{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "4fa0ce4484f8" }, "source": [ "##### Copyright 2020 Google" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2023-07-06T09:31:09.576415Z", "iopub.status.busy": "2023-07-06T09:31:09.576150Z", "iopub.status.idle": "2023-07-06T09:31:09.579969Z", "shell.execute_reply": "2023-07-06T09:31:09.579433Z" }, "id": "906e07f6e562" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "e6d108d2b320" }, "source": [ "# Fermi-Hubbard experiment example" ] }, { "cell_type": "markdown", "metadata": { "id": "8d9dec56909c" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " View on QuantumAI\n", " \n", " Run in Google Colab\n", " \n", " View source on GitHub\n", " \n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "9ec578c1796c" }, "source": [ "This notebook demonstrates how to define, execute, and plot the results of a single instance of [the Fermi-Hubbard experiment](https://arxiv.org/abs/2010.07965). We show how to run the experiment using a Cirq simulator and a quantum processor through Google's Quantum Computing Service.\n", "\n", "The Fermi-Hubbard model on a one-dimensional lattice of $L$ sites with open boundary conditions is defined by the Hamiltonian\n", "\n", "$$\n", "H = - J \\sum_{j = 1}^{L - 1} \\sum_{\\nu = \\uparrow, \\downarrow} c_{j, \\nu}^\\dagger c_{j + 1, \\nu} + \\text{h.c.} + U \\sum_{j = 1}^{L} n_{j, \\uparrow} n_{j, \\downarrow} + \\sum_{j = 1}^{L} \\sum_{\\nu = \\uparrow, \\downarrow} \\epsilon_{j, \\nu} n_{j, \\nu} \n", "$$\n", "\n", "where $c_{j, \\nu}$ ($c_{j, \\nu}^\\dagger$) are the fermionic annihilation (creation) operators associated to site number $j$ and spin state $\\nu$, and $n_{j, \\nu} = c_{j, \\nu}^\\dagger c_{j, \\nu}$ are the number operators. The *hopping term* with coefficient $J$ describes particles tunneling between neighboring sites, the *onsite interaction term* with coefficient $U$ introduces an energy difference for doubly occupied sites, and the term $\\epsilon_{j, \\nu}$ represents spin-dependent local potentials. \n", "\n", "Our goal in this experiment is to compute the charge and spin densities which are defined as the sum and difference of the spin-up and spin-down particle densities, respectively\n", "\n", "$$\n", "\\rho_{j}^{\\pm} = \\langle n_{j, \\uparrow} \\rangle \\pm \\langle n_{j, \\downarrow} \\rangle,\n", "$$\n", "\n", "after simulating the Fermi-Hubbard model for some evolution time. Here, the expectation is taken with respect to the extended Hamiltonian\n", "\n", "$$\n", "H' = H + V \\sum_{j = 1}^{L - 1} \\sum_{\\nu = \\uparrow, \\downarrow} n_{j, \\nu} n_{j + 1, \\nu}\n", "$$\n", "\n", "which has an additional interaction term between neighboring fermionic sites. This enables extended simulations beyond the standard Fermi-Hubbard model." ] }, { "cell_type": "markdown", "metadata": { "id": "b3600ee25c8e" }, "source": [ "## Setup" ] }, { "cell_type": "markdown", "metadata": { "id": "33160e02c33d" }, "source": [ "We first install ReCirq which contains code for running Fermi-Hubbard experiments." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:09.583346Z", "iopub.status.busy": "2023-07-06T09:31:09.583128Z", "iopub.status.idle": "2023-07-06T09:31:31.702674Z", "shell.execute_reply": "2023-07-06T09:31:31.701563Z" }, "id": "c492bfc73689" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Installing ReCirq...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installed ReCirq!\n" ] } ], "source": [ "try:\n", " import recirq\n", "except ImportError:\n", " print(\"Installing ReCirq...\")\n", " !pip install git+https://github.com/quantumlib/recirq --quiet\n", " print(\"Installed ReCirq!\")" ] }, { "cell_type": "markdown", "metadata": { "id": "8eef2cc5d237" }, "source": [ "To track the progress of simulating experiments, we use the `tqdm` package." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:31.707015Z", "iopub.status.busy": "2023-07-06T09:31:31.706433Z", "iopub.status.idle": "2023-07-06T09:31:31.765851Z", "shell.execute_reply": "2023-07-06T09:31:31.765129Z" }, "id": "1b16b470c4c5" }, "outputs": [], "source": [ "try:\n", " import ipywidgets\n", "except ImportError:\n", " !pip install ipywidgets --quiet\n", " !jupyter nbextension enable --py widgetsnbextension --sys-prefix" ] }, { "cell_type": "markdown", "metadata": { "id": "46dbcc43d1e3" }, "source": [ "We can now import Cirq and the `fermi_hubbard` module from ReCirq." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:31.769937Z", "iopub.status.busy": "2023-07-06T09:31:31.769671Z", "iopub.status.idle": "2023-07-06T09:31:34.016550Z", "shell.execute_reply": "2023-07-06T09:31:34.015837Z" }, "id": "3da3b5a75363" }, "outputs": [], "source": [ "import cirq\n", "\n", "from recirq import fermi_hubbard\n", "from recirq.fermi_hubbard import publication\n", "\n", "# Hide numpy warnings\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "metadata": { "id": "1aecebe2b044" }, "source": [ "## Experiment parameters" ] }, { "cell_type": "markdown", "metadata": { "id": "d4d79e011a84" }, "source": [ "The first step is to decide on exact experiment parameters including problem Hamiltonian, initial state description, as well as a mapping from fermions to qubits on the device. Once we have this information, we can create circuits and run the experiment." ] }, { "cell_type": "markdown", "metadata": { "id": "9412a40fb274" }, "source": [ "### Qubit layout" ] }, { "cell_type": "markdown", "metadata": { "id": "5fd885507094" }, "source": [ "We will simulate the Fermi-Hubbard model on $L = 8$ sites. Each site is represented by two qubits due to the two spin states, so we need a total of $16$ qubits to simulate the experiment.\n", "\n", "The function `rainbow23_layouts` returns a set of $16$-qubit subgrids of the Google Rainbow processor. \n", "\n", "> *Note*: We use multiple layouts to average results over different qubit assignments. One the quantum processor, this cancels some of the statistical errors which occur from calibration to calibration." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.021023Z", "iopub.status.busy": "2023-07-06T09:31:34.020503Z", "iopub.status.idle": "2023-07-06T09:31:34.025648Z", "shell.execute_reply": "2023-07-06T09:31:34.025029Z" }, "id": "9a677d1ac39c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are 16 total qubit layouts.\n" ] } ], "source": [ "\"\"\"Get all layouts for 8 sites on a 23-qubit subgrid of the Google Rainbow processor.\"\"\"\n", "layouts = publication.rainbow23_layouts(sites_count=8)\n", "print(f\"There are {len(layouts)} total qubit layouts.\")" ] }, { "cell_type": "markdown", "metadata": { "id": "343ff5aa9b85" }, "source": [ "We can see an example layout by printing out its text diagram." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.028771Z", "iopub.status.busy": "2023-07-06T09:31:34.028302Z", "iopub.status.idle": "2023-07-06T09:31:34.033014Z", "shell.execute_reply": "2023-07-06T09:31:34.032360Z" }, "id": "d47795056271" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1↓ q(4, 1)━━━1↑ q(4, 2)\n", "│ │\n", "│ │\n", "2↓ q(5, 1)━━━2↑ q(5, 2)───3↑ q(5, 3)\n", "│ │\n", "│ │\n", "3↓ q(6, 1)───4↓ q(6, 2)━━━4↑ q(6, 3)───5↑ q(6, 4)\n", " │ │\n", " │ │\n", " 5↓ q(7, 2)───6↓ q(7, 3)━━━6↑ q(7, 4)───7↑ q(7, 5)\n", " │ │\n", " │ │\n", " 7↓ q(8, 3)───8↓ q(8, 4)━━━8↑ q(8, 5)\n" ] } ], "source": [ "\"\"\"Display an example layout.\"\"\"\n", "print(layouts[0].text_diagram())" ] }, { "cell_type": "markdown", "metadata": { "id": "f8c5c23d190e" }, "source": [ "The layout indicates the site index $j$ and spin state $\\nu$, as well as which `cirq.GridQubit` on the Rainbow processor this combination of $(j, \\nu)$ is encoded into. One can choose a different layout in the previous cell to see how the configurations vary." ] }, { "cell_type": "markdown", "metadata": { "id": "a7e87bd5fd64" }, "source": [ "### Problem parameters" ] }, { "cell_type": "markdown", "metadata": { "id": "e8d103db8d2f" }, "source": [ "Let's use the Hamiltonian with uniform $J = 1$ and $U = 2$ on each site, initial state prepared as a ground state of a non-interacting Hamiltonian with trapping potential of a Gaussian shape, Trotter step size equal to 0.3, and two particles per chain. The problem parameters with this initial state can be prepared with the pre-defined function `trapping_instance`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.036661Z", "iopub.status.busy": "2023-07-06T09:31:34.036231Z", "iopub.status.idle": "2023-07-06T09:31:34.040954Z", "shell.execute_reply": "2023-07-06T09:31:34.040077Z" }, "id": "4434177bb891" }, "outputs": [], "source": [ "\"\"\"Get FermiHubbardParameters (problem descriptions) for each qubit layout with the above parameters.\"\"\"\n", "parameters = [\n", " publication.trapping_instance(\n", " layout, u=2, dt=0.3, up_particles=2, down_particles=2\n", " ) \n", " for layout in layouts\n", "]" ] }, { "cell_type": "markdown", "metadata": { "id": "fa1698136d4b" }, "source": [ "> Other configurations which support site-dependent $U$ and $J$ coefficients can be prepared by creating instances of the `fermi_hubbard.FermiHubbardParameters` data class explicitly." ] }, { "cell_type": "markdown", "metadata": { "id": "7012bc6bf445" }, "source": [ "The results are instances of the `FermiHubbardParameters` data class for each layout. This data class uniquely defines the configuration to run and contains information such as the Hamiltonian, initial state, layout, and time step. Below, we display these values for an example element of `parameters`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.044304Z", "iopub.status.busy": "2023-07-06T09:31:34.044068Z", "iopub.status.idle": "2023-07-06T09:31:34.047742Z", "shell.execute_reply": "2023-07-06T09:31:34.047032Z" }, "id": "a4596869c147" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hamiltonian(sites_count=8, j=1.0, u=2, v=0, local_charge=0, local_spin=0, mu_up=0, mu_down=0)\n" ] } ], "source": [ "\"\"\"Display the Hamiltonian for an example problem description.\"\"\"\n", "parameters_example = parameters[0]\n", "print(parameters_example.hamiltonian)" ] }, { "cell_type": "markdown", "metadata": { "id": "a48d366d6bbb" }, "source": [ "We can also see the initial state:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.050887Z", "iopub.status.busy": "2023-07-06T09:31:34.050663Z", "iopub.status.idle": "2023-07-06T09:31:34.056902Z", "shell.execute_reply": "2023-07-06T09:31:34.056279Z" }, "id": "055b05e86460" }, "outputs": [ { "data": { "text/plain": [ "IndependentChainsInitialState(up=GaussianTrappingPotential(particles=2, center=0.5, sigma=0.14285714285714285, scale=-4), down=UniformTrappingPotential(particles=2))" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "parameters_example.initial_state" ] }, { "cell_type": "markdown", "metadata": { "id": "4fe383f88a85" }, "source": [ "And the time step:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.060231Z", "iopub.status.busy": "2023-07-06T09:31:34.059996Z", "iopub.status.idle": "2023-07-06T09:31:34.064017Z", "shell.execute_reply": "2023-07-06T09:31:34.063439Z" }, "id": "9b92d6c6fc36" }, "outputs": [ { "data": { "text/plain": [ "0.3" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "parameters_example.dt" ] }, { "cell_type": "markdown", "metadata": { "id": "b3eca713f124" }, "source": [ "## Circuits" ] }, { "cell_type": "markdown", "metadata": { "id": "048b3f2dfc5e" }, "source": [ "One can directly run an experiment from a `FermiHubbardParameters` instance (which we will do in the next section). However, it is illustrative to construct the circuits to see how the Fermi-Hubbard execution works." ] }, { "cell_type": "markdown", "metadata": { "id": "e059a98daabe" }, "source": [ "### Circuit creation" ] }, { "cell_type": "markdown", "metadata": { "id": "831a9f5b55bb" }, "source": [ "To create a circuit from a description of a problem, the function `fermi_hubbard.create_circuits` can be used. This function inputs a `FermiHubbardParameters` instance (i.e., a problem description) and number of Trotter steps. It returns circuits for constructing the initial state, simulating time-evolution via a number of Trotter steps, and measuring to compute observables." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.067411Z", "iopub.status.busy": "2023-07-06T09:31:34.067176Z", "iopub.status.idle": "2023-07-06T09:31:34.080434Z", "shell.execute_reply": "2023-07-06T09:31:34.079862Z" }, "id": "0e3d1c97811e" }, "outputs": [], "source": [ "\"\"\"Create circuits from a problem description.\"\"\"\n", "initial, trotter, measurement = fermi_hubbard.create_circuits(parameters_example, trotter_steps=1)" ] }, { "cell_type": "markdown", "metadata": { "id": "8e8154175976" }, "source": [ "Below, we display the complete circuit to execute which is a sum of the three component circuits above." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.083225Z", "iopub.status.busy": "2023-07-06T09:31:34.083002Z", "iopub.status.idle": "2023-07-06T09:31:34.164312Z", "shell.execute_reply": "2023-07-06T09:31:34.163681Z" }, "id": "77a759e93d1c" }, "outputs": [ { "data": { "text/html": [ "
               ┌────────────────────────────────────────┐         ┌────────────────────────────────────────┐         ┌─────────────────────────────────────────┐         ┌──────────────────────────────────────────┐         ┌────────────────────────────────────────┐         ┌─────────────────────────────────────────┐         ┌─────────────────────────────────────────┐         ┌──────────────────────────────────┐                ┌────────────────────────────┐                ┌────────────────────────────────┐\n",
       "(4, 1): ───X───────────────────────────────────────────────────────────────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)────CPhaseEcho────────────────────────────────────@─────────────────────────────────────────────────────M────────\n",
       "                                                                                       │                                                                                                                                                                                                                                                                                                                   │                                                                  │                                                     │\n",
       "(4, 2): ───X───────────────────────────────────────────────────────PhISwap(0.25)───────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)┼────────────────────CPhaseEcho────────────────────────────────────@^-0.191──────────────────────────────────────────────M('z')───\n",
       "                                                                   │                   │                                                                                                                                                                                                                                                                                                  │                │                                                                                                                        │\n",
       "(5, 1): ───X────────────────────────PhISwap(0.25)──────────────────┼───────────────────PhISwap(0.25)^-0.816────Z^0────────────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                    │                              │                                                                      │                                                                                                                                                                                                                                               │                                     │                           │                 │                             │                       │\n",
       "(5, 2): ───X────PhISwap(0.25)───────┼──────────────────────────────PhISwap(0.25)^-0.988────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                │                   │                                                                                 │                   │                                                                                                                                                                                                                                                                                                   │             │                               │               │                       │\n",
       "(5, 3): ────────PhISwap(0.25)^-0.974┼───────────────────────Z^0────PhISwap(0.25)──────────────────────────────────────PhISwap(0.25)^-0.953┼────────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                                    │                              │                                                                      │                               │                                                                                                                                                                                                               │                                                                 │                                               │                       │\n",
       "(6, 1): ────────────────────────────PhISwap(0.25)^-0.872────Z^0────┼───────────────────PhISwap(0.25)──────────────────────────────────────PhISwap(0.25)^-0.662─────Z^0────┼────────────────────PhISwap(0.25)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                                                   │                   │                                                                                  │                    │                                                                                                                                                                                          │                │                                                                                                                        │\n",
       "(6, 2): ───────────────────────────────────────────────────────────┼───────────────────PhISwap(0.25)^-0.772────Z^0────────────────────────PhISwap(0.25)───────────────────┼────────────────────PhISwap(0.25)^(-8/15)────Z^0────────────────────────PhISwap(0.25)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                                                   │                                                                      │                               │                                                                        │                                                                                                                                      │                                     │                           │                 │                             │                       │\n",
       "(6, 3): ───────────────────────────────────────────────────────────PhISwap(0.25)^-0.918────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────PhISwap(0.25)^(-9/11)─────────────────────────Z^0────PhISwap(0.25)───────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                                                                                                                      │                   │                                                                                    │                   │                                                                                                                                                                                          │             │                               │               │                       │\n",
       "(6, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.773┼────────────────────────Z^0────PhISwap(0.25)────────────────────────────────────────PhISwap(0.25)^-0.392┼───────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                                                                                                                                          │                               │                                                                        │                              │                                                                                                       │                                                                 │                                               │                       │\n",
       "(7, 2): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^(-9/13)────Z^0────┼────────────────────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^-0.421────Z^0────┼───────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                                                                                                                                                          │                    │                                                                                  │                   │                                                                                   │                │                                                                                                                        │\n",
       "(7, 3): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────────PhISwap(0.25)^-0.619─────Z^0────────────────────────PhISwap(0.25)──────────────────┼───────────────────PhISwap(0.25)^(-4/13)────Z^0────────────────────────PhISwap(0.25)───────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                                                                                                                                                          │                                                                        │                              │                                                                       │                               │                                     │                           │                 │                             │                       │\n",
       "(7, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.198──────────────────────────Z^0────PhISwap(0.25)───────┼──────────────────────────────PhISwap(0.25)^-0.14──────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                                                                                                                                                                                                                               │                   │                                                                                  │                   │                                                                                   │             │                               │               │                       │\n",
       "(7, 5): ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.238┼───────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^-0.081┼────────────────────────Z^0────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n",
       "                                                                                                                                                                                                                                                   │                              │                                                                       │                               │                                                                 │                                               │                       │\n",
       "(8, 3): ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.547────Z^0────┼───────────────────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^(-2/11)────Z^0────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n",
       "                                                                                                                                                                                                                                                                                  │                   │                                                                                   │                │                                                                                                                        │\n",
       "(8, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼───────────────────PhISwap(0.25)^-0.472─────Z^0────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@─────────────────────────────────────────────CPhaseEcho────────────────────────────────────────────M────────\n",
       "                                                                                                                                                                                                                                                                                  │                                                                                                       │                                     │                                                                                                   │\n",
       "(8, 5): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.287─────────────────────────Z^0────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────────────────────────────────────CPhaseEcho────────────────────────────────────────────M────────\n",
       "               └────────────────────────────────────────┘         └────────────────────────────────────────┘         └─────────────────────────────────────────┘         └──────────────────────────────────────────┘         └────────────────────────────────────────┘         └─────────────────────────────────────────┘         └─────────────────────────────────────────┘         └──────────────────────────────────┘                └────────────────────────────┘                └────────────────────────────────┘
" ], "text/plain": [ " ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ ┌─────────────────────────────────────────┐ ┌──────────────────────────────────────────┐ ┌────────────────────────────────────────┐ ┌─────────────────────────────────────────┐ ┌─────────────────────────────────────────┐ ┌──────────────────────────────────┐ ┌────────────────────────────┐ ┌────────────────────────────────┐\n", "(4, 1): ───X───────────────────────────────────────────────────────────────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)────CPhaseEcho────────────────────────────────────@─────────────────────────────────────────────────────M────────\n", " │ │ │ │\n", "(4, 2): ───X───────────────────────────────────────────────────────PhISwap(0.25)───────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)┼────────────────────CPhaseEcho────────────────────────────────────@^-0.191──────────────────────────────────────────────M('z')───\n", " │ │ │ │ │\n", "(5, 1): ───X────────────────────────PhISwap(0.25)──────────────────┼───────────────────PhISwap(0.25)^-0.816────Z^0────────────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │ │ │ │ │\n", "(5, 2): ───X────PhISwap(0.25)───────┼──────────────────────────────PhISwap(0.25)^-0.988────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │ │ │\n", "(5, 3): ────────PhISwap(0.25)^-0.974┼───────────────────────Z^0────PhISwap(0.25)──────────────────────────────────────PhISwap(0.25)^-0.953┼────────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │ │\n", "(6, 1): ────────────────────────────PhISwap(0.25)^-0.872────Z^0────┼───────────────────PhISwap(0.25)──────────────────────────────────────PhISwap(0.25)^-0.662─────Z^0────┼────────────────────PhISwap(0.25)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │ │ │\n", "(6, 2): ───────────────────────────────────────────────────────────┼───────────────────PhISwap(0.25)^-0.772────Z^0────────────────────────PhISwap(0.25)───────────────────┼────────────────────PhISwap(0.25)^(-8/15)────Z^0────────────────────────PhISwap(0.25)──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │ │ │ │ │ │\n", "(6, 3): ───────────────────────────────────────────────────────────PhISwap(0.25)^-0.918────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────PhISwap(0.25)^(-9/11)─────────────────────────Z^0────PhISwap(0.25)───────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │ │ │\n", "(6, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.773┼────────────────────────Z^0────PhISwap(0.25)────────────────────────────────────────PhISwap(0.25)^-0.392┼───────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │ │\n", "(7, 2): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^(-9/13)────Z^0────┼────────────────────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^-0.421────Z^0────┼───────────────────PhISwap(0.25)───────────────────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │ │ │\n", "(7, 3): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼────────────────────PhISwap(0.25)^-0.619─────Z^0────────────────────────PhISwap(0.25)──────────────────┼───────────────────PhISwap(0.25)^(-4/13)────Z^0────────────────────────PhISwap(0.25)───────────────────┼────────────────FSim(-0.0955π, 0)────@───────────────────────────FSim(-0.5π, 0)────@─────────────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │ │ │ │ │ │\n", "(7, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.198──────────────────────────Z^0────PhISwap(0.25)───────┼──────────────────────────────PhISwap(0.25)^-0.14──────────────────────────Z^0────PhISwap(0.25)───────┼───────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────FSim(-0.5π, 0)┼─────────────────@^-0.191──────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │ │ │\n", "(7, 5): ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.238┼───────────────────────Z^0────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^-0.081┼────────────────────────Z^0────FSim(-0.0955π, 0)─────────────────────CPhaseEcho────FSim(-0.5π, 0)┼─────────────────CPhaseEcho────FSim(-0.595π, 0)┼───────────────────Z───M────────\n", " │ │ │ │ │ │ │\n", "(8, 3): ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.547────Z^0────┼───────────────────PhISwap(0.25)───────────────────────────────────────PhISwap(0.25)^(-2/11)────Z^0────┼────────────────FSim(-0.0955π, 0)────CPhaseEcho──────────────────FSim(-0.5π, 0)────CPhaseEcho────────────────────FSim(-0.595π, 0)────Z───M────────\n", " │ │ │ │ │\n", "(8, 4): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┼───────────────────PhISwap(0.25)^-0.472─────Z^0────────────────────────────────────────────────────────┼────────────────FSim(-0.0955π, 0)────@─────────────────────────────────────────────CPhaseEcho────────────────────────────────────────────M────────\n", " │ │ │ │\n", "(8, 5): ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────PhISwap(0.25)^-0.287─────────────────────────Z^0────────────────────────────────────────────────────────FSim(-0.0955π, 0)─────────────────────@^-0.191──────────────────────────────────────CPhaseEcho────────────────────────────────────────────M────────\n", " └────────────────────────────────────────┘ └────────────────────────────────────────┘ └─────────────────────────────────────────┘ └──────────────────────────────────────────┘ └────────────────────────────────────────┘ └─────────────────────────────────────────┘ └─────────────────────────────────────────┘ └──────────────────────────────────┘ └────────────────────────────┘ └────────────────────────────────┘" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"Display the total circuit to execute.\"\"\"\n", "circuit = initial + trotter + measurement\n", "circuit" ] }, { "cell_type": "markdown", "metadata": { "id": "bdadb266fcf4" }, "source": [ "> *Note*: For a deeper explanation of these circuits and the gates used in them, see the [Fermi-Hubbard experiment paper](https://arxiv.org/abs/2010.07965)." ] }, { "cell_type": "markdown", "metadata": { "id": "94fb4ce74e44" }, "source": [ "### Circuit decomposition" ] }, { "cell_type": "markdown", "metadata": { "id": "35652ae73898" }, "source": [ "The circuit above is constructed using gates which are not native to Google hardware, for example `cirq.FSim` or `cirq.CZ` with arbitrary exponent. To run these circuits on Google hardware, we have to convert them into native operations. For the Fermi-Hubbard experiment, a special converter called `ConvertToNonUniformSqrtIswapGates` is provided.\n", "\n", "This converter has the ability to decompose gates to $\\sqrt{\\small \\mbox{iSWAP}}$ both perfectly (i.e., without noise) and with unitary parameters deviating from the perfect ones and varying between qubit pairs. The function `ideal_sqrt_iswap_converter` creates an instance of the noiseless converter which decomposes $\\sqrt{\\small \\mbox{iSWAP}}$ gates exactly as `cirq.FSim(π/4, 0)`. The function `google_sqrt_iswap_converter` creates an instance of the noisy converter which approximates the average values on Rainbow processor (which are about `cirq.FSim(π/4, π/24)` on each two-qubit pair).\n", "\n", "Below we show an example of the perfect decomposition into the $\\sqrt{\\small \\mbox{iSWAP}}$ gate set." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.168537Z", "iopub.status.busy": "2023-07-06T09:31:34.168286Z", "iopub.status.idle": "2023-07-06T09:31:34.567688Z", "shell.execute_reply": "2023-07-06T09:31:34.566935Z" }, "id": "c6fc02191335" }, "outputs": [ { "data": { "text/html": [ "
                      ┌────────────────────┐             ┌────────────────────┐          ┌────────────────────┐             ┌────────────────────┐          ┌────────────────────┐             ┌────────────────────┐          ┌────────────────────┐               ┌────────────────────┐          ┌────────────────────┐              ┌────────────────────┐          ┌────────────────────┐               ┌────────────────────┐       ┌────────────────────┐               ┌────────────────────┐             ┌────────────────────┐             ┌────────────────────┐                                                                                                ┌────────────────────┐       ┌────────────────────┐                                                                                                  ┌────────────────────┐             ┌────────────────────┐\n",
       "(4, 1): ───X──────────────────────────────────────────────────────────────────────S^-1──────────────iSwap─────────Z^0.592──────────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1─────────────────iSwap─────────Z^0.095──────────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)──────────────────────────────────────────────────────────────────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)──────────────────────────────────────────────────────────────────────────M────────\n",
       "                                                                                                    │                                  │                                                                                                                                                                                                                                                                                                                                                                                     │                                  │                                                                                                                                                                                          │                              │                                                                                                 │\n",
       "(4, 2): ───X──────────────────────────────────────────────────────────────────────S^-1────iSwap─────┼─────────────Z^0.506────iSwap─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap─────┼─────────────Z^0.095────iSwap─────┼──────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)──────────────────────────────────────────────────────────────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)────────────────────────────────────────────────────────────────────────────M('z')───\n",
       "                                                                                          │         │                        │         │                                                                                                                                                                                                                                                                                                                                                                           │         │                        │         │                                                                                                                                                                                                                                                                                                                           │\n",
       "(5, 1): ───X───S^-1──────────────iSwap─────────Z^0.564──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^0.408────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.669──────────────iSwap─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n",
       "                                 │                                  │                     │                                  │                                         │                                  │                                                                                                                                                                                                                                                                                                        │                                  │                                               │                              │                                                │                            │                                       │                              │                                                │                                  │             │\n",
       "(5, 2): ───X───S^-1────iSwap─────┼─────────────Z^0.513────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.494────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.524────iSwap─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n",
       "                       │         │                        │         │                                                                                        │         │                        │         │                                                                                                                                                                                                                                                                                                                                                                                                                                                                 │         │                  │         │                                                                                                             │         │                        │         │             │\n",
       "(5, 3): ───────S^-1────iSwap^-0.5┼─────────────Z^0.487────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.541────iSwap───────────────────Z───────iSwap^-0.5┼─────────────Z^0.476────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.59───────iSwap──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n",
       "                                 │                                  │                     │                                  │                                         │                                  │                     │                                    │                                                                                                                                                                                                                                             │                                  │                                                                                                                               │                            │                                                                                                                       │                                  │             │\n",
       "(6, 1): ───────S^-1──────────────iSwap^-0.5────Z^0.436──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.614────┼─────────iSwap─────────Z─────────────────iSwap^-0.5────Z^0.331──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^(11/15)────┼─────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n",
       "                                                                                          │         │                        │         │                                                                                        │         │                          │         │                                                                                                                                                                                                                                   │         │                        │         │                                                                                                                                                                                                                                                                                                                           │\n",
       "(6, 2): ──────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.386────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.654──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^(4/15)─────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.79────────────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n",
       "                                                                                          │                                  │                                         │                                  │                     │                                    │                                         │                                   │                                                                                                                                                               │                                  │                                               │                              │                                                │                            │                                       │                              │                                                │                                  │             │\n",
       "(6, 3): ──────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^0.459────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.613────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.41───────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.804─────iSwap─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n",
       "                                                                                                                                                             │         │                        │         │                                                                                          │         │                         │         │                                                                                                                                                                                                                                                                                                                        │         │                  │         │                                                                                                             │         │                        │         │             │\n",
       "(6, 4): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5┼─────────────Z^0.387────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.901──────iSwap───────────────────Z───────iSwap^-0.5┼─────────────Z^0.196─────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.93───────iSwap─────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n",
       "                                                                                                                                                                       │                                  │                     │                                    │                                         │                                   │                     │                                    │                                                                                                    │                                  │                                                                                                                               │                            │                                                                                                                       │                                  │             │\n",
       "(7, 2): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1──────────────iSwap^-0.5────Z^0.346──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.69───────┼─────────iSwap─────────Z─────────────────iSwap^-0.5────Z^0.21────────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^(11/13)────┼─────────iSwap───────────────────────────────────────────────────────────────────────────T^-1───────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n",
       "                                                                                                                                                                                                                                │         │                          │         │                                                                                         │         │                          │         │                                                                                          │         │                        │         │                                                                                                                                                                                                                                                                                                                           │\n",
       "(7, 3): ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.31───────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^(8/11)──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^(2/13)─────┼─────────iSwap^-0.5───────────────────iSwap─────────Z^(10/11)──────────────iSwap─────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n",
       "                                                                                                                                                                                                                                │                                    │                                         │                                   │                     │                                    │                                      │                                    │                        │                                  │                                               │                              │                                                │                            │                                       │                              │                                                │                                  │             │\n",
       "(7, 4): ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^0.099──────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.881─────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.07───────iSwap^-0.5───────────────────iSwap─────┼─────────────Z^0.96───────iSwap─────┼─────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n",
       "                                                                                                                                                                                                                                                                                                     │         │                         │         │                                                                                       │         │                          │         │                                                                                                                                                                                 │         │                  │         │                                                                                                             │         │                        │         │             │\n",
       "(7, 5): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5┼─────────────Z^0.119─────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^(6/7)──────iSwap───────────────────Z────iSwap^-0.5┼─────────────Z^0.04───────iSwap^-0.5┼─────────────Z^0.75─────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n",
       "                                                                                                                                                                                                                                                                                                               │                                   │                     │                                    │                                      │                                    │                        │                                  │                                                                                                                               │                            │                                                                                                                       │                                  │             │\n",
       "(8, 3): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1──────────────iSwap^-0.5────Z^(3/11)──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.764──────┼─────────iSwap─────────Z──────────────iSwap^-0.5────Z^(1/11)───────────────iSwap^-0.5────Z^0.75─────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n",
       "                                                                                                                                                                                                                                                                                                                                                                         │         │                          │         │                                                                                          │         │                        │         │                                                                                                                                                                                                                                                                                                                           │\n",
       "(8, 4): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.236──────┼─────────iSwap^-0.5──────────────────────────────────────────────────────────────────────Z^-0.75────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───────────────────────────────────────────────────────────────────────────────────────────────────────────PhX(-0.905)────────────────────PhX(-0.905)──────────────────────────────────────────────────────────────────────────M────────\n",
       "                                                                                                                                                                                                                                                                                                                                                                         │                                    │                                                                                                    │                                  │                                               │                              │                                                                                                                                                                                                                                                      │\n",
       "(8, 5): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^(1/7)──────iSwap^-0.5────────────────────────────────────────────────────────────────────────────────Z^-0.75────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────────────────────────────────────────────────────────────────────────────────────────────────────────────PhX(0.0955)────────────────────PhX(0.0955)──────────────────────────────────────────────────────────────────────────M────────\n",
       "                      └────────────────────┘             └────────────────────┘          └────────────────────┘             └────────────────────┘          └────────────────────┘             └────────────────────┘          └────────────────────┘               └────────────────────┘          └────────────────────┘              └────────────────────┘          └────────────────────┘               └────────────────────┘       └────────────────────┘               └────────────────────┘             └────────────────────┘             └────────────────────┘                                                                                                └────────────────────┘       └────────────────────┘                                                                                                  └────────────────────┘             └────────────────────┘
" ], "text/plain": [ " ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐ ┌────────────────────┐\n", "(4, 1): ───X──────────────────────────────────────────────────────────────────────S^-1──────────────iSwap─────────Z^0.592──────────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1─────────────────iSwap─────────Z^0.095──────────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)──────────────────────────────────────────────────────────────────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)──────────────────────────────────────────────────────────────────────────M────────\n", " │ │ │ │ │ │ │\n", "(4, 2): ───X──────────────────────────────────────────────────────────────────────S^-1────iSwap─────┼─────────────Z^0.506────iSwap─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap─────┼─────────────Z^0.095────iSwap─────┼──────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)──────────────────────────────────────────────────────────────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)────────────────────────────────────────────────────────────────────────────M('z')───\n", " │ │ │ │ │ │ │ │ │\n", "(5, 1): ───X───S^-1──────────────iSwap─────────Z^0.564──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^0.408────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.669──────────────iSwap─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(5, 2): ───X───S^-1────iSwap─────┼─────────────Z^0.513────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.494────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.524────iSwap─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(5, 3): ───────S^-1────iSwap^-0.5┼─────────────Z^0.487────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.541────iSwap───────────────────Z───────iSwap^-0.5┼─────────────Z^0.476────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.59───────iSwap──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(6, 1): ───────S^-1──────────────iSwap^-0.5────Z^0.436──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.614────┼─────────iSwap─────────Z─────────────────iSwap^-0.5────Z^0.331──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^(11/15)────┼─────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T^-1───────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(6, 2): ──────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.386────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.654──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^(4/15)─────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^0.79────────────────iSwap────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(6, 3): ──────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^0.459────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.613────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.41───────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.804─────iSwap─────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(6, 4): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5┼─────────────Z^0.387────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.901──────iSwap───────────────────Z───────iSwap^-0.5┼─────────────Z^0.196─────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^0.93───────iSwap─────────────────────────────────────────────────────────────────────────────────────T^-1───────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(7, 2): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1──────────────iSwap^-0.5────Z^0.346──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.69───────┼─────────iSwap─────────Z─────────────────iSwap^-0.5────Z^0.21────────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^(11/13)────┼─────────iSwap───────────────────────────────────────────────────────────────────────────T^-1───────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(7, 3): ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.31───────┼─────────iSwap^-0.5──────────────────────iSwap─────────Z^(8/11)──────────────iSwap─────────Z───────┼─────────iSwap^-0.5────Z^(2/13)─────┼─────────iSwap^-0.5───────────────────iSwap─────────Z^(10/11)──────────────iSwap─────────T──────────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────S──────────────iSwap─────────PhX(0.25)^0.0483───T^-1───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───Z^-0.845──────────────iSwap─────────Z^0.595──────────────iSwap─────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(7, 4): ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^0.099──────iSwap^-0.5──────────────────────iSwap─────┼─────────────Z^0.881─────iSwap─────┼─────────────Z───────iSwap^-0.5──────────────Z^0.07───────iSwap^-0.5───────────────────iSwap─────┼─────────────Z^0.96───────iSwap─────┼─────────────T──────────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────S────iSwap─────┼─────────────PhX(0.25)^0.5──────T^-1───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────Z^0.155─────iSwap─────┼─────────────Z^0.595────iSwap─────┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(7, 5): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5┼─────────────Z^0.119─────iSwap^-0.5┼─────────────────────iSwap───────────────────Z^(6/7)──────iSwap───────────────────Z────iSwap^-0.5┼─────────────Z^0.04───────iSwap^-0.5┼─────────────Z^0.75─────iSwap───────────────────Z^0.095────iSwap────────────────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S───────────iSwap^-0.5┼─────────────S────iSwap^-0.5┼────────────────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z───────────iSwap^-0.5┼─────────────Z^0.405────iSwap^-0.5┼─────────────M────────\n", " │ │ │ │ │ │ │ │ │ │ │ │ │\n", "(8, 3): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1──────────────iSwap^-0.5────Z^(3/11)──────────────iSwap^-0.5────────────┼─────────iSwap─────────Z^0.764──────┼─────────iSwap─────────Z──────────────iSwap^-0.5────Z^(1/11)───────────────iSwap^-0.5────Z^0.75─────┼─────────iSwap─────────Z^0.095────┼─────────iSwap──────────────────────────────────────────────PhX(0.25)──────────────────────PhX(0.25)─────S─────────────────────iSwap^-0.5────S──────────────iSwap^-0.5───────────────────────────────────────────PhX(-0.25)─────────────────────PhX(-0.25)────Z─────────────────────iSwap^-0.5────Z^0.405──────────────iSwap^-0.5────M────────\n", " │ │ │ │ │ │ │ │ │\n", "(8, 4): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────┼─────────iSwap^-0.5────Z^0.236──────┼─────────iSwap^-0.5──────────────────────────────────────────────────────────────────────Z^-0.75────┼─────────iSwap^-0.5────Z^0.905────┼─────────iSwap^-0.5────PhX(-0.25)^0.0483───T───iSwap────────Rx(-0.136π)───Z───iSwap────────Rx(-0.048π)───────────────────────────────────────────────────────────────────────────────────────────────────────────PhX(-0.905)────────────────────PhX(-0.905)──────────────────────────────────────────────────────────────────────────M────────\n", " │ │ │ │ │ │ │\n", "(8, 5): ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────S^-1────iSwap^-0.5──────────────Z^(1/7)──────iSwap^-0.5────────────────────────────────────────────────────────────────────────────────Z^-0.75────iSwap^-0.5──────────────Z^0.905────iSwap^-0.5──────────────PhX(-0.25)^0.5──────T───iSwap^-0.5─────────────────────iSwap^-0.5───Rx(-0.5π)─────────────────────────────────────────────────────────────────────────────────────────────────────────────PhX(0.0955)────────────────────PhX(0.0955)──────────────────────────────────────────────────────────────────────────M────────\n", " └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘ └────────────────────┘" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"Convert the circuit to native hardware gates perfectly (without noise).\"\"\"\n", "publication.ideal_sqrt_iswap_converter().convert(circuit)" ] }, { "cell_type": "markdown", "metadata": { "id": "2186b86e188f" }, "source": [ "We will consider both ideal and noisy decompositions when executing the experiment below." ] }, { "cell_type": "markdown", "metadata": { "id": "f8754d2cccc0" }, "source": [ "## Cirq simulation" ] }, { "cell_type": "markdown", "metadata": { "id": "2c642750808b" }, "source": [ "This section demonstrates how to simulate experiments using Cirq simulator. We will simulate the evolution from $0$ to $10$ Trotter steps. Physically, this corresponds to an evolution time of $t = 3 \\hbar / J$." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.575007Z", "iopub.status.busy": "2023-07-06T09:31:34.574639Z", "iopub.status.idle": "2023-07-06T09:31:34.578740Z", "shell.execute_reply": "2023-07-06T09:31:34.577928Z" }, "id": "d7eafc63a473" }, "outputs": [], "source": [ "\"\"\"Set the number of Trotter steps to simulate.\"\"\"\n", "trotter_steps = range(10 + 1)" ] }, { "cell_type": "markdown", "metadata": { "id": "a2348762745b" }, "source": [ "### Ideal" ] }, { "cell_type": "markdown", "metadata": { "id": "134e7e4ef033" }, "source": [ "As mentioned above, we can use the `ideal_sqrt_iswap_converter` to convert circuits perfectly into the $\\sqrt{\\small \\mbox{iSWAP}}$ gate set. The Fermi-Hubbard project provides `ConvertingSampler` that converts circuits before executing ands sampling from them. We get an ideal sampler below." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.582788Z", "iopub.status.busy": "2023-07-06T09:31:34.582519Z", "iopub.status.idle": "2023-07-06T09:31:34.586487Z", "shell.execute_reply": "2023-07-06T09:31:34.585836Z" }, "id": "47578126a344" }, "outputs": [], "source": [ "\"\"\"Get an ideal sampler to simulate experiments.\"\"\"\n", "ideal_sampler = fermi_hubbard.ConvertingSampler(\n", " cirq.Simulator(), publication.ideal_sqrt_iswap_converter().convert\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "59c49d675ffc" }, "source": [ "We can now run experiments using the `run_experiment` function. This function takes the parameters of a problem, a sampler, and a list of Trotter steps to simulate. Below, we provide the problem parameters defined on each $16$ qubit layout of the Rainbow processor and simulate the experiments using ten Trotter steps and the `ideal_sampler`." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:31:34.589790Z", "iopub.status.busy": "2023-07-06T09:31:34.589534Z", "iopub.status.idle": "2023-07-06T09:34:28.915508Z", "shell.execute_reply": "2023-07-06T09:34:28.914586Z" }, "id": "76790b284d7a" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "447db29b374543df8a1d19ea75f349ed", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/176 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
uchainsteptimesitevaluestd_errorstd_dev
02000.010.1193050.0007960.003183
12000.020.3276740.0010630.004253
22000.030.5203660.0010640.004257
32000.041.0319910.0011650.004658
42000.051.0323260.0009670.003869
\n", "" ], "text/plain": [ " u chain step time site value std_error std_dev\n", "0 2 0 0 0.0 1 0.119305 0.000796 0.003183\n", "1 2 0 0 0.0 2 0.327674 0.001063 0.004253\n", "2 2 0 0 0.0 3 0.520366 0.001064 0.004257\n", "3 2 0 0 0.0 4 1.031991 0.001165 0.004658\n", "4 2 0 0 0.0 5 1.032326 0.000967 0.003869" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\"\"\"Example of getting a DataFrame from a quantity.\"\"\"\n", "charge_spin_density, _, _ = fermi_hubbard.quantity_data_frame(bundle, \"charge_spin_density\")\n", "charge_spin_density.head()" ] }, { "cell_type": "markdown", "metadata": { "id": "aad1d61619c2" }, "source": [ "This data frame contains the value, standard error, and standard deviation of the `\"charge_spin_density\"` quantity at each site for each time (Trotter step). For convenience, this quantity (and others) can be plotted with the `fermi_hubbard.plot_quantity` helper function." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:34:32.230846Z", "iopub.status.busy": "2023-07-06T09:34:32.230545Z", "iopub.status.idle": "2023-07-06T09:34:34.269368Z", "shell.execute_reply": "2023-07-06T09:34:34.268709Z" }, "id": "fda88e19e080" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADAwAAAFMCAYAAAD1QM/4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wc9Z3/8ddsVZcsqxfbknvDxjYGUwLGYByIKSFACMWh3dESSC4EkkvOkFzgR44ESIEUahKSHCRwCTUYbIrBYHDDxnKXi3rvZdv8/litbNmSrZUl7Wr3/Xw89JA1OzvzWXnno9mZ7+f7MUzTNBERERERERERERERERERERERERERERERkYhiCXUAIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIy+FQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwICIiIiIiIiIiIiIiIiIiIiIiIiIiIiISgVQwIIPunXfe4aKLLiI7O5v4+Hhmz57Nc889F+qwAH9sc+bMwel0MmHCBJ555plQh0RdXR1XXXUVSUlJpKSkcMMNN9DS0nLU53R0dHDbbbcxevRoEhISuPTSS6msrBymiEUGV7jmjPLycr72ta8xadIkLBYLd955Z6hDAgZ2/N97771MmTKF+Ph4Ro0axTnnnMPHH388TBGLDL5wzRsvvvgi5557Lunp6SQlJbFgwQL+9a9/hTqsAZ1rAKxZs4azzz6b+Ph4kpKS+MIXvkB7e/swRCwy+MI1b6xevZrTTjuN0aNHExsby5QpU3j44YdDHdaA8sbu3bu55JJLunPg5Zdfrs8oMqKFa9441AcffIDNZmP27NmhDoWf/OQnnHrqqcTFxZGSknLM9d1uN3fffTczZ84kPj6enJwcrr32WsrKyoY+WJEhEq5545133sEwjCO+KioqQhpXsHkD4Otf//oRr2PJkiVDG6jIEArXvAHQ2dnJf/7nfzJ27FicTifjxo3jqaeeCmlMv/vd7zjrrLNISkrCMAwaGhqO+Ryv18sPf/hDCgoKiI2NZfz48fz4xz/GNM2hD1hkCIRr3ujtb7RhGEyfPj1kMe3du5cbbrihx/G/fPlyXC7XUZ83kFwjEs7CNW8APPfcc8yaNYu4uDiys7O5/vrrqa2tDVk8dXV1fOMb32Dy5MnExsYyZswYvvnNb9LY2Njvbdx8880YhsEjjzwydIGKDLFwzhu//vWvmTp1KrGxsUyePJk//OEPIY1noHmjt/MmwzD4n//5n2GKXOT4hGue6O84rxdeeIEpU6YQExPDzJkzee2114Y30MPU1tayZMkScnJycDqd5Ofnc/vtt9PU1HTU5w10HIhENxUMyKD78MMPOeGEE/j73//OZ599xnXXXce1117LK6+8EtK4iouLueCCC1i4cCEbN27kzjvv5MYbbwz5QL6rrrqKzz//nBUrVvDKK6/w3nvv8W//9m9Hfc63vvUtXn75ZV544QXeffddysrK+PKXvzxMEYsMrnDNGZ2dnaSnp/ODH/yAWbNmhTSWQw3k+J80aRK/+tWv2Lx5M6tXr2bcuHEsXryY6urqYYpaZHCFa9547733OPfcc3nttddYt24dCxcuZOnSpWzYsCGkcQ3kXGPNmjUsWbKExYsXs3btWj755BNuv/12LBZ9fJCRKVzzRnx8PLfffjvvvfceRUVF/OAHP+AHP/gBv/vd70IaV7B5o7W1lcWLF2MYBitXruSDDz7A5XKxdOlSfD7fMEYuMnjCNW8ENDQ0cO2117Jo0aJQhwKAy+Xisssu45ZbbunX+m1tbaxfv54f/vCHrF+/nhdffJHt27dz4YUXDnGkIkMn3PPG9u3bKS8v7/7KyMgIaTzB5o2AJUuW9Hgdf/nLX4YoQpGhF8554/LLL+ftt9/mySefZPv27fzlL39h8uTJIY2pra2NJUuW8P3vf7/fz3nwwQd5/PHH+dWvfkVRUREPPvggP/3pT/nlL385hJGKDJ1wzRuPPvpoj7/PBw4cIDU1lcsuuyxkMW3btg2fz8dvf/tbPv/8cx5++GF+85vfHDOHDCTXiISzcM0bH3zwAddeey033HADn3/+OS+88AJr167lpptuCllMZWVllJWV8dBDD7FlyxaeeeYZ3njjDW644YZ+Pf+ll17io48+IicnZ4gjFRla4Zo3Hn/8cb73ve9x77338vnnn3Pfffdx22238fLLL4cspoHmjUPPm8rLy3nqqacwDINLL710mCIXOT7hmif6M87rww8/5Morr+SGG25gw4YNXHzxxVx88cVs2bJlmKM9yGKxcNFFF/HPf/6THTt28Mwzz/DWW29x8803H/V5AxkHIoIpUW/s2LHmww8/3GPZrFmzzOXLlw/aPs4//3zzuuuuCzqun/zkJ+Z1111nJiQkmPn5+eZjjz024Bi++93vmtOnT++x7IorrjDPO++8fm9j2bJlJtDr19NPPx10TFu3bjUB85NPPule9vrrr5uGYZilpaW9PqehocG02+3mCy+80L2sqKjIBMw1a9YEHYNIsKIlZxzqzDPPNO+4446gn7d8+fI+c8ZAfl+Ddfw3NjaagPnWW28FHYPIQERj3giYNm2aed999/V7/XA41zBN0zz55JPNH/zgB0HvT2SwRHPeuOSSS8yrr7663+uHQ97417/+ZVosFrOxsbF7WUNDg2kYhrlixYqgYxAZiGjLG1dccYX5gx/8wFy+fLk5a9asoJ472HnjUE8//bSZnJw8oOeuXbvWBMx9+/YdVwwi/RUteWPVqlUmYNbX1w94G+GSN5YtW2ZedNFFx7U/keMRLXnj9ddfN5OTk83a2toBb2Owr4seKpi8dsEFF5jXX399j2Vf/vKXzauuuuq4YhDpr2jJG4d76aWXTMMwzL179/b7OUN5vhHw05/+1CwoKOjXuoNxDiUyENGSN/7nf/7HLCws7LHsF7/4hZmbm9vvbQzl+UbA888/bzocDtPtdh91vZKSEjM3N9fcsmVLr/+HIkMpWvLGggULzO985zs9ln372982TzvttH5vI5zyxqEuuugi8+yzzx6U/Yv0JlryxKH6Gud1+eWXmxdccEGPZSeffLL57//+70Ftu69csmrVquOM3O/RRx818/Ly+nx8oONARDRFqPTLF7/4RRISEvr8OlZLycbGRlJTU4Pe789+9jPmzZvHhg0buPXWW7n99tvZtm1b9+PTp08/alxf/OIXu9dds2YN55xzTo/tn3feeaxZs6bf8Rw6Q8b06dP5j//4j+6fr7jiCgDuv//+o8aUkJDA/v37u2NKSUlh3rx53fs455xzsFgsfPzxx73GsG7dOtxud4/XMmXKFMaMGRPUaxEZSpGQMwbDd77zne4csWTJEi6//PLun7/zne8A/nabx8oZ77//PjA4x7/L5eJ3v/sdycnJYdU5QSQS84bP56O5uTmouMLhXKOqqoqPP/6YjIwMTj31VDIzMznzzDNZvXp1v1+HyHCIxLyxYcMGPvzwQ84888x+xxMOeaOzsxPDMHA6nd3LYmJisFgsyh0SViIlbzz99NPs2bOH5cuXBx0LDH7eGCyNjY0YhkFKSsqgblfkeERK3gCYPXs22dnZnHvuuXzwwQdBxRNOeeOdd94hIyODyZMnc8stt1BbW3vc2xQZTJGQN/75z38yb948fvrTn5Kbm8ukSZP4zne+Q3t7e7/jGezrogN16qmn8vbbb7Njxw4ANm3axOrVqwf9OrDI8YiEvHG4J598knPOOYexY8f2O57hON8Y6O9KJNxEQt5YsGABBw4c4LXXXsM0TSorK/nb3/7G+eef3+94huN8o7GxkaSkJGw2W5/r+Hw+rrnmGu66665j/u5FQiUS8kZnZycxMTE9th8bG8vatWtxu939iidc8sahKisrefXVV/vdzURkqERCnuiPwRg/+uKLL3bnjqSkJB555JHun0899VQAbr755mPmkr6UlZXx4osvHvV+8UDu54oA9O+vk0S9J5544qgXg+12e5+PPf/883zyySf89re/DXq/559/PrfeeisAd999Nw8//DDvvvsuU6ZMAeC111476olfbGxs978rKirIzMzs8XhmZiZNTU20t7f3WLcvycnJJCcnA2Cz2UhISCArK6vHOjfffDOXX375UbcTaENXUVFxRPtvm81GamoqFRUVvT63oqICh8NxxA30zMzMPp8jMtwiIWcMhkNP8pxOJ7GxsUfkjAsvvJCTTz75qNvJzc0Fju/4f+WVV/jqV79KW1sb2dnZrFixgrS0tCBfkcjQicS88dBDD9HS0nLM84JDhcO5xp49ewC49957eeihh5g9ezZ/+MMfWLRoEVu2bGHixIn9fj0iQymS8kZeXh7V1dV4PB7uvfdebrzxxn7HEw5545RTTiE+Pp67776b+++/H9M0ueeee/B6vZSXl/f7tYgMtUjIGzt37uSee+7h/fff7/dNp8MNdt4YDB0dHdx9991ceeWVJCUlDdp2RY5XJOSN7OxsfvOb3zBv3jw6Ozt54oknOOuss/j444+ZM2dOv+IJl7yxZMkSvvzlL1NQUMDu3bv5/ve/zxe/+EXWrFmD1Wo9rm2LDJZIyBt79uxh9erVxMTE8NJLL1FTU8Ott95KbW0tTz/9dL/iGezrogN1zz330NTUxJQpU7BarXi9Xn7yk59w1VVXHdd2RQZTJOSNQ5WVlfH666/z5z//Oah4hvp8Y9euXfzyl7/koYceCioukXAUCXnjtNNO47nnnuOKK66go6MDj8fD0qVL+fWvf93veIb6fKOmpoYf//jH/Nu//dtRn//ggw9is9n45je/2e/YRYZbJOSN8847jyeeeIKLL76YOXPmsG7dOp544gncbjc1NTVkZ2cfM55wyRuHevbZZ0lMTOTLX/5yv58jMhQiIU/0R1/jR4MZc3loYYRhGCQnJx+RS370ox91FyL115VXXsk//vEP2tvbWbp0KU888USf6w7kfq4IqGBA+mmgF2VXrVrFddddx+9///sBVVOfcMIJ3f82DIOsrCwqKyu7lwUzM8VwSU1N1ewUEvWUM/ovMTGRxMTEId/PwoUL2bhxIzU1Nfz+97/n8ssv755BXCQcRFre+POf/8x9993HP/7xj0E/zob6XMPn8wHw7//+71x33XUAnHjiibz99ts89dRTPPDAA0O2b5FgRFLeeP/992lpaeGjjz7innvuYcKECVx55ZVBb6cvQ5030tPTeeGFF7jlllv4xS9+gcVi4corr2TOnDlYLGpsKOFjpOcNr9fL1772Ne677z4mTZoUdBzBGM5rG263m8svvxzTNHn88ceHZZ8i/TXS8wbA5MmTmTx5cvfPp556Krt37+bhhx/mj3/8Y9Cx9WU48sZXv/rV7n/PnDmTE044gfHjx/POO++waNGiId23SH9FQt7w+XwYhsFzzz3XPXj35z//OV/5yld47LHHBm3SleG4Lvr888/z3HPP8ec//5np06ezceNG7rzzTnJycli2bNmQ7lukvyIhbxzq2WefJSUlhYsvvnhAzz+agZ5vlJaWsmTJEi677DJuuummQY9LZLhFQt7YunUrd9xxB//1X//FeeedR3l5OXfddRc333wzTz75ZNCx9WWg5xtNTU1ccMEFTJs2jXvvvbfP9datW8ejjz7K+vXrMQzjOCIVGVqRkDd++MMfUlFRwSmnnIJpmmRmZrJs2TJ++tOfDup9iKHOG4d76qmnuOqqq47oniAy3CIhT4STjIyMoMeJPPzwwyxfvpwdO3bwve99j29/+9s89thjQxShRCvduRcsFgumafZYdnhl1kDazrz77rssXbqUhx9+mGuvvXZAsR1enWYYRvcgNgiu7czhf1DA39opKSlpUGcVD6YdZlZWFlVVVT2e7/F4qKurO6Ly7NDX4XK5aGhoOOK19PUckcEULTljuATT0u54jv/4+HgmTJjAKaecwpNPPonNZhvUC24iRxNteeOvf/0rN954I88///wR7ewGw1CfawRm4Jg2bVqP5VOnTj1qS2+RwRRteaOgoICZM2dy00038a1vfSuoi8n9MdR5A2Dx4sXs3r2bqqoqampq+OMf/0hpaSmFhYWD+lpE+hINeaO5uZlPP/2U22+/HZvNhs1m40c/+hGbNm3CZrOxcuXKAcXXm2DyxvEIFAvs27ePFStWqLuADKtoyBt9mT9/Prt27RpQbH0ZrrxxqMLCQtLS0gb9tYj0JVryRnZ2Nrm5ud3FAuC/JmCaJiUlJQOKrzfBXBcdqLvuuot77rmHr371q8ycOZNrrrmGb33rW5oMQYZNtOSNANM0eeqpp7jmmmtwOBwDiutoBnK+UVZWxsKFCzn11FP53e9+N+gxiQy2aMkbDzzwAKeddhp33XUXJ5xwAueddx6PPfYYTz311KB2LB3I+UZzczNLliwhMTGRl1566agzKr///vtUVVUxZsyY7ms1+/bt4z/+4z8YN27coL0OkaOJlrwRGxvLU089RVtbG3v37mX//v2MGzeOxMRE0tPTBxRfb4Y6bxzq/fffZ/v27UF1nRYZiGjJE/3R1/jRwR5zefPNNx8zl/QW25QpU7jwwgv57W9/y+OPP97nedFA7+eKqMOAkJ6e3iO5NDU1UVxc3GOdYNvOvPPOO3zpS1/iwQcfDKrVUrCCaTuzYMECXnvttR6Pr1ixggULFgxo34mJibhcriOWB9MOc8GCBTQ0NLBu3Trmzp0LwMqVK/H5fH22uJo7dy52u523336bSy+9FIDt27ezf//+Ab8WkWBES84YbH3ljGBa2g3m8e/z+ejs7AzqOSIDFU154y9/+QvXX389f/3rX7nggguOa9+hOtcYN24cOTk5bN++vcfyHTt2hKSwSqJTNOWNwx3P3+hQ5Y1DpaWldT+nqqqKCy+8MNiXITIg0ZA3kpKS2Lx5c4/HHnvsMVauXMnf/vY3CgoKgt73YOSNgQoUC+zcuZNVq1YxevTo49qeSLCiIW/0ZePGjd2FwsEKZd44XElJCbW1tQN+LSLBipa8cdppp/HCCy/Q0tLSfQN7x44dWCwW8vLygt73YFwXHai2trYjZhu1Wq09Bh+IDKVoyRsB7777Lrt27eKGG244rn0P1vlGaWkpCxcuZO7cuTz99NPqgigjQrTkjba2Nmy2nsOVrFYrwBEDGvtjsM43mpqaOO+883A6nfzzn/885ozf11xzzRETR5133nlcc8013R2cRYZatOSNALvd3v255K9//Stf+tKXBvQ3PlR541BPPvkkc+fOZdasWf0PXGQAoi1PHM2CBQt4++23ufPOO7uXDcX40R/96Ed85zvfGdA2ge7rFn3dMz7e+7kSvVQwIJx99tk888wzLF26lJSUFP7rv/6r+8NYQDAXZVetWsWXvvQl7rjjDi699FIqKioAcDgcg96WOpi2MzfffDO/+tWv+O53v8v111/PypUref7553n11VcHtO+ZM2fy7rvvUlxcTE5ODk6nEwiuHebUqVNZsmQJN910E7/5zW9wu93cfvvtfPWrX+2+oFVaWsqiRYv4wx/+wPz580lOTuaGG27g29/+NqmpqSQlJfGNb3yDBQsWcMoppwzotYgEI1pyBvhvoAO0tLRQXV3Nxo0bcTgcR8y63R8zZ87kd7/7Hdu3byc/P5+4uDgguJZ2/T3+p0yZwgMPPMAll1xCa2srP/nJT7jwwgvJzs6mpqaGX//615SWlnLZZZcF/TpEBiJa8saf//xnli1bxqOPPsrJJ5/cHVdsbGyPWfn6K1TnGoZhcNddd7F8+XJmzZrF7NmzefbZZ9m2bRt/+9vfgn4dIgMRLXnj17/+NWPGjGHKlCkAvPfeezz00EN885vfHNC+Q5U3AJ5++mmmTp1Keno6a9as4Y477uBb3/oWkydPHtBrEQlWNOQNi8XCjBkzeizLyMggJibmiOX9NRh5A2D//v3U1dWxf/9+vF5v92epCRMmdA80PPRzitvt5itf+Qrr16/nlVdewev1dv+OU1NTh2Q2UpHDRUPeAHjkkUcoKChg+vTpdHR08MQTT7By5UrefPPNAe07VHmjpaWF++67j0svvZSsrCx2797Nd7/7XSZMmMB55503oNciEqxoyRtf+9rX+PGPf8x1113HfffdR01NDXfddRfXX3/9gCZcGYzrogAVFRVUVFR0dxXZvHkziYmJjBkzpvv3tWjRIi655BJuv/12AJYuXcpPfvITxowZw/Tp09mwYQM///nPuf7664N+HSIDES15I+DJJ5/k5JNPHvDnk4DBON8oLS3lrLPOYuzYsTz00ENUV1d3PxaYcbO36xv9yTUiQyla8sbSpUu56aabePzxxznvvPMoLy/nzjvvZP78+QMqNB6M842mpiYWL15MW1sbf/rTn2hqaqKpqQnwD7QM/D8c+jll9OjRR0yAYLfbycrK0nVRGTbRkjd27NjB2rVrOfnkk6mvr+fnP/85W7Zs4dlnnx3QvkOVNw597gsvvMDPfvazAcUvEoxoyRNw7HFed9xxB2eeeSY/+9nPuOCCC/jrX//Kp59+OuBuZDNnzuTNN9/ki1/8ItnZ2d0FkRkZGWRkZPRrG6+99hqVlZWcdNJJJCQk8Pnnn3PXXXdx2mmndXcsWrt2Lddeey1vv/02ubm5/bqfK9IrU6JeY2OjecUVV5hJSUlmfn6++cwzz5izZs0yly9fPqDtLVu2zASO+DrzzDO711m1apUJmMXFxX1uZ+zYsebDDz/cY9nxxBXY7+zZs02Hw2EWFhaaTz/9dI/Hn376abO/h8W+ffvM008/3XQ4HOZLL7004Jhqa2vNK6+80kxISDCTkpLM6667zmxubu5+vLi42ATMVatWdS9rb283b731VnPUqFFmXFyceckll5jl5eUDjkEkGNGUM3qLa+zYsUHFFVBfX29ecMEFZmxs7BFxBqM/xz/Qnd/a29vNSy65xMzJyTEdDoeZnZ1tXnjhhebatWsHHINIsKIlb5x55pm9xrVs2bLudUbKuYZpmuYDDzxg5uXlmXFxceaCBQvM999/f8AxiAQrWvLGL37xC3P69OlmXFycmZSUZJ544onmY489Znq93u51RkreuPvuu83MzEzTbrebEydONH/2s5+ZPp9vwDGIBCta8sbhli9fbs6aNavHslDkjb5+X4fmiUM/pwTyyLGeIzKUoiVvPPjgg+b48ePNmJgYMzU11TzrrLPMlStX9lhnJOSNtrY2c/HixWZ6erppt9vNsWPHmjfddJNZUVEx4BhEghUtecM0TbOoqMg855xzzNjYWDMvL8/89re/bba1tQUVV8BgXRddvnx5r7+vQ+/zjB07tsfrbmpqMu+44w5zzJgxZkxMjFlYWGj+53/+p9nZ2TngOESCEU15o6GhwYyNjTV/97vf9fr4cJ9vBPbX21dAb9c3+pNrRIZSNOWNX/ziF+a0adPM2NhYMzs727zqqqvMkpKSoOIKGIzzjcD+evs6NIZj5YTeflciQyla8sbWrVvN2bNnm7GxsWZSUpJ50UUXmdu2beuxzkjKG7/97W/N2NhYs6GhYUD7FglGtOQJ0zz2OC/TNM3nn3/enDRpkulwOMzp06ebr776ao/Hly9ffsRz+rJp0yZz1qxZptVqNTds2DCgmFeuXGkuWLDATE5ONmNiYsyJEyead999t1lfX9+9Tm+/z2PdzxXpjWGaA+jnJXKcnn76ae6//362bt16RMuao5k9ezYXX3wx995775DEtXz5ct59913eeeedIdm+iAxMuOaMgcYlIkMvXPOGzjVEwpfyhogES3lDRIKlvCEiwQrXvKHroiLhK1zzhs43RMJXuOYNnW+IhC/lDRE5lnDNE/2xbNkyDMPgmWeeCVkMIkPFFuoAJDq99tpr3H///WF3gvb666/zq1/9KtRhiMhhwjVnhGtcIhK+x6fONUTCl/KGiARLeUNEgqW8ISLBCte8Ea5xiUj4Hp863xAJX+GaN8I1LhEJ3+MzXOMSiUYj9Xg0TZN33nmH1atXhzoUkSGhggEJiRdeeCHUIfRq7dq1oQ5BRHoRrjkjXOMSkfA9PnWuIRK+lDdEJFjKGyISLOUNEQlWuOaNcI1LRML3+NT5hkj4Cte8Ea5xiUj4Hp/hGpdINBqpx6NhGOzbty/UYYgMGcM0TTPUQYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyOCyhDoAEREREREREREREREREREREREREREREREZfCoYEBERERERERERERERERERERERERERERGJQCoYEBERERERERERERERERERERERERERERGJQLZQBzDcPB4PGzZsIDMzE4tF9RIikcjn81FZWcmJJ56IzXb8aU55QyTyKW+ISLCUN0QkWMobIhIs5Q0RCZbyhogES3lDRIKlvCEiwVLeEJFgKW+ISLAGO29Eqqj7zWzYsIH58+eHOgwRGQZr167lpJNOOu7tKG+IRA/lDREJlvKGiARLeUNEgqW8ISLBUt4QkWApb4hIsJQ3RCRYyhsiEizlDREJ1mDljUgVdQUDmZmZgP+NkZ2dHeJoRGQolJeXM3/+/O7j/Xgpb4hEPuUNEQmW8oaIBEt5Q0SCpbwhIsFS3hCRYClviEiwlDdEJFjKGyISLOUNEQnWYOeNSBV1BQOBtjLZ2dnk5eWFOBoRGUqD1UZKeUMkeihviEiwlDdEJFjKGyISLOUNEQmW8oaIBEt5Q0SCpbwhIsFS3hCRYClviEiwBitvRCr9dkREREREREREREREREREREREREREREREIpAKBkREREREREREREREREREREREREREREREIpAKBkREREREREREREREREREREREREREREREIpAKBkREREREREREREREREREREREREREREREIpAt1AGIHIvp9dL26To81dXY0tOJmzcXw2odln173B42vLKK5rIKEnOyOPFLC7HZddiIiIiIiIiIiIiIiIiIiIiIiIiIiIhI+NPIZwlrTW++SeVP7sdTWdm9zJaZSeZ/fp+kxYuHdN/vPvG/2B57hNS2BhK6ln384xQ8t97JmTdeMaT7FhERERERERERERERERERERERERERETlellAHINKXpjffpOSbd+A+pFgAwFVZSck376DpzTeHbN/vPvG/pD90L6PaGnosT2lrIP2he3n3if8dsn2LiIiIiIiIiIiIiIiIiIiIiIiIiIiIDAZ1GJCwZHq97Lvvv7ECxmGPWQATKP72XVTO/QeGw4nVbsNit2F12LHZ7Nicdqx2O3anA5vDht1hx+F0YHPYccY4sTpsWOx2DJsNrFYMmx3DbsOw2fCa4PzlQ9DHvn2A9bFH8Cy7FJtdh5CIiIiIiIiIiIiIiIiIiIiIiIiIiIiEJ412lrDU8smn2Gqr+3zcABweF7Y9O+lwxuMOcvuGARbDwBL4bjGwdv2b1mZGd7b0+VwLMLqtgQ2vrOKkS84Ncs8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiw0MFAxKWtn9eTHw/1ms95Uyc80/G1enC0+nC5XLj6XTjdrlxu1x43R48nS68bjcetxfcLiw+HxafF6vPc/DfXi8Wn/8rud3D6H7su7ms4nhfpoiIiIiIiIiIiIiIiIiIiIiIiIiIiMiQUcGAhKW6mMR+FQw4Z89m8WXn9Hu7Pp9Jh8dLu8tLh8fn/+72f7W7/ctL31kNv/zhMbeVmJPV7/2KiIiIiIiIiIiIiIiIiIiIiIiIiIiIDDcVDEhYSjzpJKpjkhnd0Yill8d9QE1sCoknnRTUdi0WgziHjThH3299z6SL+fjJn5HS1tDnvuvjUjjlSwuD2reIiIiIiIiIiIiIiIiIiIiIiIiIiIjIcOptPLRIyM2fkM7/nnIZBmAe9pgPMIDnT/4K8yekD/q+bXYbnlvvxOjaV2/79t56Jza76m1EREREREREREREREREREREREREREQkfIV0xPPHe2r53Xt72FzaSFVzJ7+9Zi7nTc866nPW7K7lv1/dys7KFrJTYrh94QQum5c/TBHLcLFaDJbe/jWerizl6u1v4vB5ux+riU3hdzMv4prbv4bVYgzJ/s+88QreBWyPPUJqW0P38vq4FLy33smZN14xJPsVERERERERERERERERERERERERERERGSwhLRhoc3uZmp3EZfPyuflP6465/oG6Nq5/5hOuOnkMj351Nh/squWeFzeTkRTDmZMGf6Z5Ca1zp2Xxfl4u26vHURaXyoaMSdQ5E6ktnMZ/XTSDJTOyh3T/Z954BZ5ll7L+iT/T+uwztMYmMP2vf6IgM2lI9ysiIiIiIiIiIiIiIiIiIiIiIiIiIiIyGEJaMLBwcgYLJ2f0e/0/fbyP/NRYfvClaQBMyEjkk711PLm6WAUDEWhfbStZ7fUkx9kpuHQxBScvJCMxhvkFqUPWWeBwNruNecu+wupX/oml08vOA7UqGBAZAbw+k7XFdVQ1dwx73hARERERERERERERERERERERERERCRchLRgI1oZ9DZw2Ia3Hsi9MSufHL2/t8zmdHi8uj6/755ZOz5DFJ4OrqLyZlKZa4hw2ps+ZzEmzc0MShyUuDmfaaFpKq9hXtBvmFYQkDhk+yhsj2xtbyrnv5a2UN3Z0L8tOjmH50mlD3pkEVKwQrZQ3RCRYyhsiEizlDREJlvKGiARLeUNEgqW8ISLBUt4QkWApb4hIsJQ3RER6N6IKBqpbOklLcPZYlp7gpLnTQ4fbS4zdesRzHlu1m0ff3tn9s6epZsjjlMGxvbyRCU01xMVZsefkhDSWpHH51JZWUbNzL6ZpYhga/BvJlDdGrje2lHPLn9ZjHra8orGDW/60nsevnjOkRQOhLlaQ0FHeEJFgKW+ISLCUN0QkWMobIhIs5Q0RCZbyhogES3lDRIKlvCEiwVLeEBHp3YgqGBiIWxeO58YzDs4IX1paytTHQxiQ9ItpmuzbXcoUj4e42DhsmZkhjSd9YgH7PlyHo6aCssYOclNiQxqPDC3ljZHJ6zO57+WtRxQLAJiAAdz38lbOnZY1JDP+h7pYQUJLeUNEgqW8ISLBUt4QkWApb4hIsJQ3RCRYyhsiEizlDREJlvKGiARLeUNEpHcjqmAgPcFJTUtnj2XVLZ0kOm29dhcAcNqsOG0HH0twjqiXHLVKG9qxVZdjMSAxPwfDFtr/N2deLrEOKymNtRSVNalgIMIpb4xMa4vreszsfzgTKG/sYG1xHQvGj+57PdPE4zPxeE08Pl/Xd/+/vd3Lez7m8vj4/ktbQlasIKGnvCEiwVLeEJFgKW+ISLCUN0QkWMobIhIs5Q0RCZbyhogES3lDRIKlvCEi0rsRlQ1PHJvCO9uqeyxbvbOGE8eOClFEMlS2VzST3FRLrMOKMy8v1OHgyM0lzmEjubmGovImzpkW2o4HInKkqua+iwUO9chbO3jh09gjBv17fCberqKAYDW1e6hrdQFgMX1Mr9lDamczdc5EPk8rxGdY+lWsICIiIiIiIiIiIiIiIiIiIiIiIiIymEJaMNDa6WFvbWv3zwfq2vi8rJGUOAe5KbE8+MY2Khs7+PkVswG4+uSx/OHDfTzwWhGXzctnze4aXt1czlNfPylEr0CGyraKZlKaaolz2LDn5IQ6HOw5OcQ7rMTVtrBzfxWmOQHD0CzhIuEkIzGm+999DdoHaO7wUNbY3u/tGhjYrAY2i4HNaunx3WoxsFsN9te1AXBq2WZu/uz/SO9o7H5+dUwyvznhYj7MmdnvogYRERERERERERERERERERERERERkcEQ0oKBz0oaufL3H3X//N+vFgFw6Zw8fnb5LKqaOiltODioMz81jqe+fhI/fmUrT3+wl6zkGP7fl2dy5qT0YY9dhlZReRPzm2qIc1ix5+aGOhws8fEkZIzGqGvDV1FOVXMnmUkxx36iiAyb+QWpZCfHUFj0Cf/ex6D97RPn8sCXZ+KwWbBbDayWQAFA1+B/iwWrteu7xV8kYLEcuzhoze5azPfe4Qdrnz3isdEdjfxg7bP89/xlZCSeMqivWURERERERERERERERERERERERETkaEJaMLBg/Gj2/r8L+nz8Z5fP6vU5r91xxlCGJSFW09JJTXOHv8NAmhN7bug7DAA48/OJ3V1GSmMtW8ubVDAgEmasFoP/l15D+rN9D9qv/kIBs/JTBn3fJ41J5rYt/wDg8PICC+ADbt3yD04a851B37eIiIiIiIiIiIiIiIiIiIiIiIiISF9CWjAg0ptt5c3EdrSQaHixWK3YMzNDHRIA9pwc4p1WUppq2FrWxMLJGaEOSUQOYXq95PzpN7jpfdC+CWT99mfUxXiwxDgxnE4MhxPDYccSE4PhcPh/djqwOBwYhyyzOB1gs2EYvXcb6Fy/ntS2hj5jswCj2xroXL8e28nzB+cFi4iIiIiIiIiIiIiIiIiIiIiIiIgcgwoGJOxsq2gipbGGOIe/WMCw20MdEgD23BziHDZSmmrYWN4U6nBE5DBtn67DU1FxRLFAgAH4mptp+NvfsCYlBb8Dw8CIcfqLCRyBggM7FmcMrgMH+rUJT3V18PsVERERERERERERERERERERERERERkgFQxI2CkqbyalqZZ4hxV7bk6ow+lmz80lzmElpbGWmpZOqps7SU90hjosEenS38H4MTNmEDN5MmZnBz6XC7PThdnZiely4evswHS5/T93duJzdYLX53+iaWK2d+Bt7zhim96m/hUR2dLT+/16RERERERERERERERERERERERERESOlwoGJKw0dbgpbWhjTFMNcQ4b9tzcUIfUzZ6Ti8UwGO1pxebupKi8ifREDf4VCRf9HYyfvHQp8SfP7/d2TY+nq5jAX1RwsJigq9jA1YmvvZ2y730fX0ND7xsxDGyZmcTNm9vv/YqIiIiIiIiIiIiIiIiIiIiIiIiIHC8VDEhY2V7RDEBuZyNWi4E9J3w6DFgT4rGmpBDf1EFKUy1by5v4wiQVDIiEi7h5c/GMTsdaW43R2woDHLRv2GwYNhuWuLijrpf9o/soveNO/w+m2b3cBAzTJPP738OwWoPat4iIiIiIiIiIiIiIiIiIiIiIiIjI8bCEOgCRQ20rbwLTJLujHiCsOgyAP544p42UphqKyptCHY6IHMKwWlm39DrAP0i/54P+EoKhHLSftHgxuY8+gi0zs8fypsRU9n7zhyQtXjwk+xURERERERERERERERERERERERER6YsKBiSsFFU0E9PRSqLPDYaBPSsr1CH1YM/JId5hJaWplsqmDupaXaEOSUS6dLi9vJU2jbWzF2HY7T0es2VmkvvoI0M+aD9p8WImvP0WGXffjWP8eDrnn8ajN/yU97JmDOl+RURERERERERERERERERERERERER6Ywt1ACIBHW4ve2tayWiuJc5hxZaZgeFwhDqsHux5uVgMg7HuRj4FisqbOG1CWqjDEhH8x6PH58MWH0fs7NnEn3IKjrFjsaWnEzdv7pB1FjicYbWSdP4XaVm1iiSLDzAprmmloc1FSlx45TQRERERERERERERERERERERERERiWzqMCBhY0dlMz7TZKyrEbvVgj0nJ9QhHcGekwtATnsDAFvLmkIYjYgcatOBBjBNxrXWYBgGSYvPJflLFxB/8vxhKxYIsGVkYImPx+rzMtPS6o+vpHFYYxARERERERERERERERERERERERERUcGAhI1t5c0AjPf5v9tzc0MZTq8CMSV3NmNzd1JUroIBkXCxqaSRuPZmkn0dYLVgHzs2ZLEYhoGjoACA2aa/UGDj/oaQxSMiIiIiIiIiIiIiIiIiIiIiIiIi0UkFAxI2iir8g++zu2bvD8cOA9aEeKzJycQ5bKQ011PW2E5DmyvUYYlEvcqmDsob28loqCTBacORl4fF4QhpTI6CcQAUttcCsLm0Aa/PDGFEIiIiIiIiIiIiIiIiIiIiIiIiIhJtVDAgYcHt9bGrqgWAlGb/4FpHGHYYAH+XAavFYJLPX+BQ1NUZQURCZ+OBBgCme+qwGAaOgsLQBgQ4uzoMJFaXEu+w0dLpYXd1S4ijEhEREREREREREREREREREREREZFoooIBCQt7qltxe32k48LR0QaGgS0MOwyAv2AAYILpLxTYWt4UynBEBNjUVTAQmM0/MLt/KDkK/UULntJSTsiMA2Dj/oYQRiQiIiIiIiIiIiIiIiIiIiIiIiIi0UYFAxIWtlX4B92fYG8HwJaWhsXhCGVIfbLn+gsZcjoaAShSwYBISLm9PraUNYFpklZfARyc3T+UrKNGYU1OBp+POTZ/Z4ENXYUNIiIiIiIiIiIiIiIiIiIiIiIiIiLDQQUDEhaKyv2z9U80/YNqA7P4h6NAbClNNQCU1LfR1OEOZUgiUW17RTMuj5c8TwsxHheG3Y49Ly/UYWEYBo6uwoUJHf7OB8U1LTS2KV+IiIiIiIiIiIiIiIiIiIiIiIiIyPBQwYCEnM9nsr2rw0BuRwMA9pycEEZ0dIGCAaO+jrEJNgC2dRU8iMjw29g1a/9cq/84dIwdg2GzhTCigxyF/oIBe+kBCtLiAdhU0hDCiEREREREREREREREREREREREREQkmqhgQEJuf10b7W4vsXYriY3+WfvDucOANSEBa3ISALPs7QBsLWsMZUgiUW1TV8HApE7/LP6OgsIQRtOTs6vDgKt4D7PyUoCDBQ4iIiIiIiIiIiIiIiIiIiIiIiIiIkNNBQMSctu6ugtMykzEU1YKgD03fDsMANhz/AUNE80WAIrUYUAkJGpbOjlQ34aBQXp9BQCOrkH64SAQi7u8glkZMQB8VtKAz2eGMiwRERERERERERERERERERERERERiRIqGJCQCwy2n55sxdvoLx6wZ2eHMqRjCnRAyOmoB/xdElo6PaEMSSQqfVbi7+4xMS0WSg4A4CwYF8KIerImJWFLGw3AmJZq4h02Wjo97KpuCXFkIiIiIiIiIiIiIiIiIiIiIiIiIhINVDAgIWWaZneHgYn4B9BaR6diiY0NZVjHFOiAYK+uJCc5FhOT7V2vQ0SGz4YDDQDMjXVhulwYsTHYcsKrQ4mjoBAAz769zMxLBmBjV9wiIiIiIiIiIiIiIiIiIiIiIiIiIkNJBQMSUhVNHTS2u7FZLGS1NwDg6Jq9P5zZ8/IAcJeWMjU7CYCtZSoYEBlOHq+PzSUNAEx11QLgHDcOwzBCGNWRHIUFALj2FDMrPwVQwYCIiIiIiIiIiIiIiIiIiIiIiIiIDA8VDEhIbatoBmBCRgJmeRkA9pFQMNA1g7mnpoZpaU4AtpY3hzIkkaizq7qFdreXBKed1LoK4OBs/uHEWdBVMFBczOy8FAD2VLfQ2O4OYVQiIiIiIiIiIiIiIiIiIiIiIiIi0anuuefYdfYitp0wi+LLr6D9s8/69bzGV1+laMpUDtx2+xBHOLhUMCAhVVTun5V/SlYi7rKRUzBgTUzEkpQIwESzFYC9Na20uTyhDEskqmzqmqV/Vl4y7uJiABxdg/PDiWPcOMBfYJTk7WDc6HjgYPwiIiIiIiIiIiIiIiIiIiIiIiIiMjyaXnuNqv/3IGm33UbBi38nZvJk9t94E57a2qM+z1VSStVP/4fYeXOHKdLBo4IBCaltXbPyT8lOwl1aChycvT/cOboKG+Lqq8lMisHEZHuFugyIDJeNBxoBmJWdgLvkAACOgnEhjKh3lrg47NlZQFeXgfwUQAUDIiIiIiIiIiIiIiIiIiIiIiIiIsOt9plnSbnsMlIu/TLOCRPIuu9eLDExNPz9xT6fY3q9lN11F+nfuB1HXv4wRjs4VDAgIVPX6qKquQMDg4mJVrwNDcDIKRgIdEJwl5QwNTsJgKJyFQyIDIfGdjfFNS0ATDObMD1eLAkJ2NLTQxxZ7wKdDzqLi5kVKBgoacDnM0MYlYgcyvR6af14LY2vvErrx2sxvd6o2LeIiIiIiIiIiIiIiIiIiIiISLQwXS46Pv+c+FMXdC8zLBbiFyygfePGPp9X8+vHsI5OJeUrXxmGKAefLdQBSPTaVt4EwLi0OGzVFQBYR43CEhcXyrD6rbtgoKyMqXOSeGd7FUVdr0nCg6+1FW9LS/fPhsOBxeEIYUQyWD4raQCgIC0eZ/kBWgFnYQGGYYQ0rr44Cgpp/XANruK9TLowkTiHjZZOD7urW5iYmRjq8OQQyhvRqenNN6n4yf14Kyu7l1nT0si4+7ukLF065PuuvP8BPBUV3ctsWVlkfv97JC1ePKT7lsGhvCEiwVLeEJFgKW+ISLCUN0QkWMobIhIs5Q0RCZbyhogES3lDRILV37zhqW8Arxfr6NE9llvTRtNZXNzrttvWraPh73+n4P9eGtSYh5MKBiRkiir8s/FPyUrCXbYPODgIfyToLhgoLWVqtn/A756aFjrcXmLs1lCGJl0qv7SUVuvB/4u0224j/Ru3hzAiGSybDjQAMCsvhc5NHwP+Qfnhylno7zDg2rMHiwEzc5P5uLiWDQcaVDAQZpQ3ok/Tm29SesedYPbs+OGtqaH8ru9S/+wfiJk6FVtGBrb0dGwZ6f7v6enY0tIwbAM/ne5r357KSv/yRx9R0cAIoLwhIsFS3hCRYClviEiwlDdEJFjKGyISLOUNEQmW8oaIBEt5Q0SCNVR5w9vSStl37yb7xz/CNmrUcW8vVFQwICGzvcI/G/+UrERcH5UCYM/JCWVIQQnE6qmpIdthMDrBSW1LJzsqmzkhLyW0wQkAma+8TO4hRSiGqkwjgmmabCppBGBWfgqul/xVfY6CglCGdVT2sWPBYsHb2Ii3vp7ZY1L4uLiWTQcauHxefqjDk0Mob0QX0+ul8v4Hjhiwf6jOHTuwxMbi2rfvyAcNA+uoUQcLCDLSsaUdLCqwpqT02fnkqPs2TTAMKu9/gMRFizCsKkQMZ8obIhIs5Q0RCZbyhogES3lDRIKlvCEiwVLeEJFgKW+ISLCUN0QkWP3NG7ZRKWC14q2t7bHcW1OLLS3tiPXdB/bjLi3lwC23Hlzo8wFQNH0G419/DceYMcf/AoaYCgYkJFo6PeyvawNgSnYSHaVdBQO5I6dgwJqUhCUpEV9TM+6yMqZlJ/H+zmqKyptUMBAmLPHxWBMSQh2GDLI9Na00d7iJtVsZn2SjvKwMAEfBuNAGdhQWhwN7bg7uAyW4iouZPWUmAHuqW2lsd5Mcaw9xhBKgvBFd2j5dh6ei4qjrmC4Xieedhy09HU9VFZ6aGv/36mpMlwtvXR3eujo6t28/4rmGzXZkV4Kur859+4++b9PEU1FB26friD95/vG+VBlCyhsiEizlDREJlvKGiARLeUNEgqW8ISLBUt4QkWApb4hIsJQ3RCRY/c0bhsNBzPTptK75iMRzzgHA9Plo/egjRl111RHrOwoLKfjnP3osq370F/haW8n8/vewZ2UNzgsYYioYkJAIdBfISY4lOdZOc9eAX/sh1T0jgT0nh86m7bhLy5iWPbGrYKA51GGJRLSN+xsAmJmbjK/kAJimf4bvMG/34ywsxH2ghM49exg1dy5jU+PZV9fKZyUNnDExPdThiUQlT3V1v9azpqSQdN7iHstM08TX3NxdPND9VdX1va4O0+PBXV6Ou7z8yH0fVqV8vDGKiIiIiIiIiIiIiIiIiIiIiMixjf76Msru+R4xM2YQe8JM6p79A772dlK+fAkAZXffjS0jk4z/+DYWp5OYSZN6PN+amAhwxPJwpoIBCYltFf5B9VOyE/G1t+OtrQPAnjOyCgYcubl0btuOu7SUqTPnArCrqoVOjxenzRri6EQi06aSBgBm5afg2rMeAEdhQQgj6h9HQSG8+x6u4r0AzB6Twr66VjbuV8GASKjY0vt37PW2nmEYWJOSsCYl4Zww4YjHTY8HT11dVxFBz84EnuoajKamQY1RRERERERERERERERERERERESOLen88/HU1VP9y1/gra7BOXUqY37/O2xpaQC4y8rBsIQ4ysGlggEJiW1ds/BPyUrqnnXXmpyMNSE+lGEFLdARwV1WRmaSk1FxDurbXOysbGFGbnKIoxOJPC2dHnZWtgD+goHOVcWAf/b+cOcoGAeAq7gY0zSZnZ/CPzaWsqmkEZ/PxGIxQhugSBSKmzcXa2Ym3srK3lcwDGyZmcTNmxv0tg2bDXtGBvaMDJg+/YjHvS0t7F7yRbw1NYO+bxERERERERERERERERERERER6Vvq1VeRevVVvT429o9/OOpzc/7fA0MR0pCKrPIHGRE63F721PgH/E7JTsRdWgqAPScnlGENSCBmd0kJhmEwLTsJgKLy/s0aLCLB2VzSiIlJbkocaQlOXHv8BQOOcSOgw0B+PobNiq+1FU9VNRMzEoi1W2npdHfnRBEZXobVSupVX+vjQX8RT+b3v4dhHfyuQdaEBLL+64f+/RiHFQwN8b5FRERERERERERERERERERERCR6qGBAht2uqha8PpPR8U7SE5y4S8uAg7P1jyT2vDwAPDU1+FwupnYXDDSHMiyRiLWppAGA2fnJeFta8VRVAeAoCP+CAcNmwz5mDACu4j3YrBZm5qUAsGF/Q+gCE4lyhs2OY8IELImJPZbbMjPJffQRkhYvHrJ9Jy1eTO6jj2DLzOyx3JqRMeT7FhERERERERERERERERERERGR6GALdQASfbZV+AfTT8lKxDCMgx0G8kZewYAlMRFLQgK+lhY8ZWVMzfEP+NtZ1Yzb68NuVU2OyGAxTZNNBxoAmJWfgqvY313AlpGBNSE+hJH1n7OwENeeYjr37CH+lFM4MT+FtcW1bDzQwGXz8kMdnkjUMU2T9g0bsKWmkv3fP8bsdOGprsaWnk7cvLnDMrt/0uLFJC5aROvaT6j+2c8wPR6y7ruXuFmzhnzfIiIiIiIiIiIiIiIiIiIiIiIS+TSaWYZdUXkTAFO6ZuPvLhgYgR0GDMPojttVWkpOcgzJsXbcXh+7qlpCHJ1IZDlQ1059mwuHzcqUrCRcxXsAcBSGf3eBgEAnBFfxXsBf+ACwp7qVxnZ3iKISiV6uPXvwNjZixMYQO3068SfPJ/lLFxB/8vxhKRYIMKxWEhacQtL552NNSqJ9/YZh27eIiIiIiIiIiIiIiIiIiIiIiEQ2FQzIsPJ4fezsGkg/JSsRX2cnnpoaAOw5OaEMbcDsuf643WVlGIbB1K5CiEBhhIgMjo0lDQBMy07CYbPQucdfMOAsLAxhVMFxFPhjde3di+nzkRrvYExqHCYmm0saQxydSPRpW78egNiZJ2DY7SGOBuJOmgdA27pPMX2+EEcjIiIiIiIiIiIiIiIiIiIiIiKRQAUDMqz21rbi8nhJcNrIGxWLu6wMAEtSItbExBBHNzCBDgPuEn+nBBUMiAyNTQcaAJidnwwcnKU/MGv/SGDPycZwOjE7O3GXlQMwO38UABsP1IcyNJGoFJjJP27OiXh9Jmt21/KPjaWs2V2L12cOWxyBfb/pSqYRG96mZjp37hy2/YuIiIiIiIiIiIiIjDShvK4vEk10rImIiIhEBluoA5DosrW8GYApWUkYhoG71F8wMFK7CwA4AgUDXcUP07oKBrZXtuDx+rBZVZcjcrw63F62V/jzx6z8FDz19Xjr68EwcIwbF9rggmBYLDjGjaNz+3ZcxcU48nKZnZ/CPzeVsqmkEdM0MQwj1GGKRAV3ZRXu0lKwWFhtz+TeB1dS3tjR/Xh2cgzLl05jyYzsIY3jjS3l3Pfy1u59X96SzCl1u8j859ucdtfkId23iIiIiIiIiIiIiMhIdPi1dRi+6/oi0STSjjWvz2RtcR1VzR1kJMYwvyAVq0X350UGm441EZHwFPKCgT+s2ctv391DdUsnU7OTuO/C6czOT+lz/SdXF/PcR/sobWgnNd7BF2dk890lk4mxW4cvaBmw7RX+WfenZPu7CbjL/LPyBwbdj0SBDgOeqip8Lhd5o2JJcNpp6XSzp6aVSZkjs3OCSDj5vKwRj89HRmIMWUkxtG/YBviPP4vTGeLoguMoCBQM7IEzTmdSZgKxdivNHW52V7cyISMh1CGKRIX2DesBqEjL4+a/b+PwuVAqGju45U/refzqOUN2wfONLeXc8qf1Pfa9ZXQhc6p2sOWN92hecjFLZo7cokoRERERERERERERkcHW27V1GJ7r+iLRJNKOtUgrfhAJVzrWRETCV0inPn95Uxn//UoRd5wzkVe/cTrTshO59smPqWnp7HX9f2ws5cE3tnHHORN569tn8uClJ/DKZ2X8z7+2D3PkMhCmaXbPED4lyz8Lf6DDgG0EdxiwJCVhiY8H08RTXo5hGEzrKogoKm8KcXQikWHjgUbA313AMAz/YHv8g+9HGmdhIQCde/yvwWa1MDM3GYCNBxpCFZZI1Glb77/A+ceW5CMudALdy+57eeuQtFb1+kzue3nrEfvemZKPy2IjubOF3z63Sm1dRURERERERERERES69HVtHYb+ur5INIm0Yy1Q/HDoAGY4WPzwxpbyEEUmEll0rImIhLeQdhh4YnUxX52fz+Xz8gH4ycUzWbmtiuc/PcCtZ004Yv11++qZN3YUF832z+ienxrHhbNyNMByhCipb6el04PDZmXc6DgA3GX+goGR3GHAMAzseXl0bt+Ou7QUx9ixTM1OYu3eOraWN3W/X0VkYEzT7M7zs/P9A+sDg+0Dg+9HEkeBP2b3/v2YHg+GzcbsMSms3VvHhv31fGVuXogjFIl83pYWOrfvoKndzQepff+dNoHyxg6u/N1HpCc6MQywWgwshv/LavH/bBgGFgOshv/fVotxyHoH17F2/WyxGJTUtx9xoQTAbbWxLXUsJ9TsJqu4iLXFdSwYP3oIfxsiIiIiIiIiIiIiIiPD2uK6Xq+tBwSu6+vausjxiaRj7VjFDwb+4odzp2VhtRjDHJ1I5NCxJiIS/kJWMODy+NhS2sitZ43vXmaxGJw2IY31+xp6fc7csaN4aUMpGw80MDs/hf21bazaXsWX5/Q9uLLT48Xl8XX/3NLpGbTXIMEJzLY/OTMBm9WCz+XCU1UFgH0EFwwA2HNy6Ny+HVdpKfHA1Gx/B4XtFc14faZOdEYY5Y3wUtHUQXVzBzaLhek5yZimiat4LwCOgoLQBjcAtox0LPHx+FpbcZeU4Bg3jll5KQDsqW6lsd1Ncqw9tEFK0JQ3Rpb2jZvANGkbnUl9TNIx169rc2EZ5L5cNS2uPh/bPLqQE2p2M7N2D1VN7YO7YwkbyhsiEizlDREJlvKGiARLeUNEgqW8ISLBOt68UdXc9wDmgawnIr0Lp2PtePNGJBU/iISzcDrW9DlFRKR3ISsYqG9z4fWZpCU4eyxPT3Cyu7q11+dcNDuXulYXl/3mQ0wTPD6Tq04ew20Lj+xGEPDYqt08+vbO7p89TTWD8wIkaNsqmgGYkuUfmOcpLwfTxBIfjyXp2IP1wpk9NwcAd2kpAGNS44h32Gh1eSiuaWVCRkIow5MgKW+El01d3QWmZCUSY7firqrC19KCYbPiyM8PbXADYBgGjoICOrZsoXNPMY5x4xid4GRMahz769rYXNLI6RPTQh2mBEl5Y2RpX78OAPus2bDv2OvfvnACJ+Ql4zPBZ5p4fSY+08Tn6/rZNDFNE6/PP3OC2bXMZ4Kva11v93f/c7ZXNPOrql297m976lg8FiupHU1ktdYB6jwSiZQ3RCRYyhsiEqxIyRten8na4jqqmjvISIxhfkGqJueQIRPt77dIyRsiMnyUN0QkWMebNzISYwZ1PRHpXTgda8ebN8Kp+EEkkoXTsabPKSIivQtZwcBArNldy69X7ebHF81g9pgU9ta08aOXP+cXb+/km4sm9vqcWxeO58YzDs5AXVpaytTHhytiCTBNk20VXR0GshIBcJeVAf7uAoYxsm+6BDokBF6TxWIwJTuRdfvqKSpvUsHACKO8EV42HmgEYFZ+CkB3dwF7/hgM+8icid9RMI6OLVtwFe8BFgL+17e/ro2NB+pVMDACKW+MHKbLRfvmLQBMW3wGqX/eRV2ru9d1DSArOYals3IGfYDI+TNN/r6+hIrGjiPaMrqsdnam5DOraT8TK3YCJwzqviU8KG+ISLCUN0QkWJGQN97YUs59L2/tMTtZdnIMy5dOY8mM7BBGJpFI77fIyBsiMryUN0QkWMebN+YXpJKdHNPrtXU4eF1/fkHqcccqEs3mF6SSleSkoqmz18eH81g73rwRTsUPIpEsnI41fU4REemdJVQ7HhXnwGoxqGnpeXJZ3dJJ+mFdBwJ+vmI7X56Ty1fnj2FKVhJLZmRx15LJPPbOLny+3j4OgtNmJTHG3v2V4BxRNRIRo7q5k7pWFzaLhYmZ/sHzgdn47Tk5oQxtUDi6CgY8lVWYLhcAU7P9XROKyptCFpcMjPJG+Oj0eNnadQzN7i4Y2AP4B92PVM4C/weTzuLi7mUn5o8CYFNJI6bZ+980CV/KGyNHR1ERZmcn1lGjaMnIITclttf1AuUBy5dOG5LZJK0Wg+VLp/XY16E2pxVSMDqejnXrBn3fEh6UN0QkWMobIhKskZ433thSzi1/Wn9EK/OKxg5u+dN63thSHqLIJBLp/eY30vOGiAw/5Q0RCdbx5o1jXVuHobuuLxJNrBaD604r6PWxob6HdrjjzRuBQqO+IjXwF4ur0Ejk+ASOtb4M57GmzykiIr0LWcGAw2ZhRm4yH+462PLF5zP5cFctc8am9PqcdreXwyeit3Qt0NDK8FZU0QxAYXo8TpsV6NlhYKSzJCdjiY8H08RdUQEcLBjYVtHcZ0GLiBzd9opmXB4vqfEO8kb5B/V27vEXDDgLC0MZ2nFxdMXuLinF11VkNCkzgVi7leYON7urW0MZnkhEa1u3HoCYE0/k8Xf2EO+08YVJaWQl9SxYzUqO4fGr5wzpLJJLZmTz+NVzyDrswonDasE68wSS4p24S0txl0fHwBQRERERkQCvz+S+l7f2es03sOy+l7fi1TU3GQR6v4mIiIiMLH1dW0+JtQ/5dX2RaNLa6WFSZgJJMT0H2g7HPbTBpEIjkeFhtRj84IKpvT423IVGIiLSu6DLp779/EaumJfPyYWjj3vnN55ewH+8sImZeSnMzk/mydV7aXN5uGxuvn9f/7uRzOQY7l4yBYBFUzJ5cnUx03OSOTE/hb21rfx8xQ4WTc3UH5Mwt61rhvDJWYndyyKpw4BhGNhzcujcuRN3aSmOMWMYNzqeWLuVNpeHfXVtFKTFhzpMkRFn04EGAGblpWAYBqbPh2vvXgAcBb3PaDASWEeNwpqcjLexEfe+fTgnTsRmtTAzN5m1e+vYeKCBCRkJoQ5TJOKYpkn7hg0ArEvMZ2t5I06blQcvPYH0RCdri+uoau4gI9E/s8FwnF8umZHNudOyuvedGufgn5vKOFDfxtaEbE5oKaPt009JXrp0yGMREREREQkXa4vrjpjp/VAmUN7YwdriOhaMP/7r1BLd9H4TERERGXkOvbb+zvYq3t9ZQ2F6PIunZYU6NJGIUNvSyaf76kmNd/D7a+dR1tAx7PfQBlOg0Oi+l7f2+PznsFr4/vlTRkzxg0i4GxXvYFJmAvtr2+jw+LqXZyXHsHzpNB1rIiIhFnTBQHOHh6uf/JjclFgum5fPpXPyjqjc7q+ls3Koa3Xx8IodVDd3MjUniWevn096on+G19KGdoxDWgp84+wJGAb87M3tVDR2MDrewaKpmXznvMkD2r8Mn21dHQYCs+6bbjfuyioA7Hkjv8MA+DslBAoGwF85OSkrkU0HGigqb1LBgMgAbDzQCMCs/BQAPOXlmB2dGA7HiC42MgwDR2Eh7Rs20LmnGOfEiQDMHpPSVTBQz1fm5oU4SpHI4youxtvYSIfVznM1TjDg66eO6z6XDdXAD6vF6LHvsaPj+c//28zapDHkVe3FsfYTFQyIiIiISFSpau578PZA1hM5Gr3fREREREamwLX1OWNT2FXVQk1LJ5tKGjhxzKhQhyYy4r29rQqfaTIlK4mxo+MZO3rkj3c5fBKvD3bVsq+2tcegZhE5Pm9trSI13sENpxcwJjV+RBcaiYhEoqALBn5/7TxqWzp5aUMpf1tXwsMrdnDahDSuOCmfc6dlYrdagtreslPHsezUcb0+9r//vqBnsFYLd54ziTvPmRRs2BJCDW0uyhvbMTCYnOnvMOCuqACfD0tsLNaUlNAGOEjsuf7CB1dXwQDAtOyk7oKB82eqSlIkGNXNnZQ2tGExDGbmJgPQWbwXAMe4cRhWawijO36OgnG0b9iAq7i4e9msvBQAdle10tThJinGHqLoRCJT27p1+EyTT2KycRkWThqXylmT00Md1hHGjI7jyvlj+N/WFirWryB+dzFpVVXYMzJCHZqIiIiIyLDISOzfBDX9XU/kaPR+ExERERnZnDYrZ05O57XN5azYWqmCAZHj5PH6WLXNPwHo4umZIY5mcB06ideUrCSW/3MLH+6u5epTxpLgDHoInYgcorShna3ljRgYLJqaSVqCM9QhiYjIYYIb3d9ldIKTG88o5I07v8D/3XYa40bH8a3/3cjJ97/Nj17eSnFN62DHKSNYoLtAfmos8V0n2O7SMsA/yP7QLhIjWaBgwH1IwUCgo0JReROmaYYkLpGRatOBBgAmZiR05w7Xnj0AOAoLQhXWoHEW+F+Dq3hP97LRCU7GpMZhYrK5pDFUoYlErPb1G6hs6uTz1LGkxDq46QuFYXse8sUZWUwan01FWh6l9e20fPJpqEMSERERERk28wtSyU6Ooa+zdQPITvbPTiZyvALvt77o/SYiIiIS/s6Z6h/UvGF/A9XNnSGORmRk+3RfPfVtLpJj7cwfF7mfgyZlJjAmNQ6Xx8v7O6pDHY7IiPfW1koA5o4dpWIBEZEwNaCCgYCqpg7e31nD+7tqsFoMzpqczvbKJs79+bs88f6eY29AosK28ibAX50bEBhUb8/NCUlMQyHwWjyVVZhuNwCFafE4bFZaOj2U1LeHMjyREWdTSQMAs/JTupd1dg2uDwy2H8kcXa/BXV6Br62te3ng9W7sKpgQkcHhrqyibs8+atvclGYXcstZ48O6i4dhGNxy1gQqx02l3e1ly+vvhDokEREREZFhY7UYLF86jaNNv7F86TS1MpdBEXi/9cVE7zcRERGRcJeTEsv0nGRMTN4uqgx1OCIj2oquQb9nT8nAZj2uYWVhzTCM7mKjFUWVmgRU5Dh0ery811V4c860yOpMIiISSYI+s3N7fby+uZzrn/mE0x5cyWuby7n+tAI+/v4ifn75bJ678RR+9bU5/OLtnUMRr4xAgQ4Dgdn2AdxlBzsMRAprSgqWuDgwTdwVFQDYrBYmZyYAsLWrcEJEjs3j9bGl1D/DfmAAvenx4N63Hzg42H4ksyYlYUvztzt07d3bvXx21+vddKBBFyVEBlHtx59Q1tBOZXo+Z59Y0KMYKVylxjtYeNliAFq27aRo+4EQRyQiInL8vD6TNbtr+cfGUtbsrsXr0zmvDB2930a2JTOyuf+SGTgOG5wQa7fy+NVzWDIjO0SRSSQ6b3oWpxSmHvF+c1gt/NeXpur9JiIiIjICnNs1QHHltio8Xl+IoxEZmUrq2/i8rBEDg0VTI3/Q7xkT03HarJQ1tGtMj8hxWLO7llaXh/TEGGblJYc6HBER6YMt2CfM/8lb+Ey4cFYO/3fbaUzPOTLJLxg/mqTY8J2xVYZPm8vDvlr/zNlTshK7l3d3GMiJnA4DhmFgz8mhc9cu3KWlOPLzAX+hxObSRorKmzhvelaIoxQZGXZUttDu9pIUY6cwLR4Ad0kJpseDJS4OW2ZkXJxwFBTiqamls7iYmGn+mewmZyYSa7fS1OFmd3UrEzISQhylyMhnmibrX30HvCZtk6Zz08ljQh1Sv5184nhWjC/EvXsPr//5dcb+5/XEOYI+hRcREQkLb2wp576Xt1Le2NG9LDs5huVLp2kgpgw6vd8iQ2KMnRPHpJCe6OT0CWn86eP9xDusTMvWjUcZXLurWwE4uTCVG04voLHdzeqdNeyva9NnMBEREZERYt7YUYyKc1Df5mLt3jpOHZ8W6pBERpy3uroLzB07irQEZ4ijGXqxDiunT0jj7W2VvLW1qtcxcCJybIHOJOdMzcAw1KFRRCRcBd1h4IdfmsbH31/Ejy+e0eeJUnKsndV3n33cwcnIt72iGROTzKQYRsU7gK5Zwiv9M/BHUocBAHteHnCwIAIOdlbYWtak2cJF+mlTSQPg7y4Q+DDRWVwM+LsLRMoHDEehv1OCa09x9zKb1cLMXP/f100HGkIRlkjEWbW+GPbswjDgS187D6fNGuqQgnLiBQtx2Cyk7Pycpz/YG+pwREREBuSNLeXc8qf1PQZvA1Q0dnDLn9bzxpbyEEUmkUjvt8ixfn+9/zz+hBy+On8MZ09OxzDg3R1VoQ5NIszqndUAzB+XylmTM7hodi4Xzc7FMPzvQxEREREJfzarhYVTMoCDAxdFpP863F7e3eH/bBTo2BENzul6rZ/sraOxzR3iaERGnuKaVnZXt2CzWDhrckaowxERkaMIumBgze5aPL20725zebjrhU2DEpREjm0VzcDBQfMAnspK8PowYpxYU1NDFdqQCHRMOLRgYEJGAnarhaYON2WH3agWkd4FBsrPykvpXhYYVB8YZB8JnAVdBQPFe3osn5WfAsBGFQyIHLfyxnbe/b9VYELqhHGMmzQ21CEFLfmU+eSmxJJVvZ+1m/exZndtqEMSEREJitdnct/LW+mthD6w7L6Xt+Lt5XqTSLD0foscLZ0etnddW5wzNgWAMyenA/D+zho8Xl+oQpMI4/H6+KDrc9YZk9K7l8/KT8bAYH9dG9XNnaEKT0RERESCcPaUDAwMisqbKKlvC3U4IiPKB7tqaHd7yUyK4YS86JlpvyAtngkZCXh8PlZt1wQFIsEKdCaZX5BKcqw9xNGIiMjRBF0w8Pf1JXS4vUcs73D7eHFDaS/PkGi2rbwJgMlZid3LXF2D6e05OREzS3hAoGPCoQUDdquFiRn+119U1hSSuERGkvpWF3trWzEwmHnIhYjOrkH1gUH2kcAxbhwAnppavE0H88PsroKBXVUtNHdoFgORgfJ4ffxq5S6y928n3mll0qLTQh3SgNgzMkiZWEh6gpMxZTt5cvUeals0WEUk1Eyvl9aP19L4yqu0frwW03vk5+RI3LfIQKwtrjtipvdDmUB5Ywdri+uGLyiJWHq/RY5NBxrwmSb5o+LISIwB/BMLJMfaaepwq8heBs2mkgaaO9ykxDq6uz4CJMbYu69rb1CXAREREZERIS3Bydyxo4CDAxhF5NhM0+zuzHHutMyIG8tzLOdOywLgraJKfJpkQqTf2l1eVu+qAeCcqdHTmUREZKTqd8FAc4ebpg43JtDa6aG5w9391djmZtW2KkbHO4YwVBlpOj1edle3AjA162CHAXdZGXBwcH0ksed1FQxUVmG6Dw7ynZrdVTBQroIBkWP5rLQRgIL0+O7qY5/LhbvEX4jjiKCCAUtcHPZs/8UHV3Fx9/LRCU7yR8VhYvJZSWOowhMZ8V7cUEpxRQNjqveRmxJL3Jy5oQ5pwOJOmkd6goMT6opp6fTw+Du7MU1dsBQJlaY332TXonPYv2wZZd/5DvuXLWPXonNoevPNiN63yEBVNfev215/1xM5Gr3fIsf6ff4B2nO6BvsA2KwWTp/onwH+3R3VIYlLIs97O/w3tk+bMBqrpeegmBPHpACwTgUDIiIiIiPGudP8Axbf3VHd62SYInKkXVUt7K1txW61cOYhndeixSmFqSQ4bdS0dLKxpCHU4YiMGO/vrKbT4yU3Ja57bJyIiBy/XWcvovrXv+4eaz1Y+l0wcMJ9bzL7vjcxgIUPvcOs+97s/jrxx2/y3b9/xrULxg5qcDKy7a5qxePzMSrOQWaSs3u5+5AOA5HGmpKCJTYWfD7cFRXdy6dm+wsmtpY3aXCfyDFs6pohcHZeSvcy97594PNhTU7CmpoamsCGiKOgEIDOQwoGAGZ33ZDWjIkiA7O9opmX1peSXbWPvHgrMWmjcRSMC3VYAxY3bx6GYTC7o5J4n5stZY28trni2E8UkUHX9OablN5xJ56Knsegp7KS0jvuHNKB+6Hct8jxCMwMPljriRyN3m+Rwesz2dR1g37uIQUDAGd1DVxYv7+exnZ15ZPj09LpYV1XccoXehkUE3j/fV7apMFmIiIiIiPECXnJZCbF0O728uHumlCHIzIivNnVXWDB+NEkxthDHM3wc9qs3YUS6k4i0j+mafJWUaAzSUbUdSYRERlKqcuupXnFW+w6dzH7r7+exldfxedyHfd2+10w8JebTuG5G0/BBB67ai5/vumU7q8Xbj6VD+85m9vPnnjcAUnk2Fbhn01/clZij5OCQNWLIwI7DBiG0d05wV16sLpnYmYCNouF+jYXlU2doQpPJOz5fCafdQ0ImJWf0r08MJjeUVAYcR8yAh0TXMV7eyyf1VUwselAgwqNRILU7vLy61W7MDE501VOcqyduDknjuj8Yc/JwZ6TgwOTryc1A/CXtfvZX9sW4shEoovp9VJ5/wPQ29/mrmWV9z+A6R38wWSh3LfI8ZpfkEp2cgx9/SU2gOzkGOYXRFZxsISG3m+RYUdlMy2dHhKcdiakJ/R4LD81jsL0BLw+kw92afCPHJ+Pdtfi8fkYkxrH2NHxRzyemxJLRmIMHp+PLaXqAikiIiIyEhiGwaKp/i4DK7ZW6j6byDE0dbj5aE8tAIunZYU4mtAJ5I0N+xuobta4HpFj2VnVwv66Nhw2K2dMjL7OJCIiQyl12TIK/+8lxj3/vzgKx1P53z9h5xlfoOJHP6b9888HvN1+FwycUjiaBeNH8/53F3Le9ExOKRzd/TV37CgykzQrl/S0rcI/mG1KVlL3MtPrxVNeDoAtAjsMAIcUDJR2L3ParEzI8N/cLCpvCklcIiPB7uoWWjo9xDls3ccMgGtPV8FAYUGoQhsyzq7X5Nqzp8cFyylZicTYrTR1uNlT0xqq8ERGpKc/LKaquYP0BCezGvYDEHviiSGO6vjFnTQPgMlVu5gzZhQen49frdqJy+MLcWQi0aPt03VHzO7fg2niqaig7dN1/d6maZr4Ojrw1Nfjrqigs7iYjqIi2tZvoHXNGppXrqLptdeo+vnDg75vkeFitRgsXzqtz8dNYPnSaVgtI7e4T8JH4P12tOEger+Fv8CM7yeOScHSy/9VYNa/d7dXD2tcEnne3+l/D/V1Y9swDOZ0dYFcv79+uMISERERkeN01uR07FYLxTWt7K7WfTaRo3lnezVur4+CtHjGpx9ZSB0tclJimZ6TjInJ20XqMiByLCu6unGcOn408U5biKMREYlMsdOnk/WD/2Tie++SftutNPztb+y97HL2XHwJDX//e9DF0f3K1kXlTUzOTMRiMWju8HQPBO/N1OykPh+T6OH1meyo9L9PpmYndi/3VFdjerwYDge29MisLrTn+gshDi0YAP/vYVtFE1vLm1g4JSMUoYmEvY0HGgCYmZvcY/CGq3gPAM6CyCsYsI8dCxYL3sZGvPX12FL9s1zarBZm5ibzyd46Nu5vYPxhMyqKSO/W7K7lvR3VGBjcOt4GbzRhxMYQM3VqqEM7bnHz5tH4j3/SsXkz/7bser7bNWvD/36yn2sWjAt1eCJRwVPdv0GJzW+9hbu8DLOjE19HO2ZHB772Dv/3jg7MjnZ87R34OjswOzp77xpw+L5rawc1RpHhtmRGNo9fPYdvP7+JNtfBThgOq4UbzxjHkhnZIYxOIs1507NYNCWD93fW4PIeLK4cHe/gJ5fM0PttBAgMzJ4zZlSvj582IY0/rtnHvrpWimtaKUiL3gENMnCVTR1sr2zGwOD0CWl9rjdn7Cje+LyCDfv9XSBHcvc6EZFw5vWZrC2uo6q5g4xEf0coFXmKDL5oOdaSYuycUjia93dWs2JrZY+JykTkINM0eatr0O/iaVlR/3nn3GmZfF7WyKrtVXxlbh42a7/n4RWJKod2JjmnqztHpIqWcyeRUNOx1jvT7ab5rbdoePElWj/8kNhZs0i59FLclRVUPfwIrR+uIfdnD/V7e/0qGDj/F+/zyX+eQ1qCk/N/8T4G9DpLlwHseeCCfu9cItfe2lY63F7iHTbyR8V1L3eXlABgz8mJ2A8avXUYAH8xzUsbStmqDgMifdpU0gDA7PyU7mW+tjbc5f7ZdB0RWDBgcTiw5+Xi3n8A15493QUD4P89fLK3jk0lDVw6Ny+EUYqMDLUtnTy52l9gdPGJOWTt/ZgmIHbmCRh2e2iDGwT2MWOwpafjqa7GvqOIfz9zIv/zr228urmc2fmjmJmXHOoQRSJef4ue2z75hM7t24PbuGFgxDixxMRiiYnBiI3B4uz6HhOLu6oK1+7dgxajSCicNTmD2fkpNLS5uXJ+PnWtbj7cXcOOyhYa290kx478v9cSHtbsqaXV5eHkwlSunD+GN7ZUsKuqhSvn56tYYASoaOygrKEdq8VgVn7v57gJThvzxo3ioz21vLu9ioK0yLteIEPvvR3+QssT8pIZFe/oc72p2UnE2K3Ut7nYU9OqSR1ERIbAG1vKue/lrZQ3dnQvy06OYfnSaTp/ExlE0XasnTstk/d3VvPh7hquWTCWBM1+LHKETSWNVDV3EOewceqE0aEOJ+TmjR1FSqyDhnYXn+ytZ8F4/U5EevPejujoTBJt504ioaJj7Ujtn39O44sv0fTqq2CxkHzRRWR+7x6chYXd6ySecw57L7s8qO326xPR+99dyOiuC+bvf3dhUDuQ6LSt3N9dYFJWYo+24e6yMuDgoPpI1F0wUFmJ6fFg2PyH2aTMRKwWg9qWzu5KKBE5qLnDze4qf0vQWYcUDLj27gXAljYaa1JkdrFxFhTg3n+AzuJi4ubN614e+D3srGyhpdOjC5kiR2GaJo+/s5uWTg+F6QlcOiePqhd/A0DcnBNDHN3gMAyDuJNOoum112j79BPm3jafc6dlsWJrBY+9s4v/uWyW8oTIEIubNxdbVhaeioo+1zHi40k891wssbFYYmMwYrq+O53+ZTExGLGxWJxO//eunw27/ahF1abXS8vKlXgqK/vsSGDLyiJu3tzjfp0iQ2VbRTM+02R8RgLXLBiH12dS3tjO3tpW/rJ2PzefOT7UIUoEaHd5+eOafQBcPDuX82dmkxRj51erdrK1vO+uqRI+At0FpmYlEefo+/z2zEnpfLSnltW7arn6lLGa9U+CYpom7++sAeCMiUcvuLRbLZyQm8zavXWs31evggERkUH2xpZybvnT+iMmq6to7OCWP63n8avnRO0AAZHBFI3H2sSMBMakxrG/ro13t1dzwQmR9fpEBsOKrf5r3WdOSsdps4Y4mtCzWS2cPSWDFzeU8FZRpQoGRHpxaGeSc6ZmRuyEwdF47iQSCjrWerf3ssuJP/VUsu5dTuKiRb1OkurIyyPp/POD2m6/7qLkjYrrTu55o+KO+iUCsL3CP4v+lKzEHssDs+7bc3KGPabhYh01CiM2Bnw+3IcMJIqxWylM899MKtINapEjbC5pxMRkTGocqYfM6tZZXAyAo6Cwr6eOeIHX5ire22N5WoKTvFFxmJh8dqBh+AMTGUFe21zBlrJGHDYr3zh7AmZNjf+8w2Ih5oRZoQ5v0MSd5C8qat+0CdPl4upTxpCTHEt9m4vfv7cHs49BxCIyOAyrlbQ7vtnHgwYYBjkP3E/6bbcy+vrrGHXllaRccjFJS5aQuHAh8aecQuzs2cRMnoxj3DjsmZlYk5OxOBzHvKBqWK1kfv97B/fVi/RvfQvDqps6Er4+L2sEYHqOvxDYajG4/nT/rODvbK9iW4U68snxe3FDCfVtLjISY1g6y3/9aVrXe25vTSutnZ5Qhif9sG6fv2BgzthRR13vhLwURsU5aOl0s35/wzBEJpFkR2ULVc0dxNitzBt39PcawIld70e910YGr89kze5a/rGxlDW7a/H69FlZJFx5fSb3vby11872gWX3vbxVx7HIcYrWY80wDM6dlgXAW0WVun4ucpjq5k7W72sA/B05xO/sqRkYGHxe1khpQ3uowxEJO1tKm6ho6iDWbuW0CWmhDmdIROu5k8hw07HWtwkr3mTME78nacmSXosFACxxceQ8cH9Q2w162qW/rSth5bbK7p8feK2Imff+iy8/9gEl9W3Bbk4ikGmaFFX4B8RPze45G3g0dBgwDANHoMtAaVmPxwK/j6JyDYIQOdzGkgagZ3cBANeeroKBwoJhjmj4OLtem6u4+IiLlbO7fh8bVDAg0qd9XbMSAyxbMJbs5FjaN6wHIGbyZKwJkdMG0VFYiDU1FbOjk/Ytn+O0Wbnt7AlYLQYfF9d2z5ApIkPDdLno+OwzHBMmYMTG9njMlplJ7qOPkLR48ZDtP2nxYnIffQRbZs+bN0ZMDI4JE+jc+jmmRwNhJXxtLfN/Fp52yLWCSZmJnD0lA4CnVhdH5UU/GTwl9W28trkcgK+fNg6HzX/pMzXeQXZyLCamClPCXJvL0/1/NPcYBQNWi9E9M/y7O6qGPDaJLO/vrAZgfkEqMfZjF1zOyfe/H4trWqhvdQ1pbHJ83thSzukPruTK33/EHX/dyJW//4jTH1zJG1vKQx2aRCgVqByftcV1lDd29Pm4CZQ3drC2uG74ghKJQNF8rJ0+IY0Yu5XyxnY+L9PnQZFDvV1UiYnJjJxkclJij/2EKJGW4GTO2BTA/zsSkZ5WdB0XZ0xM79c1lZEoms+dRIaTjrW+7Vv2dTz19Ucs9zY1seuccwe83aALBh5btYuYrjZU6/bV8+yavXzvi1NJjXfw41e2DjgQiRylDe00d7hx2KwUph0coGf6fLjL/Bfl7bmR22EADnZQcJeU9Fg+NdvfcWGrLkaI9GCaJpu6BsTPykvp8ZireA8AzoLILRiw5+Vh2Kz4WlvxVFX3eCxQMLDpQINmPhHphcvj45crd+Hx+Zg7dlT3gMO29f6Cgdg5c0IZ3qAzDIO4uXMBaPv0UwDGpydw2dx8AJ7+oJiqpr4/UInIwJmmSe0zz+LavQdHfj6Fr73KmGefJeehhxjz7LNMePutIS0WCEhavJgJb7/VY98F//g/7DnZdBRto+4Pf9Q5g4SlNpeHPdWtwMEOAwFfnT+GBKeN/XVtvLGlorenixyTaZo8/cFevD6TuWNHMWdMz8HmgUIVXZMJb5sONOL1meSkxJKZFHPM9b8wyT+L2Yb9DTS0aRC39I/L42PN7loAvtBVdHIsyXF2xqf7u8duOHDkjRoJD4EW5offaAy0MFfRgAw2Fagcv6rm/l3H6u96ItK7aD7WYh3W7kLjN7dq4K9IgNvrY+U2f/G9ugsc6Zyp/t/Ju9ur6fR4QxyNSPiob3Xx6V7/wN1Izh3RfO4kMpx0rPXNXVoKPt8Ry02XC0/lwD/XBF0wUNbYztiuQeBvbq3g/BnZfO3kMXx3yRQ+2asL5QLbu7oLTEhPwGY9+BbzVNdgut0Ydju29P7diBmp7Hl5wMGOCgFTspIwMKhq7qC2pTMUoYmEpX21bTS2u3HarEzOSuxe7m1qwlPjv4HrGDcuRNENPcNmwz5mDHCwQCJgSlYiMXYrTR1uimtaQxGeSFj7y9r9lNS3kRxr59++MB7DMPC2tNC5fQcAsSfODm2AQyDupHkAtG/Y0D2T+IWzcpicmUi728uvV+3Cp9nsRAZd87/epHX1arBYSLvtNhzZ2cSfPJ/kL11A/MnzMazDN4uKYbX22Ldz7FjSb70VDIOWd96h+V//GrZYRPqrqLwZE5OspBhGJzh7PJYUY+drJ/vPh19Yd4A6zdwsA7BmTy2flzVit1pYtmDcEY8HClU0o2R4W7/ff335WN0FAvJGxTEhIwGfabJ6l7ptSf+s319Pq8vD6ATnEUVsRxN4X67bp/sg4UgtzGW4qUBlcGQkHrtAMJj1RKR30X6snds18PfTvXXqFiXSZW1xHU0dbkbFOfr9GTyazMpLIT0xhlaXhw+7Cs5FBFZuq8JnmkzJSiI/NS7U4QyZaD93EhkuTlv/7q9H07HWvHIlzStXAtC6enX3z80rV9K0YgU1jz2OPTd3wNsPumAg3mHr/hD1/o4aTp/on8XJabPQ4VZVpUBRuf/G65TsxB7L3aWlANhzsjEsQb/1RpTuDgNdrzkg1mGlIN1fcFNU3jzscYmEq41d3QVm5CZhP6TQyFVcDIA9OwtLXOR+2ABwFhYC0LmnZ8GAzWphRk4ycPD3JCJ+n5U08HrXzdebzxxPcqwdgPaNm8A0sefnYc/ICGWIQ8I5aRKWpER8ra10FG0DwGIxuG3hBGLtVrZXNvOPTaXH2IqIBKN98xbq//IXAEZdeSWxM6aHOKIjxc6ezagrvwpA/V/+SvvGjaENSOQwW8saAZjedW57uIWTM5iYkUiH28sf1+wbztAkArS7Dr5vLp6dS0YvM9NP7eowsK+2jZZOz7DGJ/3j85ls2N8AcESHiKM5a5L/nP/d7dXqsiP98v5Of3fH0yekYRhGv58XeF9uLm3SDJNhSC3MZTipQGXwzC9IJTs5hr6ysQFkJ8cwvyB1OMMSiTjzC1JJS3D0+XikH2tjRscxOTMRn2l2z6guEu1WdHXcWDQ1s8dEoOJnsRicM9V/veEtdScRAfyfgwJ/RwNdOCLVsT6nQGSfO4kMB6/PZM3uWhxHOQ+J9M8pvSm57XZKbrsdDIOye77X/XPJbbdT9u3/oPXDD8m4+7sD3n7QZ32nT0zjnhc/4+6/fUZxTSsLJ/tPkHZUtpA3KnbAgUjkKOrqMDA1q+fsTAcLBnKGPabhFqjicVdWdM/8GxC4QR0orBCRgwPhZ+Wl9Fje2VUw4CgoHOaIhl/gNbqK9x7x2Oz8FEAFAyKHaupw8/g7uwFYPC2LEw8ZUNS+fj0AcXPmhCS2oWZYLMTNmQtA2yefdC/PSIrhutMKAPjbuhJ2VbWEJD6RSOOurKTmscfANIk/43QSF58b6pD6lHjeeSSceSaYJtWPP46rpCTUIYl029r1GXhaHzM5G4bBDacXYGCwZk8Nm0sahzM8GeFe3FBCfZuLjMQYls7q/brTqHgHOSmxmJi6JhOmdla10NLpJsFpY1Jm4rGf0GXB+NHYrRYO1LexR5355Bga293d11fO6JoMqb/Gjo4jNd6By+Nlq7qVhB21MJfhpAKVwWO1GCxfOg2g18E4JrB86TSslv4XeInIkXZUNpPZS2E1HDz2Iv1YO3daFgBvb6tUQZdEvf21bWyraMJiGJw9JfIm3hosZ03OwGaxsLu6hWJdbxBh44F6als7SXDaI37w7rE+pwD815emRvS5k8hQe3F9Cdsrm5iYmQAceaxFy+eUw00t2srUoq3Ys7OZ+OEH3T9PLdrKlM2fMf6N10lcuHDA2w+6YOBHF81gzphR1La6ePzqOYyK91eiby5t5MI+bshJ9Khp6aS2pROLYXQfzAHusjKA42qJMVJYU1MxYmPA68NT2bPaeFpX54WtujktAkCby8POKn+hUWBgfIBrT1fBQGHBcIc17BwF/tfo2rsX0+fr8djsMSkA7Kxs0UyYIoBpmjzx3h7q21zkpsRx1SljDj7mctG+eTMAsSdGZsEAQNxJJwHQtn5dj5xxxsQ0Tikcjddn8utVu9QBTOQ4+drbqX74EXytrTgnjGf0178e1Cy0w80wDFKXXUvM1CmY7R1U//xhvE363CGh19LpYW9NGwDT+ygYABiXFs950/0zEz31QTFur6/PdUUCSurbeG2zv+vU108bh8PW9+XOQIeLz0tVkBKO1u2rB/yTCQRzAyDeaWP+OP9Nyne3Vw9JbBI51uyuweszKUxPIG9UcN0sDcPo7jKwvqsbhoSP/rYmj6YW5jJ0VKAyuJbMyObxq+eQldzz+HRYLZw7NYOzp0T27KUiQ21LaSMPvL6NxBgb507NICvJ2ePxrOQYHr96DktmZIcowuFxcmEqiTF26lpdrN9fH+pwREJqRZF/DMu8camkxvfdfSTaJcceHBStLgMisGKrv7vAWZPTj3oNNlL0+TnFZmFSZgIurwoQRQZqa1kTL673Tz7+vS9O5Te9HGvR8jmlLxPefgvbqP53Yu4vW7BPSI6186OLZhyx/NvnThqUgGRk21buH/RbkBZPjN3a47Fo6jBgGAb2nBxcu/fgKintUSQxOSsJA4PyxnbqW13dRTci0WpLaRNen0l2ciwZh8xuYpomruI9ADgLIr9gwJ6TjeF0YnZ24i4rx5F3MG+kJTjJTYmjtKGNz0oaOHV8cDPgiUSad3ZUs3ZvHTaLhdvPnoDTdvCco6OoCLOzE2tKCo6CcaELcojFTJ2CJT4eX1MznTt2EDNlCuA/B7nxjEJ2VDZT3tjOnz7ax41nRH6XFpGhYJomNb/5Le6yMqwpKaR94xsYdnuowzomw2Yj7RvfoOK+H+GprKT60V+Qec/dIyJ2iVxF5U2YmOSmxJESd/TPwJeflM9He+oob2znlc/KuOTEvGGKUkYi0zR5+oO9eH0mc8eO6h7I25dp2Ums2FqhSRzCVGDQztyxwV8EP3NyOh/sruHD3TVcfcrYqLhpKQPz/s4aAL4QZHeBgBPHjOKtokrW76/nenNcWBeTRpv5BalkJ8f0Oeu7gf9GY6TPgijDQwUqg2/JjGzOnZbF2uI6qpo76HD7eHVzOc2dHn62YjvfWTwZu1V/30WCtfFAAz97cztur4/Z+aP49rmTsFqM7mMtI9H/tzEaZuy0Wy2cNTmdlzeVsWJrJSeN0zmBRKd2l5f3d/qL7RdPU1HesZw7LZMPd9fw/q4arjplDHGOoIfZiUSEqqYONnV1bDxnavTkjsM/p2QkxtDS6ebJ1cX8de0BCtLiOSEvJdRhiowozR1ufrVqJyYmZ07K4PSu67SHH2vR8jnlUHV/+CMpV1yOxemk7g9/POq6qddeM6B9DOjKSmO7m/d2VPPShhL+vu7g14vrSwYUhESOQEv3Kdk9Zww0TTOqOgwAOLpeZ+B1ByQ4bYxJ9c9eVVShG9QigQ8Vs/KSeyz31tXhbWwCiwX72LEhiGx4GRYLjnHjALoLJQ4V6DKwsev3JRKtKps6eOaDvYB/QGFBWnyPx9vWrQcgds6JET1ww7DZiD3xRADaPvm0x2MJThu3njUBgLeKKrtnahWR4DS++CLtGzZg2Gyk33nHkFTwDxVrQgIZ37oTS2wsnTt3UvvU05imZjqR0AnM5j7tKN0FAuIcNq5Z4D//f3F9KVVNmpVV+vbRnjo+L2vEbrWwbMG4Y64feA/ur2ujqcM9xNFJMKqaOiipb8NiGJxwWPfB/piRk8zoeCctnR6d/0qfSurb2F3dgtVisGCAkzHMyE3CYbNS29LJgbr2QY5QjofVYvD986ccdZ1oa2EuQydQoHI0cQ4rc7qu6Ur/+PPzaC6ancsVJ+Vzz5IpOGxWNh1o4OEVO/CoA5lIUNbtq+ehf/mLBeaNTeU/Fk/CYbP0ONYWjB8dVX8bz52aiYHBZyUNVPRRZCgS6d7fWU2H20tOcuxRO4GK35SsRHJT4nB5vN0F6CLRaOW2KkxMTshLOWIW8Eh3+LnTOVMzWTg5AxOTX7y9U53lRIJgmia/eXc3da0ucpJjue60cd2PRfPnlIC6Z5/F19bW/e8+v/7whwHvI+iCgbe2VnLa/1vJsqfX8l//+Jz7Xj70a+uAA5HIsK3C32FgalZij+XemhpMlwvDZsWWkRGK0IZdoDAi0FnhUFOz/b+foq6ODCLRyjRNNpY0ADDrsAEBruJiAOx5uVgc0dGJIzAbeuC1H+rErt/PpgMNGvAnUcvrM/nVyl10erxMzU7iSzN7th4zTZP2jRsBiJszJwQRDq+4efMAaFu37oi8MCM3mQu6fj+/fXc3jW0aECcSjNaP19L4j38CkHr99TgLR16nDntODmm33w4WC60ffEDTK6+GOiSJYoHZ3Pt7E/LU8aOZnpOM2+vj2TV7hzAyGck63F7++NFeAC6andujY11fkmPt5I3qmsShTJM4hJNAd4EpWUkkOIOfrc9iMTijayaid3dUD2psEjlWdw3umJ2fQnLswLovOW1WZnT9PQu8byU8mKbJ7upWJmUm4Dysy0hSjC2qW5jL4OtPgUreqFhe2nDk/SHpv2k5SXz3PH9ngfX763n07Z0qGhDpp7XFdf5CG5+PkwtGc+c5E9WlA8hIiuGEfP8EZm8VVYY4GpHhZ5omK7b63/vnTsuM6Im3BothGJw7zT/GacXWSt2nl6jk8fpYua0KiK7uAn0xDIPrTitgfHoCLZ0eHl6xg06PN9RhiYwI//q8gnX76rFZLHxz0URi7NZQhxRWJrz9VvckhhPefqvvr7dWDHgfQX8q/MlrRVw2L4+t9y1h873n8dkhX5uWLx5wIDLyNba7KW3wV7hMPqxgIDDLvi0rG8MaHQe6PScH6L1gYFqO/0LEVt2clihX2tBObUsndqvliNlGO/f4Z9l3Foy8AXoDFRiMGHjth5qclYjTZqWx3c3e2rbhDk0kLLy0oZSdVc3EOWzctnAClsMqil3FxXgbGjBiY4iZOjVEUQ6f2BnTMWKceOvqcPWSN644aQxjUuNo6nDz2/d26yKmSD+59u2j9ve/ByDpi0tIOP20EEc0cLEzZ5B6zdUANLzwAm2ffnqMZ4gMvsZ2N/vr/Oev/ekwAIEL7uOwWgzW7atn3b66oQxRRqi/ry+hrtVFRmIMS2f1fwBooHDlc12TCSvr9zcAMGdsyoC3cebkdMBfaF/f6hqEqCSSmKbJ+7v8BQOnT0g/rm3NGeO/aaOCgfDywqclfLSnlozEGP5+y6n85aZT+I/Fk5iWncSJY0bxhUnH9/8ucrgYu41JmQnE2Hveas1OjuFb50wkNd7B/20s7e6wKwMzIzeZu7qKBj7ZW8cvV+7C69M1LpGjWbO7lkfe8hcLnDY+jW8umohNxQLdFk/zD3R8Z3s1Lo+KkCS6bKto5kB9Gw6bVefHQThjYjoOm5WS+rbuSVRFosnavXU0dbgZFedQF7UuDpuFb507iaQYO8U1rTzxfrHuxYscQ3FNK3/6aD8AV58yhnFp8SGOaGQxvV46iorwNjYe13aC/mRY0djBdacWEOuIjkHf0n/bu06M80bFkRjTc4amwKB5e27OsMcVKva8PAA8lRWYHk+Px6Z0dRgobWijsV0z/kr02nTA/0dsanYSTlvPvyuu4r0AOAoLhjuskHF0FUe49+8/Im/YrRZm5PoHtmw8oBvSEn12Vjbz4voSAG44vYC0BOcR67StWwdA7MwTMOwDmy1yJDEcDmJnzQKg7ZMjBwE7bBZuXzgRm8U/C9vbRVXDHaLIiONtaqL60UcxXS5iZswg5fLLQx3ScUtctIjEcxYBUPOb3+Lauze0AUnUCRTKj0mNIymm/3+f80bF8aUT/NcQnv5gr2bokR5K6tt4bXM5AMtOHXfE58mjmZbt/1wV6Hwhodfu8nbnirljRw14O9nJsUzOTMTk4MBwkYDPy5qobekkzmE7rvcZwIldN8d3Vrbo2m6YeG9HNS9u8F8zuPGMAmbkJrNg/GhuXziBqdlJdHq8rNqm7iMyeEzT5I0tFaTGO/jZZbP4y02n8OhXZ/OXm05h9d1nc8c5kzh3WhYAv161S4Vsx+mEvBS+fe4kbBYLHxfX8utVKhoQ6cvqnTX84u2d+EyTMyamc9vCCVgtmkH8UCfmj2J0gpOWTjcf7akNdTgiw+qtru4Cp08YTfwAuvtFq3injdPGjwYO/g5FoslbW/33mBdOyVAR4iHSEpx8c9FEDAze31nNm8oPIn3qcHv5xds78fh8zB07ivOmZ4U6pG51zz3HrrMXse2EWRRffgXtn33W57r1zz/P3quuZvv8k9k+/2T2XXfdUdc/HhX330/D3/4G+IsF9l19DcVfvpSdC8+m9eO1A95u0Fn8C5PS+Ky0YcA7lMi1vcJ/Y2/KYd0FAFzdBQO5wxpTKFlTUzFinJgeL57KnicFSTF28kbFAbBNN6glim0qaQBgVl5Kj+WmaeIqLgbAWRA9BQO2jHQs8fGYHi+uAweOeHx2vv+G9saumRdFokW7y8uvVu3CZ5qcPiGN0yak9b7e+g0AxJ44exijC624eScB0PbJJ73OWjBmdBxXzh8DwB8+2kdZQ/uwxicykpgeD9W//BWemlpsmZmk3XprxHRHG3XVVcTMmIHpclH1yKN46lV8KMMnMCg7MEg7GJecmMvoBCc1LZ28tP7I7n0SnUzT5JkP9uL1mcwZMyrogb9TuzoMlNRrEodw8VlJAx6fj+zkWLKTY49rW4EuA+9sr9KsXtLD6q4ikgWFo3HYju/m9ugEJ+NGx2NiaubwMLCtoonfvefvunfx7FzOmpzR/ZhhGJw/038D8vUt5RpgLINmc2kjpQ1txNqtnD0lkwXjR3PR7FwWjB/dPTD3mlPGMjY1nqYON79cuQuf3n/H5cQxo/jWuf6JMT7cXcPj7+h3KnK4d3dU8+tVuzAxWTg5g1vOHH9El14Bi8Vg0RT/+cJbRRrYJ9Gjsc3Nx8X+Lp6Bwkbpv3O7upN8XFyn60kSVUob2tla3oiBwdlTMo79hAhker20fryWxldepfXjtZjeg5MbzchN5qpTuu7Fr9nbPdmyiPT09Ad7KW9sJzXewc1njscwwuNzStNrr1H1/x4k7bbbKHjx78RMnsz+G2/CU9t7YXHb2k9IuuB8xj77DOP++hfsWdnsv+FG3JWD/7mi+V9v4pw8BYCWVatwl5ZS+NqrpC67lupHHhnwdoO+Mn72lAweeG0bD6/Yweuby1mxtbLHl0Svoq4/elN7GQTQ3WEgJ3o6DBiG0f16AwUThwr8nopUMCBRqtPj7X7/z8pP7vGYp7ISX1sbhs3W3a0jGhiGgaOrQCLQYeFQs/NTANhR2UJLp+eIx0Ui1bNr9lLZ1MHoBCfXndZ7EZG7ssp/vmGxEDtr9vAGGEKxs/zdFDzV1bj37+91nfNnZjEjJxmXx8svV+7C41WbZZHe1D/3HJ3bt2PExpBx5x1YEyKnDaJhtZJ+263Ys7Px1tVR/eij+Fya4VKGx+dl/q5i03OTj7HmkWLsVr5+6jgAXvmsXIVvAsBHe+rYUtaI3Wrpfn8EIynGzphU/yQOgVntJbTWdxXFD0ZL8wWFaThsVsoa2tld3XLc25PI0Onxds8ee8ak3gvQgzWnq1hp3T4VYoZSZVMHD/1rBx6fj5MLRnPFSflHrHP6xDQSY+zUtHTyyd66EEQpkei1zRUAnDU5o8+O7A6bhTvPnYjTZmVreSN/7+qcKQM3d2wq31w0EYthsHpXDb99b48KBEW6vF1UyW/e2Y2JyTlTM/m3LxSqWOAozp6SgdVisKOymX21raEOR2RYrNpehcfnY0JGAgVpkXPte7gUpidQmJ6Ax+fj3R3qXibRI9BVY87YFNISnCGOZvg1vfkmuxadw/5lyyj7znfYv2wZuxadQ9Obb3avc8HMbBYUpuH1mTy8Yoc6zIkcZvXOGt7dUYWBwe0LJ5LYRzfyoxXnDJXaZ54l5bLLSLn0yzgnTCDrvnuxxMTQ8PcXe10/96H/IfVrXyNm6lSchYVk//ePweejdc2aQY/NW1+PLd1/Lbvl3fdIXHIezoICUi69lM4dOwa83aALBu55cTNlje38YuVObv3zev7tj592f/37Hz8dcCAysrW7vBRX+z9MTz6sw4BpmrjLygBwRFGHATjYUSHw+g81rbtgQNWFEp22ljXh9voYneAkN6XnDIKB7gL2sWMwbNHVDtFRMA4AV/GeIx5LT3SSmxKHicnmksZhjkwkNNYW1/HO9sCHhwl9tkht37AegJjJkyNqkO+xWGJiiDlhJgBtn/Z+Lm4YBrecNZ4Ep43imhbdoBbpRfPKVTS/vRIMg7R/vzkiO6NZ4uNJ//a3sMTH49pTTO3vf6+BFTLk6ltdlDW0Y2D0OrlAf8wbO4rZ+aPw+Hw8tbr4uN63objYKIP7e+9we/njR3sBuHBWDhlJMQPaTuCazFZN4hByPp/Jhv3+AdcnjgmuW0RvYh1WTi5IBeCd7bqBL36f7q2nw+0lIzGGyZlHdscdiDld79fPShpUlB0iLZ0eHnx9Gy2dbsanJ3Drwt5nJ3ParJw71T8b6Ouby4c7TIlAZQ3tbDxQj4HBkhlHn503OzmWm84oBODF9aVsKdU13eM1vyCVb5ztLxp4d0cVv39fRQMib35e4T8WMFkyPYsbTi8Imxk7w1VKnIOTxvk/N2hSTIkGPp/Jiq6OGovVXWDAAl0G3tpaqfMPiQqdHi/vdRXIRGNnkqY336T0jjvxVFT0WO6prKT0jju7iwYMw+Dfzywkf1QcDe0uHn5rh64ViXSpaOzgidX+8W9fnpPLtJze7xX2pzhnsJkuFx2ff078qQu6lxkWC/ELFtC+cWO/tuFr78D0eLAmBz9p2rFY00bTuWs3ptfL/2fvvePjqO71//ds31XvXbJky7LlKrk3bGzjmE4C6dxAclOAFMgNv5tACvANJbk3BZKbkAAhQEhCGoFQYtzAuDe5SXJR771vb/P7YyXZslbSSlppV9J5v156SdqZnTkazZ6ZOefzPI/xwAFC1q71tNtiAaV38wpfGLVgoOKpG4f8Kn/qxjE3RDC1KWnuQUYmLkw3SFHoam9HttpAqUCVkBCgFgaGvoQBR623hAHP5FR1u1k4hU8QbpMJl9HY/yVcVIOLvsj2pamRgwYubeWemwVtZtZkNyvgaLM8f3PfMbiapb1pDKdF5P2EIPqN4KLDZOe5D8sAuGVp8rCFhuYCj2BAn58/KW0LJgzLlwNgPj60eDcmVMsXeyeo3zhVz4VGURznL0S/MfWxXrxI+x9eASDyjtsx5OcFuEUThzohgbhvfB2UCsxHj9H1xpuBbtKMZCb1G33F2LNiDYQOIfobCUmS+MK6WaiVCgrruzhc7j0GdCQCMdgo8P9x/0dBLe0mO/FhOm5ZOvYUy77Ei74EjGBnOvcbZS1Guq0ODBoV8xL9U8i9cW4cAIfK2rA5hTBIAB+WeCa312fH+q14bnZcCOE6NRaHiwtBGDc/nfsNAKfLzc93XaK+y0JMqJYHt+WgVQ09UXZdbgIqhYKLTT2UNov0EcH42FHoKRbJz4gkwQfx4vrsWK7NiUdG5v/2ltJldkx0E8fEVOo31syO4WvXzkFCYu+FZn43TmGxQDCVefdcAy8e9Jhw3bg4mbvWzpo0scBU6je8sbVXULi/pBWLXTw3CKY3p2o6aDPaCNWqWJ0VE7B2TPV+Y01WDAaNiuYeK2eEuZ9gBnC4rA2T3UlcmI4lqf4vhvWFQPUbsstF05NPgbfnjN7Xmp58qt8cR6dW8q1tORg0Ki419fDK4apJaadAEMw4XW6e2VOC1eFiXmI4H8tP9bqer+IcX/G133B2dILLhTJm4L2RMjYGZ2urT/tq/ulPUMXH9xfz+5PIj36Mum9+k/KbbwGJ/n1Yzp5Fm5k55u2OWjBwJVaHeHASeLjQ65LvbWKvz11fnZA485zCUz0dnbeEgUiDhuQIPTIyF0XR3oTQdNPNXFq+ov+r7bfPBbpJgivoe4hekhY5aJm9ohIATdbMEwxoei/qjrp6rzctS9M8DnZnajrFJMgEIPqN4EGWZZ7dV4bR5iQzNoSPL/P+8ADgMhqxXfREbunzlk5SC4MHw9KlSColjvp6r/ccfazOiuGauXHIyPzq/TIxCeInRL8xtXG2ttLyy1+Cy41h1UrCb7op0E2acHTz5xNz990AdP3zn5iOHA1sg2YgM6nfKK73POvmjjFdoI/4cB23LfUkf/zhcNWor2H+HmwU+Ia/j3tth5l3e52h71qbMWxh6EjMTwpHQqK+0zIlIqKnc79R0JsusCQ1EpVyXEPV/SxIDicmVIvZ7uRkZYdftimYunSY7Jyt8YxBXZMd57ftSpJEfoZnjKbvPA4mpnO/Icsyvz9YSVF9Fzq1kv/+SA5RIZph3xMVomHNbM/kn0gZEIwHk83Jvl6HzesXJvn8vrvXzSK1123yVx+UBuW47lTrN9bOifUkiyCx+3wTLx2qDMrjKhBMJP86U88rhysBuG1pCneuSp/UZIGp1m9czYLkcJIj9dicLvaXiHQywfRmZ2+SxqaceDQq/zx7j4Wp3m/o1EquyY4FPCkDAsF0py+FZ+v8+IClFwWq3zCfODloXHsAsoyzsRHziZP9LyVG6Pja5jkA7Cxu7H92FAhmKn8+Vk1Fq5FQrYqvbZ6DUjG4HxmtOMcXJqvfaH3uebrf/Tep//dLFFrtyG8YJXFf/xpJP/whkZ/4OLP+9CcUmt7xT4WSmC9/aczbHXX1tsst86v3S/nj0SpajXbe/9Ym0mMM/HTnRVKj9HxyRfqYGyOYupzvLXj3Khio87jrq1NSJrVNwUBfwoCzsQHZ6RwkmJifFE59l4Xi+m6WZUQHoonTmoS33yLlivNO0gw/cSSYPJq6rTR0WVAqJBamDCwekl0u7JWVAGgzZ01+4wKMMioKZUQErq4uHFVVaLOzByyflxSGVqWk02Knss1MZmxIgFo6PRH9RvCwo7CRs7WdaFRKvrY5e9jiIcvpMyDLqNNSUcfHT2IrgwNFSAi63FwsZ89hPnGCiFtuGXLdz6/N5HxDDy09Vn5/qIL7Ns2ZxJZOT0S/MXVx2+20PPMM7u4eNBkZxHzpSzMmrj1040bsdXX07HiPtuefRxUf159yJJh4ZlK/0efenps8fvehm5cks7+khcZuK38/WcN/rJnl0/tGHGyUJJqefIqwLVuQxhHhKRiIv4+7LMu8dLASl1smPz1q3GMooVoVs2INVLSaKG7oZt2c2HFtb6KZzv3GySpPoXV+RqTftilJEhvnxvF6QS0fXGphbZD/fwUTy8GyVmRk5iaEkRgxshP4aMhPj+KDi82crOrgP1ZnBNW95HTuN94518CeC01ISHxjSzYZMb6Njd2wKIn9JS0cqWjjM8Z0YkL9P5EnmP68f7EZm9NFWpSBBcm+i2K1KiUPbM3m4X8Wcra2kzdP13NbXnDNmU3FfmNDdhwut8xv95XzXlEjSoUUdP2xQDBR/PNULX85XgPA7fmp3LEsddLP/anYb1yJJElcNz+Blw9Xsqu4ietyE0T/IZiWNHVb+0XU1+UmBLQtU73fANiam8COokZOVnXQarQRK54rBNOUilYTZS1GVAoFm3ICN/8eqH7D2eJbsf/V6+WnR3HHsjT+frKGF/aXkx5tEDU9ghnJqeoO3uk17bhn4+whr5ejEeeErFrp07597TdUUZGgVOJqG5hs7mptQxU7/JxC2+9epO3550l/8UV0OTk+tWsshG//yKDXIj9627i2OWrp6P/tLeXvJ2t56Pr5qJWXH5jmJoTxWu9DqWBm4XC5+2N853txDewXDCSPPSp+qqKMjUXSapGdLpzNzYOW5/YOKBc3BF9s9XRAERKCMjS0/0sxBR84pytnajoByI4Pw6AZKKRx1Ncj2+1Ieh2qGdhvSJLUn6xgK68YtFytVPSLLPqOo8B/iH4jOKhpN/OnY9UA3LkqnZRI/bDrWwoKADDk509424IV/fLlAJiPnxh+PY2Sr/a6r314qYWDpa0cLmvjzdN1HC5rw+UWTmyjRfQbgcPllsd8/sqyTNvzz2OvqkYRHkbcA/fPuP9d1Kc+hX7JEmSHg5afP42zvd2n943nuAs8zJR+o81oo7HbioTE/KTB5gKjRaNS8Pl1njSufxc2Ut1m9ul9vg429uzeM+42Ci4zFgem4ThS3k5hfRdqpYK7187ySxv7ki/6kjCCmenab7QabVS3m5GQWOolfXA8bJzrcZI/V9tFm9Hm120Lphb7L3niozf4MV2gj0UpEagUCpq6rdR3Wf2+/fEwXfuNE5Xt/PGIZ7zgc2syyE+P8vm9mbEhzE8Kx+WWea9IuIEKRo/LLbOj0HN/c/2ixFEXlaZGGfj8ulkA/OV4DecbguseZKr2G5ty4vnSNZ7nhHfPNfCnY9UiaUAwrZFlmb+eqOkXC3xyRRofX54WkEL3qdpvXMk1c+PQqJTUdJi52CTm6wXTk93nm5CRWZIaSUK4f0XUo2U69BupUQbmJ4UjI7P3wuAaIIFgutCXorEyM5oIvTpg7QhUv6GK820cydt6t+enkJ8ehcPl5qc7L9Jtdfi7eQJBUNNhsvPrD8oA2L4gkeWzhjaAGqs4Zzh87TckjQbdggWYDh/pf012uzEdOYJ+6dIht9/2wgu0Pvss6c8/h37RQp/bNRZMhw/T/LOfU/+971H/8HcHfI2VUQsGXj9Vy1MfW8RteSkor3jwnJ8UTllv0bhgZlHeYsLhchOuU5PkxaXJUVcPzMyEAUmS+oUSfcKJK+kTWFS2mjDbnZPaNoEgkJyp7QQgLz1y0DJ7hadIXjtr1ox18tD0JivYK8q9Ll+SGgnAaSEYEEwj+gpQXy+o5ftvFGJ3uslLjxrR7US227GcOweAPm/mCgYM+fkgSdirqnB4ESleybzEcG7LS6bdZOcLLx3n088f4f7XTvPp54+w/sd72VHYMEmtFgjGzo7CBtb/eO+Yz9/ut9/GfPQYKBXEff3rqGJiJrjFwYekUBB7372oU1NxdXXR8vOncduGL6gc73EXzCyKeouws+JCBomEx8qStEhWZcbglmVeOFDuUyGQr4OILb/4BXXfepC237+E+fhxXEbTeJs7o7F7GQPxhi//H6vDxR+OVAJwy5Jk4v00uX3ZxCG4ivVmEgW96QI5iWGE6fw78ZgQrmNeomcCf39J65i3I7tcmI4eo+vtdzAdPTaq6GPB2PHXca9qM1HVbkKlULBmtv/v9/QaZX9f0nc+CyaOilYTv9hbiozMdbmJbF+YOOpt3LgoCYC9F5qwOsTnWTA6+lxkQ7XqMacTbZobx4bsOGRkfrm3RBSO+InN8xL4Qq+4+K0z9fzleI0QDQimJbIs89rxGl4vqAXgM6sy+GheaoBbNbUJ0apY23ufuEsICgXTELvTzfsXPGMv2xYENl1gOtE3d/n+hWacLneAWyMQ+B+L3cWBUs942tb5M7PvMCxfhioxEYaqWZIkVImJGJYv87JI4qvXziExXEer0cYv95QI8y3BjMHtlvm/90vpsTrIiA7hM6syhl1/POIcfxBz9110/u1vdP7zDWxlZTQ++hhui4XIj30UgPpvf5vmn/6sf/3W55+n5ZlfkPTEE6hTUnC2tOBsacFt8v+cYsv//Yrq//wipiNHcHV04uruGvA1VkY9Y9vYZSUjxjDodVmWcYrObUZyodEzsTovMWxQca8sy5cTBlJmnlM4eIQS9ooK7HV1GFasGLAsOkRDQriOpm4rFxt7yBuFI5JAMFVxuNwU1nn6jb7C9yuxlXuK5DWZmZPZrKBC2/u394knrmZpeiQchEtNPZhsTkK0/inAEggCxY7CBh57q5iGKxwZtSoFn1g+coyy9fx5ZJsNZWRkv9hmJqIMD0c3bx7W8+exnDiB+oYbhl0/VKviUtNgsW9jl5V7Xy3g2Tvz2b4waaKaKxCMix2FDdz7agFXP336ev6aC07R+fd/ABD9H5+b0JjAYEeh1xP/zQdoeOwx7FVVtP7mN8R94xv9fa/T5abFaKOxy8qOwgZ+++Hge5MG0W8IhqCvCLuvkNJffG5NBqdrOrnU1MMHl1q4doQ4ZF8HESWtFmdLC8b338f4/vsgSWgyZ6FbsAD9ggVos7OR1IFzUgpmZKcTR20ttvJybGVl2MvKsV686NN7ffn/vF5QR7vJTnyYjluW+m9saV5iOBISDV0W2k12okOmnqvdVKeguhOA/IyJGQ/blBPHhcZu9l1q4dalyaM2JejeuZOmJ58akJahSkwk4eGHCN+2zd/NFfTiz+P+Ya9YJD8jitAJGjvJT4/kbG0nBdUd3LxkZo5/TwbtJjv/s+MCdqeLxamR3L12bEYj+elR/ePxH15qYduC0YsOBDOXd895hNJb58ejVSnHtA1JkvjP9ZmUNRup77Lw7Adl/PdHcmascY4/2bYgEbcs89KhSt44XYdSIfHx5WmBbpZA4DdkWebVI1W809sX3bVmFtcvEuMw/uC63AQ+uNjM0Yp2PmdxBNRFWSDwN0fK2zDaHMSEaslLE7Uo/mLlrGjCdWo6zHYKqjtZmTm0c7JAMBXZX9KCzekiJdLgl/TgqYikVJLw8EPU3f+ARzTgRZCc8PBDSErvz4YhWhXf2pbDd98o5FxdF385XsNnVqVPcKsFgsDzrzP1FNV3oVEpuX9rNhrV8H72feIcZ1OT188ZkoQqIcGrOMcfhN9wA872Dlp++QtcLa1o588n/fnnUMV6jCIc9Q0gXf4bOv/8GrLDQd399w/YTuxXv0rc17/m17Z1/OU1kp96kohbb/Xrdkc9Sp6dEMrxynZSowaKBt4918gCP08CC6YG5xs88Xx9bvlX4ursxG2xgCShTpyZg+99QglvCQPgOW5N3VaKG7qFYEAwI7jY2IPN6SJSr/EqQLOXewrRNJlZk920oEGT5fnbHQ2NuM1mFIaBxyk+TEdypJ76Tgtna7smxCVPIJgshir8tTndPPi3s4RoVcMX/p4sAECfnzfjJ1cNK5ZjPX8e84kThA8jGHC5ZR5/57zXZTIgAY+9Vcx1uYkoFTP7mAqCD5db5rG3igf1GeDb+euoq6P1t78BWSZsy2bCNl87rrYcq2inucdKfJiOlZnRk/aZ8eu+o2Pg81+h5yf/S9uHRzhm0nBu6SYauqy0Gm24ZRlZhlO9RZ3ekIHvvH6O5bOiiQ3Vjq0dgmlHX8LAguQIv243JlTLHctS+ePRKv50tJoVs6KHLQL1dbAx45WXsZWUYC0swlpUhKO+Hnt5BfbyCrrfetsTTTovB92CBegWLkSdOrKwMZiQXS7MJ07ibGlBFReHYfmyISczht2OLONsacFeXoGt3CMOsFdWIjsGuuMqQ0ORdDpkq9X7hnwc5K3rtPDOOU9y5V1rM8ZcnOeNEK2KWbEhVLQaKa7vZn322JyCBWPD6nBRVO9xwcn3kj7oD1ZnxfD7g5U0dFkoaTYyN8H3Cc7unTs9E4JX9RvOpibP6888LUQDE4A/j7vLLXOwVzBwzQR+vvPTo3jpUCUXG3sw2pwTJkyYyVgdLv73vQt0mO2kRBp4YGv2mO99FQqJ6xcm8tKhSv5d2Mh1uQlT6nouCBwVrSYuNHajVEjjFpro1Eoe2DqX775xjlPVHbx9tkEIjvzE9oVJuNzwhyOV/KOgFqVC4mP5wn1dMPWRe8Uw7xV5BJVfWJcpRG9+ZHZcKFlxoZS3GPngYjO3Lk0JdJMEAr+xq9iTnLF1fjwKMd/jN1RKBZvnxfPG6Tp2FTcKwYBgWiHLMrvPe/qO63LjZ/Qzc/i2bfDM04OMLRRhYSQ98fiIY1Rp0Qbu3TibZ/Zc4l9n6pgdF8KqLFHbI5i+XGrq4a8nagD4wrpZJEfqR3zPAHHOoIWe/mc4cY4/iL7zs0Tf+VmvyzL+8MqA3+fs3TNh7RiE3YE+L8/vmx316PU3Nmfzrb+dobHLhluGHUUNlLeYeL2gjt/dvdzvDRQEN263zMW+hAEvggFHnWdSV5UQP2Od+DQpnkEFR3291+W5SeF8cLGZ873uiwLBdOdMbScAi9MiBqeSOBw4aj03DzPaKTwsDFVsLM7WVuyVlehycwetk5cWSX2nhTO1nUIwIJiyDFf428dwhb+yLGM5fRoAQ37+xDRyCqFftgxe+QO20jKcHR2oorwLEY9VtA9Ic7gaGY9j+LGKdtG/CIIOX8/fJ989T156JOE6NZEGNRF6NWFuO+afP41ssaLNySHqs94f/H3BWzJKUoSOR27OnXCX/bHs2+Fy09xjo7HLQmOXjcZuK03dVhq7rLT02JCRycrcwPpj76LYu5Meo4rmWQsB0KiUKAD7CNHKnWYHn/vdMdbNiWHdnFhWZcag10zc4I0guGnusdLSY0WpkJiX6H8HousXJrLvUgu1HWZeO1bNFzcMLTbuH2z8xv1eFl4ebFSGhmLIy8PQO/jm7OjoFw9Yi4pwdXVhOXsOy9lzACjCw9D3igd0Cxagih55YtBfRfujZTxu3S6jCXtFBbay0n6RgLu7Z9B6Cr0ezezZaGdnocnMQjs7C9PRo5cHeUfpwOR5i8xLBytwuWXy0qNYluH/ydcFyeFUtBopqu8SgoFJprCuC4fLTXyYjhQfJg7Ggk6tZFVWNB9eauGDi80+CwZkl4umJ5/yLjKSZZAkmp58irAtWyblMzxT8PdxL6zrotNiJ1SrZmlapP8b3Et8uI6USAN1nWbO1nSydo7oS/yJLMv86v1SKlpNhOvUfHt7DgbN+EQZG+fG85fjNTR0WThV00m+MPER+MC/Cz2O3qszY/ySSpQeY+CuNbN44UA5rx2vZl5iGNmjELYJhubGxUm4ZJk/Ha3irydqUCokUfwrmNLIsszvDlSw+3wTEhJfuiaTzfMSAt2sacd1uQn8dp+R3eebuXlxsiisFkwLKlpNlDT3oFIoRkzoFIyezfPjefN0PefqumjospAUMTFjGwLBZFPSbKS63YxGpWR9tm/pvdOZ8G3bCNuyBfOJk5hPnqRn507UKcmEbd7s0/vXzI6hrCWZt8/W8+y+MlKi9INMugWC6YDR5uSZPSW4ZZl1s2PZONf3/iN82zacj/yA5iefQrbb+19XJSTM6LTfyI/fQdfbbxN3331+3e6oR1a3LUjkdwYNv9hTgkGj5Ge7LrEwOYIX7lrOBnGhmHFUt5uxOFzo1Uoyogdf0Bz1Hld9dcrMHYxTJXucYZwNDcgu16AJrb5khvIWE1aHC51aTDQKpjdnajoBWJoaOWiZvaYG2elCERqKKm5mX1M0mZk4W1uxVVR4FQwsSYvknXMNnKnpRJblGa3sFkxdxlu4bq+owNXZiaTXoZs/fwJbOjVQRUWhnTMHW2mpJ2Xguuu8rtfcM/QxH8t6AsFE4nLLVLebudjYzcVGI+9fbPbpffsutfS7FgNIbjdb9/+d5KZKbGERHEvbhH7HJSL06gFf4Vf97i0mcahklMYuK/e+WsCzd+ZPmGhguH3f82oBT9y2gHlJ4TR22WjostDUbaWhy0qb0Y48jDxLq1Liyl+FSWsj4/R+PlG2D+1Ny0lcsoBIg5p/nanng0stI7bP7nJzrq6Lc3Vd/O5ABcszolmfHcOS1EhUyuEjJwXTi750gdlxoRPyjKtSKvjP9Zk89lYRe843syknnjnxoUOuH75tG47vfZeW//lfnwcbVVFRhG5YT+iG9ciyjKO2tl88YD1/AXd3D6bDRzAdPgKAOimpXzygmz8PhX7gJOF4ivbHw2jcumWHA3tNDbYyT3KArbwMZ2PToG1KKiXqtHSPOCDLIxJQJSYOeiYZ0oEpKoqkxx4d8e8+Ut7Oubou1EoFd6+dNaa/fyQWJIfz9tn6/nNWMHmcrOoAPOkCE/k8u2luPB9eauFwWRt3rZ3lU0qF+cTJAefsIGQZZ2Mj5hMnCVm10o+tndmYjp/w63H/sPfeZe3smAm/D1mWEUVdp5mTVR1CMOBn/nSsmuOV7aiVCh78SA7x4bpxb1OvUbJ5fgLvnK3n3bMNQjAgGJEus4NDpW0AXL/If47eW+bHU1TfzeHyVp7ZU8KPbl8sUkr8xC1LknG7ZV47Xs2fj1WjVEjctFikOAimHm63zHP7y/ngYjMSEvdsmj2qwhuB76ydHcOrh6to6bFypraTPHF/IJgG7O5NF1iZGU2kYfyCR8FA4sN0LEmL5HRNB7vPN/MfqzMC3SSBwC/0JZOsnR0jnk96kZRKQlatxLB8GdbiItzdPViLitAvWeLT+z+9Mp2KVhNF9V38dOclnvjownGbIQgEwYQsyzz3YTltRhsJ4Tq+uCFr1GP+kqRAv2QJqsREQjdunFTTrWDFbbPT9de/YT50GG1ODpJqYL+R8NB3xrTdMfU+KzOjefWLq8a0w6t55XAlv91XTovRxvykcB67ZcGwjj9dFgc/ee8iO4oa6TI7SInS84Obcrl2nlDEBoILvekCcxPDvCrt+xIGNDNZMBAXh6TRINvtOJubUScNLB6KC9MSG6ql1WjjUlMPi70UUQsE04U2o43qdjMSEotSIwYtt1dUAKDNypzxBfCarEzMx49jL6/wunx+UjgalZIOs52qNjOzYkMmuYUCwfgZb+G6+eRJAPSLFs/YJKOrMaxYjq20FMswgoH4MN8KLHxdTyDwJ2a7k5ImIxeberjY2ENpsxGb09W/3O4c3uW+jw3ZsUQbNHRbHXRZHKTv/zfJTZU4lSreW30bHVYJrhAUDIVerSTSoCFcp+oXFPxyb6nX0vu+1773RiGJEXokwC17yvRlWcYte+p1XW4ZGRlZ7l0+xHe37Nmqyw0yMk6XzKP/Khp234+95UlW8HYbpVMrSQzXkRihIzFcR0Lv98RwHZEGNZIkId++iNZfujGfOIniT78jLPsRpJA4n/uD/7puLlaHiwMlrdR3WThc3srh8lZCtWrWzI5hQ3Ys2fGhM/4+byZQ3Ft8neslidBfzE8KZ0N2HPtLWvjdgXKeuG3RsA6ASr3BM9iYnEzohg2jGmyUJAlNWhqatDTCt29HdjqxlZZiLSzEUlSEvbwCR0MDjoYGenbtAoUC7ezZHvHAwgXYysqo/69v+VS0709GdOsGGh55FEdjI/aKChxVVchX9Ll9qOLjPeKA2bPRZmWhSU9H0vg20XylA1PX229jPXeOsC2bR/x7rQ4Xrx6pAuDmJckk+KFA1BvzEsNRSBLNPVZajTZiQ7UTsh/BQGRZ5lR1J8CEJEdcyfykMOLDdDT3eITIvhjeOFtGFsmNZj3ByDiam2l/4QWf1vXluFvsLo73ilKumYSiuvyMSP51po4ztZ243LLXhDzB6Nl7oYm3znjmF+7ZONvnlBBf2L4gkXfPNlBY30V1m5n0GOHuJxia3eebcLrdzIkPZU68/85DSZL48jVZlLcaaeq28tt9ZfzXdXPF85KfuC0vBadb5u8na3j1SBVKSeL6RRObCCgQ+BOXW+Y3+8rYX9KCQpL46rVzWCeEiROGVqVkY04c755rYFdxkxAMCKY8JpuT/aWtgCdBQzAxXJebwOmaDvZdbOYTy1N9MikQCIKZbquDI+UesfTW+aLvuBqPcGA1Pbt2YTp82GfBgFIh8Y0t2Tz8z3M0dFn49ftlfGubePYTTB/2nG/mWEUbKoWCb2zJHnUCvex2Yzp4ECSJqE9+AsPy5RPU0qmF7eJFdPPmeX4uKRm4cBz9R0DlSm+dqefxt8/z+EcXkpcWyYsHK/jc746y98FNXifo7E43//G7o8SEaHj2s/kkhOuo67QQrhMFYoHifIMnhn5+ovciAEedSBiQJAl1cjL2ykocdXWDBAPgKXTYX9JCcX23EAwIpjVnaz2FebPjQwjz0nfbyssB0GRmTWq7ghFtZiYA9opyr8vVSgULk8MpqO7gdE2nEAwIpiTjLVy3FJwCQJ+31F9NmvLoly2j48+vYb1wEVd3N8rwwfdoKzOjSYrQ0dhlHdJvPClCx8rMiS3eEghkWabFaONSY59AoJuadssgJ3yDRkV2Qig5CWHMiQ/ly6+coKnb5vX8lYDECB3fuzG3v1DLeOAgbR3nkZPDMXzpKyzJXUqXxUG31UGn2SMouPKru/e70+3G4nBh6bLQ0Kst6LY46bI4hv27Wo12Hn79HOF6/z5ud1ucdI6wb7vLTYhWxeLUCJIidCT0CgSSwvWE61UjDj5KkkTMV76Cs+UJ7FVVNP/8aRK//70R+42+4/6RBYkoFRIfzUuhotXEgdJWDpa20mVxsKu4kV3FjcSH6Vg/J5Z12bGkRIqY5umILMv9goEFyYNFwv7kzlUZnKzqoKLVxK7zTXxkwdCOr+ZTBSBJRNx0E6Eb1o9rv5JKhW7ePHTz5hF5xx24jCZsF85jLSrCUliEs6kJW0kJtpISuv75Tyxnzw5btN/4w8fRL17sGeCTZXC7QZaR+352uz0/X7nMLQOe32W3G67+XQZLUdHwbt2Au6ODrtf/2X/PoAgNvZwckJWJZvZslKFDpzf4dLx6HZhUcbE0PvoYlrPncNvtKIYRHbxeUEebyUZcmI5bl06cG6xeoyQzNoSyFiPF9d2TUlgsgLIWE50WO3q1kvlJ/iu89IYkSWycG8ffTtaw72KLT4IBXxMPZ3oyoj+QZRnj+x/Q8ec/42xt9ek9vhz3oxVt2J0ukiP0zI6b+PGS7PgwQrUqjDYnl5p6+hNlBWOnsDexCuCOZWl+L5CMC9OyKiuaI+VtvFvYwD0bZ/t1+4Lpg8PlZmex537qhglIktNrlNy/JZsfvFnE8cp23itqnLDEupnI7fkpuN0yr5+q5eXDlSgVEtuGeWYQCIIFp8vNrz8o41BZK0qFxNeuzfaawCvwL1vnJ/DuuQZOVXfS0mMjLkwIygVTl/0lLdidLlKjDMxLnNjn7plMXlokMaFa2ow2jpa3i3ElwZTnw0stOFxuMmNDJmU8ZSoSsnYNPbt2YT5ZgNtmQ6H17X4hQq/mv66by6P/KuJEVTv/PFXHx/JTJ7i1AsHEU9Nu5uXDlQB8amUas+NGP59kLSzE1dmJIjQU/dKl/m3gFCbjlZcnZLs+VTAsfvQ9n1VNZx7x3RHthQMVfGplGp9YngbAE7ctYu+FZv56oob7Ns0ZtP5fT9TQaXbwj3vXou6NEU6LFs4vgUKW5f6EgRwvDxmyLF8WDCTP7KhPdUpKv2AALyqo3GSPYOB8Q3cAWicQTB6nazoBWDKEMKbPTV/TWyw/k+k7Bs7WtiGLfpemRfYLBm7Lm7nCLMHUZWVmNDEhGtpMdq/L+wpQvRWuO5qaPddVhQL9kqUT29AphDo+Hk1GBvaqKswnTxJ27bWD1lEqJB65OZd7Xy1AAq/Fv4/cnCtcMQU+4XLLHKtop7nHSnyY5/M61LnjdLmpajdzqbGnP0Ggwzz48x8fpiMnMYy5CWHkJISRFq0f8Dz66C0LvJ6/fWtcef7aystpf/FFACJvuZnIDWt9+rtkWcZsdw0SE3xwsZliH+7Zw3QqZsWEIEmgkKT+74rev8PzMygUEhKeYkaFxBXr9/7O5fXON3T7tO9blyZz69Kx3xcotFrivvkAjY8+hqO2ltZfP0vcNx8Yst/wdtwlSSIrLpSsuFA+uyqDovou9pe09p8rr5+q5fVTtWTFhbJ+TixrZ8f4FIs9mvNNEDiaum20mWyoFArmJo6v0HwkIgxqPrUijRcPVvCX4zWszowhwjBYmOxsbcVRXQOShH6pb64/o0EZGoJh+fJ+1xNnSwuWoiKshUWYDh5EttmGfb+rpYWae+71es8/HpxtbT6tp5s3j4hbb0GTNRtVfNyEORtpMjNRRkfjam/HWliEIT/P63p1nRbePdcAwN1rMybcnW1BcgRlLUaKhGBg0iio9ji/L06NRNU7xjuRbJgby99O1lBU3+1T4Y9h+TJUiYk4m5q8i30ASaPBfPIE+kULURjE+PRYcLa30/bC77AWFgKe4+5sa8PV2jrkcVclJmJYvmzEbe8v8YgPNsyNnRS3NqVCYmlaJAdKWymo7hCCgXFS12nh57su4XLLrJsdy+35EzPmdcOiJI6Ut3GwtJVPr0wnQi+MqQSDOVzWRpfFQXSIZsKMFbLiQrlzdTovHark1SPVZCeEjWmCXTAYSZL4+PJUnG6Zf52p48WDFSgVEluEW6ogiHG63Pxib2m/Q+f9W7NZMUsYu0wGyZF6FiRHUFTfxZ7zTXxqZXqgmyQQjAlZltlZ3ATAttwE4WA9gSgUElvnx/OX4zXsPt8kxpUEUxpZltnd23dsnS/6jqHQZGWhio/H2dyMpaCAkDVrfH7v7LhQvrA+k9/uK+NvJ2rJjA0RqUaCKY3N6eLp3SU4XG6WpEVy4xhT/YwHDgAQsmYNkiqg/vdBib2qCnt1DYYVy1HodMiyPK4+2qcj/IObF/T/3Gm288u9pVwzN4789EgACqo7+fBSC1/fPLjIfyjsTjeFdV3ct+myc4tCIbFuTiwFVZ1e37P7fBP56ZH84M1CdhU3ER2i4dalKdyzcfaQRQI2pwu7093/u9Hm9LmNguFp7LbSZXGgUii8Dl66u7txm0wgSai8uOrPJPoSFhz19V6X5/ZOIpW1mLA5XSKqLMCIfmNicLllztV57HmXpkUOWu62Wvs/I5rMWZPYsuBEodejTkrE0dCIvaLCa5zZ0vRIOAiXmnow2ZyEaMWNU6AQ/cbYcLjczIo1eBUMeCtAvRLLqQIAdDk5KEOFw8GVGFau8AgGTpzwKhgA2L4wiWfvzOext4pp6LL2v65RKpgVaxDuSZPAdOg3dhQ2DDqHkiJ0PHJzLtsXJmHqdVi91NTDxUYjpS1G7E7XgG0oFRKzYkKY1ysQmJsQRlTI8IXjQ52/iVfsG8DZ0UHL088gO53o8/KIuP12n/82SZII0aoI0apIvsIFP1yn5s/HakZ8/wNb5/rd+e1wWRtvn20YcT1f01uGQxUdTdwD99P0xJNYzpyh47XX2P6Zz/h03K9GqZBYnBrJ4tRI/nO9i5NVHRwobeVMTSflLUbKW4z84XAVi1IjWD8nlpWZ0ejUg5+HRjrfZgJTpd8oqvfc88+JD52UZ9ut8xN4/2ILFa1GXj1axVevHTw2ZS7w3Ddo585FGTbxrmqquDjCNm0ibNMm1BkZWE6dGvlNsoyk1yFJil71kAIkkBTKPjWRZwBQUlxeduW6CumK3z0KJEVYGPayshF3HfHRjxKyaqUf/vLhkSQJw7Jl9OzahaXgpFfBgCzLvHSwAqfbTV56FPmTMGGyIDmcf52p6z93pxPB2m+c6hUM5GdMzoRYfJiuv/Dnw0st3L5sePcuSakk4eGHqPvG/UOuo87IwHzkKPbSMmLvvQdtdra/mz1tkWUZ08FDdPzhD7gtFiS1msiPf5ywj2zDsHIldfc/cDlx5SoSHn4ISTn8taXVaOtPulk/Z/KKNfLTozyCgapOPrsqY9L2628C3W90Wx38z44LmOxO5iaE8ZWNsyesSGFub4JZabORXcVN3DFC3yCYeciyzL8LPc9g23ITJ1Tk9pEFiRTXd3Ossp1ndpfwo9sXYdBMjbHeQPcbIyFJEp9emYbL7eadcw08v78chULi2pz4QDdNIBiEw+Xm6d2XOFnVgUqh4L+2zZ2UZ6LJJpj7jetyEyiq72LvhWbuWJY6KQJngcDfFNV3U99pQatS+pSyNxUI5n7j2px4/n6ylktNPVS1mciIEXOWgqlJYV03jd1W9Gql31P+AsFE9RuSJBGyZg1db76J6dChUQkGwNNnlDUb2X2+if/bW8qTH1tEQvj45/UEgkDwyqEq6jrNROo13LdpzpjG8NwmE5YTJwHGnQ4+3XB2dFD3zf/CfPQoSBKz39uBJi2Nhu9+D2V4OAnf+faYtuvTaNOVA6X3/OEk/3XdXO5aO6v/tc+vg5cPVXKgtJUvbsjyaccdZjsut0xs6MBipLhQLWUtJq/vqW43c6jDwm1Lk/n93SupbDPx/TcLcbjcPLB1rtf3/Pr9Mp7ZU9L/u7Pbt2hjwchcaOgBPEUAGtXgh+W+dAFVXNywMfMzAXWKJ2HBXlvrdXl8mJboEA3tJjslTUYWpkRMZvMEVyH6jYmhtNmI2e4kVKvyKjKyV1WBLKOMikIVNf0GQMeCJjMLR0MjtiEEA/FhOpIj9dR3WjhX18XqLBFJGyhEvzE2/nmqDrVSwfKMKGo7zDR2X3bfHakAta/wT5+fPyltnUoYli+n829/x1pcjMtoGlJQsX1hEtflJg5w6y5tNvLOuXpePFBJblIEeo0QMU4UU73f2FHYwL2vFgxKqGjosnLPqwWsnR2DLIN81RohGhXZCWH9AoHZ8SFjKij2dv5e6TYv2+20/OIXuDo7UScnE3vPV/xSaLQyM5qkCB2NXVav6RzDJaNMtX1rs7KI+fKXaf3Vr+jZ8R7q5GS2b9o07HEfCV3vQPO6ObF0WRwcLvM4upY093C2tpOztZ28cEDJiowo1mfHsiglApVSMeT51thl5d5XC3j2zvwZIRqYKv1GX5FmbvLkuCsrFBL/uT6T779RyP6SFq7NiR+0b8up0wAY8pZOSpuuRB3vWyFSwsMP+71oX3a5KN2ydWiXdElClZDgk1u3vzAsy/dENhecItrlGlT4e7SinXN1XaiVCu5eO2tSnKxyEsNQKiRajbb+vm26EIz9RrvJTkWrCQnJq5nARLFxbhxF9V3su9TCx/JTRjy3wrdtw3j77XS/9Ray/bLAWZWYSMLDD6HNzKT1N7/F2dJC4+NPEHHrrUTcesuIxewzHVdXF22//z2WAo+QSpOVSeyXv9yfThu+bRs88zRNTz6Fs7Gx/32SRkPotdd6lo/AgZJWZGRykyImVQi9JC0ShSRR12mmudtK/BSd7A1kv+FwufnZzks0dVuJC9PxrW05Xucd/MkNC5P4xd4SdhY1csuS5Anfn2BqcbGph4pWE2qlgs3zJ7a4XJIkvrxxNuWtJpp7rDz3YTn3b8meEq6ewXi/cTWSJHHn6gxcbpkdRY08t68cpSQJF2BBUGF3uvnZrkucrulArVTw4LYclkzi/fJkEsz9xvKMKKIMGjrMdo5VtrN29tQvmBTMPHb1OoRvyI6dNnM8wdxvRBo0rJgVzZHyNnYVN/lcMycQBBu7zvf1HXFeTZ2mGhPZb4Ss9QgGLOcKcXV3jzo5+K61s6hqM1PS3MNPd17k/926cFocc8HM4nBZG3suNCEh8bXNc8ac3Gk6egzZ6USdloo6Y+qasEwEzT/6EZJKxZz391J+w439r4dffz1NP/4RCUygYOBKPixp4TvXzxv0+sa5cfx4x4UxNcJXZBliQzQ89bHFKBUSi1IjaOq28tsPy4cUDNx37Wy+uCGz//e6ujrmPzuhzZwxnG/0FAHMS/TuztfnFN7nrj+T6TsGzoZGZC8T4pIkMT8xnINlrRQ3dAvBQIAR/cbEcKamE4DFqZEovBSV2SsqAM9kscCDJisT06FD2MsrhlwnLy2S+k4Lp2s6hWAggIh+Y/TUdVp4p9cp+6Eb5rE0LcrnAlSX0Yjt4iUA9AEo/At21ElJqFNScNTVYTl9mtD164ZcV6mQBrig52dEcrzS83/4y/Fq7l4n+uSJYir3Gy63zGNvFXstWu/jRGUHeemRJEXomJsYRk5vekBqlN5vBQ9Xn799yLJM28svYy8rR2EwEPfNB1Do9V62MLZ9PnJzLve+WoAEA47BSMkoU3HfIatW4miop+v1f9L+8suoExLQzZ/vl/SECL2a7QsT2b4wkcYuKwdKWzlY2kpDl4WDZa0cLGslXKdmVVYMz35Q6vV8k/H87Y+9Vcx1uYkTctyDianQb8iyTFGvYGDBJAkGwGNksGV+PLvPN/G7AxX8+PZF/S6AbpMJ64XzQGCEhobly1AlJgakaL/fJd2bW3dvX+yLW7c/0ebkoAgNxW00Yrt4EV1ubv8yq8PFHw5XAXDzkuRJc1bSqZXMjgvlUlMPRfXdxOdMzSJfbwRjv1FQ5UkXyE4IHfMkwlhYmRnN7w8qae6xcqGxh/lJw/dRbpsNZ2sL+iVLCLvxRpShoaji4jAsX9b/mUl6/Ie0v/IHTAcP0vXGG1gLC4m55ys+C4VmGqZjx2h/6WXcRiOSSknERz9K+A03DOqDwrdtI2zLFswnTuJsaQGg8y9/wdXdhauzE2Vk5JD7kGWZ/SWeCeANcye3uCtEq2JeYjjFDV0UVHdMWTFjoPoNWZZ57sNyLjR2o1cr+fb2nEnpI1ZmRhMToqXNZONgWatwHBcM4N/nPMKlDdmxhOsm/nwM1ap4YGs2j/yriCPlbSxIjuC63IQJ3+94Ccb7DW9IksRda2fhkmFXcSPPflCGUiFNC/dUwdTH5nTx052XOFvbiUal5L8/kjOt54qDud9QKRVcOy+e1wtq2VXcJAQDgilHh8nO8cp2wJOQNF0I5n4DPAmoR8rbOFDaymdXZUwboYZg5tBhsnOit+/YOj/4n0F8YSL7DXVSEppZs7BXVmI+doywrVtH936lgm9eN5fv/OMs1e1mnv+wnK9tHps7u0AQCJp7rDy/vxyAW5cmj+vZxXRgPwChGzaIz8BVGA8eIv2F51EnDryn08zKwFHfMObtjtouJcqg6VekXsmu4iaiDL67yEcZNP3uXVfSYrQRF+rd+ScuTEtmXMiAIoDZ8aG09NgGxMhciValJEyn7v8K1U6NCM+pQF/CwLwhJtj6Egb6HKJmMqq4OCSNBtnp7J/oupo+B8TzDd2T2TSBF0S/MTGcru0EGNIRxVbuuZnQZgnVfR/aTM8DjL2iAtlbcRGXj+eZms4h1xFMPKLfGB2yLPPigQqcbjf56VEsy4juL/y9dWkKa2bHDFv0aTl9BmTZozIWxTheMSxfDoD5xPFRvU+rUvYPnrxX1ERps9HvbRN4mMr9xrGKdhq6rMOuY3e5+eKGLJ7+VB73bZrDlvkJpEUbJuVBv2fnLkz7D4AkEfvVr6JO8O/g5vaFSTx7Zz6JEQMLShMjdBPudB+IfUfceiuG1avA5ablF7/E0TR4PGC8JEbouGNZKj/7xBIev20R2xckEq5T02118I+TtbQa7UO+V8aTbHGsot3v7Qo2pkK/Ud9lpdNiR61UkB3v3VxgovjUynTCdGrqOs28W3jZldpy7hy43B5BXeLkT5T2Fe17frmqD5yEov3wbdtIeeZpVFf1haqEBFKeedont25/IimVGPLzADCfLBiw7J+n6mgz2YgL03Hr0skdS8rtHdvqS8iYLgRjv1FQ7REM5KdPbrKgTq3sF9nvu+R9bO5KTIcPI1usqBISiPrkJ4i46UZCVq0c8FlV6PXEfuXLxN57D5Jeh620lIbvfx/jwYMT9ndMRVxGE63PPkvr//0Kt9GIOj2NxEcfJeLmm4fs+ySlkpBVK4m46UYibroRbXY2uNwYDwx/bMtbTdR1mlErFazOnHxThfyMSAAKqjsnfd/+IlD9xpun69lf0oJCkvjmdXNJjTJMyn5VSgUfWei5P/j3uQYxtibop6XH1v+MsX3B5AmA5sSH8emV6QC8criSqjbviezBRDDebwyFJEl8Yd0stsxLQEbm//aWcrisLdDNEsxwrA4XP/73Rc7WdqJVKXno+nnTWiwAwd9vbJ4Xj4TE+YZuajvMgW6OQDAq9l5oxi3L5CSEkR4zOffUk0Gw9xsLksNJjtBjdbg4UBo86QcCga9Mx75jovuNkLVrADAdOjym90eHaPjmdXNRKiQOlrWy44o5DYEgmHG63PxyTylmu5O5CWHcsSx1zNty1NdjKy0DhYKQNWv82MrpgWw2o9ANNrhydXahUI/d2GLUgoEHtmbzox0X+M+XjvPLPSX8ck8J//nScX684wIPbM32eTsalYKFKREcuuJmye2WOVTa1j+wfjXLM6KobDXjdl8etK1oMREfphVRsZNMu8lOc48VCYmcBJEwMBKSJKFO8gwq9wkprqZPeFHabBxSACMQTFW6LA7KWzxFp4uHGOjsc9HXzBJu1n2oMzJAocDV1YWro8PrOvOTwtGolHSY7VS3i4FLwdTgcFkbRfVdqJUK7l47a9TvtxR4issMAXAJnioYVngEA9Zzhbitwxd2X83i1Eg2ZMchI/Pch2U4XeK+RDCQ5h7fzimz3TnBLRmMpbCIjj//GYCoT38K/aKFE7Kf7QuTOPDtzfz5S6t55lNL+fOXVnPg25snxUl2svctSRIxX/wimqxM3CYTLT/7GW7TxBStSJLEnPhQ7l6Xya8/m8+3t89jVqxvg9O+npeCiaWorguAuQlhkz5OE6pV8dlVnuIqj9DEY1Bh7r1vCES6QB+BLtoP37aNOXt2k/7yyyT/5Cekv/wyc/bsnnSxQB/6ZZ40BfPJk/2FmfVXpE/dvTYDrWpyndj6TByKG7pFsegEYnO6ONfbT0y2YABgY04c4HkesTpcQ64nyzLGPXsBCNt87YiCx5A1a0h+/HG02dnIFittv32O1mefxW0Wz+iW06dpeOghTIePgEJBxK23kPToo2jS00e1ndBNGwEw7ts37Gd0f68YZOWs6IA4Ovad18X13VjsQ59jgoEcLmvjtePVANy9dhaLUyMndf+b58WjUSmpbjf3JyUJBDuLG5GRWZAcMekFMzcuSiIvPQqHy83Tu0tEf+JnJEniixsy2ZQTj4zML/eWcKyiHZdb5nBZG2+eruNwWRsut7gnFEwcfefb307UcP9rpymq70KvVvLdG+ePmIQlmHhiQ7Usy/Dc1+32YqQpEAQrTpeb3ec95+y2BdMnXWAqIEkSW3uToXYVN4qxJcGUwuWW2XuhGYDrplEyyURjWLUKJAlbaSmO5uYxbWN+Ujj/sToDgD8cqZp2ZjaC6cnfTtZS0tyDQaPia5vn9Kd9jwXjgQMA6JcsQRkxvUXTY0G/fBmdb755+QVJQna7afvd7zx90BgZ9X/s48vT+Ps9awjVqdhR1MiOokZCdSr+ds8aPr48bVTb+uL6TP58vIa/n6yltLmH775RiNnu5OPLPNv5r7+c5sc7LvSvf+fqDLosDh57q4jyFiN7LzTx6w9K+dyajNH+GYJxcqHXBX9WrGHIyRd7X8JAikgYgMvCiaEEA8kROiL0ahwuN2Utws1XML04V+spCJgVE0JUyOA0GpfRhLP3JlqTKQQDfSg0GtSpnr7D3pvAcDVqpYKFvcUtp2s6J6tpAsGYsdhd/OFIFQC3LU0hPnywInY4ZLvd4xQM6POEYGAo1GlpqOLjkR0OLGfOjvr9d67OIFSrprrdzDvnxh5nJpiexIf59rn1db2xIrtcmI4eo+vtdzAdPYa9vp7WX/0K3G5C1q0j7CMfmdD9jyYZZarvW6HREHf//Sijo3HUN1D/ve/T+a+3MB09huyamOIVlVJBXnoU/7F6lk/rT/T5JvCN4t6xgtwAFThsnBtHTkIYNqeLVw5XITudWHuvg32u9oEi0EX7V7p1X+2SPtnoFyxA0mlxtbf3p6m9dKgSp9vN0rSogBSS5ySGoVIoaDPaaO6xjfwGwZgorOvG4XITE6olLVo/6fvPSQgjMVyHzeni6DDJNPaKCuxVVUgqFSHXXOPTtlVxcSQ8/BARH/soKBSYDh+h4Xvfw3rpkr+aP6VwWyy0vfACzT/7Oa6uLtRJSST+4PtE3n47kmr0jm6GlSuR9DqcTU3YLl70uo7T5eZgr0v0+uzYcbV/rCRH6kmK0ON0u/vFMYLhKW3u4dcflAJww6KkgBQ2hWpVbJrrERS9K55/BXjcvvee94xV37AoAAlVksR9m2YTE6KlocvC7w6Ui6IzPyNJEl/ekMWG7DjcsswP3ixk5RO7+fTzR7j/tdN8+vkjrP/xXnYUij5B4H92FDaw/sd7+fTzR/j//n6W94oaOV3Tyca5ccwdwqRPMPlc11v4u+9Sy7BiY4EgmCio7qTDbCdcp2ZlZnSgmzPjuGZuHGqlgup2MyUivVswhThd00GbyUaoVvQdo0EVFYUuNxcA85EjY97ORxYksn5OLG5Z5undl2gzirFpQfByrraLf532GIh/+Zqscc3Nym43pt402dAN6/3SvulG/IMP0vnXv1H9pS8jOxw0/+9PKL/5FswnThD/4LfGvN0xSTzy0qN45lN5vPONDbzzjQ0886k88sYwmXfzkmS+e8N8fr7rEjc8c4Dihm5e/sJK4sK0ANR1WmjuvtwRJkfqefkLKzlT28X2Z/bz6L+K+fy6TO7dNGcsf4ZgHJxv7AFgXqL3IgBXdzfubs866mQhGICRBQOSJPW7RgjVoGC6caa2E4AlaZFel9srPOkCqvh4lKEhk9SqqYE2MwsAW+8x8sbS3uN6agpH3gtmDn8/WUOH2U5iuI6bl4z+HsF6/jyyzYYyMhJN5iz/N3CaIEkShuWelAHz8eOjfn+EXt0vyv37yVqauoVzt+AyKzOjSYoYegBAApIidBM6sNi9cyelW7ZSfddd1D/4INV33UX5DTdir6lBk5VJzOfvHtENWDA6VFFRGFYsx3LmDD3//jcN//3fVN91F6VbttK9c+eE7bfvfBvqvzkZ55vAN2RZ7n+WXZASGMGAJEn85/osFJLEsYo2zu47gdtiQREehmb27IC0aUD7gqhoP5BIGg36xUsAT8rAsYp2ztZ2olYq+Py6WQHpv7UqJXPiQwEoqhdFvhNFQZUnOW9ZelRA/s+SJPWnDOy72DLkej179gAepzBlaKjv21cqibztNhK/+zCquDicrW00PfEknf94fcIEdsGIpaiI+ocfxvjhfpAkwrZ/hMQf/j+0WVlj3qZCpyNk1WoAjB/s87rOmdpOeqwOIvTqSXeov5L8dM++T1Z5T4oUXKalx8b/vncRh8tNfnoUd64KnDHU9b1F4QXVHTR0WQLWDkFwsL+kFZPdSUK4LiBCRoAwnZqvb5mDQpI4UNrKB5eGvm4JxoZCIXHvxtnEh2m50NhDm8k+YHljl5V7Xy0QogGBX9lR2MC9rxbQ0DVwrNXmdPPYW8XifAsiFqdGkBCuw+JwcaisNdDNEQh8YldxI+BJ0FKPw+1XMDZCtSrWzvaI13eJdBLBFGJXsUcsvSknbtJTg6c6IWvXAGA6dHjMIm9JkvjSNVlkRIfQbXXw892XcLjc/mymQOAXuswOfvV+KTIyW+cnsDorZlzbsxYV4ersRBESgn7JEj+1cnqhmzuX2Tv+jWFZPqFbtuC2mAm7biuZr/9j1Am+VxLwnv6utbM4+J3NXHriet786roBwoO/fGUNP/3EwBNiWUYUb3x1HZcev54P//tavnrtnEl1chR46EsYmJfo3enA0eAZ0FDFxqLQaietXcFMn2DAPoRgAOgXDJxvEIIBwfRBlmXO9DrfLxliwtZe6SmG12SJdIGr6UtcsFdUDrlOn2DgUlMPZrtzElolEIyN6jYz/y70DFh+fl3mmAYdzAWnANDn54li4BEwrFwBgOXMGdx2+whrD2ZDdiwLkyNwuNy8sF+42Qkuo1RIPHJzrtdlfZ/KR27OnbDntO6dO6m7/wGcjY0DXpetVuylpeiWLEHSDE40EoyP7p07aXr8CeSr+hNnUxN19z8wYaKBK8+3oc6oiTzfBL5T22Gh2+pAo1IyJ873Alt/kx5j4PqFnqK/Y29/gFuWMSxdiqQI+BCY4AoMy5cBYDx2nFd606duXpJMwijTp/xJbm9yW1GdGJOZCGRZpqDaU0CdnxGY4kuADdlxSEgUN3TR7EUU6zKaMB85CkDY5mvHtA9tdjZJj/+QkHXrQJbpevNNmp54cszx5FMFt81G+yt/oPnH/4Orrb0/dSH6M59B4Yd7s9BNGwGPINplNA1a/uElTyHX+jmxAb0v6JvfOFXdIZ6hhsFid/G/712gy+IgPdrA1zdnowjg/y0pQt9fGP7uucYR1hZMZ2RZ5t+9BbvbFyQGdOxpXmI4n+hNdv/9wUpq2s0Ba8t0RQaODZE61NeDP/ZWMS636M8F48fllnnsrWKGO5vE+RY8SJLElvmelIFdxU3ivk4Q9NR3WjhX14WExOb58YFuzozlulzPsT9S3kaP1RHg1ggEI9Pcbe2v5dnae90T+I5h+XIktRpHfT2Oqqoxb0erUvKtbXMJ1aoobTby0sFK/zVSIPADsizz6w9K6bTYSY0y8B9rxm/6Ydy/H4CQNWuQ1Opxb2+6ogwLI/aee0h9+uekP/cc8Q88gDp+fPd6YrZUMGqMNic1HZ6ByXlJ3l0D+1z01SkiXaCPPsGAs74B2e1dDZjbezwvNRtxCsWgYJpQ3mqi2+pAr1YyN8F74ZCtvBxgXG5z0xVtVp9goGLIAcn4cB3JEXrcssy5WuGGKQhOZFnmxYMVuGWZlZkxQyaOjLQNyymPYMCQn+/nFk4/NJmZKGOikW02rIWFo36/JEl8cUMWaqWCc3Vd7C8RTkqCy2xfmMTn1mSgucqpKDFCx7N35rN9YdKE7Fd2uWh68ikYZpKu9ZlfzCgX38lg2OPe+1rTk09N2HHfvjCJZ+/MJ/GqZIsIvXpCzzfB6OhzZZ+XGIYqwC5mdyxLI0qvJrKsmDajHX3+soC2RzAY/ZIlSColjaVVOOvriAvTcevSwI4h9Y3JFDd0i2KQCaCyzUyH2Y5Wpew/1oEgNlTLotQIAPZ5cWs2HdiP7HCgTk9DM2fsqbYKvZ7Yr3yZ2HvvQaHXYystpeH738d44OC0PL9sJSU0fO/79OzeDUDYls0kPfE4upwcv+1Dk5mJOi0V2eHAdPjQgGVGm7NfkLIhO85v+xwL8xLD0KuVdFsdlLUYA9qWYMXllnlmTwnV7WYi9Rr+e/s89JrAp+7csMhzT7nvUgtGmzDkmKmcre2ivtOCXq1kU07gi+1uXZrM4tRI7E4XT+8uweYUz7r+5FhFO41XJN1fjQw0dFmHFBUIBKPhWEX7oGSBKxHnW/CxKScOtVJBRauJspbBglWBIJjYfd7jaJ+XHkl8WODMGGY6s+NCyYwNweFyex1zEAiCjb0XmpGRWZwaOWj+RTAyCr0efV4eAKbDh8e1rfhwHV/bnI2ExJ4LTey9IJJKBMHD22cbOFPbiUal5P4t2WhV4xvHc5tMWE6cBCBkw3p/NHHaYL140eevsSIEA4JRc7HR47SWHKEnQu9d4eOoqwcuF8kLQBUXi6RWIzudOIdwFEuN0hOqVWN3uihvFQMPgulBnyJ5YUrEkIVD9vLehIFMkTBwNerUVCSVCrfJNGTfAbC0N/L+dO/xFgiCjQ9LWrnQ2I1WpeRzY1Qc2ysqcHV2Ium06ObP93MLpx+SJGFYthwA8/ETY9pGYoSOO5alAvDK4Sq6LMIRRXAZh8tNXnok39k+j2c+tZQ/f2k1B769eUKLt80nTg5KFrgaZ2Mj5t5BBoF/GPG4y/KEH/ftC5M48O3N/PlLq/nKNVnkJoWzfWGiEAsEEcX1nrGCQBYC96HXKLk7U0OIuYdGi4vu9NmBbpLgKhR6Pc7ZObQa7aTXlnDXmoxxDzKPl+yEUFQKBR1mO41enOcF46OgylPMvTg1IuDx5hvnegrK911qGVC8L8syPXv3AhC2eYtfXKVD1qwh6YnH0c6di2yx0vbcc7T95je4TdNj3E+22+l47S80Pv4EzqYmlNHRxP9//x/Rd92FQuffiWZJkgjdtAkA4wcfDPjfHS1vw+Fykx5tICPG4Nf9jhaVUtEvkC+o6gxoW4KVPxyu5HRNBxqVkgc/kkNsaHAkFC9IDic92oDd6WLPeTExP1PpS8bclBMfFEIWSZL46rVziNRrqOs083vhNOlXmnt8u+fzdT2BYDjE+Tb1CNepWZ0VA3hSBgSCYMXmdLHvoqc4/bpc4RAeSCRJ6ndp3y3SSQRBjtPlZu8FT/2JSBcYOyFr1wBgOnxkSPNgX1maFsknVnjm5V88UElpsxGXW+ZwWRtvnq7jcFmbSKMSTCjezrfSZiOvHa8G4K41GaRFj3/s1XT0GLLTiTo1Fc2sWePe3nSi4raPUvHRj13+3vd120cHvTZWhGBAMGouNPYAMC8pbMh1LicMCMFAH5JCgTrZ45bnqK/3vo4kkdt7XPuKLQSCqU6fYGBJaqTX5c6ODlwdHSBJaDLGH1s03ZBUKtTpnuhpe0XFkOst7Z2MPlPbKQYfBEGH0ebkj0c8MXy3L0sdczGA+aSnEFW/aLGIJfMRwwqPYMBy6hSyc2wOiTcuSiI92oDR5uDVI2OPUxRML9qMNipaTSgkiU+vSufWpSmsmR2DUjH+wrrhcLb45srj63oC3wiW465USKyZHcN9184hQq+mqs1ES8/QbpCCyUOWZYobPM+wC5IDLxgAyGkpJ1SrpD4+g5eO14t75CBDlmXe1yYjy5DfVcWyjKhANwmtSkl2bypeUZ0Yk/E3J3vd3/OD4H+9fFYUerWSVqONoivG36zFxTgbm5D0uv7JPn+gio0l4aHvEPGxj4JCgenwERq+/32sFy/5bR+BwFZRQcMPHqH73XdBlglZv57kJx5Hv2jhhO0zZM1aJJUKR00t9orK/tc/7HVuXJ8d5xehx3jJT/ec532pB4LLvFfUyI4iT0H2fZtmMyfeexppIJAkqT9lYGdRk0gAnoHUdVo4XdOBhMT2hYmBbk4/EXo1X9s8BwmJDy42s79EPO/6C18dmIVTs8AfiPNtatJXfH2orFUkEAmClkNlbZjsTuLDdP3zxYLAsW5OLHq1ksZuK4VifEkQxByrbKfb6iDKoCG/15xSMHr0ixahMBhwdXZiu3Bh3Nu7bWkKK2ZF43S7+e+/n2Htj/bw6eePcP9rp/n080dY/+O97Chs8EPLBYKB7ChsYP2P9w4439b9aA8PvX4Wl1tmdVYMm+f5J4nRdGA/AKEb1gfFWG4wMWf3Lubs2smc3btI/cUzqFNTSfzBD8h8459kvvFPEn/wAzRpaaT+4pkx72PMgoHKVhP7LrVgdXjiL8XE68zhfG8RwLzEoYsA+grihWBgIOqUXsFAr6DCG/N73Rj7jrNAMJUx2pxcavLEry9Oi/C6Tt8Erzo52e/uc9MFbVYWALby8iHXmZcYjlqpoLLVzIsHK4S6WBBU/OV4Dd1WBymRBm4Yx4Sr5dRpAPT5eX5q2fRHm52NMiIct9mM9fz5MW1DpVTw5WtmIyGxv6SFs7Wd/m2kYEpyqroT8LgxD5U6NhGo4uL8up7AN4LtuEfo1eQkeoTWJ6vaJ2WfguGpajNjtDnRqZVkxoYEujmARyyXFKGnLjWH0zUdHK8URZvBxLGKdj7UJCNJEnNs7bjag+Oz3JeQUSzGZPxKh8lOeYtnbCAvCIoXtCola2fHAp6UgT6MezzpAqFr1/rfHV+pJPK220j83ndRxcXhbG2j6ckn6fzH68gul1/3NdHITiedr/+Txsf+H476ehThYcQ9cD+xX/4SipCJvQYoQ0MwrFwBeFIGAJq6rVxs6kFCYsOc2Andv68sTY9EQqKyzUSrUYgb+zhd08lLve7on16Z3u/YG0ysmxNLuE5Nm8nGsYrguDYJJo8dvekC+RmRJIQH1zj1wpQIbu9NgHxhfwX1nZYAt2h6sDIzmqQIHcOVJyRF6FiZGT1pbRJMX1Ii9cMmbUmI8y0YyY4PJT3agMPl7ndwFwiCjZ1FngSMrbkJoujOB2SXC9PRY3S9/Y7H4djPz+Q6tZIN2Z5x8l3Fw6clCwSBZHexJ13g2nnxqJT+95ue6M9asCCp1RhWrgTAdOjQ+LcnSdy3aQ6yDAXVnTR1DxxXauyycu+rBUI0IPArOwobuPfVAhq6BqadNXbbOF7ZgdMl86UNWX65z3DU12MrLQOFgpA1/jPtmS6oU1L6v1p/+xyJ332YqE99El1ODrqcHKI+9UkSHn6I1l8/O+Z9jLrH7zDZ+ewLR7j2px/w+d8fo7m3Y/rvv5/l8beLx9wQwdTA6nBR0eqJzB4qYcBlNOHq7ARAnZQ0WU2bEvQJKHwRDFxs6hHFvoIpS19M0W/3ldFlcZAUoR/SFaXPNV+TlTmZTZxSaDI9goEr3fOuZu+FJgqqOyhu6OaHb58X6mJB0FDeYmR3b1zvF9bPGvOAg6O5GUdtLSgU6Jcs9WMLpzeSQoE+fxkA5uMnxrydOfGhfGSBx03phf0V2JzTc1BH4Dv9LsHpk+sSbFi+DFViIgw1ICFJqBITMSxfNqntmu4E43FfMcszgS6KwIODPofueYnhEzK5MFqc7e3YKyvRqJUs2rYWgJcPV/abXggCi9Xh4pUjVdh0BkLn56BRKTCfOBnoZgGwINkjdC+q7xLmKH7kVI2nr54dF0qkQRPg1njYlOOZvD9a0Y7F7sLZ0YG5oACA0C1bJmy/2jlzSHr8h4SsWweyTNebb9L0xBM4mponbJ/+xF5bS+Nj/4+uN94AtxvDypUkP/UUhvz8SWtD6MaNAJiOHMZttbK/pBWARakRRIUEx/kVrlP3J5b0CW1nOjXtZp7ZfQkZmU058dyyJDnQTfKKWqlg2wKP0cE75xrEtWAGYbQ5+0Vk1y8Mznmtj+WlsCA5ApvTxdO7L4mxGT+gVEg8cnMuwJCigfu3zJnwNEXB9Mfllvnth2XMijF4Xd53hj1yc64434IMSZK4Ltdzb7D7fJO4NxAEHaXNRipajaiViv7nXMHQdO/cSemWrVTfdRf1Dz5I9V13UbplK907d/p1P33pJCeqOugw2f26bYHAH9R1Wihu6EJC8ptj+JVM1mctWOhLKjUdP45sH/9nXqNSUN5bm3k1fXcij71VLGoKBX7B5ZZ57K1ihjubKttM6NRKv+zPeOAAAPrFi1FGRvplm9MV26VLqFNTB72uTk3FVlY25u2Oehb3h28Xo1QoOPSdzeivOBFuWpI8wJFJMD0pbTbicsvEhGiJC9V6XcdR7ymGV8ZEo9DrJ7N5QY8vgoH0aAMhGtUAcYZAMJW4Mqbol3tLKW7oZs/5piEL1+0VHtf8Phd9wWA0mR4xhb2yEtk9OA69T+1psg2cJBLqYkGgcbtlfnegAhmZdbNj+wuwxoKlt3hHl5ODMjQ4nIunCoblywEwF5z02of4yidXpBMToqW5x8o/Tg59LyOY/ticLgrrugBYljG5ggFJqSTh4YeGWOiZUE14+CEkpX8GLQQeBhx3b6IBWZ704758lufcO9/QLSLhg4DiBk+fkJs8dBLhZGI5dQoA7ezZ3Lx+HnFhOtqMNl4vENevYOCNU3W0GW3EhmrJ3X4NAOaTYxc2+pPshFDUSgVdFgd1wrnXbxRUdQKTLzQcjjnxoSRH6LE7XRypaMO4bx+43WjnzkXjZRDenyj0emK/8mVi77sXhV6PrbSMhu9/D+OBg0FbgCS73XS9/Q6NP/gB9qoqFCEhxN53H3Ff+yrKMO+mMhOFdt48VAkJyFYbpqNH2V/imZPYkB0c6QJ99J3vBdUzV9zYZyjy52NV/Pffz2K2u5ifFM4X12cGtfPpdbkJqJUKylqMlDQbA90cwSTx/oVm7E4XaVEGFgTJPe3VKBQSX7t2DuE6NdXtZv5wuAq4/Fl783SdSJ0dA9sXJvHsnfkkRgw0PDJolMxNCOVcXTdO19jH0wQC8DwDlbUYSYsy8JM7FpN01fmWGKHj2Tvz2R6kgqWZzvo5sejUShq6LP2GCQJBsLCr17BrdVYM4brJSwKeinTv3End/Q/gbBzo+u9saqLu/gf8WsicFm1gXmI4bllm74WpYRAgmFn0mf3lZ0QSO0Tt31iZzM9asKDNyUEZE41ssWI5c2bc2ztW0U5Lz9CJlTLQ0GUVyYgCv3Cson1QssDVtBrtfjnfZLcb04GDAIRuWD/u7U13NLOzaHvuuQFCJNlup+2559DMHnuNpWq0b/iwpJVXvrCSpIiBheCZMSFiIm0GcL6hzzUwbMhB/b5ieHVycLoEBZJ+wUB9A7LbjaQYrNlRKCTmJYVxssrjFD4nPnSymykQjJm+wvWrpyS6rU7ufbVg0ICnLMvYynsTBjJFwsBQqJOTkLRaZJsNR30DmtSU/mXDqT1lPM40j71VzHW5icKZRjDp7L3QTFmLEb1ayZ2rM8a1rT63T31enj+aNqPQzZ+HIiQEd3cPtosX0c2fP6bt6DVKvrB+Fv/73kXePlvPujkxZMQI8cZMpLCuC4fLTWyoltSoyRcIh2/bhvtHP6Lx+98f8ICsSkgg4eGHCN+2bdLbNBMI37YNnnmapiefGjDQK2k0RP3HnZN+3BPCdaRHG6huN1NQ1cE1c4WDVqBwu2XON/QABE1xVf99Q34+WpWSu9dm9F+/QrUqZGTiw3SszIwW98iTgMstc6yineYeK0pJ4q2z9QDctXYWESFpGF97DdvFS7i6u1GGB/YcUisVzE0Io6i+i+L6blKjvDuACnzH7nRzNkBCw+GQJImNOXH8+Vg1H55vJPv9DwAI27J50toQsno12jlzaP3Nb7FdukTbc89hOXOamLvvRhHiuc+WXS7MJ07ibGlBFReHYfmySRPo9e3bVlKC6fBh3N3dIEnoly4l+vN3o4oKzP9TkiRCN26k869/pW7HHpoyr0erUvanDwUL+elRvHa8msK6LmxOF1rVzBK07ihs4LG3igdMOOrVCj61Ii0o0oiGI0KvZt2cWD642Mw7ZxuYe93kimIEk4/LLfNekecZ54ZFSUEtaIkK0fC1zXN46t0L7D7fhMnm5LXjNQM+a0kROh65OVcUHo+C7QuTuC43sf+eNT5MR1ZcCN/95znKWoz85UQNn101vrFNwcylotXE66dqAfj8ukzWZ8fy0fzUAeebeDYNbvQaJRuy49hV3MjO4iYWpozdGEkg8CdGm5NDZZ7EtT5He4F3ZJeLpiefAm8ifVkGSaLpyacI27LFb8/cW+cncKGxmz0XmrgtL0X084KgweZ08WGvIXRfio6/CMRnLRiQJImQVavpfvddTIcPY1ixYlzba+4Zvnh7tOsJBMMxmeebtagYV2cnipAQ9EuXjnt7052kRx+l5t77KNl0LdqcuQDYLl4CSSLt2V+PebujFgxY7E70msGddqfFjkYV3AO9gvFzodFTBDAvaegJXEe9Z+K3rzhecBlVXBySWo3scOBsaUGd4P3BbX5SOCerOrjQ0B208cwCwdX4ElN0deG6s6UFt9GIpFKiSUubnIZOQSSFAs2sWdguXsReUT5AMDCS2vNKdfGa2TGT0FqBwEOXxcFrx6sB+OSKNKJCNGPelstoxHapBAB9vhAMjBZJpUKfn4dp/wHMx0+MWTAAsCwjmlWZMRytaOO5D8v54a0LUYhBzhlHn0vwsoyogBVSqKIi0S9ZgqTXE3HLLZNeQDdTCd+2jbAtW/oLF+2VlZiPHgVnYBz+l2dEU91u5kRluxAMBJCKNhNmuxODRkVmEAjJ3BYLtvPnATD03jcsy4gm0qBm7/kWDpW19a8riqkmHm8FoxqlgmvnxbG89zqiycjAXlWF5dQpQjduDGBrPeQmhXsEAw3dbFvg30mzmUhRfRd2p4uYEC0ZMcElwNiQHcdrx2ownjqFpaUNXXREfzrXZKGKjSXh4YfofustOv/5Buajx7CVlhJ7zz3Yq6oGCfVUiYkTJpCUnU5cPT24u7vp3rmTthd/j7vjsju+pNUS/fm7ibv//oAX04auX0fn3/9OZ/EFIqJXsHj5fL/FYvuLtGg9saFaWo02Cuu6g0owM9EMZShicbj5r7+eQa9RBv2194aFSXxwsXlAMadg+nKyqoNWo41QrZq1c4J//HRxaiS3Lk3mxYMV/Hx3yaDlfamzwq18dCgV0qDx869snM1Pd17krTP1LEyOYElaZGAaJ5iyOFxufvV+KS63zMrMGNb19jHezjdBcHPd/AR2FTdyorKdDpN9XPMdAoG/2HexBYfLzayYELKFCeWwmE+cHOR2PgBZxtnYiPnESUJWrfTLPldlRfPyYTXtJjunqjtYHmQid8HM5XBZGya7k7gwHUtS/SuCC8RnLVgIWbeW7nffxXL6NG6Tqd8MZCz4OgYhxioE/mAyzzfTgf0AhKxZg6QWyUgjoV+8mDm7dtL11tvYy8sBCL/+eiJuugmFYexzLaOu8F+RGc3rBbX9v0uSx03ut/vKWZMlHmynI31xpq8X1HK8sh1Z9iQMDIWjrlcwIBIGBiEpFKiTPQO0fcfJG/OTwpFlz43aP0/VihhZwZRgNIXrfdgrKgFQp6aJm4ER0GZ5Ehj6bgL6EOpiQbDy52PVGG1OZsWEjNudwHL6DLjdqNNSUcfH+6mFM4u+wifzyZPI3lwdRsHda2dh0KgoazH2O/AJZg6yLFNQ7Skcy08PXNGT+cRJkCTCb7ieiJtuJGTVSiEWmCQkpZKQVSuJuOlGoj75CZAkrBcu4uqe/Ej25bM85+CZWo9zryAwFNV7/vfzk8KCQkRmOXsO2elClZiAKsnz/L2jsIEdhU3YXe4B6/YVU+0obAhEU6c9fQWjVz8n2l1u3itq6r+PMCxfBvT27UHAghSPSUZxffe475sEUFDdCUBeemTAi8yvJjpEw+K0COaVnqbTYid0wzUBGZuQFAoibr2VxO9/D1VcHK62duoe/P+o+8b944pvl2UZt9WKo6kZW0kJ5pMn6Xn/fbrefJP2V/5Ay//9isYnn6T+Ow9Rc+99VH/hP6m7/wFqvvo1Wn76swFiAQDZZqPtt8/Rs2uXX//+saCMjES7ZAldFifZFWfZGITCQUmS+u+XC6o6Rlh7+uCroUiwj3WnxxhYlBKBjMx7RU2Bbo7AB2SXC9PRY3S9/Q6mo8eQXb4/H7x7znMvuHV+/JRJA/lYfiq1Hd5T3/s+XVPhsxbsrJgV3T+u+av3S+k020d4h0AwkL+eqKG2w0y4Ts1/rs8Muvthge+kxxjISQjDLcvsvdAc6OYEnPFcd6fyvoMJWZbZVex5XrwuN0H0LyPgbGnx63q+oFYq2JTjeVbdVSyeKQTBQ9/5uHV+vN/7jkB81oIFTVoa6tRUZKcL84kT49rWysxokiJ0DPffiQvTsDJTCJEE46fvfBsKCY/51njPN7fJ1D8HFLJh/bi2NZNQGAxEffITJDz0HRIe+g5Rn/jEuMQCMIaEgYeun89nXzjC2douHC6Zp/59nktNRjrNDv5x75pxNUYQfHhzgtOqFBTWdZIW7f3k60sY0IiEAa+ok5OxV1XjqKuDIVySLzZ0c7qmE5vTzam/dALC+VAQ/IylcN1eUQGAprcYXjA0mkzPMbL1HrM+hLpYEIxcaurhg4ueQfMvrM8cd8ympaAAAEN+/rjbNlPRL1yIpNfh6ujAXlaGds6cMW8rKkTDZ1am88KBcl47XsOKzGhiQ7V+bK0gmKloNdFhtqNVKclNHjp1bCJxWyxYC88BTLoLsGAgqri4y87gp08Tes01k7r/zNgQYkK0tJlmnnNvMFHcKxjITfKvG9FYsZy6fN8gSVJ/4aI3ZDyDnVcnoQnGz0gFo1ced/2y5XT+43WsRYW4LRYUev1kNnUQc+JC0aiUdFsd1HZYhhz/EozMAKFhkPbR10ZLtDdV0qlSELJpU0Dbop09m6THf0j7y6/Q+ushIoV7RSyN/++HqJOTcRuNuLq6cXV34e7uxtXdg6urE3d3D67ubmT76AsbHTU1wy4Pluj42px8XO/sY35tMfNjA9tvDEV+RhQ7ixspqO5AluUZUcQznZIwb1iUxLm6Lvaeb+KO/FSvydvekF2u/kQukYQ2OXTv3DnmRJaKVhMXGrtRKqQplSx0sqoDs33oAsmp9FkLdu5cnc7Fxm6q2838+oMyHrp+3rTrz0W/NTFcbOzh7TMeQdJXNmYRoRemWVOd63ITudjUw54LTdyWlzJjxxDGc92dyvsONs7VddHYbUWvVrJuTmygmxP0qOJ8E5n7up6vbJ2fwFtn6jlT20lzt5X4cDFfLwgsFa0mylqMqBQKNuX436QvUJ+1YCFkzRo6//Y3TIcOjytJV6mQeOTmXO59tQAJvI6xx4Xq2HepmWtz/C/8EMwslAqJz6xK56c7Lw1a1ndmPXJz7rjvfU3HjiE7HKhTU9HMmjWubQnGx6gTBnISw9j74CZWzIriutwEzHYX2xck8u431pMRBNHzAv8xlBOczenmvj+e8urA57ZYcLV73MNFwoB31KmpAB7BgBd2FDbw1T+dwuYUzoeCqcVYCtftFR63fG1W1oS0aTqhyfQcI0d1NbLT2f+6L+pif6g9BQJfcbllfrffI2zZlBPP3IShU4l8QbbbsZzzFAbr87wL7QQjI6nVGJYuBRi3qwHAlvnxzEsMx+Z08bsDFcJ9dwbR5xK8JDUCtXLUj5N+wXLmTL97uFqIlANOIJ3BJUnqTxk4Udk+wtqCicDpcnOh0SMYWBAgEdGVyE6nJ5mIy/cNvhYuHixtnYwmzhhGUzCqTklGlZiA7HRhOXN28ho5BCqlgpyEUOBygoZgbNS0W2gz2tColEHRR3hjdukplAqJyrgMLjoCL4JV6PXo8/JGLPR3tbbS8L3v0/rrZ+n44x/pfuttjPs+xHLqFPbyCpytrf3bkDQaVLGxaLIy0eflEbrxGsJvvomoz36W2PvuJeE73ybpySdI/b9fEnPvvcg229A7viI6PtC8L8Vi1ocSp3BiPXUq0M3xSm5SOBqVkg6znco2c6CbMylMpyTMpWmRJEfosThc7Lvkm5Nw986dlG7ZSvVdd1H/4INU33UXpVu2+pQKIhgb3Tt3Unf/A2NOZPl373zL6swYokM0E9ZOfzOdPmvBjlal5BtbstGolJyt7eSts9Nrji7Q/dZ0dQq3Olz8+oNSZGSumRvHsgwxPzMdWJUVTZhOTbvJ3i+MnmmM97o7VfcdjPQ5hG+cG4dOLUReI2FYvgxVYiIMU1SrTEjoH+v2FwnhOpakRgKw67xIGRAEnt29fcfKzOgJETMali9DETWMaYgkoUpM9PtnLVgIWbMaAOuFCzg7xnevsH1hEs/emU/iVc7vCeFatuUmEK5X8dyH5fzf3lIsw4jJBYLhcLtlXjtWzcHSVuYmhGK4yiwjMULHs3fm+8Xc2rT/AAChG9YLkUuAGXXCAEC4Ts3XNmf7uy2CIMLX6OCrHfj6iuCVkZEoQoSAxBt9QgpvgoHhjrtwPhQEO32F60MVhUh4bib6CtdlWcZWWQlcds8XDI0qPg5FSAhukwl7TQ3a3mPmi7r429tzRJ8hmDR2FTdS1W4iVKvi0yvTx7096/nzyDYbyshI0VeME/2yZZgOH8F8/ASRn/zkuB7EJEniixsy+c4/znGquoMj5cKxbqZwssozwJUXQJfgvgI1w/LlYkAhCOh3Bi88FxBn8OUZ0bxX1MjJqg7cbhmFuOeZVCpaTVgdLkK1KjJiAu/Cbrt0CbfZjCI0FG22Z9zK1yKpJ989z6GyNvLSI8lLjxQJXeOgzWjj/Yu+FVY291iRJAnDsuV0v/MO5pMnCFm9aoJbODILkiM4V9dFcX0X2xdOHbfhYONktUfMtSglHK0q+AoYZLsd68EDROjVXJydh/ViM4tSA5+W4mssuyI0FO28HJThESjDw1FGhKMID/f8HB6OIjwCZUQ4klbr8z2Tq63Nr22cKLqtDk7XdePKXMTi1rMY9+0Lir7jajQqBYtTIjhR1U5BVQeZsdN/vHw6JWFKksT2hYm8eLCCd881si03cdh7zb4iNq4S1PcVsfHM05PifBtIp/DJ3rfsctH05FODjrlnoQySNGwqSpfZwaFST793/aKpdb2fTp+1qUBqlIG712bw3Ifl/OV4NblJYcyJH59JSjAQ6H5rOjuF//FoNU3dVmJCtdy9dlagmyPwE2qlgk05cbx1pp5dxU2smDWzhCAjXneB+m9/B9PBgyh0eiSNxvMsotWg0GqRNFokrRaFtvd1jRZJo0Gh015eV3PFcm3v65I07mv+dKPVaONEpWecfmtuQoBbMzWQlEoSHn7Ic32TJK/nUvh1103I+bM1N4EztZ18cLGFTyxPC5gRU6CZSc8pwYrF7uJAr2nO1vkT03e4jUY0KSlYvRXL945NJTz80LQ9/qrYWLQ5OdguXsR8+DDhN9wwru1tX5jEdbmJHKtop7nHSnyYp95KIcFbZxs8hd5lrZS1GLl/69wZMe4k8B9Gm5Nf7inhTG0nAHeuzuCTy9MoqO4ccL75o9bM0dCArbQUFApC1qwZ9/YE42PUgoHzDd6dtSTJ47KQHKkLygkgwegYa3Swo74eQDh9DkPfsXE0NAyKop5Okc2CmYdSIfHwDfP4+p9PD1rmLabIWV+PbLEiaTQikcQHJElCk5mJtbAQe0VFv2AALquLH3ureEAfolcrSIs20Gl2BKLJghlIh8nOX47XAPCpFel+cSYwF3icIvX5eaIweJzolyxB0mhwtrTgqKoad9RbapSBW5cm84+CWl46VMGi1AhCtWPSIwumCB0mOxWtRiQk8tMCIxhw2+1Yznjcww3LlwekDYKB9DmDOxubsJw9R8iqlZO6//lJYRg0KrqtDkqajeQkTv2ijalEn/t6blJ4UFynzb0O0/qlS5EUnsk3X4ukFJLE6ZoOTtd08PuDnutcfnoUeemRzE0IEwLcYbA5XVxs7OFMTSena7qo6zTTbXGO/EYu/38My5fR/c47nhQZux1JE1iH39xeN/zihu5BYzcC3ymo6gQgPz1wQsPhMB07jttoJDI5ntqkLJoq2zHbnRg0gb2n9TWWPe7rX/f7dXeqRMcfKm3D5ZaxLVuDdm8x1qIiHM3NqOPjA9oubyzLiPIIBqo7uH1ZaqCbM+H0GYo0dlm9mlpcbSgS7FwzN46/nqihucfKyeqOIQsDg6WILZDFt4HYt/nEyUEuwwO4IhXFW3+563wTTreb7PipV/w93T5rU4Frc+I5W9vFkfI2frGnlB/dvijg9wzjIdD9VqDFChPJ2dpOdhV7+qZ7N86e0ueJYDDXzU/g7TMNnK3tpLHLOsj1dzoz4nUXkC0WLGfOogz3X8KcpNHgNpnGdc2fbuw934yMTG5SBKlRgTfwmCqEb9sGzzw96J5VERWFKiYGe0XFhDxX5qdHER2iod1k51hFO+vmxPp1+1OBmfacEqzsL2nB5nSREmlgftLEPP+0v/oqCoMBw9o12MrKcTVdTtZQJSTMiOMesmY1tosXMflBMACeOixv9YG3LElmXmIYz+wpobHbyvffKOTO1Rl8ZEGCGMsWjEhVm4mf7rxEc48VjUrJV67J6r8+TUQ9qvGAJ11Av3gxyshIv29fMDpG/YR6wy/29xd+9j3CX9nNqJQKblqcxJMfXSSir6YwY40z7XPNF8W/Q6OKi0NSqZDtdpwtLQMeOESMrGCqY7K5mJsQSnWbGavT3f96YoSOR27OHRBTZKuoBECTkTFtFcT+RpM5q18wcDXe1MU6tYIf77jAe0VNbMqJZ5ZQFAsmmD8ercLicDE7LpTN88Y/oCbLMpbewj9Dfv64tzfTUWi16BcvwnziJOYTJ8YtGAC4LS+Fw2Vt1HdZ+PPRar50Tdb4GyoIWvqitmfHhxBh8H9UqS9YCws9qSMx0SJ1JEgY5Aw+yZNyKqWC/PRIDpS2cryyXQgGJpniXlOJvuLqQCLLMpaCvvuGvP7XfSmmSgjX8uyd+Zyp7aKgqoNLTT3Udpip7TDzrzN1hGpVLEmNJC89iiVpEYTpAtMHBguyLFPXaeFMTRdnazspbujG4br8/CchkZceSV2nma4hhANXF7FpsrJQRkXh6ujAWlyMfunSSfhLhiYrNgStSonR5qS63UxGjHiWGi1dFgelzUYA8oJUMGDcuxeAxO1bSbWHUtth5nBZG1smyGXNVwzLl6FKTMTZ1OS9iE+SUCUkTEh8eyD3PRr2l3gSDlbmz0HXtABrYSGm/fuJvP32gLbLG0vTIgEoazHSabYTaQisIGqiGS4J05uhSLCjUyvZMj+BN0/X8c7ZhiEFA74Wrtc+8E20s7NQhoaiCA1DERbq+TksDEVIKMrQkN6fQ0Y9Xhqo4lvZ6aTr3Xdp+O9vD1rmbGyk7hv343joO4SuXXt5wUjFCz4utxQV+dRGb6koDpebnUWe/9n1UzBNaLp91qYCkiTx5WuyKGsx0dxj5YX9FXx985wpW4wzXsHNeAi0WGEiMdmc/GZfGQAfWZDIwpTAp1cJ/Et8uI7FaRGcqelk9/km7lydEegmTRq+poyFbd2KYfkyZJsNt82GbLMj26/82Y5ssyLb7bhtdmSbzbOu/Yrldnv/9mS7HVe3d1PTsbZxKuN0udlzwVOAe51IFxg14du2EbZlywC3ef2yfFp+8lOsxcV0vPIKcd/6ll+v70qFxOZ5Cfz9ZA27iptmnGAgkCLB6SxQHC2yLLP7fF/fET8h97DmU6cwHz0GCgVJP/gB6rS0GZnsYFi5kvY//AF7VTWOuroJNVyemxDGj29fzG8+KONEVTsvHaqguL6LL2+cLUz+BENyoKSV5/aXY3e6iA/T8a1tcyd0/kN2uzEdOAhAyPp1E7af6Yxst+Nsbwe3e8DrY63PHnXv8Ns7l/GjHRf4yjVZLOkd7D5T08nz+yu4f0s2LrfMj3dc4Kc7L/LdG3PH1ChB4BlrnKlIGBgZSalElZSIo6YWR23dAMGAiJEVTGWq2kz860w90SEafnjrQtwyw8YU9RW9a7JEsZ+vaLM8hbi28nKvy72pi1dnxXCkvI0XD1bw2C0LpuwEhiD4Karv4kBpKxISX1ificIPE5L2igpcnZ1IOi26+fP90EqBYfnyXsHASSLvuGPc21MrFXzpmiwee6uIPReaWJ8dy/ykwBeNCiaGPsHAsozAFf2Zj58AwLBsubimBREDnMEdDiT15BZTL58V3S8Y+OyqdHFuTBJOl5sLjT0ALEgOfBGEo64OZ0sLkkqFbuHC/td9KaZ69JYFZMSEkBETwi1LkjHanJyt6aSguoPTNZ0YbU4OlrVysMxzrzM3IZS89Cjy06NIi9bPiHPOaHNyrtYjEDhb20WbyTZgeXSIhsWpkSxJjexPHdqQHcu9rxYAIxexecRH+fTs3oP55MmACwZUSgXzEsM4U9tJcX23EAyMgVPVHcjIZMaGEB0SfAXS9upqTwyyUkHYxo1srDLzx6NV7LvUEnDBgKRUkvDwQ57Ja0kaOLE9wfHtgdy3r9R1WihrMaKQJNbOiUW1cSPWwkKM+z4k4rbbgm7yOSpEQ1ZcKOUtRk7VdHJtTvClIPiboZIwvRmKTAW25Sbw9tl6LjR2U9FqItOLIYevxWn28nLcXV0+raswGFCEhqIIDUEZFuYRGPT/HOoRGIR5xAaSXk/jE08OW3zb+MSThKxZg+x0Ilutl4v4rFbcVhuyzYq773WrFdlq8xT39f7stlk9RXxWa//7ZLsN2eHsT4Ebipaf/gzj7j0jCwFGia/Fg95SUQ6XtdFtdRAdopmyLvzT7bM2FTBoVHxj8xwe+VcRh8paWZQaMWX7dV/7rfZXXsF88gQKrRZJo0XSajw/9371/zzcsquuzYEUK0w0Lx2qpN1kJzFcx6dXpge6OYIJYltuAmdqOvngYjMZ0QbazfYh50KnE76mjBlWrBj3Z1eWZY+QwG7HbbViPnac+gcf9FsbpyIut8yxinYOlrZQ024hLVrPilnBKc4PdiSlctA5Gn33XTQ8/DCWs+cwHz9OyEr/Xn82z4vn9YJaLjR2U9NuJi16ZiRDjFUkKLtcVz2veJ5TBj672JCtlqt+t3qeW6w23FYL3e+8Oy0FimOhpNlIdbsZjUrJ+mz/95Vui4X2l18BIHz79n7Tuql2L+cPlKGh6BcvwXLqFMZDh4j6+McndH+hWhXf2jaX94oaefVINccq2ylvNXH/lmyyE4TBluAyTpebPx6t5t+FDQAsSY3k61uyJ1xcYi0qxtXRgSIkBENe3shvEPRjr6yk/rvf6zdZ7af3Oja/2DcjjasZ9X/8V++X8sjNC9g49/IFZF5iOIkRen628yJvfm09eo2SJ945LwQDU5ixxpn2JwykiISB4dCkpnoEA/X1MErnQxEjKwhGXG6Z335YjluWWZkZw6qskSOK7BWeove+InjByGh6j5Wjrh633Y5CM3LRxX+szuBUdSeXmnr44FLLlJ3AEAQ3TpebFw9UArA1N4HZcaF+2a6lwFNgpl+0eNKLT6cr+qVLkVRKHPX1fnM1mJ8UzpZ5Cey50MTz+8v58e2LUSsVfmitIJiwOV2cq/MUY+QHyCVYdjovp46sWB6QNgi8o8nKQhkZiauz0+MMvmTJpO5/SWokKoWCpm4rtR2WGTPhEmhKW4zYnS7CdWpSo/SBbk7/fYNuwQIUuoEi+9EWU4VqVaydE8vaObG43TKlLUYKqjooqO6gut3MxaYeLjb18NrxamJCteSnR5GXHsmC5HC0quCcYOqbWB5O1H0lbrdMWYuRM70igZImI/IVIxVqpYL5SeEsSY1kcWoEqVGDhROjPe6G5cs9goGCU0Tf7Qr4ZF1ucjhnajspqu/m+kWi4G60FFR5hIaBum8YiZ49nnQBw7LlKCMj2aAx8Odj1Vxq6qG+00JyZGD7tfBt2+CZp2l68qkBBXWTEd8eyH37wv5LngLHpWmRROjVyPl5KMLCcHV2Yjl7NignnvLTozyCgaqOGTMu4y0Jc6oW0cWEalmdGcPBslbePdfAV6+dM2gdX4vTIj/xCTRpqbiNRlxGI+4eI25jj+dnowl3Tw9usxkAt9ns+bl55O26urtxNTUNvYIs42pqouo/Pocy3L8if1dPzwAXYK+7t9tBqUQVM8ZYe29FPoAyJgZ7ZSWydehEZlVi4qBUFFmW+yfIt+UmoprCYxjT6bM2VchOCOOTK9L487Fqfn+wkuz4UFKjpt4zqK/9lqOuDndPz7j2JamUvYICj6jA2eRDx8bUcwo/VtHO/pIWJCTuu3YOOnVwPhsKxk9eWhQOl5sPL7Wy+/zl8zlpmgu2lJERSBrN0Nd9P6aRSZKEpNOBTocyPJzw67fT/JOfDJ2Ehvdr/nRhR2HDoLGVuk4zu883TdvzbbJRJyYSfuNNdL35Jh1//BP6RYtQ6P03LhAdomF5RhRHK9p5fn85yzKiZsR9m68iwZp77kUZFnZZmOxwjHvfru7uYZ8TprJA0VeuHA8+VNqGLMPa2TETUhzc+be/42pvRxUXR8THPur37U81QtaswXLqFObDR4i8444JNxySJIntC5PITgjjmd0lNPdYefStIj65Ip2bFyfNCMMjwfB0mR38fPclLjR65vo/mpfCx5el+cUEdCRMB/YDELJmtaj5GSX1Dz2MpFSS9ptnPc/wfvosj/oqcKGxhxQvEyYpkfp+Z7ncpHCae4a58AqCnisd+K5mqDhTt9WKs7UNEAkDI9EXCdInsOhjOOdDen8XMbKCYGRHYSPlLUYMGhWfXztrxPVlpxN7VTUAmkyRMOAryshIlBERuLq6cFRVoc3OHvE9MaFabl+Wyp+OVvGno9WsmBUt4scEfufdwkbqOs2E69R8ckWa37ZrLvAUBuvzg6/gY6qiMBjQLViA5cxZzCdOEOGne7bPrErnZFUH9Z0W3jhVx8eX++88EAQHRfXd2J0uYkK1pAeoGNt6/gJusxlFeJhP10DB5NHvDL5nL+YTJyddMKDXKFmYEsHpmg5OVnUIwcAkUdQrIspNDg+KAWdzn9BwiPuGsRZTKRQScxPCmJsQxqdWptNqtHGqupNT1R2cq+uizWhjV3Eju4obUSsVLEyJIC8tkvyMKGJDtQO2NdqifX/hbWLZWyFDm9HG2douztR2UljXhdHmHLCdlEgDS9MiWJwaybykMJ/EEaM57tqcHBQhIbh7erCVlKCbN28cf/X46UvOON/QjdstT8rg+XTB4XJzts7joJ0fwGSioXBbLJgOHQIgbMtmACINGpamRVJQ3cG+Sy1B4Qgbvm0bYVu2BCS+PZD7Hg5Zltlf2grAhl5HPEmtJmTdWnp2vIdx374gFQxE8veTNZyp7cLhcs8YgbW3JMypyvWLkjhY1srhsjY+szKdqKuSU2S3y6cCuug7Pzvi50h2uXCbTB5RQY8Rt8nY+3OPR2BgulJsYMRl7PHEkvuA7HCAQoFCp0PS6VBoNUhaHZKuzwlch0KnvfyaTneFS3jvMp0OSaPt/7nn/Q9o/O53R9x35B13EHHTjT61czR079zpSUUBrwWEcd/6r0HH/EJjDxWtJtRKBVvmT30Rz3T6rE0VblmSTGFdF+fquvjFnhIev20RGtXU6tv1S5egCA3FbTQOuY4iKoq4r38N2eH0JI7YbP3pIx7Xb1uvA/iVy+y47Z6f+z6TstOF7DRDryBqPOkgwUqXxcEL+z0mWbcsTWaucHOd1uwsbuRkVeeg1xu7rNz7agHP3pk/7Yq4XUYTrb/5Der0dOylpYNXCGQSWi+BTkKbKHYUNnDvqwWD6ka6LM5pe74FivCbb8J06BDOlhY6//lPoj/zGb9uP0Sr5FR1J0cr2nnlcBUw/YVGvor/HPX1yN7ExQOeXbRIeh0Kbe/vVz63DHh+8SwzHT+B7cIFv7VxquFtPFijVHD9wkS/78tWUkLPnj0ARH/+8z6ZXk539Pl5SDotztZWzzj33LmTst/ZcaH86PZFPPdhOUfK2/jT0SqK67u5d9NsIvSiUHumUtrcw892XaLdZEevVnLvpjmTZlTtNpkwnzgJQMj6DZOyz+mE9cIFMv/xd78bMY+6YnB2XCjPflDGUx+7PPjhcLl59oOyfjfZpm7roElRwdRj+8IkHrk5lyffvYDd5e5/fSgnOEd9PQDKiHCUof5xFp6u9AkqrhYMwNAOfBqlgoUp4Vwzd+oMkAlmBs3dVv5yogaAO1cPnjDzhqO2FtnhQKHXo0pImOgmThskSUKTlYXl1Cls5RU+F0vesDCRfRdbqOs085fjNfzneiHSEPiPNqONf5ysBTxF4/4SpDiam3HU1oJCgX7JUr9sU+DBsGLFZcHArbf6ZZshWhV3rZ3FM3su8ebpetbMjpmS7mqCobnSJThQhcHmEycAMOQvQ1JMrYn4mYB++XKPYOBUAdHuuyf9f7RiVhSnazo4XtnObXlCwD4ZFDf0CgaS/OtSOxacHR3YyysAT5rOUPijmCo2VMt1uQlcl5uAzemiuL6bgupOCqo7aDPaOFXdwanqDl48WEF6tIG89Cjy06Moa+nhh2+fH7Fo398MNbHc2GXlnlcL+M72HEK0Kk7XdFHXaR6wTohGxcKUCJb0igTGOtbn63GXlEr0eXmYDhzAfOJkwAUDmbEh6NVKTHYnVe1mMmNDAtqeqcT5hm6sDhdRBg1ZQXjcTIcOIdtsqJOT0V5xnm2cG0dBdQcfXmrhk8snx2FpJCSlMmBOd4Hc91AUN3TTZrRh0KjIz4jsfz1s40Z6dryH5fQZnB0dqKKCS6iSGRtClEFDh9nO+YZuFqdGBrpJglEyJz6UnIQwLjb1sLO4kU+u8IiKZFmm68036Xr9n34roJOUSpTh4SjDw/F1Ot945Cg1d9894noJDz9MyNo1fn2m06Sm+rTeRBX+DpWKImk0qNPTMR88RMjKVagTLgsD/l3oWW9DdixhOlE0IRg9kiRx36Y5fPsfZ6luN/PHo1V8ft3UGXN39fTQ8otfokpMHLbfSnrsUcK2bBnTPmRZBocDt93uERXYekUFdjtus5nar34N1zBip6nkFC7LMi/sL6fb6iA92sAdy3zrFwVTE5db5rG3ir0uk/EYLz72VjHX5SZOGwNAWZZpf/F3uNra0c2bR8w9X6HlJz8NmiS0vmu+Oil5wvYdKPrON++ZCh6m2/kWSBQaDdF3fY7mn/yUnp27CF2/Hk26f8wEdhQ28NS/Lw56fToLjcD3Z4Doz33OY1JwhUhZodWCSjXmZxf5iho3f7RxKjHUeLDd5ebRt4pJjND57XyTnU7aXvw9yDIh69ejX7jAL9ud6ig0GgzLlmM6eBDz4cOTJhgAMGhU3L8lm0UpEbx0qJLTNR185x9n+frmnbXgcwABAABJREFUbHKTAz+XI5hc9pxv4vcHK3G63SRH6vnWthyvRvEThenYMWSHA3VKCprMWZO23+mCdvZsXB0dft/uqCu6fnjbAr748gnWPNXMvCSPOv5iYw8ut8zv7l4BQHW7mf9YneHflgomHZvTxdnaLvLSI0mLNrAhO3ZYJzhHnUcwoE4WxRkj0S8YqK9HluVBN7lXO/BF6jX8o6CW5h4rrxyu4p6NswPRbIFgELIs88KBCuxOF7lJET7HqtsqPMU8mszMoHAjnUpoMmdhOXUKe0W5z+9RKRV8ft0sHn+nmN3FTVybE0dWnBB2CfzDK4ersDld5CSEsdGPojZLr0uwLicHZWjwFRlNZfR5eaBQYK+qxtHcjDreP256q7Oi2V8SRUF1By/sr+CRm3NFHz9NkGWZU9WdgMcdNSBtcLsxn+wVDKxYHpA2CIZH1+cM3t3rDJ6TM6n7X5YRxQv7JcpajLQZbcQIE4MJxe50c6nJkzK5ICUiwK0By+nTAGiyMie1SFSrUpKXHkVeehRfkGdR027hVE0HBVUdXGoyUt1uprrdzO8PVnCpabBzZ0Nv0f6jN+eyYW4cCklCIYFCkpCG+K6QJCQ8yQeXX7u8jsTl393y0BPLfa/9bFcJeemR/e+dEx/K4tQIlqRFMjsudNInnA3Ll3sEAydPEPXZzwT0XkKpkMhJDOd0TQfF9d1CMDAK+oSGnnMruO4HZVmmZ89eAEI3XzugfcsyogjVqukw2zlb18XStMgAtVIwFPtLPOkCq7OiB6ScqFNS0GZnYyspwXTgABE33xyoJnpFkiTy06PYc6GJk1UdQjAwRblhURIXm3rYVdzMbXkpaNwu2l58EdOhwwBEfebTKKOjaf7Rjye9gC5kxXJUiYk4m5q8Ou72JRyErF7l937ZsHyZT/ueyMJfb6koqrhYWp75BY76ehoffZS4b3wd3fz5tPTYOF7hKVK+fhoWZQkmj6gQDfddO4cf/fs87xU1siglguWzJselcTw46upo/tnPcba0oE5JJuLWW+j445/83m9JkgQaDUqNBryYzCU++siw6SCGVauQHY4p4Ra+v6SV45XtqBQKvnrtnBmTJDRTOVbRPsAI4GpkPM/6xyrap036i3GvJ1FUUimJve8+tFmZRFx/fdAkoVmLijB+8AFtz/2WpMcfRxkR+HEqfzETz7dAo1+8GMOKFZiPH6f9pZdJ+P73xn3/PBOFRn0Yli9DGReHaygX/95nhcg7bvd7HzLicwpTS6DoKyMJjfx9vnW9/TaOujoU4WFEfebT497edCJk7VpMBw9iOnacqM9+FknlH9NFX5AkiS3zE8iOD+PpPZeo77Tww7eLuWNZKh/NSwkKk5RgR3a5gi55dTQ4XG5+f7CCvReaAVg5K5p7N81Br5ncv8G0/wAAoRvWB908wVQg/sFv0fy/PyHum99EOzcbST3Q9GKshu6j7o2WZUSz/9ubeeNUHRWtJsAzUHrr0pR+R9mP5Qvl/HTgtWM11HdZiA7R8MjNuSM6rfS55atTpp9629+o4uORVEpku90zKOelUO9qB774cC3/761iPrjYzKrMaPLSg8spSzAz2V/SytnaTtRKBV+6xvfif3tFJeAp6BGMDm2m55jZyn0XDAAsTIlg3exYDpa18rsDFTx+20JxQyYYN2dqOjla0YZCkvjP9Vl+PafMvYIBfV6e37Yp8KAMC0OXk4P1/HnMx48TceONftmuJEl8YX0mRX/t5kJjN3svNLNlvkiRmQ5UtZlpM9nQqJQsSA7MhIutpAR3dw8KgwHd/PkBaYNgeCSVCv3SpR7HlBMnJl0wEGnQkJ0QyqWmHk5WdbBtgf+jdQWXKWnuweFyE6nXkByhC3Rz+oWGhmWBm+CRJIn0GAPpMQZuXZpCj9XBmZouTlZ18OsPvLh2XsGT714gr7ARf9+ed1ucw04sg8dZanZcKDcvSWZRaoTf0qLGim7hAiStFldbO/bKyv7nn0CxINkjGCiq7+LGxaKo0BdkWeZkr9BwWUbwjV3ZLpXgqK1F0mgIXbduwDKVUsH6OTHsKGpk38UWIRgIMmxOF0fL2wDYkD1YrB66aSO2khKM+z4k/Kabgm7MIz8jkj0Xmiio7uTutYMNZATBz4pZ0cSF6WjpsXLwdAW57/4ZW2kpKBREf+5zhG2+FoDw666b9EllSakk4eGHPMW3kjSwIGaUCQdTad9Xt+PqVJTERx+h5ZlnsJdX0PQ//0P05z7He/osZGQWJkeQFi2SEQXjY2laJDcuTuads/X8Zl8ZP44NCWrxuuXsWVp+9StkixVVXBzx//VN1CkpxHzhC5Pebw3lFK4ID0eVkICzoYGG732f2HvvQTs7eE3UWo02XjpUCcDty1LIiBEi4+lOc8/wz9ijXS/YsVdX0/HHPwEQ+YlPoO2d1w2mJDR93lJspaU4amtp/e1zxP9/D06be+2Zdr4FC1F3fhbLubPYSksxfvABYddeO67tzWThh+xyoc3KwuxNMBDI55ReIj9+x5QqAPaFyTzfHPX1dP/rXwBEf/azYy5cna7ocuejjAjH1dWNtbBw2GTkiSI9xsCTH13E7w9Wsu9SM387WUNxQzdfu3YOUSGaSW/PaAlU0X73zp2DnlNUiYkTbgbhL9qMNn626xJlLUYkJD65Io1blyZP+v2Ro6Ghf9zMsGbNpO57ulD9+S/0fv/8wAWyDJLE/OKiMW13VBJ3h8vNNf/zPo1dFu5cncH3b8rl+zfl8tlVGQGfUBT4l8K6Lv5d2ADAl6/J8imW1VHfmzCQIhIGRkJSKlEleSaa+4QWIzE/KZzrF3mKXp7fX47J5pyw9gkEvtBlcfDK4UoA7liWSlKE77FFfe742qysiWjatEbTe8ycjU24zeZRvffO1Rno1UrKWoz9SlKBYKzYnR5VMsD2hYmkx/hvktVlNGK7VAKAPl8IBiYCw0pPMpj5xAm/bjc2VMunVqQB8Mej1XSY7H7dviAwnOx1CV6cEoFGFRiXtL5zVZ+XN6kuHILR0Zf+YDl5EnkI156JpM/N8USV/+MZBQMpqu8GPMXUgZ6EdVutWIs8Ll3BJDQM06lZnx3LysxobM7hI7DtLjeSBNEhGiL1GsJ1akK1akK1KvRqJTq1Eo1KiVqpQKVQ4MkYGBm7j9Hbq7KiWTM7JijG9hQaDfpFiwBPXxJoFvTGNJ9v6Mblnvx+bSpS22GhpceKWqkImNBwOIx79wAQsmY1ipDBBV0be5MTT1S1YxRjb0HFicoOLA4X8WE65iWGDVpuWLkSSa/D2dyM7fz5ALRweBYkR6BWKmjpsVLbYQl0cwRjQKGQ2L4gkciuFsw/fgpbaSkKg4H4Bx/sFwvA5SK2iJtuJGTVykkrQAnfto2UZ55GlTBQuK9KSCDlmacndFI7kPseDlVUFAkPP4xh9SpwuWl98feeokfZ3T/XIhCMl0+vSCMrLhSjzckv95biDsJ7RlmW6d65k+af/gzZYkWbk0Pio4/0z+cGst+as2c36S+/TPJPfkL6yy8z9/AhUv7nxyhjonE2N9P4w8fpfOMNZJdrUto0GmRZ5rkPyzHbncyJD+WWJWJ+fCYQH+abaYKv6wUzbquV1l/9CtnpRL90KWEf+Uigm+QVhUZD3FfvQ9JosBYW0v3uu4Fukt9Q+jjmNh3Ot2BCFRVF5Mc+BkDnX/+Gq7t7XNubycKPjj/9CWQZ3eJFKK8yUQ3kc4oiPBzNnDlYC4twdkyvuYTJOt9kWabt9y8hO13olyzGsHr1uLY3HZGUSgyrPMfFdPhwwNqhUyu5d9Ns7ts0B61KSVF9F9/+x1nO1nYGrE2+0L1zJ6VbtlJ9113UP/gg1XfdRemWrXTv3Dnh+627/4EBYgEAZ1MTdfc/MOH7Hy/F9d089Po5ylqMhGpVfOf6edyWlxKQeTzjAU+6gH7RoklNBp9OpL/8kufrpd8P/Op9bayMaiZQrVRgcwbfA7nAv5jtTp7dVwbA1vkJPjvZ9ycMJIuEAV9Qp6TgqKn1CC18LGr45Io0TlV30tBl4Q9HqrhnY/C6agimP68cqsRoc5IRHcKNi3x3WnTb7dhragHQBNgtciqiDAtDFRuLs7UVe2Ulutxcn98bFaLhjmVp/OFIJX8+Vs3KzGifBGECgTfeOlNPY7eVKIOGjy9L8+u2LafPgNuNOi3VawqPYPzo8/PhlT9gLyvH2d6OKtp/kekfWZDI/tJWyluMvHy4kge2zvXbtgWBoaDaM2AaKJdgWZb7BQPTLR52uqFbuBBJo8HZ2oajqgrNrFmTuv8Vs6L409Eqiuq7MNmchARB8fN0pbhXMJDbW0wdSKyFhchOJ6q4uKA0MPB18uXTK9O5deno2i/LMm7Z890ly8iyx1jELcu4ZZmj5e188ZWRxYHBNrFsWLEc84kTmE+cJPKOOwLallkxIRg0Ksx2J5VtJmbHCaeskei7b1iQHIFOHVwuba7ubszHjwMQunmz13VmxRhIjzZQ3W7mUGmrSKwJIj4s8TgSrs+O9TrJpdBqCVmzBuPe9zHu2zeq8ZLJQKf2pHWdrumgoLpDOJtPUdbaG5Df/xMKu42e+Axyvvdt1EnBk0ATvm0bYVu2BMSBL5D7Hg6FRkPsvffSlZxMxR/+wuyGY8SYO1h659KAtksQfIzVvVKlVPCNzdl85/WzXGjs5vVTddyxLHUSWuwbstNJxx//SM+evQCEbFhPzN13I6mDY17Am0u5bv58kh9/nPZXXsF0+Ahdr/8T69mzxHzlHtQJwTNWvKu4ibO1nWhUSu7bNAelwvcinP+fvbMOj6tM3/B9RjMzcde2qbs7LW0plC7usLgsLLaL7G8XWVgcFpbFXYvbAoUipVCBepuklqYad5tkknE7vz8mCZUkjczMmaTnvq5chWTmfG9OZr4533fe53mkckuV6T3TM2NJiQqjymSnI3lQSlQY0zP9t98uFcYPPsBVWYUyJoa46/8kuWFEZ6jT0oi5/DKM77xL4//+R9jIkSGdTtIV8mvNLN1egUap6NAQQgCS+8nrLdSIOOUUzOvW4SoppeGzz4i//voeH6ur+24JIZxS1BMsW7ZgXrUagOT7/0XY6FEhs07RTZxA9eNP4CwspP71N0i86x8hPcd1h2AJ28yr1+DYtw9BqyX26qv7zfnzN4bZs2hesQJrdg5eux1FmHT78CcOT2BIYjjP/7KfEqOVx3/YwzkT07hwaka3rmODQWvT/pHJIK1N+wRIbCR6PFQ//kS7iSStju7Vjz9BxMKFIXftLooiP+ZW8eGmYryiyMBYA39bNJzESGlec6LXi2XdesC3BpXpGYbpgUn06rY95JWzBvHqmgLcXXQpk+l7vLu+iHqzg8SIMC6fObBLz/E6nbjr6gA5YaCrtAorXGVdSxgA0KqU3DhvCAICa/bVsK2kf6ldZfoO20oaWJ9fh4DADfMGo1J2/ePEVVwMXi/KqEiUfmxQPZ5oTRlwFBR2+7mLxyYzIFaP2eHm0y2l/i5N5jihpsnO0u2+z6/LZw5Ep/HvgsiWkwOAfvJkvx5X5ndUMTFohw4F/J8yoFAI/PnEwSgEgU0F9WQXG/16fJng0mh1kl9rBmBiRrQkNTgLi/DUGxE0GsJaXKdlQhOFRoNuvO9vZJXAGTwlSkdatB6PV2R7aWPQxz9ecLg9HKzxzQuh4B5uzdkGgG7K5JC8MRHImzSCIKBUCKiUCrQqXxKBTqPEoFUREaZmwchEUqLCOswjEAjNRgbdhAkIKiWuigpclZWS1qJQCIxK8TmZtyZryHROTkvKy+QB0dIW0g7m39Yiuj1oBmei7cDAQBAE5g33NaL9ur82mOXJdEKj1cnOUhMAc4fFd/i48HnzALBuzcJjtgSltu7Q+r7YVtIoaR0y3afVnbvpxRdI0IhUJ6Tz48IrQkos0IpUTuFSj90ZgiAQdfbZ/Dz9TDxKFaMaS6l+5FFc1XICq4yP3rpXJkeF8ac5vj37L7PL2FMZGteNHrOFmv8+4xMLCALRF19E3J/+FDJigc5QGAzE33QT8TfdiKALw3Ewn8r778P822+SJBoeSZXJzoebSwC4dHoGqdFdT+CWyi1Vxj8oFQIPnOkTpna01j55VCIh1nfXbczr12NZuw4EgfibbkQZcXTCV6gRPm8e+unTfalCL7/S7ZT2UCK33MQj3+VhdriY0bJnc+RLqvX/HzhzdMg1evYHBKWSuKuuAsCydh32fft6fKxWoVFnfyWNUsGG/Hos/STp0FVTg/HtdwCIPP10dOPGhtQ6RaHVEn/jn33JJHl5NP/0U9BqCTTj06M6TZH1x36wu6GBhs8+BSD6ggtQxcX1+Fj9HU1mJqqkJESnU5J7ZkeSFq3jkXPGcvIoX+rG0u3lPLxsN3Vmh8SV/c4xm/ZFkaoHH8KyeTOWLVuwbD7ka9NmLJs2Ydm40fe1YQPm9et9X+tavtauw7x2LebffvN9/for5l9/pXnNGurfevuoZIEjx3dXVWHNkv5veSgOt4eXVh3k/Y1FeEWROUPjeficMZKJBQDsu/PwNDSgMBjQh1AyeF/Avm8fotfb9t+dffWUbtvt7ShtZEN+PWsP1DIiOQL9EQ1ir18xtcfFyEjPlkIjaw/UIiBwy4KhXXYCc1dUgCiiiIhAGSm9w2BfQJPucxhxVVR063kjkiM4bVwy3++q5I3fCvjPhRM6veCTkfE3NqeHt9b5GtVPG5/SbYdFR6HvuZrMwSHZ0NMX0GQOwrplC87C7gsGlAqBa07I5KFlu1m1t4YFIxMYmhj6G30yocWSDUW4PF7GpEYxe4h/NgFaXZVclZWY165FERaGTl48BBT9tKk49u+n6bvvEZ0uvzp6DIwzcMb4VL7dUc4764oYnRLld2GJTHBobWYakhBOjEEjSQ3WbJ+oRTdhAgqNNDXIdB3dlClYs7J9zuDnnx/08acOiqF8u5WtRUZOGNpxQ6FMz9lfZcbt9RJn0JIUKa3zlejxYNu+HSBkNx2P5T4YSDe41kaGmz7MQYDDxg/lG8sKvR7tqFHYd+Vizcom6swzJK1ndEoU2cUN5FU0cdYEOVWzM5rsLvZX+wRFkyVKJuoIURQxr/Y520V0kC7Qypxh8Xy8pZj8WjNlDVbSY2QneKlZf7AeEZHhSRGkRHXckKcZNAjNwAE4i0uwbFgfELex3jB5YAzvrC9kX1UzzXaXnPrYRxA9Hho+/LDNnTv55AU8rxqHt84pzxF9iB1lJnJiMqladAW3Ff6Cq6KCqoceIuGvfyFs5Eipy5OREH+5V84ZFs/O8kZ+21/LS6sO8u/zx0k6z7uqqqh55hncVdUIWi3xN93YJ81ZDLNmoR02jLrX38Cxbx/1b72Nbft2Yq+9FmW4NOlfXq/Iq2sO4nR7GJMaxandSKSSyi1Vxr8sHpvCq5dP5qFleVSafk8VjNKpSIoM40CNmedXHuCm+UPQqvrenrirqgrjkvcAiDrnnD7zOSkIAnHXXoOzoAB3XR3177xL/C0397l70Rvz63l59UHcXi9jU6P426IR/Lq/5qjXW3JUGA+cOZrFY0NPwNpf0A4bRvj8+ZjXrMG45D1SHnkYQdX9vpzO9udaGZxgIKvYyF1fWrht4TCGJfXde/ei203dq6/itdnQDh1C9PnnSV1Su6hTUoi59I8Yl7xH4+efEzZmDJqMDKnL6hXljTaeWbGf1Oiwtv25Q/HXfnDDBx8g2uxoBmcSccrJPT7O8YAgCBhmzcK0dCnWjRsJP+EEqUtCq1Lyp7mDGZMaxRu/5bOvupm7v9zJTfOHMGWg9MZC1qzszpv2AY/RSPUT//Z7f6q7vr5rj6sNHZOZmiY7T6/YR4nRikIQuHLWQE4dkyz59Y9l3VoADLNm9gnBeihReM65DFu3FlVcHIXnnAuC0L6ARhAYlbe7R2N0+2omUqdm8Vg5irk/YrK6eHNtAQBnTUxlRHLXL0Kd5T6X4VbXfJlj05YwUF6OKIrdmqwvmpZBTkkjlSYb728s4ub5QwNVpozMUXy2taQtheTCHkTrOguLAJ+aVqZntDohOgsLevT8USmRzB2WwNoDtby9rpDHzhmHIsSahGRCl+xiIzklDagUCq6dk+mXxUbTihVUP/7EYYs/QavFfuAA2pZEDRn/4zGbse3Ygeh00tziYKVKTibp3nv8cmPq/ClpbCqop6bZzmdbS7j6BHne74vklLS6BEvT9CeKItatWwHQT50iSQ0y3UM/cSL1SgWu8nJcVVWok4O7fzBtUAzfbC9nR2kjLo8XdTeSsGS6xu4Kn8Pz6NRIyTcdHQcP4jWbURgMaIcPl7SWjpC6ab+jRoZQv7GsnzrVJxjIzpJeMJDqu/Gwt6oJj1cMOYFFKLG9pBERX+RxfLi0gqIjse/cibu2FoVej37mzE4fG6VTMykjhqxiI7/ur+WyGV1LYJUJHL+1pD3MOYYYUBAEwufNw/j+B5jX/ErEKadI/ll1KPHhWgbE6ikxWtle2sjcYQlSlyRzDLwWC7Uvv4I9N9fnzn3RhUSedhpTf97PliIjP+6q4voT5X2LvsCPub7UogmzxpN27Vxqn3seZ2Eh1U8+SdzVV7cllMgcXxzTvVIQqH78CSIWLuySwca1J2RyoNpMpcnG678W8LdFwyX5HLLn5VH74kt4LRaUcbEk3nEHmgEDgl6Hv1DFx5N0z900/fAjpq++xJqVjeNgPnHXX49u3Nig1/Pdrkr2VTejU7ekwnfxb+zv15uMtCwem8Ipo5PZUmikptlOYoTPCOC3A7W8vbaQTQX11Jkd/H3RSKL0fadJSnS5qHv5FUSHA+3IEUSdfZbUJXULhV5P/C03U/Xoo1i3bME8dgwR8+dLXVaXWbG7infXFyEiMiMzjltPGopaqejw9SbvTwSe6Isuwpqdjau8nKaffiLq9NN7dJyO9udSWvbnhiVF8PwvB6hptvPgst1cPG0AZ45PCan1bFdp/PIrnPkFKHQ64m+6qUcii2ARvmABtu07sG3fTt2rr5Hy4AMIfdS0anNBPa/+mo/d5WFIQjgXT8vgrbWFft8PtmZl+dzVlQrirrsOQSHffzkWhtk+wYAtdzeepqaQMWGeNSSOwQkGnvvlAIV1Zv7z0z5OG5fCpdMHoJLwvlpXm/FV8fGH95wJtMyZLfOmIPz+xaHfPuR7HP4YV0UFzvz8Y4+dEBr7edtLG3lp1QHMDjeRYWruOGU4o1Kkf315rda2FAbDnLkSV9P3GPrLzyhjY9v+OxB0+5P56QsnBKIOGYkRRZE31ubTbHcxIFbPBd1sAm51yVenyYKBrqJKSkJQKRGdTjx1dd36QNGqfJtQD367m9/21zJzcJxkTVwyxxcHqpv5aXc1AH+am9nlFJJDcRb4mty1g+XG0Z7SeuHrrqvv8aLi8hkDyS5uoLDOwi97qlnUDRccmeMXh9vDu+uLADh9fApp3Yha7oiOXJVEh4OK2+9AkF2VAkLTihVU3f+vgLpZ+RwKMnn8hz38tLuaOcMSGJoojfOXTM9wur3sKPM1BkvlEuwqr/C54amU6CZOlKQGme6hMBgIGzUae26LM/gZPbuJ0lOGJIQTo9fQYHWyu6KJiRnRQR3/eCCvsgn4vYlaSmw5OYAvgSSUGyqkbtrvizeW9ZMnY1zyHs6CQtz19ZJGWw+K0xOuVWF2uCmsM8sJbZ3QKjScEmLpAgDNq3zpAoa5c7qUWDR/RAJZxUbW7q/jkmkDQvr90t8pqbdSbLSgUiiY3YX0IMOsWTR88imusjKchYUhJ0KfPCCGEqOVnGJZMBDquGpqqH3mWVwVFQgajc+de4pPxPyHcSlsKTLy24FaLp6eQaScFhHSlDfa2FHaiIDA4rHJqCLDSPrnvdS/8SbWLVuof/sdnOXlxFxyidzwcpxxTPdKUcRdVYU1KxvDjOnHPF6YWslfFw7j/qW5ZBUbWZFX3S33eX/QvHo1xvffB48XzZDBJN52G8ro6KDWEAgEhYKoM05HN3YMda++hquykpr//IeIRYuIuejCoDX3ldRb+XxrKQBXzh5EQkTXRbL+fr3JSI9SITDriATmBSMSSYoI45mf93Gwxsy9S3dx16kjGRDXNxKJGj79DGdxMYqICF+jbx/8XNQOGUL0BRfQ+NnnNHz4EWHDhqFOS5O6rE4RRZGvcsr5Its3v5w8KolrT8g8zOytvdebTOBRhhuIueQS6t98E9PXSzHMmIEqvmeptsfan/v3+eN447cCNhXU8/HmYvIqmrhp/hCidH1nrWHbtYum778HIO5P14VMU21HCIJA3J+uo+Lee3GVldHwv/8Re+mlUpfVLTxekU+2lPDdTl/P3qiUSG5bOIxovYarZ2f6dT/Ya7FgfP8DACJPO63PJzIEC3VyMprBmTgLCrFs2hRSfQ9JkWE8fPYYPtlSwg+7KvlhVyV7q5q5beEwkiLDJKmpq/NG3PXX+/2aWfR4sG7diru6un2RLz7zRakN7kRRZOn2cj7fWoaIyNDEcO44eThxIWLgY9m8GdHlQp2WhiZzkNTl9DkOvW4N1DVs37vClwkIa/bXkl3scwu+dcGwbrswuuSEgW4jKJWokn1NAa3nrzuMSI7gtHG+jcY3fyvA7HD7tT4ZmSNxe7y8/lsBIiInDk9gfHp0t4/htdlwtWyIygkDPUeh06FO8b3/nYWFPTpGlF7NRVN9i7jPtpZisrn8Vp9M/2XptnLqzA7iwrWcO6n3F6eduiq1UP34E4geT6/HkvmdY7pZ4b/zPj49mrnDEhAReeO3fNweb6+PKRM88iqbcLo9xBo0DJLoppY1y5cuEDZmLApd70VKMsGhdbPMmp0V9LEFQWhrVM0qMgZ9/P6O3eUhv9YXZzxGYsGAKIpYc7YBoJs8SdJausLisSmsu+skPrl+Js9fMpFPrp/JurtOCprDf+uN5bMnpjFrSFzINz8ro6LQDhsGgDU7W9JaBEFoc+bZXdEkaS2hjNvjZUdpIwCTB0ZLWsuRuOvrsW3fDkDESSd16TkTM6KJDFPTaHOyo6wxcMXJHJPfDvicxSYPiCZce2z/I4XBgH6674ahefWaQJbWI1qvU3aUNcrroxDGvm8fVQ8+hKuiAmVMDMn3/bNNLAAwMjmCzPhwXB4vK/dUS1ipTFdYnuvbj548MLqt6UGh0RB/y81EnXsuAM3Lf6L22Wfx2myS1SkTfLrqXtnVxwFkxhu4bIbPzf/DTcUU11t6VFt3Eb1ejB99hPHdJeDxYpg1k+R77ukXYoFD0QwaRPIjDxNx8kIAmlesoPKBB3GWlAR8bLfHy6u/HsTt9TJ5QAzzh3evCTIQrzeZ0GR0aiSPnDOWlCgd9WYHD3yby7YWcXUoY83Joflnn4tp/PV/QhUTekLwrhJ52mmEjR2L6HRS+/IreJ1OqUvqEFEUeXd9UZtY4PzJ6Vw3J1NOhg8hDHNOQDtiBKLTifHDD3t1rM725/QaFbctHMb1cwejVirYXtrA3V/uJK+P7EW5Gxqoe/11ACIWnoR+2jSJK+oayshI4q67DvCtCWy5uyWuqOuYrC4e+35Pm1jgjPGp3Hf6aKL1PiGlv/eDGz7/Ak9jI6rkJKLPPrvX9R9PGGbNBsCycaPElRyNWqngylmD+PupIwjXqiioNXP3lzvZmF8vST3aUSMRwjoRKwhCwJr2BaWSpHvvaRunPRLvvktS8yqb08MzP+/ns62liIgsHJnEA2eOCRmxAIBl7ToAwufO6ZNJOaGGo6CQqocfofjqayi++hqqHn4ER0HP+gRb6ZFg4IddldzyUQ7nvLye019Ye9iXTN+jptnO+xuKALhwanqPFO6/JwyEtjo71GhNZHD2QDAAcNG0DFKidDRYnbzX8jeUkQkU32yvoKzBSmSYmitmDuzRMZyFhSCKqOLjQiZqq6+iyfQ55Dl6KBgAOGV0EoPiDFicbj7ZEvgNdZm+TaXJxrIdvvj2q2YN6lHCyJF0x1VJxn8E+7xfPnMg4Vo1JUYr3++q9MsxZYJDdrHvRtbkATGSLeitWb6Gc/20qZKML9MzdJMmgSDgzC/A3RD8G6JTB/miGrOKGhA7EaXJdJ+9Vc14vCIJEWEkRkjjMNOKu6ICd3VLAsm4cZLW0lX6WtO+1LRu+tuycySu5HeBTF+5SSsFe6uasbk8RIapGZIQWqlS5tWrQRQJGzUKdUrXRDoqpYK5w3yugb/uk5u2pMLrFVl/sA6Aud1oygufPw8Ay6ZNIdf8OyQhnMgwNVanm33VzVKXI9MO5nXrqXnySbxms68x9cEH0AwadNhjBEFoM/NZsbtaFn+EMGaHm1/3++bxPxwh1BQEgehzzyH+llsQNBpsO3ZS9fAjuGpqpChVRgK66l7pKi9HdHXdcGfx2GQmD4jB5fHy/MoD2F2BNUPx2mzUPvsszT+tACD6/POIu/HGoLnuBxuFRkPslVeS+Lc7UUZF4iovp+rBB2n68ceA7gF8ta2cwjoL4VoVN5w4uNt7ZV19vYW6G7NM10iJ0vHIOWMZnRKFzeXhqeX7WJ4bunvj7vp66t98C4CIxaf2+aRXQRCI//MNvjmirIzGTz6RuqR2cXu8vLDyICvyqhAQuHp2JhdOzZCb60IMQRCIveoqUCqw5WxrMzAJ1FgLRyXx2DnjSI329QE98l0e/8suw+sN3X1u0eul/vU38DY1o85IJ/qPf5S6pG6hnzSJ8JMWAFD/xht4zMERfPaG/dXN3P3VTvIqTYSpldx+8nAunzkwYPvN9n37fPtrQNy11/bb68xAYZgxve2emas6NNebUwbG8u/zxzM8KQKby8PzK/fz1toCHO7gGTuKXi/GN95AnZ7e/gNaPh+T7r0nYE37kYsWkfb8c6iSkg4fWqNBM3Qo3sbGgIzbFcoarPzz611sLTKiUii44cTBXH/i4G6bggcSV1UVjoMHQaFAP2uW1OX0eZp+WkHBWWdh372bsBEjCBsxAnteHgVnnUVTy/q/J3T7FfPu+kL+/sUO4sM15FU0MSEjmhi9hhKjlfkj5AVsX0MURV5dk4/N5WF4UgRnju9+QoDodOJu+UCTEwa6R6vAolVw0V20KiU3zR+CgMDaA7VkF8sOmjKBoazBytfbfMKWq2cPIqKHMdutze2tze4yPUcz2JfQ4OyFclCpELh2ju84a/bVsK9KvlEt0z6tDidur5eJGTFMG+QfZxnZVUkagn3eo3RqrpzlE5r9L7uM6ia7X44rE1hEUSSnxflq0gBp3KRc1TW4SkpBofA1oMv0GVQxMWiHDAHAJoEz+JjUSHRqJY02Z5sbvox/2F1hAqRPFwCwbtsOQNjo0XICST9FN3ky4Lsh5WmWdq0yOiUK8DXFy02h7dN63TB5oHRCw/YQ3W7Mv/4KQPjCrqULtDJveCKiCCv31vDZ1hI25tfjCeEb9P0Jj1dkY349L685SHG9FYNGxaSM6C4/Xzt8OKrkJESHA+uWLYErtAcoFAITB0QDkFMc+k6zxxOiKNLwxRfUv/EGotuDfupUku77Z4fuurMGxxGj19BgdbJBIuc9mWOzam8NTreHAbH6Dq9hDTOmk3TvvSijo32Nxw89jH3fviBXKiMFmsxBnbtX4msMsaxbR/nf/0HTihVdcqkWBIEb5w8hRq+hotEWUMMvV00NVQ8/gm3HTgSNhvhbbiHq7LND6nosUOgmTCDlscfQTZqE6PbQ8Mmn1Pz7SdxG/98rPVhjZmnLPbLr5gxuc+7tKp7mZrzmZgR9J6Z9AXRLlZGGcK2Ke08byfwRiYiILNlQxDvrCkNuTSF6PNS98ipeiwVNZiYxF10kdUl+QRkVRdwNfwageeUqrFu3SlzR4dhdHp76aR8bC+pQKRT85aShLB6bLHVZMh2gSU8jcvEfADB+8D5ehyOg4w2I0/P4uePa5o//ZZfy2A97aLCEZlpG0/ffY8/LQ9BoSLj5ZhR9sJk85tJLUack42lsxPjuuyFrRCSKIstzK3lo2W4arE7SovU8du44Zg6OC9yYTifGd94FIHzePMJGjgzYWP0VZXQ0YWPGAGDZuEHiajomPlzLv84YzTkTfb2Mv+yp5v6luZQ3BseMo/HzL7Dt3IU6OZmk++9DlXz456IqKYm0558jctGigNYRuWgRQ1f+woD33iP16acZ8N57pL/6CqrYWJp++JHmNWsCOn57bCk0ct/SXCpMNuIMWh48awwnjUw69hODjHmtz2xeN25cn06rChVqnn6a+BuuZ9Bnn5J0z90k3XM3gz79hPgbbqDm6ad7fNxuCwY+2FTM4+eN46Gzx6JWCtx44hA+/NMMrpk9iGa7u8eFyEjDD7uq2FPZhFal5JYFQ3sUbeaqrgZRRGEw9Ltoy0DTKrBw9TBhAGB4UgSnjfc547y1thCzQ34fyvgXURR587cC3F4vkwbEMGtIzxcbrc3trc3uMj1Hm9kiGCgs6NWCdXhSBPNHJAKE5EalTGiwqcDIzrJG1EoF15wwyG83nGRXJWmQ4rzPHRbPuLQoXB4vb63t3bwlExxKjTbqzQ40KiVj06RpDLZl+9IFwkaMQBkRIUkNMj2n9Qa3FCkxaqWCiRm+jaitRXIjnj9pdVcfnSK9YMCW43OdlwVF/Rd1YiKagQPA68W2LXDubV0hI1ZHuFaNw+2hoC70XcaCjSiKhyUThRLW7Bw8piaU0dHoW0QoXSWv0sTOMhO55Sbu+nIXf3xzE3OeXBXSzqD9geW5lcx5chV/fHMT/12xn7zKJrYWGfllT3WXjyEIAuHzfCkDrYKRUKL1fZJT0ihtITJteJ1O6l58kaZl3wEQeeYZxP/l1k4bXVRKBaeO8d28/jG3Ul7nhiAer8hPu30Ji38Ym9LpfpZ2cCbJDz2IZtAgvM3N1Dz5JObffgtWqTIS4Covp/rxJ47pXhlz+WUoY2LwGI00fPgRFX/7G6bvvz9mgk1kmJpbFgxFQGD1vho25Nf5+1fAvn8/VQ89jKu8HGV0NEn33utzLz2OUEZGknD7bcReczWCRoN9zx4q7/0nls3+Eww63B5eWXMQrygye0h8l++ReZqaaF69muonn6LsL3/F+N77nRvviSKJ99wdMLdUGf8jejxYNm/B9N33WDZvQfQc7cCrUir484mDuXSGz1BnRV4VT/20F5szeG69x8K0dCmOAwcQdGHE33wzgkoldUl+QzduLJGnnw5A/dvv4K7z/1zcE5rsLh75Lo+dZY1oVUr+sXgEs4fGS12WzDGIOudsVPFxeOqNmJZ+E/DxwtRKbpw3hFsWDEWrUrK7wsRdX+5ke2ljwMfuDvb9+2n88isAYq+8os00ta+h0GiI+/ONoFRg3boVy7r1Upd0FHaXh5dWHWTJhiI8XpGZg+N47NyxpEUH1kzHtOw7XJWVKKOiiL744oCO1Z8xzJ4NgHXjxpDeP1ApFVwyfQD3/GEUEWFqcsub+NN7W/l4c0lAe4ksmzbR9MMPAMT96U/EXnbZUU37Q1f+EnCxQCuCUolhxnSizjgdw4zphJ9wAlHnnguA8b33sO3eHbCxW41UvtlezvqDdXy8uYRnft6H3eVhVEokj583jqGJoZXwC76ECMt6nyDGMGeOxNX0D9y1tUSdffZR348668xemX92WzBQ0WhjykDfhnaYWtnWnHzu5HS+3dEzl3QZaSg1Wvl0awkAV84aSFJk5y4aHdHa7K5OTT0uHCv8iaY1YaC8olcXBBdNTSc1yhdJFkinEpnjk5/zqtlX3UyYWsl1czJ79T53tiQMtDa7y/Qc9cCBoFDgMTXhaehdI9wfpw8gXKui2Gjh57wqP1Uo01+wOT18sKkIgLMmpPb4eqE99FOn+JThHc0rsqtSQJDivAuCwJ/m+iLxdpWbWHsgNDbmZTomu8TnxjYuLRKtSpobldYsn2BAP22qJOPL9A7dFN/fzb53Lx5z8F3+W9NwthbJKWz+wup0U1Dra5SWOmHAYzLhyM8HZMFAf0c3pUV8lJ0jaR2CIDC65XXfmrQh8zsVJjvVTXZUCgXj0qKkLucwzKtWAj4HtO40vizPreSmD3OwuQ5v5Kky2bnpwxxZNBAgWs97penwVLImu7vb5z18zhxQKnAczMdZVubvUnvFhPRoVAoFlSYblabguLTJdIy7oYHqRx/DmpWNoFISd8MNxFx4YZf2QBeOSkSjUlJYZ2FPpZzcGWpkFRmpNzsI16qZPfTYDb6qmBiS7vsn+unTEd0e6t96m4ZPPkH0yulC/Q3HwYNUPfoYHqMR3ZgxJD/2aPvulS88T9I//kHaf58m9uqrUcXH4zE10fjZ55Tf+Tcaly7Fa+lYTDo2LYpzJ/nuA775WwE1fkzdNK9bT82//423uRnNwIEkP/Qg2uPUqEkQBCIWLCDl0UfQDM7Ea7VS9/LL1L3+xjGFHV3hs62lVDTaiNFr2hKbO8LT1ETzqtVU//tJyv56G8Z3l2DfvRu8XjQDBxL/5xtIfviho15vgkaDZuhQvEZjSDeQyfxO04oVHFx4MiVXXUXF//0fJVddxcGFJ9O0YsVRjxUEgbMmpHLnKSPQqJTsKG3k/m9yqWmWPonXnpeH6dtlAMRdcy3qpESJK/I/0eefh2bIYN/c8Mqr7Qo7gkmd2cGD3+wmv9ZMuFbN/WeMZnx69DGf1xWBikxgUWi1xFx+BQBNy3/EWdZzU9DuMHdYAk+cN46BsQaa7C7+/eMePtpcHBIJmB6zhbpXXwWvF8OsmRjmzpW6pF6hHZxJ9HnnAb4kCVdNjcQV/U6lycb9S3NZn1+HUiFw5axB3LZwGGHqwN6/c5aV0/S9T1gfc8XlKMMNAR2vP6OfMhlBrcZVWYWzqEjqco5JpcnGztJG8iqb2FPZzL1f72LWEysDsifqLCqi/q23AYg8/XQMM2cARzftSy2sjTrnbAyzZoLHS92LL+Gq9P+5ONRI5bZPt3PZW5t58NvdGC1OThuXwj9PG0WUTu33cf2BfXceHqMRhcGAftJEqcvpFsaPPuLgSQvZO34ChRddjG3nzk4f37R8Ofl/OI294ydQcOZZATOs0U+f1q4xnzU7B/2UnvfydFswkBChpdHqAiA1Wse2Ul+TYqnRirx+7Tu4PV5eWXMQl8fLxIwYThrZ88Vfm2CgjypFpUSVlISgUiI6HHjqex5brFUpuXH+EAQE1h6oJbtYboqR8Q/1ZgefbPEJiy6ZNoD4cG2Pj+VpampzbtAMGuSP8o5rFBoN6nTfvOssKOjVsaJ0ai6eNgDwbX43WkMzzlBGGr7MKcNocZIYEcZZEztxQOoBglJJ0r33dPBD3435pHvvkXzx19847Lx30AARiPOeFBnGBVN8rm3vbyzGZHP59fgy/iWnuBGQziXY3dCA42BLM3AvFrwy0qFOSkSdkd7iDL496ONPHOBrxKtotFERpLjU/s6eymZERJIjw4jrxbrAH9i2bwdRRDNoEKrYWElrkQksrZue9l278NqlbaZoTdZoTdqQ+Z2clnSB0amR6DShc+3uKi/HvmcvCALh8+d1+Xker8hDy/Job6tbbPl68NvdckKfn+nsvLfy0LK8Lp93ZVQU+hZRmXlNaKUM6DRKRqX4ErRar7tlpMFZVETVgw/hLCpCERFB4l13Ez7nhC4/PyJMzYnDfG6wP8pCopDjx1yfMcopoxO7LIRXaDTE33IzUeecA0DTj8upffY5vzQdy4QGth07qP73k3gtFjRDBpN0/33EnH9+p+6VglpNxEkLSH3qSeKuvx5VchJeiwXTV19TduedNHzxBZ6m9q8Rz5+SzoikCGwuDy+sOtDr5j5RFGn4/HPq33gD0e1BP3UKSff9E1VMaKU8SYE6OZnk++4j6uyzQBCwrF9P5T/vw75vf4+PubvCxA+7fPP7DScOJlx7tADVYzLRvGoV1U/825cksGQJ9ry8NpFA9IUXkvqf/5DyyMNEnXkmMRdddNTrLeXfT6CKjaXpx+UY335bbgTuBlI0UTetWEH5bbfjrjrcgMtdXU35bbe3KxoAmJ4ZywNnjiZGr6Gswcp9X+dyoFo6waGnqYm6V18DUSR83ry25rz+hqBSEX/TTQi6MBwHD2L6+mvJailrsPKvb3KpMNmIC9fy0NljuuQQ3J5A5cBJCzt8rQUCWbDgQz95ks+8xOPF+N57QRN5pUbreOScsZwy2ic4W7ajgoeW5UkqPBJFkfq338JTb0SVlETs1Vf3C4PZyNNPRzt8OKLdQf1rr4fEa31LoZF7v9pFaYOVaJ2G+04fzWnjOk9Q8wei14vxnbcR3R50kyahnzYtoOP1dxQ6XZv5kWXjRomr6ZxWQ4/qZsdh369pdnCjn41UPE1N1Dz/PKLTiW78OKIvvMBvx/Y3giAQd911aIcOxWu1UvPfZ/xqmNaRkYrT42V/tZnECC0qZbdbvYOGZd1aAAwzZyB0ktgZajT98AM1/36S+FtuIfOrLwkbMYKSP12Pu4M+XmvONsr/9n9EX3A+mV9/RfjJCym99S/Y9/d83dkRESedRM1//0vVw49g+vZbTN9+S9XDj1DzzDNEnHIyzatWtX11h26/imYPjm+L/71wajqPfJfH5W9t5taPczh1TFJ3DycjEV9tK6ewzkK4VsWfTxzcqwuJQxMGZLqHoFKhSvJd1Leex54yPCmC08enAPDmb4Vt6R8yMj1FFEXeWV+IzeVheFIEi0b3bo5vTRdQpySj0Ov9UeJxjzZzMACOlnPbGxaOTGRwQjg2l4ePNpf0+ngy/YNSo7Xthvc1JwwKiMt45KJFJD/+2FGLBlVSEmnPPxe0WLnjjchFi0h7/jlUSYfP7YJGQ8pTTwbsvJ8+LoUBsXrMDhcfbCxqi9PbmF8vN1yFECabi4M1vg2OSRIJBmzZPrW8duhQ+aZ3H0bfkjJgzc4K/tgaVZsbeFZx79KYZHzktbiqj0mV3j3cmrMNAN1kOV2gv6NOT0eVlITodmPb0bmrS6BpTdbYV23GFQIubqFEdss8K5XQsCOaV60GQDdpIqq4YztLt7Kl0HjUjZkjqWpy8JePc/hgYxG/7q+lsM4ivy56gcXh5qucsk7PuwhUmuxsKey6UUr4PJ9QxLJ+PaIztMwRWt8vOSXydYpUWLOzfQ7jDQ2oU1NJfuBfhI0Y3u3jLB7r29/PKmqg2o/u4TK9o7DOwt6qJpQKgUWjk4/9hEMQBIHo884l/uabEdRqbDt2UPXIo72Ke5cJDSwbNlDz3HOITidh48aSdPfdKMN9jZpdca8UVCrC584h9d//Jv7mm1FnpCPa7DQt+47yO/+G8eOPcR+RBqxUCNx60jAMGhUHa8x8ntXz1Buvw0Hdiy/S9N33AESddSbxf/kLCq20gu5QQlCpiD7/fJL+eS+q+HjcdXVUP/44jf/7H6K7e/dNbU4Pr/3qM2s6aWTiYXtknsZGmleupPqJJ3xJAkvew75nj0/YnplJ9MUXkfp0q0jgjKNc2498vUWddhpx118PCgXm39ZS+9JLIXftEop0x+XfX4geD9WPP0G7Tpot36t+/IkOG0yHJITz6DljGRTncwp/+Ls8NhwMfhqvKIrUv/EGHpMJdWoqMVdcHvQagok6MZG4a68DwLTsO5+oJ8jsr25ucwhOi9bz8FljSIvWHfN5HQlUPNXVlP/1Nkr+/GfqXn+Dxi+/wrx2LfY9e3DX1fk1IUmK91ooE3vF5QgaDY59+7CsWx+0cTUqBdfNyeSOk4ej16g4UNPMPV/u6tYa2Z+YV67Elp2DoFISf/NNKHTHfj33BQSFgvg/39AmMmr67jvJavF4RT7eXMIzP+/D5vIwMjmSJ84bx6iU4KT/Nq9cieNgPoIujNirruwXghCpMcyeDYB10+aQTbLriqGHv4xURLeb2pdeahMexd14E4IidBviwddLkXD7bb61Rk0Ntc+/gOjqvUnisc67QPeMVIKN12ptc8Lva2kz9UveI/rCC4k+/zy0Q4eS/NCDKMLCaPzyq3Yfb/zgfcLnzPGJR4YMIfG22wgbPYqGjz72e21VDz2Mp6GBhk8+oeKuu6m4624aPvkEj9FI1UMPU3bLrb6vW//SreN2PYe5hSfOG4e3ZbFz5axBROs15BQ3cPKoRC6dMbC7h5ORgIM1zSzd5mtOv27OYGIMvVP1uMorADlhoKeo09JwlZfjKi9HN2FCr4514dR0ckoaqGi08d6GIm5ZMNRPVcocj2wqMJJd3IBKoeD6uYNRKHq3AGhtate0NLnL9B5NZib8+ivOgt4LBhQKgWtPyOT+pbmsPVDLSSMTg7bYlAkdPF6RLYVGaprtJIRr+Wl3NR6vyLRBsQFtGlYolegmTEARFUXk4sWoEhLQT50iJwsEmMhFi4hYuBBrVjaumhqavvkG0eFAGUBRl0qp4IYTh3DLR9m8sPIgzkOaqlKiwnjgzNEsHpsSsPFlusa2kgZERDLjDcT2cq3QU6xbfQ3m+qlyukBfRj91CqalS7HvysXrcAS9iWHqwBh2ljWSVWTkrAmywL235FX6HDNbhRhS4XU6se/eDYB+8mRJa5EJPIIgoJ8yhaYffsCWk41hxnTJakmP0REZpqbJ7hPWyeslH2aHm/0trpiTB0ZLW8wheB0OLOvWARCxcGG3nttVh779NWaMhyT0KRUCqVE6BsTqGRhv8P0bqydar+7xTdVD12iJEWFMz4xF2cv9GanGFkURo8VJeUv6T3mjnfIG33832pzUmbvWFNcdB8WwceNQxsXiqTdizcnBMHNmT8v3O5MHxvDexiL2VjVhdbrRa7p9q0amh4iiSNMPP9D4+RcgioSNHUvCrbf02OAkPUbPhIxodpQ28uOuSq4+IdPPFcv0hFZH8JmZcT2+B2aYOQNVYgK1zz2Pq6yMygcfIuGvf+2RsERGepqW/0TDx74b+IZZM4m7/noEVc/mXkGhwDBzBvoZ07Ft247pm29wFhbSvPwnzL/8Qvi8eUSedhqqhAQAEiK0/HneEJ75eR/f7ihnbFok49OjuzWmu76e2ueew1lcgqBSEnvddYSf0PVElOONsOHDSXnsUYwffIhl3TpM3y7DtiuX+Bv/jDqla3uPH2wqorbZTkJEGFfMHISnsRFrVhaWLVtw7Nt/WMO4ZnAm+mnT0E+bhjoxsZOjdkz43DkoDAbqXnoJW3YONf99hoTbb+s3DZj+prWJ+sjG/VaXf/xgRiSKIt6mJlzV1bira3DXVGPNzjmqcfuIJ+GuqsKa1fH6NS5cy4NnjeHFVQfILm7ghVUHqDTZOW9yWtCaMZt++AHbzl0IajXxt96Cog+5wPYUw4zp2HfvxrxmDXWvvU7Ko4+gjAzOun5bSQPP/nIAp9vDsMQI/rF4BBFh6mM+T/R4qHrs8fYFKi1YN25CtNqOTpNWKlDFxqGKj0eVmOD7NyEBVUICyvh4lNHRXXq9BeO91tdQxccTdc45NH7+OQ2ffopu0iSU4YagjT9jcByZ8QZeWHWAgzVmnvl5H6eOSeayGQPRqILTaOssLm67roq+6GK0mf1rDaRKSCD2iiupf+MNGr9eSti4cWgHB7fHxWRz8cLKA+xuMfE5fVwKf5w+IGju4u76ehq/+AKAmIsuklN+/YRu/DgUBgOexkbseXvQjR0jdUlH0VUjlS2FRmYN6bpBS3s0fPwJjr37EMK0JN5+W1Dn0t6gjIwk4c47qXrkYRz79lH/7hLirv9Tr67jjnXeDzVS6e15DwSWzZsRXS7Uqam+PrY+gthyvzH+huvbvicoFBhmzfIlnbeDbfsO4q6+6rDvhZ8wh+aVK/1e36g9gRG5dnsnRKEQUPD7C/ysCanyjfc+hMPt4eXV+XhFkROGxPd6EhHdblzVvsQJdZr8OugJrUILV0VFr4+lVSm5ef4Q7l+6m7UHapk5OJYpA4/fCzevxXJY/I+g0RwXGx7+wOxw8+56XxP62RNTyYjtffNoa1O7ZnDfuTgIdbQt59JZWIgoir3eSByaGM7CUYn8sqead9YV8sR540I60ioQHM/zxvLcSh5alnfYQkSjVDA0MZwrZw0K2LiiKGJe8ysIAjGXXEL4HPlGVzBpdbMCUGg1NHz4Ec2rVhF+0kkBuzlxsKaZfdVHx/NVmezc9GEOr14+uU+JBvrjvJEjsUuwp7kZ+969AOimTpWkBhn/oM7IQJWQgLu2FvvOnUGPrJ06KJZ31hdyoNpMg8XZa7G8v+iL84bZ4aaozgrAaImbpO25uxGdTlTxcagzMiStRSY46KdMpumHH7Bu347ociGoj31TPRAIgsDo1Eg2FdSTV9EUVMFAKM8bO0ob8YoiGTF6EiPCpC6nDeumTXhtNlSJiYSNHdut53b19zh/cho6tZJio5VSoxWzw01pg5XSBivr8393CY0MU/vEA3F6Bsb5hARpMTrUx1hvt7dGC5bItjdjuz1eqprsVDTaW4QBtjaRgN3VvtMq0GWhandeZ4JCQfjcEzEtXYp59ZqQEgwkRYaRGq2jotHGjlKT32/2hfK8EQxEjwdrVjbu2trDTAlEtxvjkiWYf/PFpEcsPImYyy/vtWHB6eNS2FHayJr9tVw0LUMWgEhMo9XJxnxfdPwfxvVuvtQOHkzyQw9S+8yzOIuLqXny38Recw3hfcwxryv013lDFEUav/iizZU/4tRFxFx6qV/2vQRBQD95ErpJE7Hn7sb0zTc49u+neeUqmtesIfyEE4g84wzUyclMz4zl5FFJ/LKnmpdXH+Sp8ycQpe/ada2joIDaZ5/DYzKhiIwg8bbb0A4b1uv6+zsKnY74G65HN2ECxiVLcBYWUnn/v4i59FLCF8zv9DWQU9LAqr016G0WboqqxfSfH3HsP1okYJg+Hf20aW3ikN6inzyJxL//HzXPPYd9zx6qn/g3if/3t6A1NXcXqeaNY7r8CwLVjz9BxMKFx/yMF0URT2Mj7poa3NXVv4sDqqtx1VQj2g5v3HLX13epxmOl0oSplfztlBF8tLmY73dV8kV2KZUmGzecOCTgDb+O/Hwa//c/AGIuvwxNenpAxwslYi6/DMf+/bgqKqh/800S7rwz4CKNdQfqePXXg3i8IhMyornj5OGEqbt27WnesBFPSy9OR4hOJ7rJk1FGReGuq8NdW4unvg7R7cFdW+t7Le7Zc9TzBJUKZXxcm4hAFd/yb0I8qvh4FBER4PX67b3WSn+53ohcfCqW9etxlZfT+PnnxF17TVDHT4wM48Ezx/BZVinLdlTw0+4q9lc389eFw0iJCqzQzGu3U/vyy4huD7qJE4k4tX8KRgwnzMa2fTvWLVuoe+01Uh55JGiGSAeqm3n2l/0YLU60KiU3zhsS1AZhURQxvvc+ot2BduhQwk86KWhjt0d/mTfAN/fqp0/HvHo1lo0bQlIw0FWjjjX7anr1ujT/9hvNv/wCQPyNN/Y5k2pNehoJt95KzX+fwbJuHeqUFKLOPKPHx+vqee+OkUowsaz1GfcY5s4JiTSSrs4b7oZG8HhQHpFOrIyPazNFPuo5dXUo4+KPery7LvipYT2lR7uWJpuLHaWN1FscHJmQcv6U42dB0Rf5eHMJlSYbMXoN18zpfdOuq6oavF4EXRjKmNCKHe8rqFN9QgtnWc9jSA9laGIEZ0xIYdmOCt78rZARF0USrj0+b1BUn3EmlkMWp/G33ELCX26VsKK+w4ebimmyu0iL1nPOpN5fmImiiLPlw7S/KcylRJ2ejqBS4bVacdfUoE5K6vUxL56WwaYCI6UNVn7aXc3p4/tO064/OF7njeW5ldz0Yc5REWdOj5e8yiayi40Ba0ix5+7GXVeHQq9HPz24jaQyh2OYfQKNn32Oq7QMZ2FhQNwyWuP02kPk9zi9U0YnB805tbf0t3nD5fGys9znWDJ5oDTX97Zt23wR7gMH9NiVTSY0EAQB/dQpNP24HGt2dtAFA7EGDUMSwsmvNZNT0sDCUb2/VvIHfXHe2FPZhIhIarROcuGFLccXa6qbNDkkNh5lAo9m6FCU0dEtzkt5vU5n7A2jU1oEA5VNnB/EcUN53mgTGkp03dARzStXARyzGaw9pmfGkhIVRpXJ3m4MtAAkR4Vxw4lD2q5ZRVGk3uKkxGilpN5KUb2FEqOVykY7TXYXuRUmcltc4eD3NIKBcXoGxBkY2CIoiNb75tiO1mjBENl2dWyb03NIWkDLvw02qpvtHcZjKwSB5JZG+bQYne/faB2p0WFoVUrmPLnqmOd9emb3zFHCT5yL6ZtvsO/Zg6u6BnVS6FxfTh4QQ0WjjZySBr/f/A/leSPQNK1YQfXjTxzm/qtKTibhjjuw5+bi2LfPZ1pw+WVEnnKKX8YclxZFeoyesgYrq/bWcMZ42VxJSn7Oq8bt9TIsMYKhieG9Pp4qJoak+/5J/RtvYt26lfo338JVXkH0RRciKBQdClT6Gv1x3hA9HozvvtsmEoq+8EIizzjd7+sIQRDQjRuLbtxY7Pv2YfrmW+y5uZh/W4t57Tr0M6YTdeaZXDFrIPuqmiltsPLKmoPc/YeRx6zFsmkz9W++6XNrzEgn8Y47UMXHd/ocmcMxzJiOdthQ6t94E3teHsYlS7Dt2EHs1Vfh2H/gqPduY2UNK1//isX5uYyy12GI1OJoOZZmyODfRQIB+juEjRpF0t13U/P0f3EWFVH92GMk/uMfqOJCz0lUqnnDmpXdLZd/URTxGI2HCwJqfv9v0dlJ0pUgoIqLRZWYhCopCU9zM/WvvHLMGhXhx/78USgErpg1iNRoHW+vK2TdwTpqmx3cuWgEUbrACOW9Fgt1L78CHi/66dMJnz8/IOOEKgqNhvhbbqbqwYew7dhJ808/Ebl4ccDG+3FXJe9tLAJgztB4bpw3pMtGbc6SEupfe61Lj9UOG0bUGae3/b/o9fqEMLW1uGvrcNfVtokHPHV1uOuNiG437qpq3FXtCxKElsbo3iZqHEl/ud4QVCpir76K6scex7xmDeEnzkU7dGhQa1ApFVw2YyCjUyJ5ZU0+hXUW7vlqF9fPHcwJQwN3rWB8/wPcVdUoY2J67agdygiCQOzVV+M4eBB3VTUNH30ccGGIKIr8nFfN+xuLcXu9pEbruPOU4aTHBC4Zvj2sW7Zi274dQaUk7rprJf8b95d5oxXD7FmYV6/GmpWF96qrQk780FWjjvX59eyramZEckS3x3AcPIhxyRIAos47t88mSevGjSP2issxvvc+jV98gTo5qcf3QaN1/jdSCRauqiocBw+CIGCYPVvqcoC+P29Yt23D09hIxIIFbd9rXLqUuhdfwmuzEbFwIUn339fj+aPbXcS/5FVz+2fbsTjdhGtVHPqxIAiCLBgIYXaWNfLTbt8F/U3zh/ilidxVXg6AJi14EXn9DU367wkD/nAIB7hwSgY5xY2UN1pZsr6QW086Pp1Gkr5bRtohKkQhxC60QpXcchNr9tUAcMOJg4/peNcVPA0NeEwmUChQDxzY6+PJ+BBUKtQDB+DML8BZUOAXwUBEmJpLZ2Twxm8FfJFdyuwhPY/t7oscj/NGawN3x4GmgW3gNq9eDYBh9uyQWxAfbyjDDeinT8eyfj3m1asDIhjo63F67dHf5o09lU3YXR5i9BoGx0sT/WjdmgWAbsoUScaX8S+6KT7BgG3bdkS3G0EVXDHztEGx5Nea2VoUOoKBvjhv7G4REo1JjZK0DtHrxdoSA6qbPEnSWmSChyAI6KdMpnnlKqzZOZIKBsak+d4D+6ubcbq9QYt6D9V5w+3xsr20EYApISQYcBQU4CwqQlCpCD/xxG4/X6kQeODM0dz0YQ4CHLZWal0RPXDm6MPWR4IgEB+uJT5ce1hKk8PtodRoo9RopbjeQnGLoMDi/D2NgIOHpxFkxOr5Iqu03TVaoEW2na0PW7/3t8938M32ChqsHTdWaVVKUqN1pMe0CgJ8ooDkyLBOG2S6e967gio+nrCxY7DvysX826/EXHhht54fSKYMjOG7nRVsK2nE6xVR+PHvGarzRqBpWrGC8ttuP8oF1V1VReVdd6EZOhR1WioJt9yCbvx4v40rCAKnjUvmjd8K+DG3ij+MTekzIvj+gscrtuw52PhsaylKhcAfxib77fgKrZb4W2/B9NXXmL75hqYffsBVWYlm2FBqn/7vUQKVpHvvIXJR33Jb7W/zhtfppO7lV3ymBIJA3LXXED5vXsDHDRsxgrB//B1Hfj6mb5dh27YN66bNWDdtRjdlMreeeAr3b1Oyo6yR73ZWcuaE1HZFJygUmL5eimnpUgB0EycSf9ONKHSBdQ3ur6hiY0m86x80//QTjZ9/TvPKlRiXLEF0ONoeo4iORjd+HKWVjYyxudCqFCQmGNAOHYK+VSQQpKZ9bWYmyff9k+qnnsJVWUXVo4+S9Pe/t5nQhQpSzRvHcu9vxfj++5i+/hp3TQ2i293xAxUKVPHxqJISUScltYgDWv47IeGwlDvR48H01Ve4q6vbd13Hdx5MX36JMjISfRf2LhaOSiIxIoxnf9nPvupm7l+ayz8Wj/B7g6goitS/uwR3XR2qhATirr3muOzv0GRkEHPZpRiXvEfj55+jHT6iLdHdX4iiyGdbS1m63ddL84exKVw5a2CXzrcoiphXr6bhw4/wWixdGu/IlBNBoUAVG4sqNhZGjDh6DLcbt9HoEw+0CAncdXW4a3z/ehobER0OvyVqHEp/ut4IGzECw9w5WNauo37JElIeekgS0eikATE8ef54Xlx1gD2VTby46gC7yk1cPXtQl9Msuop53Xos69aBIBB/800oI7rfKNyXUIYbiL/heqr//STmNWvQTZzYpXm9JzjcHt5aW8jaA77304zMOG6cNwSdJrivKY/ZgvGD9wGIPOPMkHB970/zBoB2+HCUcbF46o3Ytm3vsuAqWBzLSAUgXKvEoFHy3xX7eOzccSREdD19w93QQO0LL/pSSqZMJurss/1TuERELFyIq6KS5p9/pu71N0iKi+/2dYXb42VDfh0apQKnx9vuY3pqpBIMzGt9An3d+HGoQsRsvKvzhiomGpRKPEdc83jq6jsUiKvi4/HU13X58T2h7pVX0U+f1iYYsO/bT+V99xN97jloBg+h/p23USUm9lgE0e079Y/9sIcLp6bzj1NHBv2DSabnmB1uXvs1H4BTRiczPj3aL8d1VVQAhNwGRV9ClZQESgWi3YHHaPTLZpNGpeCm+UO4f2ku6w7WMWNwHNMGhd6HRqBRGAwou+DgIPM7DreHN9cWAL65oidq0PZwFviOqU5PkxuC/Yw2MxNnfgGOwkIMs2b55ZgLRiSyam8NB2vMfLCpmL8uPH5ER8fjvHGsBm4IXAO3x2TCui0H8Dl/ykhP+Pz5WNavx7JxEzGXXur3m5B9PU6vPfrbvNHqEjxpQLQkN4y8Nhv23bkAGILsRi8TGLTDhqGMisJjMmHfswfduHFBHX/qoBg+3VpCbrkJm9MTEvsYfXHeyKtsAnzu6lLizM/H29SMQqcjrJ0bnjL9F92UqT7BQE42sVdfhaAITqP+kaRGhRGt09Boc3KgpjloIppQnTf2V5uxON1EhKkZmhA69ZlX+dIF9NOn9/jm9eKxKbx6+WQeWpZ32HopOSqMB84c3WV3f61KydDE8MMcrlvTCIrrrZQYLb5/661UmnxpBBvz62myd9zQ1CqyPfeV9Z06j3bQv9RyDLHdx5lsrmOuDy1OD8X1ViJ1KqJ1mra0gLTosBZhgI44g6ZH15L+Ou9HEjF/PvZduVjWriP6vPNCxvl7eFIEBo0Ks8PFwVozw5P812wRqvNGIBE9Hqoff6LTF7+rrIz0V15GO2CA38c/YWg8n2wppa7ZwZINRcSHa0iM8N3MlcUDgWV5buVR80aYStGpsKknCIJA9PnnoU5Nof7Nt2heuRLn668f9Th3dbVPuPL8c31KNNCf5g2vxULNc8/j2LcPQaUi/pab0QfZlEA7ZAiJd9yOs7gY07LvsG7dii07B7JzuDVtCB9EjOLTrQIj9mchvPzsYaITZVIS+smT25oWIk/7A9EXXSTZNXB/QRAEIhcvxm00Uv3wI0f93NvYiPm3tbji0qjLGMHMc08h4+S5kjn7q1NSSL7vPmqe+g+uykqqHnucxL/9ze+Nzb1BqnnjyObojnCVl+ONbNnHUCpQJSQcLQhISkIVH99lgwtBqSTp3nt887wgHH7d0fL/YePH4zGZqH3uOQwnnEDMZZehDO/cmGVcehQPnz2Gp5bvo6bZzr++2c3tJw/zW08HgHn1GqxbtoBSQfwtN6PQB9exOpQIX7AAe+5urFlZ1L3yCimPPOy3eyEer8jb6wpYtddnznfJtAGcPTG1S+sjr9VK/Tvv+v5OgOGEE3yN/bW17V/jCgKqpCSf0KwbCCoV6sTEDtN9RacTd309zavXUP3ww8c8Xlffk9C/rjcAYi6+GFvONlwlpTT//AuRi0+VpI5Yg4b7Tx/NlzllfJVTzpp9NRyoNnP7ycPIiPXPe91VVYXxvfcAiDr3nONmbzZs9Ggi/7CYph+XU//222gHP4oyOtqvY1SZ7Dzz8z5KjFYUgsBlMwZy2rhkSe7RNX76Cd6mZtSpqUSdeUbQx2+P/jZvCIKAYdYsmr77HsvGDSEnGOiKkcoT541j/cF6iuotPP3TPh46e0yXBEqiy0Xdiy/iaWxEnZZG/A039AvxYsylf8RdU41tx05qn32W5Acf6PIaQhRF3lhbwI6yRoYmhpNX2eRXI5VAI3q9WNZvAMAwZ67E1fxOV+cNQaMhbMwYLBs3EXHyyUDL77RpEzGXXdbuc3QTJ2DZuInYq65q+55lwwZ0Eyf6pXYA+949JPz1r23/3/TDD+jGjyflEd86Vp2STO2LLwVPMFBlsnPN7MyQuMku03Xe21CE0eIkOTKMy2b4bzO8NWEgFFSFfRVBpUKdlIyrogJXebnfNp6GJoZz5oRUvt1RzltrCxiZHEFEWGDiC2X6D//LLqO6yU6sQcOl0/03VzgKCwHQZvrfrfp4R5M5GFiJs7DIb8cUBIHr5gzm3q92sSG/jpNGJjI2TVo3WZnAIWUDt3ntOvB40Q4dgiYjw+/Hl+k+2uHDUKem4qqowLJxIxEnneTX43c1Ji8U4/SOB0RRJLukEZDOJdi2fTui24M6JRmVLEruFwiCgG7y5JaI1eygCwbSonWkROmoNNnYXtrYZ9JLQgmTzUWJ0QrA6FRpBQPWnG2Ab0Mu2GkVMtISNnIECoMBb1MzjgMHJLspKQgCo1Mj2ZBfR15Fk+SpG1KTXeITGk7MiParM3pv8JgtWDZtBiBiYe+uZRePTeGU0clsKTRS02z3W+PvoWkEh15ztaYRfJ5V0ibU6gyr04Pez3v0Dnf7LlZHcvbEVC6bOdAvCbZHEojzrps0CUVkBJ7GRmw7dgbMEbC7KBUCEzOiWZ9fR3Zxg18FA8cj1qzswxpu20O023FXVgVEMKBVKUmO1PLrvlo2Fxrbvp/SS8GLTOcsz63kpg9zjnI+tLu93PrxNpQKwe/n3jBrFsr4eIou6CCxRBRBEKh+/AkiFi4MGZHS8YK7oYGap5/GVVqGQqcj4c47JG1o0wwcSMKtt+AqL8f03fdYNm4kqTyfSxp2UetW4i7cwZGfcJ7qapp//BHt8OEk/u3OoCQjHC+IHg/1b7zZ6WN0dgthd/6d4dMHBaeoTlDFxZF03z+pefq/OAsLqf73EyTefjtho0dLXZqk6KdOQZWc3KnLvyIykvhbbkadnIIqKRFVXJzf5uPIRYvg+eeofvyJwxNmkpJIuvcewufPx/TV1zT9+COW9eux5+YSe83V6CdP7vS46TF6Hj13LM+s2M/eqib+/eNerjkhk1NG9z4x01laSsNHHwEQc9FFAUkX7ksIgkDstdfiKCzAXVODcckS4m68sddNi063l5dWHWBLkREBgetPzOSkkV37+zkKCql7+WWfW79SQcxFFxGxeDG6CeM7FqgASffe4/drDUGjQZ2SQszFF1H/xhsdv9d6KFjoTygjI4m+6EKM7y6h8asv0c+YLpm7skIhcOHUDEalRPLy6oOUN1q59+tdXD17ECeNTMQr0uN1tuhyUffyy4gOB2GjRhJ11lkB/m1Ci+gLLsCWm4urtIz6t98m4c47uzxftCahdXTes4uNvLw6H6vTTZROzW0Lh0u2B2/Py8P8m88pPPbaaw5L2JHxL4bZs2n67nvsO3fiMVuOKSwMNl0x9Jg1JJ57v9pFsdHCK6sPcscpwzt9X4iiiPG993AczEeh15Nw+239Jj1NUCqJv/lmqh55FFdZGTXPPkvyffehCDt2v8MnW0r5bX8tCkHgkXPGUNvs8LuRSiCx5+3BYzSiMBjQT5oodTk9Iu7qq6i4+x7Cxo5FN34cxvfex2uzEX3euQBU3HUXqsQkEv92JwCxV1xJ8ZVXUv/Ou4TPn0fT9z9g272b5Icf8ltNXlMTqvjf72dbt24l/MTfBRlhY8fhrqzs8fG7vaN/4vB4dpY3MiDOf4rj9zcW8fqvBdSaHYxKieShs8YwMSP6mM/7dkcFf/1kG6eMTuLNK6f6rZ7+xqaCetYeqEVA4OYFQ/0aO9UmGJCbeXqFOi2tTTDgzyjkC6akk13cQHmjlSXri/jLceQSLtN9CussfL/T94Fy3Rz/CsOcBT7BgCaEnE/6C61uMs6iIkSv128uQ5nxBk4ZncSKvCreWV/IU+ePR6WUHYz6I1I1cIuiiHnNGsDnai8TGgiCQPj8+TR8/DHm1asJX7DAr8r+Y8UYhnKc3vFAWYON2mY7aqVCsgZIa1Y2ALqpU/uFq4SMD/3UKZhXr8aWk4141ZVBdUUUBIGpg2JYtsNGVpH/03KOB/a0NK1mxOg7dbIOBrYcXzKRblJoNHrKBA9BpUI3cSKW9euxZmdL2vQ1pkUwsLuiiQ7aBI8btrUkE00eEBpRwwCWdesQnU7UGelohg7t9fGUCiFonx2taQQLRiTxxm+Fx3z8304ZztRBsXR2yXTkjw69vmrvaVuLjNzwQfYxxx6fHh0QsUAr/j7vgkpF+Jw5NP3wI+Zffw0ZwQDA5IExrM+vI6e4gT/60bzjeMRdW+vXx3WX5bmVfLCp5KjvV5ns3PRhDq9ePjkkb+72ZTxekYeW5bW7v9DKQ8vyOGV0st9d+DzGBkSHo+MHiCLuqiqsWdkh5xjZn3FVVVHz1H9w19WhjIoi8R9/DxmTEnVaGvF/voGoc8+h6bvvSfn1VyKzOv/MddfXY5gzJ0gVHh8cS1wmAJGWRhZ7qoBBwSqrU5QRESTdfRe1zz2Pfc8eap7+rySpGaHEYS7/R/3QN9+nPPoIkaecErAaIhctImLhQt9rqrYWVUIC+qlT2hq3Yy65GP3UKdS/+Rauykpqn3sew6yZxFxxRadup5Fhav55+ije+K2AtQdqeXtdAZUmG5fPGNhjkbbX4aDu5VcQXS50E8YTsXhxj47T31CGG0i4+WaqHnscy8ZNhI0dS/jcnjvjWp1u/vPTPvZUNqFWKvjLScO6dJ9DFEWaV/xM42efIro9qOLjiL/5ZrQt69ljCVQCmWZ0zEQNAiNY6GuEz5+PZe06HAcP0vDRxyTceouk9YxNi+Lf54/nldUH2VHWyJtrC1i6rZytRUaqmn6/fu2OsLnh089wFpegiIjwiWuOs9QjQa0m/qabqPrXA9h27MS8ahURCxce83ntJaG1nvdFo5P5PKuUpdt9PXcjkiK4/eThxBg0Afs9OsPrdFL/7hLAZ8ARNny4JHUcL2jS01FnpOMqLcO6dQsRCxZIXdJRHMvQIz5cy/+dOoKHl+WxpcjIF9llXDS147WXeeVKnyBFEHyizqTeCyJDCYVOR+Kdd1D10EO4Skqpe/U1Em77a6fz5Q+7Kvl2h28OuP7EwUwZ6LtuCISBTaCwrPOJjAwzZyBopJm/ekvkaafhNjZQ++ILeGrr0I4axYA330AVHw+Aq6IShN//jvrJk0h7+j/UPvc8tc8+i2bQQDJeetGv86YyPg5XWRnqlBREpxN7Xt5haQJeiwV6Ierq0qf4z3nVbV8njUzkiR/28uzP+/lxV+VhP/s5r7rbBSzbUcGj3+3htpOH8f1f5jA6JYIr395MnbmTjTag1Gjl8e/3MH2Q3EzUGY1WJ2+t9d1gOntiql9dikS3G3e1b1EiJwz0jtbz1yrA8BcalYKb5g9BQGB9fh1bDnE2kpE5FI9X5I3f8vGKIjMHx7VdiPgDURRxtiUMyIIBf6NKSUHQahEdDlwVFX499kXTMogMU1PRaOOH3M4d2mT6Lq0N3B0tMQR8mxf+buB27NmDu6YGQReGfsYMvx5bpncY5pyAoFLhLC7xa3oJ/B5jCO03KImEZpze8UJOi0vwmNQov4qMu4rX6cS2YwcA+qmyILw/ETZqFAqdDo+pCcfBg0Eff2rLte220kbcnq45J8v8zu4Kn2BgjMTpAq6qKlyVlaBU+FVoL9N3aHWss2VlIXbgIhkMWl2+DtaYcbg9ktUhNZUmGxUmW5tDeiggiiLm1asAiDjppD4rPuzqGm3RmGQSIrRtaQXtfcUd8RVr0LR9xbTztXBUkiTrw2AQfuKJgC/Ryt3QIHE1vzMhIxqFIFDaYA1Ist/xhCohwa+P6w6tjevt0fqJ9dCyPDxe6T6/+iNbCo2HNd8ciQhUmuwBuS8itUBF5mgchYVUPfoo7ro6XxPl/feFjFjgUNSJicRdew3xl1+OyuPu8DMXwFNf32asIOMfuvqeFOvrA1xJ91DodCT+7U70U6cgut3UvvAi5rVrpS5LUiIXLSLt+edQJScf9n1VUhJpzz8X0CbqVgSlEsOM6USdcTqGGdOPaprWDh1KyiMPE3n66SAIWDZuouLuu7FmZXV6XLVSwc3zh7Q13f2wq5KnV+zD5uzZ+rPhww9xVVSgjI4m7vrr++w6KRBohw0j+vzzADC+975v36kHmKwuHl6Wx57KJnRqJXf/YWSX1kwes4Xa55+n4aOPEN0e9FOnkPzwI21igVYiFy1i6MpfGPDee6Q+/TQD3nuPoSt/CcrrvO29dkRjZzDfa6GOIAjEXn0VKBRYt2zBtmuX1CURpVNz9x9GcumMgTRYXSzbWXmYWAB+FzYvz+38dW/NyaH5558BiL/+T5IlKEiNJj2d6IsvBqDh40+O2dvVmoR25HqlymTnxg9zuOGDrDaxwB/GpnD/GaMlEwsAmJYuxV1djTImhugLj3eLlOBgmD0bAMvGjRJX0jGthh5nT0xj1pC4o+7fD0+K4PoTfalFX+WUsSG/rt3j2PfuxdiSdBR90YVBTyIPFqr4eBJuvx1Brca2bRsNn37a4WPXH6zj/Y1FAFwybQALRiS2/exY5z1U8FqtbetVQy9El6FA7OWXMWzVKkbu2knm55+hmzCh7WcDP3if1H8/cdjjIxcvZsjyHxm5ayeDly3zeypg+IknUvPfZ7BmZVHzzLMowsIOE4w79u/r1X5HlwQDN3yQ1fZ191e7qDDZeGHVAW7+OOewn/35g84XN+3x1rpCLpmewUVTMxiWFMFj54xDp1HyeVZph8/xeEVu/2w7d5wyjIxY/yUd9DdEUeSN3wowO1wMijNwwZR0vx7fXVOD6PYgaLUo42SXxt7QKhhw+lkwADA0MZyzJvoSIN5aW0CT3eX3MWT6Pt/vqqSwzkK4VsU1s/3b1O+uqcFrtSKoVKjT/TsPyYCgUKAZNAigTZjhL8K1Ki6bORCA/2WXHVPMJ9M3aW3g7sjtHQLTwN28ejXgi3FXaLV+PbZM71CGh6OfPg2gLQXCn7TGGCZHHZ5aoVEquGRahuy4KCHZLS7BUwZKs+Fr37UL0elEGRfb9tkm0z8QVCp0LVGUtuzgNzsMSwwnMkyN1elmT2Vz0Mfv6+S1CAZGS5Q80kprukDYyFEo9PJe0PFI2LhxCBoN7rp6XMXFktWRHBlGrEGD2+vlQLVZsjqkJqe4EYBRyZF+TSjsDY49e3BVViGEadtuuvVFOhPZBnKNJvXYgUadmop2xAgQRSzr1kldThvhWlWbyc+2kkZpi+nj6KdOQdmZQ50goEpObhOg+RMpG9ePR4wWJ7/tr+WjzV27HgiEGEdKgYrM0djz8qh+4gm8Tc1oBg4k+b5/ok5MPPYTJaTThIpDkEUn/qUvv3cFjYb4W24h/MS5IIrUv/kWTcuXS12WpEjZRN1VBI2GmIsvIvmBf6FOTcXb1EztCy9S+/LLeJqaOn6eIHDe5HRuWzgctVJBTkkDD367u9v36SwbN2L+9Tefm++Nf0YZKa0ZRCgSefrphI0aheh0Uvvyy4hOZ4eP9XhFNubX8832cjbm1+PxitQ02fnXt7kU1VuIDFPzrzPHdCm913HgAJX334ctZxuCSknMFZcT/5e/oAw3tPv4YwlUAklfeK9JjWbAACIW+VJNjO+9j7eT11GwEASB08elUN/BvNEVYbO7vp76N98CIGLxqegmTgxApX2HiEWnEDZ2LKLLRd1rryO63e0+rrMktNbv/ba/ri2N5KrZg1AppUttcJaU0PTDjwDEXnWlvPceJAwzZwLg2LsPd4iJVbvDvOEJnDHe15P46pp88msP3y9319VR++JL4PFimDWTyNNOk6LMoKEdMoS4G24AoHn5T209MYeys6yRV9fkA7B4TDJnt/R09jUsW7b4kn5TU9HI5sF+JeG220ClpPiKK2n84guSH3n4sASHxi+/wnDCCT0+fpdygwufOL3HA3SG0+0lt9zEzfOHtH1PoRA4YWh8202n9nh+5QHiDBounjaALYWduwE53B6c7t8dBM2O9j+w+yOr99WQU9KASqHglgVD/X6B0epkrU5NlZXovaQtYaCiAlEU/X4+L5iSTlZRA+WNVpasL+KvC4f59fj9jeNt3qgy2fmiRaR12cyBROl7HlvTHs6CAgDUAwcgqAIXV388ox2ciWPfPt+59rNy88Rh8azaU82+6mY+2FjMHafI8XPt0dfnjcVjUzh1TBKr99biPMR5ObkbcZTdwdPU1NYwGjF/vl+PLeMfwhcswLJhI5aNG4n54yUodDq/Hv/IGMNmu5tlOyqoNNlptruICPPvZ1EoEmrzRpPd1db0OGlAtCQ1tLoQ6KdOldcX/RD9lClYNmzEmpVN9CWXBPVvrFAITB0Uw6q9NWwtMjIuXdrG954ixbzRaHVS3mhFQGhzVZcK67btAOgmT5K0DhnpUGg06MaPw5qVjTU7RzJxmSAIjE6JZN3BOvIqmhibFrpzSiDnjdZkIqmEhu3RvNKXLmCYPdvv16/BplVke2R0faDWaKEydqAJnzcPx759mNf8SuQZZ4TMNefkgTHsrWoip6SBU8ckH/sJASTU1indQXS50I0ehbm6nSTslr910r33BKS5qqsN6fm1zcwaIpsvdReLw01eZRO7ykzkVpioaLQB0GTr2uszMSLs2A/qJvqpU1AlJ+OuroYOko+UCQkBEaiEGlLPG5YtW6h/7TVEt4ewUaNIuP22PnEd0Jcb1/sy+qlTcMcloKivbddV0Qt440L3vSsolcRedx2K8HCafviRho8/wdPcTPQFF4TMdU1X8Oe80dpEHepoBw8m5ZGHaVy6lKbvf8C6eQv2PXuIvfJKDNM7rn/WkDgSIjQ8tXwfxUYL932dy98Xj2BQnKFtbz0xwpcAdqSo11VdTf2SJQBEnXUWYaNHB/JX7LMICgVxN/6Zyvvvx1VSSsNnnxN7xeVHPW55buVRa6SECA3p0Xq0agWJEWHce9qoo4ySjkQURZp++IHGL/4HXi+qpCQSbrk55A10pH6vSX290RWizz0X6+YtuGtqaFr2XVt6hZRsKTRSZ+5YvHCosPnIdYro8VD3yqt4LRY0mZnEXHRRgKsNfQRBIO76P1F57z9xFhfT+NVX7Z6XYwnKAZweLxdOSeeEofGBKrdLiF4v9W+/A14v+qlT0U+eLGk9/iTU5w1VXBzaESNw7NuHZdMmok4PTG9uMLh0+gDKGmxsL23g6Z/28fi544gxaPA6ndQ+/wLeZp+wO/a66/rUNWtPMcyYjquyAtNXX2N8731UCYnoxo4BIL/WzDM/78ft9TJzcBxXzR7UZ8+JZa3PkMUwd06f/R1CFVVMDIM+/BBPczMKvf6ovcz0557tlbhL0s7NBqsTj1ckPvxwV9mEcC35tZZ2n7O1yMjnW0v54bauNUS+sjqf51ceaPt/d1P78Sf9jZomO+9v9LmrXDwtIyBJDK0RS63N7jI9R52cBAoFos2Ox2hE5efEBrVSwU3zh/Cvb3LZkF/HzMFxfTI6PFgcT/OGKIq8ubYAl8fLmNQo5g/3/+azo8X1Xps52O/HlvGhaTm3Dj8nDIBv4XvdnMHc/dVONhfWs7OskfHp0X4fp6/T1+eNglozJpuLyQNjuGLmQNxeb4ebzP7Asn49otuDJjMz5DdBj1e0w4ejTknGVVmFZdMmIhYs8PsYrXF64Ps82l1horDOwk+7q/2ejBWKhNq8sb2kERGRQXGGo9ZnwUB0u9vcw/VTpwV9fJnAEzZ+PIJajbu2FldpKZoBA4I6/tRBsazaW0N2cQPXnNA3N+CkmDda0wUGxukJ10q3heRpbsaxfz8A+kmyYOB4Rjdlik8wkJUl6Y3XMalRrDtYx+4KE9Dz6NdAE6h5w+Jws7fKNz9MDhHBgLuhAWtOiyh54UKJq/EPR4psA7lGC6WxA4l++jSMH7yPu7YWe14eujFjpC4JgMkDovl4czG7y5uwuzyEqaVL7Qi1dUpX8Zgt1Pz3abwWK9rRo3BX1+A5xKFPlZRE0r33BMwFtasN6R9vLmV7qYmJGdFMzIhmZHKEpE6SoYrT7WV/dTO55SZ2lZsoqLUgHuLPKSAwOMHAmNQonvl5X4dNUAI+sVMg7oUISiVJ995D+W23+wQp7YgG1ElJOA4cIGzkSL+PH0pIOW80r1yJ8f0PQBTRT5tG/I1/RlD3DRMK7eTJGPXRRFsbO2xcb9BHM6wfNW2FAl5BwWvjzuaWNW/hhcPOvRffvPHauLN5QVAQGhlaRyMIAjGXXIIiPILGzz+nadl3eM0WYq+6EkHRNz5T+ur1Rm8R1GpiLrwQ/dSp1L/5Fq6yMupeehnr9K3EXnlFh+7/QxMjeOzccTy1fC+lDVb+8vE2qpvs1Ft+//xLOULcK7pc1L38CqLNjnbECKLOOTsov2NfRRUTQ/z111Pz32do/vlnwsaMPqxpdnluJTd9mHOUW3hts5PaZiezh8Tx0FljiDFo6AxPUxP1b7yBbecuAPQzZxB3zTV9QugmNX1h3lDodMRcdil1L71M0/ffYThhNupkaQXhXRU2t/c409KlOA4cQNCFEX/zzbIxZAuqmBjirruW2hdepOn7H9BNmEDYiBGHPaar57192XFwaV6xAmdhoe/1245Yqi/TF+YNw+xZPsHAhg19WjCgUAjctnAY9y3NpbzRytMr9nH/GaNofustnMXFKCIjfMJuTeefk/2JqLPPxl1VjWXDBupefJHkf91PXXgsT/64F7vLw9jUKG5ZMLRP3qsEcFVV4ThwAAShTyf9hjrKiIj2vx8d3avjdvkTfcPBOv717W6+vnn2UY6fTXYX57+ygUfPGcuMwYFzRzE73Nzx2XaeOH8csce42G7l5gVD+NPc32MvysvLGfVqoCoMDbxekVfW5GN3eRiZHMnp4wLj+tSWMJDWN6NRQglBpUKdlISrshJXRYXfBQMAQxPDOWtCKku3l/PW2gJGpkQQeRy49/aE42neWLO/lt0VJtRKBTecODggFyPOAl8Tu2awLBgIFK3xTq6SEkS32+8L9gFxek4dk8yPuZW8u76Ipy4Yj1q+mXkYfX3eWLrNJwKcOyye08cH1i1SFEXMa9YAED5/XkDHkuk5giAQvmABDR9/gnn1moAIBo4c76wJaTy/cj/Lcys5Y3yKpE0ywSDU5o1Wl+DJA6Rp+rPv2YPXZkMZFYl22FBJapAJLAqtlrBxY7HlbMOalR10wcDY1Ci0KiX1FgeFdRYGJ4QHdXx/IMW8sbtFMDBG4nQB2/YdIIpoBg5AFS+t65KMtOgmTASlAld5Oa6qKsluvLa+J/JrLZI393ZGoOaNHWWNeLwiadF6kiL979rcE8y//goeL9qhQ9FkhK6Io7scKrI9nsYOFAqNhvDZs2leuQrzr7+GjGAgLVpHYkQYNc12dpWbmDZIOqOXUFundAV3QwM1T/0HV3k5CoOB5AcfQDNwINasbNy1tahaXN4DkSzQyvTMWFKiwqgy2Tts+tBrlETq1JQ1WClrsPLdzgrC1ErGpkb5BAQDoiURb4cCXq9IUb2FXeUmdlc0saeyCdchCZgAqVE6xqRFMS4titGpkW1i1liDmps+9InPDz33rbvcD5w5OmBip8hFi+D556h+/AncVVVt31cmJqIdOhTcbqqffJLYq67q1wmbUswboihi+noppqVLAQg/aQGxV/adZmmArSUmXh57Nvdtea/DxvVXxp6NWNTA3GFyyoC/2FJo5PvokTRMv4obdy4lwW5q+1mdLprXx53NhuiRXN6O03KoEXXG6SgMeoxL3sO8ejVei8UnmukDDZ198XrDn2gzM0l5+CFM33yL6btlWLe0pA1ccQX6GdPbvVebEKHl4bPHcvtn29hUYDzq51UmOzd9mMOrl09m8dgUGr74AmdREQqDgfibbgzodVB/QTdhApF/WEzTj8upf/MtNI8+giouDo9X5KFleZ029ubXmonUdd53Yd+7l7pXXsXT2OgTj1xxOeHz5vXZRsFg01fmDf20aejGj8O2cxfGJe+ReNc/JP0bd1XYnHDEOsS2ezemb5cBEHfNNaiTEv1eW19GP3Uq4SfOxfzbWupee43Uxx47zOm5q+c9EElo3cFdW0vj/74EIPqSi1HFhIYpiL/oC/OGftp0Gj74AFdpGc6yMjTpfddQT6dR8o/FI/jn17vIrzXz7TPvMWP3ZlAqSPjLXwLSBxnKCIJA3HXX4q6txXHgAGX/+S8vTzifJpeCzHgDf1s0ok/3XFnW+dIFdOPH9bu543igyyvGd9YXcsm0jKPEAgCRYWounTGAt9cVdkswEKPXoFQI1Jkdh32/1uw46oIEoLjeQlmDjT+9l9X2PW+La8eQe39g1d/mMTDOcNhztColWtXvCyApHfGCxfe7Ktlb1USYWsnN84egCNBmqLOsDAB1qiwY8AfqtDSfYKC8HN24cQEZ4/wp6WQVN1DWYOXddUXcdvKwgIzT1zle5o1Gq5OPNvmSSC6cmhGQm/yix4OzqAgAbeYgvx9fxocqMQGFwYDXYsFZWoo2M/PYT+omF05NZ2N+PZUmG9/trODcSX13sRII+vK8UWq0sqXIt8F89sTAf6Y79u/HVVmFoNVimDkz4OPJ9BzDCSfQ+PnnOIuKcBQWBmRuOZQZmbEkR4ZR1WRn1d4aTguQ6DVUCKV5w+3xsqO0EZDOJdi61bfG002e0qdu8Mt0D/2UqT7BQHYW0eedG9SxNSoFEzKi2VJYT1ZRQ58UDEgxb+RV+gQDo6UWDGzzNYHpJsnumsc7ynADYaNGY8/NxZqdLZnzUkKElrhwLfVmB/urm0M2hS1Q88a2kkYAJg+M9svxeovo8WBe8ysA4QtPkrgamVAnfN48mleuwpaVhcdsRhku/TWBIAhMGRjDj7mV5BQ3SCoYCKV1Sldw1dRQ8+RTuGtrUUZHk/iPf6BJ9yUiG2ZMD1odSoXAA2eO5qYPcxBov3H9mYsmMGdYAjvLGtle2siO0kZMNhdZxUayin37MmnReiYOiGZSRjQjkiP69M3jzhBFkeomB7taEgTyKkyYHe7DHhOt0zAuPYqxaVGMTY0krgMxxeKxKbx6+WQeWpZHpel3J8/kI5yWA0XkokVELFx4lEBF9Hiof/NNrJu3YHznXVxl5cT88ZJ+2bAZ7HlD9Hpp+OADmleuAiDqnHOIOvecPtdwWdNsZ0PqOB7trHE9dRzWFftxuLzMH5EgJ5L4gW0thhkbUsexKWUMY+oKiHU0Y9RGsDt+MF7Bd4676gwsNRELFqAwGKh/7TWsW7ZQY7WScNtfUWhDW4DW1643AoGgUhF9/nnop0ym7q23cJWUUvfKK+i3bCb2qqtQRkUd9RyNStG2h3skIr5rjoeW5THHWUXz8p8AiLv+elSx0l1b9jWiL7wQ+959OAsLqXvtdZLuvostRY2HXWO0R3WTgy0dCI1ErxfTt99i+nopiCLq1FTib7m5Xwndg0FfmTcEQSDmiiux33sv9rw8rJs2YZg1S7J6uiJs1igVrD1Yx/iMaMK1Kl8SxmuvgygSPm+efC+3A2Iuuwz7nr24a2sxvv8B8Tf+ue1n0zNjSYrUUt3kaPe5gUxC6yqiKFK/ZAmi04l2xAjC+6HAuS/MG8pwA2Hjx2PL2YZlwwY0F10kdUm9IikyjNtPHs6Sd74n/LfvqIvQMvzmPx2VwnG8IKjVJNz2V8ofeIjCvUWMrfoE9xlXcffiUeg0fXdvQPR6Ma9bD4BhzlyJq5HpCV2eDfdUNnP3HzqOzZw7LIE3fyvo1uAalYKxaVFsOFjHqWN8jmBer8iGg/VcOXvgUY8fkhDOT7efeNj3nl6xD4vDzQNnjiElSo7qKjVa+WxrKQBXzhpIYoBcvkSPB3elzzFFnZYWkDGON9RpaZCVhau8PHBjKBXcNH8I9y/NZWNBHTMLYgOaCiIT2izZUITZ4SYz3hC4JJLKSkSnEyFMiyqlfzd+SokgCGgyM7Hn5uIMUFOvXqPi8pkDeWn1Ab7eVsEJQ+MlV73L+IfWdIHpmXGkx+iP8ejeY169GgDDzJlyzGqIo4yIQD9tGpaNmzCv+TXgggGFQuDMCam8ubaA73dWsmh0knwjNEjsrWrG5vIQpVMzJMFw7Cf4GdHrxZqTDficWWT6L7pJk0ChwFVahqu6JujORNMGxbClsJ6tRUYumibflDsWRouTSpMNAYFRKdIJBkSn8/eo9smTJKtDJnTQT53iEwxkZUkmGBAEgdEpkaw9UEteRVPICgYCgccrtjVaSZVMdCS2HTvwGI0owsMxTJsmdTkyIY5m0CA0AwfiLC7Gsm49kYtPlbokwPd++jG3km0ljYii2OcaX6XAWVZGzVP/wdPYiCohgcS7/oE6UTrny642rs8eEs/sIfGIokhRvZXtpQ1sL2lkf7WZ8kYr5Y1Wvt9ZgValZGxaJBMzYpiYEU1CRNeaPz1ekS2FRmqa7SRG+JpQAuWw352xTVYXuRWmNpFA/RFGYjq1ktGpkYxL84kE0qJ1XX4fLB6bwimjkyX7vQWl8iiBiqBUEn/zzZjS0jB99TXNK1bgqqgg4ZabURiCv+7uL4guF3Wvv4F1yxYQBGKvvIKIhQulLqtHtO6tH6tx3en28ta6ApZuL+f8yenMHRYv75f1gIM1Zj7PKmXdgbq273kFBbsS2k+57Ev3PgzTp6PQ6al94QXsubnUPPkkCXf+DWW4PNf0BTSDBpHy4IOYln2H6dtvsGZlY9+zl9grr0A/c+Zhn4VbCo1UddB8Cj7RgLWmjoLnPyUKiDh1kbyP0k0ElYr4m2+i8l//wrFvH6ZvvqVmcNdEqO0JjdwNDdS/9jr2PXsAMMydQ+yVV4a8qEemd6iTEok660wav/yKho8/QTdhwmHu88GkM2FzK0MSDWwraeCuL3fy15OGEvPhG3hMJtSpqcRccXmwS+4zKHQ64m/8M1WPPoZlwwZ0EydgmDkTURRZvbeGpIiwdgUDwUhC6wrWjRux78pFUKmIu/YaeQ9CQgyzZvsEAxs3En3hhX3+bzFCZefSfb9QJcL6uBGIQyZxPN/59RrC+WLSmQzd+yqpxgrm1W8hUte3z4g9b49vL16vRz9potTlyPSALgsGas0OVJ04PaoUAvUWZ7cL+NOcTP72xQ7GpUczMSOKt9cVYXW6uXCK7+b9nZ9tJykqjLsWjyRMrWREcsRhz49sSTw48vvHI26Pl5dXH8Tt9TJ5QAwLRgRuc9xdW4vodiNoNKji4wM2zvFEq/DCVV4R0HGGJIRz9sRUvt5WztvrChmZEknUMSLyZPof2cVGNhXUoxAEbjhxSMAWI84Cn5BMM2iQ7BYcYDSZg3yCgYICOCkwjoonDI1j5d5q9lQ28f6GYv7v1ONTCdyfqDLZ2ZBfD8C5kwIvAPSYLVi3bAUgfMH8gI8n03vC58/HsnETlo0biPnjJSjCAnuz7MThCfwvu4x6i4O1B+sCej0r8zvZxb6mv0kDYiTZiHIcOIC3qRmFXk/YqI5F6jJ9H2W4gbCRI7Hn5WHLzkJ92mlBHX/SgBgUgkBpg5XqJntAErb6E7srfA6XmQkG9Brp3HfseXmITifK2FjUA482l5A5/tBNmgTvvY8zvwB3Q4NkkbdjUn2Cgd0VTZKMLxUHapoxO9yEa1UMTwqN/djmlSsBCD/xRASNRuJqZPoC4fPnYXzvfcy//krEqYtC4mbsqJQIwtRKGm1OCuosDOmDaUjBxJGfT83T/8VrsaDOSCfx//4vJCLQu9O4LggCmfEGMuMNnDspHbPDza4yU1v6QKPNSXZxQ9t6LS1az8SMKCZmxDAypf30geW5lUcJFlKC5LTf3thxBg2njE7CK4qUGK2HPV6lUDAsKbxNIDAkIbxXe9RKhdCuq6+UCIJA9DnnoElLo+71N7Dn5lL18MMk3HEH6uRkqcvrc3htNmqffwF7Xh6CSkncn28MapKIvznU8be9xnUBSIrUcuuCoXy7o4I6s4PXf8vn623lnD8lnTlD4yVtMusrlBqtfJFV2pawG61XExmmosnubvfxoeD42xN048aSdNc/qPnvMzgO5lP9+OMk/j00Phtljo2gUhF97jnop0ym/s03cRaXUPfqa+g2+9IGWv+Ox0q+UIheLtn3C66wZjRjhhPTx12KpUKdlETc1VdT9+prmL75BtXZXZsPjhQa2XblUvf6a3ibmhG0WmKvuorwOScEomSZECTytNOwbNiAq7KKxv99SeyVV0hWS0fC5tZ1wojkSJ7/ZT9VTXb+9/S7LC7IIiEmnPhbb0Eh77F0inbYMKLOOgvTN99gfHcJ1XFpvLO7kYM1ZvRaJXOGxrG3qpk68++9lMFKQusMT3Mzxo8+BiDqnLNRy8afkqKbNBFBF4an3ohj//4+7cbvtdmoffY54hQeTMOGsmn8yWSvzueRSB0D4qQRTkmJ1yvy8uqDbLVrqZ17Htfs/h5F9haalmUQddZZUpfXYyzr1gJgmDVT3ovvo3T5jm9yZBj7qpsZFN++Gn1vVROJkd1Xwp45IRWjxcmzP++nttnBqNRI3rt2eptbSnmjLSQ27PsC/8suo6jeQrhWzQ0nDg7oeXNV+Jra1SkpchOwn1CnpQLgLC8LuIvUeZPTySpqoLTByrvrC7n95OEBG0sm9LA5PbyzrgiA08enkNnBvO4PnIWFAGgHDw7YGDI+Ws+xo+WcBwJBELj2hEzu/monWcVGckoaQsZRUqZnfLO9HBGRiRkxAZ0LWrGsX4/odqMZOABNgN3qZfyDduRIVMlJuKuqsWzaRESAIynVSgWnjUvho83FLNtewfzhCfJaIMCIotjWgCLVnG7dmgX4GkAFVehFgsr4F/3UKb445qxsIoMsGAjXqhiVEsnuChNZRQ2cPl7eCO+M1iboManSpQsAWHO2AaCfNFH+TJABQBUTg3bIEBwHD2LLzibi5JMlqWN0y3sjv9aM3eUhTN13Y4S7Qqtr9NfbymiyuZk9JDSa1FzVNdh35QIQvmCBxNXI9BUMs2bR8MmnuMrLcebnox3avrtwMFEpFYxPj2ZzQT2fby1ldGpk0F3S+wq23bupfe55RIcD7dAhIeei3NPG9XCtillD4pg1JK4tfWBHaSPbSxvZX938e/rArsq29IEJ6dFMHBBNYkQYy3MruenDnKNcQ6tMdm76MIdXL5/c66YUURRxuL1YHG6sTg8WpxuLw8Ov+2t4YeXBox5fb3Hy6dZShieFE2vQkBlvYExqFOPSohiRHNHvPztb0U+bRnJCAjXPP4+rsoqqBx8i/tZb0Y0dI3VpfQZPUxM1/3kaZ3ExQpiWhL/e1ufPX2eOv62z/oNnjWHx2BQWjk7kl7wavtleTk2znVfXHGTpNl/iwOwhcSjkz4mjqGmy80V2GesO1CEiIiAwZ1g8F05JJ6ekgZs+zAHaP+9SO/72FO3QoST985/UPPUUrrIyqh951Je+k5QkdWkyXUQzYADJDzxA0/ffY/rmG2w526jct5+Yyy7DcMLsYyZfnFSSTWZTJUZVBAOvvR5BLRsG9hTDrFnU5eygbPkqbO++RfSoc2lUtN8LdaTQSPR4aPzqK5q++x5EEXVGOgm33II6NTWIv4GM1AhqNbFXXUX1v5+keeVKDHPnBDzFuzOOJWx+4rzxfPzFryTv/JVqr8iuE07n/Pgk5DbQYxN19lmYt++gfNde8h54moPzLkanUXHxtAxOGe0TCUuVhNYRDR9/gre5GXVGetDv0cgcjUKjQT91Kpa167Bs2NhnBQOiKFL3+uu4KipQRkcz+4F7WLexit0VJp76aS+PnTvuuDIzFkWRJRuK2FRQj0qh4LIrF5O6PwHjkvdo/N+XqJKS+6QA3mu1Ys3KBsAwd67E1cj0lC53YywYkcAzK/Yzb3jCUZt4dpeHZ38+wMKRPVtwXjV7EFfNHtTuzz7786xOn/vfiyb0aMz+xv7qZr7Z7mviv35uJtH6wF66ucrLgd9d8WV6jzo5GRQKRJvdF6McQNcHtVLBTfOHcN/SXDYV1LOpoJ6Zg0PLfUcmcHyypYR6i4OkyDAumJIekDFEjwdrVjbNq9fgaWqSnUCDgGbwYBBF7Hv20rj0G9QpKeinTkFQ+vfGW0asnj+MTeG7nRUsWV/EmNRItKrj4+Zef6PO7GBtSwTzeZMD/3kuiiLm1asBn2u93PDXNxAEgYj582n49DPMa9YEXDAAcPKoJJZuK6fCZGNrUUOfc/Tqa5Q32qhptqNSKBifHhX08UVRxJrtEwzop00L+vgywUc3ZQq8/wGO/HxJnMGnDYphd4WJrUVGWTBwDPJaBAOjU6QTDIiiiG2bTzCgmzxFsjpkQg/91Ck4Dh7EmiWdYCAxIoyEiDBqm+3srWpmYka0JHUEg/Zco6uabAxPCpfUEQ1oW2OEjRuLOklOp5LpGgq9Hv306VjWrcP8668hIRgAEEUv20oa2VxobPtesNzh+wrWrCzqXnkF0e0hbMwYEm77a8CT8KTg0PSBcyalYXG42VlmYkeZL32gwXpI+sB6SInSsXJP9VFiAfA1wwrAQ8vyOHlUEm6v6Gv2P6Tp3+pobf53Y3F6sB75b4swwOp04xUPH0UUYVtJY6e/T53ZwWc3zCLGcPy2HGkGDSLlgQeofeEFHAfzqXn6aWIvv4zwhQvlPbJj4KqpoeY/T+OurkYRGUHinX9DO7h/GJF05Ph7pPOsVqXk9PEpLByVyM951Xy7o4JKk42XVh/gq21lXDAlnVmD4+TXEtBgcfLVtnJW7a3G4/XNV9MHxXLh1AwyYn2upl09730RTXoayfffR/VT/8FdXU31o4+S+Pe/oxkwQOrSZLqIoFIRdfbZ6CZPpv7Nt3AWFVH/xhtYt2xhytVXtyWTHPmZP7ixnIWlWSgEWDnuZD5cXcnZDQKnj0+R7+F1E7PDzdfbyvlFOYY/qLYQ2dzA3xu28M/YOQiC0KnQyF1fT92rr+HYvx+A8JMWEHPppbJL+3FK2OjRGGbNxLJxE8Yl75H8wL8kNWPtTNisddk5Nft76iK1bI4cxOrwIWz9chd/XTiMEcmhkS4ZioiiyKZiE1+lnMDcrXkkmUs4t2EPi/5yxWFrn1BKQrPtysWyfj0IAnHXXiubeIUIhlmzsaxdh3XLFmKvuLxP/l1MS31iR0GlJOG2v6KNi+WOUyL559e7qG6y8+zP+7nv9FGo2klL7I8s3V7OirwqBARuXjCEcelRkH4SrspKmn9aQf0bb6BKiO9z5ruWLVsQnU7UqamyQWgfpsszzK0nDWP57rWc9PQarpw9iMEtLrT5tRY+2FiERxS5ZUFobKwfb9hdHl5ZfRARkbnDEpgRhMZvV3lLwkCarIT2F4JajTopEVdlFa6y8oA3zgxOCOeciWl8ta2Mt9cVMiol8rhS8x2v7Ktq5ue8agCunzs4IJtETStWUP34E7irqtq+V/GPu0i+/z4iFy3y+3gyPqxbt2LbuRPR4aDy7rsBUCUnk3TvPX4/7+dPTmf9wTpqmu0s21EZMOGJTGBZtqMCt9fLmNQohicFfrPHefAgrooKBI0Gw6zOBaEyoYVhzhwa//c/nAWFOIuK0AwaFNDxdBoli8Yk8fW2cr7ZXs60QTHyDc8AktPS2DEmLVISd0dnYSGeeiOCVktYH3cHlOkaqpgYNEMG48wvwLZtGxEnnRTU8acOimXJhiL2VTVjsrnkNVAH1DY7qGm2oxAERiZLJxhwFhTgMZkQdGGEjeybzjoygUE3ZSoNn36Gfe9ePGaLZM7SY1IjWbPPzu4KU78VDHTkWG20uPzmWN1TRKcT82+/ARCxcKEkNcj0XcLnzcOybh2WTZt9TTw6naT1LM+t5MVV+Ud935/u8H0d89p11L/1Fogi+qlTiL/ppuPGOddwRPpAcb2V7YekD+yraqbJ7u7w+SJQabJzzsvrCQ/rfeOBUiFg0KgwaFU02104Pd5OH2+0uNhb1RxSjTJSoIyOJunuu6l/dwmW9esxvv8BzrIyYi/vmw0hwcBZWkrNU//BYzKhio8j8R//8Jlv9SOO5fh7KGFqJWdOSOWU0Un8tLuKZTsqqGi08cLKA3yVU84FU9KZkRl7XO6jNdtdfLujguW5Vbha5qTx6dFcNDWDoYnhRz2+O+e9r6FKSCD5vn9S/Z//4Coppfqxx0m4807CRshp830JTUYGyQ/8i6YffsD09dfYtm/Hce+9PDHnD1zTqDiscd3gtPHH/b8gAFHzTkQzbQaO6mY+zypl5d4aLpsxQBYVdQGXx8tPu6tYuq0cs8MNChWVZ1/GpJUfEOao5L1hFu6pjiWuII9YRzNGbQT1g0fzr7PHsnhsCtZt26h/4028FguCLoy4a6/rk87BMv4l5o9/xLZ9B87CQsyrV4fk3oUoitS/uwRPXR0JA1I59c6/sXd9GZUmGw8t283F0zI4a0KqPIccQZXJzjvrC9lZ1giqCA7O/gOn7l5JxP71GOpOBkPoGWp6HQ6MS5YAEHHyyWiHDJG2IJk2wkaPQhkVhcdkwrZzF/rJk6QuqVtYs7Mxff01ALFXX9322grXqvj7qSO4f2kue6uaeHtdITecOLjfzyer9lbz2dZSAK6aPZDZQ+Lbfhbzxz/irq7Btn07tc8+S/KDD6KK6zt7JZa16wAwzJ3T7/+O/Zku70AlRGj58qbZ3Lc0l6eW721bgAjAicMTeOTssSREtB/DJRNYPtpcQlWTnViDhqs7SGrwN3LCQGBQp6X5BAPl5ejGjQ34eOdNTiOr2EiJ0co76wq54xR5s6g/4/J4eeO3AkRE5o9IZGya/12Em1asoPy2233WUofgqa31ff/552TRQADo6Ly7q6sDct51GiVXzBrICysP8M32ck4cFk9iZP9zc+vPNFqdrNpbA8C5k4LzWd68eg0A+hnTUej1QRlTxj8oIyPRTZmCdfMWzL/+SmyABQPgu2n3/a4q8mvN7K5oCshnloyPnOIGACYPCK7LeyvWLF+6gG7CBNlp6ThCP2UqzvwCnzN4kAUD8eFaMuMNFNZZyClpYMEI2Y26PXZXmAAYkhCOTiOdE501JwcA3bjxx01DoEzXUCclos5Ix1Vahm3bNsLnzpGkjtEpkazZV9OWyNHf8HhFHlqW165jdSsPLcvjlNHJkjRXWbZuxWs2o4yNRTdBTqGV6R7a4cNQpyTjqqzCsmkTEQsWSFZL63utPQ51h5fqvRYKNP20goaPPgIg/MS5xF5zjd9TNfsKgiAwKN7AoEPSB177NZ+8ymN/FtndXsLxNfzrNSoMGiV6bcu/GhUGre/fcK0KvUaJ4ch/NSr0WiUapaLtxvA328v5ZU/NMceuabYf8zHHA4JGQ9wN16NOT6Px8y8wr1qNu7KS+L/8BWX40U3NxzP2ffuofeZZvDYb6vR0Ev/+f0FPqAsWnTn+tkeYWsnZE9NYNDqZH3Mr+X5nJWUNVp77ZT8DYvVcODWDqQOPDwMOm9PDD7sq+W5nBTaXB4DhSRFcPC2DMamd7yd297z3JZRRUSTfcw81zz6HY/9+av7zHxL+cqt8zdzHEJRKos48E92kydS/9SbOgkIyV3zJJ6mD+Zd6HNqKUmLtTcyoyiPeYyN97FCm3H8bizQaNuTX8/GWEurNDl5YeYDluVVcOWtQuwKa4x1RFNmQX8+nW0upbbleyYjRc9nMgUxIj6I5zUvDBx+SsexjltTV46mvb3uu6mASiZPvwrhzNc3LfwJ8qULxt9wiJ+DJAD7BaPSFF2B8/wMaP/8C/ZQpKKOjpS7rMMxr1mDdsgWUCuJvuRltejyPnxvDW2sLWJ9fxydbSthT2cxN84fI5juA0+3l2x0VfLO9HJfHi1qp4OyJaZw5fjqml5uw5Wyj7tXXSH74oZC752X66ivctbUo42KJvuB8qcuROQRBoUA/cwbNP63AsnFDnxIMOMvKqXv9dQAiTjmF8BNPPOzn6TF6/rpwGE8t38fqfTUMiNXzh3H91xAju9jIm78VAnDOxLSjzD8EhYL4m26k6tFHcZWWUfPMMyTfd5/kRiZdwVVVhePAARAEDLNnS12OTC/olmVFeoyeJddMx2R1UVRvQQQy4wxE6eWLAqnYUdrIz3k+F+8b5w3BoA28C4koirgqKwFQp8oJA/5EnZYGWdltgoxAo1IquGn+UP759S42F9azMb++326OycDSbeWUN1qJ0qm5fKb/Fc2ix0P1408c1bR+KNWPP0HEwoXH7Q29QNDpeRdFEISAnPdZg+NYtaeG3AoT724o4h+njjgubkD0F77fVYnL42VYYgRjUgPvGuy1WHybTUDE/PkBH0/G/0QsWOATDGzYQPQll6DQBlYoHKVTs2BEAj/truLbHRWyYCBANNtd7KtqBqQRDIii2CYY0E+dGvTxZaRDP3UKjZ9/jn1PHl6LBYUhuM7gUwfGUlhnIavIKAsGOmB3S/NzMK4TOsOWsw2gT22QywQP/ZSpmErLsGZnSScYaHmPFNRasDk9kgpsAsGWQiOVpo4bPFsdq7cUGiXZTzKvXAVA+Px58j6DTLcRBIHwefNo+PQzzL/+KqlgINTfa1IiiiKmr5diWroUgIjFpxLzxz/Ke1CHYNCqmD0knhdXHTzmY/9+6gjmDU9Aq1L47RwmRnTNRKSrjzseEASBqNNPR52aSt2rr2Lfs5eqBx4k8c47jnuTLtHjwZqVjXXrVsxr1qDQ6dCOGEHC7bdLligVyug0Ss6bnM6pY5L5YVclP+yqpMRo5b8r9pEZb+CCKRlMHhDdL+dMh9vDz3nVfLO9gma7C4CBsQYumZ7BxIz++Tt3F4XBQOI//k7diy9h27GDmueeI/6GGzDMmtX2XnPX1qJKSEA/dYp8PR3CaNLTSL7/fpqWL8f05Vck5GbxQslXiE5n22MEjYbEE//Ytm9/wtB4pg6K4bsdlXyzo4L91c3ct3QXc4cl8MfpA4g1hFYTq1Tklpv4aHMJhXVmAGL0Gi6alsG8YQkoWoS6ESefTNOy79rucR2Ku7qaijvuRDN0KKrYWCJOXUTMRRfJphcyhxF+0kmY167DWViI8eOP0U+ZGjLzr7OsjIYPfcLs6AsuaHMF12mU3HrSUMakRfLu+iK2lzZwz1c7+ctJwxiVIu1+sZTsLGvknXWFVDX51u/j06O55oRBpET5Gn3jrr2Wyvz7cFVU0PjZ58RecbmU5R72eS96PDT9uNxX59VX94nm5OMNw6zZNP+0Atu27Xhttj7xN/KYLdQ+/zyi3UHYqFHE/PGSdh83aUAMl88cyAebinh/YzFpMTrGp0cHt9ggsK+qmed+OdBm4nvxtIx2H6fQ6Ui8806qHnwQV2kZda+8SsIdtyMoFEGuuHtY1vnSBXTjx/VbMf/xQo9eaVF6NRMyopmYES2LBSTE3OIcA3DqmOSgTabu2lpEpxNBpUKVkBCUMY8XWjeDgyUYAMhscSICeGd9ISabK2hjywSPUqOVb7ZXAHD17EzCAyAusmZl466q6vgBooi7qgprVrbfxz6ekeq8C4LANXMyUSkUbCtpYGtRAxvz6/lmezkb8+vxeDvzoJSRkma7ixW7qwE4d3JaUG6eWDZuRHQ6Uaenoxk6NODjyfgf7ahRqJKSEG12rJs3B2XM08enoBAEdpY1UlBrDsqYxxs7Sk2IiAyI1UuSFucqL8ddVY2gUqKbMD7o48tIhzo52Sc+93ixbt8e9PGnDYoFYGeZCXuLA6HM74ii2OZQO1pCwYCrusa3NlYoCBsvuyDKHI1+6hQA7Lty8TocktQQH64lKTIMEZE9Vf0vZaCrbtBSuEY7S0txHDwISgXh8+YFfXyZ/oFhzhwElRJnQSHO0lLJ6gjl95qUiKJIw4cftYkFos8/TxYLdMD0zFhSosLo6MwIQEpUGCePSiJMrfTrOezq2NMzY/02Zn9BP2kSyf/6F6qEBNy1tVQ+/DC2HTukLksymlas4ODCkym56irqXnoJe24utrw8dJMmyWKBY2DQqrhwagYvXjqZcyelEaZWUlhn4T8/7eW+pblsL21E7MToqS/h9nj5Ja+a2z/dzoebimm2u0iJ0nHbwuH8+/xxTBpwfCQrdBWFRkPCbX/FMHsWeLzUvfY61U8/3fZeq/i//6Pkqqs4uPBkmlaskLpcmU4QlEqiTj+d8EWn4Dx48DCxAIDodFL9yKOH/R21KiXnT0nnuYsnMneYr6dj7YFabv9sO19ml+FwH797YqVGK08u38uj3+dRWGdGp1Zy8bQMnrtkIgtGJLaJBQDwHnv/0lVaSvxfbiX2sstksYDMUQgKBbFXXYW7oYH6116XbP4VPR4sm7dg+u57LJu34LHZqHvpZUSXC934cUSedtrhdQsCJ41M4rFzxpEapcNocfLId3ks3Vbeb64rukqDxcnzvxzg8R/2UNVkJ0av4baFw7nnDyPbxALgS2yPu/5PADT//DO2XbukKvmwa+uK//s/Ku+6C9v27Sjj4+XEoRBFkzkIVXISotOJNTtH6nKOiej1UvfKK7irq1HFxxF/y80Iqo770E4bl8z8EYmIiDz3ywEqGm1BrDbwlBqtPLV8Ly6Pl8kDYrh+7uBO1yWquDgS7rgDQa3GtmMHDR9/EsRqu48oipjXrwfAMGeuxNXI9JbQlqbIdMq76wppsDpJidJx6YwBQRu3tZldlZIsuw34mUMFA8G8yD5vUhoDYvU02128va7wuLvA7694vCIb8+v5elsZD3+Xh8vjZcrAGGYODszNGXdtrV8fJ9M1pDzvadE6Th+fgtHi5Mp3NvPHNzdx26fb+eObm5jz5CqW51b6fUyZ3vNjbhUOt4dBcQYmZUQHfDxRFGlevRpocf6Ub9j0SQRBIHy+rxGr9e8ZaBIjwjhhaDxAm+hNxr9kFzcA0qQLAG3pAmFjx/UJpwwZ/6Kf5kuVsGUHX0yaEasjMSIMl8fLzjJT0McPdWqaHdSbHagUCkYkR0hWh22bb1M8bMQIuUFIpl3UGRmoEhIQXS7sO3dKVkdrEkdrMkd/IpRdo5tXrgRAP3mK7Ggk02OUkZHoJk0GwPz/7N13eBzV9fDx72zf1ap32ZZ7k+Uq2eBuMBhCJ3RC7y2B9EB+eR1CAikkgUAwPXECoVdTjCnuXXK33GTLTb1LK23fef9YS2BbkiVri6Q9n+fxY0s7O/fOeu7Z3Zlz7l22PGz96MljLVxUr5fqF1+i8csvAYi/8QZiL71Urim0Q6tRmH9xFsBJifstP8+/OAutJvCvXzjb7gsM/fuT9tv5GEeORLU7qPjb32n4/POIu0fTsGQJxQ8+dNLEOGpTEyU/+5kkMneS1ajjmsmZ/OO6iVwyvh8GnZb9lTb++Pku5n+8k+1H63vtueXzqazaV8VP39nKy6sOUNvsItFq5O7ZQ3nyqvFMHZoo7xHtUHQ6Eu++m+hzz8VTXU3Ny6+cNNY85eUUP/iQjLUeTvV6qX7+hQ63KX/8CVTv8YUACVEG7j9rGL+/bCwjUqNxeby8k3+En7y9lTWFVb02LpyO2iYXL67Yzy/e3cbmw7VoNQrzstJ46tqJXD6xP0bdybkvzXn5eCsqOtyv6nSCTKQmOuAs3Idr376Tin1CFX9PTB4/fPPNFM6ajX3HDrRxcSTedVe776OZiRYe//5YZg5PxqeqvLnxME98vjsiJiL1+lQW7yjlJ29vYe2BKhQUvpedzt+untDuZw/zuHFEn3MOANUvvoSnru64Qo0TY3QwtPvZ2uWi8bPP5P2+h1IUhahp0wBoWrMmzL05tbq338GxYweKwUDygw+ijel48ilFUbh9xmBGpkbT7PLwly/2YHN6QtTb4KqyOXni8100uTyMSI3mwXOGd+oaiHHIEBLvvguAxiVLWq93n1jgFYq4cSqOggK81TVoLBYsEyeEuzuim6RgoJdau7+a1fur0CgK9581rM0vL8HiLvEnbEX60qjBoE9LA0XBZ7fjrasLWbs6rYZ75wxDq1HYUFTN6sJqmSm8l1u8o5QZf/qG615ax4/f2sqXBeVsOVLHoERL0C6adnbFEVmZJLDC/bpbjVr2lttwuH3H/b6s3sG9r22SooEexu7y8sUO/8WByyaGZnUBV1ER7iNHUfR6oqZND3p7InisM2f6Z9/cfwDX4cMhafOS8RkAbCiq6XMzDYSbx+tj69E6ACYNDFPBwMaNwLeJ4yKyWHL8M4Pbt23Hd8KNkmBTFIXJg/zn/caDNSFtuzfYWeIvohiWYg3ptYYT2TdvBsA8aVLY+iB6NkVRWlcZaA5D8VGLrPRYAAr6YMFAT5012me3t944i557dkjbFn1PS2F00+rVIf9M0qKnjrVwUV0uKp95hqbVq0GjIfHuu4g599xwd6vHOz87nQU3TCIt9vjCkrRYEwtumMT52el9su2+QBsdTeovf+FfMUdVqX3jTapffhnV3feTsMCfDFH++BPQQcJqWwmwon0xJj3Xn5HJM9dN5MJxGei1GvaWN/KHzwp4dFFB63e+Fi2TT4XjnuCp2lZVlbyDNfzyvW08u3Qf5Q0OYkx6bpk2iKeu8c8ELgVJp6YoCnHXXdv+xFLHxp+MtZ6tuyuOD0ux8uglY/jR2cNJtBqptjn5xzf7mP/xTgor+vYKv3aXl7fzjvDgW1v4ZncFKipTBiXw5FXjuW3GYGLN7a8KIBPmie5q/azT5oPBj7/tJY/7GhtxFRZiGj/+lIm+Jr2W++YM5e7ZQzHotGw7Wsev3tvWJ6+FtSissPF/H27n32sOYnd7GZps5fHvj+XmaYMwGzq+Zh537TXoMzJwFhWFfFUfn8dD2R8eb/+ztaLI+30PFjV1KgCOnTtDmjPYnvYS15vWrqXhs88ASLzjDgwDB3Zqf3qthp/MG0mi1UhpvZ1/fL2v1+cjNjrcPPHZbmqaXPSLs/Dz80Z26b5a1JQpxF11JQA1/32Nqpdf7pGrgTWtXAVA1NQzUQyGsPZFdF/7a4GIHsXrU9lQVENFowOzXstbG/1LJF82sR/DUqwh7Yu72F8wYJCCgYBT9Hp0qSl4yspxHy0O6Qxpg5OiuHRCP15eeYDbF27E6fk2+Tc91sT8i7Pkwn4vsXhHKfe+tokTP1Y5PT5+8e52ok36oPxfWnJz0KWltX+xSlHQpaa2JnSIwGh93cvL2/7iF8TX3etTefyz3W0+puK/of3oogLOzUqTi/Y9xJKCMppcHvrFWTgjRIkGtmOz0VsmT5bZgXs5bUwM5kk5NG/YgG3ZMhJuuinobQ5IsJAzMJ78Q7Us2lrC3bOHBr3NSLG7rJFml4cYk55hyaH9PgHgLi/HfeQoaDSYJ04Mefsi/PQDB6JLSsRTVY1jxw4sIU4KzxmYwKfbS9l8uBavT5XPKt+xs9h/oycro+MbRcHktTXh2LMXALPMViI6YMnNpeHzxdg3b0H1eDpc9jhYWlYYOFjVRJPTQ5Sx71xubZk1+t7XNqHAcdcZwjlrdNOaNagOJ/r0NIyjR4e0bdH3mMaMQZuYgLe6Bnt+fuvN2VDqqWMtHHx2O5VPPY1j1y4UnY6kBx7AMkm+L3TW+dnpnJuV1novKSXaX2gSinMnnG33BYpOR8Jtt6Lv35/a//2PppWr8JSWkfzQqWdq7O26kgAbdcaU0HWsD4g167nxzIFcNDadj7eW8NWucnaXNfDYJwWMyYjlqtz+HKxq4tFFBZTWO1qfF6p7got3lHbY9o7iet7YcJj9lf5EZotBxyXjMzg/Ow2TPnzF7b2VPX8TvvoOVlmUsdbjBSJxXVEUpg1LImdQPJ9uK+XDLSXsLW/k/z7czszhyVw3JZOEqL6TBObx+vhmdwXv5h+lweEvxBuRGs0PzhjY6VU1wz1xm+j9OvtZp/jHP8EwdAgaiwVNVJT/b4sFjSUKTVTL38f+HRWFotefcmK4zhRm1v73vyTecjOKtuP3VkVROGtkCsOSrTz11T6K65p57JMCrsrtz2UT+qHpI5/7bU4Pb244zNe7/MVFUQYd103J5OxRKZ0+Ro3BgCl7DPUffnjSYy2rSvD0U8TMm9ep/ak+Hz6bDW9DA76GBrz19XgbGvE21B/7uaH1364jR/GWl3ewM3m/78n0qakYhg7Btf8ATes3EHNe586RYGhYsoTyx584Ln7p0tJIvOP21lU6Yy68kKgzz+jSfmPNen5x3kh+89FOth2t479rD3LL9MEB7XuoOD1e/rx4D8V1zSREGXj4glFEm9ovQmxPzEUX4S4ppX7RIiqf/OtJj59O3Agkn91Oc14eAFEzZ4a8fRF4fecOVh/W1gUTg1bDlMHxfH9i6JP23SXFgKwwECyG/v39BQMlJZjHZoe07SiDf6bwE7XMFC6zAfV8Xp/Ko4sKTioW+K5gJXArWi0pv/olJQ/9uI0H/W2lPvLwKb9siq5RtFpSH3nY/wFRUdr8wh+s131DUc1x700nUoHSegcbimqYOjQx4O2LrnG4vXyyzb/iw6UTMkKyuoDPbqdp7ToArGfNCXp7Ivisc+b4CwZWrybu2mvRhKCC/NIJ/cg/VMvKfVVclTugT92wCKfNh2sBmJAZF5YLuS0XFkyjRqG1hr5gQYSfoiiYc3Jo/GIJzRvzQl4wMDItGqtRj83pZndZA2MyYkPafk+lqioFpccKBtLDl5hk37oFfD70A/qjT0kJWz9Ez2cYNgxtbCze+nocu3ZhHjs25H2IjzKQHmumtN7O7rIGcgb2rRnAW2aNPvHaZFqYJpdQVZXGb74BwHrW2SH5XiP6NkWjwTp7NvXvf4Bt2fKwFAxAzxtr4eC12ah48klcB4pQTEZSHnoIU1ZWuLvV62g1Stiuw4Wz7b5AURRizpuHPiOdqmf/ibOwkNL580n58Y8xZGaGu3tBIzM3B198lIGbpw3i4vEZfLi5mG92V7CzpJ6Vb1SG7Z5gexNfldU7uOe1TcwdlUKTywOAQaflguw0LhqfgbUPFeeGmoy13i+QietGnZbvT+rPnJEpvLnxMCv2VrJyXyXri2q4dHwGF41PD+uqk92lqir5h2r53/rDlNT7Vy5OizFx3ZRMpgxO6NL3yHBO3Cb6hs7GVef+/V2aUVzRaVFaigpaCgxO+Nt9tLjjYgXocvL4gAQLf7g8m1dXF7FibyVv5x1hV2kDD5w1nFhL1xNlewpVVVm5r4rX1h1qLTCaOTyZG84c2OEqJG3uy+ul+uVX2msIFIWyPzyOecIEfDabP+n/hMR/b30D3kZ/cYCv0dZh0cd3+ZqbO7WdvN/3XFFTp/oLBtauCVvBQMvKJCeed56yMsp//wcMw4YRfdac1pnxu2pgYhQPnDWMv325h8U7yxiQYGHu6NTudzyEPF4fT321j30VjUQZdDz8vdEkWY2ntS9FUUi4+SaqXnih7Q2OxY3yx58geu7ckOfcNW/YgOpyoc/IwDC4dxZ3iOPJt+oerr0LJi6vj1WF1Xy1qzykNwtUVW1dYUCfkRGydiOJ/3XNx11cHNJ2vT6V33+6q83HZKbw3iPcCdxaazSGYcNwHzmC6nS2/l6XmkrqIw+HpdoxEsTMmwdPP3VSha9iMJASxNe9orH9c+10thPB9c3uChodblKiTUwflhSSNpvWrvN/eUhPxzhiREjaFMFlGpOFLjkZT2UlzevXYw1BFfmI1GhGpcWwu6yBT7eVcOPUQUFvMxJsOlwHQE5m6Fa0+q6WggHL5NywtC96BktuLo1fLMG+JfQzg2s1CjkD41m+t4K8g7VSMHBMab2D2mYXeq2GEamdm2ktGOybNgNgkRVIxCkoioJ50iRsS5fSnJcfloIB8K8yUFpvp6Ck7xUMQM+aNdq5bx/uI0dRDAaiZswIefuib7LOnEn9Bx/i2LULd3k5+tTw3KTsSWMt1Dy1tVT8+S+4i4vRWK2k/OynGIcMCXe3hAgL89ixpM3/f1T8/Sk85eWUPfZ7ku65G0tO30xElJmbQychysBtMwZzyYQM3t90lCeX7G1zu5Z70r/+YAdpsWYsBi1GnQajzv+3Sa/FoNOc9vtTRxNftfxu5b4qJg+O59zRqVw2sR9xFplApLtkrPV+wUhcT4gycN+cYczLSuM/aw+yt7yRd/KP8M2eCq6fksm0oYm9rki7sKKR19YdZneZf0KMaJOeKyb155zRKei0mi7vr8OJ22TCPNEJnY2rcVddhSFzAL6mZnxNTfiam7/90/Lzsb/x+VA9XtSGRnwNje3u01Nd3am2u5o8btJruW/OMMZkxPLKqiK2F9fzy/e28cDZw8ju1/uusx+tbebVVQcpKPWvxNMvzsLtMwaf9gq8nVlVwltezpG77u78amKKgsZqRRsdjTY2Fk1MNNqYWLSxMWhiYlr/7SzcT/GDD55yd/J+33NFnXkmtf97A9eBItxlZejT0kLafmdWJnEfPUrinXehaLr+vtpiyuAErs4dwNt5R3h1dRHpseawrnrdFaqq8vKqIjYfrkWv1fCL80cxIMHSrX3at25D7ajgJ4yrg9hWrgIgauaMXve5ULRNCgZ6sFPNFB6OBG5vdTWq04mi06KTWf6ComXlhlAXDIQ70VwERjgTuFWXi7r33kWXkEDSXXehS03FU1mJLjkZS26OXCgJsph584ieO9f/BbSyEtvy5XjKyvCUlAatzZRoU0C3E8Hj9vpYtNVf8HfphIyQfW6wLV0K+FcXkC8PfYOiKFjnzKHunXewLV0WkoIBgMsm9uOPnzfw1a4KLp/UX2YT66aSOjul9XZ0Gg3j+seFvH1PTQ2u/QfgWJKniFzG4cPRxETja2jEsWcP5jFjQtr+5EH+goGNB2u4aepAea8Cdpb4b6YOT4nGoDv9i73dobrd2LdvA5AYITrFkpuLbelS7JvyUW++qVs3Kk5XVnoMX+0qbx1DfVE4Z41Wvd7W77pNa9eCqhJ15hlorVFh6Y/oe3SJiZjHjcW+dRu2pcswDB4ctmtakThDu7u8goo//xlPZSXauDhSf/kLWd1YRDx9RgZp8+dT9eyzOAoKqHz6H8RddSUxF13U5763yMzNoZdkNTK2Xxwuj6/D7aqbXDzy/nZizG1fh9NpNJj0/kICg+7bf/uLCzQY9d/5t06LUe//94HKpg7vR4J/4rwbzhjI98b2/RV2QkXGWu8XzMT1YSlWHr1kDGsPVPP6+sNU25w8880+vthZxk1TBzEs5fgVYr0+NWxFru21Xd7g4I0Nh1l3wJ8grddquHBsOpdMyMBi6N79hPYmbpMJ80RndDb+Jtx4Q6fGr6qqqA7HyQUFTScXFjgLC3Ht33/KfZ5u8vjsEckMTY7i71/uo7iumT98uosrc/pz+cR+YVnZuqucHi8fbCrmk22leHw+DDotV0zqx4Vj00+rwKhFZwswVK8XbUIC2piYbxP/o2PQxsWiif62IEAbE4MmOrpT54dh0CB5v+/ltDExmLPHYN+2naa164i7/LKQtn/KghdAdThw7NrV7cT1yyf242itnTX7q/jbl3t5/PJsUmJ6fm7RWxuPsGxPBQoKD50znJFp3Z98q6euBuYuL8e5dy8oClHTpoW0bRE8kmnTg/XEBO6WJHZdalpIZ3+MJN8tGFBVNWQXf2Wm8L4hnAncjd98g7e6Bm18PNHnn4fGIDO+hJqi1bZ+KLdMmkjJI7/GvmULjoKCoCzhPmVwAumxJsrqHW0WtylAWqz/Yp0Ir+V7KqltdpEQZWDWiNDMGOAsKsJ16BCKTkvU9OkhaVOEhnXmDOref89/ofHIEQwDBgS9zfH9YxmYEMWhmia+2FHGFTn9g95mX7bpcC0AWRkxmA2hL+hrzs8HwDh0KLr48KxwIHoGRaPBMnEituUrsOflhbxgYGz/WAw6LVU2J4drmhmYKImnO0v8syiNCeNMLo5du1AdTrRxcbK8qegU0+hRaMxmvPUNOAsLMYVhZauW2Y8OVTdjc3qkuDGAGpYsaXM1Peu8c8PYK9EXWWfPpnHpMsqfeOL4VTPT0iQJKIhcR45Q8ee/4K2vR5eSQuovfyEzHQpxjNYaRcrPfkrt/96g8auvqHvnXdxHj5Jw++196tq7zNwcHp291xdt0pESbcLp8eLy+HC4fajH7gZ4fD5sTh82p6dLbVfZXJ3azuXtuKBBdI2Mtb4hmInriqIwbWgSOQPj+Wx7KR9uLmFveSP/9+F2Zg5P5trJA0i0Glm8o5RHFxUcl8eSHmti/sVZnJ8d3CKfttpOjTEyZ2QyxbUOPD4fCgqzRiRzdW5/Eq3GgLV94sRtMmGe6KxAx19FUVDMZjRmMyR2nCemer00b9wY1OTx/vEWHv9+Nv9afZBleyp4J/8IBaUN/PDsYT16haD8Q7X8e81BKo99JpqUGc8t0wcFJI+ms99pU3/9a6xnntHt9r5L3u/7BsuZU48VDKwh9rJLQ1o0HsrEdUVRuHv2EMoaHByotPGXL/bwu0uzw3LvurMW7yjlwy3+3Nm7Zg0J2GrDnY0bitkckPY6q2mVf3UB89hsuaffh8jdqy747mxWofgC0BMTuN0l/tmJZYaf4NGnpYGi4GtuxltXF7KA25NmCg/1WOtLpgxOIMlqaPeCa7ASuH1NTdR/9DEAcVd8v0/dsOit9BkZRJ99Fo1ffU3tG2+Q9uijAZ9pU6tRmH9xFve+tgkFTioaUIH5F2eFbFYR0TaP18dHx1YXuGR8BvpuzIjQFbZlywEw5+aije5+VbXoObRxcVgmTqI5Lw/bsuUk3HhD0NtUFIVLJ2Twj2/28fmOMi4cl45JL58NTlf+IX/BwKTMuLC0b8/LA8AyZXJY2hc9iyU3F9vyFTTnbyL+pptCeuHTqNMyrl8seYdq2HiwNuILBlRVpeDY7OjhXPrVvnkzAOaJE/vc7KkiOBSdDvPECTStWYs9Pz8sBQNxFgP94iwU1zVTUNIgRdMB0rBkif8G5wk3tVWXi4rHn0CfmipJ3CJg3JWVuAoLT/q9p7zcfx4+/ZScbwHmLCyk4q9/w9fUhH5Af1J//nO0cXHh7pYQPYqi05Fw043o+/ej5r//pWntOtzl5SQ/+GCfulkvMzeHXmfv9T10zojjJq1TVRW3V8Xp8eL0+Px/3Cf/2+H24vL6cLp9ODxenO5jj3u8HKhsorDCFrA+is6TsdY3BDtx3ajTcvnE/swZkcIbGw+zYm8lK/dVsr6ohiFJFv695tBJzymrd3Dva5tYcMOkoBUNLN5Ryr2vbTrpXmR5g5O3Nh5lRKqVs0am8IMzBpKZaAlKH747cZsQXRGu+Buq5HGjTss9s4eSlR7Dy6uK2FlSzy/f28YPzx5Odr9YoOesTGLUadleXE/+oRoAEq1Gbpk2iNyB8QG7Ft3ZVSWiJucGpL0Tyft972fJmUSNwYCnrBxXURHGIUNC1nZnE9cDNdmDUaflZ/NG8usPtnOktplnl+7jp+eORKNRekzcaGl7/YFqFh77HHTN5AGcNSolYO2dMm7gn0Sn9t//xvbN15jGjME8dizGkSODlp+nqiq2YwUDUTNmBqUNER5SMNBJbc1mFezZhXpSAneLlhUG9BkZIWsz0igGA7rUFDxl5biLS0J20fdUM4WDf3aAYN/0DsdY60t8qsqwFCtVtpqTHmv52BSMBO76Tz/139zLyJCZxHuQ2Msuw7Z6Na5Dh2lavRrrzMB/iDs/O50FN0w6aUYPg1bDpIFxzB2dGvA2Rdes2V9NZaODGJM+oF9aOuJzOGhauwaA6DlzQtKmCC3rWWfRnJdH0+rVxF1zdUgKxc4Ykkhq3hHKGxws21MR9NmK+iqb08OeskbAP2NKqHkbGnDs3gOAedKkkLcveh5TVhaK2YS3rg7XgQMYhw4Nafu5g+LJO1RD3sEarozw1UuO1tppcLgx6LQnLTUfKqqq0rzJXzBgmTQxLH0QvZMlN5emNWtpzssn7tprw1JskpURc6xgoF4KBgJA9Xopf/yJdm+QAJQ//gTRc+fKJBOi21Svl4o//bmdB1VQFDnfAsy+YyeVTz+N6nRiHDaM5J/8BK01sos3hehI9Nlno09Lo/KZZ3EdKKLst4+S/NCDGPvQilwyc3None7qwYqiYNApGHQaTneKGK9PZePBGlm5OExkrPUNoUhcj48ycN+cYZw3Jo3/rDnI7rJG/rf+SJvbqvjH7qOLCjg3K61T96FVVcXr8xchubw+3F4fHq+Ku+XfPhWXx/9vl8fHIx9sbzeHAaDa5uIX54+SScxEjxWu+BvK5PFZI5IZmmLlqS/3cqS2mT98uovLJ/XDatTy2Ce7eszKJAathiHJUdw4dSBXTOof8AnKesIs//J+37tpzGbMkybSvG49TWvWhqRgQPV6cR0+jKe6CiUqCrWpqe0NA7AyyYkSogz8dN5IHl20k/xDtbyVd4R4i75HrWiUZDWQZDUSZ9Fz3pg0LpsQ2Im2O4wbx5hzc8HrxX3kKO4jR2lc/AWKTodxxAhMY7MxZ2ejz8wM2L0RR0EB3uoaNGaz3K/rY6RgoBPam80q2LMLtVys+W4A+q5wXDCRFQZCQ5+R4S8YKCnGnD0mJG2eaqZwCP5M4eEaa33Jx1v8Y3TCgFhK6x2UN3y7hHpakD48eWpqaPxiCQBxV18tXzJ6EG1MDLGXXELdW29T9867WKZMQWMM3PKbLc7PTufcrLTWCttoo543Nx6mweHmoy0lEZ98F04+n8qHm/3FfheOS8eoC834bF6/HtXhRJeainH06JC0KULLlD0GXVISnqoqmjdsxDoj+MViWo3CxeMyeHnVARZtK+Wc0anoQrRiRl+y9UgdPlWlf7yFlJjQz9Rm37wZVBXDwIHoU0JTxCR6NkWvxzxuHM3rN9C8MS/kBQOTBsajoHCwuql1ppBItfPY6gIjU60hW5HoRK6DB/HW1qIYjZjkM4ToAtPYsSh6PZ7KStxHjmDIzAx5H7LSY/iyoIyC0oaQt90XNeflH3cj+ySqiqesjOa8fJnhUXSbnG+h1ZyXR9Vzz6F6vJiys0l+8EdBuV4lRF9jysoi7bfzqfz7U7hLSij/w+Mk3nlnn4pLMnNz6HR0TzCYk0+Fu23hJ2NNdMXQZCu/vWQMr64qYn3RyRPWtVCB0noHP35rCynRRn/iv0/F7TmW/O/1tf67pSigsxrsHmqa3B1uU93kYkNRzXGrogjR04Qr/oYyebxfnJnfX57NwjUH+WZ3BS+vPMDe8pNXFjrdlUlUVcXp8dHk9NDk9NLk8tDsOvZvp4cmV8vfHrYdrWPxjvKT9uHy+thd1khilCFoq5n3hFn+5f2+d4uaOpXmdetpXr+O+OuuDfh4VT0eXAcP4ti9B+ee3Tj27kW1+/NT9enpba7CGcyCl2EpVu6ZPZRnvtnHv1YXBTRudEV7KxpV2VxU2VxcNC6dm6cOCsqERe3Gje9MsuxtbMSxswDHju3Yd+zEW1ODo6AAR0EBdW+9jSYmGvOYMZiyx/rzOboxSXXTSv/qApapZ6KEYPJIETpSMHAKHc5mFeTZhbQahVumDeSJz/ec9Fg4LpioqoqrZYUBKRgIKn2/ftg3bcZ9tDik7XY0U/iwFCu5g4JXnBLOsdZXFNfZ+eBYYvAvzh/FGYMTQ7I8U/0HH6C63RhHjMA8cULA9y+6J+bcc7F9/TWeqmoaPv+cuMsuC0o7Wo1y3EU4k0HDP77ex4ebizlzSAL944Oz/Kfo2PqiGkrq7ViNOuZlpYWs3calSwGwzpkdltldRfApioL1rDnUvfMutqVLQ1IwAP7ZSd7NP0q1zcnq/dXMHhGY5Q4jyaZDtUB4VhcAf3IQgCVIS62K3smSO9lfMLApn7hrrg7pe0eMSc+o9Gh2lTaw6VBtRK9eUlBSD8CYjNiw9cF+bHUB89hsuQApukRjNGIaNxZ7/iaa8/LDUzCQEQPA4Zpm6u1uYs36kPehL/FUVgZ0OyE6IudbcKhe70kJKU1r1lD98iugqlhyc0m69x4UvcRLITpLn5pK2v/7DVULFmDfuo2qf/4T15HD6PsPwFtVJTOHii5p755gsCaf6iltCyG6TlEUkqI7V+BZUNpARWPXr+noNBr0WgWdVoNBq0GnVdBpNBh0Ckdr7Z3aR0Vj2xNxCiFCmzxu1Gm5a9ZQRqXFcOd/8trcpiUr6Dcf7iA1xoTD7aPZ5cHm9NDckvR/rCCg6djv/I958Po6Wm/k2P5V2Hy4rt3Hu7oqyumQWf5Fd5jHjkVjteKtb8BRsAvz2Oxu7U91u3EeOIBz925/kcC+fagu13HbaMxmjCNHYhw5Ak9NDdUvv4K3/Nuim2AXvEwflsSh6mZ++/HOto+B4I5dr0/l0UUFHa5olHewpsPHu+tUcUMbHU3UmWcQdeYZqKqKp7QU+44dOHbsxLFrF76GRprWrqNp7TrAn39qGpuNecwYjKNGdXrCDp/d3npP3zpzZnAOVoSNFAycQjhnF3J6vBSUNjIi1UpZvYMGh6f1sXBcMPHW1vqryTQa9GmpIWs3EhmOFWS0rOgQSifOFJ5sNfLFznL2lDfwnzUH+cm8kUFpt6/O5NXWjbFgfAFQVZWXVhzA4/MxYUA8U4ckoihK0GdRcBcXY1uxEoD4ECd3ic5RDAbirr6aqucW0PDpZ1hnz+5WFWlnTR2SyMp9VWw+XMvLK4uYf3FWUM+PUI213kRVv11d4LwxaZgNoXk9XIcP4zpQhKLTypeHPi5qxgzq3nsf5759uI4WY+gf/IJSg07DBePS+d/6Q3y8pYRZw5PkvacLvD6VLUfqAMgZGPqCAV9zM46d/os8lpzALVUpej/zuLEoOp1/lbXikpDEk+/KHZjArtIGNh6M3IIBVVVbZ0VvSXoOh+bNmwAwT5IYIbrOkpPrLxjIzyPu+5eHvP1Ys54B8RaO1Dazu7SBM4bIrIanw1NVhWPnTprWrOnU9rpkKSAV3dfZ80jOt85rWLLkpBnRNHFx6JKS0CUkYJ01k4Rbb434azdCnA6NxULyj39M3VtvUfP6/yj/3WPHJXp8d/ZBIU7lxHuCwZx8qie1LYTous6uynnFpH6M6x+HTqOg12nQazTodceS/7XH/1unVdBpFQxaTYfX+dfur2blvqqA9VEIERp6rQanp+PVRCptLn79wQ5izF1LX9RqFCwGHVajDotBS5RRR5RBR5TR/+/iWnunVkUJ9sokMsu/OF2KTkfUGVNo/Pobmtas6XLBgM/lwlVYiGPXbhx7duMq3I/q8Ry3jcZqxTRqJMYRIzGNGok+MxNF8+3q0wnXXx/yHJxBiRZcHaxCFMyxu6Go5rhi5raUNTh7TNxQFAV9Rgb6jAxi5s1D9XhwFhbi2LED+44duIoO4i4uxl1cTOPiL1B0WozDR2DKzsY8Nhv9wIHtfv5q3rAB1eVCn56OYciQQB+iCDMpGDiFcM4u9OHmYsobHAxLsfL+vdPZXlwf1gsm7mJ/8ro+NRVFJ6dOMLWs4OAuLkZV1ZAnwp04U3j/eAu/en8bGw7WsPlwLRODMCNtX5zJq60bY8G6WL9sTyW7yxow6LTcNiM4yx+1pfbtd47NCJaDcfjwkLQpus5yxhkYvvgC1/4D1L//Pom33x70NhVF4fYZg/np2w3sLmvg610VnJMVnGKzUI613mTT4ToO1TRh0mv53tjQJT/ali0D/Il+2pjwJRyK4NPFx2OeOAF7/iZsy5aRcMMPQtLuuaNT+XBzMcV1zeQdqmVyEFdA6mv2lDXS5PJgNeoZnmINefv2rVtRPV706emyYpk4jsZsxjRmDPatW2nO2xjygoHJg+L577qD7CptoNHhJtoUebPcHq5pxub0YNRpGZIUFZY+eCorcR8+AoqCecL4sPRB9G7mCRNAo8F95Cju8gr0qSkh70NWRgxHapvZWSIFA53ltTXh3FWAfedOHDsL8LTMWqWqKAbDSTNdtVIUdKmpWHKlwEh0nyU3B11amv/8a2v1U0Ar51unNSxZQvGDD530Wvrq6nDV1WG+6ioSbr9dir+F6AZFo0GbmIirsPCkxzzl5f4x+PRTEX1tVHTeifcEI6VtIUTXTBmcQHqsibJ6R5sz6yr4J728a9bQgOexdLbtKYPlXoEQPUlnV/2INukYlRbTmuzvT/zXEdVSCGDUYjEcXxBg1HVcaPTRluKA9lGIcLBMnUrj19/QnJ+Hz3ULmg5WZfbZ7f5k8d27ce7ajetgEarHe9w22tgYjCNH+YsERo1C369fh+MoHAUvlTZnp7bLP1SDSa/Bp6q4vSpen4rb68PrU/H4VDxeFa+q4vH68Pj8jx/37xN+dntV9pY3dKrtnho3FJ0O06hRmEaNIu7KK/HabDh2FhwrINiOt7oGx65dOHbtou6dd9BER2Mak4U5OxtTdja6hG8/R9lWrgIgauZMuX7XB0nW9ymEa3ahIzXNLNpaCsAt0wZjNenCfsHEXez/QKXvlxHWfkQCXXo6KAq+piZ89fVo4+LC2p/MRAvfG5vOp9tK+Nfqg2RlxGDUBbZqsK/N5NXejbFgXKyvb3bz2rpDAFyTOyBksyc49uzFvnkzaDTEXXllSNoUp0dRFBKuv56yx36PbcVKoufNwzBgQNDbTbIauXbyABauPcjr6w+RMzCe+KiuL0PakVCOtd5EVVU+2HwUgHOzUrEaQ/ORz+dy0bTaPxOodfbskLQpwit6zhzs+ZtoWr2auKuv6vBCRaCYDVrmZaXy4ZZiPtxcTO7AePmi2kmbDtcCMDEzDk0YZmtr3rgRAMvk3JC3LXo+y+Rc7Fu3Ys/fRNxll4W07ZQYE5kJFg7XNLP5cB2zRvSO7xyBtLPEfyF0VHo0Oq3mFFsHR/PmzQAYR4xAaw19UZPo/bTWKEyjR+PYuRN7fh76Cy4IeR/GZMTyxc6y1jElTuZzuXDu3Ydj504cO3fiOnTo+O9zGg3GIUMwjRmD9eyzqPjTn0FRjt/m2Ge/1EceltnJRUAoWi2pjzzsv45w4vl2jCEjg+pXX8U0OgtT1ujjbqKJb6leL+WPP9Fu4QWAbcUK8PlAxq8Qp611rLX5oAqKQvnjTxA9d668VwohhAgIrUZh/sVZ3PvaJhQ4LnG/5Urz/IuzgjLpZTjbFkKcvs7mrTx0zoiA58N1tm1ZmUT0ZMbhw9ElJeGpqsK+aTNRZ57R+pivqQnH3r049+zBsXs3roOH/NdavkMbH99aHGAaNQpdWlqPv6fe2TH52fYyVhWeevWhrmiwe069Eb0nbmitVqLOmELUGVNQVRVPeTn27dtx7NiJY1cBvsZGmtetp3ndegD0GRmYsrMxDMzEuXcvKApR06eF+ShEMEjBwCmccnahIMxmpaoqr6wqwuPzkTMwnsmDAj+b++lwlxxbYUBmAw06jcGALiUFT3k57pKSsBcMAFw5qT9rCquoaHTw8ZYSrsoNbLKxJTcHbXIy3vZWEOhFM8d1eGMsCBfr/7P2IE0uD4OTojg/O63b++sMVVWpe+stAKyzZqHPkEKins44fDiWyZNp3riR2jfeJOXnPwvJl4HzxqSxsrCKA5U2/r3mID8+d0TA9h3qsdab7ChuoLDChl6r4aKxoRufzes34LPb0SUnY8oeE7J2RfiYxo5Fm5iAt7qG5o0bsU6fHpJ2v5edzqfbS9lfaaOgtIExGbEhabe323TIXzAwKQirRZ2Kz+XCvm07AJZcKRgQJzNPmACKguvQodblTUMpd1ACh2uayTtYE6EFA/UAYY2n9k3+ggFLzqSw9UH0fpbcHBw7d9Kcl09MGAoGRqdHA1Bc10x9s5tYS+StWHIi1efDdfCgv0Bgx06c+/adtPy1vl8/TFlZmMaMwTR6FBqz+bjHTlpRLjU14leUE4EXM28ePP3USeebYrFgGNAfRa+naeUqmo7NsKVLSz1WPJCFafQoWWHvmOa8/ONev7Z4y8tpzssP+Sx1QvQlpxxrqoqnrEzGmhBCiIA6PzudBTdM4tFFBZTWfzu7blqsifkXZ3F+dvBWuw5n20KI0xPO1UFkZRLRFyiKguWMKdS+8SbV//oXjr17URQF5969uA4fPilPRpeUdKw4wF8koEtO7vEFAic61dgFMOs1ZGXEoNcq6DQatBoFnUZBp9Wg1YBOo0GnUdBqFfQtj2sVtJrjf/Y/17+9VqugAX789hZqmtxtttub44aiKOjT0tCnpRFz7rmoHg/O/fuPrT6wA9eBItwlJbiLi/E2NqK63RhHjpTrnX2UFAycwilnF1LVgM9mtXRPBbvLGjDqtNw6fXCPCd6tKwxIYnBI6NPTcO7bR91HHxPdaMOSmxPWhFezQctNUwfx9Nd7+XhrCbNGJJMaE8CqOY0GU9Zompa3UTDQy2aOC+XF+i1H6li9vwoFhTtnDgnZzAn2TZtwFhaiGAzEXn5ZSNoU3Rd39dXYN2/CsWMHjm3bMI8fH/Q2NRqFu2cN4eH3t7O+qJr8QzXkDAzMB+i+emNM9Xr9x3YsWfJ04v8Hm/3v2XNHpYQ0Scm2dCkA1jmze8znFxFcikaDdfZs6t//ANuy5SErGIi16JkzMoUvC8r4aEvJaSW4BmKs9Sal9XZK6u1oNQrjB4Q+IdixbRuqy4UuKQn9wIEhb1/0fNqYGIwjR+DcvYfm/E3EnH9eSNufPCiB9zcdZcvRepweb8BXVOvJfD6VXaWNAGSlh+fin6+pCcee3QCYJ04MSx9E32CeNAkW/gdnYSGe2lp08aEtkos26VtXLCkobQj7aqGB1NnPTi2zFbWsIOAo2IWvufm4bbTx8f7igDH+ZOuO/p9i5s0jeu7ciPrcJsKnvfNN9Xj8K2PsKsBRUICr6CCesnJsZeWt34P1/ftjGj3af16PHIkmKuq0+tDbv6d42psM5jS3E0K0TcaaEEKIcDk/O51zs9LYUFRDRaODlGh/4lwo7lGHs20hRNfJyiRCdE/DkiVUPvMs3qoqnLt307R8OYrBgD4zE11Cgn8yi5GjMI4a6V9BILH3X4vuzNj9+zUTglYo+PjlY7n3tU3QTtt9JW4oOh2mkSMxjRxJ3BVX4LU1UbNwITX//je+Rv/9Qtf+/RRu2iQT9/RBUjDQCe3OLmQwEPv97wd0UNTb3fxv/WEArs4dQJLVGLB9ny7V66VpYx7NmzeDz4cuXaqzg61hyRJq33wLX0MDzt27qV24EF1aWtiD8JlDEli6J45tR+t4dXURvzp/VMASQhu/WIJqd2AcPRpPVdVxKw30tpnjQnWx3uH28sqqIgAuGJvGkGRrt/bXWarXS93b7wAQfd68kCdgiNOnT03Bes45NC7+gto33sSUnR2Sm84DE6O4aFwGH28t5pVVRWSlx2I2dL/dvnhjrGHJkpNnz+xi/N9T1khBaT06jYaLx4euyM91tBhnYSFoNETNmBGydkX4WWfPpv6DD3Hu2YO7uDhkq1FdPC6dr3eVs+1oHUVVTQxO6nxCTiDGWm+z6VAdAKPTYrAYQv81sDkvDwBzbo4UFIl2WXJyjxUM5Ie8YGBQooVEq5Fqm5MdxfUBK3DsDQ5WN9Hs8mDWa7sUSwPJvm0beH3oMzLQp6aGpQ+ib9DFx2McNhRn4X7smzYRPXduyPswJiOWwzXN7Cyp7zMFA6f67OStq8NRUIB9504cOwvw1tQc93yN2YwxazTmMWMwjRnT5eWvFa22VxWBi96trfNN0Woxj83GPDYbAF9zM449e3Ds2oWjoAD34SO4jx7FffQojV9+CYqCYeBA/+oDWaMxjhiBxnTqiVf6wveUzq4SFerVpIToa2SsCSGECCetRgnb991wti2E6DpZmUSI09OwZIl/cusTJrZWXS5chYUkPPE48ZdfHp7OBZnEjdBrWrOaqmefPel885SX+8/Dp5/qNdcmxalJwUAnnTi7kKe6GttXX+EqKsKxZw+mkSMD0s5r6w5hc3oYlBjF+dlpAdlnd7R1k+LQzbeQ9utHJBAESXtv+j0hCCuKwq3TB/Hzd7ax9UgdGw/WBmSpHXdJCXXv+BPQk3/4ANbZs3v1TFqhulj/bv5RKhsdJFqNXJU7oFv76grbihW4S0vRWK3EXnhhyNoVgRF7yaU0rVyFu6QE2/IVRJ99VkjavSKnH+sOVFPR6ODNjYe5dfrgbu+zr90YC1T8b1ldYPaIZBJDWHhoW7YMAMukiVJIFGF08fGYJ0zAvnkzjcuXk3D99SFpNyXGxLShiawqrOKjLcU8dM6ITj2vJ3/WCqZNh2sBmDQw9ONT9Xj8xceAJTc35O2L3sOSm0Pt66/j3LsXb0NDSJe6VBSFyQPjWbyzjI0Ha9ssGOjtM/62Z2dJAwCj02PCNjNKS4wwT5LVBUT3mXNycBbupzk/XAUDMXy+o5SCY2Ort2v3s1NZGcU/epDaM6Zw4vrQik6LcfgITNn+AgHDwIF9Il4K0UJjsWCZOBHLsVVxvI2NOHbtwrlrF46CXbhLS3EdPIjr4EEaPvsMtBqMg4f4Vx8YPRrjsGEoBsNx++wr31MsuTno0tLwlJefvFozgKKgS03FkpsT+s4J0YfIWBNCCCGEEL2FrEwiRNeoXi/ljz/R9nc9AEWh6ul/EHfJJX32mqvEjdDp8HxTVVAUyh9/gui5c/vs+RZppGCgC06aXcjtwrZiJVXPP0/G739/2ssMt9h+tJ6V+ypRULhj5pCwB5r2blJ4Kyp61U2K3qQ3BOH0WDOXjM/g/c1HWbj2IOP6x2LSn35fVK+XqhdfRHW7MWVnYz3rLBRF6dUzx53yYj3+2cG6c7G+qKqJz7aXAnDHjMHd+j/oCp/LRf0HHwIQe8klaCyWkLQrAkdrjSL2ssuoff116t5/j6ipZ6Ixm4PerlGn5c6ZQ/jDZwUs2VnOjGFJDE+N7t4+hw1FMRpRnc62N+hFN8YCFf8PVNrYcqQWBYVLJoRudQHV5aJp9WrAP9u8iDzRZ83BvnkzTStXEX/llSclvwTLJeP7saqwivUHaiitt5Me23E86w2ftU6H6vViW7kKb2Mj+pSUk5KYm10edpf5kxZzwlAw4CgoQLU70MbGYhw+POTti95Dl5iIYdAgXAcP0rxpE9Fz5oS0/dxBCSzeWcamQ7X4fCqa73wn7wsz/n7Xd4sfyorsKPp0xmTEhqcvHg/2rVsBsEyaFJY+iL7FkpND3Vtv49hVgNfWhNYa2pUzRqXHoKBQUm+npsGOcdf2XltodMqbU4B98xbMEyb4Z1M/toKAceQINCH6PChET6CNjiZqyhSipvivZ3pqa/3FA8cKCDyVlTgLC3EWFlL/0ccoOh3G4cMxZY3GlJWFPjOzz3xPUbRaUh952H//QFGOP6ZjK4ukPvJwjz8OIXo6GWtCCCGEEKI3kZVJhOi85rz84+5FnURV8ZSV0ZyX36tz605F4kZoyPkWeTTh7kBvFv+DH6BLScFbXUP1woWoHdw8OxWnx8srqw4AcN6YVIalWAPVzdNyymQqoPzxJ1C93hD3rG/rShAOp0snZpAcbaLa5uT9TcXd2lfDZ5/hOlCExmwm8fbburQkfU/VcrHe/0Pbx5Py8K9O+2K9z6fy4ooD+FSVM4ckMjEzdIl/jV98gbeuDl1SEtFzzw5ZuyKwoueejS41FV9DIw2ffhqydsf2j2Xm8GRU/Oewx+s77X2pPh/VL76IfkA7q2v0shtjgYr/Hx5bXWDG8CRSY0yB7GKHmvPy8DU1oU1MwDR2bMjaFT2Hadw4tAkJ+JqaaM4P3eeUzEQLkzLjUVH5ZGvpKbfvLZ+1uqJhyRL2nT2Xo/fcQ+nPf87hm2+mcO45NCxZ0rrNliN1eH0qGXHmkMaGFs0b8wB/UWVf+Kwngqul0M8ewljSYlRaNFEGHQ0ON3srGlt/31JMf2L8aJnx97vjrTdoWLKEwrnncPjmmyn52c+Y8c/f8ODLP2fkvryw9Mexe8+xoqIYDEOHhqUPom/Rp6Wh798fvD7sW7aEvH2rUcegJAuj9uVTcsF5rWOtrffonu6Un53wFw8n3HYb6Y/9jvhrr8E8NluKBUTE08XHEzVtGom3306/vz5JxpN/IfGO24maNhVtXByqx4Nj1y7q3nufssd+z6EbbuxT31Ni5s2j39NPoUtNPe73utRU+skkREIEjIw1IYQQQgghhOh7PJWVAd1OiI7I+RZ5pGCgGzRmM0n33gMaDc3r1tO0Zs1p7+ujzSWUNTiItxi4ZnJmAHt5evpiMlVv0FuCsFGn5ZZpAwH4dHsJR2ubT2s/riNHqP/gAwDib7wRXWLfqc5r72K9YjBgGDYMren0k/UW7yyjqMqGxaDjlmmDutnTzvM2NlL/yScAxF15BYpeH7K2RWApOh3x11wNQMPni/FUV4es7RunDiTapOdIbTOfbDt1cm976j/4EMeu3egz0kl79FF0aWnHPd7bbowFIv4fqWlmw8EaFBQuDeHqAgCNS5cB/tUFFI18vIxEikbTurpE49KlIW370gn9AFi+t5LaJleH2/aWz1qd1ZLE7C0vP+73nrKy45KYNx+uA8KzuoDq89G8aRMA5pzckLcveh9Ljr9gwLFzJz67PaRt67QaJh0bJxsP1gJ9r5i+veKHGFst7v/7ZVgSme0tMWLCRCkqEgHTEkvsm8Jz3Wpa8XauXvRPNFXHf6bobYVGnf1M5LPZgtwTIXo3fUoK1lmzSLrnHvo9/RQZf/ojCTffhGXyZDRWK77mzl1b7S3fU8B/bXTY11+RuXAhGU8+SebChQz7+qtec51GiN5CxpoQQgghhBBC9C265OSAbidER+R8izyS0dVNxqFDib3sUgBq/vMf3BUVXd7H0dpmPt5aAsCt0wdjNoR/JuS+lkzVW/SmIJwzMIGcgfF4fSqvrjrY5RU2VI+HqhdeQPV4MU+aSNT0aUHqafi0dbE+7bHH0CUkUPOf/+I6fLjL+6yyOXlr4xEAfnBGJnGW0M3aV79oEardgWFgJpapU0PWrggOc04OxpEjUd1u6t59L2Ttxpj03DTVX3D03qajlNZ3PRHQvnMn9R9/DEDirbcSf83Vvf7GWCDif8vqApMHJ9A/3hKQfnWGu7QU5549oChYZ80KWbui57HOmgmKgnP3Htylp18Q1FUj06IZlRaDx+fj0+0dt9vZYree8FnrVDpMYgZQVcoffwKP28Pmw/7E50khXJWohXPvXnyNjWiiojCNGhny9kXvo+/XD316GqrHi33r1pC3n3usYCDvYA2qqvapYvqO4kZLmn6oix9UVaV587GCgYkTQ9au6PtaVyvZth2fq+OCwkBTvV6GvPUi8O3Y+vbB3lVo1JuuUwnRWyiKgj49nei5c0n+4QP0/+ezJN1zT6ee29vGmqLVEnXGFGIvupCoM6b0ihUgheiNZKwJIYQQQgghRN9hyc3xT5jZ3gRLioIuLa31GrgQ3SHnW+SRgoEAiL34YozDh6PaHVS/8GKXbvipqsrLK4vw+HzkDIxn8qDQJ/G0RW4IhscpgzD0qCB887RBGHRaCkrrWV3YtRnK6z/6CPfhI2isVhJvvbXPziR54sX62Esuxjx+HKrbTeWzz3Zp1lRVVXllVRFOj5dRaTGcPSoliD0/nqeyEttXXwEQd/U1ffb/K5IoikL8ddcB0LR6Nc6iopC1PWNYEuP6x+H2+nh5ZVGXCo68dXVUP/88qCrW2bOJOla80ttvjHUm/muTk9uN/2X1Dtbs98fhyyf2C0of22NbtgwA84QJ6BISQtq26Fl0iYmYx48Hvj0vQqVlVY2vdpVjc3ra3MZbV0fjkiUohg6K7XrRF95TJjHjX2lg35crsDk9WI06RqRGh6h332remAeAedJEFJ0u5O2L3sl8bGbwcCThjx8Qh16robzBwdFae58qpu+JxQ/uw4fxVtegGAyYsseErF3R9+kzM9ElJaG6XDi2bQtp2815+WiqKk4uFmjRiwqN5GaBEMGnKAoxF3xPxpoQQgghhBBCCCGEQNFqSX3k4WM/nHCt6NjPqY883OtyYkTPJOdb5JGCgQBQtFoS774LxWzCuW8f9YsWdfq5y/ZUsrusAaNOy63TB/eYJFxLbg7axMT2N5CbFEHRYRA+JuG2W3tMEE6JNnH5RH+C3n/XHaTZ1XaC3omcBw5Qv+gTABJuvhltbGzQ+tjTKIpC4t13o01MwFNWTvUrr3Y6WXrdgRo2H65Fp9Fwx8zQxou6995H9XgxZWVJIk8fYhwymKhp/oT72jfe6PJKIadLURTumDEYg07LzpJ6lu3tXIKd6vNR9fwLeOsb0PfvT/yNNwS5p6HTmfhvGDAAb0NDm499tKUYFZUJA+IZnBQVrG6eRHW7sa1cBYB19uyQtSt6LuucOQDYVq5CdbtD1u6EAXFkJlhwuL0s2XlyMqzX1kT5X/6Cp7ISU3a2/5e9/AtvZ5OTa956G43Xw4QBcWg1of2u4Z+d3V8wYMnJDWnbonez5PrPF/u2raghnhncpNeS3c///STvUE2fKqbvicUPzZs3A2DKHoOmo4IuIbpIURTMx65ZNedvClm7qs+Hs7CwU9v2hkIjuVkgRGjIWBNCCCGEEEIIIYQQLWLmzaPf00+hS0097ve61FT6Pf0UMfPmhalnoi+S8y2ySMFAgOhTUki46SYA6j/8qFM3B+vtbl5ffwiAq3L7k2Q1BrWPXeGprESfnt72g3KTIqjaC8JKVBSGYcOw5+Xjqa0NU+9OdtG4DNJjzdTb3by98cgpt/e5XFS/8CL4fFjOPIOoM6aEoJc9i9ZqJfn++0GroXnDBmxff33K5zQ5PSxccxDwz6LcP94S5F5+y3XoEE1r1wIQd83VPaawSQRG3FVXoej1OHfvwX4sYSsUUmJMXJXTH4DX1x2ivvnUicX1H3+Mo6AAxWAg+f77+lxSWXvxX5uSgjk3B0Wno+LJJ/E1NR33eJXNycp9VQB8f1JoVxdozt+Ez2ZDGx+Pefy4kLYteibz+HFo4+Px2Ww054du1lxFUbh0gv/8/3xHGU7Ptyt++ZxOKv/2N9xHjqKNjaXf3/9Ov3883eu/8HY2OVk9dJDvLf0fObGhf/92FRXhra1FMRkxS8Gh6ALD4MFoExJQHU7sO3eGvP2Wlf82HqzFMHAgiqWDz969qJi+s3Gj7v33qX71X9hWr8ZT3bWV5LrKfiyR2zJpUlDbEZGppVjNvnkzqqdzExx0lurx4C4poTkvj/qPP6ZqwQJKf/Mbjtx5F3XvvNOpffSGQiOQmwVChIqMNSGEEEIIIYQQQgjRImbePIZ9/RWZCxeS8eSTZC5cyLCvv5JrRCIo5HyLHLpwd6AviZo2Dce2bTStXUfV8y+Q/tjv0JjN7W7/2rpD2JweBiZE8b3sdpLzw8Db2EjFX/+GxmIhavp0HIWFeMvLWx/XpaaS+sjDEhCCKGbePKLnzqU5Lx9PZSW65GRMY7Io/8PjuIuLqXz6aVIfeaRHJMvqtRpumz6YP3xWwBc7y5k9MqXD2a3r3n0Xd2kp2tjY1iKbSGQcNoz4a66l9n//o/Z//8MwZAjGIUPa3f6NDYeps7vIiDVz2cTQJgTXvv02qCqWM8/AOHhwSNsWwadLTCT6/PNoWPQJtW++iXncOBRdaD4eXDA2ndWFVRysbuI/aw/yw7nD293WsXs39R98CPhXJtH3C+04CJW24r8lNwdPdTXlj/0e95GjVPz9KVJ+8fPW94BFW0vw+HyMyYhlRGp0SPtrW7oUAOusWVJEKAD/zJjWWbOo/+gjbEuXEXXmmSFr+8whiby18QgVjQ6W7q7g/Ox0VLebyqf/gbOwEE1UFCm/+Dn61BT07Yy13nQeW3Jz0KWl4Skvh7ZWiFEUlPh4qixxJNWWkf7q0zhjfoRxePuxNtCaN2wEwDx+PEoP+Nwqeg9FUbBMmkTjV19hz8/HMnFiSNvPyUxAUQ+gX7uCQ4s2o8/IwNXWpAC9rJi+JW64y8poq4RIBf/nC7cb27Jl2JYtA0CXlIhx5ChMo0ZiHDUKXUpKQIqIPTU1uA4dAkXBPGFCt/cnxImMw4ehiYnG19CIY9duzGOzu7wP1e3GXVaGu6QUd3Ex7pIS3MXFeMrLUL9ToPhduoQEXGYzPru93bGm7yWFRi3a+57SG2KfEL2JjDUhhBBCCCGEEEII0ULRaiNyIl4RHnK+RQYpGAggRVFIuOkmHHv34qmooPb110m84442t91RXM/KfZUoKNw5awhaTc+YsVt1uah86mk85eXokhJJmz8fjdUqNynCoK0gnPzjhyib/1tcB4qoefVVEu++u0fM9j62fyxThySx9kAVr64q4neXjmmzX449e2j8YgkACbfditZqDXVXe5To8+bh3LuH5rx8qp79J2m/+x1a68nFFrvLGvhql79o546ZQ9BrQ7c4jH3nThzbd4BWQ9wVV4asXRFasRddhG35cjxl5TR+803ICsK0GoW7Zg3h1x/sYPX+KmYMT2JiZvxJ23kbGqh6bgGoKlEzZmCdOSMk/QuXtuK/PiWFlJ//jLI//AHn3r1U/fM5kn/0Q+qdXr7ZXQHA5SEuJnKXl+PYtQsUBevsWSFtW/Rs1jmz/SuC7NqFu6wMfVpaSNrVahQuGpfOq6uLWLStlLkjkqh7/nkcO3agGI2k/PQnGAYMaN2+t3/hVbRaUh95mOIHH/InLX+3aODY57Dy237EJw0xfH/zJyiNDZQ/8QTxN91E9Jw5Qe+fqqqtq0xYcicHvT3R91hyc2j86iuaN20mwesN6XdQS2MN12x4B8OhIhpjTaRPnUrCjTdStWABnrKy1u16WzG9otVScsM9JD/5W3wcv+SkD1CAint+Su7UsTj37MGxezeug4fwVFXjqVpN0+rVAGjj4jCOHIFp1CiMI0eh75dxWt9LW1a3Mg4bhjYmptvHJ8SJFI0Gy6QcbMuWYd+U32HBgM/lwlNSgrukBNd3CwMqKsHna3v/RiP6jAz/n379Wv/WJSex4tV3OhxrJTfcw/Bedm2tt392EqK3kLEmhBBCCCGEEEIIIYQQIhikYCDANFFRJN1zD+WPP4FtxUpM48YRNeX4C/wuj4+XVx4AYN6YVIal9IykaVVVqX7lFZz79qExm0n56U/RxsYCyE2KHkKfkkLyDx+g/M9/oWnNWvQDBhB74YXh7hYAN04dyOYjteyraGTZnkrOGpVy3OM+h4PqF18CVcU6a2bIZwntiRRFIfH223EdOoynspLql14i+aEHj0u2cXt9vLSiCICzRqaQlRG6RBpVVal7620Aos86G31qyimeIXorjdlM3Pe/T82/F1L/4UdYp09HE9X+SiGBNCTZygVj0/h0eymvrCriyatiMOm/TZxRVZWqF17AW1eHPiODhJsjd2USQ2YmKT/5CRV/+jP2zZup+de/WJx9Dm6vjxGp0YwJYXwAsC1bDoB53Fh0SUkhbVv0bLrERMzjxmLfug3bsuXEX3tNyNqeMzKF9zYdpbrRwZa/PkfKrk0oOi3JDz2IcdiwkPUjVGLmzYOnn6L88SfaTGJ+390fm68eHvw5ljWLaM7Lo+bVf+E+dIj4H/wgqCvKuI8exVNejqLTYR43NmjtiL7LOHIkmqgofDYbzr17MY0eHfQ2VZ+PxiVLqHv3PQbUNlKs07Fl8jwm/PIWFEUh7sorenUxvden8qvKJAZPuZl7tn1IsqO+9bEqcxwvjr2UA/X9WDV+Quv3NZ/DgXNfIc49u3Hs2YtrfyHeujqa12+gef0GADRWq3/1gREjMY0aiT4zE0XTfpGz6vXSnJdP7Tvv4m1owDxhfHAPXEQ088SJ1H/8MfWffIph5CjM2WPwVFT4VwsoLmldNcBTVdX2ij34vy/p+/VD3+/4wgBtQkKbxTKdGmuVSazyqT1mAhEhhBBCCCGEEEIIIYQQQgjRt0nBQBCYRo4k5qILaVj0CTX/+jfGYcPQJSS0Pv7hlmLKGhzEWwxcM3lAB3sKrfr3P6Bp7TrQakj60Q/R9wvtTMWic0xZWSTceAM1C/9D3dvvYOjXD/OECeHuFglRBq7KGcB/1x3k9fWHyR0UT7RJ3/p43Vtv4amsRJuYQPz114expz2LJiqK5B8+QNnvHsO+eTONixcT873vtT7+8ZYSiuuaiTHp+cGZA0Pat+b1G3AdPIhiMhJ72aUhbVuEnnX2bBqXfIm7pIT6RYuIv/bakLV9Ve4A1hfVUGVz8k7eEW6cOqj1sYZPPsWxfQeKwUDSA/ejMRpD1q+eyDRyJEn330flP56hftkKyrbXwJiZXDaxX0hXnFE9HmwrVwD+c0eIE1nPOstfMLByJXFXfB9Frz/1kwLAoNNwQXYa+15aSMOBTaSkRpN0332Yx4wJSfvhEDNvHtFz556UxOzwwq7/5AEwcXgqSTkP0LBoEXXvvU/j19/gOlpM8g8fCNqs3s0b/W2bxo5FYzYHpQ3RtylaLeZJE2lauYrmvPygFwy4S0qofvkVnIWFAMSPz2ZBdA72mHiudnmJMup6/Yy/G4pqKK13UJoxlnXpYxhTdYAEZyM1xmh2Jg3Bp2ig3sGGohqmDk0EQGMyYR6b3Tozu+py4TxwAMfu3Tj37MW5bx8+m43mvHya8/yriihmE6YRIzCOHIVp1EgMgwa1Fig1LFlyUpFT+Z//gmI09pqVGkTv0bBkCWV/eBxvuX/FviO33IJiMKDPzDzuOl0LjdX6bWHAd1YN0MbFdemz9umMNSGEEEIIIYQQQgghhBBCCCGCSQoGgiTu8stx7NiJq6iI6hdeJOVXv0RRFI7WNvPxlhIAbpk2CIuhZ/wX2Fauov6jjwBIvPXWPp1U1RdYzz4b16HD2JYto3LBAtL/3//rEQUe541JZfneCg7XNPPmhiPcOWsIAPbtO2j8+hsAEm+/A43FEs5u9jiGQYOIv+EGav79b2rfehvD0KGYRoygpM7OB5uLAX+8sBpDFy9Uj4e6d98FIOaCC4KWTCh6DkWrJf66a6n4699oXLIE69lno08JzaoSJr2W22cM5k+Ld/PZ9jKmDUtiaLIVx5691L33HgAJN96AoX//kPSnp7Pk5JBw6y3sfvp5RpetxZwQz8QBZ4a0D/bNm/E1NKKNje0RRWui5zGPH482Ls4/C/WmzSFNsJ26fwOmwjycPqi55BoG5uaGrO1waSuJeeuhajw+H+mxZtJj/Qn7sZdcgr7/AKpeeB7nnj2Uzp9P8o9+hHHw4ID3qTnfXzBgiYDXXwSPJSfXXzCwKZ/4G34QlOI41eul4fPF1L//PqrHg2I2EX/ttVjnzCH2nW3Y6prZcqSO6cN6/2o6FY2O1n/7FA3bk9teeeW7251IMRgwjRqFadQowP+9wXXwII49e3Du3o1j715UuwP71m3Yt25rfY5x2DBUj5va114/aZ/eqiqKH3wInn5KigZEwDQsWeI/r05YNUB1uXAVFmI4aw5R06Z/WxyQkRGw772BGGtCCCGEEEIIIYQQQgghhBBCBFL7a8SLblF0OpLuvQfFYMCxaxcNn32Gqqq8vLIIj8/HpMx4pgw+eTazcHAUFFDzr1cBiLn4IqyzZoW5R+JUFEUh4aYbMY4ciWp3UPHU03htTeHuFjqthttm+BPOvtldwb7yRnxNTVS/8goA0efMxZwtxShtsZ41h6ipZ4LPR9U/n8NTX89LKw/g8fkYPyAu5LMONi5diqeiAm1sDDHnnx/StkX4mMaNwzRmDKrHS93b74S07YmZ8UwfmoSKyksrDuBqaKRqwQLw+YiaNpUoeW86jnbaDJYP9RcJzNy5lOZ160LafuPSZQBEzZrZOmOwEN+laLVYZ/vHrW3p0pC127BkCfaPPyI+ysDGCWfzvnYA6gmJgpEi/1AtAJMy4477vWXSRNLnz0eXloq3uoby3/+BpjVrAtq2u6wM95GjoNVgnjgxoPsWkcWUPQbFaMRbXYOr6GDA9+86coSy3z1G3dtvo3o8mMeNJePxx4k+6ywURWHyoHgANh6sCXjb4ZASbQroduC/9mEcNozYCy8k5ac/ZcCCBaT/7lHir78eS24OGqsV1eXCsXNn+58vj8Xp8sefQPV6O922EO1RvV7KH3/ipGKBVoqCY9du4q+/juizz8Y0alRAi+SDMdaEEEIIIYQQQgghhBBCCCFE6Hnr6ij+2c/Zk5PLnslTKPn1r/E1tZ+r662ro+yx37P//O+xe/wE9p11NmW//wPexsYQ9rptUjAQRPq0NOJv+AEA9e+9x8plm9ld1oBBp+XW6YODMjtiV7mLi6n8xzOoHi+WM6YQd+WV4e6S6CRFpyP5hw+gS0rEU15O1XPP9YjkilFpMcwekYKKyquri6h+/X94a2rQpaQQd8014e5ej6UoCgm33oo+PR1vbS2b//gUu0rqMei03B7ieOGz21tXHIm97DI0JkliiBSKohB/3bWgKDRv2IBz376Qtn/TsZU0DlbZ2PiHv/tjR1oqCTff3CPeM3uSJTvLyRs+hdJxZxJj0lP14ovYt28PSdvuigocO3cCYJ09OyRtit7JOmuWPyGvoAB3eXnQ27OtWt06c3X/a66kcPQU9lU0sqs0/F+6Qs3nU9lypA6ASQPjT3pcn5FB+vz5mMePQ3W7qXr+BWrfeCNgnyWb8/IBMI3OQmuNCsg+RWTSGAyYx40Dvl21IhBUj4e6Dz+kbP58XEVFaCwWEu+8k+Sf/hRd4reFurmD/EX+W47U4fb6AtZ+uEwZnEB6rIn2PlUpQHqsqVuTGygaDYZBg4g5/zySf/Qj+v/zWdIffxzLtGmoLlf7T1RVPGVlrfFDiO5ozsvHU1bW/gZBPt9CMdaEEEIIIYQQQgghhBBCCCFE8BX//Bc4CwvJfPUVBjy/gOa8PEr/3/x2t3dXVOCpqCDlF79gyKKPyXjicZpWrqT01/8Xwl63TQoGgsw6ezaW3BzcLg8V/3wOrcfNVTn9SY42hrtreBsaqPjb3/E1N2McNoykO++UhMxeRhsTQ/JDD/lXstixg9o33wx3lwC4/oxMogw63Nu2cvSLb0BRSLzrTjTG8J/3PZnGZCLphw/g1emoyd/K2F3ruDq3PykxoU3Yb/h8Mb6GRnRpqZIMHIEMmZlYZ84A8CePhnBm7liznh+cOZAxezfSuGkzbkVD8gMPoDGbQ9aH3sDh9vLp9lJQFEbcc6t/dRKvj8p/PIPzwIGgt9+0YgWoKqbsbPQpKUFvT/ReuuRkzGOzAbAtWx7Utpo3baL65ZcBiD73XNKvuZLZI5IB+GhrcVDb7okKK200OtxEGXSMTI1ucxtNVBTJP/4xMRdfBPjf/yv++reArFrVnLcRAEtuTrf3JUTLeWQPUGKv6+BBSn/7W+rf/wDV48U8cSLpTzyOdeaMk74PD02OIt5iwOH2sqO4PiDth5NWozD/4iyAkxKZW36ef3EWWk3grgsoioKhfz8MAwZ0antPZWXA2haRq7PnUbDOt3CMNSGEEEIIIYQQQgghhBBCCBFYzv37aVq5kvTHHsM8fjyWnBzS/u//aPjsM9zlFW0+xzRiBP2f+QfRZ5+FITOTqDPPJPnHD2FbuhTV4wnxERxPCgaCTFEUEm67jaNePZa6auYVruZ72Wnh7hY+l4vKp57CU1mJLiWF5IceRDEYwt0tcRoMmZkk3X0XAI1fLMG2YkWYe+RP+r02K55peYupaHSgm3sOphEjwt2tXsHQvz9rJ87D61OZuncNZ2lqQ9q+t66Ohs8/ByDuyitRdLqQti96htgrrkAxGHAW7qd5w8aQtj1VU8/MvavxqbAi+yz0nUwuiyTf7K6g0eEmJdrEtGHJJN55J6bsbFSnk4on/4q7pCRobateL7YVKwFZXUB0jnXOHABsK1cE7YuPo6CAqmf/CT4fUTNmEH/DD1AUhUvGZ6CgsPVIHUVV3U+C7002HfJ/fhg/IA6dtv2vfIpGQ/xVV5F0//2tBahl8+fjOnr0tNv2VFfjOlAEioJl0qTT3o8QLczjx6PotLhLS7v1Hqe63dS9+y6lv30U9+EjaKxWku69h+SHHkQXf/JKHOD/Pt+yykDewdB+Lg+W87PTWXDDJNJijy9KTos1seCGSZyfnR6UdnXJyQHdToiO9ITzLVxjTQghhBBCCCGEEEIIIYQQQgSGfcsWNDExrZNlAkRNnQoaDfZtWzu9H29jIxqrNey5mD0iE/Q/aw/ywvIDVNqcjE6P4dFLxjBhQFyb276x4TDvbzrKnrJGAMb2j+Xn541qd/ueYFe9lw9Hz2Ve5TucUboT17at6CZODFt/VFWl+sWXcBbuRxMVRcpPf4I2JiZs/RHdZ5k8mdjLLqP+ww+p+fe/0aenYxw+PKx9Gr9+MTt9TsqsiXyUnsN9YeiDr6kJr83W+rNiMKDp4YUxW47UsciYyfTBYznXdoDaF57H9NhjaOPiQtJ+/UcfoTqdGIYMxjJ5ckjaFD2PLj6emAsvpP6DD6h7+20skyai6PVBb9dra6LquefoF23km5RhLI0ZxvDCKmYOD13iWE+PG26vj0Vb/cmSl07I8M9KqtGR/KMfUv7HP+I6UET5X/5C2m9+gy4hIeDt27duxVtXhyYmGkuOJAKLUzNPmIA2NhZvfT32zZsD/t7iPHCAiqeeQvV4MOdMIvH221pnCE+JMTFtaCKr91fx8ZYSHjwnOJ+NemLcyD9WMJAzsO0k6BNFnTEFfXoalU89jaeykrJHf0fS3Xdhyc3tctvN+f5Z4I3Dh4fs84vo2zQWC6asLOzbttOcn09sRkaX9+E8cIDqF19qLTiwTJlCwo03oI2NPeVzJw+K58uCMvIP1XKHqgZkVb5wx43zs9M5NyuNDUU1VDQ6SIk2MWVwQlBnO7fk5qBLS8NTXg5trWClKOhSU2VlEhEQPeV8C+RYC3fcEEL0PhI3hBBdJXFDCNFVEjeEEF0lcUMI0VUSN4QQXRXouOGprDop/0rR6fx5MFVVndtHbS1VCxYQd/XVp92PQAn7CgOLtpbw+0928eA5w/n0hzPISo/mplfWU2Vztrn9ugPVXDI+gzfuOpP375tOeqyZG19ZT1m9I8Q97xyXx8crq4ooTRuMb/bZmPVaql95BW9dXdj6VPfOOzRv2ICi05L84I/Qp8usZn1B7OWXYcnNQfV4qfzHP/BUV4etL03r1mPfuJH0ODOrp1zIiqI6CkoaQt6P8osuZm/u5NY/1S+8GPI+dIXD7eWVVUUAxN94AzFDBuKtb6BqwQJUny/o7bvLymhctszf/jXXBCQZSvReMRd8D21cHJ7KShq//DLo7amqSvVLL+GtrsGSkUbanbeDovCftYdocLiD3n6Lnh43lu+ppLbZRUKUgVkjvi2k0JhMpPzkJ+jSUvFW11Dx57/gtQV+RnXb0qUAWGfMDHvVq+gdFJ2OqFkzAWhcuiyg+3YdPUrFX55EdTgxZWWRfO+9KFrtcdtcMsGfWLzuQHXQvi/0tLhR0ejgSG0zGkVhfBeKqg2ZmaT97lFMo0ejOp1U/uMZ6t57H7WtRMsONOflAUjSrwgoc47/fGrOy+/S83wuF7VvvkXZo7/DXVKCJiaa5B8+QPID93eqWAAgKz0Gs15Lnd1FYYXt1E/ohJ4QN7QahalDE7l0Qj+mDk0MarEAgKLVkvrIw8d+OKGtYz+nPvLwSXFciNPRk863QI21nhA3hBC9i8QNIURXSdwQQnSVxA0hRFdJ3BBCdJXEDSFEV3U2blT89a/sGjW6wz/OAwe63R+vzcaRu+/BOHQYyQ/c3+39dVfYM71eXlXEtVMGcHXuAAD+cNlYvtldwdt5R7hvzrCTtn/62uNn5v/TFeNYvKOM1YVVXJHTPyR97ooPtxRTWm8n3mJgzk/uoP7xMtxHjlL98ssk//SnIU/IbVy6lIZPPgUg4bbbMY0aFdL2RfAoikLiXXfhLn8M95GjVD71NKm/+b+QV1Z66+qoWbgQgLQrLmdCyni+2lXOK6uK+NMVY9FpQ1enlPrJIvr169f6s9LDq0zf23SUykYHiVYjV04dinb4A5TOn49j127qP/iAuCuuCGr7de++B14f5vHjMI0eHdS2RM+nMRqJu/IKql9+hfqPPiZq5ky00dFBa6/xiyXYN2/2F7M9cD8XDshk9VEbh2ua+e/aQ9x/1smfCYKhJ8cNj9fHR8dWF7hkfAb6E+KpNiaG1F/8grLfPYa7pITKv/2NlF/9MmDvA57qauzbtgNgnTM7IPsUkcE6ezYNiz7BsWMH7ooK9Ckp3d6nu6KCij//BV9TE4ahQ0h+6ME2x+vAxCgmDIhny5FaFm0t4c5ZQ7rd9ol6WtzYdKgOgBGp0ViNXfu6p7VaSfnFz6l9800av1hC/Ucf4Tp8mKR77kZjNp/y+d6GBpx79gJgyZGCARE4lkmTqPn3QlxFRXiqq9ElJp7yOY69e6l++WU8ZeUARE2bSvwNN6C1WrvUtk6rYWJmPGv2V7HxYC3DU7v/eainxY1QiZk3D55+ivLHn8BTVtb6e11qKqmPPOx/XIgA6WvnW6TGDSHE6ZO4IYToKokbQoiukrghhOgqiRtCiK6SuCGE6KrOxo2EW28l9vLLO9yXoX9/dMlJeGpqjvu96vHgra9Hm5TU4fO9tiaO3HEnmigL/Z99BkWv7+RRBE9YVxhweXzsKK5n+rBvXziNRmH6sKTWRJdTsbu9uL0+4ixtv5hOj5dGh7v1j83pCUTXO6W4zs7HW/yJfTdPG0RUlJmke+9D0euxb9tO41dfhawvAPbtO6hZ+B8AYi+7DOuM6SFtXwSfxmQi5aGH0ERH4zp0iOqXXuryrLDdoaoq1a/+y5+8N3AgsZdewrVTMokx6Smua+azHWWn3kkAaaKi0FqtrX86mzQbjrhxsKqJT7eVAnD7jMGY9Fr06ekk3nY7APUffYx927agte88cIDmDRtAUXrE8jeiZ4iaMQN95gB8djv1H34UtHacBw5Q9/ZbAMRddx2GQYPQaTXcNWsICgor91Wy/Wh90Nr/rp4cN9bsr6ay0UGMSc9Zo9pOuNYlJZHyi5+jsVhwFhZS9cyzqJ7A9MW2fAWoKqbRo9GnpQVknyIy6FNSMGVnA2Bbvrzb+/PU1lLxpz/jratD378/KT/9GRqTqd3tLz22ysDyvZXUNrm63f6Jelrc2HS4FoBJA+NP6/mKVkvCD35A4l13oeh02Ddvpuy3j+IuO/XnuOb8fFBVfxxPTj7l9kJ0ljY2FuPw4cCx86wDPqeTmv++RvkfHsdTVo42Lo7khx4i6Z57ulws0CJ3kH885R2sOcWWndPT4kYoxcybx7CvvyJz4UIynnySzIULGfb1V70ueVv0Dn3pfIvkuCGEOD0SN4QQXSVxQwjRVRI3hBBdJXFDCNFVEjeEEF3V2bihS0jAOGRIh38UgwHzhAn4Ghqw79jZ+tymdevB58M8bny7/fDabBy5/XYUvZ4Bzz2HxmgM+LGejrCuMFDb7MLrU0myHv9iJFuN7K9s6tQ+/vj5LlJjTMcVHXzXc0v38/TX+1p/9jRUnX6Hu0BVVV5eeQCPz8fEzHjOGJwAgKF/P+KuvYba/75G3RtvYhqdhaF/v1PsrftcR49S+ewz4PMRNW0asZdfFvQ2RXjokpNJ/tEPKf/jH2lev4GGzExiL744JG03rVqFfcsWFJ2WxLvuRNHpsOrg+jMyeX75ft7LP8q0oYknjfmeJtRxw+dTeXHlAXyqyplDEpmU+W2CX9SZZ+Dcs5vGr7+h6vkXSH/sd52aUbUrVFWl7i1/snbU9OkYBgwI6P5F76VoNMRfdx0Vf/ozjd98TfS55wQ8UdzX1ETVs/9E9Xix5OYQfc45rY8NS4nmvDGpLN5ZxksrD/CXq8Zh1GkD2n6gBDtu+HwqH24uBuDCcekdvg6G/v1J/vGPqfjzn7Fv3Ur1q/8i8c47urWqkerzYVuxApDVBcTpiT5rDo4dO2hasZK4yy9H0Z3e1xCvrYmKvzyJp7ISXXIyKT//GVprVIfPGZUWzYjUaPaWN/LZjlJ+cMbA02o70IIRN+wuLwUlDQDknGbBQAvrjOnoM9KpfPofuEtLKZv/W5Luuxfz+Pa/9NqPJXJbJud2q20h2mLJzcG5dy/2/Px2k30dBQVUv/IqnspKAKyzZhJ/3XVoojqOE6cycUA8Oo2Gkno7xXV2+sWdesWNYAjX9Y1AU7Raos6YEu5uiAgR6edbX4kbQojQkbghhOgqiRtCiK6SuCGE6CqJG0KIrpK4IYQIFOPQoUTNnEnp//sN6b/9LarHQ/ljjxFzwQXoU/2TvbrLyzl8y61k/OmPmMeNw2uzcfj221HtDvr/5c/4bDZ8NhsA2oQEFG34ct/CWjDQXc8tK2TR1lLevOtMTPq2X8T7zhrKHTMHt/5cXFzM6AXB79vyvZXsKm3AoNNy6/RBxyXpRZ9zDo5t27Bv3UbVgudI/+1vg7rchLeujoq//hXV7sA4ciSJt9/WraRB0fOZRo4k4cabqPn3v6l79z30/fpjmTQxqG16qqupee01AGIv//5xSeezRySzbE8lu8sa+M/aQ/zk3BFB7Ut3hTpufLGzjAOVNiwGHTdPHXTS4/HXX49z/wFcBw9S9c/nSH3k4dNOtGyLY9s2HLt2o+h0xF3x/YDtV/QN5jFjMI8fj33rVmrffJOUhx4K2L5VVaX6lVfwVFWhS04m8fbbT3p/umZyJhsP1lLR6OC9/GKuPyMzYO0HUrDjxvqiGkrq7ViNOuZlnbpowzRyBEn330/lP/5B06pVaGNiiL/2mtNu37FtG96aGjRWK5acnNPej4hc5okT0cbG4K2vx75lC5bcrieU+xwOKv76JO6jR9HGxZHyy1+giz91UryiKFw6oR9/+WI3XxWUc9mEfkQZw/81KJBxw+tT2VBUw9r9VdQ0uRiWYiUjtv1VFzrLOGQI6Y/+lspnnsW5bx8Vf/s7cVdeScxFF7bGa9XrpTkvH9fRozStXYfGYpE4IYLCPGkSta//j6YNG6l9510MmZlYcnNQtFp8dju1b72F7ZulAGgTE0i87TbMY8cGpm2DljEZMWw5Uscb6w8zPNVKSrSJKYMT0GpC9906XNc3hBC9l8QNIURXSdwQQnSVxA0hRFdJ3BBCdJXEDSFEV0ncEEIEUr+//Jmyx37P4VtuBY2G6HnzSPv1I62Pq24PrqIifHYHAI6dBTi2bgNg/7zzjtvX0K++CskE8+0Ja6ZMvMWAVqNQZXMe9/tKm5PkU8xA/uKK/SxYtp/X7ziD0ekx7W5n1GmPm4XXGoLkoAaHm9fWHQbgypz+pEQfn6yjKAqJt99Oyf/9H+4jR6l95x0Srr8+KH3xuVxU/P0pvNU16NJSSX7wwaAWJ4ieI/rss3AfOXxsZvoFpP2/+UELNqqqUv3yK/6ilGFDibnge8c9rigKt00fzK/e38aGomq2HKljwoC4oPQlEEIZN6psTt7ceASAH5yRSXzUycvgKHo9SQ/cT9lv/h/OwkLq3nmH+OuuC0j7qs9H7dtvAxB97jkBX71A9A3x116Dfft27Js249i9G9OoUQHZb+NXX9Gcl4+i05J0/31tzv5rNmi5bcYg/vLFHj7ZVsK0oYkMSureLMHBEMy4oarfri5w3pg0zIbOVZpaJk0k8fbbqH7pZRo++wxtbAwx3/veqZ/YhsalywCImjEdpZPL/AnxXYpOR9TMmTR88im2Zcu6XDCgulxUPvU0rv0H0ERFkfKLX6BPSen08ydlxjEg3sKR2ma+LCjnsonh+wLWIlBxY/GOUh5dVEBpvaP1d0drm/liZxnnZ6d3u5/auDhSH/4VNf/5L7Zly6h75x1chw6ReOcd2JYvp/zxJ/CUlbVur5hM2HfsQJ+R0e22hfgu+5Yt2HfsQLXbKfvNbwDQpaUR/4PrcRQU4K2uAcB69lnEX3MNGnNgVwHQKLD5cB3ri2paf5cea2L+xVkBGWudEY7rG0KI3k3ihhCiqyRuCCG6SuKGEKKrJG4IIbpK4oYQoqskbgghAkkbF0e/vz7Z7uOG/v0YvXtX689RZ0w57ueeRBPOxg06Ddn9YllT+O2yLz6fyprCaiYNjGv3ec8v388zXxey8LYpjOvf/nbh8tq6Q9icbjITLFyQ3fYswNq4OBJvvx2AxsVfYN++I+D9UH0+qhYswFVUhMZqJeWnP0Vr7XlJliJ44n/wA0yjR6E6nFT+/e94jy1tEmi2b77BsXMnisFA4l13tblsSmaihe8dGw//Wl2Ey+MLSl96E1VVeXVVEU6Pl5Gp0Zw9qv3ER31KCol33QlAw+eLad60KSB9aFqzFveRo2jMZmIuviQg+xR9j75fP6LPmgNA7ev/Q1XVbu/TdfAgdW+8AUDc1ddgHDKk3W1zBiZwxuBEfKrKiysP4PN1v/3eZNPhOg7VNGHSa/ne2K4lJFpnziTumqsBqH3jTWyrVne5fU9tLfatWwGInj27y88XooV19hwA7Nt34Kms7PTzVK+XygULcBQUoJiMpPz8Z10ugmxZZQDgs+2lOD3eLj2/p1q8o5R7X9t0XLEAQIPDw72vbWLxjtKAtKPodCTedisJt9wCWg3NGzZw5O57KP7Rg8cVCwCoDgfFDz5Ew5IlAWlbCICGJUsofvAhVLv9uN97ysqo/OvfcO4rRJecTOqvfkniLbcEvFhg8Y5SFiw/gMt7/HeYsnpHQMeaEEIIIYQQQgghhBBCCCGEEEIIEQxhLRgAuGPGYN7YeIR3849SWNHIrz/cQbPLw1U5AwD4yVtb+NPi3a3bL1i2n78t2cufrxxH/3gzFY0OKhodNDk94TqE4+wormfF3koUFO6cOQSdtv2X2DJxItFzzwag+qWX8DY2BrQvtW++iT1/E4pOR/JDD6JPTQ3o/kXPp+h0JD3wALrkZDyVlVQ98yyqJ7BjxV1eQe0bbwIQd/VV6NPaLpIBuDJnAPEWA+UNDhZtLQloP3qj9UU1bDpci06j4c5ZQ1AUpcPtLTk5RJ/vX6am+oUXcVdUdKt91eWi7r13AYi5+GIpKBIdir38chSzCdehQzStXtOtffnsdiqf/Seqx4t50kSiz5t3yufcMm0QFoOOA5U2vthZdsrt+wpVVflg81EA5mWlnVble8wFF3wbO15+uTX5v70q2yIAACgYSURBVLOaVqwAnw/jyJHo+4V/VnbRe+lTUzCNGQOqim3Fik49R1VVql95tfUzbcpDD3VYYNSRqUMTSY420eBws2xP5wsWeiqvT+XRRQV0VEL16KICvAEssoo++yxSf/Uwmmgr9lMUL5Y//gSqt28UZojwUr1eyh9/AjooWPSUl5P22O8wZWUFvP2WsdZm3479HeixJoQQQgghhBBCCCGEEEIIIYQQQgRS2AsGLh6fwa8vGM3fv9zLBU+voqC0gYW3TSE52ghAcZ2digZn6/avrTuEy+vj3tc3MeUPX7f+eXHFgXAdQiuXx8crq4oAOCcrleGp0ad8Ttx116FPT8dbV0fNv/4VkFmbARq//prGxV8AkHjXnZhGjAjIfkXvo42OJvnHD6GYjDh27WpN7g8E1eej+qWXUF0uTKNHEX3uuR1ubzZouXHqQAA+3FJMeYOjw+37sianh4VrDgJwyYQM+sdbOvW8+KuvxjhsGD67napn/4nqdp92Hxq//hpvdQ3a+Hii53X8fyeENiaG2IsuBqDu3XfxuVyntR9VVal+9VU8FRVoExNIvOPOUxbLAMRHGfjBGZkAvLnxCJWNzlM8o2/YUdxAYYUNvVbDhV1cXaCFoijEX3cdUdOmgc9H5TPP4ty3r1PPVVUV2/LlAFhldQERANY5cwCwLV9xymRyVVWpfe11mlatAo2GpAce6FYysFajcNE4/zhatLUEj7d3r3a0oajmpJUFvksFSusdbCiqCWi7ppEjiL3sctSO3gdUFU9ZGc15+QFtW0Sm5rz8k1ayOJGvsRFHEFbtg/CNNSGEEEIIIYQQQgghhBBCCCGEECJQwl4wAHDztEGs/tXZ7P3D9/jo/ulMzIxvfeytu6fy16vHt/68+ldnc/CPF57058fnhj8h/qMtxZTW24kzG7huyoBOPUdjMJB07z0oOi3NefmtSXndYd+6lZr//BeAuKuuJOrMM7u9T9G7Gfr3J+meewBo/PJLGpcuDch+G7/4AufevSgmI4l33NGppN+pQxIZ2y8Wt9fHv1YfDFiRTG/zxobD1Da7SI81c9mEzs/Yreh0JN1/HxqrFdfBg9S+8cZpte9raqL+40UAxF3xfTQGw2ntR0SWmPPmoU1MwFtTQ+Pixae1D9vSZTSv3wBaDcn339+llS3OHpXCqLQYnB4vr64uioj48cHmYgDmjkoh1qI/7f0oikLiHbdjHj8O1eWi4m9/x3W0+JTPc+zYgaeqGo3FgmXK5NNuX4gWlpxJaGKi8dbVnXK1i/oPPqTxyy8BSLzzDiyTJna7/Tkjk4kx6amyOVl7oLrb+wunisbOFV52druuUJ2dK9ryVPb+lRxE+HX2PArW+RbOsSaEEEIIIYQQQgghhBBCCCGEEEIEQo8oGOgLSursfLSlBPAXQFgMuk4/1zBoELFXXAFA7Wuv4z7F7IkdcR0+TOU//wmqinXWTGIuuui09yX6FsukScRd8X0Aav/7Xxx79nZrf+7iYureeReA+OuuQ5ec3KnnKYrCrdMHo9No2HKklrxDtd3qR2+0p6yRr3aVA3DnzCEYdF0LxbrERJLuvguAxq++pmnd+i73of6TT/E1NaHPyCBq+vQuP19EJsVgIP7qqwGo/+QTvHV1XXq+6/Bhal97DYD4q67COGxY19pXFO6cNQSdRsPmw7W9Ptm3PV6fytr91SxYVsi6A9VoNQoXj8/o9n4VnY6kBx7AOGwovqYmKv7yFzzVHb+GtmMFZlHTp0thkQgIRafDOmMm8O351ZaGL5ZQ/+GHAMTfeAPWAL1XGXVaLji2WseHm4tZU1jFR1uKWbu/Gq+vdxUhpUSbArpdV3T2c19ntxOiI+E+38I51oQQQgghhBBCCCGEEEIIIYQQQohAkIKBAFBVlZdXFuHx+ZgwIJ4zhyR0eR8xF1yAafRoVJeLqgXPo3o8Xd6Hp7aWir/+DdXhxDR6NAm33NKpGd9F5Ii55BIsU6agerxUPvOPUyaKtkf1eql68SVUjwfzuLFY58zp0vMz4sxcNM6frPfvNQdxuL2n1Y/eyOP18eKKAwDMGZlCVkbMae3HPH48MRf7C4KqX32lS4VGnpoaGpcsASDu6qtRtNrT6oOITJYzz8QwZDCqw0nd+x90+nk+u53KZ5/1x43x44j+3vdOq/1+cWYun+hflePfqw9ic3b9/bInW7yjlBl/+obrXlrHnxbvoaC0gW1H69l4sCYg+9cYjST/5CfoMzLw1tZS8ee/4G1sbHNbb10dzZs3A2A9a05A2hcCwDpnNgD2bdvb/CxiW7mS2tdfByD2+5cTc+65AW3/3KxUbA4Pi7aWcv3L63nwzS1c99I6ZvzpGxbvKA1oW8E0ZXAC6bEm2vu0rwDpsSamDO76d5NTseTmoEtLg/a+aygKurQ0LLk5AW9bRJ5wn2/hHGtCCCGEEEIIIYQQQgghhBBCCCFEIEjBQACs2FdFQWk9Bp2W26YPOq0kfUVRSLz7LjRRUbiKiqj7oPNJmAA+h4PKv/0Nb20t+owMkn/0QxRd51c5EJFBURQS77wDw8CB+BoaqXzqKXxOZ5f30/DJJ7iKitBYLCTcfvtpnfOXT+pHktVItc3JB5uLu/z83urjrSUU1zUTY9Jzw5kDu7WvuO9/H+OokagOJ5XPPIPP5erU8+o/+ADV7cY4YgTmiRO61QcReRRFIf666wGwLV+O6+jRUz5HVVVqFi7EU1aONj6exLvu6lZB2yUTMugXZ6HB4eb1dYdOez89zeIdpdz72iZK6x3H/b7R4eHe1zYFLJFZa7WS8vOfoU1IwF1aSsXf/tb6XqB6vTSt30D9J59S/e+F4PFiHDYMQ//+AWlbCAB9Whqm0aNBVbEtW37cY815eVS//AoA0eefR+yllwa8/ZX7KtlR0oDL6zvu92X1joCOtWDTahTmX5wFcFIic8vP8y/OQqsJfAGxotWS+sjDx344Yf/Hfk595GEpShQBEe7zLZxjTQghhBBCCCGEEEIIIYQQQgghhAgEKRjopgaHm/+u9ScrXpnTn5QY02nvS5eQQMKtt/j3+8mnOPbs6dTzVJ+Pqn8+h+vQYTQx0ST/5MdooqJOux+ib9MYjSQ/9CCamGhchw5T/eJLqKra6ee7Dh2i7sMPAUi46UZ08fGn1Q+jTsut0wcB8Om2Uorr7Ke1n96ktN7eWhxx87RBWI3dK+pRtFqS7r0XTUw07iNHqf3vf0/5HHdxMbYVKwGIv+ZqWYVEnBbTyBH+WXxVlbo33zzl9k0rVtC0Zi1oNCTddx/a6Ohuta/Xarhr1hAAlu6pYGdJfbf21xN4fSqPLiqgo2j86KICvL7Ox+uO6BITSf35z/yFivsPUPXMM9R//jmFc8/h8M03U/Kzn1H9/PPYt25FE9O9/y8h2mI96yx/DPnwQ+o+XkTT+g3Yt22j6rnnQFWxzppJ/HXXBfx9qmWstaVldAVyrAXb+dnpLLhhEmmxx38HSYs1seCGSZyfnR60tmPmzaPf00+hS0097ve61FT6Pf0UMfPmBa1tEXnCfb6Fc6wJIYQQQgghhBBCCCGEEEIIIYQQ3SVT0HfT6+sOY3O6yUywcEF2Wrf3FzVlCo5Z27CtWEnV88+T8fvfnzL5v/b1/2HfuhVFryflxz9Gn5LS7X6Ivk2XmEjyD39ExZ/+SPPGjdR/9BFxl112yuepbjdVL74IXh+W3BwsU6d2qx85AxPIGRhP/qFaXl1VxP9dOLrPJbB7fSobimoob7Dzxc5yXB4fEwbEMW1oYkD2r4uPJ/m++yj/05+xLV+BccRIrDNntLt97dvvgKpiyc3BOHx4QPogIlPcNddg37IF+7bt2LfvwDw2u83tXEePUvPf1/zPueL7mEaOCEj7I9OiOWd0Kl/tKufllUU8fvlYthypo6LRQUq0iSmDE3rVTL8bimpOWlngu1SgtN7BhqIapgYofuj79SPlJz+m/E9/pnHZ8tZZ3Y9r1+Wi+vkXMGVlSfKvCChPbQ32bdtQnU7sGzcCoBgM6DMziZk3j4TbbgvKZ4JwjLVgOz87nXOz0thQVBPyGBgzbx7Rc+fSnJePp7ISXXIyltwcWVlABEW4z7dwjjUhhBBCCCGEEEIIIYQQQgghhBCiO6RgoBt2ltSzfG8FCgp3zByCThuYBRvif/ADHLv34KmooOY//yHp3nvb3bZhyRIav/wSgKR77sY4dGhA+iD6PtPIESTcfDPVr7xK/fsfYOjfH0tubofPqfvwQ9xHjqKJjibhllsCksh389RBbDtaz86Setbsr2b6sKRu77OnWLyjlEcXFRyXmGjUafj+xH4BTYI0ZWURe/ll1L//ATULF2IYPAhD//4nbefYsxf75s2g0RB35ZUBa19EJn1qKta5c2n8Ygm1b76BacxjKJrj3wd9TidVz/4T1eXCNDabmIsuCmgfrj8jk/xDtewsqefMJ76i3u5pfSw91sT8i7N6zYy/FY3tJzCfznadZRw+nKT77+Pwzbe0v5GiUP74E0TPnStJwCIgGpYsoeQnP4UTVjhSXS5chYUY7r/vpHgSKOEaa8Gm1ShhK3BQtFqizpgSlrZF5An3+RbOsSaEEEIIIYQQQgghhBBCCCGEEEKcruBk4kQAt9fHyyuLADgnK5URqdEB27fGbCbp3ntAo6Fp7Tqa1qxpc7vmTZupff1/AMRdczWWyZMD1gcRGayzZxN97rkAVL3wIq4jR9rd1llYSMMnnwKQeOstaGNiAtKHlBgTl0/sB8B/1x6i2eU5xTN6h8U7Srn3tU0nzWLs9Pj41fvbWbyjNKDtxV56KabsbFSXi6pnnsXnOL5dVVWpe+stAKyzZqHPyAho+yIyxV56GZqoKNxHjmJbseKkx2sW/gd3SQnauDiS7r474LOFWww6sjJi2FtuO65YAKCs3sG9r20K+FgLlpRoU0C36wrV5UZ1uTrYQMVTVkZzXn7A2xaRR/V6KX/8iZOKBb6r4k9/RvV6g9J+OMeaEEIIIYQQQgghhBBCCCGEEEIIIYQQ4SAFA6fpoy0llNbbiTMbuHbygIDv3zh0KLGXXQpA9cKFuCsqjnvcWVRE1XPPgapinTOHmAsuCHgfRGSIv/46TGPGoDqdVP79KbyNjSdt43O5qHrxRVBVoqZNPeVKBF118fgM0mPN1NldvJN3NKD7DgevT+XRRQW0nwoJjy4qwOvraIuuURSFpHvuRhsfj7u0lJp//Qufx0PT+g3Uf/IpNa+9jnPfPhSDgdjLLwtYuyKyaa1RxF56CQD1771/XKGKbeUqmlatAkUh6b57A1Zk9F1en8rr6w61+VjL6Ar0WAuWKYMTSI810V5JhYJ/1YQpgxMC3ransjKg2wnRkea8fDxlZR1uE8wClXCONSGEEEIIIYQQQgghhBBCCCGEEEIIIcJBCga6wOtTWbu/moVrivj3moOoKtw0bSBRRl1Q2ou9+GKMw4ej2h1UPf8CtrXrqP/kUxq+/IqKv/4N1eXClJ1Nwk03BnzWZhE5FK2WpPvvR5eSgqeqispnnsHndLYmmjet30DdW2/jKStHGxdH/A03BrwPeq2GW6cPAmDxjjIOVNpYu7+aj7YUs3Z/da9I9v2uDUU1J60s8F0qUFrvYENRTUDb1cbEkHTffaDRUP/pZ+ybMZPDN99Myc9+RsUf/oB961b0/fuji48PaLsiskWfcw66lBS8dXVUPvMs9Z98Sv2nn1Hz738DEHv5ZZhGjQpK2xuKaihrcLb7eLDGWjBoNQrzL84COCmRueXn+RdnodUE/v1el5wc0O2E6Ei4C1TCOdaEEEIIIYQQQgghhBBCCCGEEEIIIYQIh+BkuvdBi3eU8uiiguOSgKMMWuqbXUFrU9FqSbrnbg7ffQ/1775L3f/+9+1jBgPmSRNJ/uEDKDr5bxTdo7VGkfzQQ5Q99jua1qxl3wcz8X1npQHFYECfmUnKT3+C1hoVlD6M6x/HmUMS+Wx7KRc9s4pml7f1sfRYE/MvzuL87PSgtB1oFY3tFwucznZdYRo5AuOokTT/e91Jj6kuF3VvvknUtKnEzJsX8LZFZFJ0OgxDBtO4ZAnNGzd++3uDgajp04i95JKgtR3OsRYM52ens+CGSSd93kgLcgy05OagS0vDU14OahsFWoqCLjUVS25OUNoXkaUnFKiEa6wJIYQQQgghhBBCCCGEEEIIIYQQQggRDpJp3gmLd5Ry72ubODGFrsnl5b7XN7PgBiVoiUXNmzfjLCg46feqy0XzuvXYVq6UxF8REIb+/TBPnETT8hUnPaa6XLgKC3GXl2MOYh/6x5nZW2476fdl9Q7ufW0TC26Y1CuS+FKiTQHdritUr5eGzxe3v4GiUP74E0TPnYui1Qa8fRF5GpYsoeofz5z0e9XlwrZ0GY1ffRW096lwjrVgOT87nXOz0thQVENFo4OUaBNTBicEdbZzRasl9ZGHKX7wIVCU44sGjq1glPrIwxIzRED0lAKVcIw1IYQQQgghhBBCCCGEEEIIIYQQQgghwkET7g70dF6fyqOLCk4qFviuRxcV4PV1tMXpUb1eyh9/ov0NjiX+ql5v+9sI0Umq10vdm292uE0wzzevT+WvX+5t87GW0RWssRZoUwYnkB5ror2UQwX/qglTBicEvO3mvHy85eXtb6CqeMrKaM7LD3jbIvKE+30qnGMtmLQahalDE7l0Qj+mDk0MSQJzzLx59Hv6KXSpqcf9XpeaSr+nn5LiRBEwLQUq/h9OOLdDXKASjrEmhBBCCCGEEEIIIYQQQgghhBBCCCFEqEnBwClsKKqhtN7R7uMqUFrvYENRTcDbbs7Lx1NW1v4GkvgrAuiU5xsE9XwL51gLNK1GYf7FWQAnJTK3/Dz/4qygJCZ6KisDup0QHQn3+1Q4x1pfFDNvHsO+/orMhQvJePJJMhcuZNjXwVshQkQuKVARQgghhBBCCCGEEEIIIYQQQgghhBAidHTh7kBPV9HYfgLz6WzXFZL4K0Ip3OdbOMdaMJyfnc6CGybx6KKC4woh0mJNzL84i/Oz04PSri45OaDbCdGRcMcNCN9Y66sUrZaoM6aEuxsiAsTMm0f03Ln+wqPKSnTJyVhyc0KysoAQQgghhBBCCCGEEEIIIYQQQgghhBCRRAoGTiEl2hTQ7bpCEn9FKIX7fAvnWAuW87PTOTcrjQ1FNVQ0OkiJNjFlcEJQZzu35OagS0vDU14OqnryBoqCLjUVS25O0PogIke440aLcIw1IUT3SYGKEEIIIYQQQgghhBBCCCGEEEIIIYQQwScFA6cwZXAC6bEmyuodtJF6i4J/FuMpgxMC3rYk/opQCvf5Fs6xFkxajcLUoYkha0/Rakl95GGKH3wIFOX4/0vFnzyd+sjDMoOzCIhwx43vCvVYE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghegNNuDvQ02k1CvMvzgL8Ccvf1fLz/IuzgjKLcUvir/+HE/Yvib8iwMJ9voVzrPU1MfPm0e/pp9Clph73e11qKv2efoqYefPC1DPR14Q7bgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKJjUjDQCednp7PghkmkxZqO+31arIkFN0zi/Oz0oLUtib8ilMJ9voVzrPU1MfPmMezrr8hcuJCMJ58kc+FChn39lcQMEXDhjhtCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYRony7cHegtzs9O59ysNDYU1VDR6CAl2sSUwQkhme08Zt48oufOpTkvH09lJbrkZCy5OTJjswiKcJ9v4RxrfY2i1RJ1xpRwd0NEgHDHDSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQrRNCga6QKtRmDo0MSxtS+KvCKVwn2/hHGtCiNMT7rghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIk2nC3QEhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgSeFAwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEH2QFAwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEH2QFAwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEH2QLtwdCDWfzwdAaWlpmHsihAiWlvHdMt67S+KGEH2fxA0hRFdJ3BBCdJXEDSFEV0ncEEJ0lcQNIURXSdwQQnSVxA0hRFdJ3BBCdJXEDSFEVwU6bvRVEVcwUF5eDsCUKVPC3BMhRLCVl5eTmZkZkP2AxA0hIoHEDSFEV0ncEEJ0lcQNIURXSdwQQnSVxA0hRFdJ3BBCdJXEDSFEV0ncEEJ0lcQNIURXBSpu9FWKqqpquDsRSh6Ph82bN5OamopGowl3d7qksbGRrKwsCgoKiI6ODnd3QipSjz1Sjxu6d+w+n4/y8nImTpyITtf9uiiJG71TpB57pB43SNwIFDmHIu/YI/W4QeJGoMg5FHnHHqnHDRI3AkXOocg79kg9bpC4EShyDkXesUfqcYPEjUCRcyjyjj1SjxskbgSKnEORd+yRetwgcSNQ5ByKvGOP1OMGiRuBIudQ5B17pB43SNwIFDmHIu/YI/W4oWfFjb4q4goGerOGhgZiY2Opr68nJiYm3N0JqUg99kg9bojsYw+kSH4dI/XYI/W4IbKPPZAi+XWM1GOP1OOGyD72QIrk1zFSjz1Sjxsi+9gDKZJfx0g99kg9bojsYw+kSH4dI/XYI/W4IbKPPZAi+XWM1GOP1OOGyD72QIrk1zFSjz1Sjxsi+9gDKZJfx0g99kg9bojsYw+kSH4dI/XYI/W4IbKPPZAi+XWM1GOP1OOGyD72UOldJVNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhOgUKRgQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIfogKRjoRYxGI/Pnz8doNIa7KyEXqcceqccNkX3sgRTJr2OkHnukHjdE9rEHUiS/jpF67JF63BDZxx5Ikfw6RuqxR+pxQ2QfeyBF8usYqcceqccNkX3sgRTJr2OkHnukHjdE9rEHUiS/jpF67JF63BDZxx5Ikfw6RuqxR+pxQ2QfeyBF8usYqcceqccNkX3sgRTJr2OkHnukHjdE9rEHUiS/jpF67JF63BDZxx4qiqqqarg7IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIwJIVBoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIPkgKBoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIPkgKBoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIPkgKBoQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIPkgKBnqBJ554gsmTJxMdHU1KSgqXXXYZe/bsCXe3Qu6Pf/wjiqLw0EMPhbsrIVFcXMwNN9xAYmIiZrOZsWPHkpeXF+5uBZXX6+U3v/kNgwcPxmw2M3ToUB577DFUVQ1313odiRt+EjckbojOk7jhJ3FD4oboPIkbfhI3JG6IzpO44SdxQ+KG6DyJG34SNyRuiM6TuOEncUPihug8iRt+EjckbojOk7jhJ3FD4oboPIkbfhI3JG6IzpO44SdxQ+KGCCxduDsgTm358uXcf//9TJ48GY/HwyOPPMK8efMoKCggKioq3N0LiY0bN/LCCy8wbty4cHclJGpra5k+fTpnnXUWn3/+OcnJyezbt4/4+Phwdy2o/vSnP7FgwQIWLlzImDFjyMvL49ZbbyU2NpYf/ehH4e5eryJxQ+KGxA2JG10lcUPihsQNiRtdJXFD4obEDYkbXSVxQ+KGxA2JG10lcUPihsQNiRtdJXFD4obEDYkbXSVxQ+KGxA2JG10lcUPihsQNiRtdJXFD4obEDYkbXSVxQ+KGxA2JG8GgqFKK0etUVlaSkpLC8uXLmTVrVri7E3Q2m41Jkybx3HPP8fvf/54JEybw1FNPhbtbQfWrX/2K1atXs3LlynB3JaT+f3v3F1p1/cdx/L2tNpfK0EBF1kS72MgRKlE6oV0UpFQUDLvxQtKCQtTyJvtDEGYXXXRlBRuRhX+6iLbsJihhF3Wj0lpdJbisoJIQSUgy0s/vbqfR7/fjfPJ7zrd993jAQD6ejddunndv9sADD8TSpUvjrbfemn4bGhqKzs7OOHz4cInLZj/d0I2q0o3G0Q3dqCrdaBzd0I2q0o3G0Q3dqCrdaBzd0I2q0o3G0Q3dqCrdaBzd0I2q0o3G0Q3dqCrdaBzd0I2q0o3G0Q3dqCrdaK7WsgeQ79dff42IiMWLF5e8pDl27twZ999/f9x7771lT2ma48ePxx133BFbtmyJJUuWxNq1a2NkZKTsWQ03MDAQJ06ciDNnzkRExOTkZHz22WexefPmkpfNfrpRfbqhG0XTjerTDd0omm5Un27oRtF0o/p0QzeKphvVpxu6UTTdqD7d0I2i6Ub16YZuFE03qk83dKNoulF9uqEbRdON6tMN3WiGG8oeQJ5r167FU089FRs3boz+/v6y5zTce++9F1988UWcOnWq7ClNNTU1FW+++Wbs3bs3nnvuuTh16lTs3r072tvbY9u2bWXPa5h9+/bFpUuXoq+vL9ra2uLq1atx4MCB2Lp1a9nTZjXdmBt0QzeKpBtzg27oRpF0Y27QDd0okm7MDbqhG0XSjblBN3SjSLoxN+iGbhRJN+YG3dCNIunG3KAbulEk3ZgbdEM3iqQbc4Nu6EZTJGaVJ554Iq1YsSL98MMPZU9puO+//z4tWbIkTU5OTr8NDg6mPXv2lDeqSW688ca0YcOGGW+7du1K69evL2lRcxw7dix1d3enY8eOpa+++iq9++67afHixenQoUNlT5vVdEM3qkw3GkM3dKPKdKMxdEM3qkw3GkM3dKPKdKMxdEM3qkw3GkM3dKPKdKMxdEM3qkw3GkM3dKPKdKMxdEM3qkw3GkM3dKPKdKO5HAzMIjt37kzd3d1pamqq7ClNMTo6miIitbW1TX9FRGppaUltbW3pzz//LHtiw/T09KQdO3bMeHvjjTfS8uXLS1rUHN3d3engwYMz3vbv3596e3tLWjT76YZu6Aa5dEM3dINcuqEbukEu3dAN3SCXbuiGbpBLN3RDN8ilG7qhG+TSDd3QDXLphm7oBrl0Qzd0gyLd0My/ZsA/k1KKXbt2xejoaIyPj8fKlSvLntQU99xzT3z99dcz3h599NHo6+uLZ555Jtra2kpa1ngbN26Mb775ZsbbmTNnYsWKFSUtao7Lly9Ha2vrjLe2tra4du1aSYtmL92o0Q3doD66UaMbukF9dKNGN3SD+uhGjW7oBvXRjRrd0A3qoxs1uqEb1Ec3anRDN6iPbtTohm5QH92o0Q3doD66UaMbukFxHAzMAjt37oyjR4/Ghx9+GAsXLoyff/45IiK6urqis7Oz5HWNs3Dhwujv75/xNn/+/Lj55pv/9l41Tz/9dAwMDMQrr7wSjzzySJw8eTKGh4djeHi47GkN9eCDD8aBAweip6cnVq9eHRMTE/Haa6/F9u3by5426+hGjW7oBvXRjRrd0A3qoxs1uqEb1Ec3anRDN6iPbtTohm5QH92o0Q3doD66UaMbukF9dKNGN3SD+uhGjW7oBvXRjRrd0A0KVNJfNiBDRPzXr7fffrvsaU03ODiY9uzZU/aMpvjoo49Sf39/6ujoSH19fWl4eLjsSQ136dKltGfPntTT05PmzZuXVq1alZ5//vl05cqVsqfNOrpRoxvVphvF0Y0a3ag23SiObtToRrXpRnF0o0Y3qk03iqMbNbpRbbpRHN2o0Y1q043i6EaNblSbbhRHN2p0o9p0ozi6UaMb1aYbxdGNGt2oNt1orpaUUrreowMAAAAAAAAAAAAAAODfpbXsAQAAAAAAAAAAAAAAQPEcDAAAAAAAAAAAAAAAQAU5GAAAAAAAAAAAAAAAgApyMAAAAAAAAAAAAAAAABXkYAAAAAAAAAAAAAAAACrIwQAAAAAAAAAAAAAAAFSQgwEAAAAAAAAAAAAAAKggBwNUVktLS4yNjZU9A5hFdAPIpRtALt0AcukGkEs3gFy6AeTSDSCXbgC5dAPIpRvw/zkYYNb65Zdf4sknn4yenp7o6OiIZcuWxX333Reff/55RET89NNPsXnz5oiIOHfuXLS0tMSXX35Z4mKgbLoB5NINIJduALl0A8ilG0Au3QBy6QaQSzeAXLoB5NINuD43lD0A/qmhoaH4448/4p133olVq1bF+fPn48SJE3HhwoWIiFi2bFnJC4F/G90AcukGkEs3gFy6AeTSDSCXbgC5dAPIpRtALt0AcukGXKcEs9DFixdTRKTx8fH/+ZmISKOjo9P//uvX4ODg9OdGRkZSX19f6ujoSL29ven1119v8HqgDLoB5NINIJduALl0A8ilG0Au3QBy6QaQSzeAXLoB5NINuH7+wgCz0oIFC2LBggUxNjYW69evj46Ojv/7+ZMnT8add94Zn376aaxevTra29sjIuLIkSPx4osvxsGDB2Pt2rUxMTERjz/+eMyfPz+2bdvWjF8FaBLdAHLpBpBLN4BcugHk0g0gl24AuXQDyKUbQC7dAHLpBhSg7IsF+Kfef//9tGjRojRv3rw0MDCQnn322TQ5OTn9//GXi7Fvv/02RUSamJiY8TNuvfXWdPTo0Rlv+/fvTxs2bGj0fKAEugHk0g0gl24AuXQDyKUbQC7dAHLpBpBLN4BcugHk0g24Pq3NPE6AIg0NDcWPP/4Yx48fj02bNsX4+HisW7cuDh06VNf3//bbb3H27NnYsWPH9AXaggUL4uWXX46zZ882djxQCt0AcukGkEs3gFy6AeTSDSCXbgC5dAPIpRtALt0AcukGXJ+WlFIqewQU5bHHHotPPvkkvvvuu2hpaYnR0dF4+OGH49y5c7Fy5cqYmJiINWvWRETE+fPnY9myZXH48OG46667Zvyctra2WLlyZQm/AdBsugHk0g0gl24AuXQDyKUbQC7dAHLpBpBLN4BcugHk0g2o3w1lD4Ai3XbbbTE2Nva39/b29oiIuHr16vTb0qVLY/ny5TE1NRVbt25t1kTgX0Y3gFy6AeTSDSCXbgC5dAPIpRtALt0AcukGkEs3gFy6AfVzMMCsdOHChdiyZUts3749br/99li4cGGcPn06Xn311XjooYf+9vklS5ZEZ2dnfPzxx9Hd3R3z5s2Lrq6ueOmll2L37t3R1dUVmzZtiitXrsTp06fj4sWLsXfv3hJ+M6BRdAPIpRtALt0AcukGkEs3gFy6AeTSDSCXbgC5dAPIpRtQgASz0O+//5727duX1q1bl7q6utJNN92Uent70wsvvJAuX76cUkopItLo6Oj094yMjKRbbrkltba2psHBwen3I0eOpDVr1qT29va0aNGidPfdd6cPPvigyb8R0Gi6AeTSDSCXbgC5dAPIpRtALt0AcukGkEs3gFy6AeTSDbh+LSmlVNKtAgAAAAAAAAAAAAAA0CCtZQ8AAAAAAAAAAAAAAACK52AAAAAAAAAAAAAAAAAqyMEAAAAAAAAAAAAAAABUkIMBAAAAAAAAAAAAAACoIAcDAAAAAAAAAAAAAABQQQ4GAAAAAAAAAAAAAACgghwMAAAAAAAAAAAAAABABTkYAAAAAAAAAAAAAACACnIwAAAAAAAAAAAAAAAAFeRgAAAAAAAAAAAAAAAAKsjBAAAAAAAAAAAAAAAAVJCDAQAAAAAAAAAAAAAAqKD/AOPjR1Z9tpYKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"Plot the charge spin density.\"\"\"\n", "fermi_hubbard.plot_quantity(bundle, \"charge_spin_density\");" ] }, { "cell_type": "markdown", "metadata": { "id": "6afd21793718" }, "source": [ "This plotting function automatically adjusts the appearance of plots according to the data being plotted. We illustrate this by plotting the `\"charge_spin_spreading\"` below." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:34:34.274229Z", "iopub.status.busy": "2023-07-06T09:34:34.273964Z", "iopub.status.idle": "2023-07-06T09:34:34.498445Z", "shell.execute_reply": "2023-07-06T09:34:34.497748Z" }, "id": "7f4a02dffcd6" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAFMCAYAAAC3YNfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABeqElEQVR4nO3dd3hU1dbA4d+Zlkmvk0mHJPSOFEWKCIIgIDb06rVhV0CwC9dP5HqlKKjYUFGveFVs2EBFFAEVUTpIb6EkJJPey2RmzvdHIBCSQGZIMklmvc+Tx8yZPfusiWFWzj57r62oqqoihBBCeDCNuwMQQggh3E2SoRBCCI8nyVAIIYTHk2QohBDC40kyFEII4fEkGQohhPB4kgyFEEJ4PEmGQgghPJ4kQyGEEB5PkqEQQgiPJ8lQiEayevVqxo4dS2RkJL6+vvTo0YOPPvrI3WEJIZBkKESj+eOPP+jWrRtLlixh+/btjB8/nltvvZVly5a5OzQhPJ4ihbqFqF3r1q2ZMmUKU6ZMqTzWo0cPrrrqKp555pnz7n/UqFGYzWbee++98+5LCOE6uTIU4jyMHDkSPz+/Wr86d+581tfn5eUREhLSSNEKIWqjc3cAQjRn77zzDiUlJbU+r9fra33us88+Y8OGDbz11lsNEZoQwgmSDIU4D9HR0S69btWqVYwfP56FCxee8+pRCNHwZJhUiLPQaDSceVu9vLy88ntXhknXrFnDmDFjeOmll7j11lsb/D0IIc5NrgyFOAuTyURqamrl4/z8fJKSkiofOztMunr1akaPHs2cOXO455576j9gIYRLJBkKcRZDhgzh/fffZ8yYMQQFBfH000+j1Worn3dmmHTVqlWMHj2ayZMnc+2115KWlgaAwWCQSTRCuJkMkwpxFlOnTuWSSy5h9OjRjBo1iquuuorExESX+lq0aBHFxcXMmjWLyMjIyq9rrrmmnqMWQjhL1hkKIYTweHJlKIQQwuNJMhRCCOHxJBkKIYTweJIMhRBCeDxJhkIIITyeJEMhhBAer1kvurfZbGzZsgWz2YxGI3ldCCHO5HA4sFgs9OzZE52u7h/52R99RPa772HLzMSrQwcinvoX3t261dg298uvSJ02rcoxxWCgw/Zt5xV7Y2rWyXDLli307dvX3WEIIUSTt379evr06VOntvnff0/67DlEPPMM3t27kb3oA47edTeJP3yPLjS0xtdo/PxI/OH7UwcUpT7CbjTNOhmazWag4n9yZGSkm6MRQoimJzU1lb59+1Z+XtZF1vuLCBo3jqBrK6ojRcx4hsI1a8hd8iVh99xd84sUBZ3JVB8hu0WzToYnh0YjIyOJiYlxczRCCNGElZRgLyysfKgYDGgMhmrNVKuV0p07qyQ9RaPBt18/SrZurbV7R3Ex+4cMAYeKsVMnwh+aglfbtvX6FhpSs06GQggh6sYyegxFpxWZD5swAdOkidXa2XJywW5He8ZwqDYslLLTdmw5nSG+NZHP/Qdj+/bYCwrIfu+/HL7xJhKWLUUfEVGv76OhSDIUQggPYF62tMouK0oNV4Wu8unZE5+ePas8PjhqNDmffkr45Mn1dp6GJMlQCCE8gMbXF62f3znb6YKDQKvFnpVV5bg9MwtdWFidzqXo9Rg7dqT8yFFXQnULWY8ghGhy7A6VdQez+GZrCusOZmF3yOY6jUUxGDB27kzRuj8rj6kOB0V//ol3jx516kO12ynbt69ZTaiRK0MhRJOyfEcqM5buIjWvtPJYZKCR6WM6MaJL/c8atztU1idlk15QSri/kb7xIWg1DbcsQLXbKd64CVtGBjqTCZ/evVBOu5fXFITefhvHn5yKsUsXvLt1JXvRBzhKSgi65moAjj/xBLpwM+GPPAxAxuuv4929B4ZWcdjz88l+9z3Kjx8naNx17nwbTpFkKIRoMpbvSOX+Dzdz5nVgWl4p93+4mQU3X1CvCbGxE2/+ihVYZs7ClpZWeUwXEYF52lQChg+v9/O5KuCKK7Bl55Dx6ivYMzLx6tiRuIVvVw6Tlh9PBeXUwKIjP5/Up/8Pe0YmmsBAjJ070Xrxx3i1aeOut+C0Zr25b3JyMrGxsRw7dkyWVgjRzNkdKgPm/FIlMZ1OASICjfz+xJB6uXKrLfGe7Lm+E2/+ihWkTJ4CZ37knlicHj3/5QZJiPI5WTdyZSiEaBLWJ2XXmggBVCA1r5QbF/6Jyd8LraKgUUCjUU58r1R8r6Hie0VBq6n40pxoe/J7BXjn96RqifDkeRRgxtJdDOsUUS+JV7XbscycVT0RQsUxRcEycxb+Q4c2uSFTTyHJUAjRJBzPLa5Tu+wiK+ebn/JLbBSW2Wp9/mTiXZ+UTb/EmsuPOaN446YqQ6PVT6hiS0ujeOMmfC+UEpPuIMlQCOFWdofKr/sy+Gxjcp3aTxjchm6xgaiqit0BDlXF7lDP+G/FcYdDxa6qOFRwnNbmz0NZ7ErNP+e5NhzO4qKEEJTzrLNpy8io13ai/kkyFEK4haqq/JWUzWcbjnE8rwQAo15DabmjxvYn7xle2SPqvIcu/Y163lt7+Jztlu+wcDS7hFHdIhnQJgy91rXVaLbs7Dq1a05LEVoaSYZCiEalqip/p+TxyYZjHMqoqJXp56Xn6p7RqKqDSYu3VrQ77TUnU9/0MZ3q5R5e3/gQIgONpOWV1njfECDAqMPk70VyTjFvrTnIp+uPMaJLBJd1MuPnVfePzqK/1lO4ciWKwYBqtdbcSFHQmc349O7l/JsR9UKSoRCi0RxIL2Tx+qPsPJ4HgFGvZVTXSEZ3i8LbUDFxRKfVVFvuEFHPyx20GoXpYzpx/4ebUag58T5/XTcGtjWxck86y3ekkl1k5ZMNR/lySwqD25kY1S0Sc4DxrOcpWreOzLfeBlXFf/hw8pctq5g9evpEmhNDsOZpU2XyjBvJ0gohRINLzinmsw3HWH+4YrhQp9EwvLOZsT2iCfTWV2vfWAvh67rO0GZ3sO5QFsu2pXIkuwgABYU+rYMZ3T2Kdmb/an0X/r6WrIULQVXxGzSQkDvuoODnnxt9naF8TtaNJEMhRIPJKCjji03J/LovAxUVBYVB7Uxc1ysGk7+Xu8MDnEu8qqqy83g+y7ansvVYTuXxdmZ/RnWNpE/rEDQahcJffyXr3fcqEuHgwYSMv71yEk5jV6CRz8m6kWFSIUS9yysp55utKazYacHmqJgQ07d1CNf3iSUm2MfN0VWl1Sh1Xj6hKApdogPpEh3Isexivvs7ld/3Z7LPUsA+SwHh/kauLTtM3Mqv0CgK/kOHEHzrrVVmoyparSyfaIIkGQoh6k2J1c6y7cf57u9USsvtAHSOCuTGvrG0Ca8+lNicxYb4cN8lifyjTyw/7kzjp10Wgreso2jzT+zTKGguuZRe1/6j2rKMxq6FKupGkqEQ4pzO9QFutTn4aZeFr7emUFBaDkB8mB839o2la3Tgea/Ta8qCfAzc0CeOyzJ3cfTb38jSadia2IuNYb1Y9MlWBrQNY1TXSGJDfBq9FqqoO0mGQoizOtsH+LBOEfy6P4MvNiWTVVh24jlvbugTy4Xx579YvbnIX76cwsWLCfE10Or6qwnoM5T8v1PZZylg9d50Vu9NJ8CoZ8UuS7XXNlQRcuEcSYZCiFrVVsw6Na+U+z7czEUJIZXHQn29uK5XDIPamTxq2C9v2XfkfvYZAIFjxxJ4zdX0VRT6JoSyz1LAsu2prE/KZvXemqvLNEQtVOE8SYZCiBrZHSozlu6qdVE6wOYjuQxqF8bVPWMY1smMQedZ+4XnffstuV8sASDwmqsJuuqqKs+3M/vz8DB/vtueyp+HsmrooUJ910IVzpNkKISo0bl2kQCw2h3888JWXNohvJGiahpUVSXv62/I++orAILGXUfgmDG1tj85o/Zc0gvO/vMWDUeSoRCiRnX9YM4/MWHGU6iqSt6SJeR9uxSAoBuuJ3DUqLO+Jtz/7JVqnG0n6p9njWkIIepMPsCrU1WV3E8/q0yEwTfdeM5ECKdqodZ2N1ChYlJS3/iQWlqIhibJUAhRo77xIQT7VC+VdpKnfYCrqkrO4sXkf/89AMG33EzAiBF1eu3JWqhAtYRY30XIhWskGQohavTd36m1lkzztA9wVVXJ+fAjCpb/CEDI7bcRMGyYU32M6BLJgpsvICKw6pV0RKBRllU0AXLPUAhRhaqqfLrhGF9vTSHE18A/L4xj5W4LaflllW3qexeJpkxVVXI++ICClb+AohAy/nb8Bw92qa8RXSIZ1ilCKtA0QZIMhRCVVFXl3d+T+Hl3xeLwG/vGMbZHNP8e28UjP8BVVSX7vf9SuGYNKAqhd92F38AB59WnM7VQReORZCiEACq2KVqw+iBrD2aioHDXwHiGdjQDnvkBrjocZL37LkW//V6RCO+5G7/+/d0dlmggkgyFEJTZ7Lz88362HM1Bq1GYcGkbLk4Mc3dYbqM6HGQtfIeitWtBoyHsvnvxvegid4clGpAkQyE8XLHVxvPL97InLR+DTstDl7WlZ1ywu8NyG9VuJ/Ottyj+8y/Qagi7/358+8qWSy2dJEMhPFheSTmzf9hNUmYR3notj4/oQMfIAHeH1ahO32xXGxJCyaaNFG/YiKLTEjZhAj69erk7RNEIJBkK4aEyC8uY+d1ujueVEGDUM/WKjsSH+bo7rEaVv2IFlpmzsKWlVR5TDAYM8a2JmP4MPhf0dGN0ojG5NRkWltmYt2IvK3ZayCwso3NUANPHdKZ7bJA7wxKixUvNK+E/3+0mq7CMUD8v/nVFR6KCvN0dVqPKX7GClMlTQK1aily1Winbuw9bZs27TIiWya2L7p9Ysp3f92fy4vXd+XHKIAa2NXHzO3+Rdo7iwEII1x3OLGL6NzvJKiwjMtCbGVd29rhEqNrtWGbOqpYIKykKlpmzUO32xg1MuI3bkmFpuZ3lO9KYekUHLkwIpXWYLw8Na0erMB8+/POIu8ISokXbk5bPv5ftIr+0nPgwX565sjNhfjVXmWnJijduqjI0Wo2qYktLo3jjpsYLSriV24ZJbQ4Vu0PFS6etctyo07LhcHaNrymz2bHaTm2FUlhma9AYhWhJth7L5cWf9mG12ekQEcDjI9rjY/DMaQO2jLoNgda1nWj+3PYvwc9LxwVxQbyycj9twv0I8/Pi220pbD6aQ+vQmm/iv7HqIPNX7q98bMvPbKxwhWjW/jiYyRurDmJzOOgRG8xDw9pW+0PUk2gC6jZjVmcyNXAkoqlw65+FL93Qg8e+2M6FM1ei1Sh0iQrgyu5R/J2SV2P7By5N5K6B8ZWPU1JS6LigsaIVonlaudvCO78loaJycWIYDwxORKf13Br99sIiClf+jGIwoFqtNTdSFHRmMz69ZVmFp3BrMmwV6stn9/aj2GqjsNRGeICRCR9vJi7Ep8b2Xjptlb9m/bw8c4hHiLr6dttxPv6r4h78ZR3N3NE/Ho0H1BStjb2ggPTnX8B65Ahe7dpRumMHKErViTRKxc/HPG0qitZzr549TZP489DHoCM8wEhecTm/7stgWKcId4ckRLOmqiqL1x+tTIRje0Rz5wAPT4T5+Vhmz8Z65AiaAH+iX36J6FfmozObq7TTmc1Ez3+ZgOHD3RRp05D90UccGDKUPd26k3T9DZRs337W9vnLl3Nw5BXs6dadQ2OurChu3oy49dJqzb4MVFUl0eTH4awiZn6/h0STH+N6x7gzLCGaNYdD5b211Xee8GS2nBzSZ8+hPDUVbVAQ5iefQB8VhSEmBv+hQysr0OhMJnx69/L4K8L8778nffYcIp55Bu/u3che9AFH77qbxB++RxdavWB78eYtpDzyKOEPP4Tf4MHkLVvGsYmTiF/yBcZ27dzwDpzn1mRYUFrO88v3kpZXSqCPnpFdInj08vboPfh+hhDnw2Z38Mbqg/xRw84TnsqWlYVl9hxsFgva0BDMTz6J/rSrQUWrxfdCqT16uqz3FxE0bhxB114DQMSMZyhcs4bcJV8Sds/d1dpn/+8D/AYMIPTOOwEInzyZoj/+IOejj4mc8Uxjhu4ytybD0d2iGN0typ0hCNFs2R1qlT0Gu8cG8srKA2w9JjtPnGTLyKhIhBkZ6MLCME99UmaInoNqtVK6c2eVpKdoNPj260fJ1q01vqZk6zZCb7+tyjG//gMoWLmyIUOtVzIDRYhmaPmOVGYs3UXqadWafAxaYoK9iQj09vidJwDKLRYss2djz8pGZzZjfvKJGof4PIWjqAh7YWHlY8VgQGMwVGtny8kFux3tGT8rbVgoZUlJNfZty8xEGxpWrb0ts/ksf5NkKEQzs3xHKvd/uJkzC4kVW+3ssxRyQ+9YSYTHj2OZPQd7bi76yEjCn3wCXbBn/0wso8dQdNq90LAJEzBNmujGiJoWSYZCNCN2h8qMpbuqJcLTvfN7Erf3j0froTNHrcnJpM+Zgz0vH31MDOYnHkcbGOjusNzOvGwp0dGnJlIpNVwVAuiCg0CrxZ6VVeW4PTMLXVjNw+66sDDsWZl1bt8UyUwVIZqR9UnZVYZGa5KaV8r6pJpLGrZ01iNHsMychT0vH0OrOMxTn5REeILG1xetn1/lV01DpFCRJI2dO1O07s/KY6rDQdGff+Ldo0eNr/Hu0b1Ke4CiP/6otX1TJMlQiGYkvaBuO7rUtV1LUnYoCcvsOTgKCzEkxBP+xJNo/f3dHVazFHr7beR+/jm5X31N2cGDpD0zA0dJCUHXXA3A8SeeIH3ei5XtQ265lcLffyfrvf9SdugQGa++RsnOnQT/8yZ3vQWnyTCpEM1IuL+xXtu1FGX792OZOxe1pBSvNm0If/QRND41V7IS5xZwxRXYsnPIePUV7BmZeHXsSNzCtyuHPcuPp4Jy6lrK54KeRM99gYyX55Px0ksYWrci9rVXm80aQ5BkKESz0qd1MH5eulp3bFGAiEAjfeNDGjcwNyrdu5f0efNQS8vwat+e8IcfQuPtWfszNoSQm/9JyM3/rPG5Vv/7oNqxgBEjCBgxoqHDajAyTCpEM/LZxmSigmq+6js5XWb6mE4eM3mmZOdO0l+Yi1pahrFTp4orQkmEwgWSDIVoJn7aZeHbbSmE+Bp4cEgbIgOrJsWIQCMLbr6AEV0i3RRh4yrZvp2MF19CtVrx7tYV08MPofHyvI2KRf2QYVIhmoHNR3N47/eKBc/jesVyba8YJl/WrkoFmr7xIR5zRVi8eQuZr72KarPj3bMnpokTUPR6d4clmjFJhkI0cYcyCpn/835UVAa3D+eaCyrWimk1Cv0SPa+iSvGGDWS88QbYHfj07k3YA/ej6OSjTJwf+Q0SognLKCjj+eV7KbPZ6RYTxF0D4lGUln/1p9rtNe4kUbRuHZlvvQ0OB779LiL0nns8focJUT8kGQrRRBWW2Zj9wx5yS6zEhfjw0GXtPGKH+vwVK7DMnIUtLa3ymC4igsCrr6Jk8xZQVXwHVuyQoGha/s9DNA75TRKiCSq3O3hxxT5ScosJ8TXwxIgOeBta/hVQ/ooVpEyeUiURAtjS0sha8Ca2rCz8Bg8m9K67JBGKeiW/TUI0Maqq8vavh9iVmoe3XssTIzoQ6tfyZ0mqdjuWmbNArb3yqs1iIfjWWzxiqFg0LkmGQjQxn29M5rf9GWgUhYeGtaNVqK+7Q2oUxRs3VbsiPJOjoICSTZsbKSLhSSQZCtGE/LLHwpdbkgG4e1AC3WKC3BtQI7JlZNRrOyGcIclQiCZi27Fc3vmtYi3hNRfEcGn7cDdH1LjqugO97FQvGoLTs0kLSstrPK4oCgatBoNO8qsQzjqcWcRLP+/DoaoMbGtiXK8Yd4fU6Lx7XYAmOBhHTk7NDRQFndmMT+9ejRuY8AhOJ8NuM1ZwtlvXkYHeXNsrhilD26LxkGoYQpyPzMIy5izfQ2m5nc5Rgdw7KMHjJojYcnLI/uADdKGhWGtKhid+HuZpU2VdoWgQTifDudd1Z+6KvVzXK4buJ+5nbEvOZcmmZCYOaUt2URlv/3oIL52GCZe2qe94hWhRiq025vywh5xiKzHBPjw8zDPWEp6kqipFv68l56OPcBQXozOF4XNhXwp+XondYqlspzObMU+bSsDw4W6MVrRkTifDJZuT+deojozuFlV57LJOZtpH+PPxX0f5+O6LiAry5rVVByQZCnEWNruDl37ax7GcYoJ9DDw5sgO+Xp5TB8OWlUX2++9Tsm07AIZWrQi9524MsbFETJtWYwUaIRqK0//yNh3J4bmru1Y73jkqkM1HK4Y3+rQO4XhuyflHJ0QLpaoqb/92iL9T8vDSaXl8RAfCPGAtIVS898LVq8n55BPUklIUnZbAq68h4IqRlQlP0WrxvbCvmyMVnsTpZBgV5M2nG47x5MgOVY5/uuEYUYEV+4jlFFsJ9JYK8kLUZsnmFH7dV7GWcMplbYkP84y1hOXp6WS/+x6lu3cD4NUmkdA770QfHe3myISnczoZTruiIxM+2szqvemV9wy3p+RxMKOQBf+8AIBtyXlVhlGFEKes2ZfBF5uOAXDngHh6xgW7OaKGp6oqBT/9RO5nn6NarSgGA0HXXYf/8GFSVk00CU4nw2GdzKx85BI++usoSZmFAAxub+LtW3oRG+IDwC0XtarfKIVoIf5OzuPtXw8CcFWPaIZ2NLs5ooZXnpZG1sJ3KNu/HwCvDu0rrgbNLf+9i+bDpbv1sSE+1YZJhRBndzSrmBd/2ovdodI/MYwb+sS6O6QGpdrt5C9fTt6XX6GWl6MYvQi+4Qb8hgzxuKUjoulzKRnmlZSz7VguWUVlOBxVn7vWAxcLC3Eu2UVW5izfQ0m5nY6RAdw3OLFFJwRrcjJZ77yD9VBFRR1jly6E3jEeXViYmyMTomZOJ8Ofd1mY8ulWiqw2/Lx0VRbgK4oiyVCIM5RY7cz5YQ9ZRWVEBXnzyPD26FvoWkLVZiNv2TLyv/0W1WZH4+1N8D9vwnfgwBad/EXjKfjll1qeUVC8DBhatcIQ43wecjoZPvf9bsb1juHxyz1jfzUhzofN7uDln/dxJLuIQG89T47ogF8LXUtoPXyYzHfeofxoxeQg7549Cbn9NnTBLX+CkGg8yRMmVlQkOnOrr5PHFAWfCy4g5vXX0AYG1rlfp/9VpuWVMv7ieEmEQpyDqqq8tzaJbcm5GE6sJQwPMLo7rHqnlpeT98035C37DhwONH5+hNxyMz4XXSRXg6Lexb33Lukvv0z4lCkYu3YDoPTv7WTMf4Ww++9D4+9P2vTpWJ5/nqjnnqtzv04nw0HtwtiekktcqI+zLxWiRbM7VNYnZZNeUEq4v5HUvBJ+2ZOOgsLkoW1INPm5O8R6V3bwIFkL36H8+HEAfPr2JeTWW9AGBLg5MtFSWWbOJGLGv/G5oGflMd9+/VC8vEh9+mkSly3DPHUqx//1lFP9Op0Mh3QIZ9b3e9hvKaRDhH+1OorDOsl0aeF5lu9IZcbSXaTmlVYeM2g1tA7z4dHh7enVKsSN0dU/h9VK3pIl5C//EVQVbWAAIbfeik+fPu4OTbRw1qPH0PhVL1Kh8fWj/FjFXqCGVq2w17b7SS2cToZPfvk3AK/8sr/acwpwaNYoZ7sUollbviOV+z/czBl3MLDaHeyzFOI4895GM6Ta7ZW1Qh0lJRT/9Se29IpNdn379yf4nzeh9Wt5V76i6TF27kz6C3OJmjMbXUjFH5m27GzS587F2LULANYjR9BHRDjVr9PJMEmSnRCV7A6VGUt3VUuEp5uxdBfDOkWgbaZbmuWvWIFl5ixsaWmVxxSDAa9OnYh48gm8e/RwX3DC40T+5z8kT5jAgUsGo4uMBMCWmoo+NpaY118DwFFcTNj99znVb8uc1iZEI1mflF1laLQmqXmlrE/Kpl9iaCNFVX/yV6wgZfKUajP3VKuV0q1bKU9Px9s9oQkP5ZUQT8J3yyhauxZr0mEADPHx+Pa/uLK0n/9llzndb52S4X/XJnFj3ziMei3/XZt01rbj+8c7HYQQzVV6wdkTobPtmhLVbscyc1b1KewnKQqWmbPwHzpUtlcSjUrRaPAbOBAGDqy3PuuUDN/9PYmrekRj1Gt59/fak6GiSDIUniXcv25LJerarikp3ripytBoNaqKLS2N4o2bZLsl0aiK1q2jaN2f2LKzwFH1j7WomXVfTnG6OiXD358YUuP3Qni6vvEhhPoayCqy1vi8AkQEGukb3/xmkxZv3FindraMjAaORIhTMl57ncw33sDYpQs6kwnq6Va8W+8Z2h0qL/+8j6+2pJBRUIY5wMh1vWKYNKSNLNYVzUJOsZWYYO8ak+HJ3+DpYzo1u8kzhWvXUrByZZ3a6kymBo5GiFNyPv2EqFkzCRw7tl77rVMyfHbZrjp3+H+jO9W57ZtrDvLhn0eYd3132ob783dKHo99vg1/o06GW0WTd7LUmrdBy4A2oRxILyQtv6zy+YhAI9PHdGJEl0g3Rum8/OXLyfl4MVpfXzR+fjgKC2tuqCjozGZ8evdq3ACFZ7OW492z57nbOalOyXDn8byqj1PysTlUEkwVCx+TMovQKgpdouteBw5g05EchnUyM6RDxUL92BAfvt16nG3Hcp3qRwh3+N+fRziQXoivQcesa7oS6udVpQJN3/iQZnVFqKoquZ9/Tv6y7wDwH3E5QTf/k+NTHjrZ4FTjEyM35mlTZfKMB7Pn5pL2n+coXLUKNBr8hw8jYto0NL7VF8WfdOSWWynesKHKsaAbbiByxjN1OmfQuOvIW7YM0wMPnE/o1dQpGX5yT7/K79/57RB+XjrmjetBoI8egLzich79Yht9Wzt3X6RXq2A+/usohzIKSTD5set4PhuPZPPUqLpfXQrhDmsPZPLjzorJJROGtKmsOdocl09AxczR7P/+l8JffwMgaNw4AkaPQlEUlPkvV1tnqDObMU+bSsDw4e4KWTQBKY89ji0jg7j33kW12Tg+bRqpT08net7cs74uaNw4TA9OqnyseNd9gY6jzEreZ59T/Mc6vNq3R9FVTWPmqU869yZOcPqe4cLfDvG/Oy+sTIQAgT56Hh3enlve/Yu7ByXUua/7L0mkoNTG0BfXoFUU7KrKo8Pbc1XP6Brbl9nsWG2nNlAsLLM5G74Q5+1YdjFv/XoIgGt6xnBBXPPelcFhtZL5xhuUbN4CikLoHePxu+SSyucDhg/Hf+jQygo0OpMJn9695IrQw5UdPEjRb7/R+vPP8T5R+SXiqac4ds+9hD/+OHpzeK2vVbyNLt9rLtu7F2OHis3ly/afUQntPOaaOJ0MC0ttZBVa4YwSpFlFZRQ5mZyW/Z3KN1tTmP+PnrQzV1wZ/nvZrsqJNGd6Y9VB5q889eZt+ZnOhi/EeSmx2nnxp31YbXa6RgfW+HvanDiKikh/eT5le/ei6HSETXgAn17V7wEqWq0sn2jmHEVF2E+7/6sYDGgMBpf7K9m6FU1AQGUihIqC2Wg0lGzfhn7YsFpfm790GfnfLkVnCsNv8KWEPXA/mjpeHbb6YJHLMZ+N08nw8s4RPPbFNp4a1ZHusUEAbD2ay8wfdnN5F+dqwc36fjf3D07kyu5RAHSICCAlp4Q3Vh+o8UPmgUsTuWvgqYk1KSkpdFzg7DsQwjWqqvLmmoOk5pUQ6uvFxCFt0TSje4JnsuXkkD53LuXHklG8jYQ/9FDlX9yi5bGMHkPRaVfzYRMmYJo00eX+bBmZlbVBT1J0OrSBgdgza79QCRg9Gn1UFLrwcMr27SV97jysh5OIefVVl2OpD85v7nt1V577fhcPfrIVm71iyFKn0XB9nximXdHRqb5Kyu3VllBoNEqtBS+8dFq8dKf+Z7bUTVJF0/T932n8lZSFTqNhymVtCfTWn/tFTVS5xUL68y9gy8hAGxhA+GOPYYiLc3dYogGZly0lOvrULSillqvC9HnzyFr4zln7Svj+O5fjCL7h+srvje3boTOZOHr7eKxHj9b6O5g8aRKRs2ah9fMjedKkGtuc5GpSdTqbeBu0/Oeqrky7oiNHsooBaBXqg4/B+cQ0tIOZ1385QHSQkbbh/uw8ns+7vycxrnfzHnoSLc/u1Hw++usIALf0a0Vbs7+bI3Kd9fBhLHPn4sgvQBceTvjjj6EPr/3+jmgZNL6+ddpZJGT8eAKvvvqsbQwxMehMYdiys6scV2027Hl5aMPC6hyXd7eKDXqtR2pPhho/f06u3K34vv65fGnlY9DRMfL8NvCcMbYz81bs5f++3klmYcWi+5v6xvHg0Lbn1a8Q9Sm32MorK/fjUFX6J4YxvBnv2Vm6axfp8+ejlpRiaBVH+KOPog10bkmUaNl0ISHVhj9r4t2jB478fEp27MS7S2cAiv78CxwOvLt1r/P5SvfsqThveO0TaqJmzazx+/rkUjLcnpzLd9tTScktodzuqPLcW7f0rnM/fl46po/pzPQxnV0JQ4gGZ3eozF+5/0SlGR/uHpTQbKsjFW/cSOYbb6Da7Bg7dsA0eTIaHx93hyWaKa/ERHwHDiT16f8j8plnUG02LM8+S8AVV1TOJC23WDh6+3ii5szGu1s3rEePkrdsGX6DLkEbFETZvr1YZs3Gp3dvjO3bu/X9OJ0Mv912nEc+28qgtiZ+25/JwLZhJGUWkVFYxuWdnZtAI0RT98mGo+xOzceo1/LwsHYY9c1zOUHBqlVkv78IVBWf3r0Iu+++Wu8ZCVFX0S88T9qz/+Ho7eNPLLofTsS/plU+r5bbsCYl4Sip2LVF0esp/mMdOYs+wFFSgi4yAv/hwwi7//6znufQ1dfUuQZpwpdfuvRenE6Gb6w6wP+N7sSt/VrT+enlTB/TmdgQb6Z99TemZliZX4jarE/KZum24wDcd0kiUUHNb+c+VVXJ//ZbcpdUfED4DR5MyO23Ve77JsT50AYFnXWBvSEmmo57dlc+1kdG0urD/zl9Hv+hQyu/V8vKyFm8GK/ExMqNpUu2baPswAGCb7zR6b5PcjoZHskq5tL2FZfAep2G4nIbiqJw54B4blz4Fw8Pa+dyMEI0Fal5JSxYfQCAUV0juSih+VWWUVWVnA8/ouCnnwAIHHslgddc02yHeYXnMk2cUPn98aeeIviWmwmfPLlKm4xXXqX8bFuOnYPTfx4GeuspslYsro8IMLI3rQCAvBIbpVa7y4EI0VSUltt56ad9lJTb6RARwI19m9+SA9VmI3PBgspEGHzzPwm69lpJhKLZK1j+I0E17FgReOUYClascLlfp68M+8aH8Pv+TDpEBHBF10j+vXQX6w5m8dv+TC5u0/z+ehbidKqq8u7vSRzNLibQW8/koW3RaZvXkKKjtJSMV16ldMcOFJ2W0LvvrqgMIkQLoBiNFG/egqF16yrHizdvQfHycrlfp5Phv8d2puxEfdCJl7ZBp1XYfCSHkV0imDRElkSI5u3n3en8tj8DjaIweWg7gn2b1yQTe0EB6fPmYT2UhOLlhenBB6uUyxKiuQu59VbSZsygdNcuvLt1BaBk23Zyv/zynBNxzsbpZBjkc+rDQaNReGBwG5dPLkRTciC9kEV/HAbgH33j6BR1futoG5pqt1cpnm2Ib03GvHmUp6ah8fMj/JGH8UpMdHeYQtSrsHvuxhAbQ/YH/yNv6VIAvBISiJr5HAEjR7rcr0vrDI9kFfH5xmSOZBczfUwnwvy8WLU3neggb9o148ocwnPll5bz0s/7sDkc9GkdwphuTXtD3vwVK6ptq6R4eaGPjcWrbRvMjz2GPirKjREK0XACRo48r8RXE6dvhvx5KIvLX/6Vrcdy+XFHGsVlFZNmdqfm89JP++o1OCEag8Oh8tovB8gqLCMiwMj9gxOb9EST/BUrSJk8pUoihIop59YDB/AdMFASoRBOcvrKcM7yPTw6vD13DUyg89PLK49fnBjGB38cqdfghGgMSzYnsz05F4NOy8PD2rtUZ7exqHY7lpmzqLWaPZD56qsEXTVW9hsULZJqt5P9/iLyly+nPDUVtby8yvPt//rTpX6dvjLcm1ZQY6WZUF8D2cVWl4IQwl22HM3hy80pANw1IJ640KZdnqx446ZqV4RnsqWlUbxxUyNFJETjynz9dbLff5+AkSNxFBQQevtt+A+7DEVRME2YcO4OauH0n8ABRj3pBaXEhlT90Nh5PJ+IAKlAI5qP9IJSXl91ABWVyzqaGdTOtZ23G5MtI6Ne2wnR3OQtXUbEs//Gf/BgMl97jYBRozDExZHdrj0l27YBt7jUr9NXhmO6RzL7hz2kF5SiKAoOVWXj4Wxmfr+bay6IPncHQjQBVpuDl37aT2GZjQSTH7dd3NrdIdWJzlS3hF3XdkI0N7bMTIztKiqdKb4+2AsqCr/4XTqYwjVrXO7X6WT42OUdSDT5cfGsXyiy2hj20hquf2sdvVoFyzpD0Wx8sO4wSZmF+HnpeOiyduibycJ6TYD/2QtsKwq6iAh8evdqvKCEaER6s7ly5MMQG0fR2j8AKP377/MqPu/UMKmqqmQUlvHMlZ15cGhb9qYVUGS10TkqkPgwX5eDEKIxrdmXwc+7LSgoTBzSFpO/61UrGlPZoUNkvPwy+rg4rAcOVG9wYgasedpUmTwjWiz/YZdRtO5PvLt3J+Tmf5Ly+BPkLvkC2/FUQm6/zeV+nUyGMPiFVax46BLiw3ybZRV/4dmOZBXxzm+HALi2Vww9YoPcG1AdWY8eJf2Fuaglpfj174/x/vtJf+GFKpNpdGYz5mlTCRg+3I2RCtGwwh95pPL7gCuuQBcZScnWbRhatcJ/yKUu9+tUMtRoFFqH+pJTbCUeuRIUTZ/dobI+KZv0glICjHq+2pJCud1B99ggrm0m97jLU1KwPP88jqIivNq0wfTQFDRGIwEjLq9Sgcandy+5IhQex6dnT3x69jzvfpyeTfrEiA7M+n43/7mqK+0jpNqMaLqW70hlxtJdpOaVVh4zaDV0jQlg4qVtmvTC+pPKLelY5jyPI78AQ6tWhD/yMBpjxaxtRavF98K+bo5QiMaX98035HzyKeXJybT+ZDH66GiyFy1CHxNTZe9DZzidDB/+bCul5Q5Gzv8VvVZTbefvbdNliEa43/Idqdz/4WbOXJputTvYdCSXtQcyGdGlaZdcs2VlkT5nNvbcXPQxMYQ/8TgaXxmREZ4tZ/FiMl55lZDbbiXzzbdQHRUbR2j8A8he9EHjJcOnx3R26URCNBa7Q2XG0l3VEuFJCjBj6S6GdYpAq2maV4e2nBwss+dgy8xCF2HG/PhjaP383B2WEG6X/eFHRD77b/wvu4ystxdWHjd26Uz688+73K/TyfC6XjEun0yIxrA+KbvK0OiZVCA1r5T1Sdn0S2x6e3Da8/NJn/M8NosFncmE+ckn0QYFuTssIZqE8uRkjB07VjuuMRhwlJS43K9LRRjtDpUfd6ZxIL0QgLbhfgzrZG52m6CKlim9oPZE6Eq7xmQvLCL9hRcoP34cbXAw4U88ji4kxN1hCdFk6GNiKN2zB3101Qlwhb/9jiExweV+nU6G+ywF3LVoIxkFZSSYKu5fvLmmiBBfA+/e1kcm1Qi3C/evW1nAurZrLI6SEtLnvoD1yFG0gQGYpz6JPjzc3WEJ0aSE3H4baf9+FrWsDBUo2b6d/O++I/PthUQ++2+X+3V+NumS7bQz+7F04gACffQA5BWX88jn25j65Xa+fKC/y8EIUR/6xocQ7u9FekFZjc8rQESgkb7xTeeKy2G1kv7iS1gPJVVszPvEE+gjqhfEF8LTBY8bh8ZoJH3+fNSSEo4/+hi68HAipk0lcNQol/t1OhnuOp7P0kmnEiFAoI+exy5vz5Wv/e5yIELUFwXoHBVA+t7qxapPTpeZPqZTk5k8o1qtZLw8n7K9e9F4e2N+/DEMMXJvXogzqTYbecuW4TdgAIFjxuAoKcFRXIwu9Pzv/Tt9ky8+zJfMGv7izioso3WoTPsW7rfs71RKyu10jgog/IxSaxGBRhbcfEGTWVah2mxkvPY6pTt2oHh5Ef7oIxhat3Z3WEI0SYpOR9ozM1DLKnKQxtu7XhIhuLjo/pmlO5lyWTt6xgUBsOVoLq+s3M+TIztQUHpqo0V/o76WXoRoGMeyi/lswzEAHh3enkHtTJUVaML9K4ZGm8wVod1O5ptvUbJ1K4peT/jDD+HVVordC3E23l27Urp7d7UJNOfL6WR4x6INAEz4eHPlkNPJ9Vx3nnhOpWI46tAs18dvhXCWze7gjdUHsDkc9IwLZnB7E4qiNMnlE6qqkvXOuxSvX4+i02Ka/GCN08WFEFUF33QjljnPU55mwdi5ExqfqnvrGtu3d6lfp5Ph4rsvculEQjS0LzenkJRZhJ+XjnsGJjTZcmuqqpL9/iKK1q4FjYawCRPw7tbN3WEJ0SykPFxRqNvy3HOnDipKxU4SikLHXTtd6tfpZHhRQtP7K1uIA+kFfL01BYA7ByQQ7Ov6vmYNSVVVcj7+mMJVq0BRCLvvXnx6yd6DQtRVm59/apB+nU6Gq/em4+ulo0/rimnpH6w7zOL1x2gb7sezY7tUmWUqRGMos9l5fdVBHKpK/8SwJjkselLekiUU/LgCgNA778D3IhlpEcIZ9X2v8CSnZ5PO+n4PhaU2APak5fOfZbu5tL2JYznFPPvdrnoPUIhzWfzXUVLzSgj2MTB+QLy7w6lV3rffkvftUgBCbrsVv0GD3ByREM1T2aEk0v79LEduH8+R28eT9u9nKTuUdF59Op0Mj+UU0ya8omDwD3+nMbRjOI+P6MCzY7uwuoZ1XUI0pB0peSzfWbHB7b2XJOLn5VKFwXqh2u0U/bWevGXfUfTXelS7vfK5/OXLyf1iCQDBN/7D5cr6Qni6/B9XcOjKKynduRNj+/YY27endNcuDl15JfknRl1c4fQnh16robS84h/52gOZXHNBxeLgQG89hWXlZ3upEPWq2GpjwZqDAFzW0ezWXevzV6zAMnNW1Z3nIyIwT5uKotOR8/FiAAKvuZqAkSPdFaYQzV763LmE3XM3pgcfrHI845VXSZ87l4DLXdtG0Olk2Kd1MM9+t5verYLZlpzLazddAEBSZhGRgd4uBSGEKxb9cYSswjLC/Y3cfFErt8WRv2IFKZOnVMxmO43NYiHlwckY2rRBFxJCwOhRBI4d654ghWghbBkZNf47CrxyDFnvvedyv04Pk84Y2wWdRuH7v1P5z1VdiAisKHa8em8Gl7QzuRyIEM7YeDibNfvSUVB44NLEaptMNxbVbscyc1a1RFjxZMWx8qNH8btsKEHjxjXZ5R5CuCLzzTc5/I8b2dOjJ3v79K3Ta1RVJeOVV9g3cCB7uvfgyPjxWA8frvM5ffr2oXjjpmrHizdtPq+Z2U5fGUYHefPe7X2qHX96TCeXgxDCGXkl5bz96yEARnePpENEgNtiKd64qcrQaE1UqxWvdu0lEYoWR7WW4z/icrx79CB3yZI6vSbrnXfI/t+HRM2ehT4mhoz5r3D0rrtJ+G4ZGi+vc77ef8gQ0ufNo3TnTrx7dAegZOs28n/8EdOkiRT88kuVtnXlvtkGQrhAVVXe/e0Q+aXlxAb7MK5XrFvjsWXUbdKYPTOzgSMRovGZHpwEQO6XX9WpvaqqZH/wAWH33Vc5iSxqzmz29x9Awc8/12nXibQZFds05SxeTM7ixTU+Bzi9AF+SoWhWfj+QyfrD2Wg1Cg9c2gaDzr0bSutMdbs1UNd2QjQUR1ER9sLCyseKwYDG0LjFKcqTk7FnZOJ7cb/KY1p/f7y7daNk67Y6JcOOuxtmCZ8kQ9FsZBaW8d+1hwG49oIY4sPcv0uKT+9e6CIisFksNd83VBR0ZjM+vaXKjHAvy+gxFGlP3VsPmzAB06SJjRqDLaNihER7xk4T2rAwbJmuL82z5+ejDTi/2yVuTYb9Z/9CSm5JteO3XNSKZ6/q4oaIRFOlqipv/3qIYquNRJMfY3s0TBUKZylaLeZpU0l5cHINT1bcIzRPm4qidc8EHyFOMi9bSvRp1VuUWq4K0+fNI2vhO2ftK+H77/BKSKjX+Ooqc+FCDNHRBFxxBQDJk6dQsGIFOpOJ2Lffwtihg0v9upwMD2cWcSS7mAvjQzDqtaiq6vQEgW8n9sd+2l/T+9IKufndv7iia9PYa040HT/tsrA9OReDTsuES9s0mW2YALw7d8bYtStle/eiWq2Vx3VmM+ZpUwkY7tq6JyHqk8bXF62f3znbhYwfT+DVV5+1jaubT+tMYQDYs7LQh4dXHrdnZuJVx11bcj/5lKgXXgCgcO1aitatI3bhQvKX/0D68y8Q9967rsXm7AtyiqxMXLyZPw5moQCrH72UuFAfHv9iO4Heep4aXfdZpaF+VWcOLVh9kFahPlyUEOJsWKIFS80r4cO/jgJwU99YooKaznrWcks6ljnPo/H2JnDsWPyGDcORn4/OZMKndy+5IhTNji4kBF1Iw3wG62Ni0JrCKFr3Z+WWZfbCQkq2byfoxn/UqQ9bZib6yAgAClevIWDECPwG9EcfHcXhG+rWR02cnn3w7LJdaDUa/nhyCN6nre0a3T2KNftcH/O12hx8vSWF63vH1nqFWWazU1BaXvlVWGZz+XyieXA4VBasPojVZqdzVCCXd45wd0iVbFlZpM+ZjT03F31MDOFPPI7/oIEEjh6F74V9JRGKFq/8+HFKd++mPPU42O2U7t5N6e7dOIqKKtscHHkF+T9V7DShKAoht95K5ptvUvDLL5Tu3cfxJ55EFx6O/2WX1emc2oAAylMrljMV/fbbqck4KnBaCURnOX1l+Ov+TD64o2+1ajPxob413v+rqxW70sgvtXFdr9ovv99YdZD5K/dXPrbly3T1lm7p9uPssxTgrddy/+DEJrNWz56bi2XOHGyZWegizJgff6xOQ1BCtCQZr7xK3tdfVz5OuvoaAOIWLcL3wopF+NakJBwFp2axht51F2pJCalPT8eRn493rwuIXfh2ndYYAvgPG8bxRx/F0LoV9txc/AYOBKB09y70reJcfi9OJ8MSqw1vQ/W/eHNLrOc1zf3TDccY3M6EOcBYa5sHLk3kroGndiVISUmh4wKXTymauCNZRXy+MRmA2/vHE+ZXt38sDc1eUIBlzvPY0izowkIxP/EE2qAgd4clRKOLmj2LqNmzztqm457dVR4rioLpwQer1RatK/PUJ9FHR1Oelkb4o4+i8a2YVW7LyCD4xhtd6hNcqU0aH8KXm5N5ZHh7oGLCnMOh8taaQ/RzcePf5Jxi1h7I5M2bzz793EunxUt3KhG7c4cC0bDK7Q5eX3UAm8NB71YhDGob5u6QAHAUF5P+/AuUp6SgDQoi/Ikn0YU23f0ThWhpFL2e0DvvqHY89Pbbz6tfp7PJ1JEd+ec7f7I9OY9yu8qsH3azz1JIbnE5S+7vd+4OavD5xmRC/bwY0iH83I2FR1iyKZmj2cX4G/XcPSihSQyPOkpLSZ87D+uRI2gC/DE/8Th6s/zOCtESOJ0M20f488ujg/ngj8P4eekostoY0TmCW/u1IvwsQ5y1cThUvtiUzLUXxKDTureaiGga9lkK+GbrcQDuHphAoLfezRGBw2ol46WXKTtwAI2PD+bHH2+wHbeFEI3PpXHGAKOeiUPa1ksAvx/IJCW3hOt7u7ZuRbQspeV23lh1ABWVgW1N9I13/zIb1WYj89VXKd29G8XoRfhjj2KIc/1GvRCi6XE6Ge5Oza/xuKJU3NOLCjJWua93LoPamTg8+9z16IRn+Pivo6TllxLq68XtF7d2dziodjuZbyygZNt2FIOB8EcewSsx0d1hCSHqmdPJ8IpXfuPk3ZuTtWNOv5uj02oY3S2SmVd3ddsec6J52p6cy4pdFeuH7r0kAV83T5BSVZWsd96leONGFJ0W0+TJGNu3d2tMQogKqtWKLTsbHI4qx/VRUS715/SnzVs392L28j3cOyiB7rFBAGw7lsvC35KYPLQtdofKnOV7mLdiL/8aJXsciropKrPx5pqDAAzvFEG3mCC3xqOqKtnvL6Jo7VrQaAibOBHvrlIvVwh3sx4+zPF/PUXJli1Vn1BVp7dtOp3TyfD1VQeYPqZzlV3tO0QEEBHozYsr9vLNxAF4G7Q8991uSYaizt7/4zDZRVYiAozcdKF778epqkrO4sUUrloFikLYvffgc8EFbo1JCFHh+NRpKFotsW8uqNgarZ5mmjudDPekFRBdQ23I6CBv9qQVANApMoD0gtLzj054hPVJ2fy2PwOFij0K3T28nvflVxQs/xGA0DvvwLefa0uGhBD1r3TPHuKXfFHvu2Y4vZYh0eR3olbkqXHacruDBasPkmiqKEdlyS9tMtVCRNOWV1zOwt8OATC2RxTtzP7ujWfZd+R98w0AwbfcjN+gQW6NRwhRlVdiIvacnHrv1+krw2ev6sxdizbSb1Y6HSIrPrj2phVgd6i8e3sfAI5mF3PLRa3qN1LRItgdKuuTskkvKMXk58VvBzIpKC2nVYjvWevSNob8FSvI/ewzAIKuv56AYcPcGo8QorrwRx8h/YW5mB56CK92bVH0Vdchu1ojWFHVmrbnPrvCMhtfb0khKbOiMnmCyZexPaIbvTxacnIysbGxHDt2jBgX99cSjWf5jlRmLN1Fat6pIXSDVkOCyZe3b+lNXKiP22Ir/PVXst6p2ActcOxYgq69xm2xCFGfWtrn5O6OJ+ainHmvsDEn0JTbHQydt4b3bu/NzXLlJ5ywfEcq93+4mTP/8rLaHexJK2BXap7bkmHRunVkvfseAP4jLifwmrNvbCqEcJ+4Re83SL9OJUO9VkOZzfX9ooRnsjtUZizdVS0Rnm7G0l0M6xTR6DvYF2/aROZbb4Oq4jfkUoJvvLFJ1EEVQtTMt2/fBunX6XHNW/u1ZsHqQ8y5tqvUEhV1sj4pu8rQaE1S80pZn5RNv8TG2wGi5O+/yXz9dXA48O3fn5DbbpNEKEQTVLp3L15t26JoNJTu3XvWtq4WxnA6GW47lssfB7P4bX8G7SP88Tljb8O3buntUiCi5arrMpvGXI5TumcPGS/PR7XZ8enTh9C77pREKEQTlXTV1bT9/Td0oaEkXXV1xf3Cmqa7NOai+wBvPSO6RLh0MuGZwv3rtptJXdudr7KDB0l/8UXU8nK8u3cn7P77ULRSOlCIpqrNzz+hDQmp/L4hOJ0M547r3hBxiBasb3wIkYHGWodKFSAi0NggO1SodjvFGzdhy8hAZzKhM5lIf2EuamkZxo4dMU2aiKKTTaKFaMpO3y6tobZOk08B0eC0GoUHBifyf99UH744OTA5fUynep88k79iBZaZs7ClpZ06n5cX+thYfPv2xfTQFBSDoV7PKYRoeGWHksj58EPKDlUU7PBKSCD45pvxSoh3uU+XkuH3f6fy3fZUUnJLKLdXrRj+3YMDXQ5GtEw2u4Odx/NpZ/YjJbeEorJTM5IjAo1MH9OJEV0i6/Wc+StWkDJ5SrX7CmpZGdYDBwi99x40xsYZlhVC1J/8H1eQ8sgjeHfujHePHgCUbNvGoSuvJHrePAIuH+5Sv04nw/+uTWLuj3u5rlcMP+2ycF3vGI5mFbMtOZdb+8naQ1Hdl1tSOJxVRFyIL4vvvoh9lkLSC0oJ968YGq3vK0LVbscyc1bNN9hPyJj3IoFXXCH3CoVoZtLnziXsnrsxPfhgleMZr7xK+ty5jZcM//fnEWZe05WxPaL5YlMy9w1KJC7UhxdX7CW3pNylIETLdSC9kK+3pABw54B4Qv286NfAdWuLN26qMjRaE1taGsUbN+F7YcOsWRJCNAxbRgaBY8dWOx545Riy3nvP5X6dXih4PLeEXq2CATDqtRSW2QC4+oIYvt123OVARMtTZrOzYPVBHKrKxYlhjbaG0JaRUa/thBBNh0/fPhRv3FTtePGmzfj06uVyv05fGZr8vcgtLicmGKKCvNlyLIdOUQEcyy4+26iU8ECfbUwmJbeYIG8D4/u3brTz6kymczdyop0QounwHzKE9HnzKN25E+8eFasbSrZuI//HHzFNmkjBL79UaVtXTifDixPC+Hm3hS7RgYzrHcOzy3bxw99pbE/OlfWHotLu1Hy+354KwN2DEvA36s/xivqj8fdD8fJCLSuruYGioDOb8ent+l+RQgj3SJvxbwByFi8mZ/HiGp8DnF6A73QynHVNVxwnLgFv7deaIB8Dm4/kcFnHcG66UCbQCCgtrxgeVVEZ3D68cli9MRRv3kLm66+jj43FeuBA9QYnqsyYp02VyTNCNEMdd+9qkH6dToYajYKGU7P/ruwexZXdo+o1KNG8ffTXUdILSgn18+K2fq0b7byFv/1O1rvvgsOB/9CheN1/P+kvvFBlMo3ObMY8bSoBw12bcSaEaJlcWmeYV1LOtmO5ZBWV4ai6zJBr3bxBq3Cv7cm5/LSrIvncf0ki3obGufrKX76cnI8rhkx8Bwwg9M47ULRaAkZcXqUCjU/vXnJFKEQzVLxlC/bcXPwvvbTyWO7XX5P56ms4SkrwHzoU8/89hcbFQhpOJ8Ofd1mY8ulWiqw2/Lx0nL5CTFEUSYYerKjMxltrKipCXN45gi7RgQ1+TlVVyf38c/KXfQdAwMgRBP3jH5VFtxWtVpZPCNECZL6xAJ++fSqTYenefaQ+9X8EXX0VhoREst57F114OKZJE13q3+lk+Nz3uxnXO4bHL+/QaH/1i+Zh0brDZBWVERFg5Ma+cQ1+PtXhIPu/71O4Zg0AQddfT8CoK2T3CSFaoNI9u6sstM///nu8u3Uj8tlnAdBHRpDx6muNlwzT8koZf3G8JEJRxcbD2fy6LwMFhQcubYNR37C/H6rVSuabb1asN1IUQm6/rcrwiRCiZXHk5aMLO7VWuXjDBvwGnSr/aezSFVtqqsv9O73oflC7MLan5Lp8QtHy5JeW8/avFcOjo7tH0s7s36Dnc5SUkD7vRYo3bkLRaTFNnCCJUIgWThsWSnlyMlDxx3Dprl14dz+1i5KjqAj0ri/hqtOV4U+7LJXfD+kQzqzv97DfUkiHCP9qu90P62R2ORjR/Kiqyru/JZFfWk5MsA/jesU26Pns+fmkz3sRa1ISitGL8ClTMHbq1KDnFEK4n9+gQaTPe5HwRx+h4OeVaIzGKhVnyvbtxRDr+udPnZLhPf/bWO3YK7/sr3ZMAQ7NGuVyMKL5WXcwi7+Ssiq3aTLonB5sqDNbVhbpzz9PeWoaGn9/wh955Ly2bBFCNB+myZNJnjSJI7fcisbHh8jZs6pswZa75Et8+/d3uf86JcMkSXCiBjlFVt5bmwTA1T1jSDD5Ndi5ylNSsLwwF3t2NtrQEMyPPYY+Sta3CuFOmW++SeHqNZTu2YOi19N+w/pzvub4k1PJ+/rrKsd8Bwwg7p2FZ32dLjiY1h9+iL2gAI2PT7UlUjEvv4TGx8fp91DZv8uvFB5NVVXe/u0QhWU24sN8uapHwyWmskOHSJ87D0dhIfrISMIffwxdaOMU/RZC1E61luM/4nK8e/Qgd8mSOr/Od+BAomY+V/nYmU22tf41z0nQBgXVuY+a1HlM648DmVz24hoKSqtv05RfWs6wF9fw16Gs8wpGNB+r92Ww5WgOOo2GBwa3qXbvuL6U7NiJZdZsHIWFGBLiMT/1L0mEQjQRpgcnEXr77Xi1a+fU6xSDAZ3JVPmlDWz4NcnnUucrw/fWJvGPPrE1FlwOMOq56cI43v09iQsT5IOqpcsoKOODPw4DcH2fWGJDXB+aOJui9evJevNNVJsdY+fOmB6chMbbu0HOJURL5ygqwl5YWPlYMRhcrtZyvorXr2ffxf3RBgTgc9GFmCZPRhfceDWMa1LnZLg7tYAnR3ao9fmBbU0sPDG9XrRcqqry5pqDlJTbaWf2Z3TXyAY5T8Evq8hetAhUFZ8+fQi7716U85g2LYSns4weQ9Fp99nCJkxweYH6+fAdOAD/4cPQR8dQfuwo6S+9zLF77qX1J4vdWiqxzskwo7AMnab2oTCdRiGryFovQYmm68edFnYez8Og0/LA4DZoNPVb7UVVVfKXLSP38y8A8Lv0UkJuuxXlLL97QohzMy9bSnR0dOXj2u7Tpc+bR9bCd87aV8L33+GVkOBSHIGjTk3INLZvh1f79hwcNpzi9evx7dfPpT7rQ52TYUSAkb2WAlqH+db4/J60fMIDvOotMNH0pOaV8PH6owD888I4IgKN9dq/qqrkLF5MwfIfAQi8cgyB114r5dWEqAcaX1+0fuee8R0yfjyBV1991jaGmPqrQW2IjUUbHIz1yNHmkQwvbW/ixRX7uKSdqVqprdJyOy/9tJ+hHWTBfUvlcKgsWH0Qq81Ol6hAhtdzcQXVZiPr3fcoWrsWgOCbbiJgxOX1eg4hxLnpQkLQhYQ02vnK09Kw5+aiCzc12jlrUudkOHFIW5bv/I0hc1dz68WtSThxhXgwo4j/rTuMXVWZcGmbBgtUuNeyv1PZZynAW6/lvsGJ9Xq15rBayXztdUq2bgWNhtC77sJvgOuLZ4UQjaP8+HHseXmUpx4Hu53S3bsBMMTFofE9kSNGXoHp4YcIGDYMR1ERGa+/QcDwYWjDTBX3DF+YiyEuDt8BA9z5VuqeDE3+Xiy5/2Ke+noHzy/fg3riuAIMamfi2bFdMPnLMGlLdCy7mM82HAPg1otbE+ZXf/+fHUVFpL88n7K9e1H0esImTsCnZ896618I0XAyXnm1ygL6pKuvASBu0aLKrdOsSUk4Ck7MYtVqKdu7l2Nff429oAC9yYRv//6YJj/otpmtJymqqqrnblZVXnE5h7OKUIH4UF8CfVyf5ZeWV8rsH3azel8GJVY7rUN9eWFcN7rFBJ3ztcnJycTGxnLs2DFi6nEMW5xiszv4v292kJRZxAVxwTx2efvzuipU7fbKzXYVb28Kf1lJ+bFkNN7emB5+CGP79vUYvRBCPifrxqUKNIE+err7BJ33yfOKy7l2wR/0Swzl/fF9CfU1kJRZRKC3TKFvKr7akkJSZhF+XjruHphwXokwf8UKLDNnYUtLqzymGAx4dehA5H+exRDX8HsgCiFETdxajm3BmoNEBRmZO+7UNhwNtYBbOO9QRiFfbUkB4I4B8QT7uj6Mkb9iBSmTp8AZAxGq1Urp9u2U7tkjyVAI4TZuTYY/77YwqK2JBz7axF+HsjEHGLmlX6tad0kvs9mx2hyVjwvLbI0Vqsex2hy8vuogDlXlooRQLk4Mc7kv1W7HMnNWtURYSVGwzJyF/9Chbl10K4TwXG5Nhkezi/nwryPcNSCeBwa3YXtyHs98uxO9VsN1vaqPbb+x6iDzV57aOsqWn9mY4XqUzzcdIyW3mEBvPXcMOL9tkoo3bqoyNFqNqmJLS6N446bKm+5CCNGY3JoMVVWla3Qgj4+oKPPWJTqQfZYCPvrrSI3J8IFLE7lr4KkP5pSUFDouaLRwPcbetAKWbUsF4J5BCQTUUI/WGeXp6XVqZ8vIOK/zCCGEq9xa4yrc30jb8KrbcSSG+3E8t6TG9l46Lf5GfeWXn5fsQFXfSsvtvLH6ACoql7QLp1er81t8qzocFesH60Bncu+iWyGE53JrNunVKphDmYVVjiVlFBEdJDsTNCa7Q2V9UjbpBaVsOpJDWl4pYf5e3HZxq/Pq12G1kvnGG1j37UMxGFCttdSuVRR0ZjM+vXud1/mEEMJVbk2Gdw6I59oFf/D6qgOM6hrJtuRcFq8/yqxrurozLI+yfEcqM5buIjWvtPKYQavhkeHt8DG4/uthLygg46WXKDtwEEWvJ/Tee8h87fWKJ0+fSHNiqYZ52lSZPCOEcBu3JsPusUG8dUsvnl++l/kr9xMb7M3TYzpxVc/oc79YnLflO1K5/8PNnDnH02p3MPuHPbQK9WFEF+e3aCq3pJM+by62NAsaX19MUyZjbN8er7Ztq60z1JnNmKdNJWD48PN8N0II4Tq333Qb2tHM0I5S4Lux2R0qM5buqpYITzdj6S6GdYpA68Q2TWWHDpH+4os48gvQhYUS/sgj6E9sGxMwfDj+Q4dWVqDRmUz49O4lV4RCCLdzezIU7rE+KbvK0OiZVCA1r5T1Sdn0SwytU5/FW7aQ+fobqFYrhlatMD38ULXdqxWtVpZPCCGaHEmGHiq9oPZE6Eq703emN3btgmniRDTeMhFKCNE8SDL0UOH+dduY91ztVFUlb8kS8r5dCoDfoIGE3H47ik5+tYQQzYd8YnmomGBvvHQayk4rb3c6BYgINNI3vvZ1hmduyBt41VUEXn2V7EwvhGh2JBl6oKzCMmYvr5gtus9SWO35k6ls+phOtU6ecZSUkPHKq5Tu3FmxIe/42/G75JIGjFoIIRqOWyvQiMZXWGZj1g97yCoso3NUIC9e343IwKpDoRGBRhbcfEGtyypsOTmk/ec/lO7cieLlRfhDUyQRCiGaNbky9CBlNjsvLN9Dck4xwT4Gpl3REZO/F2N7xFRWoAn3rxgare2K0JqcTPrcedizs9EGBmB6+GG84s+vkLcQQribJEMPYXeozP95P3stBfgadJWJEECrUeq0fKJ0924yXp6Po6QEfWQEpkceQR8e3tChCyFEg5Nk6AFUVWXhb4fYfDQHvVbDYyPaO72JctG6dWQtXIhqs+PVti2mh6ag9fNroIiFEKJxSTL0AIvXH2P13nQ0isKUy9rSISKgzq9VVZX8778n99PPAPDp3ZvQ++5FY3B913shhGhqJBm2cN9tT+XbbSkA3D0owaktmVSHg5wPP6Lg558B8B8+nOCbbkTRyLwrIUTLIsmwBfttfwb/+/MwADf2jePS9nW/v+ewWslcsICSTZsBCL7pRgJGjGiIMIUQwu0kGbZQW47m8OaagwBc0TWSK7tH1dpWtdurFM/2at+OzFdepezAARSdltB775N6okKIFk2SYQt0IL2Al37ej92hMqBNGLdc1KrWqjD5K1ZU21ZJMRrRx8RgiI2t3H5JCCFaMrn508Ik5xQz+4c9WG12uscEcd8liWdNhCmTp1RJhABqaSnWAwfwvWSQJEIhhEeQZNiCZBaWMeuHPRSW2Ug0+fHQsHbotDX/L1btdiwzZ1Xddf4MWW++hWq3N1S4QgjRZEgybCEKy2zM+r6izFpUoDdPjOyAUV/7prnFGzdVuyI8ky0tjeKNm+o7VCGEaHIkGbYAZTY7zy/fQ0puMSG+BqaN6kiAUX/W15SfIxGeZMvIqI8QhRCiSZNk2MzZ7A5e+mk/+ywF+HnpmDqyI2F+Xmd9Tcn27eQvXVqn/nUmU32EKYQQTZrMJm3GVFXlrV8PsfVYDgadlsdHdDhrmbXylBRyPvmEkm3bQVVRvLxQy8pqbqwo6MxmfHr3aqDohRCi6ZBk2Ix99NdRftufUVlmrZ3Zv8Z29sJC8r76moKVK8HhQNFp8R82jMDrx5H6+BMVjU6fSHNi9ql52lQUbe33HYUQoqWQZNhMLd12nGXbjwNw7yWJXBAXXK2NarNR8Msv5H31NY6iIgC8L+hJ8D/+gT4iAgCNl1e1dYY6sxnztKkEDB/eCO9ECCHcT5JhM/Trvgw++usIADdd2IpL2lW9r6eqKqXbt5Pz8ceUp1YkOX1sDME33YR3585V2gYMH47/0KFVKtD49O4lV4RCCI8iybCZ2XxambVR3aKqlVmzJqeQs/hjSv/eAYAmwJ+ga6/F75JLai2wrWi1Um5NCOEUa3IKmQveoPjPv7BlZqILDydwzBjC7rsX5Sy72jjKykifM4f8777HUV6OX//+REx/Gl1YWCNGX50kw2Zkn6WAl3/ej0NVGdjWxM0XxlU+Zy8oIO+rryj4ZdWp+4LDLyfwyjFofJzbu1AIIc7FmnQIHCoRM2ZgaBVH2f79pP7f0zhKSjA/8Xitr7PMmkXhml+Jnv8yGj9/LM8+S/KkB2m9+ONGjL46SYbNxLHsYp5fXlFmrUdsMPcOSkBRlIr7gj+vJO/rr3EUFwPg07sXQTfcgN5sdnPUQoiWym/gQPwGDqx8bIiNxZqURM7iT2pNhvaCAnKXfEn0Cy/ge9FFAETOmsmhK0ZRsnUr3j16NEboNZJk2ATZHSrrk7JJLygl3N9IgsmXWT/sprDMRttwf6Zc1hatRqF4yxZyFi/GlmYBQB8XS8hNN2Hs1MnN70AI0dQ4ioqwFxZWPlYMhnrfpNteUIA2MLDW50t37oTycnwv7ld5zCshAV1UJMWSDMXplu9IZcbSXaTmlVYe89ZriA3xoWt0EI+PaI/Gkkr6x4sp3XHafcHrrsNv0CDZeFcIUSPL6DEUnTYxLmzCBEyTJtZb/9YjR8j58CPCH3+s1ja2jEwUvR5tQECV47rQMOyZmfUWiyskGTYhy3ekcv+Hm1FUB10zDxFSVkC2lz87wxLYZynknl7hlH/6Mdm/rKpYNK/T4n/5iIr7gt7e7g5fCNGEmZctJTo6uvJxbZNc0ufNI2vhO2ftK+H77/BKSKh8XG6xcPTue/AfcTnB119fPwE3MkmGTYTdoTJj6S76Hf+b+7Z/jak0r/K5DK8A1sT2xLYxk/woXxTAp3dvgv5xA/rwuu9eL4TwXBpfX7R+fudsFzJ+PIFXX33WNoaYmMrvyy3pHL31Nnx69iDy3/8+6+t0pjDU8nLs+flVrg5tWZloZTapAFiflE387g08tX5RtefCyvK59sAajvhHkNs5gQ7334GxQwc3RCmEaOl0ISHoQkLq1LbcYuHorbdh7NyZyJkzz3mbxti5M+j1FK37k4DLK4p6lB1KwnY8FR833i8EKdTdJGQUlPHTjhTu2/41AGduxXvycVBZAUdueUASoRDC7cotFo7ceiu6qEjCn3gce3Y2toyMKjvdlFssHBx5BSXbtwOg9fcn6NprsMyZTdGff1GyYyep06bh3aOHWyfPgFwZuoWqqqTklrA+KZsNh7NJyiwibueGKkOjZ1KAIGsRumP7oXfrRotVCCFqUrT2D8qPHKX8yFEOXDK4ynMd9+wGQC23YU1KwlFyakKgeepUFI2G5MmTUa1W/Ab0J+Lppxsz9BpJMmwkqqpyMKOIDYezK5ZNZOVjzkwmKi2JbmlJxGceqVM/bXS17DIhhBCNKOiaqwm65lz3FqMrE+NJGi8vIp5+ukkkwNNJMqwj1W53un6n3aGyOzWfjYez2ZCUTXlaKtFpSXROO8TQzGQCdBBg1OHvo0cJ9acs/dxxGGTCjBBC1DtJhnWQv2IFludmYrNYKo/pzGbM/5pWbWcHq83B3yl5bDiczdZ9qQQcO0h02iEGpyXhX1KAv1GHv1GPv8kbfWgo3l274t2tK17tO3DoyispT0urds8QQAX0ERGyv6AQQjQASYbnkL9iBckPTgaqTmyxWiwkPziZmFfmox88lC1Hc1iflMWR7XsJO3aAaEsSYzJT0Cknrv6MevxCQ/Du2AHvbl3x7toVXVQUinKqV/O0qaRMnlLx4Iz9BRVkf0EhhGgokgzPQrXbOTLjP2ipPsNTAziAPf+aztLhR4lIO0Rc2mHalZWg1yr4G/UEhHgT0CoGn27d8O7aBa+OHc9a/ihg+HCY/7LsLyiEEI1MkuFZFG7YiC4ro9bnNYB/QS6X/voZqq8//t46AkyhhPToiveJBKgzmWp9fU1kf0EhhGh8kgzPYu/OJHzr0C4wPJSEG67Bu3s3vBITUXTn92OV/QWFEKJxuTUZvvTTPuav3F/lWILJl18eGeyegM6QbfSvUzLMuuZmel0/qsHjEUII0TDcfmXYzuzHh3ddWPlY14R2XfDv04cMYyChpXk1lupxAJneQfj36dPYoQkhhKhHbs88Wo2GcH9j5VeIb/3ur3U++rYx8elF41CoSHync1AxqeazC6+jbxvn7gsKIYRoWtx+ZXg4s4i+z/2Ml17DBXHBPD6iA9FBNW9HVGazY7WdSkuFZbYGjU2rURgz8SaeKy7n3jN2ksj0DuLtrmO5ZeJNaDU1rQwUQgjRXLg1GfaIC2LuuO4kmHxJLyhj/s/7uP7Ndfz40CD8vKqH9saqg1XuMdryG34zyBFdIuHx23jym16EHtpVucdgVkInnh7bpeJ5IYQQzZqiqqev7navvJJyBsz+hadGd+SGPnHVnj/zyjAlJYWObeI5duwYMaftr9UQ7A61oqZoQSnh/kb6xofIFaEQoslLTk4mNja2UT4nmzO3D5OeLtBbT7zJl8NZxTU+76XT4qU7td6upqvHhqLVKPRLDG208wkhhGg8bp9Ac7qiMhtHsooJ9/dydyhCCCE8iFuvDJ/7bhdDO5qJDvImvaCUl37aj1ajcGX3KHeGJYQQwsO4NRmm5pXy4OIt5BaXE+JroHfrYL564GJC/eTKUAghRONxazJ87aYL3Hl6IYQQAmhiE2ic5XBUzCxNTU11cyRCCNE0nfx8PPl5KWrWrJOh5cRmu337SlFrIYQ4G4vFQlxc9SVrokKTWmfoLJvNxpYtWzCbzWgaoaZpQUEBnTp1YteuXfj7+zf4+TyZ/Kwbl/y8G1dj/rwdDgcWi4WePXuiO88ddVqyZp0MG1t+fj6BgYHk5eUREBDg7nBaNPlZNy75eTcu+Xk3PU1qnaEQQgjhDpIMhRBCeDxJhk7w8vJi+vTpeHnJOsiGJj/rxiU/78YlP++mR+4ZCiGE8HhyZSiEEMLjSTIUQgjh8SQZCiGE8HiSDIUQQng8SYZ19Prrr9O6dWuMRiMXXngh69evd3dILdKvv/7KmDFjiIqKQlEUvv76a3eH1KLNmjWLPn364O/vT3h4OFdddRV79+51d1gt0oIFC+jWrRsBAQEEBATQr18/fvjhB3eHJU6QZFgHn376KQ8//DDTp09n8+bNdO/encsvv5z09HR3h9biFBUV0b17d15//XV3h+IR1qxZw4QJE/jzzz/56aefKC8vZ/jw4RQVFbk7tBYnJiaG2bNns2nTJjZu3MiQIUMYO3YsO3fudHdoAllaUScXXnghffr04bXXXgMqav3FxsYyadIknnzySTdH13IpisJXX33FVVdd5e5QPEZGRgbh4eGsWbOGQYMGuTucFi8kJIQXXniBO++8092heDy5MjwHq9XKpk2buOyyyyqPaTQaLrvsMtatW+fGyISof3l5eUDFh7RoOHa7nU8++YSioiL69evn7nAEzXwLp8aQmZmJ3W7HbDZXOW42m9mzZ4+bohKi/jkcDqZMmUL//v3p0qWLu8Npkf7++2/69etHaWkpfn5+fPXVV3Tq1MndYQkkGQohTpgwYQI7duzg999/d3coLVb79u3ZunUreXl5fPHFF9x2222sWbNGEmITIMnwHMLCwtBqtZUbCZ9ksViIiIhwU1RC1K+JEyeybNkyfv31V2JiYtwdTotlMBho06YNAL169WLDhg3Mnz+ft956y82RCblneA4Gg4FevXqxcuXKymMOh4OVK1fKWL9o9lRVZeLEiXz11Vf88ssvxMfHuzskj+JwOCgrK3N3GAK5MqyThx9+mNtuu43evXvTt29fXn75ZYqKihg/fry7Q2txCgsLOXDgQOXjpKQktm7dSkhICHFxcW6MrGWaMGECH3/8Md988w3+/v6kpaUBEBgYiLe3t5uja1mmTp3KyJEjiYuLo6CggI8//pjVq1fz448/ujs0AaCKOnn11VfVuLg41WAwqH379lX//PNPd4fUIq1atUoFqn3ddttt7g6tRarpZw2o//3vf90dWotzxx13qK1atVINBoNqMpnUoUOHqitWrHB3WOIEWWcohBDC48k9QyGEEB5PkqEQQgiPJ8lQCCGEx5NkKIQQwuNJMhRCCOHxJBkKIYTweJIMhRBCeDxJhkI46fbbb5c9FoVoYaQcmxCnURTlrM9Pnz6d+fPnI7UqhGhZJBkKcZrU1NTK7z/99FOefvpp9u7dW3nMz88PPz8/d4QmhGhAMkwqxGkiIiIqvwIDA1EUpcoxPz+/asOkgwcPZtKkSUyZMoXg4GDMZjMLFy6sLObu7+9PmzZt+OGHH6qca8eOHYwcORI/Pz/MZjO33HILmZmZjfyOhRAgyVCIerFo0SLCwsJYv349kyZN4v7772fcuHFcfPHFbN68meHDh3PLLbdQXFwMQG5uLkOGDKFnz55s3LiR5cuXY7FYuP766938ToTwTJIMhagH3bt356mnnqJt27ZMnToVo9FIWFgYd999N23btuXpp58mKyuL7du3A/Daa6/Rs2dPZs6cSYcOHejZsyfvvfceq1atYt++fW5+N0J4HrlnKEQ96NatW+X3Wq2W0NBQunbtWnnMbDYDkJ6eDsC2bdtYtWpVjfcfDx48SLt27Ro4YiHE6SQZClEP9Hp9lceKolQ5dnKWqsPhACo2MR4zZgxz5syp1ldkZGQDRiqEqIkkQyHc4IILLmDJkiW0bt0anU7+GQrhbnLPUAg3mDBhAtnZ2dx4441s2LCBgwcP8uOPPzJ+/Hjsdru7wxPC40gyFMINoqKiWLt2LXa7neHDh9O1a1emTJlCUFAQGo38sxSisSmqlNIQQgjh4eRPUCGEEB5PkqEQQgiPJ8lQCCGEx5NkKIQQwuNJMhRCCOHxJBkKIYTweJIMhRBCeDxJhkIIITyeJEMhhBAeT5KhEEIIjyfJUAghhMeTZCiEEMLj/T/Kqq93JlhlFQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"Plot the charge spin spreading.\"\"\"\n", "fermi_hubbard.plot_quantity(bundle, \"charge_spin_spreading\");" ] }, { "cell_type": "markdown", "metadata": { "id": "84071bf65186" }, "source": [ "One can compare these plots to Figure 2 of the [Fermi-Hubbard experiment paper](https://arxiv.org/abs/2010.07965)." ] }, { "cell_type": "markdown", "metadata": { "id": "6ae59a047944" }, "source": [ "### Parasitic controlled-phase" ] }, { "cell_type": "markdown", "metadata": { "id": "fc7a70b65c0e" }, "source": [ "We now run the same experiment but with the `google_sqrt_iswap_converter`. As mentioned, this decomposes $\\sqrt{\\small \\mbox{iSWAP}}$ gates imperfectly as `cirq.FSim(π/4, π/24)` which is close to the average value of the parasitic controlled phase on the Rainbow processor." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:34:34.502356Z", "iopub.status.busy": "2023-07-06T09:34:34.502125Z", "iopub.status.idle": "2023-07-06T09:37:23.201935Z", "shell.execute_reply": "2023-07-06T09:37:23.201246Z" }, "id": "70addbcd7b40" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4382d91993ad48498251d4c03299a632", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/176 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fermi_hubbard.plot_quantity(bundle, \"charge_spin_density\");" ] }, { "cell_type": "markdown", "metadata": { "id": "f251a67e70ff" }, "source": [ "And plot the `\"charge_spin_spreading\"` as well." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:37:28.194655Z", "iopub.status.busy": "2023-07-06T09:37:28.194385Z", "iopub.status.idle": "2023-07-06T09:37:28.429977Z", "shell.execute_reply": "2023-07-06T09:37:28.429355Z" }, "id": "ca54ed0803cd" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAFMCAYAAAC3YNfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABoEUlEQVR4nO3dd3hUZfbA8e+UTCbJpJdJBUKoSagCCgoiHSR2dF0FwbUD4s8O64rYsK+ADVEUu2uXIkVErBSlEwgtlIRkkknv0+7vj4FASAiZkGRSzud5eMzcuXPvmSBz5r73fc9RKYqiIIQQQrRhancHIIQQQribJEMhhBBtniRDIYQQbZ4kQyGEEG2eJEMhhBBtniRDIYQQbZ4kQyGEEG2eJEMhhBBtniRDIYQQbZ4kQyGEEG2eJEMhmsjPP//MlVdeSUREBD4+PvTu3ZuPP/7Y3WEJIZBkKEST+eOPP+jZsydfffUVO3bsYMqUKUyaNIlly5a5OzQh2jyVFOoW4uw6dOjAfffdx3333Ve5rXfv3lx11VU88cQT5338yy+/HKPRyOLFi8/7WEKI+pMrQyHOw9ixYzEYDGf9k5CQUOvrCwoKCAoKaqJohRBno3V3AEK0ZO+88w5lZWVnfd7Dw+Osz/3vf/9j8+bNLFy4sDFCE0K4QJKhEOchKiqqXq9bt24dU6ZMYdGiRee8ehRCND4ZJhWiFmq1mjNvq1ut1sqf6zNMun79epKSkvjvf//LpEmTGv09CCHOTa4MhahFaGgoGRkZlY8LCwtJTU2tfOzqMOnPP//M+PHjef7557njjjsaPmAhRL1IMhSiFsOGDeP9998nKSmJgIAAHn/8cTQaTeXzrgyTrlu3jvHjxzNjxgyuvfZaMjMzAdDpdDKJRgg3k2FSIWoxc+ZMLr30UsaPH8/ll1/OVVddRVxcXL2OtWTJEkpLS5k7dy4RERGVf6655poGjloI4SpZZyiEEKLNkytDIYQQbZ4kQyGEEG2eJEMhhBBtniRDIYQQbZ4kQyGEEG2eJEMhhBBtXotedG+z2di6dStGoxG1WvK6EEKcyeFwYDKZ6NOnD1pti/7Ib1Qt+jezdetWBgwY4O4whBCi2du0aRP9+/d3dxjNVotOhkajEXD+JUdERLg5GiGEaH4yMjIYMGBA5eelqFmLToYnh0YjIiKIjo52czRCCNF8ya2k2slvRwghRJsnyVAIIUSbJ8lQCCFEm9ei7xkKIURLo9jtlP71N7bsbLShoXj3uwDVaT0yhXtIMhRCiCZSuHo1pmfnYjvR2BlAGx6OcdZM/EaNcmNkQoZJhRCiCRSuXk36jPuqJEIAm8lE+oz7KFy92k2RCZArQyFEM1RQZuXPg2ZKLXYUBRyKggJw2s+KAgoKjhMPFMDhOPHfEy3LFUWp8vqTP1d9znmcAC8Phnc3EhPk3eDvR7HbMT071xlAtScVUKkwPTsX3+HDZcjUTSQZCiGaDVNhOct2ZPBzShZWu6PJz79ydyY9owMYmxhO75gAVCrVeR2vLHkPFQcPYDlwsNoVYRWKgi0zk+z5C9B1isMzrhNe8d3P69zCNZIMhRBul2ou4btt6Ww8lMuJa0DiQg10CPZBpQKVSoUKUJ/ITWq187FKpXI+jwq1isp9AdQnX6N2Pl/1OCf3cb4GVOzJKGRTai470vLZkZZPZIAX4xIjGNwlBE9t/a7WTHPnUrZ5c533z1m4EACv/v3p8OEH9TqnqB9JhkIIt1AUhV3phXy/PZ2d6QWV23vFBHBFr0jiI/zO+8rMFWMSw8kqKmfVrkx+2pvF8fwy3vntEJ9tPsbI+DBGxYcT6KNz6ZjGmTMrrwxPJrraBN95Z+WVoWhaKkWpaRC7ZUhLSyMmJoZjx45JOTYhWgiHQ2Fjai7fbz9OqrkYcF6pDYoL5opeUbQLbvh7dq4qs9hZl5LFD7syyS4qB0CrVjMwLpjLe0TQIcTHpeMpdjsHho/AZjLVfN9QpUJrNNJp7Y8Nfs9QPifrRq4MhRBNosJmZ31KNst2ZJB1IsHotBqGdQ1lXM8Iwnz1bo7wFC+dhnE9IhiTEM7mw7ms2JlBiqmIX/dn8+v+bOIj/Lm8Zzh92wXW6epVpdFgnDWT9Bn3OcdlT0+IJ15vnDVTJs+4kSRDIUSjKq6wsSY5kx92ZlJYbgXA4KlldEI4oxPD8dN7uDnCs1OrVVzYMZgLOwZzIKuYFTsz2HAoh+SMApIzCojw92JMYjiXdglF71F7IvMbNQrmvVp9naHRKOsMmwEZJhVCNIqc4gpW7Mxg7d4syq12AEIMnozvGcHQrmHnTB7Nlbm4glW7M1m7J4tSiw1wJvdh3YyMTjASbPCs9fVNXYFGPifrRpKhEKJBpeWVsnR7Br8fMGNzOJdHtAvy5opeUVzUMQit5ty1PuwOhU2puWQVlRPmq2dAbBAaddNNpqmLcqudn1OyWbkrg8xC57CvRq3iothgxvWMIC7U4OYIneRzsm5kmFQI0SBSMov4fns6fx/Jq9zWPcKPK3pFurRmb+WuDOYsTSajoLxyW4S/ntlJ8YxJbPgm3vVNvHoPDWMSwxkVb2TL0TyW78xgT0Yhvx808/tBM93C/RjXI4J+7QNRN7NELqqTZCiEqDdFUdhyNI/vtx0nxVQEONf09e8QyBW9I+kU5uvS8VbuyuDuj7Zw5nBVZkE5d3+0hTdv7tugCbEhEq9araJfhyD6dQgi1VzCip0Z/HHQzN7MQvZmFhLmq2dsYjhDu4bhpWuZQ8NtgQyTCiFcZrM7+P1gDt9vO056fingXHowpEsI43tGEhng5fIx7Q6FS57/qUpiOp0KCPfX89sjwxpkyPRsiffkkc8n8eaVWFi1O5Mf95gornDeV/Ty0DCsu5ExCeGE+tZ+X7Ehyedk3ciVoRCizsqtdtbuyWLFzgxySioA54f8iHgj4xIjXF6UDpBVWE5WUQU70grOmggBFCCjoJzPNx+jZ7Q/Yb6ehPnVbzmG3aEwZ2lytUR48jwqYM7SZEbGh9cr8Qb66PjHgHZc3TeKX/aZ+WFnBscLyli+4zg/7MxgQGwQl/eIoLPRtStn0XgkGQohzklRFH7YlcnXW9Iqr3QCvHSM7RHOyHgj3rr6f5S8/csh3vkttc77z/pmJwC3XRLLY+PjXTpX8vEC9pmK2Z9VXJl41YqDBPMhgiqKyPX0ZXdIRxwqNRkF5byyZh+dwwx0MRqIj/R36VwAnloNI+ONjOgextZj+azYkcGu4wVsOJRDRn45z13bo0mr7Iizk2QohKiVw6Gw+PdUftxjAiDC34ukXhEM7hyKRx1mhjYnc5YmszE1t/LxoOM7uWvHt4SWnyoHl633562eV/FHZA9eX3cAgAtjg/j8zoH1Pq9KpaJvu0D6tgvkSE4JK3Zm0jPaXxJhMyL3DIUQZ1Vhs7Ng7QH+OpKLChUTB7ZnTEJ4g86OPDlManco/GvJZszFlrPuG2LQ8e4t/dGoVfUaJj39ynDrx9/w2KYlwKn7hACOE4+fHnALfW66+ryuDJsD+ZysG7kyFELUqKjcyourUthnKsJDo2b6sM4MiA1q8POE+ekrk9rTVyVy90dbAKrczzuZrJ6+KpFeMQH1Pld8pD/xkf7YrDY2zvyuyrFPUuNMiPfs+o6Lhj2I1qNtfkzmfvwxue8uxmY249mtG+GP/Ruvnj1r3Df/62/ImDWryjaVTke3HdubItQG0Tb/loUQtcoqKue5FXs5XlCGwVPLg6O70i3cr9HPOyYxgjdv7lttuUN4A60zPL2/YFBp/ln3UwPBpfnkvvZam+wvWLhiBVnPPU/4E0/g1asnuUs+4OhttxP3wwq0wcE1vkZtMBD3w4pTG1rYELAkQyFEFanmEp7/YS/5ZRaCDZ7MHNuN6MCm6yQxJjGCkfHhjVKBRvoL1k3O+0sImDCBgGuvASB8zhMUr19P/ldfE3LH7TW/SKVCGxrahFE2LEmGQohKO9Ly+e+afZRZ7bQL8ubRsd0J8tE1eXk0jVrFwLiar0DOR1vuL+goKcFeXFz5WKXTodZVXwqjWCyU795dJemp1Gp8Bg6kbNu2sx+/tJT9w4aBQ0EfH0/Y/92HZ+fODfoeGpMkQyEEAL/uz+at9QexOxQSIv15YFQXvHXaJi+P1pi84rvjFd8dxW6n4LvvztlfMPTe6Q1eRNtddVdN45MoOe29hEydSuj0adX2s+Xlg92O5ozhUE1IMBWpNS+B0cV2IOKZp9F37Yq9qIjcxe9x+MZ/0nHZUjzCwxv0fTQWSYZCtHGKovD99uN8uukoABfHhXDX0Dg8NOomL4/WVNzVX9CdXyyMy5YSFRVV+VhVw1VhfXn36YN3nz5VHh+8fDx5n39O2IwZDXaextSyFgkJIRqUw6Hw/h+HKxPh+J6RTBvWCQ+N+pxVWsC5bs/uaJmrs/xGjSJq3qtojcYq27VGI1HzXm3w/oInv1icWWXn5BeLlbsyGvR8Z1L7+KAxGCr/1DRECqANDACNBntOTpXtdnMO2pCQOp1L5eGBvnt3rEeOnm/YTUauDIVooyw2B6+tO8Cm1JzKNYTjekTUWKWlJifLo51vlRZ38hs1Ct/hwxutv+Dpaygf+3ZXrV8sHvt2FxH+XvVeQ9lQVDod+oQESv7cgO+IEc4YHQ5KNmwg8Kab6nQMxW6nYt8+DEOGNGaoDcqtybC4wsbLq1NYvduEubiChEg/ZiclnNc6IiHEuRVX2HhpVQp7MwvRqtVMvaxT5YSVM6u0nEtDVWlxF5VGg8+FAxrl2K6UmjMXW7jy9d+B+pWaa0jBk2/h+KMz0Scm4tWzB7lLPsBRVkbANVcDcPyRR9CGGQl74H4Asl9/Ha9evdG1b4e9sJDcdxdjPX6cgAnXue09uMqtyfCRr3awL7OIV67vhdFPzzdb07n5nY2suf9Swv3d861IiNbOXFzB3BV7Sc8vxVun5YFRXUg47YpudlJ85ZXhyURXm6mXdaq8MhStg9+4cdhy88heMB97thnP7t1pt+jtymFS6/EMUJ26y+YoLCTj8f9gzzaj9vdHnxBPh08/wbNTy5mF67ZybOVWOwmzV7Fo0gUM63ZqzH78gl8Z2iWMB0d3PecxpMyQEK45mlPK3B/2kFdqIchHx8yx3YkJqnkN4cmWSpkF5TUO7zV0S6XW6PSOHCcLjNfm2at7nHdHjjPJ52TduG0Cjc2hYHcoeGqrjs3rtRo2H655iKbCZqeo3Fr552T1fCHEue1KL2D297vIK7UQHejNk1cmnjURgnOt3+wk51Ddmanu5OPZSfGSCGsR5qcnMcqfG/rHEOGvr/Z7PEmFc1bpDf1jSIzyd9v9wrbMbcOkBk8tfdsFMH/tfjqFGQgxePL99nS2HM2jQ7BPja95Y91B5q3dX/nYVmhuqnCFaNH+OGDmjZ8PYnM46Bbux4Oju2LwPPc//8Yuj9ZWnPxicfdHW1ApCr3MBzjoH0mRzke+WDQTbu1acSSnhIe+3MGm1Fw0ahWJkX7EhviwM72AtQ8MrbZ/hc2OxeaofJyenk73TrFy+S9ELZbvyODDDYcBuKhjMPcM7YRO69qgkLsWirc2qzbuZ+srb9IhfR97A9vzfvxYIgK8GvWLhQyT1o1bJ9C0D/bhf3cOpNRio7jcRpifnqmfbKHdWYZuPLWaKsOqdflmK0RbpSgKH204wvKdzvVrYxLCuWVQh3r10Gus8mhtSenWrSR8tJiunoUURgUQdnE/Ro+9kAFxIfLFohloFtnEW6fFW6eloNTKL/uymTm27VSHF6IxWO0OXl93gA2HnAunb7qwPeN7RkgzWTdwlJWR98mnFK9fD4AuMpKud95Bz9hYN0cmTufWZLh+XzaKohAXauBwTgnPrthLXKiBCf3kUl6I+iqpsPHy6n0kZxSgVau5e2gcF3eqW+UQ0bDKU1LIeXsRtuxsUKnwHT2KgOuuO2v1F+E+bk2GReVWXliZQmZBOf7eHoxNDOfB0V3x0EiVOCHqI6e4gud+2MuxvFK8PDQ8MKoriVEtqypMa6BYreR/9TWFP/wAioImOIiQO+5A311GvZortybD8T0jGd8z0p0hCNFqHMst5bkf9pJTUkGgt45HxnSjQ0jNM7ObO8Vub7QSaY3NcvQo5oULsR5LA8Bn8CUE3XQTau+m6wkpXNcs7hkKIc7PnoxCXlqVQonFRmSAFzPHdifU19PdYdVL4erVmJ6diy0zs3KbNjwc46yZDV48uyEpDgeFy1dQ8M3XKDY7aj9fgqdMwfuCC9wdmqgDSYZCtHAbDuXw2k8HsDkcdDX68tCYbi12pnXh6tXOtkpnrPiymUzO7Y3QTaIhWE1Z5CxcSMUBZ/k6r759CL71VjR+fm6OTNRVy/wXI4QAnG2BlvxxBAWFAR2CmDqsU7WqTs2dNSvLOcHE4SBzzpM1N9s9sS1zzpN4RESAWo02NBSPsLAmjvbMsBSK1/1M3qefolRUoPLSE3TzzfhcconM3G1hJBkK0UJ9ty29sg/hyPhwpgzqgLoFrlfLWfweee+/X6d97Tk5HJ5wPQCBkycT/ugjjRhZ7Wx5eeQuXkzZ9h0A6Lt3I/j22+vc8080L5IMhWiBVu/O5JONRykqt9GnXQDdw31rLKbdEtQ3fbsz7Zds3ETu++/jKClBpdUScP0EfEePlqvBFkySoRAtzC/7snlpdQqHzaVY7A6SMwr5eONRIlpovdCgW6fglzSe8l27yZw9+5z7h8+Zgz4xAW1oaBNEV5W9uIS8Dz+g5M8NAOjatyf4zjvRRUc1eSyiYUkyFKIF2ZSayzPLk9lnKq72XGZBOXd/tIU3b+7bohKiR1gYHmFh6Lt1w/zmm9hMpprvG6pUaI1GAq671i3LLMp27iLnnXew5+WBWo1/UhL+V16BSisfo62BrG4XooXYkZbPvLX7SDWX1vj8yfQxZ2kydkfLGzRVaTQYZ8088eCM4cYTj42zZjZ5InRUVJD7wQdkvfgi9rw8tOFGwv/zGAHXXiOJsBWRv0khWoDlO48zf+1+isptWOyOs+6nABkF5byyZl9l9/n4yJZTgcZv1CiY92r1dYZGo1vWGVYcPIh54UJsmSYAfEcMJ+CGG1B7tsw1nOLsJBkK0cylmkuY9fVOCsrq3sz69XXO9W4Xxgbx+Z0DGyu0RuE3ahS+w4e7tQKNYrNR8N13FHy/1FlOLTCQ4Ntuw6tHYpPFIJqWJEMhmrG0vFKeXbGHdkHeBHjpSIj0461fDp3zdVMv61R5ZdgSqTQafC4c4JZzW9PTMb+1EMuRIwD4DLyIwImT0BhaZmk7UTeSDIVoprIKy3lm+R6Kyq30iA7gP5fHo9Oq+W77cTILymtcSqHC2YX+/pFdpEeeixRFoWjVKvL/9wWKzYbax4egyZPdlpRF05JkKEQzlFdi4enle8grtRAV4M3Msd3w0jmHCWcnxXP3R1tQQZWEeDL1zU6Kl0ToIpvZjPntt6nYmwKAV6+eBN16K9rAQDdHJpqKJEMhmpnCcitPL99DVlE5Yb56Hru8O756j8rnxyRG8ObNfZmzNJmMgvLK7eEtdJ2hu5Vt3475rYXOBfSengT+80YMQ4fKAvo2RpKhEM1ImcXO3BV7Sc8vJchHx2OXdyfQp3oj2DGJEYyMD2dTam5l0hwQGyRXhC5QFMU5Seabb0FR0HWMJeTue/AwurfeqXAPSYZCNBMVNjvPr9xLqrkYX70H/748njA//Vn316hVDIwLbsIIWw9HSQnmtxdRtnUrAIZhlxF0002oPDzO8UrRWkkyFKIZsNkdvLJmH3szC/HWaZk1rjtRAV7uDqtVsqSlkT1vPjaTCZVWS9DkWzAMGeLusISbSQUaIdzM7lCY/9MBth/LR6fV8MiYbsS20A71zV3Jhg1kPjEHm8mEJjgI438ek0R4Frkff8yBYcPZ27MXqdffQNmOHbXuX7hyJQfHjmNvz14cSrqC4vXrmyjShiHJUAg3UhSFt385xKbUHLRqNQ+O6kLXcF93h9XqKDYbuZ98gvmNN1EsFvQJCUQ8+SSesbHuDq1ZKlyxgqznnidk6lRiv/4KfdeuHL3tdmw5OTXuX7plK+kPPEjAddcS+83XGEYM59i06ZTv29fEkdefJEMh3ERRFJb8cZj1+7JQq1TcO7wzPaMD3B1Wq2MvKMD0wgsUrVwFgF/SeMIeehCNr3zpOJuc95cQMGECAddeg2enToTPeQK1Xk/+V1/XuH/uhx9guOQSgv/1Lzzj4gibMQN9fHfyPv6kiSOvP7lnKISbfPFXGit3O+tv3nVpHANig9wc0dkpdrtby6PVV8WBA2QveA17Xh4qvSchd9yBd79+7g7LLRwlJdiLT3U7Uel0qHXVZyorFgvlu3cTcsftp/ZVq/EZOJCybdtqPHbZtu0ET76lyjbDxZdQtHZtwwTfBFxOhkXl1hq3q1QqdBo1Oq1cbApxLt9vP87XW9MAuPXiWIZ0afrefHVVuHp19cLZ4eFuKZxdV4qiULxuHXkffYRis+MREUHojHvxiIx0d2huYxqfRMlpX2BCpk4ldPq0avvZ8vLBbkcTXHWmsiYkmIrU1BqPbTOb0QSHVNvfZjaff+BNxOVk2HPO6lo7TEf4e3HtBdHcN7wzalnzJEQ1Pyab+GSjs+7ljQPaMSoh3M0RnV3h6tWkz7ivWn9Bm8nk3D7v1WaXEB0WC3kffEDxL78C4N2vH8G334baq23PzjUuW0pU1KkmxKoargrbMpeT4UvX9eKl1Slcd0E0vU7c39iels9Xf6cxbVhncksqePuXQ3hq1Uy9rFNDxytEi/bbfjPv/ub8dn1V7yiu7N38OqRbs7KwZWeDw0HmnCdrbrR7YlvmnCfxiIgAtRptaCgeYe5dsG7LziZ7/gJnkW2VioDrJ+A3bpxUkwHUPj5oDOcu3K4NDACNBvsZk2Xs5hy0ISE1vyYkBHuOuc77N0cuJ8OvtqTx78u7M77nqeGGEfFGuob78snGo3xy+0VEBnjx2roDkgyFOM1fh3N54+cDKCiMig/nhv4x7g6pRjmL3yPv/ffrtK89J4fDE64HIHDyZMIffaQRI6td2c5dmN94A0dJCWqDgZCp9+CVkOC2eFoqlU6HPiGBkj834DtiBACKw0HJhg0E3nRTja/x6t2Lkj83EHTLqfuGJX/8gVfv3k0RcoNw+Qbf30fySKihWWhCpD9bjuYB0L9DEMfzy84/OiFaiZ1pBbz6434cisLgzqFMubhDs71aqW9U7no3iqJQsHQZWS+9hKOkBF1sLBFPPSmJ8DwET76F/C++IP+bb6k4eJDMJ+bgKCsj4JqrATj+yCNkvfxK5f5BEydR/Ntv5Cx+j4pDh8he8Bplu3cTeNM/3fUWXObylWFkgBefbz7Go2O7Vdn++eZjRPo7x+TzSi34e0lZIyEA9pmKeHF1CjaHgwEdgrjr0rhmmwgBgm6dgl/SeMp37SZz9uxz7h8+Zw76xAS0oU0/CchRVkbOokWU/vU3AIZLhxA0caLcDztPfuPGYcvNI3vBfOzZZjy7d6fdorcrhz2txzNAdepayrtvH6JeepHsV+eR/d//ouvQnpjXFqDv0sVdb8FlKkWp6YbA2a1JNjH14y10DPWpvGe4I72Ag9nFvHlTX4Z3N/LhhiMcNpfwn/HxjRFzpbS0NGJiYjh27BjR0dGNei4h6uOwuYSnliVTYrHRMzqAh0Z3xUPTMmZcK3Y7B4aPwGYy1XzfUKVCazTSae2PbllmYU1PJ3v+fKwZmai0GgInTsT3ssuaPI7mTj4n68blK8OR8UbWPnApH288SqrZuWZlaNdQ3p54ATFB3gBMvKh9w0YpRAt0PL+MZ1fsocRio6vRl/tHdmkxiRCc3eaNs2Y6Z42qVFUT4okrW+OsmW5JhKWbN2NetAilvAJNUBCh907Hs2PHJo9DtB71WnQfE+RdbZhUCHFKdlEFzyzfQ2G5ldgQHx4Z2w29R/NfpH4mv1GjYN6r1dcZGo1uWWeo2O3kf/ElhStWAKDv3p2Qqfeg8fNr0jhE61OvZFhQZmX7sXxySipwOKo+d+0Fchku2ia7Q2FTai6p5mKW78jA5lCIDvTm0bHd8da13GJPfqNG4Tt8uNsr0NgLCzG//gble/Y44xo3loAJE1pEJRzR/Ln8L/THZBP3fb6NEosNg6e2ygwylUolyVC0SSt3ZVTrPK/3UDPhguhWMZlMpdHgc+EAt53fOUNxAfacXFSengTfdptb4xHuU/TTT2d5RoXKU4eufXt09bg36nIyfGbFHib0i+bh0d3w0sk3MiFW7srg7o+2cOYUk3Krg4e+3IFBr2VMYoRbYmsNitevJ3fJEhSbHW24kdB7Z6CLbn7FCkTTSJs6rfo9bDi1TaXCu29fol9/DY1/9WWAZ+Py3fzMgnKmDIqVRCgEzqHROUuTqyXC081Zmozd4dKkbQEoVis5i98j593FKDY7Xn37EPHEE5II27h2i99F3yORdovfpcvmzXTZvJl2i9/Fq2dPYt56k/YffYi9IB/TCy+4dFyXrwyHdAlhR3o+7YK9XX2pEK1G8vEC9pmK2Z9VXGVo9EwKkFFQzitr9tE5zEAXo4H4GopWiKqsx49jfvttLIdSnWXVrr0Gv6SkZr0+UzQN07PPEj7nSbz79qnc5jNwICpPTzIef5y4ZcswzpzJ8X8/5tJxXU6Gw7qFMXfFXvabiukW7ov2jKniI+ONrh5SiBZnztJkNqbm1nn/19cdAODC2CA+v3NgY4XV4jnKyij47nsKV60EuwO1jw8h99yNV48e7g5NNBOWo8dQG3yqbVf7GLAec3aC0bVvjz0vz6XjupwMH/16JwDzf9pf7TkVcGju5XU+lt2h8OqP+/hmazrZRRUY/fRcd0E004d1km+AolmbnRTPPlMxm1Nz+HjTsXPuP/WyTpVXhqI6RVEo3bCBvE8/w56fD4BXr14ETZrolso2ovnSJySQ9eJLRD7/HNogZw9QW24uWS+9hL5HIgCWI0fwCHetG4zLyTDVhWR3Lm+tP8hHG47w8vW96Bzmy870Ah76Yju+ei1TLo5tsPMI0dDiI/0J9/di5a5MdBo1Frujxv1UQLi/nvtHdkEjLc1qZElLI/eDD6jYmwKANjSUwJtvwrtPn3O8UrRFEU8/TdrUqRy4dCjaCOfENFtGBh4xMUS//hoAjtJSQu6+y6XjunXx099H8hgZb2RYN+fQakyQN99vO872Y/nuDEuIc6qw2XlxVQr5ZRb6tg9gw6FcVFBlIs3J1Dc7KV4SYQ0cpaXkf/MNRWt+BIcDlYcHfknj8R83TmqLirPy7BhLx+XLKPn9dyyphwHQxcbic/EgVGrnbbuT3TZcUadk+N7vqdw4oB16Dw3v/V5zp+OTXLmiu6B9IJ9sPMqh7GI6hhpIPl7IX0dyeezyxq1pKsT5UBSFN9YdJNVcjK/eg2euSmTL0bxq6wzD/fXMToqXZRVnUBSFkt//IP/zz7AXFALg3e8CAm+8UYZERZ2o1GoMgwfD4MENdsw6JcN3f0vlqt5R6D00lY1JawxQ5VoyvPvSOIrKbQx/ZT0alQq7ovDgqK5c1afmqdMVNjsW26nhqOIKW53PJURD+eLvNDam5qBVq7l/ZBfC/PSMSYxgZHw4m1JzySoqJ8xXz4DYILkiPIPlyBFyl3xAxQHnhCJtuJGgiRNlgoxwScmff1Ly5wZsuTlwxrKlyGefqdcx65QMf3tkWI0/n69lOzP4bls68/7Rhy5G55Xhk8uSKyfSnOmNdQeZt/bUxB1bobnaPkI0pt8PmPl6i3PG2m2DY+kecaompkatYmBcsLtCa9bsxSUUfPUlRT+tA0VB5emJ/5VX4jdmNCptyy1VJ5pe9muvY37jDfSJic6RhAb6vunW/wvnrtjD3UPjuKJXJADdwv1IzyvjjZ8P1JgM77ksjtsGn7ryTE9Pp/ubTRauaOMOZBXx1vqDACT1imRo1zA3R9T8KYpC8fr15H/xJY6iIgC8LxzgHBI9MRNQCFfkff4ZkXOfxf/KKxv0uHVKhk8tS67zAV3pYVhmtVdbQqFWq2psnQbgqdXgqT1V+cbgKd8oRdMwF1fw0qp9WO0OLmgfyI3927k7pGav4tAhcj/4wLlwHvCIjCRo0kT08TInQJwHixWvRphpXKdssvt4QdXH6YXYHAodQ50LH1PNJWhUKhKjXKusMbybkdd/OkBUgJ7OYb7sPl7Iu7+lMqGfFPsWzUe51c5LJ2aOtgvyZtplnVE3g3uBit3u9k4SNbEXFZH/xZcUr1/vHBL10hNw9dX4jhghQ6LivAVMuI6CZcsIveeeBj1unf7P/OyOUxUz3vn1EAZPLS9P6I2/t7Maf0GplQe/3M6ADq4Ne8y5MoGXV6fwn293Yy52Lrr/54B23Du8s0vHEaKxOGeOHuBwTgl+eg8eaiYF6gtXr67eYzA83C09Bk9SHA6K160j/8uvcJSUAOBz8cUEXD8BbWCgW2ISrY+jwkLB/76g9I8/8ezatdoXLOPMR+t1XJe/pi369RAf/uvCykQI4O/twYOjujLx3Y3cPqTu3aYNnlpmJyUwOynB1TCEaBKfbz7GpsO5aNVqHhzdlVBfT3eHROHq1c7u82fcT7CZTM7t815t8oRYsX8/uR98iOXIEQA8YqIJmnQL+q5dmjQO0fpVpKSg7+ZsLl+x/4xKaOdRuczlZFhcbiOn2AJnlCDNKamgRJY6iFbk1/3ZfLstHYA7hnSki9HXbbFYs7KwZWeDw0HmnCert6+Bym2Zc57EIyIC1Gq0oaF4hDXeRB97QQF5n/+Pkt9+A0Dt7U3AdddiuOyyZjFkK1qf9h8saZTjupwMRyeE89CX23ns8u70igkAYNvRfJ79YQ+jE12rBSdEc7XPVMTC9YcAuKp3FEO6uHcxeM7i98h7//067WvPyeHwhOsBCJw8mfBHH2nweBS7naIf15L/9VcoZc5CA4ZLhxAwYQIaP79zvFqI5sf15r5X9+CZFcnc+9k2bCfqMWrVaq7vH82scd0bPEAhmlp2UQUvrUrB5nDQv0MQN/SPcXdI9V5K1RjTfMpTUshd8gHWtBMdAjp0IOiWSXjGxTXC2YSAtOnTiZg7F43BQNr06bXuG71gQb3O4XIy9NJpePqqHswa150jOaUAtA/2xlsns8REy1dmsfPiqr0UllvpEOzD1MuaRweVoFun4Jc0nvJdu8mcPfuc+4fPmYM+MaFBy5vZ8vLI/+wzSv7cAIDax4eA6ydguPTSypqQQjQGtcGXk1/tnD83PJWinG1VX/OXlpZGTEwMx44dIzpalmOI8+NwKLy8JoW/j+Th7+XBM1f3IMTg/gkzp1Psdg4MH4HNZKr5vqFKhdZopNPaHxvsnt3JWqJ5H36Io6wMVCoMlw0l4Lrr0BikJVVzJ5+TdVOvy7kdafks35FBen4Z1jNa1yyc2K9BAhOiqX26+Sh/H8nDQ6PmodFdm10iBFBpNBhnzXTOGlWpqibEE1ewxlkzGywR2gsKyHnvPcq2bAVA1zGW4MmT0XXo0CDHF6K5cDkZfr/9OA/8bxtDOofy634zgzuHkGouIbu4gtEJMoFGtEzrUrJYuv044Cwg3ynMfTNHz8Vv1CiY92r1dYZGY4OuMyzZuIncJUtwFBej0mrwv/pq/MaNk1miopI9P5/Mp5+heN06UKvxHTWS8FmzUPtU70R/0pGJkyjdvLnKtoAbbiBizhNnfc2hq6+p8w3wjl9/Xbcdz+ByMnxj3QH+Mz6eSQM7kPD4SmYnJRAT5MWsb3YS6quvVxBCuNOejELe/dVZMuyavtEM6hTi5ojOzW/UKHyHD2+UCjT2oiJyP/iA0o2bANC1b0fwHXegi3H/RCLRvKQ/9DC27GzaLX4XxWbj+KxZZDw+m6iXX6r1dQETJhB676mJMCovr1r39x0+vPJnpaKCvE8/xTMuDq/evQEo276digMHCLzxxnq/F5eT4ZGcUi47UaDYQ6um1GpDpVLxr0tiuXHRRu4fKYtsRcuRVVjOy6v3YXM4uKhjMBNqKBDfXKk0GnwuHNCgxyzdspXc9xY7+wyq1fgnJeF/5RVSRk1UU3HwICW//kqHL77Aq0ciAOGPPcaxO+4k7OGH8TCefX2rykvv0uSu0GlTK38+/thjBE68mbAZM6rskz1/AdbTRkpc5fIUMH8vD0oszsX14X56UjKdlegLymyUW+z1DkSIplZmsfP8yhSKK6zEhhi4e2hcs5g56g6OkhLMC98m+9VXsRcU4hEZSfjjjxNw7TWSCEWNyrZtQ+3nV5kIAXwGDgS1mrId22t9beHSZey7aCCHkpLIevkV58SsOipauYqAGjpW+F+RRNHq1XV/A2dw+f/yAbFB/LbfTLdwP8b1iODJpcn8eTCHX/ebGdRJermJlsHhUJi3dj/p+aUEeut4aHTXKh1R2pKynTvJeedd7Hl5oFLhN3YsAddcjUqnc3doogE5SkqwFxdXPlbpdKjP4+/Ylm2u1oZLpdWi8ffHbj57r1m/8ePxiIxEGxZGxb4Usl56Gcvh1DqvD1Tp9ZRu2VptElfplq2oPOs/6c3lZPjklQlUnOg2P+2yTmg1KrYcyWNsYjjTh0mBbdEyfLzxCNuO5aHTanhwdFeCfNreB7+jrIy8Tz+j+OefAWfX+ZDbb8ezs/w7bo1M45MoOe2ecsjUqYROn1Ztv6yXXyZn0Tu1HqvjiuX1jiPwhusrf9Z37YI2NJSjk6dgOXoUXbtzt0YLmjSJzDlzKE9OxqtnDwDKtu8g/+uvCbn77nrH5XIyDPA+9aGhVqu4Z2inep9cCHdYu8fE8p0ZgHPmaFxo21srV75nDzmL3sF24hu878iRBNxw/XldKYjmzbhsKVFRUZWPz3blHzRlCv5XX13rsXTR0WhDQ7Dl5lbZrths2AsK0ITUfRKaV8+eAFiO1C0ZhtxxO7qYaHI/+JCCpUsB8OzYkchnn8Fv7Ng6n/dM9boZcCSnhC/+SuNIbimzk+IJMXiyLiWLqAAvtxYzFuJcdh8vYPHvzpmjEy6IYWBc2xrad1gs5H/+P4rWrAFAGxJC8O23oe8upRRbO7WPT52KJGiDgqoNf9bEq3dvHIWFlO3ajVeis/NQyYaN4HDg1bNXneMq37vXed6wuk+o8Rs79rwSX01cnkCz4VAOo1/9hW3H8lm1K5PSCuekmT0Zhfx3zb4GDU6IhpRZUM5/1+zD7lAYFBfCNX2jzv2iVqRi/34yHnusMhEahg4l4pmnJRGKevGMi8Nn8GAyHv8PZTt2ULplC6annsJv3LjKmaRWk4mDY8dRtmMHAJajR8l+4w3Kdu3GkpZO0U8/cfyRR/Hu1w99167ufDuuXxk+v3IvD47qym2DO5Lw+MrK7YPiQvjgjyMNGpwQ58vuUNiUmsux3BKW7sjAYnPQKczAnZd2bDMzRxWLhfyvv6Hwhx9AUdAEBhL8r1srh6eEqK+oF18g86mnOTp5yolF96MI//esyucVqw1LaiqOE51NVB4elP7xJ3lLPsBRVoY2IhzfUSNduten2O3kvr+EwpUrsWZkoFitVZ7vunFDvd6Ly8kwJbOI+f/oU217sI+O3FJLvYIQojGs3JXBnKXJZBSUV27Te6iZ0C+6zcwcrUhNJWfh21iPO6vr+Fx8MUE331RrhRAh6koTEFDrAntddBTd9+6pfOwREUH7jz48r3OaX3+d/C++JGjKFLLnzSPkrjuxpKdT/ONaQu65p97HdTkZ+uk9yCoqJybIu8r23ccLCfeTCjSieVi5K4O7P9rCmaWsy60OHvpiBwZPLWMSI9wSW1NQbDYKvvveOcHA4UDj70fQlFvx7lv9i6wQLUnB0mWEP/UkvkOHYn7tNfwuvxxdu3bkdulK2fbtwMR6Hdfle4ZJvSJ47oe9ZBWVo1KpcCgKfx3O5dkVe9rcPRjRPNkdCnOWJldLhKebszQZu6PFNmypleXYMTLnzKHgu+/A4cD7wgFEPPusJELRKtjMZvRdnJXOVD7e2IuchV8Mlw2leP36eh/X5SvDh0Z34/HvdjFo7k/YFYWR/12P3aFwZe8oWWco3Cr5eAH7TMXszyquMjR6JgXIKCjnlTX76BxmoIvRQHykf9MF2kgUu53CFSso+OYbFJsdtcFA0C23NHjJNiHcycNoxJadjUdkJLqYdpT8/gdeCQmU79x5XoUiXEqGiqKQXVzBE1ckcO/wzqRkFlFisZEQ6U9siNyDEO41Z2kyG1Nzz73jCa+vOwDAhbFBfH7nwMYKq0lYjx/H/PbbWA45l4149elD8JTJaAIC3BuYEA3Md+QISv7cgFevXgTdfBPpDz9C/ldfYjueQdDkW+p9XBeTIQx9cR2r/+9SYkN8iAyovdK4EE1pdlJ85ZXhyURXm6mXdaq8MmypFEWhaNUq8r/4EsVqRe3lReDEifhcPKjNzJYVbUvYAw9U/uw3bhzaiAjKtm1H1749vsMuq/dxXUqGarWKDsE+5JVaiEWuBEXzEh/pT3ykPxsO5rDol0NYzmg8fZIKCPfXc//ILmjUDZcwFLu9UVoqnY0tJwfzWwupSEkBQN8jkeB//atOC6aFaC28+/TBu8/53w93+Z7hI2O6MXfFHp6+qgddw6XajGhezMUVvPPbITqEeLPPVIwKqkykOZn6ZifFN2giLFy9unqz3fDwBm22e7ry5GSyX38DR1ERKr0ngTfeiGHoULkaFG1CwXffkffZ51jT0ujw2ad4REWRu2QJHtHRVXofusLlZHj//7ZRbnUwdt4veGjU6D2qfvPdPrvh/+ELURd2h8KCtfsprrDRv0MQM4Z35unle6pMpgn31zM7Kb5Bl1UUrl5N+oz7nPcRTmMzmZzb573aYAlRURQKV6wg/39fgKKga9+ekOnT8Ag7e+84IVqTvE8/JXv+AoJumYT5rYUoDucIkNrXj9wlHzRdMnw8KaFeJxKisX31dxoppiK8PDTMGN6ZMD89YxIj2JSaS1ZROWG+egbEBjXIFaE1KwtbdjY4HGTOebJaIgQqt2XOeRKPiAhQq9GGhtY7cTnKysh5511KN28GwGfwJQTdcosU1xZtSu5HHxPx1JP4jhhBztuLKrfrExPIeuGFeh/X5WR4XQvqBC7ajl3pBXyzNR2A24d0JOxEAQiNWtUoxbhzFr9H3vvv12lfe04Ohyc429YETp5M+KOPuHw+a0YG2fPmYz1+HJVWQ+DNN2O47DIZFhVtjjUtrcZ6umqdzqUmwWeqV9cKu0Nh1e5MDmQ5G0V2DjMwMt6IVuPyGn4hzltBmZXX1x1AQWFYtzAGxdW9fUx91TcF1ed1pX/9hXnRIpSycjQBAYTeOx3PTtI6TbRNHtHRlO/di0dU1SIvxb/+hi6uY72P63Iy3Gcq4rYlf5FdVEHHUOeM0rfWlxDko+PdW/rLpBrRpBRF4c2fD5JXaiEqwJtbBnVokvMG3ToFv6TxlO/aTebs2efcP3zOHPSJCWhD696mRnE4yP/qKwqXLgPAs1tXQqdORePf8gsECFFfQZNvIfPJp1AqKlCAsh07KFy+HPPbi4h46sl6H9f12aRf7aCL0cDSaZfg7+0BQEGplQe+2M7Mr3fw9T0X1zsYIVy1Ymcm247l4aFRM2N45yYrwO0RFoZHWBj6bt0wv/kmNpOp5vuGKhVao5GA6651aZmFvagI85tvUb5rFwC+Y0YTeP31qLT1GswRotUInDABtV5P1rx5KGVlHH/wIbRhYYTPmon/5ZfX+7gu/8tKPl7I0umnEiGAv7cHD43uyhWv/VbvQIRw1cHsYj7ddBSASQM70C7Y+xyvaHgqjQbjrJnOWaMqVdWEeOJ+nnHWTJcSYUVqKuYFC7CZc1DpdATf9i98LrqogSMXouVRbDYKli3DcMkl+Ccl4Sgrw1Faijb4/OcFuHyTLzbEB3NRRbXtOcUVdAiWhfiiaZRZ7Mxfux+bw8GA2GBGdHff0gK/UaOImvcqWqOxynat0UiUi8sqin/5BdNTT2Mz56A1Ggmf/bgkQiFOUGm1ZD4xB6XCmYPUXl4Nkgihnovun1i6m/tGdKFPuwAAth7NZ/7a/Tw6thtF5acaLfrqPc5yFCHqT1EU3vn1EKbCcoINntwxxP2Nev1GjcJ3+PB6V6BRrFZyP/qY4nXrAGdt0ZA7bpe+g0KcwatHD8r37Kk2geZ8uZwMb13iXOM09ZMtlTPjTg4M/evEcwrOWXOH5tZ//FaIs1m/L5vfD5pRq1TMGN4Zg2fzuI+m0mjq1SHClptL9oIFWA4eApUK/6uvwv/KK92e4IVojgL/eSOm51/AmmlCnxCP2rvq7RF91671Oq7LnyKf3i5DNsJ90vPLWPz7YQCu7xdDF2PLnr1cvmcP2a+/jqOwCLWPDyF33YlXr17uDkuIZiv9fmehbtMzz5zaePJ+vUpF9+Td9Tquy8nwoo4Nv4BZiLqw2BzM/3E/FpudxEh/rugV6e6Q6u1kt4m8zz4HhwOPdjGE3nuvlFUT4hw6/bimUY7rcjL8OSULH08t/Ts4K+N/8OdhPt10jM5hBp66MrHKLFMhGtLHG49wJLcEP70HUy/rhLoBC203JUd5OTnvvkvpxk0A+Fx8MUFTJktZNSHqoKHvFZ7kcjKcu2Ivj47tBsDezEKeXraH2wbH8uehHJ5ansxLE+o+xHPxcz+Rnl+9fM7Ei9rz1FWJroYmWrHNh3NZtdvZEeKeyzoR6NMyE4c1M9NZVi09HTRqAv/5T3xHjJD7g0K4oOJQKnkffUTFoUMAeHbsSODNN+PZMbbex3Q5GR7LK6VTmLMZ6g87MxnePYyHx3RjV3oBk9/b7NKxvp92MfbT1mXtyyzm5nc3Mq5Hw3UUEC2fubiChesPAjC+ZyS9YwLcG1A9lW7ZinnhW5Vl1UKmTUXfpYu7wxKiRSlctZr0Bx7AKyEBr969ASjbvp1DV1xB1Msv4ze6fh1iXE6GHho15VY7AL8fMHNNX2fhbn8vD4orrLW9tJpgg2eVx2/+fJD2wd5c1FGakwonu0PhtZ8OUFxhIy7UwD/6x7g7JJcpDgcF33xDwXffA+DZpQshU+9BGxjo5siEaHmyXnqJkDtuJ/Tee6tsz56/gKyXXmq6ZNi/QyBPLd9Dv/aBbE/L57V/9gUg1VxChL9XvYIA5+SIb7emc9vgs68Zq7DZsdhOdS8vrrDV+3yiZfhqSxp7Mwsr2zK1tGLw9uISzG++QfnOE2XVRo4k8MZ/SFk1IerJlp2N/5VXVtvuf0USOYsX1/u4Lv+LnHNlIv/5dhcrdmbw9FWJhPs7W+X8nJLNpV3qXoT4TKuTMykst9XaIuqNdQeZt3Z/5WNbobne5xPN3670Ar7ZcqIt0+BTbZlaCsvhw2TPX4DNbHaWVbt1Cj6DBrk7LCFaNO8B/Sn962907dtX2V769xa8L7ig3sdVKUpN1YWb3sR3N6LTqHl3cv+z7nPmlWF6ejrdO8Vy7NgxoqOlz2JrUlhu5ZEvd5BXamFo1zDuujTO3SG5pPi338l97z0UqxVtaCih981AF9PyhnhFy5eWlkZMTEyr+ZzM++wzsucvwG/MGLx6Oydslm3bTuGqVYROn4b2tOVJvsOG1fm4zWKsJi2vlN8PmHnr5tqzuqdWU6UrQXOpPCIa1ultmSIDvJjcRG2ZGoJis5H38ccUrf0JAK9ePQm+8y40BimrJlof81tvUfzzesr37kXl4UHXzZvO+RpFUTAvWEDeF1/gKCzCq28fImbPRtehQ53OmTnH2aYp79NPyfv00xqfA1xegN8ssskXf6URbPBkWDdZcCzgh12ZbD3qbMt03/Au6D2api3T+XKUlpL131epSEkBwP/qq/G/SsqqidZLsVjxHTMar969yf/qqzq9Juedd8j98CMin5uLR3Q02fPmc/S22+m4fBlqT89zvr77nuTzDbtGbk+GDofCl3+ncW3f6BY3OUI0vEPZxXyy0dmWaeJF7d3Slqk+7IWFZL34EpYjR1B56Qm56y68+/Rxd1hCNKrQe6cDkP/1N3XaX1EUcj/4gJC77sJ3+HAAIp9/jv0XX0LRjz/Wux+hvbAQjZ9fvV57ktuzz28HzKTnl3F9v5Y/li3OT5W2TB2CGBlvPPeLmgFbTg6mZ57BcuQIaj9fwmfNkkQomh1HSQn24uLKPw6LpcljsKalYc824zNoYOU2ja8vXj17UrZte52OYV60iMIVKyofp824j30XXsT+IZdSvndvvWOrdzI8bC5h/b7syjWH9Z2HM6RLKIefu5yOoYb6hiJaAUVRePe3Q2SebMt0aVyLGF60ZmaS+fTTWDMy0QQHEf7YY9VmuQnRHJjGJ7GvX//KPzkL327yGGzZzhUAmjN6EGpCQrCZs+t0jPzPPkcb7izMUvz775T8+ScxixbhM2QwWS+8WO/YXB4mzSuxMO3TLfxxMAcV8PODl9Eu2JuHv9yBv5cHj42Pr3cwou36Zb+Z3w442zLdO6z5tGWqjeXoUUwvvICjsAhtuBHjI480WKNRIRqacdlSok6r66k6Sy3crJdfJmfRO7Ueq+OK5Xh27Nig8dWVzWzGIyIcgOKf1+M3ZgyGSy7GIyqSwzf8o97HdfkT56llyWjUav54dBgjXl5fuX18r0ieXpbMY/UORbRVx/PLWPxbKgAT+kXTNbz5t2Wq2L+frJdfwVFaiq59O8Ieeui871kI0ZjUPj5oDOcegQuaMgX/q6+udR9dPZdoaENDALDn5FTp0GI3m/Hs3r1Ox9D4+WHNyMQjIoKSX38l9L4ZzicUwG6vV1xQj2T4y34zH9w6oFq1mdhgnxqLbgtRG4vNwfy1+6mw2UmI9OfKXg1bkV6x2+vdff5synbuInvePBSLBc/OnQm7//+kI71oNbRBQWiDGqckpkd0NJrQEEr+3ID+RPKzFxdTtmMHATfW7arOd+RIjj/4ILoO7bHn52MYPBiA8j3JeLRvV+/YXE6GZRYbXrrqHyb5ZRZ0WrfPxxEtzCcbj3A4pwRfvQfTGrgtU+Hq1ZienYstM7NymzY8HOOsmfiNql/9wtK//sL8xhsoNjv6HomE3ntvnaaDC9EaWY8fx15QgDXjONjtlO/ZA4CuXbvKL4gHx44j9P7/w2/kSFQqFUGTJmF+6y10HdrjERVN9vz5aMPC8B0xok7nNM58FI+oKKyZmYQ9+GDleWzZ2QTeeGO934vrtUljg/h6SxoPjOoKOBsMOxwKC9cfYqA0/hUu+PtILitPtmUaGtegbZkKV68mfcZ9zu7Xp7GZTM7t8151OSEW//orOe+8C4qCd//+hNx9l9QYFW1a9vwFFHz7beXj1KuvAaDdkiX4XDgAAEtqKo6i4sp9gm+7DaWsjIzHZ+MoLMTrgr7ELHq7zl8qVR4eBP/r1mrbgydPrv8boR7l2FIyi7jpnQ0kRPrz58EcRsSHsc9UTH6pla/uHkj74KYbLmptZYbaArtDYVNqLgezi/h6y3E8NCrG94pk4kUNNwNTsds5MHxElSvCKlQqtEYjndb+WOch08JVq8n7+GMADEMGE3TrrajUMhIimj/5nKwbl7/Wdg335acHh/LBH4cxeGopsdgYkxDOpIHtW1whZdG0Vu7KYM7SZDIKyiu3ees0TBrYMImwLHkPFQcPYDlw8OyJEEBRsGVmkj1/AbpOcXjGdcIrvuab94qiUPDtdxR841xU7DtmNIE33tgiln0IIequXmM8fnoPpg3r3NCxiFZs5a4M7v5oC2cOQ5Ra7Ez7ZCsatYoxiefX1Nk0dy5lm+veYDpn4UIAvPr3p8OHH1R7XlEU8j75hKJVqwHwv+Zq/K+U8mpCtEYuJ8M9GYU1blepnIW0IwP0VYppC2F3KMxZmlwtEZ5uztJkRsaHozmPCTTGmTMrrwxPJrraBN95Z+WV4ZkUu52cxYsp+fU3AAJvvqnek26EEM2fy8lw3PxfOflxdfLD7fSPL61GzfieETx7dY8WU2BZNI7k4wXsMxWzP6u4ytDomRQgo6CcV9bso3OYgS5GA/GR/i6fzyu+O17x3VHsdgq++w6byVRtAg1Qec8w9N7pNd4zVKxWzG++Selff4NKRfDtt2O45GKX4xFCNB7FYsGWmwsOR5XtHpGR9Tqey8lw4c0X8NzKvdw5pCO9YgIA2H4sn0W/pjJjeGfsDoXnV+7l5dUp/PtyqUbTls1ZmszG1Nw67//6ugMAXBgbxOd3DjzH3men0mgwzprpnDWqUlVNiCeGOI2zZtaYCB0VFWTPm0/5rl2otBpC7rkH73796h2LEKJhWQ4f5vi/H6Ns69aqTyiKy22bTudyMnx93QFmJyVU6WrfLdyPcH8vXlmdwnfTLsFLp+GZ5XskGbZxs5PiK68MTya62ky9rFPlleH58hs1Cua9Wn2dodF41nWG9uISsl95hYoDB1B5ehI6YwZeiQnnHYsQouEcnzkLlUZDzFtvog0NrfyCe75cToZ7M4uICvCqtj0qwIu9mUUAxEf4kVV09mEx0TbER/oTH+lPqrmERb8ewmJz1LifCgj313P/yC7ndc/wTH6jRuE7fHidKtDYCwowvfAC1mNpqL29CXvgfjw7yyQxIZqb8r17if3qywavjepyMowLNfDmzweZe02PyoozVruDN38+SNyJzhOmwnJCDFKVQ0CFzc7r6w7QIdibfabias+fTH2zk+IbNBFWHl+jqVz8ezY2sxnTCy9gyzSh8fcj7OGH0cXENHgsQojz5xkXhz0vr8GP63qh7qsSuG3JXwycm0W3CGdB5ZTMIuwOhXcn9wfgaG5pgy6iFi3Xh38eIS2vlI4hBu66tCMvrtpXZTJNuL+e2Unx572sor6sGRmYXngBe04u2pBgwh5+GI/wcLfEIoQ4t7AHHyDrxZcI/b//w7NLZ1QeHlWer0sx8pq4XIEGoLjCxrdb00k1lwDQMdSHK3tHNXnbHams0LxtSs3llTUpqFAxa1x3ekT7V1agySoqJ8xXz4DYoEa5IqwLy+HDmF56CUdhER4REYQ98nCjFSgWwl1a2+fknu4n5qKcea+wKSfQWO0Ohr+8nsWT+3GzXPmJWpiLK1i4/iAASb0i6RHtXCqhUasYGOf+GrblKfvIeuVllLJydO3bE/bQg9KCSYgWoN2S9xvluC4lQw+Nmgpb/ftFibbB7lB47acDlFhsxIUauL5f8/o2WrZjB9nzFzhbMHXtStj/3Yfa29vdYQkh6sBnQO1zAOrL5XHNSQM78ObPh3j+2h5oNVKoWFT39ZY09mYW4uWhYcbwzs3q/5OSjZvIWfgWis2OV6+ehEyfjvosHb+FEM1DeUoKnp07o1KrKU9JqXVffdeu9TqHy8lw+7F8/jiYw6/7s+ka7ov3Gb0NF06UBcpt2Z6MQr7ekg7AbYM7Nqvi7cXr15Oz+D1nC6YLBxBy553SgkmIFiD1qqvp/NuvaIODSb3q6urFNE5qykX3fl4ejEmU2XaiuuIKG6/9dAAFhUu7hHFxpxB3h1SpcOVK8j75FADD0KEETb5FWjAJ0UJ0+nENmhOT2zr9uKZRzuFyMnxpQq/GiEO0cIqi8Pb6g+SUVBDh78WUizu4OyTgRAumr7+h4LvvAPAbN46AG66XzhNCtCAeUVE1/tyQZIxINIgf92Sx6XAuWrWae4d3bhZF2h0VFeQuXkzJnxsACJhwHX7jx0siFKKFqziUSt5HH1Fx6BAAnh07EnjzzXh2jK33MeuVDFfszGD5jgzS88uw2quW2Fp+7+B6ByNapmO5pXzw52EAbhzQjtgQH/cGBFhPNO+1pqWBWk3QxJvxHT7c3WEJIc5T4arVpD/wAF4JCXj17g1A2fbtHLriCqJefhm/0fVrteZyMnzv91ReWpXCdRdEsybZxHX9ojmaU8r2tPwG61guWo4Km515a/djtTvoHRPIuB7uv59cumUr5oVvoZSVo/H3I2TatHrPMBNCNC9ZL71EyB23E3rvvVW2Z89fQNZLLzVdMvxwwxGevaYHV/aO4su/07hrSBztgr15ZXUK+WXWegUhWq6T5db8vTy4e2icW4cgFYeDgq+/puD7pQB4du5MyLSpaAMD3RaTEKJh2bKz8b/yymrb/a9IImfx4nof1+XpdMfzy7igvfPDRe+hobjCBsDVfaP5fvvxegciWp5Nqbn8uMcEONsv+Xt5nOMVjcdeXEzWSy9XJkLfkSMxznxUEqEQrYz3gP7OxttnKP17C94XXFDv47p8ZRjq60l+qZXoQIgM8GLrsTziI/04llta47IP0TqdWW6tZ3SA22KpSE3FvGABNnMOKp2O4Fun4DNokNviEUI0Ht9hw8h6+WXKd+/Gq7dzdUPZtu0UrlpF6PRpFP30U5V968rlZDioYwg/7jGRGOXPhH7RPLUsmR92ZrIjLV/WH7YRZ5Zbu6Gf+9odFa9fT+6SD1BsNrRhYYTOuFfaLwnRimXOeRKAvE8/Je/TT2t8DnB5Ab7LyXDuNT1wnLgEnDSwAwHeOrYcyWNE9zD+eaFMoGkLvtmaXllu7V43lVtTLBZyP/qY4p9/BsCrTx9C7rgdtY/7Z7IKIRpP9z3JjXJcl5OhWq1CzalJElf0iuSKXpENGpRovvZkFPLV32mAs9ya0cVya4rdXqfO87Wx5eSQPX8BltRUUKkIuPYa/JKSZP2gEKLe6rXOsKDMyvZj+eSUVOCousyQay9oXh0KRMMprrDx2jpnubUhXUJdLrdWuHo1pmfnYsvMrNymDQ/HOGsmfqPqNh26bNduzG+8gaO4GLWPDyH33INXj0SX4hBCNAzzW29R/PN6yvfuReXhQdfNm875muOPzqTg22+rbPO55BLavbOo1teVbt2KPT8f38suq9yW/+23mBe8hqOsDN/hwzH+57F6F953ORn+mGzivs+3UWKxYfDUcvp3cZVKJcmwlaost1Z8otzaINcqPRSuXk36jPuqFde1mUzO7fNerTUhKopC4bJl5H/5FSgKug4dCJ0+DW1oaD3ejRCiISgWK75jRuPVuzf5X31V59f5DB5M5LPPVD5W1SGBmd94E+8B/SuTYXnKPjIe+w8BV1+FrmMcOYvfdc4bmD7N9TdCPZLhMyv2MKFfNA+P7oaXzv0lt0TTWHtaubXpwzq59Hev2O2Ynp1bc5X5E92pTc/OxXf48BqHTB2lpZjffpuyLVsBMAwZTNCkSXX6BySEaDyh904HIP/rb1x6nUqnc/mLbPnePVUW2heuWIFXz55EPPUUAB4R4WQveK3pkmFmQTlTBsVKImxDjuWWsuS0cmsdQw11ep01Kwtbdjblu3ZXGRqtRlGwZWaS/+VX6BMT0IaG4hEWBoAlLY3s+fOxZZpQaTUETpxYZZhECFE3jpIS7MXFlY9VOp3benmWbtrEvkEXo/Hzw/uiCwmdMeOca4IdBYVoQ4JPHWPzZgxDTpX/1Cf2wJaRUe+YXE6GQ7qEsCM9n3bB0hm8LTi93FqvmACXyq3lLH6PvPffr/P+mbNnAxA4eTLhjz5CyYYN5LzzLorFgiY4iNDp0/Hs2NHVtyCEAEzjkyg5beQlZOrUel9FnQ+fwZfgO2okHlHRWI8dJeu/r3Lsjjvp8NmntU6m04QEY01LwyMiAsVioTw5uUr8jpIS8Kh/4Y86JcM1yabKn4d1C2Puir3sNxXTLdy32rT6kfFGlwLILCjnuR/28PO+bMosdjoE+/DihJ5uXcQtTvlow9HKcmv3XNrJpRmb9Z7b6XCQ+/HHFK1aDYA+Pp6Qe+5G4+dX3yMK0eYZly0l6rT2R2e7zZD18svkLHqn1mN1XLG83l9M/S+/vPJnfdcueHbtysGRoyjdtAmfgQPP+jrDkCFkvfwKYQ8+QNGPa1Hr9VUqzlTsSzmvNcZ1SoZ3fPhXtW3zf9pfbZsKODT38mrbz6ag1Mq1b/7BwLhg3p8ygGAfHanmEreW9RKnbErNZU2yc3hz6mWd8Pd27e8l6NYp+CWNB4eDY3fdjT0n56z7aoKDiXnrTRwlpRQsXVqZCP2SxhNw7bXSiFeI86T28UFjOPctjqApU/C/+upa99FFN9xESV1MDJrAQCxHjtaaDENnzCBt+nSOTJyE2tubiOfmVkno+V99jc/FF9c7jjolw1QXEpwr3lx/kMgAfZWGwTFBMvzaHJiLK3j7l/Mrt+YRFlZ57y989uPOWaNQdSLNiSvN8NmPo/L0JG/RO9jz81F56Qm5447zqjUohHCdNigI7Ymu8k3BmpmJPT8fbVjtE2q0gYF0+Ogj7EVFqL29qw2pRr/6X9Te9c8fbv26/eMeEz2iArjn47+54Kk1jJv3K59uOnrW/StsdorKrZV/ThYJFw3LcaLcWnFFw5Vb8xs1iqh5r6I1Vh1G1xqNRL76XwBMc+diz8/HIyqKiDlzJBEK0cxZjx+nfM8erBnHwW6nfM8eyvfscd6/O+Hg2HEUrlkDOO/rmV54kbJt27CkpVPy55+k3TMVXbt2+FxySZ3OqfH1rfHeoiYg4LxmmNd5As0fB8w8/v1uvrlnEL76qsNlheVWrn3jD56+KpELOwaf5QjVHc0t5aONR7jtkljuGdqJHWkFPPH9bjw0aq6rYb3iG+sOMm/tqeFZW6G5zucSdddY5db8Ro3Cd/jwKhVo9D0SyVuypLIbvfeFAwj+179Q612rbCOEaHrZ8xdUWUCfevU1ALRbsgSfCwcAYElNxVF0YharRkNFSgrHvv0We1ERHqGh+Fx8MaEz7nXbzNaTVIpSt14Tty3ZzEUdg7ltcM03Td/7PZU/D+bw9qR+dT5553+voEeUP1/fc2qc94nvd7M9LZ9v7qk+9lths2OxnSp5k56eTvdOsRw7dozoBhzDbsv2ZhYy5/tkFBSmXdaZSzq7VmXGFWd2ow/8xz/wHT1KyqoJ0YDS0tKIiYmRz8lzqPNX/j0ZRQztevYx3cGdQ9mVXuDSycN89XQO862yLS7MwPH8shr399Rq8NV7VP4xeNarmpw4i+IKGwt+cpZbG9w5tFETYemWrWTMno01LQ2Nvx/GmY/iN2a0JEIhhFvUOZtkF1egrWVGn1atIqfE4tLJL2gfyCFzcZVtqdklRAV4uXQccf5OL7cW7qfn1otdK7dW5/PYbOR//TWFy5YD0o1eCNE81PnKMNxPT4qp6KzP780sJMzP06WT/+uSWLYezef1dQc4bC7hu23pfLrpKJMGdnDpOOL8nV5u7d7hnRulwpAlLY3MOXMqE6F0oxdCNBd1vjK8rGsor6zex6VdQtF7VP2gLLfa+e+a/Qzv5tqC+14xASyceAEvrExh3tr9xAR68XhSPFf1iTr3i0WDSTWXVJZb+8eAmDqXW6srxeGg8IcfKPjqKxSbHbXBQPCUyXj379+g5xFCiPqqczKcNqwzK3f/yrCXfmbSoA50DHE2UT2YXcKHfx7GrihMvayTywEM725keHfXkqhoOGl5pTyzfA85xRbC/fUEeeuwOxQ06oa5d2fNyiLn7UVU7NsHgFfv3gTfOgVNQECDHF8IIRpCnZNhqK8nX909iMe+3cULK/dycgqqChjSJZSnrkwk1Ne1YVLhXqbCcqZ/upXd6YVY7A6SMwr5aW8WEf56ZifFMyYxot7HVhSF4vXryfvkE5TyClR6T4JuugmfIUNkkowQotlxaTpmdKA3708ZQEGplcM5JShAbLCPy2W6hPuZiyuY+vEWth7Nr/ZcZkE5d3+0hTdv7luvhGjPzyfn3cWUbd8OgGfXrgTffltlNRohhGhu6rU2wd/bg17eAQ0cimgq+aUWnl6WzI60mpfCKDiv+OcsTWZkfLhLQ6YlmzaR+/4SHMXFqLQaAiZMwHf0aKktKoRo1mShXhuzOTWHF1elkJZfhsXuOOt+CpBRUM4ra/bROcxAF6OB+Ej/s+5vLy4h76MPKfnjTwB07dsTfOcdDVrQVwghGoskwzak1GLjno+3kF1c9/Wgr687AMCFsUF8fmfNFeXLdu4i5513sOflgUqF/xVJ+F95JSqt/O8lhGgZ5NOqjSi32nlhZQrh/nqMfnr6tgvkgw1Hzvm6qZd1qrwyPJOjooL8zz+n6Me1AGjDjYTccQeenVyfVSyEEO4kybANsNgcvLw6xVkYwVfPY+PjaRfkzZo9JjILyqmpOK0KCPfXc//ILjXeM6w4cADz229jy3Q2fvYdMYKAG65H7SkzioUQLY8kw1bOZncwb+0+dqYX4KnV8OjYbsSeWCM6Oymeuz/aggqqJMSTqW92Uny1RKjYbBR8+y0FS5eBoqAJDCT4ttvw6pHYJO9HCCEagyTDVszhUHh93UH+PpKHh0bNw2O60tl4qjD6mMQI3ry5L3OWJpNRUF65Pfws6wwtaWnkLFyI5Yiz56TPoEEE3nwzGoNP07whIYRoJJIMWylFUVj4yyH+PGRGq1Zz/8guJNQwG3RMYgQj48PZlJpLVlE5Yb56BsQGVbkiVBwOilauJP/LLyvLqQVNvgWfAQOa8i0JIUSjkWTYCimKwvt/HGb9vizUKhX3Du9Mn3ZnL4atUasYGFdzU2ZrVhY5i96hIiUFkHJqQojWSZJhK6MoCp9uOsaq3ZmoUHH30DgGxAbV/hq7vUr3ee9+F4BaTckvv5D78cdSTk0I0epJMmxlvtmazvfb0wFni6zBnc/ekBmgcPVqTM/OxZaZWblNExaGV6+eOAoKASmnJoRo/SQZtiLLd2Twv7+OATDxog6MiK+9G0jh6tWkz7gPlKqLK+xZWRSv+RHPrl0IufNOfMeMkXJqQohWTT7hWom1e0x8uOEwABMuiOHynrUX2FbsdkzPzq2WCE9ny8mVuqJCiDZBrgxbgV/3Z/POr6kAJPWK5Jq+Z2+ObM3KwpadTfmu3VWGRmtiN5vJ//Ir9IkJaENDZZhUCNFqSTJs4Tal5vLmzwdRUBgVH84/B7SrdYJLzuL3yHv//TofP3P2bAACJ08m/NFHzjdcIYRolmT8qwXbejSP+Wv341AULu0SxpSLO5xzpqdSXlavc8n8USFEayZXhi3U7uMFvLJmHzaHg4s6BnPnkI61JkLLsWMULl9Bxb796BMSQFEoP3gQKirO+hpNcDAxb70JajXa0NpnpQohREsmybAF2m8q4oWVKVjtDvq2C2TaZZ1Q11BMW1EUKvbsoXDFCsp27ARApdXi1bMnfpdfjuV4Osfv+7+TO5964YmkGj77cbx69Gj09yOEEO4mybCFOWwu4bkf9lJhs5MY6c99I7qg1VQd7VYcDko3/0XhihVYUp0Ta1Cp8B7QH79x4/CMjQXAq0ciqnmvVltnqDUaMc6aid+oUU32voQQLYslLR3zm29QumEjNrMZbVgY/klJhNx1Jyqd7qyvc1RUkPX88xQuX4HDasVw8cWEz34cbUhIE0ZfnSTDFiQtr5RnVuyhxGKjq9GXB0d3Rac9lQgdFgslv/5K4Q8rsWVlAaDS6TAMGYzvmDE1zgb1GzUK3+HDq1WgUWk0Tfa+hBAtjyX1EDgUwufMQde+HRX795Pxn8dxlJVhfOThs77ONHcuxet/IWreq6gNvpieeoq06ffS4dNPmjD66iQZthCmwnKeWb6HonIrsSEGHhnbDb2HM2HZi4sp+vFHin78EUdhEQBqHx98R47Ed8RwNH5+tR5bpdHgc6EU3RZC1J1h8GAMgwdXPtbFxGBJTSXv08/OmgztRUXkf/U1US++iM9FFwEQMfdZDo27nLJt2/Dq3bspQq+RJMMWwFxcwVPLkskrtRAT6M2scd3w1mmxZWdTuHIVxevXo1gsAGhDQvAdOwbDkCHSaFcI0aTsRUVo/Kt3xzmpfPdusFrxGTSwcptnx45oIyMolWQoapNfauGZ5XswF1cQ7qfn35d3x9N0HPOKFZRs3AQOBwC69u3wGzcO7wEDZIhTCFGNo6QEe3Fx5WOVToe6lnt7rrIcOULeRx8T9vBDZ93Hlm1G5eFRbbRKGxyC3WxusFjqQ5JhM1ZUbuWZ5XvIKCgj2EfHI51UVLw2j4Jduyr30Sck4DduHPrEBOkmIYQ4K9P4JEpO+6IcMnUqodOnVdsv6+WXyVn0Tq3H6rhiOZ4dO1Y+tppMHL39DnzHjCbw+usbLugmJMmwmSq12Jj7w17ScopJNB/ixuIULKucRbhRqfC+cAD+48ah69DBrXEKIVoG47KlREWdKtV4thmfQVOm4H/11bUeSxcdXfmz1ZTF0Um34N2nNxFPPlnr67ShIShWK/bCwipXh7YcMxqZTSpOUhSFo7ml/Hkwhz/3pBOweysTDvxFot6CVqs5MTN0CL5jRkudUCGES9Q+PmgMhnPupw0KQhtUew/Uk6wmE0cn3YI+IYGIZ589Z1F/fUICeHhQ8ucG/EY7l25VHErFdjwDbzfeLwRJhm6nKArpB4+xY+Nujuzah/p4GoH52YwuKUCrVtE+2BuvAP9TM0N9fd0dshBCYDWZODJpEh6RkYQ98jD23NzK505WrLKaTBydPIXI55/Dq2dPNL6+BFx7Dabnn0Pj74/aYMD09NN49e7t1skzIMmwSTnKy7EeO4blWBq5+w9xfPd+ig8fxVrqrBfaHlCrwOCpxS/Qi4D2UQSOGY3PkCENeqNbCCHOV8nvf2A9chTrkaMcuHRolee6790DgGK1YUlNxVFWXvmcceZMVGo1aTNmoFgsGC65mPDHH2/K0GukUpRaGto1c2lpacTExHDs2DGiTxvDdjdFUbCbzViOHcNy9CjWo8ewHDtGeUYmBWVWCsuslFrsp/bXaFBHRBLSNY4OPTrj27EDHu3a1WlIQwghatNcPyebG7kyPE8OiwVrWhqWI0cqr/qsR4/iKHNe7dkcCoXlJxJghZ1SLx/ygiLICwjFLy6Wrn270bdfN/x89G5+J0II0XZJMqwjRVGw5+Y6r/SOHcNy9BiWo0ewmbKqdYu3OxQKrQ4y9AEc0geQYwwlLyCMXP8w2rc3MigumGtjgwn0kaFPIYRoDiQZ1lHhsuXkf/FFjc+p/XzRRMdw3DuYnYqBv60+5BgCUdTONT2xIQaGxQUzMC6YEMO5q8LYHQqbUnPJKionzFfPgNggNDV0pRBCCNEwJBnWkUdUFGjUeEREomsXg0dMDKrIaPZq/Pkjy8KWo/lYbCfuA3pBdKA3g04kwAh/rzqfZ+WuDOYsTSaj4NQN5wh/PbOT4hmTGNHQb0sIIQSSDOvMq2cP2r39Nna1hp3pBfxxMIe/tuVSZs2o3CfcT8+guBAGxgUTE+Tt8jlW7srg7o+2oFIc9DAfIqiiiFxPX5KVjtz90RbevLmvJEQhhGgEbk2G/12zj3lr91fZ1jHUh58eGOqegGpxMLecdXuz2JiaQ3GFrXJ7sMGTgR2DGRQXTGyIT71LotkdCnOWJjPw+E7u2vEtoeUFlc9l6/1Z2PMq5izVMzI+XIZMhRCigbn9yrCL0cBHt11Y+Vh7jgoG7rLfVMTavSYA/L08GNgxmIFxIXQxGs6rJmjy8QL2mYrZn1VM7J7NPLZpSbV9gssL+PemJTwNvLImms5hBroYDcRHnr06vBBCiLpzezLUqNWE+Tb/ZQUXdQzmWF4pg+JCiI/wQ91AV2dzliazMTUXteLg/R3fAnDmkdWAA7hz53dM+SkBh0rNhbFBfH7nQIQQQpw/tyfDw+YSBjzzI54eavq2C+ThMd2ICqh5wkmFzY7F5qh8fPpwZWML9NFxx5C4Bj/u7O5aMiw5lOzbX2Vo9ExqIKwsn1dLN+HTpTMR3aU2qRBCNBS3JsPe7QJ4aUIvOob6kFVUwbwf93H9W3+y6v+GYPCsHtob6w5WucdoK3Rv/6uG4L1oAZGbN9d5/85rvoQ14NW/Pwz5oBEjE0KItqNZlWMrKLNyyXM/8dj47tzQv12158+8MkxPT6d7p9gWXWaoLHkPFQcPYDlwkJyFC8+5f/Cdd6LrFIdnXCe84rs3QYRCiJZMyrHVjduHSU/n7+VBbKgPh3NKa3zeU6vBU3uqOWVNV48tjVd8d7ziu6PY7RR89x3WzMxq9wwBFMAjPJzQe6dLJ3shhGhgzWrqZkmFjSM5pYT5nrtKS2uj0mgwzprpnJl65uxUlQqVSuV8XhKhEEI0OLcmw2eWJ7PhUA7Hckv5+0gud374Nxq1iit6RbozLLfxGzWKqHmvojUaq2zXGo1EzXsVv1Gj3BSZEEK0bm4dZ8woKOfeT7eSX2olyEdHvw6BfHPPIILrUL+ztfIbNQrf4cMp/etvbNnZaEND8e53gVwRCiFEI3JrMnztn33defpmS6XR4HPhAHeHIYQQbUbLn4HSRBS7Xa7WhBCilZJkWAeFq1djeuZZbCZT5Tat0Yjx37PkPp4QQrQCzWo2aXNUuHo1affOwHpaIgSwmEyk3TuDwtWr3RSZEEKIhiLJsBaK3c6ROU8DNdcLVYAjc55GsdubOjQhhBANSIZJa2DNysKWnU3pzl1oc7LPup8aUOdkk/vFl3j3SEQbGopHmNQMFUKIlkaSYQ32L3gL1Ref1nn/rCeeAECZcCPxTz3eSFEJIYRoLDJMWoM/D+Y06euEEEK4l1wZ1mDgzHs5vP9qjpqL6fHaHPwtxTV+a3AA+Z4Gdk2dTbsQAwM7xzR1qEIIIRqAJMMaxPeII75HHHaHwr1bUpj68zs4qHoZ7cA5qeaTgf9g/m2Xo2mgZr9CCCGangyT1kKjVpE07Z88M+AWcvT+VZ4zewXwzIBbSJr2T0mEQgjRwsmV4TmMSYyAh2/h0e8uIPhQMkEVReR6+pLTMZ7Hr0x0Pi+EEG2MJS0d85tvULphIzazGW1YGP5JSYTcdScqne6srzsycRKlZzQ0D7jhBiLmPNHIEddOkmEdjEmMYGR8OJtS+5JVVE6Yr54BsUFyRSiEaLMsqYfAoRA+Zw669u2o2L+fjP88jqOsDOMjD9f62oAJEwi9d3rlY5WXV2OHe06SDOtIo1YxMC7Y3WEIIUSzYBg8GMPgwZWPdTExWFJTyfv0s3MmQ5WXHm1oaGOH6BJJhkII0QY4SkqwFxdXPlbpdKhrGc6sD3tRERp//3PuV7h0GYXfL0UbGoJh6GWE3HM3ajdfHUoyFEKINsA0PomS0zrthEydSuj0aQ12fMuRI+R99DFhDz9U635+48fjERmJNiyMin0pZL30MpbDqUQvWNBgsdSHJEMhhGgDjMuWEhUVVfn4bJNcsl5+mZxF79R6rI4rluPZsWPlY6vJxNHb78B3zGgCr7++1tcG3nDqeX3XLmhDQzk6eQqWo0fRtWtXl7fSKFp0MnQ4HABkZGS4ORIhhGieKj8fvbzQGAzn3D9oyhT8r7661n100dGVP1tNWRyddAvefXoT8eSTLsfn1bMnAJYjkgzrzXSirdKAAdIVXgghamMymWhXh2SjDQpCGxRUp2NaTSaOTroFfUICEc8+i0rt+tL18r17necNc++EGpWiKIpbIzgPNpuNrVu3YjQaUdfjL8FVRUVFxMfHk5ycjK+vb6Ofry2T33XTkt9302rK37fD4cBkMtGnTx+02oa7/rGaTByZNAmPyEgin3uuSiI8OVPUajJxdPIUIp9/Dq+ePbEcPUrBsmUYhlyKJiCAin0pmOY+h4fRSPuPPmyw2OqjRV8ZarVa+vfv32TnKywsBCAqKgo/P78mO29bJL/rpiW/76bV1L/vulwRuqrk9z+wHjmK9chRDlw6tMpz3ffuAUCx2rCkpuIoKwdA5eFB6R9/krfkAxxlZWgjwvEdNZKQu+9u8Phc1aKvDJtaYWEh/v7+FBQUyAdGI5PfddOS33fTkt938yO1SYUQQrR5kgxd4OnpyezZs/H09HR3KK2e/K6blvy+m5b8vpsfGSYVQgjR5smVoRBCiDZPkqEQQog2T5KhEEKINk+SoRBCiDZPkmEdvf7663To0AG9Xs+FF17Ipk2b3B1Sq/TLL7+QlJREZGQkKpWKb7/91t0htWpz586lf//++Pr6EhYWxlVXXUVKSoq7w2qV3nzzTXr27Imfnx9+fn4MHDiQH374wd1hiRMkGdbB559/zv3338/s2bPZsmULvXr1YvTo0WRlZbk7tFanpKSEXr168frrr7s7lDZh/fr1TJ06lQ0bNrBmzRqsViujRo2ipKTE3aG1OtHR0Tz33HP8/fff/PXXXwwbNowrr7yS3bt3uzs0gSytqJMLL7yQ/v3789prrwHOWn8xMTFMnz6dRx991M3RtV4qlYpvvvmGq666yt2htBnZ2dmEhYWxfv16hgwZ4u5wWr2goCBefPFF/vWvf7k7lDZPrgzPwWKx8PfffzNixIjKbWq1mhEjRvDnn3+6MTIhGl5BQQHg/JAWjcdut/PZZ59RUlLCwIED3R2OoIUX6m4KZrMZu92O0Wisst1oNLL3ROsRIVoDh8PBfffdx8UXX0xiYqK7w2mVdu7cycCBAykvL8dgMPDNN98QHx/v7rAEkgyFECdMnTqVXbt28dtvv7k7lFara9eubNu2jYKCAr788ktuueUW1q9fLwmxGZBkeA4hISFoNJrKRsInmUwmwsPD3RSVEA1r2rRpLFu2jF9++YXo07qYi4al0+no1KkTABdccAGbN29m3rx5LFy40M2RCblneA46nY4LLriAtWvXVm5zOBysXbtWxvpFi6coCtOmTeObb77hp59+IjY21t0htSkOh4OKigp3hyGQK8M6uf/++7nlllvo168fAwYM4NVXX6WkpIQpU6a4O7RWp7i4mAMHDlQ+Tk1NZdu2bQQFBTVKg9K2burUqXzyySd89913+Pr6kpmZCYC/vz9eXl5ujq51mTlzJmPHjqVdu3YUFRXxySef8PPPP7Nq1Sp3hyYAFFEnCxYsUNq1a6fodDplwIAByoYNG9wdUqu0bt06Baj255ZbbnF3aK1STb9rQHnvvffcHVqrc+uttyrt27dXdDqdEhoaqgwfPlxZvXq1u8MSJ8g6QyGEEG2e3DMUQgjR5kkyFEII0eZJMhRCCNHmSTIUQgjR5kkyFEII0eZJMhRCCNHmSTIUQgjR5kkyFMJFkydPlh6LQrQyUo5NiNOoVKpan589ezbz5s1DalUI0bpIMhTiNBkZGZU/f/755zz++OOkpKRUbjMYDBgMBneEJoRoRDJMKsRpwsPDK//4+/ujUqmqbDMYDNWGSYcOHcr06dO57777CAwMxGg0smjRospi7r6+vnTq1Ikffvihyrl27drF2LFjMRgMGI1GJk6ciNlsbuJ3LIQASYZCNIglS5YQEhLCpk2bmD59OnfffTcTJkxg0KBBbNmyhVGjRjFx4kRKS0sByM/PZ9iwYfTp04e//vqLlStXYjKZuP766938ToRomyQZCtEAevXqxWOPPUbnzp2ZOXMmer2ekJAQbr/9djp37szjjz9OTk4OO3bsAOC1116jT58+PPvss3Tr1o0+ffqwePFi1q1bx759+9z8boRoe+SeoRANoGfPnpU/azQagoOD6dGjR+U2o9EIQFZWFgDbt29n3bp1Nd5/PHjwIF26dGnkiIUQp5NkKEQD8PDwqPJYpVJV2XZylqrD4QCcTYyTkpJ4/vnnqx0rIiKiESMVQtREkqEQbtC3b1+++uorOnTogFYr/wyFcDe5ZyiEG0ydOpXc3FxuvPFGNm/ezMGDB1m1ahVTpkzBbre7Ozwh2hxJhkK4QWRkJL///jt2u51Ro0bRo0cP7rvvPgICAlCr5Z+lEE1NpUgpDSGEEG2cfAUVQgjR5kkyFEII0eZJMhRCCNHmSTIUQgjR5kkyFEII0eZJMhRCCNHmSTIUQgjR5kkyFEII0eZJMhRCCNHmSTIUQgjR5kkyFEII0eZJMhRCCNHm/T99+7JM3/R5iAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"Plot the charge spin spreading.\"\"\"\n", "fermi_hubbard.plot_quantity(bundle, \"charge_spin_spreading\", show_std_error=True);" ] }, { "cell_type": "markdown", "metadata": { "id": "ad8505cfee8c" }, "source": [ "One can compare these to the simulation with exact decompositions above to see the effect of the parasitic controlled phase." ] }, { "cell_type": "markdown", "metadata": { "id": "9423ead536da" }, "source": [ "# Execution on Google's Quantum Computing Service" ] }, { "cell_type": "markdown", "metadata": { "id": "373ada3ed59f" }, "source": [ "In order to run an experiment on Google's QCS, a `QuantumEngine` sampler is needed. To create an engine sampler, an environment variable `GOOGLE_CLOUD_PROJECT` must be present and set to a valid Google Cloud Platform project identifier." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:37:28.433688Z", "iopub.status.busy": "2023-07-06T09:37:28.433450Z", "iopub.status.idle": "2023-07-06T09:37:28.437571Z", "shell.execute_reply": "2023-07-06T09:37:28.437002Z" }, "id": "aa516db560a5" }, "outputs": [], "source": [ "\"\"\"Get an engine sampler.\"\"\"\n", "import os\n", "import cirq_google\n", "\n", "if \"GOOGLE_CLOUD_PROJECT\" in os.environ:\n", " engine_sampler = cirq_google.get_engine_sampler(\n", " processor_id=\"rainbow\", gate_set_name=\"sqrt_iswap\"\n", " )\n", "else:\n", " # Use the simulator as a backup.\n", " engine_sampler = cirq.Simulator()\n", "\n", "# Get a sampler for the Fermi-Hubbard experiment.\n", "google_sampler = fermi_hubbard.ConvertingSampler(\n", " engine_sampler, publication.google_sqrt_iswap_converter().convert\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "24c6fbf30a16" }, "source": [ "Now that we are running on a quantum computer, we follow good experimental practice and save the results on disk as soon as each experiment finishes using the `fermi_hubbard.save_experiment` function. Although rare, remote operation may fail for various reasons. More advanced execution workflow might include error handling, experiment pause and continuation, etc., which we omit here for simplicity.\n", "\n", "> *Note*: We do not include Floquet calibration, the calibration technique described in the Supplementary Information of the [Fermi-Hubbard experiment paper](https://arxiv.org/abs/2010.07965), when executing the experiments below." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:37:28.440830Z", "iopub.status.busy": "2023-07-06T09:37:28.440615Z", "iopub.status.idle": "2023-07-06T09:40:13.295496Z", "shell.execute_reply": "2023-07-06T09:40:13.294785Z" }, "id": "1210216b0c5e" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c63fb9c34ac448378a13f1e21416a2e1", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/176 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"Plot the charge spin density.\"\"\"\n", "fermi_hubbard.plot_quantity(bundle, \"charge_spin_density\", show_std_error=True);" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "execution": { "iopub.execute_input": "2023-07-06T09:40:18.544360Z", "iopub.status.busy": "2023-07-06T09:40:18.544084Z", "iopub.status.idle": "2023-07-06T09:40:18.774733Z", "shell.execute_reply": "2023-07-06T09:40:18.773993Z" }, "id": "030ef06326e3" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAFMCAYAAAC3YNfTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABp40lEQVR4nO3dd3hUZfbA8e/UtEkvkw6EHjoIiAoKCIKAYkHXRrEjIOi6q/hzRXRXdG0gKrpWXCy4dkAxKsUGgtIJnQCpk94mM5l2f38MBEICZEKSSTmf5+F5Mnfu3PsmJHPmLee8KkVRFIQQQog2TO3tBgghhBDeJsFQCCFEmyfBUAghRJsnwVAIIUSbJ8FQCCFEmyfBUAghRJsnwVAIIUSbJ8FQCCFEmyfBUAghRJsnwVAIIUSbJ8FQiCaybt06rr76amJiYggICKBv37588MEH3m6WEAIJhkI0md9++43evXvz2WefsWPHDqZNm8bkyZNZuXKlt5smRJunkkLdQpxZ+/btmTNnDnPmzKk61rdvXyZOnMgTTzxx3tcfN24cRqORd95557yvJYSoP+kZCnEexo4di8FgOOO/Hj16nPX1JSUlhIWFNVFrhRBnovV2A4Royd566y0sFssZn9fpdGd87pNPPmHz5s288cYbjdE0IYQHJBgKcR7i4uLq9bq1a9cybdo03nzzzXP2HoUQjU+GSYU4C7VazenT6na7verr+gyTrl+/ngkTJvDSSy8xefLkRv8ehBDnJj1DIc4iMjKS7OzsqselpaWkpaVVPfZ0mHTdunWMHz+eZ599lrvvvrvhGyyEqBcJhkKcxYgRI3jvvfeYMGECISEhPP7442g0mqrnPRkmXbt2LePHj2f27Nlcd9115OTkAKDX62URjRBeJsOkQpzF3LlzufTSSxk/fjzjxo1j4sSJdOzYsV7XWrp0KRUVFSxYsICYmJiqf9dee20Dt1oI4SnJMxRCCNHmSc9QCCFEmyfBUAghRJsnwVAIIUSbJ8FQCCFEmyfBUAghRJsnwVAIIUSb16KT7h0OB1u3bsVoNKJWS1wXQojTuVwuTCYT/fr1Q6s991t+xebNFLz9Dtbdu3Hk5RH/ymICL7/8rK8x/74J07PPYDtwEG1MDBH33kvItdc01LfQJFp0MNy6dSuDBg3ydjOEEKLZ27RpEwMHDjzneS6LBZ9uXQm+7loyZ91/zvNtGRmk33svoTfeSNxzz2HesJHsf/wDbWQkhqGXNETTm0SLDoZGoxFw/yfHxMR4uTVCCNH8ZGdnM2jQoKr3y3MxDBuGYdgwADLrcH7xxx+jj4/D+MjDAPh07Ihly58ULl0qwbCpnBgajYmJIT4+3sutEUKIZsxiwVleXvVQpdej1uvP+7IV27bhP2RItWMBF1+CacGC8752U2rRwVAIIUTdmMZPwHxKkfmIGTOInDXzvK/rzMtHGx5R7Zg2IhxXeTkuqxW1r+9536MpSDAUQog2wLhyRbVdVlQN0CtsTSQYCiFEG6AOCEBjMDT4dTWRETgK8qsdc+QXoDYYWkyvECQYCiHaOKdLYVNaIbllVqICfRnUIQyNWtVo91OcTir++BNHXh7ayEj8LxiA6pThy5bGv29fytf/VO2Y+bff8Ovb1zsNqicJhkKIZqepAtTqXdnMX5FKdom16lhMsC/zJiQzpmfDr1AvTUnB9PQCHMc3dgbQRkdjfHQuQaNHN/j96sNlNmM7dqzqsS0jA+uePWiCg9HFxpL7wos4ck3EPvssACF/+QuFH3yI6bnnCLnuOswbN1K6ejUJr7/urW+hXiQYCiGalaYKUKt3ZTN92RZO39A1p8TK9GVbWHJr/wa9X2lKCpmz58BpW8g6TCb38UULm0VAtOzazbEpU6oe5z7jDnrBEycS+8wCHHl52LOyq57Xx8eT8PrrmJ55hqL3/4s2OpqYp55qUWkV0MI3983IyCAhIYH09HRJrRCiFThTgDrRJ2yoAOV0KVzy7JpqAff0+0UH+/LLwyMapEeqOJ0cHHl5tR5h9Ruq0BqNdPrxhwYfMpX3ybqRnqEQollwuhSe+Hp3jUAIoOAOUPNXpDIqObreASo1q4T9pnIO5JafMRCeuF92iZUXv99P5ygDXYwGkmODPb6fJXUPlYcOYjt46MyBEEBRcOTkkPfyYvSdOuLTsRN+yd09vp+oPwmGQogmpygK+eU2jhVWsOFQPruzSjmSX05OaeWZX4M7QN3z3z/oERvEoA7hXNQxHJWq7oFx/opUfk8rrPP5r649CMDgDmEsv2fIOc6uybRgAZbNm+t8fsEbbwDgN3Ag7f/7vsf3E/UnwVAI0ajKrHaOFVaQXlhBeqGF9CL31xa7E4DdmSWUVTrrfL0f9uTyw55cAn3SGJwUTkKYP+3C/GkXHkBiuD/xoX74aGsfapw3IbmqZ3gi0J3NjOGdqnqG9WGcO7eqZ3gi0J1N+D33VPUMRdOSYCiEaBCVDieZRZaTga/IQnphBUUVtlrP16rVxIb40inSHWgqbE4+33ruapiD24ehoFDpcFFe6WBPdil7skurnlehIibEl3ZhAbQL9ycx3B0swwL0JMcGkxwbjNOl8PmWDHJKrLUOy56YM3xwVJfzmjP0S+6OX3J3FKeTkq++wmEy1VhA476he84w8v5ZLTrNoiWTYCiE8IjLpZBTaj2lt+cOfO7AUvt6vMhAXxLD/EgI9SchzJ/EMH9ign3Rak5uveZ0KWw4XHDOAPXh3ReiUauwO11kFlk4WljBsQIzRwoqOFpQQXmlnaxiC1nFFjYcPvl6g4/W3XsMcwfIey9NYt7Xqaig2v1OhL55E5IbLJ1DpdFgfHSue9WoSlU9IB4f5jU+OlcCoRdJMBRCnJPLpbByZzYbDuWTUWTB7nTVep7BR+cONmF+VUEvPtQfP/253+Q1ahXzJiQzfdmWOgUonUZN+4gA2kcEAJGAey6yuMLOkQIzxworOFZQwZGCCrJLLJRXOtidVcLurJKq63aNDuRYgRmL/eT3E91IeYZBo0fDooU18wyNxmaVZ9hWSTAUQpxVkdnG4jUHSc0+GUT0Wg3xoX4khvkf7+25vw7203m0oOV0Y3rGsOTW/jXyDOsaoFQqFaEBekID9PRLDK06bnO4yCy2uINkQQXHCis4WmAGIMQvhDKrA5vThcFHy8S+sfRvF3qmW5yXoNGjCRw5slVVoGktJM9QCHFG29KLeW3tQUqtdny0Gm4ZnEjv+BCiAn1QN2LJsqaoQKMoCoVm2/HAWMEvB/PJKKoA3POOg5PCGN87lk5RDV/PsynJ+2TdSM9QCFGDw+nikz8y+Hq7e0FLu7AA5ozqTEywX5PcX6NWMaRjeKPeQ6VSEW7wIdzgQ7/EUK7uG8v2jBJW7chiZ2YJGw8XsPFwAd2igxjXO4YBiaEN8gGgqWuhirqRYCiEqCavrJLFaw6w31QGwKjkaG67sB16rfocr2zZVCoVfRNC6JsQwtECMyt3ZLPhUAF7c0rZm1NKdJAvV/aK4dKukWdM3TiXpq6FKupOhkmFEFU2Hynk9XWHMNsc+Ou13DMsicFJjdtDa86KzDZW787hh1QTZpsDcK9KHZVs5Ioe0YT4131PwKYqNXc6eZ+sG+kZCiGwO118sPEoq3e7Vzl2jDQwe2RnooLc+9G11aG90AA9Nw1K5Jp+cazbl8s3O3PILbPyxdZMVmzP5pLOEYzrFUNCmH+tr88ttZJbVonTpfDYl7vOWGoO4LEvdxET7IdGrSIq0KfqZy+ahvQMhWjjskssvPzjAdLy3asrx/eO5S8DE6pyAGVo7ySXS2HzkUJW7cyuGkYG6BMfwrjeMfSKC662mvafK1N565c0j+9z5yUdeGx8coO0Wd4n60Z6hkK0Yb8ezOfNnw9jtTsx+OiYMbxjtZSEpt7mqLlTq1UMTgpncFI4+01lrNqRzaa0QrZnFLM9o5jEMH/G9Y7l4o7h1QoKiOZPeoZCtEGVDidLfzvCmr25AHSLDmLWiE6EG3yqzmnqbY5aqtxSK9/szGbtvjwqHe4aq6H+eq7oEU2fhBDMlQ52ZJTw6Bc7z3mtp6/pRe/44AYdJpX3ybqRnqEQbUx6YQWLfjxARlEFKlRc0z+O6/rHVwW0pt7mqKWLCvJl6sUduP6CBH7cY2L1rhyKKmx8vPkYn2/NZHjXSK7oEU1MsO85S83dODChTX+w8CbpGQrRRiiKwrr9ebz76xFsDichfnpmjuhEz7jqAezGNzZ4tM3RCfXd5sjbFKezQSvCOJwufjtUwKod2RwtdM/DqlARGqDjm5019zSU1aTNg/QMhWgDLDYnb/18mF8P5QPQOz6EGZd1IthfV+Pcpt7myJtKU1Jq1gqNjj6vWqFajZphXSIZ2jmC3VmlrNyRzbb0IgrNNroYDWQUWaiwndyyqrFqoQrPSDAUopVLyzez6If95JRaUatU3Dgwgav6xJ6xhmhTb3PkLaUpKe5dJE4bHHOYTO7jixaeV/FslUpFz7hgesYFk1FUwaod2fx8IJ9Qfz1lVgch/jpmDu/E4KTwFvnza21kuZMQrZSiKKzelcM/vtxFTqmVcIMP8yb04Oq+cXUqpn1iFwk4OZR3QmNsc9SUFKcT09MLat9b8Pgx09MLUJx133T4bOJD/bnn0o68enN/rhsQT1yoH1f3jeWiThEt8ufXGknPUIhWqLzSwX/WH2LTEffc34B2oUy/rBMGH8/+5M93F4nmxpK6p2rn+VOHRmtQFBw5OeS9vLhq53m/5O7nff9gfx03XJDA1X1jcdW+C5bwEgmGQrQyB0xlLPrxAPnllWjVam4ZnMiYntH13lppTM8YRiVHt4oKNKYFC7Bs3lzn8wveeAMAv4EDaf/f9xusHfWtbSoajwRDIVoJRVFYsSOb5ZuP4XQpRAX6MvvyznSMPP+FLU2xi0RTMM6dW9UzPBHozib8nnuqeoYNyXbkCOqgILRhYQ16XVF/Xg2G5ZUOXkjZR8puE/nllfSIDWLehB70SQjxZrOEaHFKLHZeW3eQ7enFAAxJiuCuYR3w18vn3VP5JXfHL7k7itNJyVdf4TCZap83VKnQGo1E3j+rQTfetefkUPzpZ1Rs2oRh2FDC77yzwa4tzo9X/1Ie/mwH+3PKePGGPhiDfPliaya3vvU73z94KdHBUqRWiLrYnVXCK2sOUlRhQ6dRM/Wi9ozoFnVeO863diqNBuOjc92rRlWq6gHx+M/N+OjcBguEjsJCSr78ivKffgKXC1QqFKcLRVHk/6mZ8FowtNqdrN6Vw5uTB1RtEfPAqC78uNfEso1HeeiKrt5qmhAtgqIofLYlk8/+zEBBITbEjzkju5AYXvsOCqK6oNGjYdHCmnmGRuN55RmeylleTunKVZR9/z2K3Q6AX58+hEy6Hn1i4nlfvzEVfvABhW+/gyM/H59u3Yh+7P/w69271nOLP/+C7EcfrXZMpdfTbcf2pmhqg/BaMHS4FJwupcZEsq9Ww+YjtVe/qHQ4sTlOLsEqr3Q0ahuFaK4UReGNnw6zbp+7tuhlXaOYelF7fHWyMMMTQaNHEzhyZINWoAFwWa2UpaRQsmoVisW9CtenSxdCJk3Ct2uXhmh6oyr95htyn3mW6CeewK9PbwqXvs+xO++i47ffoA2vfe5YbTDQ8dtvTh5oYT1erwVDg4+W/okhvPzjATpFGYgw+PD19ky2HCuifXhAra95be0hFv14oOqxozS/qZorRLOhKApv/5LGun25qFBx96VJDO8a5e1mtVgqjYaAwYMa5FqKw0HZ2rWUfPUVrlL3Fk+6hHhCb7gB3969W8yQaMF7SwmZNImQ664FIHr+E5SvX0/xZ58Tcfddtb9IpUIbGdmErWxYXp0zfOnGvvzt0x0MfvpHNGoVPWODuKpPLDszS2o9/77hHblzaIeqx5mZmXRf0lStFcL7FEVh6W9H+GGPCRUqZgzvxCWdI7zdrDZPcbkw/7aBks8/x5Hv/pCujYwk5Prr8L/wwmYRBF1mM87y8qrHKr0etV5f4zzFZsO6e3e1oKdSqwkYMgTLtm1nvn5FBQdGjACXgm9yMlEPzMGnc+cG/R4ak1eDYbvwAD65ZwgVNgflVgdRQb7M+HALiWfYNdpHq6k2rOppArEQLZmiKCw7ZTf6ey5NkkDoZYqiYNm6jeJPP8WekQGAJjiY4IlXY7j0UlTa5vMeZRo/AfMpw78RM2YQOWtmjfMcRcXgdKI5bThUExFOZVrtGxXrO7Qn5l//xLdrV5xlZRS+8y5HbrqZpJUr0EVHN+j30Viaxf+Uv16Lv15LSYWdn/bnMXfs+Vd6EKI1URSFjzens2pnNgB3DU3iMhka9Srr3r0Uf/I/Kg+6i5mr/f0JGjeOwNGjUPv4nOPVTc+4cgVxcXFVj1W19Arry79fP/z79av2+NC48RQtX07U7NkNdp/G5NVguH5/Hoqi0DHSwJECM09/s5eOkQYmXSDbjAhxqk//zOCrbZkATLu4AyO7G73corbLduQIxZ9+imWHe7NelV5P4OhRBF05Do2h9vUOzYE6IACN4dwFGLShIaDR4CwoqHbcmV+ANqJuIxEqnQ7f7t2xHz1Wn6Z6hVeDYZnVzr9X7yOnxEqwv46xPaN56Iqu6DRSP1yIE77YmsFnW9xDcLdd2J4rerSMYafWxp6TQ/Fnn1Hx+yb3AY2awMsuI+iqq9CGhnq3cQ1Ipdfj26MH5g0bCbz8cuD4nOjGjYTeckudrqE4nVTu349h2LDGbGqD8mowHN87lvG9Y73ZBCGata+3Z7F8czoANw9ux7jeLaswdmvgKCqi5IsvTybMAwFDLiT42mvRGVtnDz186hSyHpmLb8+e+PXuReHS93FZLIRcew0AWQ8/jDbKSNRfHwQg79VX8evTF327RJylpRS+/Q72rCxCJl3vzW/DI81izlAIUdO3O7P58PejANxwgXsPQtF0nOVmSleuPC1hvjch11+Pvl07L7eucQVdeSWOwiLyFr+MMy8fn+7dSXzzP1XDpPasbFCdHMFzlZaS/fg/cOblow4OxrdHMu0/+hCfTg1b07UxqRSltsJ8LUNGRgYJCQmkp6cTHy/zjKL1SNmdwzu/ulfuXds/nhsuSKhxjtOltIqdJJobV2UlZSkplK5chctiAcCnc2dCbpiEb9eWVxlL3ifrRnqGQjQza/aaqgLhVX3imDSg5hvY6l3ZNfYYjGmheww2F4rDQfm6dZR89RXOklLgeML8pEn49unTLHIFReORYChEM7J+fx5v/uQOhON6xXDToIQab8Krd2UzfdkWTh/SySmxMn3ZFpbc2l8Coocqtmyh6IMPceTlAc0vYV40PgmGQjQTvx7M5/V1h1BQGJ0cza0XtqvxRux0KcxfkVojEAIogAqYvyKVUcnRMmRaB4qiUPLVV5R8/gXQfBPmReOT/20hmoENhwp4de1BFBRGdjMy7eL21QJhbqmV3LJKdmSUVBsaPZ0CZJdYWb45nd7xwUQF+hAV1PK2Q1OczgYvnl3jHjYbBW+/jXnDRgACrxhNyPXXN8uEedH4JBgK4WWbjxTyytoDuBSFS7tEcefQDjV6hP/56TBv/VJ7KazaPPqFOyH8zks68Nj45AZtb2MrTUmpua1SdHSDbasE4CwpIW/Ry+7qMRo1YZMnEzh8eINcW7RMkt0uhBdtOVbEoh8O4HQpXNIpgnuGJbXpOarSlBQyZ8+pFggBHCYTmbPnUJqSct73sGVkkDN/PpUHD6L298f4t79JIBTSMxTCW7anF/Niyn4cLhcXJoUz/bJOqM8wz3f3sCQm9ovD6VK4Y+lm8sttZ7xuhEHP21MGolGriApsOUN+itOJ6ekF1Xedr3pSAZUK09MLCBw5st5Dppbt28l77TUUixWt0Z003lIKSYvGJcFQCC/YlVnC8yn7cLhcDGofxszhnc664CUqyLdq7u+fE3syfdkWgGoLaU68+p8Te9InIaRxGt4I7Lm5OPLysO7aXaNHWI2i4MjJofjTz/Dt2QNtZCS6qLoXKy9NSaHogw9BUfDp1pXI+++vU61O0TZIMBSiie3JLuXf3+3D7nTRPzGU+0d2RutBPd4xPWNYcmv/GnmG0S00z7DgnXcpeu+9Op+fM28eAKFTpxL9yMPnPF9xOilatoyyH9cAYBg2lLCpU2W1qKhGfhuEaEL7TWU88+1ebA4nfRJCeGBUF48C4QljesYwKjm6VVSgqW+L6/I6l9lM3quvYd21C1QqQm6YRNCVV7bpeVlROwmGQjSRg7nlLPhmD5UOJz1jg3lwVJfz2qFFo1YxpGP4uU9s5sJun0bQhPHgcpF+7/QaWwedShMeTsLrS0CtRhsZedbr2nNzyXvxJexZWaj0eiKm34v/gAEN3XzRSkgwFKIJpOWbWfDNHix2J91jgvjbmK74aBs2b66l0kVFVc39Rc97nMzZc9xPnLqQ5nhPLnre4/j16nXOa1r37Sfv5ZdxlZWhCQ0l6oE56Nu3b+CWi9ZEUiuEaGTHCir416pUzDYHXY2BPDymmwTCMwgaPZq4RQvRnrY1ktZoJG7RwjrlGZb/8iu5zz6Dq6wMffv2RD8xTwKhOCfpGQrRiNILK3hqVSrllQ46RRl4ZGx3fHUSCM8maPRoAkeO9LgCjaIolHz2GSVfrwDA/4IBhN97L2q9vimaLVo4CYZCNJKsYgv/XJVKmdVOh4gA5o7tjp9eAmFdqDQaAgYPqvP5LpuNgjf+Q8XmzQAETRhPyPXXy0IZUWcSDIVoBDklVp5amUqJxU67sAD+b1wyAT7y59YYHEVF5C1chC0tDZVWQ9i02zEMvcTbzRItjPx1CtHAcsusPLUqlaIKG/Gh/jw6rjsGCYSNwnb0KLkvLcRZWIjaYCBy9v0tcgNe4X3yFypEA8ovr+SplXsoKK8kNsSPf4xLJthP5+1mtUoVW7aSv2QJSmUlupgYIh98EJ2x7hVphDiVBEMhGkip1c6/Vu0hr8xKdJCvOxD6SyBsaIqiULZ6NUUfLwdFwbdHDyJnzkAdEODtpokWzONgWGa113pcpVKh16jRayVbQ7Q9lQ4nz63eR3aJhXCDD4+NTyY0QFYxNjTF4aBw6fuUr18PgGH4cMJuu1VKq4nz5vFvUO/5KWctgxQT7Md1A+KZM7LzGSvwC9GauFwKr6w5yIHcMgL0WuaO7UaEoeXsFtFSOMvN5C9ejHXPHlCpCL35ZgJHj5IVo6JBeBwMn7++D8+n7OP6AfH0iQ8BYHtGMZ/9mcHMEZ0pNFfyn58O46NVM2N4p4ZurxDNiqIovPfbETYfKUSrVvPQFV2JD/X3drNaHXtODrkvvogjx4TK14fI++7Dr29fbzdLtCIeB8PPtmTwf+O6M753bNWxy5ONdI0O5MPfj/HhXRcSG+LHK2sPSjAUrd6KHdmkpOagQsWM4Z3oHhPk7Sa1OtY9e8h7eTEusxlNeBhRDz6IPiHB280SrYzHE3x/Hi2iR2xwjeM9YoPZcqwIgIHtw8gqtpx/64Roxn49mM+Hvx8F4LYh7VpF0ezmpvynnzD9+9+4zGb0HZOIeeIJCYSiUXgcDGND/Fi+Ob3G8eWb04kN9gOgqMImy8lFq7Yrs4Ql6w4BMK5XDFf2all7CDZ3itNJ0cfLKXjrbXC68L9wMMa5c9EE1/wgLkRD8HiY9NEruzPjgy2s25dbNWe4I7OEQ3nlLLmlPwDbM0qqDaMK0ZqkF1bw4vf7cbhcXJgUzq0XtvN2k1qVygMHKFi6FPsx94fu4IkTCb5moiyUaWKFH3xA4dvv4MjPx6dbN6If+z/8evc+4/mlq1eTt+hl7JmZ6Nu1I+qhv2K49NImbPH5USnKqfuk1E16YQUf/H6MtPxyAJIiDdw8KJGEsKZdOJCRkUFCQgLp6enEx8c36b1F21RotvGPL3dRYK6kW3QQj17ZXdKJGoiztJTiTz6h/KefAVAHBBA2ZTIBF17o5Za1bPV5nyz95huyHn6E6CeewK9PbwqXvk/pd9/R8dtv0IbXnA6o2LKVo7fdRtSDD2C47DJKVq6k4K236fDZp/h26dLQ31KjqFcwbC4kGIqmVGFz8MTXuzlWWEFsiB9PXt1Tyqw1AMXlonztWor/9ymuigoADMOGEnLDDWiCZEHS+arP+2TaDTfi17Mn0Y//A3D/Hx28bDiht95KxN131bzHAw+gVFhIeOP1k9e48UZ8u3UnZv4TDfJ9NLZ6/SWXWOxsTy+mwFyJy1X9uesGSFASrY/D6eLFlP0cK6wgxE/PI2O7talAqDidHm+pVBeVhw5R+N5SbEfdC5H07RIJmzwZn86dz/vaojqX2YyzvLzqsUqvr3V7K8Vmw7p7d7Wgp1KrCRgyBMu2bbVe27JtO+FTp1Q7Zrj4Esp+/LFhGt8EPP5r/iHVxJzl2zDbHBh8tNUS8FUqlQRD0eooisLr6w+xK6sEX52Gh8d2IyrQt8Z5TpfCprRCcsusRAX6MqhDGJpWUHiiNCUF09MLcOTkVB3TRkdjfHRunTbbrY2zvJziT/7nriSjKKj9/Ai+/joCR45EpZZh58ZgGj8B8ykfYCJmzCBy1swa5zmKisHpRHPacKgmIpzKtLRar+3Iz0cTHlHjfEd+/vk3/DRla9ac4RkVKh89+nbt0NdjpNDjYPivb/Yw6YJ4/n5FN9mbTbQJyzen88vBfNQqFQ9c3oUOETVrYK7elc38Falkl1irjsUE+zJvQjJjerbclaalKSlkzp4Dp82mOEwm9/E67j5/gqIolK9bR/En/8NlNgMQcMklhN54g6wUbWTGlSuIi4ureqxqoZseZ8yYCSpVjd/JqmMqFf79+xP/6ise/U55HAxzSqxMu6iDBELRJqTszuHLbZkA3DUsiT4JITXOWb0rm+nLtnD65HtOiZXpy7aw5Nb+LSog2nNzceTlgctFzvwna77pQNWxnPlPoouJAbUabWQkuqgz7xpRmZZG4dKl2A67exe6hHjCJk+WLZeaiDogAI3BcM7ztKEhoNHgLCiodtyZX4A2IqL210RE4CzIr/P55yPxnbfJXbiQqDlz8O3lXt1q3bmDvEUvEzH9XtSBgeTMm4fp3/8m9l//qvN1PQ6Gw7pEsCOzmMRwKTklWrc/jxby7q9HAJg0IIHhXWu+0TtdCvNXpNYIhAAKoALmr0hlVHJ0ixkyLXjnXYree69O5zoLCjgy6QYAQqdOJfqRh2ueU26m5LNPKVuzFhQFlZ8vIddcS+Coyxtk3lE0LJVej2+PHpg3bCTw8ssB9wIa88aNhN5yS62v8evbB/OGjYRNOTlvaP7tt0YpmWd6+mmi5z+Jf/9+VccChgxB5eND9uOP03HlSoxz55L1f495dF2Pg+GIblEs+GYvB0zldIsORKupPr4/Ktno6SWFaHYO5pax6MeDKCgM7xrFtf3jqj2fmlXCflM5B3LLqw2Nnk4BskusvPj9fjpHGehiNJBcSwWn5qS+Ifv01ymKgvnnnyla/gmusjIAAoZcSMhf/oI2NPS82igaV/jUKWQ9Mhffnj3x692LwqXv47JYCLn2GgCyHn4YbZSRqL8+CEDYbZM5OnkyBe+8i+GySyld9Q2W3buJfnJ+g7fNdiwdtaHmVIU6wIA9PQMAfbt2OIuKPLqux8Hwkc93AvDymgM1nlMBhxeM8/SSQjQrOSVWnl29D5vDSd+EUO64pEONhO/5K1L5Pa2wztd8de1BAAZ3CGP5PUMatL0NLez2aQRNGI91125y5s075/nR8+fj27MH2sjIqmO2o0cpXPo+lQfd37cuNpawKZPx7d690dotGk7QlVfiKCwib/HLOPPy8enencQ3/1M17GnPygbVyY6Qf/9+xD3/HHkLF5H30kvo27cj4ZXFjZJj6NujB7nPPU/ss8+gDQsDwFFYSO7zz+Pbqyfg/v3TRUd7dF3JMxTiFCUWO49/tQtTqZUOEQHMm9ADX13NobxTe4YnAt3ZzBjeqcX0DE9QnE4Ojrwch8lU+7yhSoXWaKTTjz9UDXe6zGaKP/+Csh9+cA+J+vgQcs1EAkePlj0HvaS1vU9WHk4jY8YM7BkZaGPcc/GO7Gx0CQnEv/oKPh06UPbDD7jMZoKvvrrO1/Xqb6fTpbDwh/18sTWTvLJKjEG+XD8gnlkjOknpJdHkKh1O/r16L6ZSK5GBvjw8plutgRAgOTaY5NhgnC6Fz7dkkFNirXXeUAVEB/vy4KguLWbO8ASVRoPx0bnuVaOnr947/vdpfHQuKo3GPST6628UL/8YZ0kpAP6DBhF6801Vn96FaAg+SR1IWrUS86+/Yks7AoC+QwcCLr6oKi3nxFynJ+oUDN/9NY2bBiXiq9Pw7q+155mcMO3iDnW++evrD7Fs41FeuKEPnaMC2ZlZwt/+t51AX61H1xHifDldCi//eIBDeeUYfNwb9Ib4n3vpuUatYt6EZKYv24IKqgXEE6Fv3oTkFhcITwgaPRoWLayZZ2g0VuUZ2tLTKXz/v1Tu2weALiaa0Nsm49ezh7eaLVo5lVqNYehQGDq0wa5Zp2D49i9pTOwbh69Ow9u/nDkYqlSeBcM/jxYxKtnIiG7uRTcJYf58vS2L7enFdb6GEOfrxAa9fx4tQqdR87cruhEb4lfn14/pGcOSW/vXyDOMbgV5huAOiIEjR9aoQKPYbBR++CFlKd+Dy4VKryf46qsJGjtGhkRFozJv2IB5w0YchQXgqj4mE/t03dMpTlWn39hfHh5R69fna0C7UD78/RiH88pJijSQmlXKH0cLeWxccq3nVzqc2Bwn67+VVzoarC2i7fp6exbfH9+gd+bwTnSNDvT4GmN6xjAqObpVVqAB95BpwOBBgPvDQ8XGjRR99DHO4mIA/C+4gNBbbq61iLMQDSnvlVfJf+01fHv2dC/aaqA/Ma9+fJt+aUfKrA5GvrgejUqFU1F4aHRXJvaLq/X819YeYtGPJ1exOkobvtSPaFt+PpDHR5uOATDlonYMTqr/m7lGrWr1G/zaMzMpfP+/WPfsAdzDpWG33XrWrX2EaEhFyz8mdsHTHi2OqYs6BcOnVqbW+YL/GF97r642K3dm89W2TBb9pR9djO6e4ZMrU6sW0pzuvuEduXPoyWHYzMxMui+p8+2EqGZXZglvrD8MwLjesS1+OLMxKTYbxV9+Sem334LThUqnI/iqCQSNHdtiy3qJFspmx69fv3Of56E6BcPdWSXVH2eW4nApJEW6Ex/T8s1oVCp6xnm2ZHzBN3uYfllHrurj3gi4W3QQmUUWXlt3sNZg6KPV4KM9ubqvLe0aIBrWsYIKXkjZd3KD3sGJ3m5Ss1V58CAFb76FPTsbAL9+/Qi79ZZqeYVCNJWQSddTsnIlkffd16DXrVM0+fjuk0nCb/18GIOPlhcm9SXYXwdASYWdhz7dzqD2ni2httidNVIo1GpVrSlNQjSU/PJKnlm9B4vdSbfoIO67TFJ5auOy2Sj5/HNKv10NioImOJiwqVPwHzDA200TbZir0kbJJ/+j4rcN+HTtWmOxlnHuI/W6rsddqzd/Psx/7xhcFQgBgv11PDS6K7e9/Tt3DUuq87VGdjPy6pqDxIX40jkqkN1Zpbz9SxqTLmj5iaGieTJXOnjm270Umm3Ehfjz0BVdZaf6WlQeOED+m2/iyDEBEHDxxYTecguaWspgCdGUKvftw7dbN/fXB06rhHYeH2o9DoblVgcF5TY4rQRpgbkSs4erO+df3YMXUvbxjy93k1/uTrq/eVAi94+UjT1Fw7M7XbyQsp+MogpC/fXMvbJtbdBbFy6bjeJPP6XsuxR3bzAkhLBpU/FvhDkaIeqj3ftLG+W6Hr8TXNEjmr99up3HxnWv2s5m27Finv52D1f09KwWnMFHy7wJPZg3QZJzReNSFIUl6w6Rml2Cn07Dw2O6EWHw8XazmhXrvv0UvP3Wyd7g0EsIvelm6Q2KNsHzzX2v6cW/vknl/o+34XC6c/60ajU3DIzn0SulCK9onj7cdIzfDuWjUat4YFQX2teyQW9b5aqspPh/n1L2/ffu3mBoKOG3T8OvTx9vN00IADJmzSJmwQI0BgMZs2ad9dz4xYvrdQ+Pg6GfXsM/J/bi0Su7c7SgAoB24f7462W4STRPq3flsGJ7FgD3DOtI7/gQ7zaoGbHu20fBm2/hyM0FwDBsKKE33YQ6QD4siOZDbQjkRHa9++uGV+8I5q/X0j0mqCHbIkSD25FRzNLfjgBw48AEhnWRdAAAl9VK8Sf/c+8uAWjCwty9QUmeF81Q7IKna/26IdUrGO7IKGbVjmwyiy3Yna5qz71x2wUN0jAhzleZ1c6SdYdQULisaxQT+9Ze2aitsaamUvD2Ozjy8gAwXHYZoX+5EbW/v5dbJoT3eBwMv96exV8/2cawzpH8fCCfoZ0jSMs3k1deyRU9PFtAI0RjURSFt35Oo6jCRmyIH9Mubt/mcwldVivFy5dT9uMaADThYYTffgd+xzdEFaK5OnzNtXWuQZr0+ef1uofHwfC1tQf5x/hkJg9pT4/HVzNvQg8Swvx49IudRAb61qsRQjS0nw/k83taARq1ilkjOlerXNQWWXbvpvDtd3Dku+v5GkYMJ/TGG1H71X13DiG8JXDkyKqvlcpKij76CJ+OHfHr2xcAy/btVB48SOhNN9X7Hh4Hw6MFFQzvGgWATqumwu5ApVJxxyUduOnN33lwVJd6N0aIhpBbZq3ad3PSgAQ6tNKVo4rTWWNbpRM7zp/gslgo+ng55WvXAqCNCCfsjjvw6yHpTKLliJw5o+rrrMceI/S2W4maPbvaOXkvL8Z+yp6bnvI4GAb76TDb3Mn10UG+7Mspo1t0ECUWB1abs94NEaIhuFwKr609hMXupKsxsKrubWtTmpJSc8Pd6OiqDXcBLDt3UfDO2zgLCgEIHDmCkBtukN6gaNHKVn9Hh0//V+N48FUTSLt+EjTmfoanGtQhjF8O5NMtOogre8Xw5IpUNhwq4OcD+VzUqXVvXyOavxU7stibU4qvTsOM4Z1Qt5L9BE9VmpJC5uw5nF7E12EykTl7Dq5/P4szN4/y9esB0EZGEn7H7fgm131HGSGaK5WvLxVbtqJv377a8YotW1H51L+QhsfB8Mmre1B5fIPdmcM7odWo2HK0iLE9o5k1QsqoCe9Jyzfzvz8yAJhyUXuiglrfHLbidGJ6ekGNQOh+0n0s5x+P49erF6hUBI4aRcik61H7tr6fhWibwiZPJmf+fKypqfj17gWAZfsOij//nIjp0+t9XY+DYYj/yb3L1GoV913Wqd43F6KhVDqcvLLmIA6Xi4Htw7isleUT2nNzceTlYd21u9rQaG0UqxWX1ereYWLgQAmEolWJuPsu9AnxFL7/X0pWrADAJymJ2Kf/RdDYsfW+br3yDI8WuD+BHy2sYN6EZCIMPqzdl0tciB9djI1THUCIs/l4UzqZxRUE++m4c2hSq0ujKHjnXYree6/O51t37iTrrw8ROnUq0Y883HgNE8ILgsaOPa/AVxuP967ZeLiAKxb+xLb0Yr7blUNFpXvRzJ7sUl76fn+DNk6IutiRUcy3u9wbz957aUeC/XTneEXLU9/Q3ro+EgjReDzuGT67ei8Pje7KnUOT6PH46qrjF3WM4P3fjjZo44Q4l/JKB0vWHQJgVHI0/RJDvdyixhF2+zSCJowHl4v0e6fjLCg447ma8HASXl8CarXsRi8albO4mJx//suduqNWEzh6FNGPPnrW2rZHb5tMxebN1Y6F3HgjMfOfqNM9FaeTwveWUrp6NfbsbBS7vdrzXX/f6PH3AfXoGe7LKau10kx4gJ7CClu9GiFEfbirzBymqMJGTLAft16Y6O0mNRpdVBR+PXrg27MnIddfV/tJKhWoVETPcy+g8evRA11UVNM2VLQpmX/7O5UHD5L4ztskvL6Eij/+IPvxeed8XcikSXT++aeqf1F/e6jO98x/9VUK33uPoLFjcZWVET51CoGjLkelUhE5Y8a5L3AGHgfDIF8duWXWGsd3Z5US3QpX74nm65eD+Ww87K4yM2N4p1ZfZcZVWUnBf97EsnUb+k6dUJ326VtrNBK3aGFVnqEQjany0CHMP/9MzFNP4denD/4DBhD92GOUfvMNdlPuWV+r8vNFGxlZ9U9jMNT5viUrVhL91JOE3z4NlUZD0LhxxP7zn0Tcdx+W7dvr/f14PEw6oU8Mz3y7l1dv6Y9KpcKlKPxxpJCnv9nDtf2lELJoGvnllbzzi7vKzLX94ukUVfsfk9OlsCmtkNwyK1GBvgzqEIamBeYe2jMzyVv8CvasLFCpiLjnHgLHjsHy55azVqARorFYtm1DHRRUrbZtwJAhoFZj2bEd3ahRZ3xt6YqVlH69Am1kBIbLhhNx3/Q6F4Nw5Ofj28Vd6UwV4I+zrAwAw/DLyHv55Xp/Px4Hw79d0Y3Hv9rFRQvW4FQURr20HqdL4eq+cZJnKJqEopysMtM5KpCJ/Wr/ELZ6VzbzV6SSXXJyJCMm2Jd5E5IZ0zOmqZp73sy//UbBO++i2GxoQkKIuG86vt26ARAweJCXWydaCpfZjLO8vOqxSq9Hrdef5RVn58jLRxsWVu2YSqtFExyM83gN3NoEjR+PLjYWbVQUlfv3kfv8C9iOpNV5U16d0YgjLw9dbCz6hETMv/6GX48eWHfuRHUe349HwVBRFPLKK3niqh7cP7Iz+3LKMNsc9IgNbrX1H0Xzs3JHNqnZJfhoNcwc0anWnt7qXdlMX7aF01PTc0qsTF+2hSW39m/2AVGx2Shc9gHl69YB4Nu9OxH3TUcTHOzdhokWyTR+AuZTRg4iZswgctbMGuflvvACBW++ddZrJX2zqt7tCL3xhqqvfbt2QRsZybGp07AdO4Y+8dzz/oGjLse8YSN+ffoQdustZP79YYo/+xRHVjZhU6fUu10eBkO47Lm1pDxwKR0iAogNkRqHomkdK6hg+eZ0AKZc1A5jLfPUTpfC/BWpNQIhgII73WD+ilRGJUc32yFTuymX/FcWYzt6DFQqgq+6iuBrJqJSezzNLwQAxpUriIs7OYpypl5U2LRpBF9zzVmvpY+PRxsZgaOwsNpxxeHAWVKCJiKizu06saG07WjdgmHUX/9a9XXQlVeijYnBsm07+nbtCBwxvM73PZ1HwVCtVtE+PICiChsdkJ6gaFo2h4vFaw7gcLkY0C60aveUE1KzSthvKudAbnm1odHTKUB2iZUXv99P5ygDXYwGkmObT2+r4o8/yH/zTRSLFXVgIBH33uMurybEeVAHBNRpoYo2LKzG8Gdt/Pr2xVVaimXXbvx6undBMW/8HVwu/Hr3qXO7rHv3uu8bVb80IP9+/fDv169erz2Vx3OGD4/pxoJv9vDPib3oGi3VZkTTWb75GOlFFQT56rh7WMcaVWbmr0jl97TCM7y6plfXHgRgcIcwlt8zpEHbWh+Kw0HRx8spS0kBwKdzZyJm3FenNyYhmppPx44EDB1K9uP/IOaJJ1AcDkxPPUXQlVeiM7o/qNpNJo5NnUbss8/g17s3tmPHKFm5EsOwS9GEhFC5fx+mBc/gf8EF+HbtWud7l3z1FUUfL8eekUH7jz9CFxdH4dKl6OLjq+196AmPg+GDn2zDancxdtFP6DRqfHXVV69tnyfLukXD25VZwqqd7ioz95yhysy8CclVPcMTge5sZgzvVNUz9DZHQQF5r7yC7dBhAIKuHEvI9dej0tarYqIQTSLuuX+T89Q/OTZ12vGk+9FE/9+jVc8rdge2tDRcFvdIjUqno+K3DRQtfR+XxYI2JprA0aM8KrBd9NFH5L28mLApk8l//Q0Ul3vjCHVgEIVL32+6YPj4BNkUVDStU6vMjOxmZEC72qvMJMcGkxwbjNOl8PmWDHJKrLXOG6qA6GBfHhzVpVnMGVq2byf/9Tdwmc2o/f0Jv/su/Pv393azhDgnTUgIcS88f8bn9fFxdN+7p+qxLiaGdsv+e173LFz2ATFPPUng5ZdT8J83q4779uxB7r//Xe/rehwMrx8QX++bCVEf7/6SRoG5kuggX24b0u6c52vUKuZNSGb6si2ooFpAPBH65k1I9nogVJxOij//nNIVKwHQd+hAxIz7pGqMEGdhz8jAt3v3GsfVej0ui6Xe163XGIzTpfDd7hwO5rpzVjpHGRiVbESrkZVuomH9ejCfXw/lo1apmDmiU41h+TMZ0zOGJbf2r5FnGN1M8gwdRUXkL1lC5d59AARePpLQm25CpWt9RcaFaEi6+Hise/eii6ueX1z+8y/oOybV+7oeB8P9pjLuXPoHeWWVJEW6V5S+vt5MWICet6cMlEU1osHkl1fy9vEqM9f0i6NTlGe/W2N6xjAqObrZVaCxpqaS99pruErLUPn6EH77HQRcONirbRKipQibOoWcJ59CqaxEASw7dlC6ahX5/3mTmKeerPd1PV9N+tkOuhgNrJh5CcH+7k+xJRV2/vq/7cz9fAef33dxvRsjxAmKorBk3SEqbA46Rhq45gxVZs5Fo1YxpGN4A7eufhRFoeSrryj54ktQFHQJ8UTOnIkupnkn/wvRnIROmoTa15fcRYtQLBayHvob2qgooh+dS/C4cfW+rsfBMDWrlBWzTgZCgGB/HX+7oitXvfJLvRsixKm+2ZnD7qwS9MerzLT0IXhnaSn5b7yBdecuAAzDhhI6efJ5lcMSoq1RHA53asYllxA8YQIuiwVXRQXa8PP/wOvxO0yHiADyyyprHC8or6R9uCTii/N3rKCCjzYdA2Dyhe2ICW7ZlY6s+/eT/Y/Hse7chUqvJ/yuOwm/804JhEJ4SKXVkvPEfJRKdwxS+/k1SCCEeibdP7FiN3Mu70K/xBAAth4r5uUfD/DI2G6UWU9utBjoK4sBhGfsThevrHVXmemXGMrI7i13ZaWiKJStXk3R8k/A5UIXE03EzJnoExK83TQhWiy/Xr2w7tlTYwHN+fI4GN6+1L1D8YwPt1QtUz+xdP2O48+dqP94eEH9x29F2/TJH+kcK6wg0FfHPcOSalSZaSmc5WYK3noTy5atAPhfOJjwadPqvE2NEKJ2oTffhOnZf2PPMeHbIxm1v3+15z2pZHMqj4PhR3ddWK8bCXEuqVmlrNx+vMrMsCRC/FvmMGJlWhr5r7yKIy8PlVZD6C23YBgxosUGdiGak8wH3YW6Tf/618mDKpV7JwmViu6pu+t1XY+D4YVJzWNlnmhdKmwOXl13EAWF4V2juKB9y6vHqSgK5WvXUrRsGYrDiTYykoiZM/Dp0MHbTROi1ej0w/eNcl2Pg+G6fbkE+GgZePzN6v0NR/hoUzqdoww8dXXPaqtMhaird389QkF5JVGBvkwe0t7bzfGYYrdTsHQppStXodjt+CYnY/zHY2iDgrzdNCFalYaeKzzB42C44Ju9PDLWvcv23pxS/rlyD3cO7cCGwwU8tSqV5yfVfesOIQA2HCrg5wN5qHBXmfHT163KTHPhKCoi6+8PU/H77yg2GwC2Q4eo2LwZ46NzCRotxeuFaEiVh9MoWraMysPuwvY+SUmE3norPkn1H4XxOLUivaiCTlHuKv/f7sxhZPco/j6mG09d3ZN1+/Lq3RDRNhWabbz9i/sX+pp+cXQxtqwKRpWHDpF+73TMP/9cFQhPcJhMZM6eQ+nxLZmEEOev9LsUDl91Fdbdu/Ht2hXfrl2xpqZy+KqrKP2u/n9rHvcMdRo1VrsTcNeNvLa/u3B3sJ+O8kr72V5aw8XPrCGzuGZh1dsubMdTE3t62jTRwrirzBykvNJBUqSBa/s3zvBHY7Dn5lKWkkLJV19j3bOn9pMU9zrrnPlPuqvMqNVoIyOlELcQ5yH3+eeJuPsuIu+/v9rxvJcXk/v88wRdUb+RGI+D4cD2oTy1ag8XtAtle0Yxr9zs3momLd/scXL01zMvxqmc3FNgf045t779O1f2kvJUbcHqXTnszDxeZWZ4y6kyozgcZD70NyybNtXpfGdBAUcm3QBA6NSpRD/ycGM2T4hWzZGXR/DVV9c4HnzVBAreeafe1/X43Wf+1T3RqlV8szObf07sSXSwLwDr9uVxaZdIj64VbvAhKtC36t+Pe020C/fnwqSWt5JQeCa9sIIPj1eZuXVwIrEhLSP/zllWRu5zz2M7erRer5fkCiHOj/+ggVT88WeN4xV/bsF/wIB6X9fjnmFciB/vTB1Y4/jjE5Lr3QgAm8PFl1szuXNoy020FnXjcLp4de1B7E4XfRJCGJVs9HaT6sR29Ch5ixbhyC9A3749wbNmgtNFzrx553xt9Pz5+PbsgTbSsw+MQojqAkeMIPeFF7Du3o1fX/eCTcu27ZR+9x2Rs2ZStmZNtXPrql77GTaGlNQcSq2Os24eXOlwYnO4qh6XVzqaommigf3vzwyOFJgx+Oi4d1jHFvHhx7zxdwreegvFZkMbFUXknDno4+NQnE7ylyzBYTJVzRFWo1KhNRoJuf46VJqWtUpWiOYoZ757m6aijz6i6KOPan0O8DgBv9kEw+Wb07msSyTGIN8znvPa2kMs+vFA1WNHaX5TNE00oGMFFazYngXA3cOSCA1o3lVmFJeL4k8/pXTlKgB8e/Yk4r770BjcRelVGg3GR+eSOXvOySoYJxwP8sZH50ogFKKBdN+T2ijXbRbBMKOogl8P5vP6rWcf771veEfuHHoyjyQzM5PuSxq7daKhKIrCO7+m4VIUBrUPY1CH5j037DKbyX/9dSzbdwAQdOWVhNwwCZW6+lR70OjRsGghpqcX4MjJqTquNRolz1CIJuAsLUVzngUumkUw/N8fGYQbfBjR7exLzn20Gny0Jz9hG3yaRfNFHf10IJ+9OaXotRomX9Te2805K3tmJrmLFuHIMaHS6Qi/8w4Chgw54/lBo0cTOHIkFX/8iSMvD21kJP4XDJAeoRANLP/NN9HHxRF05ZUAZMyeQ1lKCtrISBL+8wa+3brV67r1Xst+JN/M+v15VTmHSm3zJXXgcil8+mcG1/WPbzFL64XnzJUOPtjoXoF5Xf84Igw+Xm7RmVVs2Ur2k0/iyDGhCQ8j+h+PnTUQnqDSaAgYPIjg8eMIGDxIAqEQjaD44+Voo93pd+W//op5wwYS3nyTgGFDyf33c/W+rsddqyKzjZkfbeG3QwWogHUPDScx3J+/f7qDYD8dj433bFXpLwfzySy2cMMFZ144I1q+5ZvTKbXaiQ3xY1wzzSNVFIWSr76i5PMvAPDp2pXIWTPPe/hFCNFwHPn56GKiAShft56gMWMwXHIxurhYjtz4l3pf1+Ou2FMrU9Go1fz2yAj8dCc/+Y7vE8v6/Z6XYxvWJZIjz4wjKdLg8WtFy5CWb+b7VBMAt1/coVmOALgsFvIXL64KhIGXj8T48N8lEArRzGiCgrBnu+fmzT//TMBFx0dtFMDprPd1Pe4Z/nQgn/dvH1Sj2kyH8IBaS6uJtk1RFN7+5TAKChd1jKBnXLC3m1SD3ZRL3sKF2DMzUWk1hE2ZguHSS73dLCFELQJHjSLroYfQt2+Hs7gYw9ChAFj3pKJrl1jv63ocDC02R627ChRbbOi1ze8Tv/CuNXtzOZhbjp9Ow20XtvN2c2qw7NxF/muv4TKb0YSEEDlrJj6dO3u7WUK0CPmvv075uvVY9+5FpdPRdfO5SxQqikL+4sUU/e9/uErL8Ovfj5h589C3b1+nexrnPoIuLg57Tg5RDz2EOsCd5uTIyyP0ppvq/b14Xpu0Qxifb8ngr6O7Au5UKpdL4Y31hxkiG/+KU5RZ7Xx0vOTa9QMSmlVOoaIolH37LUXLPwFFQd8xicj770cbGurtpgnRYig2O4FjrsCvb1+KP/usTq8peOstCv+7jNhnFqCLjydv0cscu/MuklatRO1z7oV1Kp2O8Dtur3E8fOpUT5tfjcfBcO7Y7tzy1kZ2ZJRgdyos+HYP+03lFFfY+Wz6uVfcibbj403plFc6SAj154oezafkmstmo/CddzD/tgEAw7ChhE2ejErffIK1EC1B5P2zACg+Ptd+LoqiUPj++0Tcey+BI0cCEPvsMxy4+BLKfviB4HHjGq2t5+JxMOwaHciahy7j/d+OYPDRYrY5GNMjmslD2hF1luoxom05mFvGmr25ANx+SfNZNOMoKCBv4SJ3oW21mtBbbibw8stbREk4Ic6Hy2zGWV5e9Vil16Nu4g+A9owMnHn5Jxe9AJrAQPx698aybXvLCoYAQb46Zo6QeRVRO5dL4e1f0lBQGNo5ku4xzWNFpnXfPvIWL8ZVWoY6MJDImTPw7d7d280SokmYxk/AfErua8SMGUTOmtmkbXDkuUtoasKrT6lpIiJw5Ht3c3iPg+Ge7NJaj6tU7goxsSG+1arEiLbnhz0m0vLN+Ou13DrY+4tmFEWhfM0aCpctA6cLfbtEImfPRhsR4e2mCdFkjCtXEBd3cgPtM00L5L7wAgVvvnXWayV9swqfpKQGbZ+3eRwMr3z556o92U7UnDl1gEmrUTO+dwxPX9MLX50ExbamxGJn+eZ0AG64IIFgf51X26M4HBS+/1/K160DwP/CwYTfeWeTDw8J4W3qgAA0hnPnc4dNm0bwNdec9Rx9fP2KpGgj3R9AnQUF6KJOlt905ufj4+EojWKz4SgsBJer2nFdbGz92ubpC964dQDPrN7LPcOS6JMQAsD29GLe/DmN2SM743QpPLt6Ly+k7OP/xp3fHoei5fng96OYbQ46RAQwupZ9Cp0uhU1pheSWWYkK9GVQhzA06saZr1McDvIWv4Jl61ZQqQi5YRJBV14p84NCnIU2LAxtWOMU0dfFx6OJjMC8YWPVFIWzvBzLjh2E3FS36jG2I0fI+r/H3H/Xp1IUj7dtOpXHwfDVtQeZN6FHtV3tu0UHER3sx4sp+/hq5iX46TX8a9UeCYZtzN6cUn46XoXo9os7oD4tyK3elc38Falkl1irjsUE+zJvQjJjejZsiTbFbncHwm3bUOl0RM6aiV/fvg16DyHaOntWFs6SEuzZWeB0Yt2zBwB9YmJV/t+hsVcS+eADBI0ahUqlImzyZPJffx19+3bo4uLJe/lltFFRBF5+eZ3umTX3UVQaDQmvL3Fvlt1AH249DoZ7c8qIC/GrcTwuxI+9OWUAJMcEkVtmrXGOaL2cLoV3fkkDYES3KDobA6s9v3pXNtOXbeH0cu45JVamL9vCklv7N1hAVGw28hYvxrJ9hzsQPvAAfj17NMi1hRAn5b28mJIvv6x6nHbNtQAkLl1KwOBBANjS0nCVnVzFGn7nnSgWC9mPz8NVWorfgP4kvPmfOuUYAlj37qXDZ582+Jylx8GwY6SBJesOseDaXlUVZ+xOF0vWHaLj8fqiplJrs96VQDS873bncKywAoOPlr8Mql4SyelSmL8itUYgBPe8swqYvyKVUcnR5z1kqths5L38MpYdO1Hp9UQ+MAe/HhIIhWgMsc8sIPaZBWc9p/vePdUeq1QqIu+/n8j776/XPX06dsRZVFSv156Nx8HwqYk9uHPpHwxZkEu3GPen/305ZThdCm9PHQjAscKKZll6SzSOIrON//3hXjRz06BEgnzdi2ZSs0rYbyrnQG55taHR0ylAdomVF7/fT+coA12MBpJjPa9h6rLZyFu4COuuXaj0eqIefADfZBmqF6I1iXror+Q+9zyRDzyAT5fOqHTVF+nVZZFQbVRKPTYiLK908OXWTNLyzQAkRQZwdd+4Jt9sNyMjg4SEBNLT04mv5+omcf4W/3iAXw/l0zHSwD8n9qxaoHLjGxv4Pa3Q4+sN7hDG8ns8q2bkstnIe2kh1t27Ufn4EPXXB/Ht1g3F6ZQNd0Wb1treJ/d0P/4B9/S5wqZcQGN3uhj5wnremXoBt0rPTwC7Mkv49VA+KlTccUmHais1501IruoZvrr24DmvNWN4p6qeoSdcNht5L7yIdc8edyB86K/4du1KaUoKpqcX4MjJqTpXGx2N8dG5BI0e7dE9hBDNQ+LS9xrluh4FQ51GTaWj/vtFidbF4XTx7q9HALg82VhjT8rk2GCSY4NxuhQ+35JBTom11nlDFRAd7MuDo7p4PGfoqqwk78UXse7Zi8rXh6iHHsK3SxdKU1LInD3H/Wnx1DabTO7jixZKQBSiBQoYNKhRrutxwcjJQ9qzZN1hHE7XuU8Wrdo3u3LILK4gyFfHjQMTznieRq1i3gT30Mbpoe7E43kTkj0PhFYruc+/4A6Efr4Y//Y3fLt0QXE6MT29oEYgBKqOmZ5egHIeG4EKIZqOdd8+lOPJ9dZ9+876r748nuTbnl7Mb4cK+PlAHl2jA/E/bW/DN267oN6NES1Hfnkln/6ZAcDNgxPPOV88pmcMS27tXyPPMLqeeYYui4XcF1+ict++qkDostkpXrEC28FD1YZGa1AUHDk55L28GH2njvh07IRfstQoFaK5Spt4DZ1/+RlteDhpE69xzxfW9mG3KZPug/x0jOkZXa+bidbj/Q1HsTmcdDUGVivAcDZjesYwKjn6vCvQuCwWcp9/gcoDB1D7+RH18N/xSUriyG2TsWzeXOfrFLzxBgB+AwfS/r/ve9QGIUTT6fTD92iOV8Xp9MP3jXIPj4Ph85P6NEY7RAuyPb2YTWkFqFUq7rgkyaPyZhq1iiEd678JtMtiIfe556k8eBC1vz9Rf/87PkkdADDOnUvloYPYDh6qCnRnE37PPVU9QyFE86U7pcD4qV83pKbNhRAtnt3p4r3fjgAwpmc0ieH+TXZvV0UFuc8/T+XBQ6gDAjA+/Hf07dtXPe+X3B2/5O4oTiclX32Fw2Q641CK1mgk8v5ZkmYhRAtUeTiNomXLqDx8GACfpCRCb7216oNxfdQrGH6zM5tVO7LJLLZgP20hzar7h9a7MaL5W7E9i+wSCyF+eq4f0HQ5Sy6zGdNzz2E7nFZrIDyVSqPB+Ohc96rR0+cWjvdijY/OlUAoRAtU+l0KmX/9K349elTVG7Zs387hq64i7oUXCLqifqvEPV5N+u6vafztf9uJMOhJzSqlT0IIof56jhVWcFnXus0diZYpt9TKF1szAbhtSDv89U0zsOAsN2P69/FAaDBgnPvIGQPhCUGjRxO3aCFaY/WdM7RGI3GSViFEi5X7/PNE3H0X7Zd/jHHuIxjnPkL7jz8i4u67yX3++Xpf1+N3s/9uPMrT1/bi6r5xfPpnBvcO60hiuD8vpuyj2GKvd0NE87d0wxHsThc9YoO56Dzm/TzhLDeT++yz2I4eRR0YiPGRh9EnnDmN41RBo0cTOHKkVKARohVx5OURfPXVNY4HXzWBgnfeqfd1Pe4ZZhVbGNAuFABfnYbySgcA1/SP5+vtWfVuiGje/jxaxJ9Hi9CoVUy7uH2T7AnoLC8n99ln3IEwKNDdI6xjIDxBpdEQMHgQwePHETB4kARCIVo4/0EDqfjjzxrHK/7cgv+AAfW+rsc9w8hAH4or7MSHQmyIH1vTi0iODSK9sKLWtQqi5at0OFl6fNHMlb1iiA9t/EUzzrIyTM8+i/1YujsQPjIXfXzjrCITQrQcgSNGkPvCC1h378avrzu7wbJtO6XffUfkrJmUrVlT7dy68jgYXpQUwQ97TPSMC2bSBfE8tTKVb3fmsCOjWPIPW6mvtmWRW2YlPMCH6/o3/qIZZ2mpOxCmZ6AJDsL4yCONtpxaCNGy5Mx/EoCijz6i6KOPan0O8DgB3+NguODaXriOdwEnD2lPiL+eLUeLuLx7FDcPluLdrU12iYWvt7mHv28b0g5fXeMOMzpLSzE98yz2jAw0ISEYH3kYXWxso95TCNFydN+T2ijX9TgYqtUq1KdUmLyqTyxX9ZE3q9ZIURTe+/UIDpeL3vEhDO4Q1qj3c5aUYFrwDPasLHcgfHQuumgZbRBCNL56rY0vsdjZnl5MgbkS12n1uq9rwtwz0bg2Hylie0YxWrW60RfNOIuL3T3CrCw0oaEY5z4igVAIUaVi61acxcUEDh9edaz4yy/JX/wKLouFwJEjMf7jMdR6fb2u73Ew/CHVxJzl2zDbHBh8tNV2IVCpVBIMWwmr3cnSDUcAmNAnhphgv0a7l6OoiNxnnsWenY0mLMwdCE/LDxRCtG35ry3Bf9DAqmBo3bef7Mf+Qcg1E9EndaTgnbfRRkUROWtmva7vcTD81zd7mHRBPH+/oht+elmm3lp9viWTgvJKIgw+TOzXeItXHEVFmBYswJFjQhMehnHuXHRRUY12PyFEy2Tdu4fI+++velz6zTf49e5NzFNPAaCLiSZv8StNFwxzSqxMu6iDBMJWLKOoglU73Ytmpl3cHh9t4/xfnxoItRHhRD3yiARCIUStXCWlaCNOFvuo2LwZw7CT5T99e/bCkZ1d7+t7nHQ/rEsEOzKL631D0bwpisK7vx7B6VLonxjKgHaNs2jGUVCA6V9PHw+EEdIjFEKclSYiHHuGew9VxWbDmpqKX5+Tuyi5zGbQ6ep9/Tr1DL9PNVV9PaJbFAu+2csBUzndogPRaqrH01HJMtfTkm04VMDurBJ0GjVTL2rfKPdwFBRgenpBVYk046Nz0YY3TXk3IUTLZBg2jNwXXiTqob9S9sOPqH19q1Wcqdy/z+MKVaeqUzC8+79/1Dj28poDNY6pgMMLxtW7McK7LDYn/914FICJfeOICvJt8HvYMzMxPf88zoJCtFFRGOc+IoFQCHFOkbNnkzFrFkdvm4za35+YZxagOmXlaPFnnxNw8cX1vn6dgmGaBLg24dM/0ymqsGEM8mVCI+SOWvftI++lhbgqKtDFRBP18MNowxo3d1EI0TpoQ0Npv2wZzrIy1P7+NeoMxy98CbV//UtFyua+AoBjBRV8uysHgGkXd0Cv9Xg6+azMv2+i4I3XURxOfDp1IvLBB9AYDA16DyFE08p//XXK163HuncvKp2Orps3nfM1WY/MpeTLL6sdC7jkEhLferNO99QEBtZ+PCSkTq8/kzoHw98O5vP417v54r6LCPStPklZarVz3Wu/8c+JPRmc5NmQV06JlWe+3cO6/XlYbE7ahwfw3KTe9I4P8eg6ov4UReGdX9NwKQqD2ofRNyGkQa9funo1RR+6awj6XzCA8HvvrXdirBCi+VBsdgLHXIFf374Uf/ZZnV8XMHQosU//q+qxqhm8H9Q5GL7zaxp/GZhQIxACBPnquHlwIm//kuZRMCypsHPdkt8Y0jGc96YNIjxAT1q+mWC/+q8IEp5bszeXvTml6LUaJjfgohnF5aLow48oS0kBIHDUKEJvuRmVumF7nUII74i8fxYAxZ9/4dHrVHo92sjmtRl8nYPhnuwyHhnb7YzPD+0cyZs/Hfbo5kvWHyI2xJfnJ51cHpsQ1vjbA4mTsootLN3gXjRzwwXxRBh8GuS6is1G/utvUPGHe/FV6E1/IXDMmCbZB1EIUZPLbMZZXl71WKXXe22EpmLTJvZfdDGaoCD8LxxM5OzZaENDvdKWE+ocDPPKK9Ge5RO9Vq2iwGzz6OY/7DExrHMk933wJ78fLsQY5MttQ9px06DEWs+vdDixOU4WQz2xsbCoH4fTxeI1B7A5nPSMDWZcr5gGua6z3EzewoVU7t+PSqsh/O67CbjwQgAUp1N2nhfCC0zjJ2A+5W8tYsaMeldrOR8BQy8hcPQodHHx2NOPkfvSQtLvvof2H3/k1feCOgfD6CBf9pnKaB8RUOvze3NKiQryrFdxrLCCZb8f5c5LOnDfZZ3YkVHCE1/vRqdRc30tNU5fW3uIRT+eTOlwlOZ7dD9R3fI/0knLN2Pw0XLf8E4N0mtz5OWR+/wL2LOzUfv5ETlnNr7duwNQmpLizi/Myak6XxsdjfHRuQSNHn3e9xZCnJlx5QriTtkX9EzzdLkvvEDBm2+d9VpJ36zCJympXu0IHncyO8G3axd8unbl0KjRVGzaRMCQIfW6ZkOoczAc3jWSF1P2c2mXyBp72lntTl76/gAju3mWcK8oCr3igvn7GPfwa8+4YPabyvjg96O1BsP7hnfkzqEdqh5nZmbSfYlHtxTH7cosYcV2d8m1ey7tSFjA+Q+X2I4cIfeFF3GWlKAJDyPqrw9V7U5fmpJC5uw5cHwvzBMcJpP7+KKFEhCFaETqgIA6reAOmzaN4GuuOes5+viG25BBn5CAJjQU29FjLSMYzhzRmdW7f2bE8+uYfFF7ko73EA/lmfnvhiM4FYUZwzt5dPOoQF86R1VfJtsxysC3u2qvL+ej1VSrk2nwkcyQ+iiz2nl17UEARnYzMrD9+ef6WXbuJG/xYhRrJbqEeKIeegjFbseyeze4XO4dqE8LhEDVsZz5T6KLiQG1Gm1kpJRmE8JLtGFhTZr/a8/JwVlcjDbKuwtq6hxNIgN9+Gz6RTz25S7+vXovJ97WVMCwLpE8dXVPIgM9GyYd0C6Uw/nl1Y6l5ZmJC2m87YLaOkVR+M9PhymqsBEb7MdtQ9qd9zXLf/qJgnfeBZcL3+RkIu+fhdrfn5xnnqXovffqdA1nQQFHJt0AQOjUqUQ/8vB5t0sI0bjsWVk4S0qwZ2eB04l1zx4A9ImJqAOOd5jGXknkgw8QNGoULrOZvFdfI2j0KDQRke45w+eeR5+YSMAll3jzW/Es6T4+1J/3pg2ipMLOkQIzCtAhPIBg//qlQtxxSQeuW/Ibr649yLheMWzPKOajTcdYcG2vel1PnNuavblsPlKIVq1m1sjONYa8PaEoCiVffUXJ8WXVARddRPidd6DSun+t6jsDKetNhWgZ8l5eXC2BPu2aawFIXLqUgMGDALClpeEqO97p0Wio3LeP9C+/xFlWhi4ykoCLLyZy9v1ezz1WKUptY1dN58c9Jv69eh9pBWYSQv24c2jSGVeTni4jI4OEhATS09OJb8Ax7NYqs9jC3M93YnM4uWVwu/MquaY4HBQuXUr5+p8ACJownpDrr6+2CMeem4sjLw/rrt3kzJt3zmtGz5+Pb88eMkwqRAOS98m68fqk28juRkZ2l50uGpvd6eKV42kUveKCGd+7/mkULquV/FdfxbJ9B6hUhE2+jcCRI2ucp4uKQhcVhW+3buQvWYLDZKp93lClQms0EnL9dZJmIYTwCikF0kZ8vPlEGoWO+y6rfxqFs6QE09MLsGzfgUqvJ3L27FoD4alUGg3GR+cef3DafY8/Nj46VwKhEMJrJBi2ATsyilm1w51GMf2yJEJPS6NwuhQ2HCrgq22ZbDhUgNNV+8i5PTubnCefwnbkCOrAQIyPPIx//351akPQ6NHELVqI1lh9FEBrNBInaRVCCC/z+jCpaFylVjtL1h0C4PLuxho716/elc38Falkl1irjsUE+zJvQjJjep4cSq08cIDcF1/CZTajjYoi6qG/oouO9qgtQaNHEzhypFSgEUI0OxIMWzFFUXhj/SGKKmzEhfjXSKNYvSub6cu2cHo/MKfEyvRlW1hya3/G9Iyh4o8/yF/yOordjj6pA1EPPogmKKhebVJpNFWrzIQQormQYNiK/bAnlz+PFrnTKEZ0qlawwOlSmL8itUYgBFBwpzfMX5HKhVm7KPngA1AU/Pr2JWLGfah9GqaYtxBCNBcSDFupjKIK/rvRvRvFTYMSq2rKpmaVsN9UzoHc8mpDo6dTFIW+29ay89d9+Os1+F16KYkz75YhTSFEqyTBsBWyO10s/vEgNoeT3vEhXNnr5Nze/BWp/J5WeNbXa1xObti/hj75B8kEvms3mAqfPiyXQCiEaKUkGLZCH286xtFCM4G+OqZf2rFaGsW8CclVPcMT9UlP5euoZErqajqUZuFSqam8/mauHjaULsZzF/gVQoiWSoJhK7Mjo5hVO92Fzu+9tGONNIrk2GCSY4NxuhQ+35JBTom1at4wuLKM23evwlhRRKVGx+oLJrBs1o1o1FIgTQjRukmeYStSYrHz2lp3GsWo5GgGtDvzztEatYp5E5IB92KZaHMBM7d/jrGiiDK9P2/0msiUaWMlEAoh2gQJhq3EiTSKYos7jeLWC89d33VMzxiW3Nqfi2w5TN/xBYG2CnL9QvnfJTfz+L2jq+UZCiFEaybDpK3E96kmthxzp1HMHtm5WhrFmSiKwpDDm+lW8DOlUX6Ux3Wn3R3TmdEjXnqEQog2RYJhK5BeeDKN4ubBiSSG+5/zNS6LhYI336Tijz9RAXFXjibstlurtl8SQoi2RN75Wjibw8XiNQewO130iQ9hbM9zl0iz5+SQt3AR9qwsVFoNobfdRuDw4U3QWiGEaJ4kGLZwH28+xrHCCoJ8dUy/rOM5d6OwbNtG/pLXcVksaEJCiJw1E5/OnZuotUII0TxJMGzBtqUX882JNIrLOhLif+adohVFofTrryn+/AtQFHw6dSJi1ky0oWdecSqEEG2FBMMWqsRiZ8k6d9L8FT2i6Z945qDmsljI/89/sPy5BYDAkSMIveUWmR8UQojj5N2wBTqRRlFisZMQ6s/Ng8+cRnH6/GDYlCkYLr20+vWcTtlWSQjRpkkwbIFSjqdR6DRqZo04cxpFxdat5L/+OorF6p4fvH8WPp06VTunNCUF09MLcOTkVB3TRkdjfHSubLgrhGgzJOm+hUkvrGDZ8TSKW86QRqEoCsVffkneSwtRLFZ8Oncm5sn5tQbCzNlzqgVCAIfJRObsOZSmpDTeNyKEEM2I9AxbEJvDxcs/utMo+iaEckWPmmkU55oftOfm4sjLA5eLnPlPglLLjobHj+XMfxJdTAyo1WgjI9FFRTXeNyeEEF4kwbAF+fD3o6QXHU+juLRmGoU9O9s9P5idfcb5wYJ33qXovffqdD9nQQFHJt0AQOjUqUQ/8nCDfB9CCNHcSDBsIbYeK2L1bvdw5vTLOhLsr6v2fMWWreS/cXx+MDSUyNn345OUVOM69S2yJsXZhBCtmQTDFqCkws6Sde7dKMb0iKbfKWkUiqJQ8tVXlHz+BQA+XboQOXMGmpCQWq8Vdvs0giaMx7prNznz5p3z3tHz5+PbswfayMjz/0aEEKKZkmDYzCmKwpL1hyi1nkijaFf1nMtiIf+NN7Bs2QpA4OUjCb355rPmD+qiotBFReHbrRv5S5bgMJlqnzdUqdAajYRcf52kWQgharBlZJK/5DUqNv6OIz8fbVQUwRMmEHHvPaj0Zy4A4qqsJPfZZyld9Q0uux3DxRcTPe9xtBERTdj6mmQ1aTP33e4ctqW70yjuH9kZvdb9X2bPyiLniSewbNmKSqsh/M47CJs8uc6J9CqNBuOjc48/OG0Q9Phj46NzJRAKIWplSzsMLoXo+fNJWrkC49xHKFq+nNyXFp71daYFCyhbu464RQtp9/77OHJzyZh1f9M0+iykZ9iMHSuo4IPfjwFwy+B2JIS50yjqOj94LkGjR8OihTXzDI1GyTMUQpyVYehQDEOHVj3WJyRgS0uj6KOPMT7891pf4ywro/izz4l77jkCLrwQgJgFT3P4ynFYtm3Dr2/fpmh6rSQYNlOVDmfVbhT9EkO5oofRPT/45VeUfHF8frBrV/f8YHBwve8TNHo0gSNHSgUaIVo5l9mMs7y86rFKr0d9luHM+nCWlZ31/ci6ezfY7QRcNKTqmE9SEtrYGCokGIpTWWxOdmQUs2ZfLulFFQT76bj30o4oFgv5b/wHy9YT84OXE3rzTQ1SX1Sl0RAweNB5X0cI0XyZxk/AfMqH3IgZM4icNbPBrm87epSiZR8Q9fe/nfEcR14+Kp0OTVBQtePa8Aic+fkN1pb6kGDoZYqikFViZeuxIrYeK2ZvTilOl3tBiwoV0y/rhH9RHjmLFmHPzkGl1RI2bWq14QkhhDgX48oVxMXFVT0+0yKX3BdeoODNt856raRvVlWbmrGbTBy7624Cx1xB6A03NEyDm5gEQy+wOVykZpdWBcDcMmu152OC/eifGMKQjhHEZuwn+4033PODYWHu+qL1mB8UQrRt6oAANAbDOc8LmzaN4GuuOes5+vj4qq/tplyOTZ6Cf7++xDz55Flfp42MQLHbcZaWVusdOgry0Xh5NakEwyaSX17J1mPFbD1WxK6sUmwOZ9VzWrWa5Ngg+ieG0DchlOhgX/f84OdfkPfVV0DDzA8KIcS5aMPC0IaF1elcu8nEsclT8O3Rg5inn0alPnuCgm+PHqDTYd6wkaAr3Av0Kg+n4cjKxt+L84UgwbDROF0K+01lVQEwvaii2vNhAXr6JYTSLzGEHlH+aArysGcexf7DBvIyM7EdO4YjNxeAwFGjCL3pL7L/oBCi2bCbTBydPBldbCxRD/8dZ2Fh1XMninTYTSaOTZ1G7LPP4Ne7N5rAQEKuuxbTs8+gCQ5GbTBg+uc/8evb16uLZ0CCYYMqsdjZnl7M1mPF7MgoxmxzVD2nQkW3cB8u8LPRXVVOaFkG9i2Z2FdmkWvKrZb4rgClFjs2lRrl+puJv34sKrUURBNCNB/mX3/DfvQY9qPHOHjpZdWe6753DwCK3YEtLQ2X5eRUkHHuXFRqNRmzZ6PYbBguuZjoxx9vyqbXSqUotZUfaRkyMjJISEggPT2d+FPGsJuKoiik5Zvdvb/0Ig7lmlFQ0NptBJcVEG0poqe6gnaOUsLKClAVFdZe7QVQ+/uji4vjkCaQj47a2YeBTEMEFTo/YoJ9mTchmTE9Y5r4OxRCtHTefp9sKaRn6KETqQ9b04vZdTAHcrMJKS0gpLSAkSX5xFYWE+kwY/DR4afX1ChwrTYY0MXFoYuLRRcb6/46NhZNSAjf7c5h+rItqEJc9Mg/zEDTXgp9AklVkpi+bAtLbu0vAVEIIRqBBMM62vLHPras+Z3yI+kEluQTUZrPlZZy1Cow+Ggx+Gox+GjR+akBXzTBQehi404GvhNB77T8mtxSK7lllTjLS3jsy10MydrJvTu+JNJaUnVOnm8wr/eeyGNf6okJ9kOjVhEV6ENUkG8T/xSEEKJ1kmBYR9ZdO4lNOV75Rat2B79wfwKNEfjExx/v5cUeD4CxdVrCDPCfnw7z1i9pAFyUtZPHNi2tcU64tYTHNi3ln8DVr9oAuPOSDjw2PrlhvjkhhGjjvBoMX/p+P4t+PFDtWFJkAGv+epl3GnQWXS7owcE9fYnu0p6ITu2renpqf/8Gub5acXHvji+BmnsHqgEXcM/Or9gY0wOXSuqrCyFEQ/J6z7CL0cCyOwdXPdaeI0/FWyJ6difi2XPv/+epO5MDmRgQQebvW6oNjZ5ODURZilkSmkHc4P5EtAts8LYIIURb5fVgqFGriQpsw3Nfn3yI5r33SKzj6YnvvQzvAVOnwiMPN167hBCiDfF6MDySb2bQv37AR6emf2Iofx/TjbgQv1rPrXQ4sTlcVY/LKx21nteS1Dd7ULIOhRCi4Xg1GPZNDOH5SX1Iigwgt6ySRT/s54bXN/DdA8Mw+NRs2mtrD1WbY3SUerfKeUMIu30aQRPGg8tF+r3TcRQU1BroFEAbHk7C60tAra6q8CCEEOL8Nauk+xKLnUueWcNj47tz48CaA4en9wwzMzPp3qlDkySTOuwOtq5cS1lWDoGx0fQbPxytrmE/S5SmpJA5e477wan/Lcd3no9btFA23BVCeESS7uvG68Okpwr209EhMoAjBRW1Pu+j1eCjPbkfV229x8aw/q3laF9bSFhFMScSJn5/KgTHfXO49M4bG+w+svO8EEJ4R7MKhuZKB0cLKrimn4+3m1Jl/VvLiXz+iRrHQyqKUT3/BOuhwQOi7DwvhBBNy6vB8F+rUhnZ3UhciB+5ZVZe+v4AGrWKq/rEerNZVRx2B9rXFgJnzv3TvLYQx5TrGnTIVHaeF0KIpuXVYJhdYuX+j7ZSXGEnLEDPBe1D+eK+iwg3eLdnmLrzEEcPpFO6bQe9K4rPeJ4aCK8o5rOnXiOob2/adU4guVfHJmunEEKIhuHVYPjKzf29efsz2rDgZS7aklLn83t/sgQ+gd/6jyb5w0WN2DIhhBCNoXmWe/GyIUnhTfo6IYQQ3tWsFtA0F53vvxfHTdfhdDjZNeUOAq3ltX5qcAGlvgZ6LX0bjVYjuX9CCNFCSTCshS4qCl1UFACVMx8i6PkncFG9G+3CvajGNvMhDH16e6GVQgghGooEw3O49M4bWQ9VeYYnFPmH4GzgPEMhhBDeIcGwDi6980YcU66rVoHmwkaoQCOEEMI75N28jrQ6LQOvGeXtZgghhGgEsppUCCFEmyfBUAghRJsnwVAIIUSbJ8FQCCFEm9eiF9C4XO69DbOzs73cEiGEaJ5OvD+eeL8UtWvRwdBkMgEwaJDs8CCEEGdjMplITKy5abpwa1Y73XvK4XCwdetWjEYjanXjj/iWlZWRnJxMamoqgYGBjX6/tkx+1k1Lft5Nqyl/3i6XC5PJRL9+/dBqW3T/p1G16GDY1EpLSwkODqakpISgoCBvN6dVk59105Kfd9OSn3fzIwtohBBCtHkSDIUQQrR5Egw94OPjw7x58/Dx8fF2U1o9+Vk3Lfl5Ny35eTc/MmcohBCizZOeoRBCiDZPgqEQQog2T4KhEEKINk+CoRBCiDZPgmEdvfrqq7Rv3x5fX18GDx7Mpk2bvN2kVumnn35iwoQJxMbGolKp+PLLL73dpFZtwYIFDBw4kMDAQKKiopg4cSL79u3zdrNapSVLltC7d2+CgoIICgpiyJAhfPvtt95uljhOgmEdLF++nAcffJB58+axZcsW+vTpwxVXXEFubq63m9bqmM1m+vTpw6uvvurtprQJ69evZ8aMGWzcuJHvv/8eu93O6NGjMZvN3m5aqxMfH88zzzzDn3/+yR9//MGIESO4+uqr2b17t7ebJpDUijoZPHgwAwcO5JVXXgHctf4SEhKYNWsWjzzyiJdb13qpVCq++OILJk6c6O2mtBl5eXlERUWxfv16hg0b5u3mtHphYWE899xz3HHHHd5uSpsnPcNzsNls/Pnnn1x++eVVx9RqNZdffjkbNmzwYsuEaHglJSWA+01aNB6n08nHH3+M2WxmyJAh3m6OoIVv4dQU8vPzcTqdGI3GaseNRiN79+71UquEaHgul4s5c+Zw8cUX07NnT283p1XauXMnQ4YMwWq1YjAY+OKLL0hOTvZ2swQSDIUQx82YMYNdu3bxyy+/eLsprVbXrl3Ztm0bJSUlfPrpp0yZMoX169dLQGwGJBieQ0REBBqNpmoj4RNMJhPR0dFeapUQDWvmzJmsXLmSn376ifj4eG83p9XS6/V06tQJgAEDBrB582YWLVrEG2+84eWWCZkzPAe9Xs+AAQP48ccfq465XC5+/PFHGesXLZ6iKMycOZMvvviCNWvW0KFDB283qU1xuVxUVlZ6uxkC6RnWyYMPPsiUKVO44IILGDRoEAsXLsRsNjNt2jRvN63VKS8v5+DBg1WP09LS2LZtG2FhYSQmJnqxZa3TjBkz+PDDD/nqq68IDAwkJycHgODgYPz8/LzcutZl7ty5jB07lsTERMrKyvjwww9Zt24d3333nbebJgAUUSeLFy9WEhMTFb1erwwaNEjZuHGjt5vUKq1du1YBavybMmWKt5vWKtX2swaUd99919tNa3Vuv/12pV27doper1ciIyOVkSNHKikpKd5uljhO8gyFEEK0eTJnKIQQos2TYCiEEKLNk2AohBCizZNgKIQQos2TYCiEEKLNk2AohBCizZNgKIQQos2TYCiEh6ZOnSp7LArRykg5NiFOoVKpzvr8vHnzWLRoEVKrQojWRYKhEKfIzs6u+nr58uU8/vjj7Nu3r+qYwWDAYDB4o2lCiEYkw6RCnCI6OrrqX3BwMCqVqtoxg8FQY5j0sssuY9asWcyZM4fQ0FCMRiNvvvlmVTH3wMBAOnXqxLffflvtXrt27WLs2LEYDAaMRiO33XYb+fn5TfwdCyFAgqEQDWLp0qVERESwadMmZs2axfTp05k0aRIXXXQRW7ZsYfTo0dx2221UVFQAUFxczIgRI+jXrx9//PEHq1evxmQyccMNN3j5OxGibZJgKEQD6NOnD4899hidO3dm7ty5+Pr6EhERwV133UXnzp15/PHHKSgoYMeOHQC88sor9OvXj6effppu3brRr18/3nnnHdauXcv+/fu9/N0I0fbInKEQDaB3795VX2s0GsLDw+nVq1fVMaPRCEBubi4A27dvZ+3atbXOPx46dIguXbo0couFEKeSYChEA9DpdNUeq1SqasdOrFJ1uVyAexPjCRMm8Oyzz9a4VkxMTCO2VAhRGwmGQnhB//79+eyzz2jfvj1arfwZCuFtMmcohBfMmDGDwsJCbrrpJjZv3syhQ4f47rvvmDZtGk6n09vNE6LNkWAohBfExsby66+/4nQ6GT16NL169WLOnDmEhISgVsufpRBNTaVIKQ0hhBBtnHwEFUII0eZJMBRCCNHmSTAUQgjR5kkwFEII0eZJMBRCCNHmSTAUQgjR5kkwFEII0eZJMBRCCNHmSTAUQgjR5kkwFEII0eZJMBRCCNHmSTAUQgjR5v0/NAxuiV+rQZYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\"\"\"Plot the charge spin spreading.\"\"\"\n", "fermi_hubbard.plot_quantity(bundle, \"charge_spin_spreading\", show_std_error=True);" ] }, { "cell_type": "markdown", "metadata": { "id": "ccebcf0cf19a" }, "source": [ "If Google's QCS was used, these experimental results can be compared to previous experiments executed on simulators." ] } ], "metadata": { "colab": { "name": "experiment_example.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0869127183bd4f189b60f2a8cbf776f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed491884239942489c1dec2a61cde026", "placeholder": "​", "style": "IPY_MODEL_f477778c1cf34bcbb8124cb2d545492e", "tabbable": null, "tooltip": null, "value": " 176/176 [02:54<00:00, 1.00s/it]" } }, "0f49f18d38994298aad06e8e47991ed8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1620be4cc85f494b87df982eb37b7b15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "163e0bad547d4abc9a774e68c9e9a6ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9b1ee14dc3e4017bc53e6a151f776ad", "max": 176.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e61a310291b748e8a610f4652e4f349a", "tabbable": null, "tooltip": null, "value": 176.0 } }, "1da18f09842b40f5a3bb4e26e165119a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "27c8a171e188454681cb81f8f9229d2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "3017260898c3421abe07b10fdfd5d769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "30c0c8f84d5a4dbda6b6c979456b8051": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99e91d79fbdd4ddd9c8be2eaa6d2bd4a", "placeholder": "​", "style": "IPY_MODEL_72570911df9a4e94b87d03d44e72e17b", "tabbable": null, "tooltip": null, "value": "100%" } }, "3cc98c9fa81648ee9e5024fd09bc0079": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1620be4cc85f494b87df982eb37b7b15", "max": 176.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_907acedd9ea543d897bb19d2dca72679", "tabbable": null, "tooltip": null, "value": 176.0 } }, "3ebdaa3a8eaa4c828c7bc98582b4f25b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4382d91993ad48498251d4c03299a632": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_30c0c8f84d5a4dbda6b6c979456b8051", "IPY_MODEL_3cc98c9fa81648ee9e5024fd09bc0079", "IPY_MODEL_e7877f3f832041c1831576b2476d5e5b" ], "layout": "IPY_MODEL_1da18f09842b40f5a3bb4e26e165119a", "tabbable": null, "tooltip": null } }, "447db29b374543df8a1d19ea75f349ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8b4ed31f897b45d891be18491c3a84f8", "IPY_MODEL_163e0bad547d4abc9a774e68c9e9a6ce", "IPY_MODEL_0869127183bd4f189b60f2a8cbf776f4" ], "layout": "IPY_MODEL_c011c86f16ec4f5b9421118afa88fee6", "tabbable": null, "tooltip": null } }, "61ad80e8960f422aaf4854855638ef6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6312ba026b5b4c1ca0e0677f118bbc02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ddf6c577a00d468cbfc1b287d754ea08", "placeholder": "​", "style": "IPY_MODEL_70a8761a679b47a9bc8e0580c265439e", "tabbable": null, "tooltip": null, "value": " 176/176 [02:44<00:00, 1.00it/s]" } }, "7051eebf7870426c98f10b17e38e5a59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "70a8761a679b47a9bc8e0580c265439e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "72570911df9a4e94b87d03d44e72e17b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "8b4ed31f897b45d891be18491c3a84f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61ad80e8960f422aaf4854855638ef6e", "placeholder": "​", "style": "IPY_MODEL_3017260898c3421abe07b10fdfd5d769", "tabbable": null, "tooltip": null, "value": "100%" } }, "907acedd9ea543d897bb19d2dca72679": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "99e91d79fbdd4ddd9c8be2eaa6d2bd4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9fff09943f63415496b9cfcfaa23cfc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c011c86f16ec4f5b9421118afa88fee6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c63fb9c34ac448378a13f1e21416a2e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d65bbb36098d402ca3e5006d70ccb084", "IPY_MODEL_c9ac75d96995487ebc7fd0e8f37fdbd8", "IPY_MODEL_6312ba026b5b4c1ca0e0677f118bbc02" ], "layout": "IPY_MODEL_dc6a0b5e963c496280af8bcc7feec2f6", "tabbable": null, "tooltip": null } }, "c9ac75d96995487ebc7fd0e8f37fdbd8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1dd40b7b0ce447590cb172974519e4c", "max": 176.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9fff09943f63415496b9cfcfaa23cfc8", "tabbable": null, "tooltip": null, "value": 176.0 } }, "d65bbb36098d402ca3e5006d70ccb084": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ebdaa3a8eaa4c828c7bc98582b4f25b", "placeholder": "​", "style": "IPY_MODEL_27c8a171e188454681cb81f8f9229d2b", "tabbable": null, "tooltip": null, "value": "100%" } }, "dc6a0b5e963c496280af8bcc7feec2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ddf6c577a00d468cbfc1b287d754ea08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e61a310291b748e8a610f4652e4f349a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e7877f3f832041c1831576b2476d5e5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f49f18d38994298aad06e8e47991ed8", "placeholder": "​", "style": "IPY_MODEL_7051eebf7870426c98f10b17e38e5a59", "tabbable": null, "tooltip": null, "value": " 176/176 [02:48<00:00, 1.01it/s]" } }, "ed491884239942489c1dec2a61cde026": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1dd40b7b0ce447590cb172974519e4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f477778c1cf34bcbb8124cb2d545492e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f9b1ee14dc3e4017bc53e6a151f776ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 0 }