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Deep Learning for Graphics
Graphics for Deep Learning
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1. Introduction to Deep Learning with TensorFlow 2.0 - 1h45mins
2. Break - 10mins
3. Graphics Inspired Differentiable Layers - 45mins
4. Visualization and Interpretation of Neural Networks - 25mins
5. Conclusion - 5mins



Intro to TensorFlow 2.0

Josh Gordon (@random_forests)
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Background on TensorFlow 2.0

● For beginners and experts
● Defining models (sequential vs subclassing)
● Training models (built-in vs custom loops)

Getting started walkthroughs

● Linear regression from scratch
● MNIST Sequential
● MNIST Subclassing

Topics 1 of 2
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Recommended advanced tutorials

● Deep Dream and Style Transfer
● DCGAN, Pix2Pix, CycleGan

Learning more

● Book recommendations

Topics 2 of 2
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Released by Google in 2015

● >1800 contributors worldwide

Version 2.0

● Easier to use
● Currently in beta

TensorFlow
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tensorflow.org/beta
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http://tensorflow.org/beta


Beyond Python
tensorflow.org/js

tensorflow.org/swift

bit.ly/pose-net

http://tensorflow.org/js
http://tensorflow.org/swift
http://bit.ly/pose-net


PoseNet

http://bit.ly/pose-net

Quick demo



import tensorflow as tf # Assuming TF 2.0 is installed

a = tf.constant([[1, 2],[3, 4]])

b = tf.matmul(a, a)

print(b) 

# tf.Tensor( [[ 7 10] [15 22]], shape=(2, 2), dtype=int32)

print(type(b.numpy()))

# <class 'numpy.ndarray'>

You can use TF 2.0 like NumPy



model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),

  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Sequential models



model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

TF 1.x



model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

TF 2.0



class MyModel(tf.keras.Model):

  def __init__(self, num_classes=10):

    super(MyModel, self).__init__(name='my_model')

    self.dense_1 = layers.Dense(32, activation='relu')

    self.dense_2 = layers.Dense(num_classes,activation='sigmoid')

  def call(self, inputs):

    # Define your forward pass here,

    x = self.dense_1(inputs)

    return self.dense_2(x)

Subclassed models



model.fit(x_train, y_train, epochs=5)

Use a built-in training loop...



model = MyModel()

with tf.GradientTape() as tape:
  logits = model(images)
  loss_value = loss(logits, labels)

grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

Or define your own



Sequential, Functional

● Your model is a stack of layers (Sequential) or DAG (Functional)
● Any graph you compile will run 
● Catch errors at compile time

Subclassing

● Your model is Python bytecode
● Hackable and flexible
● Run-time errors / harder to maintain

What’s the difference?
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Walkthrough 1
Linear regression in TensorFlow 2.0

tensorflow.org/beta/tutorials/eager/custom
_training



Walkthrough 2
MNIST with a sequential model and built-in 
training loop

tensorflow.org/beta/tutorials/quickstart/be
ginner



Walkthrough 3
MNIST with a subclassed model and 
custom training loop

tensorflow.org/beta/tutorials/quickstart/adv
anced
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Convolution



Not a Deep Learning concept
import scipy

from skimage import color, data

import matplotlib.pyplot as plt

img = data.astronaut()

img = color.rgb2gray(img)

plt.axis('off')

plt.imshow(img, cmap=plt.cm.gray)



Convolution example

Does anyone know who this is?

-1 -1 -1

-1 8 -1

-1 -1 -1

Notes
Edge detection intuition: dot 
product of the filter with a 
region of the image will be 
zero if all the pixels around 
the border have the same 
value as the center.



Convolution example

Eileen Collins

-1 -1 -1

-1 8 -1

-1 -1 -1

Notes
Edge detection intuition: dot 
product of the filter with a 
region of the image will be 
zero if all the pixels around 
the border have the same 
value as the center.



A simple edge detector
kernel = np.array([[-1,-1,-1],

                   [-1,8,-1],

                   [-1,-1,-1]])

result = scipy.signal.convolve2d(img, kernel, 'same')

plt.axis('off')

plt.imshow(result, cmap=plt.cm.gray)



Easier to see with seismic

-1 -1 -1

-1 8 -1

-1 -1 -1

Notes
Edge detection intuition: dot 
product of the filter with a 
region of the image will be 
zero if all the pixels around 
the border have the same 
value as the center.

Eileen Collins



Example

2 0 1 1

0 1 0 0

0 0 1 0

0 3 0 0

An input image 
(no padding)

1 0 1

0 0 0

0 1 0

A filter 
(3x3)

Output image 
(after convolving with stride 1)



Example
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An input image 
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3
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Example
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1 0 1

0 0 0
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Example

2 0 1 1

0 1 0 0

0 0 1 0

0 3 0 0

1 0 1

0 0 0

0 1 0

3 2

3 1

An input image 
(no padding)

A filter 
(3x3)

Output image 
(after convolving with stride 1)



model = Sequential()

model.add(Conv2D(filters=4,
                 kernel_size=(4,4),
                 input_shape=(10,10,3))

In 3d



A RGB image as a 3d volume. 
Each color (or channel) is a 
layer.



weights
4

4
3

In 3d, our filters have width, 
height, and depth.



weights
4

4
3



weights
4

4
3

Applied in the same way as 2d 
(sum of weight * pixel value as 
they slide across the image).

...



weights
4

4
3

Applying the convolution over 
the rest of the input image.



weights
4

4
3

More filters, more output channels.



model = Sequential()

model.add(Conv2D(filters=4,
                 kernel_size=(4,4),
                 input_shape=(10,10,3))

model.add(Conv2D(filters=8,
                 kernel_size=(3,3))

Going deeper



weights
3

3
4





...

...

Edges

Shapes

...

...

???

Textures



… 



Walkthrough 4
A simple CNN

tensorflow.org/beta/tutorials/images/intro_
to_cnns



Walkthrough 5
Deep Dream

tensorflow.org/beta/tutorials/generative/de
epdream
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Recommended tutorials
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https://www.tensorflow.org/beta/tutorials/generative/dcgan

https://www.tensorflow.org/beta/tutorials/generative/dcgan
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tensorflow.org/beta/tutorials/generative/pix2pix

https://www.tensorflow.org/beta/tutorials/generative/pix2pix
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tensorflow.org/beta/tutorials/generative/cyclegan

https://www.tensorflow.org/beta/tutorials/generative/cyclegan


Embedding projector

projector.tensorflow.org

Quick demo
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Under the hood



lstm_cell = tf.keras.layers.LSTMCell(10)

def fn(input, state):

  return lstm_cell(input, state)

input = tf.zeros([10, 10]); state = [tf.zeros([10, 10])] * 2

lstm_cell(input, state); fn(input, state) # warm up

# benchmark

timeit.timeit(lambda: lstm_cell(input, state), number=10) # 0.03

Let’s make this faster



lstm_cell = tf.keras.layers.LSTMCell(10)

@tf.function

def fn(input, state):

  return lstm_cell(input, state)

input = tf.zeros([10, 10]); state = [tf.zeros([10, 10])] * 2

lstm_cell(input, state); fn(input, state) # warm up

# benchmark

timeit.timeit(lambda: lstm_cell(input, state), number=10) # 0.03

timeit.timeit(lambda: fn(input, state), number=10) # 0.004

Let’s make this faster



@tf.function

def f(x):

  while tf.reduce_sum(x) > 1:

    x = tf.tanh(x)

  return x

# you never need to run this (unless curious)

print(tf.autograph.to_code(f))

AutoGraph makes this possible



def tf__f(x):

  def loop_test(x_1):

    with ag__.function_scope('loop_test'):

      return ag__.gt(tf.reduce_sum(x_1), 1)

  def loop_body(x_1):

    with ag__.function_scope('loop_body'):

      with ag__.utils.control_dependency_on_returns(tf.print(x_1)):

        tf_1, x = ag__.utils.alias_tensors(tf, x_1)

        x = tf_1.tanh(x)

        return x,

  x = ag__.while_stmt(loop_test, loop_body, (x,), (tf,))

  return x

Generated code



  model = tf.keras.models.Sequential([

      tf.keras.layers.Dense(64, input_shape=[10]),

      tf.keras.layers.Dense(64, activation='relu'),

      tf.keras.layers.Dense(10, activation='softmax')])

  model.compile(optimizer='adam',

                loss='categorical_crossentropy',

                metrics=['accuracy'])

 

Going big: tf.distribute.Strategy



strategy = tf.distribute.MirroredStrategy()

with strategy.scope():

  model = tf.keras.models.Sequential([

      tf.keras.layers.Dense(64, input_shape=[10]),

      tf.keras.layers.Dense(64, activation='relu'),

      tf.keras.layers.Dense(10, activation='softmax')])

  model.compile(optimizer='adam', loss='categorical_crossentropy',

                metrics=['accuracy'])

 

Going big: Multi-GPU



Learning more
Tutorials for TF2

● tensorflow.org/beta

Books

● Deep Learning with Python
● Hands-on ML with Scikit-Learn, Keras and TensorFlow (2nd edition)

jbgordon@google.com
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http://tensorflow.org/beta
https://www.manning.com/books/deep-learning-with-python
https://github.com/ageron/handson-ml2


Q&A
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Josh Gordon (@random_forests)



BREAK

The course will resume at 10:55



Graphics Inspired
Differentiable Layers

Julien Valentin (@JPCValentin)

Christian Häne
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What will be covered

78

1. TensorFlow Graphics: Computer Graphics meets Deep Learning
2. 3D and Graphics Layers in The State of The Art



TensorFlow Graphics:
Computer Graphics meets DL

Julien Valentin (@JPCValentin)
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Supervised

● Granular interpretability
○ e.g. make someone smile

● Data is expensive to acquire, both in 
time and money

State of the art in generative modelling

80



Supervised

● Granular interpretability
○ e.g. make someone smile

● Data is expensive to acquire, both in 
time and money

State of the art in generative modelling

81

Self supervised 

● GANs
○ Photo-realistic
○ Pixel synthesis - 2D

● Auto-encoders / VAE
○ Smooth reconstructions 

● Lack of granular interpretability in 
the latent space - disentanglement 
& precise control is hard

● Lots of data, cheap to acquire



● Our world is inherently 3D

Domain knowledge / constraints

82



● Our world is inherently 3D
● Computer graphics is a very mature field and capable 

of rendering 3D scenes in a photorealistic manner

Domain knowledge / constraints

83



● Our world is inherently 3D
● Computer graphics is a very mature field and capable 

of rendering 3D scenes in a photorealistic manner
● A large amount of building blocks from this field are 

actually differentiable!
○ Reflectance functions (e.g. Phong / Lambertian)
○ Camera projection functions
○ Environment maps (e.g. spherical harmonics)

Domain knowledge / constraints

84



Domain knowledge / constraints
● Baking graphics constraints can bring

○ Increased interpretability / ease of manipulation of well understood quantities
■ Angle of rotation
■ Intensity of light
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■ Angle of rotation
■ Intensity of light

○ Decrease in the number of parameters in networks
■ Faster training / inference speed



Domain knowledge / constraints
● Baking graphics constraints can bring

○ Increased interpretability / ease of manipulation of well understood quantities
■ Angle of rotation
■ Intensity of light

○ Decrease in the number of parameters in networks
■ Faster training / inference speed

○ Large decrease in annotation needs / large increase in the number of training 
samples

■ More cost efficient / higher precision / less overfitting



Evidence in the literature

ECCV 2018



Unsupervised Geometry-Aware Representation for 
3D Human Pose Estimation



Unsupervised Geometry-Aware Representation for 
3D Human Pose Estimation



Using this model for pose estimation



Using this model for pose estimation



Using this model for pose estimation



Wikipedia

Computer graphics is a sub-field of 
computer science which studies 
methods for digitally synthesizing and 
manipulating visual content.







Computer Graphics
Scene Parameters

Cameras

Lights and Materials

Geometry

Transformations



Scene Parameters

Cameras

Lights and Materials

Geometry

Transformations

Renderer

Computer Graphics

Rendering



Wikipedia

Computer vision is concerned with the 
theory behind artificial systems that 
extract  information from images.



Scene Parameters

Cameras

Geometry

Lights and Materials

TransformationsImage
Neural Network

Computer Vision



● Estimating the 3D position and orientation of an object. 

● Understanding the material properties of an object.

● Recognizing an object based on its 3D geometry.

● Estimating the 3D position and orientation of an object. ● Estimating the 3D position and orientation of an object. 

● Understanding the material properties of an object.

● Estimating the 3D position and orientation of an object. 







Image

Scene Parameters

Cameras

Geometry

Lights and Materials

Transformations

Neural Network

computer vision

Rendering
Renderer

computer graphics



RenderingImage

Scene Parameters

Cameras

Geometry

Lights and Materials

Transformations

Neural Network Renderer

computer vision computer graphics

=
loss



RenderingImage

Scene Parameters

Cameras

Geometry

Lights and Materials

Transformations

Neural Network Renderer

encoder decoder

=
loss



GeometryCameras Lights and Materials RenderersTransformations

Differentiable Graphics Layers



GeometryCameras Lights and MaterialsTransformations

Differentiable Graphics Layers



GeometryCameras Lights and MaterialsTransformations

● Estimating the 3D orientation of an object. 
● Understanding the material properties of an object.
● Recognizing an object based on its 3D geometry.

Differentiable Graphics Layers





GeometryCameras MaterialsTransformations

Differentiable Graphics Layers



Transformations
2D- 3D Rotations

● Rotation matrices

● Euler angles

● Quaternions

● Axis-angles



Transformations
2D- 3D Rotations

● Rotation matrices

● Euler angles

● Quaternions

● Axis-angles



axis-angle cube rotation:

import tensorflow_graphics.geometry.transformation as tfg_transformation

cube = load_cube() # cube vertices.
axis = (0., 1., 0.) # y axis.
angle = (np.pi / 4.,) # 45 degree angle.
cube_rotated = tfg_transformation.axis_angle.rotate(cube, axis, angle)



axis-angle rotation:

import tensorflow_graphics.geometry.transformation as tfg_transformation

cube = load_cube() # cube vertices.
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angle = (np.pi / 4.,) # 45 degree angle.
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axis-angle rotation:

import tensorflow_graphics.geometry.transformation as tfg_transformation

cube = load_cube() # cube vertices.
axis = (0., 1., 0.) # y axis.
angle = (np.pi / 4.,) # 45 degree angle.
cube_rotated = tfg_transformation.axis_angle.rotate(cube, axis, angle)



axis-angle rotation:

import tensorflow_graphics.geometry.transformation as tfg_transformation

cube = load_cube() # cube vertices.
axis = (0., 1., 0.) # y axis.
angle = (np.pi / 4.,) # 45 degree angle.
cube_rotated = tfg_transformation.axis_angle.rotate(cube, axis, angle)



axis-angle rotation:

import tensorflow_graphics.geometry.transformation as tfg_transformation

cube = load_cube() # cube vertices.
axis = (0., 1., 0.) # y axis.
angle = (np.pi / 4.,) # 45 degree angle.
cube_rotated = tfg_transformation.axis_angle.rotate(cube, axis, angle)



GeometryCamerasTransformations Materials

Differentiable Graphics Layers



Cameras

● Orthographic

● Perspective



● Orthographic

● Perspective

Cameras



perspective camera projection:

import tensorflow_graphics.rendering.camera as tfg_camera
    
cube = load_cube() # cube vertices.
focal = (100., 100.) # focal length of the camera.
principal_point = (256., 256.) # principal point of the camera.
projected_cube = tfg_camera.perspective.project(points, focal, principal_point)

    



perspective camera projection:

import tensorflow_graphics.rendering.camera as tfg_camera
    
cube = load_cube() # cube vertices.
focal = (100., 100.) # focal length of the camera.
principal_point = (256., 256.) # principal point of the camera.
projected_cube = tfg_camera.perspective.project(points, focal, principal_point)

    



perspective camera projection:

import tensorflow_graphics.rendering.camera as tfg_camera
    
cube = load_cube() # cube vertices.
focal = (100., 100.) # focal length of the camera.
principal_point = (256., 256.) # principal point of the camera.
projected_cube = tfg_camera.perspective.project(points, focal, principal_point)

    

principal point

focal length

camera center



perspective camera projection:

import tensorflow_graphics.rendering.camera as tfg_camera
    
cube = load_cube() # cube vertices.
focal = (100., 100.) # focal length of the camera.
principal_point = (256., 256.) # principal point of the camera.
projected_cube = tfg_camera.perspective.project(points, focal, principal_point)

    



GeometryCamerasTransformations Materials

Differentiable Graphics Layers



Materials
Reflectance functions

incoming ray outgoing ra
y

surface normal



material model:
import tensorflow_graphics.rendering.reflectance as tfg_reflectance

surface_normal = (0., 1., 0.) # surface normal.
incoming_ray = (100., 100.) # incoming ray from the light.
outgoing_ray = (256., 256.) # outgoing ray toward the camera.
color = (1., 1., 1.) # color of the surface.
shininess = (0.5,) # shininess of the surface.
output_color = tfg_reflectance.blinn_phong.brdf(incoming_ray, outgoing_ray, 

                                                  surface_normal, shininess, color)
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normal



material model:
import tensorflow_graphics.rendering.reflectance as tfg_reflectance

surface_normal = (0., 1., 0.) # surface normal.
incoming_ray = (100., 100.) # incoming ray from the light.
outgoing_ray = (256., 256.) # outgoing ray toward the camera.
color = (1., 1., 1.) # color of the surface.
shininess = (0.5,) # shininess of the surface.
output_color = tfg_reflectance.blinn_phong.brdf(incoming_ray, outgoing_ray, 

                                                  surface_normal, shininess, color)
    

incoming ray

normal



material model:
import tensorflow_graphics.rendering.reflectance as tfg_reflectance

surface_normal = (0., 1., 0.) # surface normal.
incoming_ray = (100., 100.) # incoming ray from the light.
outgoing_ray = (256., 256.) # outgoing ray toward the camera.
color = (1., 1., 1.) # color of the surface.
shininess = (0.5,) # shininess of the surface.
output_color = tfg_reflectance.blinn_phong.brdf(incoming_ray, outgoing_ray, 

                                                  surface_normal, shininess, color)
    

incoming ray outgoing ray

normal



material model:
import tensorflow_graphics.rendering.reflectance as tfg_reflectance

surface_normal = (0., 1., 0.) # surface normal.
incoming_ray = (100., 100.) # incoming ray from the light.
outgoing_ray = (256., 256.) # outgoing ray toward the camera.
color = (1., 1., 1.) # color of the surface.
shininess = (0.5,) # shininess of the surface.
output_color = tfg_reflectance.blinn_phong.brdf(incoming_ray, outgoing_ray, 

                                                  surface_normal, shininess, color)
    

incoming ray outgoing ray

normal



material model:
import tensorflow_graphics.rendering.reflectance as tfg_reflectance

surface_normal = (0., 1., 0.) # surface normal.
incoming_ray = (100., 100.) # incoming ray from the light.
outgoing_ray = (256., 256.) # outgoing ray toward the camera.
color = (1., 1., 1.) # color of the surface.
shininess = (0.5,) # shininess of the surface.
output_color = tfg_reflectance.blinn_phong.brdf(incoming_ray, outgoing_ray, 

                                                  surface_normal, shininess, color)
    

incoming ray outgoing ray

normal



Colab code sample: reflectance



GeometryCamerasTransformations Materials

Differentiable Graphics Layers



Image Convolution
A basic building block of Deep Learning

cat? cat? cat?



1

hidden units

hidden units hidden units

cat ?

convolutions convolutions fully connectedconvolutions

Image Convolution
A basic building block of Deep Learning



1

cat ?

hidden units hidden units hidden units

convolutions convolutions fully connected

Graph Convolution
A basic building block of Deep Learning

convolutions





graph convolution:

  import tensorflow as tf
  import tensorflow_graphics.nn.layer.graph_convolution as tf_graph_conv
    
  vertices, connectivity = load_mesh() # mesh vertices and connectivity.
  output = tf_graph_conv.feature_steered_convolution_layer(vertices, connectivity)
  output = tf.nn.relu(output)
    



graph convolution:

  import tensorflow as tf
  import tensorflow_graphics.nn.layer.graph_convolution as tf_graph_conv
    
  vertices, connectivity = load_mesh() # mesh vertices and connectivity.
  output = tf_graph_conv.feature_steered_convolution_layer(vertices, connectivity)
  output = tf.nn.relu(output)
    



graph convolution:

  import tensorflow as tf
  import tensorflow_graphics.nn.layer.graph_convolution as tf_graph_conv
    
  vertices, connectivity = load_mesh() # mesh vertices and connectivity.
  output = tf_graph_conv.feature_steered_convolution_layer(vertices, connectivity)
  output = tf.nn.relu(output)
    



graph convolution:

  import tensorflow as tf
  import tensorflow_graphics.nn.layer.graph_convolution as tf_graph_conv
    
  vertices, connectivity = load_mesh() # mesh vertices and connectivity.
  output = tf_graph_conv.feature_steered_convolution_layer(vertices, connectivity)
  output = tf.nn.relu(output)
    



Colab code sample
3D Semantic Segmentation

head

chest

abdomen

pelvis

Left upper arm

left lower arm

left hand

right upper arm

right lower arm

right hand

left upper leg

left lower leg

left foot

right upper leg

right lower leg

right foot



GeometryCamerasTransformations Materials

Differentiable Graphics Layers



GeometryCameras Lights and Materials RenderersTransformations

Differentiable Graphics Layers



Differentiable rasterizer



Differentiable rasterizer



One more thing...





pip install tensorflow-graphics

Get Started Today!



github.com/tensorflow/graphics





Julien Valentin

Google, @JPCValentin

Ameesh Makadia

Google, @kiamada

Cem Keskin

Google

Avneesh Sud

Google, @AvneeshSud

Pavel Pidlypenskyi 

Google, @podlipensky

Sofien Bouaziz

Google, @_sofien_
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Overview
Two examples of using differentiable geometry in neural networks

● Feature matching in multi-view stereo
Learning a multi-view stereo machine [Kar, Haene, Malik, NIPS, 2017]

● Supervision through image synthesis
Learning Independent Object Motion from Unlabelled Stereoscopic Videos 
[Cao, Kar, Haene, Malik, CVPR 2019]



Multi-View Stereo

Input: Images and known camera  poses

3D Reconstruction



Learnt Stereo Machine (LSM)
End-to-end learnt multi-view stereo system

Kar, Haene, Malik, NIPS 2017● Follows classical (non-learnt) pipeline
● No handcrafted features and priors
● Geometry integrated into the network architecture

https://github.com/akar43/lsm

https://github.com/akar43/lsm


Feature Extraction

Kar, Haene, Malik, NIPS 2017



Feature Matching

Kar, Haene, Malik, NIPS 2017



3D Grid Reasoning



Final Shape Extraction

Kar, Haene, alik, NIPS 2017



Feature Extraction

● Image features for matching

● Extracted using CNN

CNN

Input Image Dense Feature Grid



Feature Matching
Two Step Procedure

● Unprojection
● Matching in 3D

Unprojection

Feature Matching



● After Unprojection features line up.

Feature Matching



● After Unprojection features line up

Feature Matching



Feature Matching
● After Unprojection features line up
● Only local matching in 3D necessary.



Local Matching
3D Convolutional Gated Recurrent Unit (GRU)

● Frames processed sequentially
● Recurrent cell accumulates information
● Variable number of input images

Fused Grid

GRU GRU



Final Shape Extraction
Voxel LSM

Binary Voxel Occupancy Grid

Depth LSM

Depth map for each input view



Projection
Same idea used for novel view synthesis



Result

LSM
ours

3D-R2N2
[Choy et al. 2016]

(no geometry layers) 

Trained and tested on synthetic ShapeNet dataset



Result

Input Images

LSM
ours

3D-R2N2
[Choy et al. 2016]

(no geometry layers) 

Trained and tested on synthetic ShapeNet dataset



Result

Input Images

LSM
ours

Trained and tested on the synthetic ShapeNet dataset

For more details see, Learning a multi-view stereo machine,  Kar, Haene, Malik, NIPS 2017

3D-R2N2
[Choy et al. 2016]

(no geometry layers) 



Result

Input Images

LSM
ours

3D-R2N2
[Choy et al. 2016]

(no geometry layers) 

Trained and tested on synthetic ShapeNet dataset

For more details see, Learning a multi-view stereo machine,  Kar, Haene, Malik, NIPS 2017



3D Understanding of Road Scenes from 2D Images



3D Understanding of Road Scenes from 2D Images



3D Understanding of Road Scenes from 2D Images



Moving Objects



Real-World Ground Truth not Available
● Expensive capture setup for capturing sparse ground truth depth
● Flow ground truth hand annotated by fitting CAD models

Geiger et al. 2015



Predicting Depth and 3D Flow

Depth Prediction

3D Flow Prediction

Supervise without ground truth?



Render Novel Images from Predictions

Ît

It+1

Warping image It+1 to frame t using 3d flow (f) and depth (d) predictions for frame t

d
f

Analysis by synthesis: Supervision by comparing rendered image and observed image

Bilinear sampling

L = -
It: Observed Image Ît: Rendered Image



Network Architecture

Image Encoding Feature Unprojection 
and Pooling 3D Grid Reasoning Final Prediction

Similar architecture used for view synthesis



Results 3D Visualization

3D Point Cloud 3D Flow Vectors (Average per Object)



Results 2D Visualization

Reference Image Predicted Depth Predicted Flow Predicted Object Masks

For more details see, Learning Independent Object Motion from Unlabelled 
Stereoscopic Videos, Cao, Kar, Haene, Malik, CVPR 2019



Summary

3D Geometry is important for learning 3D computer vision tasks.

● As differentiable modules within the network architecture
○ Camera model
○ Occupancy Grid / 3D convolution

● As supervisory signal via view synthesis
(analysis by synthesis)
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Julien Valentin (@JPCValentin)
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Visualization and Interpretation 
of Neural Networks

Shan Carter

OpenAI
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Lucid
github.com/tensorflow/lucid
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Alexander Mordvintsev

Arvind Satyanarayan

Zan Armstrong

Ian Johnson

OpenAI

OpenAI

Google
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Google

Google



“Why can’t TensorFlow
see my GPU?”



“Why can’t TensorFlow
see my GPU?”



“dingo”



“What has my network 
learned?”



“dingo”Inception V1



LABEL
dingo
Ibizan hound
Siberian husky
Eskimo dog
kelpie
Cardigan
malamute
German shepherd
Pembroke
white wolf
timber wolf
Chihuahua
collie
basenji
coyote
Labrador retriever
tennis ball
kuvasz
Border collie

PROBABILITY
40.51%
33.03%
 8.22%
 6.69%
 5.45%
 1.92%

 0.99%
 0.88%
 0.87%
 0.62%
 0.21%

 0.07%
 0.06%
 0.05%
 0.04%
 0.04%
 0.03%
 0.02%
 0.02%

Inception V1





end_point = 'Conv2d_1a_7x7'

net = layers.conv2d(inputs, 64, [7, 7], stride=2, scope=end_point)

end_points[end_point] = net

if final_endpoint == end_point:

  return net, end_points

end_point = 'MaxPool_2a_3x3'

net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope=end_point)

end_points[end_point] = net

if final_endpoint == end_point:

  return net, end_points

end_point = 'Conv2d_2b_1x1'

net = layers.conv2d(net, 64, [1, 1], scope=end_point)

end_points[end_point] = net

if final_endpoint == end_point:

  return net, end_points





LABEL
dingo
Ibizan hound
Siberian husky
Labrador retriever

PROBABILITY
40.51%
33.03%
 8.22%

 0.04%
 



LABEL
dingo
Ibizan hound
Siberian husky
Eskimo dog

PROBABILITY
40.51%
33.03%
 8.22%
 6.69%

 

?



0.40439647176792093
-0.8331816413002056
0.6005791021121634
-0.11789122711380684
...
0.05040674324147387

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:



How can we hope to reason about 
a 512 dimensional vector?



0.40439647176792093
-0.8331816413002056
0.6005791021121634
-0.11789122711380684
...
0.05040674324147387

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:



0.404396
0.833181
0.600579
0.117891
...
0.050406

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

IMAGE ACTIVATION TARGET ACTIVATIONStep 0

1.000000
0.000000
0.000000
0.000000
...
0.000000



0.817395
0.456190
0.108737
0.094583
...
0.098432

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

IMAGE ACTIVATION TARGET ACTIVATIONStep 4

1.000000
0.000000
0.000000
0.000000
...
0.000000



0.834368
0.021434
0.056354
0.043551
...
0.000234

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

IMAGE ACTIVATION TARGET ACTIVATIONStep 48

1.000000
0.000000
0.000000
0.000000
...
0.000000



10.01340
0.045623
0.001034
0.009874
...
0.013490

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

1.000000
0.000000
0.000000
0.000000
...
0.000000

IMAGE ACTIVATION TARGET ACTIVATIONStep 2048



Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

1.000000
0.000000
0.000000
0.000000
...
0.000000

IMAGE TARGET ACTIVATION



Feature visualization https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/


0.40439647176792093

0.8331816413002056

0.6005791021121634

...

Neuron 1:

Neuron 2:

Neuron 3:

...













How neurons interact https://distill.pub/2017/feature-visualization/#interaction

https://distill.pub/2017/feature-visualization/#interaction


How neurons interact https://distill.pub/2017/feature-visualization/#interaction

https://distill.pub/2017/feature-visualization/#interaction






0.40439647176792093
-0.8331816413002056
0.6005791021121634
-0.11789122711380684
...
0.05040674324147387

Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:



Neuron 1:
Neuron 2:
Neuron 3:
Neuron 4:
...
Neuron 512:

8.40439647176792093
-16.8331816413002056
12.6005791021121634
-2.11789122711380684
...
0.05040674324147387













Beginning Middle End



Point your microscope https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/




























http://www.youtube.com/watch?v=XOk2_OXeaCw
































Lucid
github.com/tensorflow/lucid
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model = lucid.modelzoo.vision_models.InceptionV1()

model.load_graphdef()

_ = lucid.optvis.render.render_vis(model, "mixed4a:476")



Differential Image Parameterizations

Anything Differentiable Anything Differentiable
Can be stochastic!



Case study: 3D Mesh texturing



Application: 3D texture style transfer



Q&A
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Shan Carter



Conclusion

Sofien Bouaziz (@_sofien_)

265





“Tennis for Two” - William Higinbotham, 1958

The Original Video Game - William Hunter, 09/10/2007 - https://youtu.be/6PG2mdU_i8k  - CC BY 3.0





Deep Learning for Graphics

Graphics for Deep Learning



Thank You!

Paige Bailey, Sofien Bouaziz, 
Shan Carter, Josh Gordon, 
Christian Häne, Alexander Mordvintsev, 
Julien Valentin, Martin Wicke
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