending(struct work_struct *work, int pool_id) { /* * The following wmb is paired with the implied mb in * test_and_set_bit(PENDING) and ensures all updates to @work made * here are visible to and precede any updates by the next PENDING * owner. */ smp_wmb(); set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); /* * The following mb guarantees that previous clear of a PENDING bit * will not be reordered with any speculative LOADS or STORES from * work->current_func, which is executed afterwards. This possible * reordering can lead to a missed execution on attempt to queue * the same @work. E.g. consider this case: * * CPU#0 CPU#1 * ---------------------------- -------------------------------- * * 1 STORE event_indicated * 2 queue_work_on() { * 3 test_and_set_bit(PENDING) * 4 } set_..._and_clear_pending() { * 5 set_work_data() # clear bit * 6 smp_mb() * 7 work->current_func() { * 8 LOAD event_indicated * } * * Without an explicit full barrier speculative LOAD on line 8 can * be executed before CPU#0 does STORE on line 1. If that happens, * CPU#0 observes the PENDING bit is still set and new execution of * a @work is not queued in a hope, that CPU#1 will eventually * finish the queued @work. Meanwhile CPU#1 does not see * event_indicated is set, because speculative LOAD was executed * before actual STORE. */ smp_mb(); } static void clear_work_data(struct work_struct *work) { smp_wmb(); /* see set_work_pool_and_clear_pending() */ set_work_data(work, WORK_STRUCT_NO_POOL, 0); } static struct pool_workqueue *get_work_pwq(struct work_struct *work) { unsigned long data = atomic_long_read(&work->data); if (data & WORK_STRUCT_PWQ) return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); else return NULL; } /** * get_work_pool - return the worker_pool a given work was associated with * @work: the work item of interest * * Pools are created and destroyed under wq_pool_mutex, and allows read * access under RCU read lock. As such, this function should be * called under wq_pool_mutex or inside of a rcu_read_lock() region. * * All fields of the returned pool are accessible as long as the above * mentioned locking is in effect. If the returned pool needs to be used * beyond the critical section, the caller is responsible for ensuring the * returned pool is and stays online. * * Return: The worker_pool @work was last associated with. %NULL if none. */ static struct worker_pool *get_work_pool(struct work_struct *work) { unsigned long data = atomic_long_read(&work->data); int pool_id; assert_rcu_or_pool_mutex(); if (data & WORK_STRUCT_PWQ) return ((struct pool_workqueue *) (data & WORK_STRUCT_WQ_DATA_MASK))->pool; pool_id = data >> WORK_OFFQ_POOL_SHIFT; if (pool_id == WORK_OFFQ_POOL_NONE) return NULL; return idr_find(&worker_pool_idr, pool_id); } /** * get_work_pool_id - return the worker pool ID a given work is associated with * @work: the work item of interest * * Return: The worker_pool ID @work was last associated with. * %WORK_OFFQ_POOL_NONE if none. */ static int get_work_pool_id(struct work_struct *work) { unsigned long data = atomic_long_read(&work->data); if (data & WORK_STRUCT_PWQ) return ((struct pool_workqueue *) (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; return data >> WORK_OFFQ_POOL_SHIFT; } static void mark_work_canceling(struct work_struct *work) { unsigned long pool_id = get_work_pool_id(work); pool_id <<= WORK_OFFQ_POOL_SHIFT; set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); } static bool work_is_canceling(struct work_struct *work) { unsigned long data = atomic_long_read(&work->data); return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); } /* * Policy functions. These define the policies on how the global worker * pools are managed. Unless noted otherwise, these functions assume that * they're being called with pool->lock held. */ static bool __need_more_worker(struct worker_pool *pool) { return !atomic_read(&pool->nr_running); } /* * Need to wake up a worker? Called from anything but currently * running workers. * * Note that, because unbound workers never contribute to nr_running, this * function will always return %true for unbound pools as long as the * worklist isn't empty. */ static bool need_more_worker(struct worker_pool *pool) { return !list_empty(&pool->worklist) && __need_more_worker(pool); } /* Can I start working? Called from busy but !running workers. */ static bool may_start_working(struct worker_pool *pool) { return pool->nr_idle; } /* Do I need to keep working? Called from currently running workers. */ static bool keep_working(struct worker_pool *pool) { return !list_empty(&pool->worklist) && atomic_read(&pool->nr_running) <= 1; } /* Do we need a new worker? Called from manager. */ static bool need_to_create_worker(struct worker_pool *pool) { return need_more_worker(pool) && !may_start_working(pool); } /* Do we have too many workers and should some go away? */ static bool too_many_workers(struct worker_pool *pool) { bool managing = pool->flags & POOL_MANAGER_ACTIVE; int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ int nr_busy = pool->nr_workers - nr_idle; return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; } /* * Wake up functions. */ /* Return the first idle worker. Safe with preemption disabled */ static struct worker *first_idle_worker(struct worker_pool *pool) { if (unlikely(list_empty(&pool->idle_list))) return NULL; return list_first_entry(&pool->idle_list, struct worker, entry); } /** * wake_up_worker - wake up an idle worker * @pool: worker pool to wake worker from * * Wake up the first idle worker of @pool. * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void wake_up_worker(struct worker_pool *pool) { struct worker *worker = first_idle_worker(pool); if (likely(worker)) wake_up_process(worker->task); } /** * wq_worker_running - a worker is running again * @task: task waking up * * This function is called when a worker returns from schedule() */ void wq_worker_running(struct task_struct *task) { struct worker *worker = kthread_data(task); if (!worker->sleeping) return; if (!(worker->flags & WORKER_NOT_RUNNING)) atomic_inc(&worker->pool->nr_running); worker->sleeping = 0; } /** * wq_worker_sleeping - a worker is going to sleep * @task: task going to sleep * * This function is called from schedule() when a busy worker is * going to sleep. Preemption needs to be disabled to protect ->sleeping * assignment. */ void wq_worker_sleeping(struct task_struct *task) { struct worker *next, *worker = kthread_data(task); struct worker_pool *pool; /* * Rescuers, which may not have all the fields set up like normal * workers, also reach here, let's not access anything before * checking NOT_RUNNING. */ if (worker->flags & WORKER_NOT_RUNNING) return; pool = worker->pool; /* Return if preempted before wq_worker_running() was reached */ if (worker->sleeping) return; worker->sleeping = 1; raw_spin_lock_irq(&pool->lock); /* * The counterpart of the following dec_and_test, implied mb, * worklist not empty test sequence is in insert_work(). * Please read comment there. * * NOT_RUNNING is clear. This means that we're bound to and * running on the local cpu w/ rq lock held and preemption * disabled, which in turn means that none else could be * manipulating idle_list, so dereferencing idle_list without pool * lock is safe. */ if (atomic_dec_and_test(&pool->nr_running) && !list_empty(&pool->worklist)) { next = first_idle_worker(pool); if (next) wake_up_process(next->task); } raw_spin_unlock_irq(&pool->lock); } /** * wq_worker_last_func - retrieve worker's last work function * @task: Task to retrieve last work function of. * * Determine the last function a worker executed. This is called from * the scheduler to get a worker's last known identity. * * CONTEXT: * raw_spin_lock_irq(rq->lock) * * This function is called during schedule() when a kworker is going * to sleep. It's used by psi to identify aggregation workers during * dequeuing, to allow periodic aggregation to shut-off when that * worker is the last task in the system or cgroup to go to sleep. * * As this function doesn't involve any workqueue-related locking, it * only returns stable values when called from inside the scheduler's * queuing and dequeuing paths, when @task, which must be a kworker, * is guaranteed to not be processing any works. * * Return: * The last work function %current executed as a worker, NULL if it * hasn't executed any work yet. */ work_func_t wq_worker_last_func(struct task_struct *task) { struct worker *worker = kthread_data(task); return worker->last_func; } /** * worker_set_flags - set worker flags and adjust nr_running accordingly * @worker: self * @flags: flags to set * * Set @flags in @worker->flags and adjust nr_running accordingly. * * CONTEXT: * raw_spin_lock_irq(pool->lock) */ static inline void worker_set_flags(struct worker *worker, unsigned int flags) { struct worker_pool *pool = worker->pool; WARN_ON_ONCE(worker->task != current); /* If transitioning into NOT_RUNNING, adjust nr_running. */ if ((flags & WORKER_NOT_RUNNING) && !(worker->flags & WORKER_NOT_RUNNING)) { atomic_dec(&pool->nr_running); } worker->flags |= flags; } /** * worker_clr_flags - clear worker flags and adjust nr_running accordingly * @worker: self * @flags: flags to clear * * Clear @flags in @worker->flags and adjust nr_running accordingly. * * CONTEXT: * raw_spin_lock_irq(pool->lock) */ static inline void worker_clr_flags(struct worker *worker, unsigned int flags) { struct worker_pool *pool = worker->pool; unsigned int oflags = worker->flags; WARN_ON_ONCE(worker->task != current); worker->flags &= ~flags; /* * If transitioning out of NOT_RUNNING, increment nr_running. Note * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask * of multiple flags, not a single flag. */ if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) if (!(worker->flags & WORKER_NOT_RUNNING)) atomic_inc(&pool->nr_running); } /** * find_worker_executing_work - find worker which is executing a work * @pool: pool of interest * @work: work to find worker for * * Find a worker which is executing @work on @pool by searching * @pool->busy_hash which is keyed by the address of @work. For a worker * to match, its current execution should match the address of @work and * its work function. This is to avoid unwanted dependency between * unrelated work executions through a work item being recycled while still * being executed. * * This is a bit tricky. A work item may be freed once its execution * starts and nothing prevents the freed area from being recycled for * another work item. If the same work item address ends up being reused * before the original execution finishes, workqueue will identify the * recycled work item as currently executing and make it wait until the * current execution finishes, introducing an unwanted dependency. * * This function checks the work item address and work function to avoid * false positives. Note that this isn't complete as one may construct a * work function which can introduce dependency onto itself through a * recycled work item. Well, if somebody wants to shoot oneself in the * foot that badly, there's only so much we can do, and if such deadlock * actually occurs, it should be easy to locate the culprit work function. * * CONTEXT: * raw_spin_lock_irq(pool->lock). * * Return: * Pointer to worker which is executing @work if found, %NULL * otherwise. */ static struct worker *find_worker_executing_work(struct worker_pool *pool, struct work_struct *work) { struct worker *worker; hash_for_each_possible(pool->busy_hash, worker, hentry, (unsigned long)work) if (worker->current_work == work && worker->current_func == work->func) return worker; return NULL; } /** * move_linked_works - move linked works to a list * @work: start of series of works to be scheduled * @head: target list to append @work to * @nextp: out parameter for nested worklist walking * * Schedule linked works starting from @work to @head. Work series to * be scheduled starts at @work and includes any consecutive work with * WORK_STRUCT_LINKED set in its predecessor. * * If @nextp is not NULL, it's updated to point to the next work of * the last scheduled work. This allows move_linked_works() to be * nested inside outer list_for_each_entry_safe(). * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void move_linked_works(struct work_struct *work, struct list_head *head, struct work_struct **nextp) { struct work_struct *n; /* * Linked worklist will always end before the end of the list, * use NULL for list head. */ list_for_each_entry_safe_from(work, n, NULL, entry) { list_move_tail(&work->entry, head); if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) break; } /* * If we're already inside safe list traversal and have moved * multiple works to the scheduled queue, the next position * needs to be updated. */ if (nextp) *nextp = n; } /** * get_pwq - get an extra reference on the specified pool_workqueue * @pwq: pool_workqueue to get * * Obtain an extra reference on @pwq. The caller should guarantee that * @pwq has positive refcnt and be holding the matching pool->lock. */ static void get_pwq(struct pool_workqueue *pwq) { lockdep_assert_held(&pwq->pool->lock); WARN_ON_ONCE(pwq->refcnt <= 0); pwq->refcnt++; } /** * put_pwq - put a pool_workqueue reference * @pwq: pool_workqueue to put * * Drop a reference of @pwq. If its refcnt reaches zero, schedule its * destruction. The caller should be holding the matching pool->lock. */ static void put_pwq(struct pool_workqueue *pwq) { lockdep_assert_held(&pwq->pool->lock); if (likely(--pwq->refcnt)) return; if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) return; /* * @pwq can't be released under pool->lock, bounce to * pwq_unbound_release_workfn(). This never recurses on the same * pool->lock as this path is taken only for unbound workqueues and * the release work item is scheduled on a per-cpu workqueue. To * avoid lockdep warning, unbound pool->locks are given lockdep * subclass of 1 in get_unbound_pool(). */ schedule_work(&pwq->unbound_release_work); } /** * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock * @pwq: pool_workqueue to put (can be %NULL) * * put_pwq() with locking. This function also allows %NULL @pwq. */ static void put_pwq_unlocked(struct pool_workqueue *pwq) { if (pwq) { /* * As both pwqs and pools are RCU protected, the * following lock operations are safe. */ raw_spin_lock_irq(&pwq->pool->lock); put_pwq(pwq); raw_spin_unlock_irq(&pwq->pool->lock); } } static void pwq_activate_inactive_work(struct work_struct *work) { struct pool_workqueue *pwq = get_work_pwq(work); trace_workqueue_activate_work(work); if (list_empty(&pwq->pool->worklist)) pwq->pool->watchdog_ts = jiffies; move_linked_works(work, &pwq->pool->worklist, NULL); __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); pwq->nr_active++; } static void pwq_activate_first_inactive(struct pool_workqueue *pwq) { struct work_struct *work = list_first_entry(&pwq->inactive_works, struct work_struct, entry); pwq_activate_inactive_work(work); } /** * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight * @pwq: pwq of interest * @work_data: work_data of work which left the queue * * A work either has completed or is removed from pending queue, * decrement nr_in_flight of its pwq and handle workqueue flushing. * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) { int color = get_work_color(work_data); if (!(work_data & WORK_STRUCT_INACTIVE)) { pwq->nr_active--; if (!list_empty(&pwq->inactive_works)) { /* one down, submit an inactive one */ if (pwq->nr_active < pwq->max_active) pwq_activate_first_inactive(pwq); } } pwq->nr_in_flight[color]--; /* is flush in progress and are we at the flushing tip? */ if (likely(pwq->flush_color != color)) goto out_put; /* are there still in-flight works? */ if (pwq->nr_in_flight[color]) goto out_put; /* this pwq is done, clear flush_color */ pwq->flush_color = -1; /* * If this was the last pwq, wake up the first flusher. It * will handle the rest. */ if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) complete(&pwq->wq->first_flusher->done); out_put: put_pwq(pwq); } /** * try_to_grab_pending - steal work item from worklist and disable irq * @work: work item to steal * @is_dwork: @work is a delayed_work * @flags: place to store irq state * * Try to grab PENDING bit of @work. This function can handle @work in any * stable state - idle, on timer or on worklist. * * Return: * * ======== ================================================================ * 1 if @work was pending and we successfully stole PENDING * 0 if @work was idle and we claimed PENDING * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry * -ENOENT if someone else is canceling @work, this state may persist * for arbitrarily long * ======== ================================================================ * * Note: * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting * interrupted while holding PENDING and @work off queue, irq must be * disabled on entry. This, combined with delayed_work->timer being * irqsafe, ensures that we return -EAGAIN for finite short period of time. * * On successful return, >= 0, irq is disabled and the caller is * responsible for releasing it using local_irq_restore(*@flags). * * This function is safe to call from any context including IRQ handler. */ static int try_to_grab_pending(struct work_struct *work, bool is_dwork, unsigned long *flags) { struct worker_pool *pool; struct pool_workqueue *pwq; local_irq_save(*flags); /* try to steal the timer if it exists */ if (is_dwork) { struct delayed_work *dwork = to_delayed_work(work); /* * dwork->timer is irqsafe. If del_timer() fails, it's * guaranteed that the timer is not queued anywhere and not * running on the local CPU. */ if (likely(del_timer(&dwork->timer))) return 1; } /* try to claim PENDING the normal way */ if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) return 0; rcu_read_lock(); /* * The queueing is in progress, or it is already queued. Try to * steal it from ->worklist without clearing WORK_STRUCT_PENDING. */ pool = get_work_pool(work); if (!pool) goto fail; raw_spin_lock(&pool->lock); /* * work->data is guaranteed to point to pwq only while the work * item is queued on pwq->wq, and both updating work->data to point * to pwq on queueing and to pool on dequeueing are done under * pwq->pool->lock. This in turn guarantees that, if work->data * points to pwq which is associated with a locked pool, the work * item is currently queued on that pool. */ pwq = get_work_pwq(work); if (pwq && pwq->pool == pool) { debug_work_deactivate(work); /* * A cancelable inactive work item must be in the * pwq->inactive_works since a queued barrier can't be * canceled (see the comments in insert_wq_barrier()). * * An inactive work item cannot be grabbed directly because * it might have linked barrier work items which, if left * on the inactive_works list, will confuse pwq->nr_active * management later on and cause stall. Make sure the work * item is activated before grabbing. */ if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) pwq_activate_inactive_work(work); list_del_init(&work->entry); pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); /* work->data points to pwq iff queued, point to pool */ set_work_pool_and_keep_pending(work, pool->id); raw_spin_unlock(&pool->lock); rcu_read_unlock(); return 1; } raw_spin_unlock(&pool->lock); fail: rcu_read_unlock(); local_irq_restore(*flags); if (work_is_canceling(work)) return -ENOENT; cpu_relax(); return -EAGAIN; } /** * insert_work - insert a work into a pool * @pwq: pwq @work belongs to * @work: work to insert * @head: insertion point * @extra_flags: extra WORK_STRUCT_* flags to set * * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to * work_struct flags. * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, struct list_head *head, unsigned int extra_flags) { struct worker_pool *pool = pwq->pool; /* record the work call stack in order to print it in KASAN reports */ kasan_record_aux_stack(work); /* we own @work, set data and link */ set_work_pwq(work, pwq, extra_flags); list_add_tail(&work->entry, head); get_pwq(pwq); /* * Ensure either wq_worker_sleeping() sees the above * list_add_tail() or we see zero nr_running to avoid workers lying * around lazily while there are works to be processed. */ smp_mb(); if (__need_more_worker(pool)) wake_up_worker(pool); } /* * Test whether @work is being queued from another work executing on the * same workqueue. */ static bool is_chained_work(struct workqueue_struct *wq) { struct worker *worker; worker = current_wq_worker(); /* * Return %true iff I'm a worker executing a work item on @wq. If * I'm @worker, it's safe to dereference it without locking. */ return worker && worker->current_pwq->wq == wq; } /* * When queueing an unbound work item to a wq, prefer local CPU if allowed * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to * avoid perturbing sensitive tasks. */ static int wq_select_unbound_cpu(int cpu) { static bool printed_dbg_warning; int new_cpu; if (likely(!wq_debug_force_rr_cpu)) { if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) return cpu; } else if (!printed_dbg_warning) { pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); printed_dbg_warning = true; } if (cpumask_empty(wq_unbound_cpumask)) return cpu; new_cpu = __this_cpu_read(wq_rr_cpu_last); new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); if (unlikely(new_cpu >= nr_cpu_ids)) { new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); if (unlikely(new_cpu >= nr_cpu_ids)) return cpu; } __this_cpu_write(wq_rr_cpu_last, new_cpu); return new_cpu; } static void __queue_work(int cpu, struct workqueue_struct *wq, struct work_struct *work) { struct pool_workqueue *pwq; struct worker_pool *last_pool; struct list_head *worklist; unsigned int work_flags; unsigned int req_cpu = cpu; /* * While a work item is PENDING && off queue, a task trying to * steal the PENDING will busy-loop waiting for it to either get * queued or lose PENDING. Grabbing PENDING and queueing should * happen with IRQ disabled. */ lockdep_assert_irqs_disabled(); /* if draining, only works from the same workqueue are allowed */ if (unlikely(wq->flags & __WQ_DRAINING) && WARN_ON_ONCE(!is_chained_work(wq))) return; rcu_read_lock(); retry: /* pwq which will be used unless @work is executing elsewhere */ if (wq->flags & WQ_UNBOUND) { if (req_cpu == WORK_CPU_UNBOUND) cpu = wq_select_unbound_cpu(raw_smp_processor_id()); pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); } else { if (req_cpu == WORK_CPU_UNBOUND) cpu = raw_smp_processor_id(); pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); } /* * If @work was previously on a different pool, it might still be * running there, in which case the work needs to be queued on that * pool to guarantee non-reentrancy. */ last_pool = get_work_pool(work); if (last_pool && last_pool != pwq->pool) { struct worker *worker; raw_spin_lock(&last_pool->lock); worker = find_worker_executing_work(last_pool, work); if (worker && worker->current_pwq->wq == wq) { pwq = worker->current_pwq; } else { /* meh... not running there, queue here */ raw_spin_unlock(&last_pool->lock); raw_spin_lock(&pwq->pool->lock); } } else { raw_spin_lock(&pwq->pool->lock); } /* * pwq is determined and locked. For unbound pools, we could have * raced with pwq release and it could already be dead. If its * refcnt is zero, repeat pwq selection. Note that pwqs never die * without another pwq replacing it in the numa_pwq_tbl or while * work items are executing on it, so the retrying is guaranteed to * make forward-progress. */ if (unlikely(!pwq->refcnt)) { if (wq->flags & WQ_UNBOUND) { raw_spin_unlock(&pwq->pool->lock); cpu_relax(); goto retry; } /* oops */ WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", wq->name, cpu); } /* pwq determined, queue */ trace_workqueue_queue_work(req_cpu, pwq, work); if (WARN_ON(!list_empty(&work->entry))) goto out; pwq->nr_in_flight[pwq->work_color]++; work_flags = work_color_to_flags(pwq->work_color); if (likely(pwq->nr_active < pwq->max_active)) { trace_workqueue_activate_work(work); pwq->nr_active++; worklist = &pwq->pool->worklist; if (list_empty(worklist)) pwq->pool->watchdog_ts = jiffies; } else { work_flags |= WORK_STRUCT_INACTIVE; worklist = &pwq->inactive_works; } debug_work_activate(work); insert_work(pwq, work, worklist, work_flags); out: raw_spin_unlock(&pwq->pool->lock); rcu_read_unlock(); } /** * queue_work_on - queue work on specific cpu * @cpu: CPU number to execute work on * @wq: workqueue to use * @work: work to queue * * We queue the work to a specific CPU, the caller must ensure it * can't go away. * * Return: %false if @work was already on a queue, %true otherwise. */ bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) { bool ret = false; unsigned long flags; local_irq_save(flags); if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { __queue_work(cpu, wq, work); ret = true; } local_irq_restore(flags); return ret; } EXPORT_SYMBOL(queue_work_on); /** * workqueue_select_cpu_near - Select a CPU based on NUMA node * @node: NUMA node ID that we want to select a CPU from * * This function will attempt to find a "random" cpu available on a given * node. If there are no CPUs available on the given node it will return * WORK_CPU_UNBOUND indicating that we should just schedule to any * available CPU if we need to schedule this work. */ static int workqueue_select_cpu_near(int node) { int cpu; /* No point in doing this if NUMA isn't enabled for workqueues */ if (!wq_numa_enabled) return WORK_CPU_UNBOUND; /* Delay binding to CPU if node is not valid or online */ if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) return WORK_CPU_UNBOUND; /* Use local node/cpu if we are already there */ cpu = raw_smp_processor_id(); if (node == cpu_to_node(cpu)) return cpu; /* Use "random" otherwise know as "first" online CPU of node */ cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); /* If CPU is valid return that, otherwise just defer */ return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; } /** * queue_work_node - queue work on a "random" cpu for a given NUMA node * @node: NUMA node that we are targeting the work for * @wq: workqueue to use * @work: work to queue * * We queue the work to a "random" CPU within a given NUMA node. The basic * idea here is to provide a way to somehow associate work with a given * NUMA node. * * This function will only make a best effort attempt at getting this onto * the right NUMA node. If no node is requested or the requested node is * offline then we just fall back to standard queue_work behavior. * * Currently the "random" CPU ends up being the first available CPU in the * intersection of cpu_online_mask and the cpumask of the node, unless we * are running on the node. In that case we just use the current CPU. * * Return: %false if @work was already on a queue, %true otherwise. */ bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work) { unsigned long flags; bool ret = false; /* * This current implementation is specific to unbound workqueues. * Specifically we only return the first available CPU for a given * node instead of cycling through individual CPUs within the node. * * If this is used with a per-cpu workqueue then the logic in * workqueue_select_cpu_near would need to be updated to allow for * some round robin type logic. */ WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); local_irq_save(flags); if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { int cpu = workqueue_select_cpu_near(node); __queue_work(cpu, wq, work); ret = true; } local_irq_restore(flags); return ret; } EXPORT_SYMBOL_GPL(queue_work_node); void delayed_work_timer_fn(struct timer_list *t) { struct delayed_work *dwork = from_timer(dwork, t, timer); /* should have been called from irqsafe timer with irq already off */ __queue_work(dwork->cpu, dwork->wq, &dwork->work); } EXPORT_SYMBOL(delayed_work_timer_fn); static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { struct timer_list *timer = &dwork->timer; struct work_struct *work = &dwork->work; WARN_ON_ONCE(!wq); WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn); WARN_ON_ONCE(timer_pending(timer)); WARN_ON_ONCE(!list_empty(&work->entry)); /* * If @delay is 0, queue @dwork->work immediately. This is for * both optimization and correctness. The earliest @timer can * expire is on the closest next tick and delayed_work users depend * on that there's no such delay when @delay is 0. */ if (!delay) { __queue_work(cpu, wq, &dwork->work); return; } dwork->wq = wq; dwork->cpu = cpu; timer->expires = jiffies + delay; if (unlikely(cpu != WORK_CPU_UNBOUND)) add_timer_on(timer, cpu); else add_timer(timer); } /** * queue_delayed_work_on - queue work on specific CPU after delay * @cpu: CPU number to execute work on * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * Return: %false if @work was already on a queue, %true otherwise. If * @delay is zero and @dwork is idle, it will be scheduled for immediate * execution. */ bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { struct work_struct *work = &dwork->work; bool ret = false; unsigned long flags; /* read the comment in __queue_work() */ local_irq_save(flags); if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { __queue_delayed_work(cpu, wq, dwork, delay); ret = true; } local_irq_restore(flags); return ret; } EXPORT_SYMBOL(queue_delayed_work_on); /** * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU * @cpu: CPU number to execute work on * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, * modify @dwork's timer so that it expires after @delay. If @delay is * zero, @work is guaranteed to be scheduled immediately regardless of its * current state. * * Return: %false if @dwork was idle and queued, %true if @dwork was * pending and its timer was modified. * * This function is safe to call from any context including IRQ handler. * See try_to_grab_pending() for details. */ bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { unsigned long flags; int ret; do { ret = try_to_grab_pending(&dwork->work, true, &flags); } while (unlikely(ret == -EAGAIN)); if (likely(ret >= 0)) { __queue_delayed_work(cpu, wq, dwork, delay); local_irq_restore(flags); } /* -ENOENT from try_to_grab_pending() becomes %true */ return ret; } EXPORT_SYMBOL_GPL(mod_delayed_work_on); static void rcu_work_rcufn(struct rcu_head *rcu) { struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); /* read the comment in __queue_work() */ local_irq_disable(); __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); local_irq_enable(); } /** * queue_rcu_work - queue work after a RCU grace period * @wq: workqueue to use * @rwork: work to queue * * Return: %false if @rwork was already pending, %true otherwise. Note * that a full RCU grace period is guaranteed only after a %true return. * While @rwork is guaranteed to be executed after a %false return, the * execution may happen before a full RCU grace period has passed. */ bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) { struct work_struct *work = &rwork->work; if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { rwork->wq = wq; call_rcu(&rwork->rcu, rcu_work_rcufn); return true; } return false; } EXPORT_SYMBOL(queue_rcu_work); /** * worker_enter_idle - enter idle state * @worker: worker which is entering idle state * * @worker is entering idle state. Update stats and idle timer if * necessary. * * LOCKING: * raw_spin_lock_irq(pool->lock). */ static void worker_enter_idle(struct worker *worker) { struct worker_pool *pool = worker->pool; if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || WARN_ON_ONCE(!list_empty(&worker->entry) && (worker->hentry.next || worker->hentry.pprev))) return; /* can't use worker_set_flags(), also called from create_worker() */ worker->flags |= WORKER_IDLE; pool->nr_idle++; worker->last_active = jiffies; /* idle_list is LIFO */ list_add(&worker->entry, &pool->idle_list); if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); /* * Sanity check nr_running. Because unbind_workers() releases * pool->lock between setting %WORKER_UNBOUND and zapping * nr_running, the warning may trigger spuriously. Check iff * unbind is not in progress. */ WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && pool->nr_workers == pool->nr_idle && atomic_read(&pool->nr_running)); } /** * worker_leave_idle - leave idle state * @worker: worker which is leaving idle state * * @worker is leaving idle state. Update stats. * * LOCKING: * raw_spin_lock_irq(pool->lock). */ static void worker_leave_idle(struct worker *worker) { struct worker_pool *pool = worker->pool; if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) return; worker_clr_flags(worker, WORKER_IDLE); pool->nr_idle--; list_del_init(&worker->entry); } static struct worker *alloc_worker(int node) { struct worker *worker; worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); if (worker) { INIT_LIST_HEAD(&worker->entry); INIT_LIST_HEAD(&worker->scheduled); INIT_LIST_HEAD(&worker->node); /* on creation a worker is in !idle && prep state */ worker->flags = WORKER_PREP; } return worker; } /** * worker_attach_to_pool() - attach a worker to a pool * @worker: worker to be attached * @pool: the target pool * * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and * cpu-binding of @worker are kept coordinated with the pool across * cpu-[un]hotplugs. */ static void worker_attach_to_pool(struct worker *worker, struct worker_pool *pool) { mutex_lock(&wq_pool_attach_mutex); /* * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains * stable across this function. See the comments above the flag * definition for details. */ if (pool->flags & POOL_DISASSOCIATED) worker->flags |= WORKER_UNBOUND; else kthread_set_per_cpu(worker->task, pool->cpu); if (worker->rescue_wq) set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); list_add_tail(&worker->node, &pool->workers); worker->pool = pool; mutex_unlock(&wq_pool_attach_mutex); } /** * worker_detach_from_pool() - detach a worker from its pool * @worker: worker which is attached to its pool * * Undo the attaching which had been done in worker_attach_to_pool(). The * caller worker shouldn't access to the pool after detached except it has * other reference to the pool. */ static void worker_detach_from_pool(struct worker *worker) { struct worker_pool *pool = worker->pool; struct completion *detach_completion = NULL; mutex_lock(&wq_pool_attach_mutex); kthread_set_per_cpu(worker->task, -1); list_del(&worker->node); worker->pool = NULL; if (list_empty(&pool->workers)) detach_completion = pool->detach_completion; mutex_unlock(&wq_pool_attach_mutex); /* clear leftover flags without pool->lock after it is detached */ worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); if (detach_completion) complete(detach_completion); } /** * create_worker - create a new workqueue worker * @pool: pool the new worker will belong to * * Create and start a new worker which is attached to @pool. * * CONTEXT: * Might sleep. Does GFP_KERNEL allocations. * * Return: * Pointer to the newly created worker. */ static struct worker *create_worker(struct worker_pool *pool) { struct worker *worker; int id; char id_buf[16]; /* ID is needed to determine kthread name */ id = ida_alloc(&pool->worker_ida, GFP_KERNEL); if (id < 0) return NULL; worker = alloc_worker(pool->node); if (!worker) goto fail; worker->id = id; if (pool->cpu >= 0) snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, pool->attrs->nice < 0 ? "H" : ""); else snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); worker->task = kthread_create_on_node(worker_thread, worker, pool->node, "kworker/%s", id_buf); if (IS_ERR(worker->task)) goto fail; set_user_nice(worker->task, pool->attrs->nice); kthread_bind_mask(worker->task, pool->attrs->cpumask); /* successful, attach the worker to the pool */ worker_attach_to_pool(worker, pool); /* start the newly created worker */ raw_spin_lock_irq(&pool->lock); worker->pool->nr_workers++; worker_enter_idle(worker); wake_up_process(worker->task); raw_spin_unlock_irq(&pool->lock); return worker; fail: ida_free(&pool->worker_ida, id); kfree(worker); return NULL; } /** * destroy_worker - destroy a workqueue worker * @worker: worker to be destroyed * * Destroy @worker and adjust @pool stats accordingly. The worker should * be idle. * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void destroy_worker(struct worker *worker) { struct worker_pool *pool = worker->pool; lockdep_assert_held(&pool->lock); /* sanity check frenzy */ if (WARN_ON(worker->current_work) || WARN_ON(!list_empty(&worker->scheduled)) || WARN_ON(!(worker->flags & WORKER_IDLE))) return; pool->nr_workers--; pool->nr_idle--; list_del_init(&worker->entry); worker->flags |= WORKER_DIE; wake_up_process(worker->task); } static void idle_worker_timeout(struct timer_list *t) { struct worker_pool *pool = from_timer(pool, t, idle_timer); raw_spin_lock_irq(&pool->lock); while (too_many_workers(pool)) { struct worker *worker; unsigned long expires; /* idle_list is kept in LIFO order, check the last one */ worker = list_entry(pool->idle_list.prev, struct worker, entry); expires = worker->last_active + IDLE_WORKER_TIMEOUT; if (time_before(jiffies, expires)) { mod_timer(&pool->idle_timer, expires); break; } destroy_worker(worker); } raw_spin_unlock_irq(&pool->lock); } static void send_mayday(struct work_struct *work) { struct pool_workqueue *pwq = get_work_pwq(work); struct workqueue_struct *wq = pwq->wq; lockdep_assert_held(&wq_mayday_lock); if (!wq->rescuer) return; /* mayday mayday mayday */ if (list_empty(&pwq->mayday_node)) { /* * If @pwq is for an unbound wq, its base ref may be put at * any time due to an attribute change. Pin @pwq until the * rescuer is done with it. */ get_pwq(pwq); list_add_tail(&pwq->mayday_node, &wq->maydays); wake_up_process(wq->rescuer->task); } } static void pool_mayday_timeout(struct timer_list *t) { struct worker_pool *pool = from_timer(pool, t, mayday_timer); struct work_struct *work; raw_spin_lock_irq(&pool->lock); raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ if (need_to_create_worker(pool)) { /* * We've been trying to create a new worker but * haven't been successful. We might be hitting an * allocation deadlock. Send distress signals to * rescuers. */ list_for_each_entry(work, &pool->worklist, entry) send_mayday(work); } raw_spin_unlock(&wq_mayday_lock); raw_spin_unlock_irq(&pool->lock); mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); } /** * maybe_create_worker - create a new worker if necessary * @pool: pool to create a new worker for * * Create a new worker for @pool if necessary. @pool is guaranteed to * have at least one idle worker on return from this function. If * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is * sent to all rescuers with works scheduled on @pool to resolve * possible allocation deadlock. * * On return, need_to_create_worker() is guaranteed to be %false and * may_start_working() %true. * * LOCKING: * raw_spin_lock_irq(pool->lock) which may be released and regrabbed * multiple times. Does GFP_KERNEL allocations. Called only from * manager. */ static void maybe_create_worker(struct worker_pool *pool) __releases(&pool->lock) __acquires(&pool->lock) { restart: raw_spin_unlock_irq(&pool->lock); /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); while (true) { if (create_worker(pool) || !need_to_create_worker(pool)) break; schedule_timeout_interruptible(CREATE_COOLDOWN); if (!need_to_create_worker(pool)) break; } del_timer_sync(&pool->mayday_timer); raw_spin_lock_irq(&pool->lock); /* * This is necessary even after a new worker was just successfully * created as @pool->lock was dropped and the new worker might have * already become busy. */ if (need_to_create_worker(pool)) goto restart; } /** * manage_workers - manage worker pool * @worker: self * * Assume the manager role and manage the worker pool @worker belongs * to. At any given time, there can be only zero or one manager per * pool. The exclusion is handled automatically by this function. * * The caller can safely start processing works on false return. On * true return, it's guaranteed that need_to_create_worker() is false * and may_start_working() is true. * * CONTEXT: * raw_spin_lock_irq(pool->lock) which may be released and regrabbed * multiple times. Does GFP_KERNEL allocations. * * Return: * %false if the pool doesn't need management and the caller can safely * start processing works, %true if management function was performed and * the conditions that the caller verified before calling the function may * no longer be true. */ static bool manage_workers(struct worker *worker) { struct worker_pool *pool = worker->pool; if (pool->flags & POOL_MANAGER_ACTIVE) return false; pool->flags |= POOL_MANAGER_ACTIVE; pool->manager = worker; maybe_create_worker(pool); pool->manager = NULL; pool->flags &= ~POOL_MANAGER_ACTIVE; rcuwait_wake_up(&manager_wait); return true; } /** * process_one_work - process single work * @worker: self * @work: work to process * * Process @work. This function contains all the logics necessary to * process a single work including synchronization against and * interaction with other workers on the same cpu, queueing and * flushing. As long as context requirement is met, any worker can * call this function to process a work. * * CONTEXT: * raw_spin_lock_irq(pool->lock) which is released and regrabbed. */ static void process_one_work(struct worker *worker, struct work_struct *work) __releases(&pool->lock) __acquires(&pool->lock) { struct pool_workqueue *pwq = get_work_pwq(work); struct worker_pool *pool = worker->pool; bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; unsigned long work_data; struct worker *collision; #ifdef CONFIG_LOCKDEP /* * It is permissible to free the struct work_struct from * inside the function that is called from it, this we need to * take into account for lockdep too. To avoid bogus "held * lock freed" warnings as well as problems when looking into * work->lockdep_map, make a copy and use that here. */ struct lockdep_map lockdep_map; lockdep_copy_map(&lockdep_map, &work->lockdep_map); #endif /* ensure we're on the correct CPU */ WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && raw_smp_processor_id() != pool->cpu); /* * A single work shouldn't be executed concurrently by * multiple workers on a single cpu. Check whether anyone is * already processing the work. If so, defer the work to the * currently executing one. */ collision = find_worker_executing_work(pool, work); if (unlikely(collision)) { move_linked_works(work, &collision->scheduled, NULL); return; } /* claim and dequeue */ debug_work_deactivate(work); hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); worker->current_work = work; worker->current_func = work->func; worker->current_pwq = pwq; work_data = *work_data_bits(work); worker->current_color = get_work_color(work_data); /* * Record wq name for cmdline and debug reporting, may get * overridden through set_worker_desc(). */ strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); list_del_init(&work->entry); /* * CPU intensive works don't participate in concurrency management. * They're the scheduler's responsibility. This takes @worker out * of concurrency management and the next code block will chain * execution of the pending work items. */ if (unlikely(cpu_intensive)) worker_set_flags(worker, WORKER_CPU_INTENSIVE); /* * Wake up another worker if necessary. The condition is always * false for normal per-cpu workers since nr_running would always * be >= 1 at this point. This is used to chain execution of the * pending work items for WORKER_NOT_RUNNING workers such as the * UNBOUND and CPU_INTENSIVE ones. */ if (need_more_worker(pool)) wake_up_worker(pool); /* * Record the last pool and clear PENDING which should be the last * update to @work. Also, do this inside @pool->lock so that * PENDING and queued state changes happen together while IRQ is * disabled. */ set_work_pool_and_clear_pending(work, pool->id); raw_spin_unlock_irq(&pool->lock); lock_map_acquire(&pwq->wq->lockdep_map); lock_map_acquire(&lockdep_map); /* * Strictly speaking we should mark the invariant state without holding * any locks, that is, before these two lock_map_acquire()'s. * * However, that would result in: * * A(W1) * WFC(C) * A(W1) * C(C) * * Which would create W1->C->W1 dependencies, even though there is no * actual deadlock possible. There are two solutions, using a * read-recursive acquire on the work(queue) 'locks', but this will then * hit the lockdep limitation on recursive locks, or simply discard * these locks. * * AFAICT there is no possible deadlock scenario between the * flush_work() and complete() primitives (except for single-threaded * workqueues), so hiding them isn't a problem. */ lockdep_invariant_state(true); trace_workqueue_execute_start(work); worker->current_func(work); /* * While we must be careful to not use "work" after this, the trace * point will only record its address. */ trace_workqueue_execute_end(work, worker->current_func); lock_map_release(&lockdep_map); lock_map_release(&pwq->wq->lockdep_map); if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" " last function: %ps\n", current->comm, preempt_count(), task_pid_nr(current), worker->current_func); debug_show_held_locks(current); dump_stack(); } /* * The following prevents a kworker from hogging CPU on !PREEMPTION * kernels, where a requeueing work item waiting for something to * happen could deadlock with stop_machine as such work item could * indefinitely requeue itself while all other CPUs are trapped in * stop_machine. At the same time, report a quiescent RCU state so * the same condition doesn't freeze RCU. */ cond_resched(); raw_spin_lock_irq(&pool->lock); /* clear cpu intensive status */ if (unlikely(cpu_intensive)) worker_clr_flags(worker, WORKER_CPU_INTENSIVE); /* tag the worker for identification in schedule() */ worker->last_func = worker->current_func; /* we're done with it, release */ hash_del(&worker->hentry); worker->current_work = NULL; worker->current_func = NULL; worker->current_pwq = NULL; worker->current_color = INT_MAX; pwq_dec_nr_in_flight(pwq, work_data); } /** * process_scheduled_works - process scheduled works * @worker: self * * Process all scheduled works. Please note that the scheduled list * may change while processing a work, so this function repeatedly * fetches a work from the top and executes it. * * CONTEXT: * raw_spin_lock_irq(pool->lock) which may be released and regrabbed * multiple times. */ static void process_scheduled_works(struct worker *worker) { while (!list_empty(&worker->scheduled)) { struct work_struct *work = list_first_entry(&worker->scheduled, struct work_struct, entry); process_one_work(worker, work); } } static void set_pf_worker(bool val) { mutex_lock(&wq_pool_attach_mutex); if (val) current->flags |= PF_WQ_WORKER; else current->flags &= ~PF_WQ_WORKER; mutex_unlock(&wq_pool_attach_mutex); } /** * worker_thread - the worker thread function * @__worker: self * * The worker thread function. All workers belong to a worker_pool - * either a per-cpu one or dynamic unbound one. These workers process all * work items regardless of their specific target workqueue. The only * exception is work items which belong to workqueues with a rescuer which * will be explained in rescuer_thread(). * * Return: 0 */ static int worker_thread(void *__worker) { struct worker *worker = __worker; struct worker_pool *pool = worker->pool; /* tell the scheduler that this is a workqueue worker */ set_pf_worker(true); woke_up: raw_spin_lock_irq(&pool->lock); /* am I supposed to die? */ if (unlikely(worker->flags & WORKER_DIE)) { raw_spin_unlock_irq(&pool->lock); WARN_ON_ONCE(!list_empty(&worker->entry)); set_pf_worker(false); set_task_comm(worker->task, "kworker/dying"); ida_free(&pool->worker_ida, worker->id); worker_detach_from_pool(worker); kfree(worker); return 0; } worker_leave_idle(worker); recheck: /* no more worker necessary? */ if (!need_more_worker(pool)) goto sleep; /* do we need to manage? */ if (unlikely(!may_start_working(pool)) && manage_workers(worker)) goto recheck; /* * ->scheduled list can only be filled while a worker is * preparing to process a work or actually processing it. * Make sure nobody diddled with it while I was sleeping. */ WARN_ON_ONCE(!list_empty(&worker->scheduled)); /* * Finish PREP stage. We're guaranteed to have at least one idle * worker or that someone else has already assumed the manager * role. This is where @worker starts participating in concurrency * management if applicable and concurrency management is restored * after being rebound. See rebind_workers() for details. */ worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); do { struct work_struct *work = list_first_entry(&pool->worklist, struct work_struct, entry); pool->watchdog_ts = jiffies; if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { /* optimization path, not strictly necessary */ process_one_work(worker, work); if (unlikely(!list_empty(&worker->scheduled))) process_scheduled_works(worker); } else { move_linked_works(work, &worker->scheduled, NULL); process_scheduled_works(worker); } } while (keep_working(pool)); worker_set_flags(worker, WORKER_PREP); sleep: /* * pool->lock is held and there's no work to process and no need to * manage, sleep. Workers are woken up only while holding * pool->lock or from local cpu, so setting the current state * before releasing pool->lock is enough to prevent losing any * event. */ worker_enter_idle(worker); __set_current_state(TASK_IDLE); raw_spin_unlock_irq(&pool->lock); schedule(); goto woke_up; } /** * rescuer_thread - the rescuer thread function * @__rescuer: self * * Workqueue rescuer thread function. There's one rescuer for each * workqueue which has WQ_MEM_RECLAIM set. * * Regular work processing on a pool may block trying to create a new * worker which uses GFP_KERNEL allocation which has slight chance of * developing into deadlock if some works currently on the same queue * need to be processed to satisfy the GFP_KERNEL allocation. This is * the problem rescuer solves. * * When such condition is possible, the pool summons rescuers of all * workqueues which have works queued on the pool and let them process * those works so that forward progress can be guaranteed. * * This should happen rarely. * * Return: 0 */ static int rescuer_thread(void *__rescuer) { struct worker *rescuer = __rescuer; struct workqueue_struct *wq = rescuer->rescue_wq; struct list_head *scheduled = &rescuer->scheduled; bool should_stop; set_user_nice(current, RESCUER_NICE_LEVEL); /* * Mark rescuer as worker too. As WORKER_PREP is never cleared, it * doesn't participate in concurrency management. */ set_pf_worker(true); repeat: set_current_state(TASK_IDLE); /* * By the time the rescuer is requested to stop, the workqueue * shouldn't have any work pending, but @wq->maydays may still have * pwq(s) queued. This can happen by non-rescuer workers consuming * all the work items before the rescuer got to them. Go through * @wq->maydays processing before acting on should_stop so that the * list is always empty on exit. */ should_stop = kthread_should_stop(); /* see whether any pwq is asking for help */ raw_spin_lock_irq(&wq_mayday_lock); while (!list_empty(&wq->maydays)) { struct pool_workqueue *pwq = list_first_entry(&wq->maydays, struct pool_workqueue, mayday_node); struct worker_pool *pool = pwq->pool; struct work_struct *work, *n; bool first = true; __set_current_state(TASK_RUNNING); list_del_init(&pwq->mayday_node); raw_spin_unlock_irq(&wq_mayday_lock); worker_attach_to_pool(rescuer, pool); raw_spin_lock_irq(&pool->lock); /* * Slurp in all works issued via this workqueue and * process'em. */ WARN_ON_ONCE(!list_empty(scheduled)); list_for_each_entry_safe(work, n, &pool->worklist, entry) { if (get_work_pwq(work) == pwq) { if (first) pool->watchdog_ts = jiffies; move_linked_works(work, scheduled, &n); } first = false; } if (!list_empty(scheduled)) { process_scheduled_works(rescuer); /* * The above execution of rescued work items could * have created more to rescue through * pwq_activate_first_inactive() or chained * queueing. Let's put @pwq back on mayday list so * that such back-to-back work items, which may be * being used to relieve memory pressure, don't * incur MAYDAY_INTERVAL delay inbetween. */ if (pwq->nr_active && need_to_create_worker(pool)) { raw_spin_lock(&wq_mayday_lock); /* * Queue iff we aren't racing destruction * and somebody else hasn't queued it already. */ if (wq->rescuer && list_empty(&pwq->mayday_node)) { get_pwq(pwq); list_add_tail(&pwq->mayday_node, &wq->maydays); } raw_spin_unlock(&wq_mayday_lock); } } /* * Put the reference grabbed by send_mayday(). @pool won't * go away while we're still attached to it. */ put_pwq(pwq); /* * Leave this pool. If need_more_worker() is %true, notify a * regular worker; otherwise, we end up with 0 concurrency * and stalling the execution. */ if (need_more_worker(pool)) wake_up_worker(pool); raw_spin_unlock_irq(&pool->lock); worker_detach_from_pool(rescuer); raw_spin_lock_irq(&wq_mayday_lock); } raw_spin_unlock_irq(&wq_mayday_lock); if (should_stop) { __set_current_state(TASK_RUNNING); set_pf_worker(false); return 0; } /* rescuers should never participate in concurrency management */ WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); schedule(); goto repeat; } /** * check_flush_dependency - check for flush dependency sanity * @target_wq: workqueue being flushed * @target_work: work item being flushed (NULL for workqueue flushes) * * %current is trying to flush the whole @target_wq or @target_work on it. * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not * reclaiming memory or running on a workqueue which doesn't have * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to * a deadlock. */ static void check_flush_dependency(struct workqueue_struct *target_wq, struct work_struct *target_work) { work_func_t target_func = target_work ? target_work->func : NULL; struct worker *worker; if (target_wq->flags & WQ_MEM_RECLAIM) return; worker = current_wq_worker(); WARN_ONCE(current->flags & PF_MEMALLOC, "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", current->pid, current->comm, target_wq->name, target_func); WARN_ONCE(worker && ((worker->current_pwq->wq->flags & (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", worker->current_pwq->wq->name, worker->current_func, target_wq->name, target_func); } struct wq_barrier { struct work_struct work; struct completion done; struct task_struct *task; /* purely informational */ }; static void wq_barrier_func(struct work_struct *work) { struct wq_barrier *barr = container_of(work, struct wq_barrier, work); complete(&barr->done); } /** * insert_wq_barrier - insert a barrier work * @pwq: pwq to insert barrier into * @barr: wq_barrier to insert * @target: target work to attach @barr to * @worker: worker currently executing @target, NULL if @target is not executing * * @barr is linked to @target such that @barr is completed only after * @target finishes execution. Please note that the ordering * guarantee is observed only with respect to @target and on the local * cpu. * * Currently, a queued barrier can't be canceled. This is because * try_to_grab_pending() can't determine whether the work to be * grabbed is at the head of the queue and thus can't clear LINKED * flag of the previous work while there must be a valid next work * after a work with LINKED flag set. * * Note that when @worker is non-NULL, @target may be modified * underneath us, so we can't reliably determine pwq from @target. * * CONTEXT: * raw_spin_lock_irq(pool->lock). */ static void insert_wq_barrier(struct pool_workqueue *pwq, struct wq_barrier *barr, struct work_struct *target, struct worker *worker) { unsigned int work_flags = 0; unsigned int work_color; struct list_head *head; /* * debugobject calls are safe here even with pool->lock locked * as we know for sure that this will not trigger any of the * checks and call back into the fixup functions where we * might deadlock. */ INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); init_completion_map(&barr->done, &target->lockdep_map); barr->task = current; /* The barrier work item does not participate in pwq->nr_active. */ work_flags |= WORK_STRUCT_INACTIVE; /* * If @target is currently being executed, schedule the * barrier to the worker; otherwise, put it after @target. */ if (worker) { head = worker->scheduled.next; work_color = worker->current_color; } else { unsigned long *bits = work_data_bits(target); head = target->entry.next; /* there can already be other linked works, inherit and set */ work_flags |= *bits & WORK_STRUCT_LINKED; work_color = get_work_color(*bits); __set_bit(WORK_STRUCT_LINKED_BIT, bits); } pwq->nr_in_flight[work_color]++; work_flags |= work_color_to_flags(work_color); debug_work_activate(&barr->work); insert_work(pwq, &barr->work, head, work_flags); } /** * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing * @wq: workqueue being flushed * @flush_color: new flush color, < 0 for no-op * @work_color: new work color, < 0 for no-op * * Prepare pwqs for workqueue flushing. * * If @flush_color is non-negative, flush_color on all pwqs should be * -1. If no pwq has in-flight commands at the specified color, all * pwq->flush_color's stay at -1 and %false is returned. If any pwq * has in flight commands, its pwq->flush_color is set to * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq * wakeup logic is armed and %true is returned. * * The caller should have initialized @wq->first_flusher prior to * calling this function with non-negative @flush_color. If * @flush_color is negative, no flush color update is done and %false * is returned. * * If @work_color is non-negative, all pwqs should have the same * work_color which is previous to @work_color and all will be * advanced to @work_color. * * CONTEXT: * mutex_lock(wq->mutex). * * Return: * %true if @flush_color >= 0 and there's something to flush. %false * otherwise. */ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, int flush_color, int work_color) { bool wait = false; struct pool_workqueue *pwq; if (flush_color >= 0) { WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); atomic_set(&wq->nr_pwqs_to_flush, 1); } for_each_pwq(pwq, wq) { struct worker_pool *pool = pwq->pool; raw_spin_lock_irq(&pool->lock); if (flush_color >= 0) { WARN_ON_ONCE(pwq->flush_color != -1); if (pwq->nr_in_flight[flush_color]) { pwq->flush_color = flush_color; atomic_inc(&wq->nr_pwqs_to_flush); wait = true; } } if (work_color >= 0) { WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); pwq->work_color = work_color; } raw_spin_unlock_irq(&pool->lock); } if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) complete(&wq->first_flusher->done); return wait; } /** * flush_workqueue - ensure that any scheduled work has run to completion. * @wq: workqueue to flush * * This function sleeps until all work items which were queued on entry * have finished execution, but it is not livelocked by new incoming ones. */ void flush_workqueue(struct workqueue_struct *wq) { struct wq_flusher this_flusher = { .list = LIST_HEAD_INIT(this_flusher.list), .flush_color = -1, .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), }; int next_color; if (WARN_ON(!wq_online)) return; lock_map_acquire(&wq->lockdep_map); lock_map_release(&wq->lockdep_map); mutex_lock(&wq->mutex); /* * Start-to-wait phase */ next_color = work_next_color(wq->work_color); if (next_color != wq->flush_color) { /* * Color space is not full. The current work_color * becomes our flush_color and work_color is advanced * by one. */ WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); this_flusher.flush_color = wq->work_color; wq->work_color = next_color; if (!wq->first_flusher) { /* no flush in progress, become the first flusher */ WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); wq->first_flusher = &this_flusher; if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, wq->work_color)) { /* nothing to flush, done */ wq->flush_color = next_color; wq->first_flusher = NULL; goto out_unlock; } } else { /* wait in queue */ WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); list_add_tail(&this_flusher.list, &wq->flusher_queue); flush_workqueue_prep_pwqs(wq, -1, wq->work_color); } } else { /* * Oops, color space is full, wait on overflow queue. * The next flush completion will assign us * flush_color and transfer to flusher_queue. */ list_add_tail(&this_flusher.list, &wq->flusher_overflow); } check_flush_dependency(wq, NULL); mutex_unlock(&wq->mutex); wait_for_completion(&this_flusher.done); /* * Wake-up-and-cascade phase * * First flushers are responsible for cascading flushes and * handling overflow. Non-first flushers can simply return. */ if (READ_ONCE(wq->first_flusher) != &this_flusher) return; mutex_lock(&wq->mutex); /* we might have raced, check again with mutex held */ if (wq->first_flusher != &this_flusher) goto out_unlock; WRITE_ONCE(wq->first_flusher, NULL); WARN_ON_ONCE(!list_empty(&this_flusher.list)); WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); while (true) { struct wq_flusher *next, *tmp; /* complete all the flushers sharing the current flush color */ list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { if (next->flush_color != wq->flush_color) break; list_del_init(&next->list); complete(&next->done); } WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && wq->flush_color != work_next_color(wq->work_color)); /* this flush_color is finished, advance by one */ wq->flush_color = work_next_color(wq->flush_color); /* one color has been freed, handle overflow queue */ if (!list_empty(&wq->flusher_overflow)) { /* * Assign the same color to all overflowed * flushers, advance work_color and append to * flusher_queue. This is the start-to-wait * phase for these overflowed flushers. */ list_for_each_entry(tmp, &wq->flusher_overflow, list) tmp->flush_color = wq->work_color; wq->work_color = work_next_color(wq->work_color); list_splice_tail_init(&wq->flusher_overflow, &wq->flusher_queue); flush_workqueue_prep_pwqs(wq, -1, wq->work_color); } if (list_empty(&wq->flusher_queue)) { WARN_ON_ONCE(wq->flush_color != wq->work_color); break; } /* * Need to flush more colors. Make the next flusher * the new first flusher and arm pwqs. */ WARN_ON_ONCE(wq->flush_color == wq->work_color); WARN_ON_ONCE(wq->flush_color != next->flush_color); list_del_init(&next->list); wq->first_flusher = next; if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) break; /* * Meh... this color is already done, clear first * flusher and repeat cascading. */ wq->first_flusher = NULL; } out_unlock: mutex_unlock(&wq->mutex); } EXPORT_SYMBOL(flush_workqueue); /** * drain_workqueue - drain a workqueue * @wq: workqueue to drain * * Wait until the workqueue becomes empty. While draining is in progress, * only chain queueing is allowed. IOW, only currently pending or running * work items on @wq can queue further work items on it. @wq is flushed * repeatedly until it becomes empty. The number of flushing is determined * by the depth of chaining and should be relatively short. Whine if it * takes too long. */ void drain_workqueue(struct workqueue_struct *wq) { unsigned int flush_cnt = 0; struct pool_workqueue *pwq; /* * __queue_work() needs to test whether there are drainers, is much * hotter than drain_workqueue() and already looks at @wq->flags. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. */ mutex_lock(&wq->mutex); if (!wq->nr_drainers++) wq->flags |= __WQ_DRAINING; mutex_unlock(&wq->mutex); reflush: flush_workqueue(wq); mutex_lock(&wq->mutex); for_each_pwq(pwq, wq) { bool drained; raw_spin_lock_irq(&pwq->pool->lock); drained = !pwq->nr_active && list_empty(&pwq->inactive_works); raw_spin_unlock_irq(&pwq->pool->lock); if (drained) continue; if (++flush_cnt == 10 || (flush_cnt % 100 == 0 && flush_cnt <= 1000)) pr_warn("workqueue %s: %s() isn't complete after %u tries\n", wq->name, __func__, flush_cnt); mutex_unlock(&wq->mutex); goto reflush; } if (!--wq->nr_drainers) wq->flags &= ~__WQ_DRAINING; mutex_unlock(&wq->mutex); } EXPORT_SYMBOL_GPL(drain_workqueue); static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, bool from_cancel) { struct worker *worker = NULL; struct worker_pool *pool; struct pool_workqueue *pwq; might_sleep(); rcu_read_lock(); pool = get_work_pool(work); if (!pool) { rcu_read_unlock(); return false; } raw_spin_lock_irq(&pool->lock); /* see the comment in try_to_grab_pending() with the same code */ pwq = get_work_pwq(work); if (pwq) { if (unlikely(pwq->pool != pool)) goto already_gone; } else { worker = find_worker_executing_work(pool, work); if (!worker) goto already_gone; pwq = worker->current_pwq; } check_flush_dependency(pwq->wq, work); insert_wq_barrier(pwq, barr, work, worker); raw_spin_unlock_irq(&pool->lock); /* * Force a lock recursion deadlock when using flush_work() inside a * single-threaded or rescuer equipped workqueue. * * For single threaded workqueues the deadlock happens when the work * is after the work issuing the flush_work(). For rescuer equipped * workqueues the deadlock happens when the rescuer stalls, blocking * forward progress. */ if (!from_cancel && (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { lock_map_acquire(&pwq->wq->lockdep_map); lock_map_release(&pwq->wq->lockdep_map); } rcu_read_unlock(); return true; already_gone: raw_spin_unlock_irq(&pool->lock); rcu_read_unlock(); return false; } static bool __flush_work(struct work_struct *work, bool from_cancel) { struct wq_barrier barr; if (WARN_ON(!wq_online)) return false; if (WARN_ON(!work->func)) return false; if (!from_cancel) { lock_map_acquire(&work->lockdep_map); lock_map_release(&work->lockdep_map); } if (start_flush_work(work, &barr, from_cancel)) { wait_for_completion(&barr.done); destroy_work_on_stack(&barr.work); return true; } else { return false; } } /** * flush_work - wait for a work to finish executing the last queueing instance * @work: the work to flush * * Wait until @work has finished execution. @work is guaranteed to be idle * on return if it hasn't been requeued since flush started. * * Return: * %true if flush_work() waited for the work to finish execution, * %false if it was already idle. */ bool flush_work(struct work_struct *work) { return __flush_work(work, false); } EXPORT_SYMBOL_GPL(flush_work); struct cwt_wait { wait_queue_entry_t wait; struct work_struct *work; }; static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); if (cwait->work != key) return 0; return autoremove_wake_function(wait, mode, sync, key); } static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) { static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); unsigned long flags; int ret; do { ret = try_to_grab_pending(work, is_dwork, &flags); /* * If someone else is already canceling, wait for it to * finish. flush_work() doesn't work for PREEMPT_NONE * because we may get scheduled between @work's completion * and the other canceling task resuming and clearing * CANCELING - flush_work() will return false immediately * as @work is no longer busy, try_to_grab_pending() will * return -ENOENT as @work is still being canceled and the * other canceling task won't be able to clear CANCELING as * we're hogging the CPU. * * Let's wait for completion using a waitqueue. As this * may lead to the thundering herd problem, use a custom * wake function which matches @work along with exclusive * wait and wakeup. */ if (unlikely(ret == -ENOENT)) { struct cwt_wait cwait; init_wait(&cwait.wait); cwait.wait.func = cwt_wakefn; cwait.work = work; prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, TASK_UNINTERRUPTIBLE); if (work_is_canceling(work)) schedule(); finish_wait(&cancel_waitq, &cwait.wait); } } while (unlikely(ret < 0)); /* tell other tasks trying to grab @work to back off */ mark_work_canceling(work); local_irq_restore(flags); /* * This allows canceling during early boot. We know that @work * isn't executing. */ if (wq_online) __flush_work(work, true); clear_work_data(work); /* * Paired with prepare_to_wait() above so that either * waitqueue_active() is visible here or !work_is_canceling() is * visible there. */ smp_mb(); if (waitqueue_active(&cancel_waitq)) __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); return ret; } /** * cancel_work_sync - cancel a work and wait for it to finish * @work: the work to cancel * * Cancel @work and wait for its execution to finish. This function * can be used even if the work re-queues itself or migrates to * another workqueue. On return from this function, @work is * guaranteed to be not pending or executing on any CPU. * * cancel_work_sync(&delayed_work->work) must not be used for * delayed_work's. Use cancel_delayed_work_sync() instead. * * The caller must ensure that the workqueue on which @work was last * queued can't be destroyed before this function returns. * * Return: * %true if @work was pending, %false otherwise. */ bool cancel_work_sync(struct work_struct *work) { return __cancel_work_timer(work, false); } EXPORT_SYMBOL_GPL(cancel_work_sync); /** * flush_delayed_work - wait for a dwork to finish executing the last queueing * @dwork: the delayed work to flush * * Delayed timer is cancelled and the pending work is queued for * immediate execution. Like flush_work(), this function only * considers the last queueing instance of @dwork. * * Return: * %true if flush_work() waited for the work to finish execution, * %false if it was already idle. */ bool flush_delayed_work(struct delayed_work *dwork) { local_irq_disable(); if (del_timer_sync(&dwork->timer)) __queue_work(dwork->cpu, dwork->wq, &dwork->work); local_irq_enable(); return flush_work(&dwork->work); } EXPORT_SYMBOL(flush_delayed_work); /** * flush_rcu_work - wait for a rwork to finish executing the last queueing * @rwork: the rcu work to flush * * Return: * %true if flush_rcu_work() waited for the work to finish execution, * %false if it was already idle. */ bool flush_rcu_work(struct rcu_work *rwork) { if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { rcu_barrier(); flush_work(&rwork->work); return true; } else { return flush_work(&rwork->work); } } EXPORT_SYMBOL(flush_rcu_work); static bool __cancel_work(struct work_struct *work, bool is_dwork) { unsigned long flags; int ret; do { ret = try_to_grab_pending(work, is_dwork, &flags); } while (unlikely(ret == -EAGAIN)); if (unlikely(ret < 0)) return false; set_work_pool_and_clear_pending(work, get_work_pool_id(work)); local_irq_restore(flags); return ret; } /** * cancel_delayed_work - cancel a delayed work * @dwork: delayed_work to cancel * * Kill off a pending delayed_work. * * Return: %true if @dwork was pending and canceled; %false if it wasn't * pending. * * Note: * The work callback function may still be running on return, unless * it returns %true and the work doesn't re-arm itself. Explicitly flush or * use cancel_delayed_work_sync() to wait on it. * * This function is safe to call from any context including IRQ handler. */ bool cancel_delayed_work(struct delayed_work *dwork) { return __cancel_work(&dwork->work, true); } EXPORT_SYMBOL(cancel_delayed_work); /** * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish * @dwork: the delayed work cancel * * This is cancel_work_sync() for delayed works. * * Return: * %true if @dwork was pending, %false otherwise. */ bool cancel_delayed_work_sync(struct delayed_work *dwork) { return __cancel_work_timer(&dwork->work, true); } EXPORT_SYMBOL(cancel_delayed_work_sync); /** * schedule_on_each_cpu - execute a function synchronously on each online CPU * @func: the function to call * * schedule_on_each_cpu() executes @func on each online CPU using the * system workqueue and blocks until all CPUs have completed. * schedule_on_each_cpu() is very slow. * * Return: * 0 on success, -errno on failure. */ int schedule_on_each_cpu(work_func_t func) { int cpu; struct work_struct __percpu *works; works = alloc_percpu(struct work_struct); if (!works) return -ENOMEM; cpus_read_lock(); for_each_online_cpu(cpu) { struct work_struct *work = per_cpu_ptr(works, cpu); INIT_WORK(work, func); schedule_work_on(cpu, work); } for_each_online_cpu(cpu) flush_work(per_cpu_ptr(works, cpu)); cpus_read_unlock(); free_percpu(works); return 0; } /** * execute_in_process_context - reliably execute the routine with user context * @fn: the function to execute * @ew: guaranteed storage for the execute work structure (must * be available when the work executes) * * Executes the function immediately if process context is available, * otherwise schedules the function for delayed execution. * * Return: 0 - function was executed * 1 - function was scheduled for execution */ int execute_in_process_context(work_func_t fn, struct execute_work *ew) { if (!in_interrupt()) { fn(&ew->work); return 0; } INIT_WORK(&ew->work, fn); schedule_work(&ew->work); return 1; } EXPORT_SYMBOL_GPL(execute_in_process_context); /** * free_workqueue_attrs - free a workqueue_attrs * @attrs: workqueue_attrs to free * * Undo alloc_workqueue_attrs(). */ void free_workqueue_attrs(struct workqueue_attrs *attrs) { if (attrs) { free_cpumask_var(attrs->cpumask); kfree(attrs); } } /** * alloc_workqueue_attrs - allocate a workqueue_attrs * * Allocate a new workqueue_attrs, initialize with default settings and * return it. * * Return: The allocated new workqueue_attr on success. %NULL on failure. */ struct workqueue_attrs *alloc_workqueue_attrs(void) { struct workqueue_attrs *attrs; attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); if (!attrs) goto fail; if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) goto fail; cpumask_copy(attrs->cpumask, cpu_possible_mask); return attrs; fail: free_workqueue_attrs(attrs); return NULL; } static void copy_workqueue_attrs(struct workqueue_attrs *to, const struct workqueue_attrs *from) { to->nice = from->nice; cpumask_copy(to->cpumask, from->cpumask); /* * Unlike hash and equality test, this function doesn't ignore * ->no_numa as it is used for both pool and wq attrs. Instead, * get_unbound_pool() explicitly clears ->no_numa after copying. */ to->no_numa = from->no_numa; } /* hash value of the content of @attr */ static u32 wqattrs_hash(const struct workqueue_attrs *attrs) { u32 hash = 0; hash = jhash_1word(attrs->nice, hash); hash = jhash(cpumask_bits(attrs->cpumask), BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); return hash; } /* content equality test */ static bool wqattrs_equal(const struct workqueue_attrs *a, const struct workqueue_attrs *b) { if (a->nice != b->nice) return false; if (!cpumask_equal(a->cpumask, b->cpumask)) return false; return true; } /** * init_worker_pool - initialize a newly zalloc'd worker_pool * @pool: worker_pool to initialize * * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. * * Return: 0 on success, -errno on failure. Even on failure, all fields * inside @pool proper are initialized and put_unbound_pool() can be called * on @pool safely to release it. */ static int init_worker_pool(struct worker_pool *pool) { raw_spin_lock_init(&pool->lock); pool->id = -1; pool->cpu = -1; pool->node = NUMA_NO_NODE; pool->flags |= POOL_DISASSOCIATED; pool->watchdog_ts = jiffies; INIT_LIST_HEAD(&pool->worklist); INIT_LIST_HEAD(&pool->idle_list); hash_init(pool->busy_hash); timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); INIT_LIST_HEAD(&pool->workers); ida_init(&pool->worker_ida); INIT_HLIST_NODE(&pool->hash_node); pool->refcnt = 1; /* shouldn't fail above this point */ pool->attrs = alloc_workqueue_attrs(); if (!pool->attrs) return -ENOMEM; return 0; } #ifdef CONFIG_LOCKDEP static void wq_init_lockdep(struct workqueue_struct *wq) { char *lock_name; lockdep_register_key(&wq->key); lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); if (!lock_name) lock_name = wq->name; wq->lock_name = lock_name; lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); } static void wq_unregister_lockdep(struct workqueue_struct *wq) { lockdep_unregister_key(&wq->key); } static void wq_free_lockdep(struct workqueue_struct *wq) { if (wq->lock_name != wq->name) kfree(wq->lock_name); } #else static void wq_init_lockdep(struct workqueue_struct *wq) { } static void wq_unregister_lockdep(struct workqueue_struct *wq) { } static void wq_free_lockdep(struct workqueue_struct *wq) { } #endif static void rcu_free_wq(struct rcu_head *rcu) { struct workqueue_struct *wq = container_of(rcu, struct workqueue_struct, rcu); wq_free_lockdep(wq); if (!(wq->flags & WQ_UNBOUND)) free_percpu(wq->cpu_pwqs); else free_workqueue_attrs(wq->unbound_attrs); kfree(wq); } static void rcu_free_pool(struct rcu_head *rcu) { struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); ida_destroy(&pool->worker_ida); free_workqueue_attrs(pool->attrs); kfree(pool); } /* This returns with the lock held on success (pool manager is inactive). */ static bool wq_manager_inactive(struct worker_pool *pool) { raw_spin_lock_irq(&pool->lock); if (pool->flags & POOL_MANAGER_ACTIVE) { raw_spin_unlock_irq(&pool->lock); return false; } return true; } /** * put_unbound_pool - put a worker_pool * @pool: worker_pool to put * * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU * safe manner. get_unbound_pool() calls this function on its failure path * and this function should be able to release pools which went through, * successfully or not, init_worker_pool(). * * Should be called with wq_pool_mutex held. */ static void put_unbound_pool(struct worker_pool *pool) { DECLARE_COMPLETION_ONSTACK(detach_completion); struct worker *worker; lockdep_assert_held(&wq_pool_mutex); if (--pool->refcnt) return; /* sanity checks */ if (WARN_ON(!(pool->cpu < 0)) || WARN_ON(!list_empty(&pool->worklist))) return; /* release id and unhash */ if (pool->id >= 0) idr_remove(&worker_pool_idr, pool->id); hash_del(&pool->hash_node); /* * Become the manager and destroy all workers. This prevents * @pool's workers from blocking on attach_mutex. We're the last * manager and @pool gets freed with the flag set. * Because of how wq_manager_inactive() works, we will hold the * spinlock after a successful wait. */ rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), TASK_UNINTERRUPTIBLE); pool->flags |= POOL_MANAGER_ACTIVE; while ((worker = first_idle_worker(pool))) destroy_worker(worker); WARN_ON(pool->nr_workers || pool->nr_idle); raw_spin_unlock_irq(&pool->lock); mutex_lock(&wq_pool_attach_mutex); if (!list_empty(&pool->workers)) pool->detach_completion = &detach_completion; mutex_unlock(&wq_pool_attach_mutex); if (pool->detach_completion) wait_for_completion(pool->detach_completion); /* shut down the timers */ del_timer_sync(&pool->idle_timer); del_timer_sync(&pool->mayday_timer); /* RCU protected to allow dereferences from get_work_pool() */ call_rcu(&pool->rcu, rcu_free_pool); } /** * get_unbound_pool - get a worker_pool with the specified attributes * @attrs: the attributes of the worker_pool to get * * Obtain a worker_pool which has the same attributes as @attrs, bump the * reference count and return it. If there already is a matching * worker_pool, it will be used; otherwise, this function attempts to * create a new one. * * Should be called with wq_pool_mutex held. * * Return: On success, a worker_pool with the same attributes as @attrs. * On failure, %NULL. */ static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) { u32 hash = wqattrs_hash(attrs); struct worker_pool *pool; int node; int target_node = NUMA_NO_NODE; lockdep_assert_held(&wq_pool_mutex); /* do we already have a matching pool? */ hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { if (wqattrs_equal(pool->attrs, attrs)) { pool->refcnt++; return pool; } } /* if cpumask is contained inside a NUMA node, we belong to that node */ if (wq_numa_enabled) { for_each_node(node) { if (cpumask_subset(attrs->cpumask, wq_numa_possible_cpumask[node])) { target_node = node; break; } } } /* nope, create a new one */ pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); if (!pool || init_worker_pool(pool) < 0) goto fail; lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ copy_workqueue_attrs(pool->attrs, attrs); pool->node = target_node; /* * no_numa isn't a worker_pool attribute, always clear it. See * 'struct workqueue_attrs' comments for detail. */ pool->attrs->no_numa = false; if (worker_pool_assign_id(pool) < 0) goto fail; /* create and start the initial worker */ if (wq_online && !create_worker(pool)) goto fail; /* install */ hash_add(unbound_pool_hash, &pool->hash_node, hash); return pool; fail: if (pool) put_unbound_pool(pool); return NULL; } static void rcu_free_pwq(struct rcu_head *rcu) { kmem_cache_free(pwq_cache, container_of(rcu, struct pool_workqueue, rcu)); } /* * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt * and needs to be destroyed. */ static void pwq_unbound_release_workfn(struct work_struct *work) { struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, unbound_release_work); struct workqueue_struct *wq = pwq->wq; struct worker_pool *pool = pwq->pool; bool is_last = false; /* * when @pwq is not linked, it doesn't hold any reference to the * @wq, and @wq is invalid to access. */ if (!list_empty(&pwq->pwqs_node)) { if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) return; mutex_lock(&wq->mutex); list_del_rcu(&pwq->pwqs_node); is_last = list_empty(&wq->pwqs); mutex_unlock(&wq->mutex); } mutex_lock(&wq_pool_mutex); put_unbound_pool(pool); mutex_unlock(&wq_pool_mutex); call_rcu(&pwq->rcu, rcu_free_pwq); /* * If we're the last pwq going away, @wq is already dead and no one * is gonna access it anymore. Schedule RCU free. */ if (is_last) { wq_unregister_lockdep(wq); call_rcu(&wq->rcu, rcu_free_wq); } } /** * pwq_adjust_max_active - update a pwq's max_active to the current setting * @pwq: target pool_workqueue * * If @pwq isn't freezing, set @pwq->max_active to the associated * workqueue's saved_max_active and activate inactive work items * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. */ static void pwq_adjust_max_active(struct pool_workqueue *pwq) { struct workqueue_struct *wq = pwq->wq; bool freezable = wq->flags & WQ_FREEZABLE; unsigned long flags; /* for @wq->saved_max_active */ lockdep_assert_held(&wq->mutex); /* fast exit for non-freezable wqs */ if (!freezable && pwq->max_active == wq->saved_max_active) return; /* this function can be called during early boot w/ irq disabled */ raw_spin_lock_irqsave(&pwq->pool->lock, flags); /* * During [un]freezing, the caller is responsible for ensuring that * this function is called at least once after @workqueue_freezing * is updated and visible. */ if (!freezable || !workqueue_freezing) { bool kick = false; pwq->max_active = wq->saved_max_active; while (!list_empty(&pwq->inactive_works) && pwq->nr_active < pwq->max_active) { pwq_activate_first_inactive(pwq); kick = true; } /* * Need to kick a worker after thawed or an unbound wq's * max_active is bumped. In realtime scenarios, always kicking a * worker will cause interference on the isolated cpu cores, so * let's kick iff work items were activated. */ if (kick) wake_up_worker(pwq->pool); } else { pwq->max_active = 0; } raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); } /* initialize newly allocated @pwq which is associated with @wq and @pool */ static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, struct worker_pool *pool) { BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); memset(pwq, 0, sizeof(*pwq)); pwq->pool = pool; pwq->wq = wq; pwq->flush_color = -1; pwq->refcnt = 1; INIT_LIST_HEAD(&pwq->inactive_works); INIT_LIST_HEAD(&pwq->pwqs_node); INIT_LIST_HEAD(&pwq->mayday_node); INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); } /* sync @pwq with the current state of its associated wq and link it */ static void link_pwq(struct pool_workqueue *pwq) { struct workqueue_struct *wq = pwq->wq; lockdep_assert_held(&wq->mutex); /* may be called multiple times, ignore if already linked */ if (!list_empty(&pwq->pwqs_node)) return; /* set the matching work_color */ pwq->work_color = wq->work_color; /* sync max_active to the current setting */ pwq_adjust_max_active(pwq); /* link in @pwq */ list_add_rcu(&pwq->pwqs_node, &wq->pwqs); } /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, const struct workqueue_attrs *attrs) { struct worker_pool *pool; struct pool_workqueue *pwq; lockdep_assert_held(&wq_pool_mutex); pool = get_unbound_pool(attrs); if (!pool) return NULL; pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); if (!pwq) { put_unbound_pool(pool); return NULL; } init_pwq(pwq, wq, pool); return pwq; } /** * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node * @attrs: the wq_attrs of the default pwq of the target workqueue * @node: the target NUMA node * @cpu_going_down: if >= 0, the CPU to consider as offline * @cpumask: outarg, the resulting cpumask * * Calculate the cpumask a workqueue with @attrs should use on @node. If * @cpu_going_down is >= 0, that cpu is considered offline during * calculation. The result is stored in @cpumask. * * If NUMA affinity is not enabled, @attrs->cpumask is always used. If * enabled and @node has online CPUs requested by @attrs, the returned * cpumask is the intersection of the possible CPUs of @node and * @attrs->cpumask. * * The caller is responsible for ensuring that the cpumask of @node stays * stable. * * Return: %true if the resulting @cpumask is different from @attrs->cpumask, * %false if equal. */ static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, int cpu_going_down, cpumask_t *cpumask) { if (!wq_numa_enabled || attrs->no_numa) goto use_dfl; /* does @node have any online CPUs @attrs wants? */ cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); if (cpu_going_down >= 0) cpumask_clear_cpu(cpu_going_down, cpumask); if (cpumask_empty(cpumask)) goto use_dfl; /* yeap, return possible CPUs in @node that @attrs wants */ cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); if (cpumask_empty(cpumask)) { pr_warn_once("WARNING: workqueue cpumask: online intersect > " "possible intersect\n"); return false; } return !cpumask_equal(cpumask, attrs->cpumask); use_dfl: cpumask_copy(cpumask, attrs->cpumask); return false; } /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, int node, struct pool_workqueue *pwq) { struct pool_workqueue *old_pwq; lockdep_assert_held(&wq_pool_mutex); lockdep_assert_held(&wq->mutex); /* link_pwq() can handle duplicate calls */ link_pwq(pwq); old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); return old_pwq; } /* context to store the prepared attrs & pwqs before applying */ struct apply_wqattrs_ctx { struct workqueue_struct *wq; /* target workqueue */ struct workqueue_attrs *attrs; /* attrs to apply */ struct list_head list; /* queued for batching commit */ struct pool_workqueue *dfl_pwq; struct pool_workqueue *pwq_tbl[]; }; /* free the resources after success or abort */ static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) { if (ctx) { int node; for_each_node(node) put_pwq_unlocked(ctx->pwq_tbl[node]); put_pwq_unlocked(ctx->dfl_pwq); free_workqueue_attrs(ctx->attrs); kfree(ctx); } } /* allocate the attrs and pwqs for later installation */ static struct apply_wqattrs_ctx * apply_wqattrs_prepare(struct workqueue_struct *wq, const struct workqueue_attrs *attrs) { struct apply_wqattrs_ctx *ctx; struct workqueue_attrs *new_attrs, *tmp_attrs; int node; lockdep_assert_held(&wq_pool_mutex); ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); new_attrs = alloc_workqueue_attrs(); tmp_attrs = alloc_workqueue_attrs(); if (!ctx || !new_attrs || !tmp_attrs) goto out_free; /* * Calculate the attrs of the default pwq. * If the user configured cpumask doesn't overlap with the * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. */ copy_workqueue_attrs(new_attrs, attrs); cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); if (unlikely(cpumask_empty(new_attrs->cpumask))) cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); /* * We may create multiple pwqs with differing cpumasks. Make a * copy of @new_attrs which will be modified and used to obtain * pools. */ copy_workqueue_attrs(tmp_attrs, new_attrs); /* * If something goes wrong during CPU up/down, we'll fall back to * the default pwq covering whole @attrs->cpumask. Always create * it even if we don't use it immediately. */ ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); if (!ctx->dfl_pwq) goto out_free; for_each_node(node) { if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); if (!ctx->pwq_tbl[node]) goto out_free; } else { ctx->dfl_pwq->refcnt++; ctx->pwq_tbl[node] = ctx->dfl_pwq; } } /* save the user configured attrs and sanitize it. */ copy_workqueue_attrs(new_attrs, attrs); cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); ctx->attrs = new_attrs; ctx->wq = wq; free_workqueue_attrs(tmp_attrs); return ctx; out_free: free_workqueue_attrs(tmp_attrs); free_workqueue_attrs(new_attrs); apply_wqattrs_cleanup(ctx); return NULL; } /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) { int node; /* all pwqs have been created successfully, let's install'em */ mutex_lock(&ctx->wq->mutex); copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); /* save the previous pwq and install the new one */ for_each_node(node) ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, ctx->pwq_tbl[node]); /* @dfl_pwq might not have been used, ensure it's linked */ link_pwq(ctx->dfl_pwq); swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); mutex_unlock(&ctx->wq->mutex); } static void apply_wqattrs_lock(void) { /* CPUs should stay stable across pwq creations and installations */ cpus_read_lock(); mutex_lock(&wq_pool_mutex); } static void apply_wqattrs_unlock(void) { mutex_unlock(&wq_pool_mutex); cpus_read_unlock(); } static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, const struct workqueue_attrs *attrs) { struct apply_wqattrs_ctx *ctx; /* only unbound workqueues can change attributes */ if (WARN_ON(!(wq->flags & WQ_UNBOUND))) return -EINVAL; /* creating multiple pwqs breaks ordering guarantee */ if (!list_empty(&wq->pwqs)) { if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) return -EINVAL; wq->flags &= ~__WQ_ORDERED; } ctx = apply_wqattrs_prepare(wq, attrs); if (!ctx) return -ENOMEM; /* the ctx has been prepared successfully, let's commit it */ apply_wqattrs_commit(ctx); apply_wqattrs_cleanup(ctx); return 0; } /** * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue * @wq: the target workqueue * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() * * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA * machines, this function maps a separate pwq to each NUMA node with * possibles CPUs in @attrs->cpumask so that work items are affine to the * NUMA node it was issued on. Older pwqs are released as in-flight work * items finish. Note that a work item which repeatedly requeues itself * back-to-back will stay on its current pwq. * * Performs GFP_KERNEL allocations. * * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). * * Return: 0 on success and -errno on failure. */ int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs) { int ret; lockdep_assert_cpus_held(); mutex_lock(&wq_pool_mutex); ret = apply_workqueue_attrs_locked(wq, attrs); mutex_unlock(&wq_pool_mutex); return ret; } /** * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug * @wq: the target workqueue * @cpu: the CPU coming up or going down * @online: whether @cpu is coming up or going down * * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of * @wq accordingly. * * If NUMA affinity can't be adjusted due to memory allocation failure, it * falls back to @wq->dfl_pwq which may not be optimal but is always * correct. * * Note that when the last allowed CPU of a NUMA node goes offline for a * workqueue with a cpumask spanning multiple nodes, the workers which were * already executing the work items for the workqueue will lose their CPU * affinity and may execute on any CPU. This is similar to how per-cpu * workqueues behave on CPU_DOWN. If a workqueue user wants strict * affinity, it's the user's responsibility to flush the work item from * CPU_DOWN_PREPARE. */ static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, bool online) { int node = cpu_to_node(cpu); int cpu_off = online ? -1 : cpu; struct pool_workqueue *old_pwq = NULL, *pwq; struct workqueue_attrs *target_attrs; cpumask_t *cpumask; lockdep_assert_held(&wq_pool_mutex); if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->no_numa) return; /* * We don't wanna alloc/free wq_attrs for each wq for each CPU. * Let's use a preallocated one. The following buf is protected by * CPU hotplug exclusion. */ target_attrs = wq_update_unbound_numa_attrs_buf; cpumask = target_attrs->cpumask; copy_workqueue_attrs(target_attrs, wq->unbound_attrs); pwq = unbound_pwq_by_node(wq, node); /* * Let's determine what needs to be done. If the target cpumask is * different from the default pwq's, we need to compare it to @pwq's * and create a new one if they don't match. If the target cpumask * equals the default pwq's, the default pwq should be used. */ if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) return; } else { goto use_dfl_pwq; } /* create a new pwq */ pwq = alloc_unbound_pwq(wq, target_attrs); if (!pwq) { pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", wq->name); goto use_dfl_pwq; } /* Install the new pwq. */ mutex_lock(&wq->mutex); old_pwq = numa_pwq_tbl_install(wq, node, pwq); goto out_unlock; use_dfl_pwq: mutex_lock(&wq->mutex); raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); get_pwq(wq->dfl_pwq); raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); out_unlock: mutex_unlock(&wq->mutex); put_pwq_unlocked(old_pwq); } static int alloc_and_link_pwqs(struct workqueue_struct *wq) { bool highpri = wq->flags & WQ_HIGHPRI; int cpu, ret; if (!(wq->flags & WQ_UNBOUND)) { wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); if (!wq->cpu_pwqs) return -ENOMEM; for_each_possible_cpu(cpu) { struct pool_workqueue *pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); struct worker_pool *cpu_pools = per_cpu(cpu_worker_pools, cpu); init_pwq(pwq, wq, &cpu_pools[highpri]); mutex_lock(&wq->mutex); link_pwq(pwq); mutex_unlock(&wq->mutex); } return 0; } cpus_read_lock(); if (wq->flags & __WQ_ORDERED) { ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); /* there should only be single pwq for ordering guarantee */ WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), "ordering guarantee broken for workqueue %s\n", wq->name); } else { ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); } cpus_read_unlock(); return ret; } static int wq_clamp_max_active(int max_active, unsigned int flags, const char *name) { int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; if (max_active < 1 || max_active > lim) pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", max_active, name, 1, lim); return clamp_val(max_active, 1, lim); } /* * Workqueues which may be used during memory reclaim should have a rescuer * to guarantee forward progress. */ static int init_rescuer(struct workqueue_struct *wq) { struct worker *rescuer; int ret; if (!(wq->flags & WQ_MEM_RECLAIM)) return 0; rescuer = alloc_worker(NUMA_NO_NODE); if (!rescuer) return -ENOMEM; rescuer->rescue_wq = wq; rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); if (IS_ERR(rescuer->task)) { ret = PTR_ERR(rescuer->task); kfree(rescuer); return ret; } wq->rescuer = rescuer; kthread_bind_mask(rescuer->task, cpu_possible_mask); wake_up_process(rescuer->task); return 0; } __printf(1, 4) struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...) { size_t tbl_size = 0; va_list args; struct workqueue_struct *wq; struct pool_workqueue *pwq; /* * Unbound && max_active == 1 used to imply ordered, which is no * longer the case on NUMA machines due to per-node pools. While * alloc_ordered_workqueue() is the right way to create an ordered * workqueue, keep the previous behavior to avoid subtle breakages * on NUMA. */ if ((flags & WQ_UNBOUND) && max_active == 1) flags |= __WQ_ORDERED; /* see the comment above the definition of WQ_POWER_EFFICIENT */ if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) flags |= WQ_UNBOUND; /* allocate wq and format name */ if (flags & WQ_UNBOUND) tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); if (!wq) return NULL; if (flags & WQ_UNBOUND) { wq->unbound_attrs = alloc_workqueue_attrs(); if (!wq->unbound_attrs) goto err_free_wq; } va_start(args, max_active); vsnprintf(wq->name, sizeof(wq->name), fmt, args); va_end(args); max_active = max_active ?: WQ_DFL_ACTIVE; max_active = wq_clamp_max_active(max_active, flags, wq->name); /* init wq */ wq->flags = flags; wq->saved_max_active = max_active; mutex_init(&wq->mutex); atomic_set(&wq->nr_pwqs_to_flush, 0); INIT_LIST_HEAD(&wq->pwqs); INIT_LIST_HEAD(&wq->flusher_queue); INIT_LIST_HEAD(&wq->flusher_overflow); INIT_LIST_HEAD(&wq->maydays); wq_init_lockdep(wq); INIT_LIST_HEAD(&wq->list); if (alloc_and_link_pwqs(wq) < 0) goto err_unreg_lockdep; if (wq_online && init_rescuer(wq) < 0) goto err_destroy; if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) goto err_destroy; /* * wq_pool_mutex protects global freeze state and workqueues list. * Grab it, adjust max_active and add the new @wq to workqueues * list. */ mutex_lock(&wq_pool_mutex); mutex_lock(&wq->mutex); for_each_pwq(pwq, wq) pwq_adjust_max_active(pwq); mutex_unlock(&wq->mutex); list_add_tail_rcu(&wq->list, &workqueues); mutex_unlock(&wq_pool_mutex); return wq; err_unreg_lockdep: wq_unregister_lockdep(wq); wq_free_lockdep(wq); err_free_wq: free_workqueue_attrs(wq->unbound_attrs); kfree(wq); return NULL; err_destroy: destroy_workqueue(wq); return NULL; } EXPORT_SYMBOL_GPL(alloc_workqueue); static bool pwq_busy(struct pool_workqueue *pwq) { int i; for (i = 0; i < WORK_NR_COLORS; i++) if (pwq->nr_in_flight[i]) return true; if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) return true; if (pwq->nr_active || !list_empty(&pwq->inactive_works)) return true; return false; } /** * destroy_workqueue - safely terminate a workqueue * @wq: target workqueue * * Safely destroy a workqueue. All work currently pending will be done first. */ void destroy_workqueue(struct workqueue_struct *wq) { struct pool_workqueue *pwq; int node; /* * Remove it from sysfs first so that sanity check failure doesn't * lead to sysfs name conflicts. */ workqueue_sysfs_unregister(wq); /* drain it before proceeding with destruction */ drain_workqueue(wq); /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ if (wq->rescuer) { struct worker *rescuer = wq->rescuer; /* this prevents new queueing */ raw_spin_lock_irq(&wq_mayday_lock); wq->rescuer = NULL; raw_spin_unlock_irq(&wq_mayday_lock); /* rescuer will empty maydays list before exiting */ kthread_stop(rescuer->task); kfree(rescuer); } /* * Sanity checks - grab all the locks so that we wait for all * in-flight operations which may do put_pwq(). */ mutex_lock(&wq_pool_mutex); mutex_lock(&wq->mutex); for_each_pwq(pwq, wq) { raw_spin_lock_irq(&pwq->pool->lock); if (WARN_ON(pwq_busy(pwq))) { pr_warn("%s: %s has the following busy pwq\n", __func__, wq->name); show_pwq(pwq); raw_spin_unlock_irq(&pwq->pool->lock); mutex_unlock(&wq->mutex); mutex_unlock(&wq_pool_mutex); show_workqueue_state(); return; } raw_spin_unlock_irq(&pwq->pool->lock); } mutex_unlock(&wq->mutex); /* * wq list is used to freeze wq, remove from list after * flushing is complete in case freeze races us. */ list_del_rcu(&wq->list); mutex_unlock(&wq_pool_mutex); if (!(wq->flags & WQ_UNBOUND)) { wq_unregister_lockdep(wq); /* * The base ref is never dropped on per-cpu pwqs. Directly * schedule RCU free. */ call_rcu(&wq->rcu, rcu_free_wq); } else { /* * We're the sole accessor of @wq at this point. Directly * access numa_pwq_tbl[] and dfl_pwq to put the base refs. * @wq will be freed when the last pwq is released. */ for_each_node(node) { pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); put_pwq_unlocked(pwq); } /* * Put dfl_pwq. @wq may be freed any time after dfl_pwq is * put. Don't access it afterwards. */ pwq = wq->dfl_pwq; wq->dfl_pwq = NULL; put_pwq_unlocked(pwq); } } EXPORT_SYMBOL_GPL(destroy_workqueue); /** * workqueue_set_max_active - adjust max_active of a workqueue * @wq: target workqueue * @max_active: new max_active value. * * Set max_active of @wq to @max_active. * * CONTEXT: * Don't call from IRQ context. */ void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) { struct pool_workqueue *pwq; /* disallow meddling with max_active for ordered workqueues */ if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) return; max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); mutex_lock(&wq->mutex); wq->flags &= ~__WQ_ORDERED; wq->saved_max_active = max_active; for_each_pwq(pwq, wq) pwq_adjust_max_active(pwq); mutex_unlock(&wq->mutex); } EXPORT_SYMBOL_GPL(workqueue_set_max_active); /** * current_work - retrieve %current task's work struct * * Determine if %current task is a workqueue worker and what it's working on. * Useful to find out the context that the %current task is running in. * * Return: work struct if %current task is a workqueue worker, %NULL otherwise. */ struct work_struct *current_work(void) { struct worker *worker = current_wq_worker(); return worker ? worker->current_work : NULL; } EXPORT_SYMBOL(current_work); /** * current_is_workqueue_rescuer - is %current workqueue rescuer? * * Determine whether %current is a workqueue rescuer. Can be used from * work functions to determine whether it's being run off the rescuer task. * * Return: %true if %current is a workqueue rescuer. %false otherwise. */ bool current_is_workqueue_rescuer(void) { struct worker *worker = current_wq_worker(); return worker && worker->rescue_wq; } /** * workqueue_congested - test whether a workqueue is congested * @cpu: CPU in question * @wq: target workqueue * * Test whether @wq's cpu workqueue for @cpu is congested. There is * no synchronization around this function and the test result is * unreliable and only useful as advisory hints or for debugging. * * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. * Note that both per-cpu and unbound workqueues may be associated with * multiple pool_workqueues which have separate congested states. A * workqueue being congested on one CPU doesn't mean the workqueue is also * contested on other CPUs / NUMA nodes. * * Return: * %true if congested, %false otherwise. */ bool workqueue_congested(int cpu, struct workqueue_struct *wq) { struct pool_workqueue *pwq; bool ret; rcu_read_lock(); preempt_disable(); if (cpu == WORK_CPU_UNBOUND) cpu = smp_processor_id(); if (!(wq->flags & WQ_UNBOUND)) pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); else pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); ret = !list_empty(&pwq->inactive_works); preempt_enable(); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(workqueue_congested); /** * work_busy - test whether a work is currently pending or running * @work: the work to be tested * * Test whether @work is currently pending or running. There is no * synchronization around this function and the test result is * unreliable and only useful as advisory hints or for debugging. * * Return: * OR'd bitmask of WORK_BUSY_* bits. */ unsigned int work_busy(struct work_struct *work) { struct worker_pool *pool; unsigned long flags; unsigned int ret = 0; if (work_pending(work)) ret |= WORK_BUSY_PENDING; rcu_read_lock(); pool = get_work_pool(work); if (pool) { raw_spin_lock_irqsave(&pool->lock, flags); if (find_worker_executing_work(pool, work)) ret |= WORK_BUSY_RUNNING; raw_spin_unlock_irqrestore(&pool->lock, flags); } rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(work_busy); /** * set_worker_desc - set description for the current work item * @fmt: printf-style format string * @...: arguments for the format string * * This function can be called by a running work function to describe what * the work item is about. If the worker task gets dumped, this * information will be printed out together to help debugging. The * description can be at most WORKER_DESC_LEN including the trailing '\0'. */ void set_worker_desc(const char *fmt, ...) { struct worker *worker = current_wq_worker(); va_list args; if (worker) { va_start(args, fmt); vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); va_end(args); } } EXPORT_SYMBOL_GPL(set_worker_desc); /** * print_worker_info - print out worker information and description * @log_lvl: the log level to use when printing * @task: target task * * If @task is a worker and currently executing a work item, print out the * name of the workqueue being serviced and worker description set with * set_worker_desc() by the currently executing work item. * * This function can be safely called on any task as long as the * task_struct itself is accessible. While safe, this function isn't * synchronized and may print out mixups or garbages of limited length. */ void print_worker_info(const char *log_lvl, struct task_struct *task) { work_func_t *fn = NULL; char name[WQ_NAME_LEN] = { }; char desc[WORKER_DESC_LEN] = { }; struct pool_workqueue *pwq = NULL; struct workqueue_struct *wq = NULL; struct worker *worker; if (!(task->flags & PF_WQ_WORKER)) return; /* * This function is called without any synchronization and @task * could be in any state. Be careful with dereferences. */ worker = kthread_probe_data(task); /* * Carefully copy the associated workqueue's workfn, name and desc. * Keep the original last '\0' in case the original is garbage. */ copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); if (fn || name[0] || desc[0]) { printk("%sWorkqueue: %s %ps", log_lvl, name, fn); if (strcmp(name, desc)) pr_cont(" (%s)", desc); pr_cont("\n"); } } static void pr_cont_pool_info(struct worker_pool *pool) { pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); if (pool->node != NUMA_NO_NODE) pr_cont(" node=%d", pool->node); pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); } static void pr_cont_work(bool comma, struct work_struct *work) { if (work->func == wq_barrier_func) { struct wq_barrier *barr; barr = container_of(work, struct wq_barrier, work); pr_cont("%s BAR(%d)", comma ? "," : "", task_pid_nr(barr->task)); } else { pr_cont("%s %ps", comma ? "," : "", work->func); } } static void show_pwq(struct pool_workqueue *pwq) { struct worker_pool *pool = pwq->pool; struct work_struct *work; struct worker *worker; bool has_in_flight = false, has_pending = false; int bkt; pr_info(" pwq %d:", pool->id); pr_cont_pool_info(pool); pr_cont(" active=%d/%d refcnt=%d%s\n", pwq->nr_active, pwq->max_active, pwq->refcnt, !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); hash_for_each(pool->busy_hash, bkt, worker, hentry) { if (worker->current_pwq == pwq) { has_in_flight = true; break; } } if (has_in_flight) { bool comma = false; pr_info(" in-flight:"); hash_for_each(pool->busy_hash, bkt, worker, hentry) { if (worker->current_pwq != pwq) continue; pr_cont("%s %d%s:%ps", comma ? "," : "", task_pid_nr(worker->task), worker->rescue_wq ? "(RESCUER)" : "", worker->current_func); list_for_each_entry(work, &worker->scheduled, entry) pr_cont_work(false, work); comma = true; } pr_cont("\n"); } list_for_each_entry(work, &pool->worklist, entry) { if (get_work_pwq(work) == pwq) { has_pending = true; break; } } if (has_pending) { bool comma = false; pr_info(" pending:"); list_for_each_entry(work, &pool->worklist, entry) { if (get_work_pwq(work) != pwq) continue; pr_cont_work(comma, work); comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); } pr_cont("\n"); } if (!list_empty(&pwq->inactive_works)) { bool comma = false; pr_info(" inactive:"); list_for_each_entry(work, &pwq->inactive_works, entry) { pr_cont_work(comma, work); comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); } pr_cont("\n"); } } /** * show_workqueue_state - dump workqueue state * * Called from a sysrq handler or try_to_freeze_tasks() and prints out * all busy workqueues and pools. */ void show_workqueue_state(void) { struct workqueue_struct *wq; struct worker_pool *pool; unsigned long flags; int pi; rcu_read_lock(); pr_info("Showing busy workqueues and worker pools:\n"); list_for_each_entry_rcu(wq, &workqueues, list) { struct pool_workqueue *pwq; bool idle = true; for_each_pwq(pwq, wq) { if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { idle = false; break; } } if (idle) continue; pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); for_each_pwq(pwq, wq) { raw_spin_lock_irqsave(&pwq->pool->lock, flags); if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { /* * Defer printing to avoid deadlocks in console * drivers that queue work while holding locks * also taken in their write paths. */ printk_deferred_enter(); show_pwq(pwq); printk_deferred_exit(); } raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); /* * We could be printing a lot from atomic context, e.g. * sysrq-t -> show_workqueue_state(). Avoid triggering * hard lockup. */ touch_nmi_watchdog(); } } for_each_pool(pool, pi) { struct worker *worker; bool first = true; raw_spin_lock_irqsave(&pool->lock, flags); if (pool->nr_workers == pool->nr_idle) goto next_pool; /* * Defer printing to avoid deadlocks in console drivers that * queue work while holding locks also taken in their write * paths.